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Abstract. In the US, several different federal agencies (e.g., the USGS, NOAA, USDA, EPA, and NSF) collect information

that has been or continues to be measured for river basins in support of their water-related missions and goals. This infor-

mation is published online in named data collections, and each data collection has its own set of attributes and objectives. A

given basin often has multiple agency IDs and may appear in multiple collections, so there is overlap between them. These

collections represent a significant investment of time and money and are a critically important resource for hydrologic model-5

ing and monitoring, whether used operationally or for research. Unfortunately, there is significant heterogeneity across these

collections, both in terms of the data they provide but also in terms of how they can be found and effectively accessed. It is

also not uncommon for them to contain missing data or errors. Driven by the need to identify the most performant hydrologic

model for any given river basin in the US from a collection of available models, the HARBOR project has two key goals.

The first is to harmonize and bring together these datasets and associated resources in one place — just as many large cargo10

ships can be moored in the same harbor — which helps to increase awareness of them while also making it much easier to

find, access, and use them. The second is to classify river basins into hydrologically similar groups, since if two river basins

are hydrologically similar then it is likely that the same model in a collection will be most performant for both of them. To

achieve these goals, a set of Python modules were created, one for each dataset, to augment, clean, and extract information from

them. Four different river basin classification methods were applied, given sufficient data, including the Hydrologic Landscape15

Region (HLR) method, the more process-based Seasonal Water Balance (SWB) method, a simple hydrograph-based method

based on modeling with the National Water Model, and the method of using the 12 aggregated ecoregions that were used for

the GAGES-II dataset. In order to address shortcomings in the SWB method, we also developed an Extended SWB method

and applied it to the 9067 GAGES-II basins in CONUS.
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1 Introduction20

How does one identify a river basin, or basins, for hydrologic model evaluation? Ideally, this would be a data-driven selection

process, yet researchers often choose the locations with which they are familiar or those that previous studies have used. To

mitigate this bias, recent years have seen marked growth in the number of quantitative geospatial datasets that should facilitate

more objective basin selections. In the United States, many of these datasets have been created by federal agencies like the US

Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the Environmental Protection25

Agency (EPA), and the US Department of Agriculture (USDA). Some have been created in connection with projects funded by

the National Science Foundation (NSF) like the Critical Zone Observatories (CZOs), Long-Term Ecological Research (LTER)

and National Ecological Observatory Network (NEON). Yet others, usually subsets of the federal agency collections, have

been created to support other modeling objectives such as the Model Parameter Estimation Experiment (MOPEX) and the

Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) datasets. Federal agencies also may create a new30

collection to supersede or supplement an existing collection. As might be expected, each of these data collections provide

a different set of basin attributes, usually in the form of text-based CSV or TSV files (comma or tab separated values), and

sometimes also with shapefiles for all of the basins in the collection.

Unfortunately, there is substantial heterogeneity across these basin collections, such as different attributes, different column

headings/abbreviations for the same attributes, different measurement units, different methods of organizing files by region,35

different spatial scales and extents, and missing data. While most datasets are available on publicly accessible websites or

through APIs, it can be surprisingly difficult to obtain some of these collections, especially the older ones, which may no

longer be available at their original or published online location (e.g., MOPEX). It is also unclear to most potential users

how these various basin collections relate to one another, or the extent to which they contain the same basins, and the sea of

associated acronyms is daunting. A given basin, associated with a given stream gauge at its outlet, typically has many different40

agency IDs, such as a USGS 8-to-15-digit ID, a 5-to-8-character NOAA NWS location ID, a GOES (or NESDIS) satellite ID,

an 8-to-16-digit Hydrologic Unit Code (HUC), among others.

Such heterogeneity presents several challenges. One, it prevents shared understanding of basin attributes and hydrologic

processes in different spatial domains. Two, it hinders efforts to compare model performance across, or even within, basin

datasets. And three, it makes it difficult to integrate findings and advances from one dataset to another. This suggests the45

need to harmonize these disparate datasets into a single, larger dataset that the hydrologic modeling community can deploy.

While we designed this work to benefit a wide range of research and operational activities, a key motivating factor was the

development of the Next Generation Water Resources Modeling Framework (NextGen) by NOAA (Ogden et al., 2021). The key

advancement of NextGen is that it is a plug-and-play modeling framework (vs. a single model) that provides unprecedented

modeling flexibility with its ability to use different hydrologic models and process formulations for different catchments or50

river basins. Notably, the framework enables the unique inclusion and inter-operability of both process-based and data-driven

(e.g., machine learning, deep learning) models. This flexibility brings a new challenge, however, in that a desire for local

model fidelity may lead to a degree of spatial variation and heterogeneity that is difficult to implement (calibrate), maintain,
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interpret, and operationalize. Spatial model variation may in some cases provide only marginal performance gains over less

heterogeneous selections of models, and regionally consistent modeling patterns may be more acceptable to both forecasters55

and stakeholders. River basins that are “hydrologically similar” in some appropriate sense may be modeled best by the same

hydrologic model. If so, this principle can be used to simplify or automate the matching of the most performant hydrologic

models to individual river basins. Moreover, when a model is calibrated for one or more river locations in a class of similar

basins, that calibration may be suitable for other, potentially ungauged, members of that class — an approach often described

as parameter regionalization.60

A comprehensive large domain assessment of model performance to support regionalization objectives requires the ability to

test strategies for model selection over a large collection (i.e., sample) of catchments spanning the entire modeling domain. This

observation motivates the work described in this paper, which has two primary goals. The first goal is to collect and examine

many different river basin data collections, to simplify access to them, to some extent harmonize and collate them, and to

see what attributes they provide that could be used for river basin classification. The second goal was to examine different65

river basin classification schemes (and their data requirements) as a means of placing river basins in a manageable number of

classes with other hydrologically similar basins. For this goal we seek a river basin classification method that identifies which

hydrologic processes, climate variables, and basin attributes are most important for distinguishing the degree to which two

river basins are hydrologically similar.

To accomplish these goals, we acquired a diverse collection of basin datasets and then developed a set of Python utilities,70

with a subset tailored to each dataset, to collate, clean, augment, and extract information from them. We describe the river

basin datasets in detail in the subsequent section: Overview of Existing River Basin Data Collections. We then describe the set

of utilities in the following section titled: Python Utilities for Working with River Basin Data Collections. The organizational

structure of this new basin repository is described in: Organization of HARBOR.

To fulfill the second key goal of this work, several river basin classification systems were examined, and these are sum-75

marized in the section titled: Existing River Basin Classification Systems. One of these systems, termed the Seasonal Water

Balance method, is relatively more process-based and seems particularly promising after work to resolve initial shortcomings.

This new version is described in the section titled: An Extended Seasonal Water Balance Classification Method.

2 Overview of Existing River Basin Data Collections

In this section, brief descriptions are provided (with references) for many existing river basin data collections. Figure 1 shows80

the extent to which these collections overlap with one another. The function compare_basin_ids() in the Python module

data_utils.py was used to create this diagram.

CAMELS (Catchment Attributes and Meteorology for Large-sample Studies). CAMELS contains 671 CONUS water-

sheds with minimal human impact that span a wide range of hydroclimatic conditions, originally providing associated datasets85

from 1980 to 2015 (Newman et al., 2015; Addor et al., 2017; NCAR, 2024) All of the CAMELS basins are contained in the
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set of GAGES-II SB3 basins, which is a subset of the GAGES-II Reference basins (see below). 52 CAMELS basins are also in

the MOPEX dataset described below. Notably, CAMELS paired catchment meteorological time series from several common

forcing datasets, observed streamflow time series, modeling results from a common hydrology model, and an unusually large

collection of catchment geophysical attributes, enabling it to become the foundational dataset for the current rise of machine90

learning for streamflow simulation, and a community-wide hydrology benchmarking dataset (Newman et al., 2015).

Caravan. An open community dataset of meteorological forcing data, catchment attributes, and discharge data for catchments

around the world. Inspired by CAMELS, multiple countries developed CAMELS dataset extensions for their own countries,

which Kratzert et al. (2023) collected and extended, including national datasets such as the CAMELS-CL dataset for Chile95

(Alvarez-Garreton et al., 2018).

HYSETS. This is a multisource dataset with information for 14,425 basins in North America. See Arsenault et al. (2020)

and Mai et al. (2022). It includes a wide array of hydrometeorological data required to perform hydrological and climate

change impact studies, namely (1) watershed properties including boundaries, area, elevation slope, land use and other phys-100

iographic information; (2) hydrometric gauging station discharge time-series; (3) precipitation, maximum and minimum daily

air temperature time-series from weather station records and from (4) the SCDNA infilled gauge meteorological dataset; (5)

the NRCan and Livneh gridded interpolated products’ meteorological data; (6) ERA5 and ERA5-Land reanalysis data; and (7)

the SNODAS and ERA5-Land snow water equivalent estimates. Watersheds with regulated (non-natural) flows were excluded,

thus only a subset of USGS gauging station data is included. All data is available online at: Arsenault et al. (2011). Watershed105

properties are listed in the file: HYSETS_watershed_properties.txt and include the latitude and longitude of the station/outlet

in the last 2 columns. This dataset is not included in the collated basin TSV file.

MOPEX (Model Parameter Estimation Experiment). This dataset has information for 431 well-monitored, lower-impact

basins with a focus on parameter estimation for hydrologic models. Starting from a set of 1861 potential MOPEX basins, only110

431 were considered to have a sufficient areal density of rain gauges. Time series data spans 1948 to 2003 for basins mostly

in the eastern half of CONUS, with a minimum record length of 10 years and often more than 20 years. See Schaake et al.

(2006) and Duan et al. (2006). MOPEX was an international project that hosted at least 5 workshops in different countries

between 1999 and 2005, with a focus on high-quality data sets for unregulated, intermediate-sized basins (500 to 10,000 km2).

MOPEX was augmented with many additional attributes as part of a 2009 Hydrologic Synthesis Project (Durcik et al., 2009;115

Troch et al., 2018). The paper by Berghuijs et al. (2014) used data for 321 MOPEX basins to develop the Seasonal Water

Balance (SWB) basin classification method, discussed in a subsequent section. Brooks et al. (2011) also used data for a subset

of MOPEX basins.

NOAA-NWS River Forecast Center (RFC) Basins. The USA is divided into 13 RFC regions, each with forecasts (and data)120

for many rivers of various sizes within that region (Figure 3). Each RFC provides data on a website, with a URL of the form:
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https://www.weather.gov/wgrfc/ . See NOAA (2024b). This dataset includes a shapefile called ba12my15.shp that contains 9370

basins. The USGS and NOAA work together to monitor over 9109 basin DCPs (Data Collection Platforms) that upload data

to a geostationary GOES satellite. These DCPs/gages then have both a USGS Site ID and an NWS Location ID (NWSLID).

Many of these are part of the HADS network of DCPs. There is a NOAA HADS-to-USGS crosswalk that maps many USGS125

Site IDs to corresponding NWS Location IDs. The SERFC is responsible for Puerto Rico. In the following subsections we

document a few additional characteristics of these RFC data sets.

NWS Location IDs and Runoff Zone IDs for MBRFC. The Missouri Basin RFC (MBRFC), one of the 13 NOAA River Forecast

Centers, subdivides basins into multiple runoff zones for modeling purposes. While the basins themselves have an associated130

NWS location ID that follows the 5-character NWSLID scheme, the IDs used for the runoff zones that comprise a basin depend

on whether or not the basin is mountainous. For runoff zones in mountainous regions, which are subdivided by elevation, IDs

are constructed by appending extra letters like LWR or UPR to the NWSLID. For runoff zones in non-mountainous regions,

a unique 3- or 4-digit numerical ID is used, ranging from 101 to 3297. Shapefiles may contain boundaries for both the basins

themselves, as well as the runoff zones. (Note: MBRFC employees kindly provided us with a mapping of runoff zones to their135

corresponding basins. The Missouri Basin is also divided into 20 regional basins called forecast groups.) Note that the outlet

of the most downstream runoff zone in a given basin will coincide with that basin’s outlet, so their outlet latitude and longi-

tude will be the same. Other RFCs (e.g., ABRFC, CBRFC, NCRFC, NERFC) also add additional letters after the 5 standard

alphanumeric characters as a means of grouping nearby sites or discriminating model zones within a gage’s drainage area.

Elevation zones are common in NWS watershed modeling, and are usually indicated by characters such as L, M, and U to140

denote lower, middle, and upper zones.

Incomplete Metadata for Some Basins.

Four of the dataset folders that start with NOAA_ contain alternate datasets for the basins associated with the 13 NOAA RFCs.

For example, one folder has info from a beta version of a new API (note: official release is now available), and one has info145

from a NOAA HADS-to-USGS crosswalk for gages in the HADS/GOES network. Some utilities in rfc_utils.py attempt to uti-

lize these different datasets to fill in missing information. For example, some datasets may not provide the RFC, WFO/CWA,

or HSA codes for all sites. See Figure 4 for a map of the WFO/CWA regions.

NSF CZO (Critical Zone Observatories). In 2006, the U.S. National Science Foundation (NSF) sent out the first Critical150

Zone Observatory (CZO) solicitation (NSF06-588) that was followed by another solicitation in 2012 (NSF12-575). The CZO

program funded 10 CZOs spanning different climatic and physiographic environments that operate as “environmental lab-

oratories”. (However, the Christina CZO is no longer funded.) In 2019, the NSF sent out a solicitation for a Critical Zone

Collaborative Network (CZ-Net) to support “thematic clusters” and a “coordinating hub”. The term “critical zone” refers to the

permeable, near-surface layer of the Earth that extends from bedrock to treetops and is “where rock, soil, water, air, and living155

organisms interact”. Research at CZOs focuses on interconnected, catchment-scale processes (e.g., chemical, biological, phys-
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ical). See Brantley et al. (2017), NSF-CZO (2021), and Wlostowski et al. (2021). The last paper includes two supplementary

data files, including a spreadsheet with metadata for many of the CZO watersheds. UNWI (2019) is a HydroShare dataset that

identifies the 22 USGS gages that are adjacent to a CZO watershed. Since CZO watersheds have been intensively studied and

often have good observational data, they have been included in the repo and are indicated in the Is_CZO column of the collated160

TSV file.

NSF LTER (Long-Term Ecological Research). The NSF-funded LTER program began in 1980 and focuses on ecological

research with long-term observations at 30 sites across the US (27 still active). Many of the LTER sites contain river basins

and the closest USGS gage and distance to it (in km) is indicated in the Closest_Site_ID and Closest_Site_Dist columns of the165

collated TSV file. There are 22 LTER site centroids within 10 km of a USGS gage. See Franklin et al. (1990), Hobbie et al.

(2008), Gosz et al. (2010), and Müller et al. (2010).

NSF NEON (National Ecological Observatory Network). The NEON project began in 2011 with partial funding from the

NSF and consists of 81 field sites across US with >30 years of ecological and climatology data. A CSV file with NEON Field170

Site metadata can be downloaded at NEON (2024b). Field sites may be aquatic (rivers or lakes) or terrestrial. The 33 NEON

watersheds have non-empty entries in the columns: field_watershed_name and field_watershed_size_km2. Latitude and lon-

gitude entries are presumed to be for watershed outlets but could be centroids CHECK THIS. The closest USGS gage and

distance to it (in km) is indicated in the Closest_Site_ID and Closest_Site_Dist columns of the collated TSV file, and all are

within 22 km. See NEON (2024a, c). There is also an R package for data access; see NEON (2024d).175

USDA/ARS Experimental Watershed Network. A network of 771 watersheds with a focus on agriculture and soil ero-

sion, many with long discharge records. Several of these have been the subject of many studies and are well-known to

hydrologists, such as: Goodwater Creek (MO), Goodwin Creek (MS), Little River (GA), Little Washita (OK), Lucky Hills

(AZ), Pigeon Roost (MS), Reynolds Creek (ID), Upper Sheep Creek (ID), and Walnut Gulch (AZ). See Goodrich et al.180

(1994, 2011, 2016, 2020) and Cook (2021). Data for these basins is in the STEWARDS database. See USDA (2024) for

watershed metadata, runoff data, rain gauge data and maps.

USDA SCAN Sites. A set of 212 stations measuring soil moisture content at several depths, air temperature, relative humidity,

solar radiation, wind speed and direction, liquid precipitation, and barometric pressure. See USDA-NWCS (2024a, b).185

USDA SNOTEL (SNOwpack TELemetry Network). Snow data for 899 sites across 11 US states. See USDA-NWCS

(2024c, d).

USGS FPS (Federal Priority Streamgages). A set of 4756 monitoring stations and the “backbone” of the larger USGS190

Streamgaging Network. “These sites are eligible for federal funding, as available. As of January 16, 2024, 3,491 of these sites
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were active, collecting real time streamflow and/or water level data to meet federal needs.” See Normand (2021) and USGS-

FPS (2024). See Figure 2.

USGS GAGES-II (Geospatial Attributes of Gages for Evaluating Streamflow, version II). This widely-used data set pro-195

vides numerous attributes for 2057 Reference (least-disturbed) sites and 7265 Non-reference basins (9322 total). As of 2009,

1,633 of the Reference sites had 20+ years of record since 1950. It has all CAMELS basins and all but 7 MOPEX basins. See

Falcone et al. (2010), Falcone (2011) and Falcone (2017). This dataset also includes shapefiles for all of the Reference and

Non-Reference basins. A subset of the basins in GAGES-II are identified with “yes” in a column with the heading HCDN-

2009 in the spreadsheet gages2_sept30_2011_conterm.xlsx. These 743 basins were flagged as potentially useful for a future200

hydro-climatic study similar to the original HCDN study because they fulfill all of the following criteria:

1. have 20 years of complete and continuous flow record in the last 20 years (water years 1990-2009), and were thus also
currently active as of 2009;

2. are identified as being in current Reference condition according to the GAGES-II classification;

3. have less than 5 percent imperviousness as measured from the 2006 National Land Cover Database; and205

4. were not eliminated by a review from participating state Water Science Center evaluators.

USGS GAGES-II CONUS SB3. This data set provides many additional attributes for all GAGES-II Reference basins that lie

within the conterminous US (CONUS). It therefore excludes 67 sites in Alaska, 27 in Hawaii, and 16 in Puerto Rico, resulting

in extended data for 1947 (i.e. 2057 - 110) basins. See Child Item 3 in the Russell et al. (2018) dataset. Since many of the210

filenames in this dataset begin with SB3 (where SB stands for Selected Basins), we are using SB3 to refer to this dataset. It

includes all CAMELS basins, 88 MOPEX basins, and 561 HCDN basins. It was developed to investigate refinements of a

regression-based method for prediction of flow-duration curves for selected streamgages in CONUS (Over et al., 2018). An er-

ror was discovered and fixed in this dataset, where 16 of the USGS site IDs in the file SB3_untransfBCs.new.xlsx were missing

a leading “0”.215

USGS HCDN (Hydro-Climatic Data Network). Slack and Landwehr (1992a) describe HCDN as: “A national data set of

streamflow records that are relatively free of confounding anthropogenic influences has been developed for the purpose of

studying the variation in surface-water conditions throughout the United States.” This dataset contains data from WATSTORE

for USGS basins with relatively long streamflow records and was applied to the study of climate fluctuations. While it is said to220

provide data for 1659 basins, it actually provides data for 1703 basins. Basins are in CONUS, Alaska, Hawaii, Puerto Rico, and

the US Virgin Islands. Note that 1523 HCDN basins are included in GAGES-II and 595 are Reference basins. See Slack and

Landwehr (1992a, b) and Slack et al. (1994). Falcone (2011) noted that the HCDN “identifies stream gages which at some point

in their history had periods which represented natural flow, and the years in which those natural flows occurred were identified.”

225

USGS HLR (Hydrologic Landscape Regions). The concept of hydrologic landscapes was introduced by Winter (2001). Soon

after, Wolock et al. (2004) developed HLR into a basin classification system (described in detail in a later section) and applied
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it to the entire US using a GTOPO30 HYDRO1K DEM for North America and GIS (e.g., basin delineation) methods. Note

that HYDRO1K uses a Lambert Azimuthal Equal Area projection. The HLR system groups watersheds into 20 classes (or

noncontiguous regions) on the basis of similarities in land-surface form, geologic texture (soil and bedrock types), and climate230

characteristics. Valid HLR codes range from 1 to 20, but a value of 0 is used to indicate an unclassified basin in the vector-

format version. Wolock et al. (2004) assigned HLR codes to 43,931 small (average size of 212 square km) watersheds in the

50 United States. This set of watersheds spans the entire US so that an HLR code is assigned to every square kilometer. The

GIS files generated by this work are available online (Wolock, 2003) in both vector and raster formats, but the vector data

(shapefile, etc.) appears to be a draft version and suffers from various issues. (These are documented in a README file in235

the repo.) Blackburn-Lynch et al. (2017) developed a separate set of hydraulic and bankfull geometry parameters for each of

the 20 hydrologic landscape regions (HLRs) and the results showed marked improvement over other region-based approaches.

Blackburn-Lynch et al. (2017) also used data for 2,856 independent basins across CONUS.

USGS NWIS Web Data. USGS water data is made available through the National Water Information System (NWIS), which240

has a web interface. Real time (current) data can be downloaded from: USGS-NWIS (2024a). Daily values can be downloaded

from: USGS-NWIS (2024b). The complete inventory of site data is available at: USGS-NWIS (2024d), but has a “maximum

retrieval size” that restricts the amount of data that can be downloaded in a given search. Step-by-step instructions for how

to download data from these URLs is given in “how to” text files in the USGS_NWIS_Web/Data folder of the HARBOR

repo. HARBOR contains separate TSV files for sites of type “Stream” from the NWIS current, daily, and inventory (i.e. all)245

collections. These are in the USGS_NWIS_Web/Data folder, with names:

Current: NWIS_Stream_Sites_Current.tsv (11,215 sites)

Daily: NWIS_Stream_Sites_Daily.tsv (27,915 sites)

Inventory: NWIS_Stream_Sites_All.tsv (159,375 sites).

We discovered that 266 sites occur in the NWIS Daily dataset that are not included in the NWIS Inventory dataset, even though250

the latter is supposed to be all-inclusive. It turned out that these sites were located outside of the US, and included sites in

Canada, Okinawa, and Afghanistan. Note that the USGS GAGES-II dataset is also a subset of the USGS NWIS basins, con-

sisting of 9322 basins, of which 2057 are labeled as “Reference” (vs. “Non-reference”) basins. All CAMELS basins (671) and

all MOPEX basins (471) are also a subset of the set of all USGS NWIS basins of type Stream. All of the CAMELS basins and

all but one of the MOPEX basins are also a subset of the set of daily value USGS NWIS basins of type Stream. (The USGS255

site ID of that one basin is 13298500, with site name Salmon River near Challis, ID, and that basin is in both the HCDN and

GAGES-II Non-Reference data sets.)

USGS Streamgaging Network. Contains a subset of USGS NWIS Web basins (about 11,340). See Normand (2021, Figure

1), USGS (2021), and Eberts et al. (2018).260
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USGS National Streamflow Network. This is a subset of the “USGS Streamgaging Network” (about 8,460) and the USGS

Federal Priority Streamgages are a subset of this network (about 3470). See Normand (2021, Figure 1).

3 Organization of HARBOR

In building HARBOR, we were guided by the FAIR (Findable, Accessible, Interoperable, and Reproducible) dataset princi-265

ples that have been made popular by Wilkinson et al. (2016). To this end, (1) all of the Python utilities used to create the

Repo are open-source, well-documented, and available in a GitHub code repository, (2) all required GIS work was performed

with an open-source GIS application called QGIS and all QGIS workflows are described step-by-step in README files, (3)

a URL for each dataset downloaded and used is provided, (4) a uniform organizational structure was created for the Repo,

(5) any data oddities discovered were documented, (6) other helpful resources associated with a dataset, such as documenta-270

tion, APIs, and URLs are included with the Repo, and (7) an extensive set of references (with DOIs) is included with this paper.

Most of the folders in the repo are named to reflect a specific dataset, often associated with a particular federal agency.

For example, several folder names start with a federal agency name like: NOAA_, NSF_, USDA_, or USGS_. Within a

dataset folder, there will usually be a folder called Data. The Data folder will contain a Mac-based shortcut (.webloc) to the275

website that the dataset was downloaded from, starting with a double underscore, “__”. Often it will also contain a file called

__README.txt with helpful information specific to that dataset. If the dataset is not too large it is also included in this Data

folder (possibly zipped), or at least key portions of it. Files uploaded by browser to GitHub have a limit of 25 MB, while files

uploaded by command line can be up to 100 MB. The dataset folder will usually also contain a folder called _New that contains

files generated from the datasets by the set of Python utilities or by QGIS. In many cases, the dataset folder will also contain280

folders called Docs (with additional documentation relating to the dataset), Papers (with PDF files for key papers that describe

or use the dataset), and URLs (with additional Mac-based shortcuts to related websites). If there is a GitHub repo associated

with the dataset, there may also be a folder called GitHub with a link to that repo. In addition to the dataset folders, there are

a few other folders such as:

__Collated (with combined, selected information for many of the datasets; see Table 1.)285

__Docs (with general docs that apply across multiple datasets)

APIs_or_Services (with links to websites that provide an API or service)

SWB (with information about the Seasonal Water Balance basin classification method).

If you intend to use the Python utilities to re-create or augment files in the _New folders, you should first check the _New

folder for each dataset and unzip any “.zip” files you find there. These will typically be Python dictionaries or datasets that290

speed up computation, saved into .pkl (pickle) or .npy (numpy) files. Not all of the datasets with a folder in the repo have been

merged into the final, collated TSV file, in the __Collated folder. Some have only been included for reference, such as the

Caravan and HYSETS dataset folders.
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Attribute Description
Site_ID USGS site ID, 8 to 15 digits
NWS_Loc_ID NOAA NWS location ID, 5 to 8 alphanumeric characters
GOES_ID GOES satellite ID for a DCP (data collection platform) assigned by NESDIS
RFC 5-letter abbreviation for a NOAA River Forecast Center
WFO/CWA 3-letter abbreviation for Weather Forecast Office or County Warning Area.
HSA NOAA NWS Hydrologic Service Area
HUC USGS Hydrologic Unit Code (in most cases 12 digits; sometimes 8)
Site_Name Original USGS site name, often with many abbreviations
Site_Type The USGS site type (e.g., Stream, Lake, Atmosphere, Well, etc.)
Stage_Data c=continuous, i=intermittent, followed by A for active, I for inactive, or N for never recorded
PEDTS_Obs A 5-character parameter code that describes what quantity was observed or predicted at

a location. PE=Physical Element, D=Duration Code, T=Type Code, S=Source Code. See
NOAA (2012).

State_Code 2-letter US state code
Country_Code country code
Outlet_Lon longitude of basin/gage outlet
Outlet_Lat latitude of basin/gage outlet
Outlet_Elev elevation of basin/gage outlet
Elev_Units elevation units
Area drainage area above basin/gage outlet
Area_Units area units
Horiz_Datum horizontal datum
Vert_Datum vertical datum
Minlon westernmost longitude of geographic bounding box
Maxlon easternmost longitude of geographic bounding box
Minlat southernmost longitude of geographic bounding box
Maxlat northernmost longitude of geographic bounding box
Long_Name expanded USGS site name, without abbreviations
Closest_Site_ID the closest USGS site ID
Closest_Site_Dist distance to the closest USGS site ID
Site_URL URL associated with the USGS site ID
HUC_URL URL associated with basin’s Hydrologic Unit Code
NWS_URL URL associated with NWS Location ID
Status_as_FPS status of the gage (active or inactive), according to FPS
Start_Date start date for data collection, if known
End_Date end date for data collection, if known
Eco_Region GAGES-II aggregated ecological region name (of 12)
HLR_Code_Outlet USGS Hydrologic Landscape Region code (0 to 20) at outlet
SWB_Class Extended Seasonal Water Balance class (of 10 classes), if computable
Hgraph_Type Hydrograph type from NWM 3 work, if known
Aridity Budyko aridity index, (mean annual PET / mean annual precipitation)
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Snow_Fraction Fraction of precipitation that falls as snow
Is_USGS_NWIS_Web Is site in dataset from official NWIS website?
Is_GAGES2_Any Is site in the USGS GAGES-II dataset?
Is_GAGES2_Ref Is site in the USGS GAGES-II Reference dataset?
Is_GAGES2_SB3 Is site in the USGS GAGES-II CONUS SB3 dataset?
Is_FPS Is site in Federal Priority Streamgage dataset?
Is_HCDN Is site in Hydro Climatic Data Network dataset?
Is_RFC Is site in NOAA River Forecast Center dataset?
Is_CAMELS Is site in the CAMELS dataset?
Is_MOPEX Is site in the MOPEX dataset?
Is_CZO Is site in the NSF CZO dataset?
Is_LTER Is site in the NSF LTER dataset?
Is_NEON Is site in the NSF NEON dataset?
Is_ARS Is site in the USDA ARS experimental watershed dataset?

Table 1: List of 53 attributes included in the collated TSV file of HARBOR.

4 Hydrologic Similarity295

If two river basins have some appropriate set of geophysical attributes in common (including climate attributes), one may ex-

pect that they will be “hydrologically similar” in terms of their streamflow response. Available attributes for classifying basins

will depend on whether basins are gauged or ungauged. For example, hydrologic signatures can only be computed when

observational, time series data (e.g., discharge, precipitation rate, or evaporation rate) are available. Examples include:

300

Aridity index: There are multiple definitions that attempt to measure aridity or dryness. (One definition: Similar to evaporation

ratio but using potential vs. actual evaporation in the numerator. The Budyko curve (Budyko, 1958) plots the evaporation ratio

vs. this aridity index.)

Evaporation ratio: The total (actual) volume of water lost to evaporation from a given watershed (integrated over some period305

of time), divided by the total (liquid-equivalent) volume of precipitation that falls on that watershed during that time.

Runoff ratio: The total volume of water that flows out of a given watershed (integrated over some period of time), divided

by the total (liquid-equivalent) volume of precipitation that falls on that watershed during that time. Lower values indicate a

greater loss of water due to processes such as infiltration, evaporation, and transpiration.310
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Snowfall fraction: The total volume of liquid-equivalent precipitation that falls as snow (integrated over some period of time),

divided by the total volume of liquid-equivalent precipitation. (Snow runoff fraction is a closely related concept.)

5 Existing River Basin Classification Systems

Different agencies and groups have developed categorical classifications for watersheds to support varying objectives. For315

clarity, the entire phrase river basin classification system is used here since basin classification system is also associated with

sedimentary basins in a geologic context.

5.1 Hydrologic Landscape Regions (HLR)

The dataset used by the USGS in defining HLRs consists of 43,931 disjoint watersheds that span the entire United States (all

50 states), each roughly 200 square kilometers in size. The descriptions of the 20 Hydrologic Landscape Regions are based320

on a relatively small set of tags or “descriptors”. See Winter (2001), Wolock (2003, Table2), and Wolock et al. (2004). These

include a climate descriptor (arid, semiarid, subhumid, humid, or very humid), followed by a landscape (or land-surface form)

descriptor (plains, plateaus, playas, or mountains) followed by a simple soil descriptor (permeable or impermeable), followed

by a bedrock descriptor (permeable, impermeable, or unspecified). Note that the HLR method does not require a time series of

observations for classification. See Table 2 for descriptions or the 20 HLR classes and their corresponding “HLR numbers”.325

See Figure 5 for a hillshaded map of the HLR regions in CONUS.
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Class Description
0 Unclassified
1 Subhumid plains with permeable soils and bedrock
2 Humid plains with permeable soils and bedrock
3 Subhumid plains with impermeable soils and permeable bedrock
4 Humid plains with permeable soils and bedrock
5 Arid plains with permeable soils and bedrock
6 Subhumid plains with impermeable soils and bedrock
7 Humid plains with permeable soils and impermeable bedrock
8 Semiarid plains with impermeable soils and bedrock
9 Humid plateaus with impermeable soils and permeable bedrock
10 Arid plateaus with impermeable soils and permeable bedrock
11 Humid plateaus with impermeable soils and bedrock
12 Semiarid plateaus with permeable soils and impermeable bedrock
13 Semiarid plateaus with impermeable soils and bedrock
14 Arid playas with permeable soils and bedrock
15 Semiarid mountains with impermeable soils and permeable bedrock
16 Humid mountains with permeable soils and impermeable bedrock
17 Semiarid mountains with impermeable soils and bedrock
18 Semiarid mountains with permeable soils and impermeable bedrock
19 Very humid mountains with permeable soils and impermeable bedrock
20 Humid mountains with permeable soils and impermeable bedrock

Table 2: Descriptions of the 20 Hydrologic Landscape Region (HLR) classes, from Wolock et al. (2004).

The 43,931 USGS HLR basins have an average drainage area of 200 square kilometers, while the low order basins that can

each be modeled individually in NextGen (by a different model) are smaller, ranging in size from 3 to 15 km2. A separate flow

routing algorithm (t-route), based on a Muskingum-Cunge kinematic wave formulation, is used to combine the streamflow330

from low order basins to provide predictions for larger basins (reference). Since the NextGen “low order basins” (or smallest

Hydrofabric basins) are relatively smaller, they tend to have a well-defined HLR number. Those contained within one of the

USGS HLR basins presumably inherit the same HLR number as the enclosing basin. Wolock et al. (2004, Table 8) shows

that the HLR system partially captures and/or allows one to infer the “primary hydrologic flow path”, given the 3 options of

overland flow, shallow groundwater, and deep groundwater. This appears to be because it considers the permeability of both335

soil and bedrock, which has a direct bearing on the infiltration process. Different hydrologic models tend to perform better for

one of these 3 hydrologic flow paths, which could facilitate pairing models to HLR numbers. Similarly, the climate descriptors

(arid, semiarid, humid, subhumid, etc.) to some extent capture the relationship between precipitation and potential evaporation.

In summary, this system at least partially reflects hydrologic process dominance, with the possible and important exception of
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the snow melt process.340

5.2 Seasonal Water Balance Classification (Berghuijs et al., 2014)

Berghuijs et al. (2014) have proposed a basin classification system based on “seasonal water balance” (SWB) similarity.

This system has 10 classes or clusters, as determined from applying a lumped, conceptual rainfall-runoff model, “FLEX_l”

(Berghuijs et al., 2014, see Figure 1 and Table 1) to 321 MOPEX basins across CONUS, ranging from 67 to 10,329 sq km, with345

limited human influence. (This work starts with 372 MOPEX basins, but 51 are removed due to an unacceptable model fit.) The

FLEX_l model consists of 5 coupled stores, namely: snow (CR), vegetation interception (IR), unsaturated zone (UR), saturated

groundwater (SR) and fast runoff (FR). Its equations and parameters are summarized in Berghuijs et al. (2014) Table 1, and

the model is calibrated using the MOSCEM-UA algorithm with 10,000 iterations. Best-fit model results are used to divide the

basins into 10 clusters with similar properties based on seven components of the mean seasonal water balance, namely: Pn350

(precipitation), Q (streamflow), Ps (snowmelt), Ss (snow storage), Ea (evaporation), Su (storage), and D (deficit). See Figure

6 in Berghuijs et al. (2014) . The properties of the 10 SWB classes are summarized in Table 3 of that paper, which is partly

reproduced here in Table 3. The resulting process-based similarity framework is ultimately based on three hydroclimatic indices

that represent (1) an aridity index (ratio of annual potential evaporation to annual precipitation), (2) seasonality and timing of

precipitation (including the extent to which precipitation and potential evaporation are in or out of phase), and (3) snowiness355

(fraction of precipitation falling as snow). Note that, unlike HLR, this system explicitly includes the snowmelt process and

classes B1 and B2 each have a large snowmelt component. We extended the SWB classification system and applied it to the

9067 GAGES-II CONUS basins as described in a subsequent section. Note that Berghuijs et al. (2014, p. 5640) build on prior

basin classification work by Kennard et al. (2010), Sawicz et al. (2011), Coopersmith et al. (2012), and Ye et al. (2012).
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Class Description
A1 Humid catchments where precipitation and evaporation are out of phase. Consequently, large soil water and

streamflow variations occur and streamflow is perennial. Vegetation: coniferous.
A2 Semiarid catchments where precipitation and evaporation are out of phase. Consequently, large soil wa-

ter and streamflow variations occur and streamflow can be perennial or intermittent. Vegetation: conifer-
ous/shrubs.

A3 Arid catchments where precipitation and temperature are out of phase. Consequently, soil water and stream-
flow variations occur and streamflow can be intermittent. Vegetation: shrubs.

B1 Mountainous humid catchments where snow storage causes a delay in the streamflow and soil water
recharge peak. Catchments have perennial streamflow. Vegetation: coniferous.

B2 Mountainous semiarid catchments where snow storage causes a delay in the streamflow and soil water
recharge peak. Catchments have perennial streamflow. Vegetation: coniferous.

C1 Semiarid catchments where precipitation and evaporation are in phase. Streamflow and storage variations
of both soil water and snow are small. Streams may fall dry but can be perennial. Vegetation: Some short
grass prairie, but mainly long grass prairie.

C2 Arid catchments where precipitation and evaporation are in phase. Seasonal streamflow and storage varia-
tions of both soil water and snow are very small. Streams are intermittent. Vegetation: short grass prairie.

D1 Humid catchments where precipitation and evaporation are slightly out of phase. Catchments have soil water
storage variations and a slightly seasonal streamflow regime with low flows during summer. Vegetation:
mixed deciduous and coniferous.

D2 Humid catchments where precipitation and evaporation are slightly in phase. Catchments have small soil
water storage variations and a fairly constant seasonal streamflow regime. Vegetation: deciduous.

D3 Humid catchments where precipitation and evaporation are slightly in phase. Catchments have soil water
and snow storage variations with a soil water and streamflow increase in spring. Vegetation: deciduous.

Table 3: Descriptions of the 10 Seasonal Water Balance classes, from Berghuijs et al. (2014).

360

5.3 Hydrograph-based Classifications

Basins can also be classified based on the shapes of their observed or modeled hydrographs into groups such as: flashy,

slow, snow-dominated, low-flow, regulated, and “normal”. These six classes were used in a National Water Model (NWM)

v3 (Cosgrove et al., 2024) analysis which used a procedure based on visual inspection to classify USGS basins with mean

streamflow greater than a very small threshold. These classifications have been included in the combined TSV file when365

available. Berghuijs et al. (2014, Figure 6) showed that basins in the same SWB class also tend to have hydrographs with very

similar shapes.

15

https://doi.org/10.5194/egusphere-2025-5786
Preprint. Discussion started: 7 January 2026
c© Author(s) 2026. CC BY 4.0 License.



5.4 Data-driven Machine-Learning Methods

Using watersheds in the CAMELS dataset and their associated attributes, Bolotin et al. (2022) showed how a machine-learning

algorithm (Random Forest) could be used to match basins to the most performant of 3 models in NextGen, with an R2 value370

of 0.75-0.80. This work considered the process-based Conceptual Functional Equivalent (CFE) model, a Long Short-Term

Memory (LSTM) machine-learning model, and the National Water Model version 2.0. Performance was evaluated with the

Normalized Nash Sutcliffe Efficiency. It was found that certain models dominated in different regions across CONUS. Fur-

ther analysis could elucidate the relationship between patterns of model performance and different methods of hydrologic

classification.375

5.5 Hydrologic Signatures

Hydrologic signatures are metrics calculated from streamflow time series, and sometimes additionally precipitation, soil mois-

ture, or evapotranspiration time series, that characterize the hydrologic regime of a watershed (Gupta et al., 2008; McMillan,

2020a, b). Consequently, watersheds can be classified by their hydrologic signatures, indicating the dominant processes across

space, or even across seasons within singular watersheds (Gnann et al., 2020; Wu et al., 2021). The CAMELS dataset includes380

hydrologic signatures such as baseflow index, runoff ratio, and slope of the flow duration curve for the watersheds included

in the collection (Addor et al., 2017). River basin collections with catchment attributes have been used in various applications

to predict hydrologic signatures using machine learning, elucidating the link between catchment and climate characteristics

and hydrologic processes (Wu et al., 2021; Addor et al., 2018; Bolotin and McMillan, 2024). Our collation of available basin

collection datasets will facilitate future large sample studies leveraging hydrologic signatures by easing the selection of study385

watersheds and identification of available data associated with these watersheds.

6 Extended Seasonal Water Balance Classification

Recall that each of the 10 classes in the Seasonal Water Balance (SWB) method is ultimately defined using a range of parameter

values for 3 indices, namely aridity, seasonality and snowiness. Therefore, each class corresponds to a rectangular box or

“cuboid” in a 3-dimensional space, and these boxes may touch but may not overlap. When we applied the original SWB390

method proposed by Berghuijs et al. (2014) to the GAGES-II CONUS dataset (which has 9067 basins), we found that 3971

basins did not get classified.

In order to understand and resolve the issue, we used a graphical capability in Mathematica (Wolfram Research Inc., 2024)

that allowed us to plot and label the 10 3D “cuboids” as semi-transparent 3D boxes with different colors in a plot that that could

be rotated with the computer mouse and viewed from different angles. This resulted in Figures 6 and 7 which clearly show gaps395

or unclassified regions of parameter space and explains why many basins were left unclassified. Keeping in mind that the 3D

cuboids associated with different classes cannot overlap, each cuboid was expanded along each axis by the minimum amount

necessary to span the entire 3D parameter space. In most cases, there was no flexibility or ambiguity about how much each
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3D box had to be expanded due to spatial constraints. However, Figure 7 shows a gap along the seasonality or δp axis between

classes A1, A2 and A3 an classes C1, C2, D2, and D3. In this case, the gap was closed by expanding the cuboids to meet at400

a value of δp =−0.1. All things considered, this seems to be the best value, but possible values lie in [−0.4,−0.1]. The gap

between C1, C2 and B1, B2 was closed by increasing the upper bound on fs for classes C1 and C2. Also, it made sense to add

an 11th class, B3, by direct analogy to class A3, but none of the GAGES-II CONUS basins fell into this new class. Class B3

stacks on top of B2 just as A3 stacks on top of A2. Class D1 (not shown) is unusual because it has only a single value of zero

for fs and is therefore a 2D rectangle vs. a 3D cuboid. The cuboids of our extensions to the SWB method are shown in Figure405

8 and span the entire parameter space.

As a side note, the range of parameters used to define the 10 classes in the Berghuijs et al. (2014) paper are given in both

Figure 7 and Table 3 of that paper, but those parameter ranges do not always agree. We took the broadest of the two ranges

given as the official definition of the original SWB classes. The range of values used to define each class, for both the origi-410

nal and extended SWB methods, are given in the Python module swb_utils.py. Note that since we have expanded the cuboid

associated with each of the 10 SWB classes, a basin that was successfully assigned to a class by the original SWB method is

assigned to the same class when our extended SWB system is used.

The GAGES-II dataset contains a folder called basinchar_and_report_sept_2011. Within this folder is a spreadsheet called415

gagesII_sept30_2011_var_desc.xlsx that describes the 354 variables available in GAGES-II. For the 9067 basins in CONUS,

the values of these variables are in the file gagesII_sept30_2011_conterm.xlsx. For the 255 basins in Alaska, Hawaii, and

Puerto Rico, they are in the file: gagesII_sept30_2011_AKHIPR.xlsx. The CONUS spreadsheet has a Climate tab with 50

climate variables for each basin, including values for PET (mean annual potential evaporation) and PPTAVG_BASIN (mean

annual precipitation). The dimensionless ratio of these is the Budyko aridity index, φ. In the variable description spreadsheet,420

the units of PPTAVG_BASIN and PET are given as cm and mm, respectively. While the theoretical range for φ is [0,∞),

the max attained in the subset of the MOPEX dataset used by Berghuijs et al. (2014) was 5.3 while the max attained in the

GAGES-II CONUS dataset was 5.71. This max occurs for the site named “Amargosa River at Tecopa, CA", in the Mojave

Desert near Death Valley (site ID = 10251300). The aridity index only exceeds a value of 4 for 8 GAGES-II basins.

425

While the GAGES-II CONUS dataset does not directly provide the “seasonality timing index”, δp, we were able to compute

it using available information as follows. Woods (2009), cited by Berghuijs et al. (2014), introduced a “dimensionless mean

temperature” denoted as T
∗

in his equation (5). It is defined as:

T
∗

=

(
T −T0

)

|∆T | (1)

Here, T is the annual average temperature, T0 is the rain-to-snow temperature threshold (taken to be 1 degree C), and |∆T | is430

the amplitude of a sine curve fitted to the monthly average temperature for a year. Plots were made to confirm that a sine curve
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indeed provides a good fit to monthly average temperatures. Equation (13) in Woods (2009) is given by

fs

(
T
∗
, δ∗p
)

=
1
2
−

arcsin
(
T
∗)

π
− δ∗p
π

√
1−

(
T
∗)2

. (2)

and expresses the snowiness index, fs, as a function of both T
∗

and the seasonality index, δp. Solving for δp we get

δ∗p
(
fs, T

∗)
=
π (1/2− fs)− arcsin

(
T
∗)

√
1−

(
T
∗)2

. (3)435

The GAGES-II CONUS dataset provides the snowiness index, fs, as SNOW_PCT_PRECIP, in units of percent. It also provides

a 30-year average air temperature for each month (from 800 m PRISM data) with variable names like JAN_TMP7100_DEGC.

These were used to compute T and then |∆T | from the average min and max monthly temperature for each basin. These, in

turn, were used to compute T
∗

and finally δp. For most basins, July was the warmest month and January was coldest. But for

11 basins either December or February was the coldest month, and for 237 basins either June or August was the warmest. (As440

a side note, GAGES-II CONUS also provides variables called T_MAX_BASIN and T_MIN_BASIN, but their difference was

not the same as |∆T | computed from monthly values.) It turns out that the cases where T
∗

=−1 or T
∗

= 1 require special

attention because then the δp term drops out in (2) and we can’t solve for it. For those cases, first notice that equation (2)

implies that fs = 0 when T
∗

= 1 (since arcsin(1) = π/2) and fs = 1 when T∗=−1 (since arcsin(-1) =−π/2). Then observe

that the limit of δp(0,T
∗
) as T

∗
goes to 1 is 1 and the limit of δp(1,T

∗
) as T

∗
goes to -1 is -1. These limits can be computed445

using L’Hopital’s rule or with Mathematica.

An important typo was found in equation (6a) in the paper by Berghuijs et al. (2014). That equation is supposed to match

equation (13) in Woods (2009) whom they cite (our equation 2), but there is a missing power of 2 on T
∗

inside the square root

which is important. A plot of the snowiness index vs. T
∗

(equation 2) over the range [−1,1] makes more sense for the correct450

equation, as seen in Figure 9.

Figure 10 shows the result of applying this extended SWB classification scheme to the 9067 basins in the GAGES-II CONUS

dataset. One thing that stands out is the distribution of red dots associated with the class A1. According to the descriptions in

Table 3 (Berghuijs et al., 2014), one feature of these basins is that the vegetation should be mainly coniferous. The red dots in455

southern Missouri match with the known distribution of (mostly shortleaf pine) conifers in Missouri. The belt of red dots in

Kentucky roughly match a region known as The Knobs, with oak-pine forests. Similarly, the red dots just west of the mountain

ranges of the Pacific Northwest also match with coniferous forests. The single red dot in central Nevada appears to coincide

with the Humboldt-Toiyabe National Forest, the largest national forest in the lower 48 states, also dominated by conifers. The

single red dot in north central Utah appears to coincide with a group of coniferous national forests, like the Uinta-Wasatch-460

Cache National Forest. The red dots in the Idaho Panhandle match the conifer-dominated Idaho Panhandle National Forest.
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There is also a line of red dots (mostly in western North Carolina and Virginia) that closely match the distribution of Table

Mountain pine trees in the Appalachians.

For the GAGES-II CONUS dataset, the number of basins in each extended class is: A1:532, A2:227, A3:25, B1:998, B2:110,465

C1:1327, C2:472, D1:442, D2:3266, and D3:1668. Since the number of basins in the D2 and D3 classes is so large compared to

other classes, it may be worthwhile to extend the SWB method further by adding 2 additional classes, say E1 and E2. Classes

E1 and E2 would have the same upper and lower bounds for aridity and snow fraction as D2 and D3. However, instead of

extending the upper bound on the seasonality index for classes D2 and D3 to 1, these classes would be added to the right of

classes D2 and D3, as seen in the lower part of Figure 6. Whereas PET and precipitation would be weakly in phase for classes470

D2 and D3, they would be more strongly in phase for classes E1 and E2.

This extended SWB classification is defined in the Python utility: swb_utils.py, and its application to the GAGES-II CONUS

dataset is given in the utility: gages2_utils.py. In gages2_utils.py, the functions related to SWB classification are: com-

pute_swb_classes(), get_snow_precip_fraction(), get_precip_timing_index(), get_aridity_index(), and get_swb_points().475

7 Requirements for a River Basin Classification System

This effort is motivated by the goal of creating a classification system that will allow model agnostic development efforts such

as NextGen to reliably match basins with appropriate or “best available” NextGen formulations/models. A number of general

characteristics are recommended, leveraging the resources assembled in this effort.

480

(1) A basin classification system should have a manageable number of basin classes for a given classification objective. Recall

that the HLR system has 20 classes, the Seasonal Water Balance (SWB) system has 10 classes, and GAGES-II makes use of

and provides 12 ecoregion classes.

(2) A basin classification system should be based on the fundamental concept of hydrologic similarity, which must consider

which combination of hydrologic processes as well as climate forcings are controlling the hydrologic response of a given basin.485

(3) A basin collection for model testing should contain multiple gauged basins from each “basin class”, of various sizes, ideally

offering sufficient sample sizes for statistical robustness of analysis in each class.

(4) Ideally, it should be possible to assign a basin to a “basin class” even if it is ungauged, as is possible with HLR. Methods490

based on “hydrologic signatures”, metrics, or indices require an observed or estimated time series of variables such as discharge.

(5) There are many basins that are included in multiple collections, such as CAMELS, MOPEX, NOAA RFC basins, and

USGS NWIS basins. It is desirable to select basins that span several of the basin collections listed in the section: Overview
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of Existing River Basin Data Collections. For example, Reynolds Creek is both a USDA-ARS experimental basin and a CZO495

basin.

(6) Ideally, a classification system should allow us to reliably pair basins with appropriate or “best available” NextGen formu-

lations/models. Depending on the specific objectives of the modeling, several different classification systems may be derived,

weighting attributes differently and screening basins for specific characteristics. For instance, for catchment modeling to sup-500

port flash flood prediction, the collection may exclude basins which lack sub-daily flow measurements; or to focus on modeling

in pristine catchments, the collection may exclude basins with significant impairment.

8 Python Utilities for Working with River Basin Data Collections

As explained in the Introduction, a set of Python utilities was created for the purpose of collating, checking, cleaning, aug-

menting, and extracting information from the various river basin data collections that comprise the HARBOR repository. These505

Python utilities currently reside in the utils/ngen folder within the TopoFlow 3.6 repo (Peckham, 2024c) (since they make use

of some TopoFlow utilities) but they may be moved into their own GitHub repo soon. TopoFlow 3.6 is a spatial, hydrologic

model consisting of many BMI-enabled process components (Peckham et al., 2017; Peckham, 2024b). BMI stands for Basic

Model Interface, a model interface standard introduced by Peckham et al. (2013).

510

This ngen folder contains many Python source code files with names like: camels_utils.py, mopex_utils.py, gages2_utils.py,

usgs_utils.py, and rfc_utils.py. These are Python modules that contain functions for working with the CAMELS, MOPEX,

GAGES-II, USGS NWIS, and NOAA RFC datasets, respectively. These utilities were used to prepare augmented TSV (tab-

separated value) files for each of the datasets. Each module is interspersed with detailed comments and is cleanly written. They

make use of functions in the files: data_utils.py (for general data processing tasks) and shape_utils.py (for scanning ESRI515

shapefiles to extract information such as the geographic bounding box (i.e., minlat, maxlat, minlon, maxlon). After preparing

an augmented TSV file for each dataset with these utilities, the collate() function in the file collate_basins.py was used to cre-

ate a single TSV file with selected attributes from all of the datasets. This TSV file is in the folder called __Collated in this repo.

Each Python module contains functions that are helpful for working with a particular dataset. For example, USGS site520

names almost always contain abbreviations, which are often difficult to decipher. The module usgs_utils.py contains an inno-

vative function called expand_usgs_site_name() that expands virtually every abbreviation used in these names. This expanded,

or “long name” is included in the master TSV file.

The basic algorithm used to collate data from the various data collections is to first create an augmented TSV file with key525

information for each data collection. These TSV files are in a folder called _New within each basin collection folder in the

repo. Each such TSV file includes a column with the USGS site ID (available in most cases), and each TSV file is sorted on
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values in that column. All of the USGS site IDs found in all of these TSV files are combined into a master list of IDs that is

also sorted. The collate() function in collate_basins.py next opens all of these TSV files for reading and then steps through

each ID in the master ID list. If the current ID matches the next ID in any of the TSV files, information from those files is530

read and merged to create a more detailed record for the site with that ID, and this record is then written to a “master TSV

file” called collated_basins_all.tsv in the repo’s __Collated folder. This is reminiscent of how the well-known “merge sort”

algorithm works.

Note that the algorithm described in the previous paragraph implicitly assumes that a given USGS site ID only occurs once535

in any of the TSV files. However, it was discovered that in the TSV file created from the NOAA HADS-to-USGS crosswalk,

there are 35 USGS Site IDs that occur twice and 2 that occur 3 times (03612600, 04228500). For the 35 that occur twice,

all information is identical for 2 of them, while the rest are mapped to different NWS Location IDs and GOES IDs, but have

identical name, latitude, and longitude. However, on NOAA websites of the form: https://water.noaa.gov/gauges/BCBW1, the

names, latitudes, and longitudes for these tend to be different. It appears that in such cases the additional NWS location IDs540

refer to auxiliary gages that are near the base gage. For example, for the USGS site ID: 12396500, the USGS site name is:

PEND OREILLE RIVER BELOW BOX CANYON NEAR IONE, WA, the 2 NWS location IDs are: BCAW1 and BCBW1, and

their NOAA names are: Pend Oreille River below Box Canyon Dam and Pend Oreille River below Box Canyon Dam Auxiliary

Station. For USGS site ID: 03612600, the USGS site name is: OHIO RIVER AT OLMSTED, IL, the 2 NWS location IDs are:

OLMI2 and OLTI2, and their NOAA names are: Ohio River at Olmsted Lock and Dam Headwater and Ohio River at Olmsted545

Lock and Dam Tailwater.

In order to provide as much information as possible for each site and to avoid missing data, multiple sources of information

— obtained by multiple methods such as web-scraping, APIs, and alternate data sets — were incorporated in a pre-processing

phase. In this phase, Python dictionaries were created to map a key (like a site ID) to a record (another dictionary) containing

multiple fields of data associated with that key. Python dictionaries use a very efficient hashing algorithm and therefore allow550

rapid retrieval of stored data for a site within the collate() function. In some cases (e.g., when pulling data from an API, or

scraping web pages), the creation of these Python dictionaries was relatively slow, so they were saved for rapid import in Python

PKL files in the _New folder associated with a given data collection. With regard to issues like missing or non-conformant

data, obtaining complete data for NOAA RFC sites proved to be the most challenging.

555

In addition to these Python utilities, QGIS (QGIS, 2024) an open-source GIS application, was used to view ESRI shapefile

attribute tables and to save them to CSV format. It was also used to investigate oddities in the datasets and to apply a point-

in-polygon algorithm to determine HUC12 codes for USGS site IDs. When QGIS was used, a README file was added to the

repo with a step-by-step workflow description for the sake of reproducibility.
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9 Conclusions560

The extensive effort described in this paper has gathered and systematized river gaging datasets that were or are collected

by many agencies with different descriptive schema and made available via dissimilar web services. To the extent possible,

all the variability of these sources has been preserved in a final master listing of the collected basin metadata, along with

further descriptive tags. The result is one of the major outcomes of the work, a collated basin metadata file (in TSV format),

collated_basins_all.tsv, found in the __Collated folder of the HARBOR repo. It contains 51 attributes for 30,717 river basins565

from a variety of different river basin data collections. It can be read into any spreadsheet program and searched, or information

can be sorted on the data in any column to isolate the data needed to answer a particular question. Python programs can easily

be written (e.g., the included module subset.py) that search the TSV file for particular combinations of attributes. A good start-

ing point for a diverse collection of river basins with numerous attributes, classifications, and shapefiles, etc. is the GAGES-II

SB3 dataset, which consists of 1947 basins. For each of these, HARBOR provides an HLR code and an extended SWB classi-570

fication, and many also have a hydrograph-based classification based on NWM3 analysis. Keep in mind that all the basins in

the SB3 subset of GAGES-II are among the so-called “Reference” basins, which means they have relatively low human impact.

Another key goal of this project was to make water data collected by US federal agencies more accessible. Looking at these

various river basin data collections all together rather than separately, and in a historical context, leads to a deeper appreciation575

of their value in addressing many different societal problems.

Code and data availability. These Python utilities currently reside in a folder within the TopoFlow 3.6 repo, at: Peckham (2024c) and make

use of some of the TopoFlow utilities. TopoFlow 3.6 is a spatial, hydrologic model consisting of many BMI-enabled process components.

See Peckham et al. (2017). The data sets themselves, and a TSV file with information gleaned from all of them, were collected into a new

GitHub repository that is currently available at Peckham (2024a).580

Appendix A: Terminology

The purpose of this section is to define some terminology, some of which is agency-specific, that is helpful for understanding

the information provided by the various datasets.

A1 USGS Terminology

The words “site” and “station” are used interchangeably to refer to a particular “point-type” location where a measurement585

or prediction is made, such as a streamgage, well, or meteorological station. See Dupré et al. (2013). The USGS assigns a

unique number or “site ID” to each site that consists of at least 8 and up to 15 digits. The first two digits are called the “part

number” and refer to a particular large basin/region in the USA. These range from 01 for North Atlantic Slope basins up 16 for

basins in Hawaii. The next 6 digits are called the “downstream-order number” and attempt to indicate relative position in the
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downstream direction within the region defined by the part number. Gaps between site IDs are reserved for future use, but in590

areas of high station density, more than 8 digits may be used. See the About Sites section of the USGS-NWIS (2024a). Each

site is also assigned a name, but these names are heavily abbreviated. (Code is included in the Python utility usgs_utils.py that

expands most of these abbreviations, and these expanded site names are also given in the “collated” TSV file in the HARBOR

repo.). In addition to an ID and a name, each site also has a “site type”. Site types are strings such as: Stream, Atmosphere,

Well, Spring, and Lake. In order to determine what was measured at a particular site, you can look at the NWIS data_types_cd595

(data types code). This is a 30-character array, where each character is one of: A (for Active data collection site), I (for inactive

or discontinued data collection site), O (for inventory site only), or N (possibly for “not or never collected at this site”). Each

position in this string corresponds to a different type of measurement, but only the first 16 positions are currently used. For

example, the first character in the array corresponds to: Stage or water-levels – continuous; see USGS-NWIS (2024c) for more

information. It appears that the USGS establishes a stage-discharge rating curve for each site that collects stage data, so if the600

first character is an A, then presumably an estimate of discharge is available. (CHECK) It is possible that an agency other than

the USGS may have primary responsibility for a site and then a “site agency” may be specified. Each site also has a Hydrologic

Unit Code, or HUC. A HUC has at least 2 digits, and each additional digit (up to 16 total) indicates another level of spatial

detail in a hierarchy of watershed boundary polygons for the US. So, a site with a given HUC number is contained within a

US watershed polygon that has that number. For example, the average area of a HUC12 watershed polygon is 15 to 62 square605

km. The HUC system only applies to the US, although other national and international watershed boundary datasets exist. See

Seaber et al. (1987) and USGS-HUC (2024a, b).

If you know the USGS Site ID for a site, then you can obtain information about and historical and real-time data for that site

by entering a URL of the following form in your browser:

http://waterdata.usgs.gov/nwis/nwisman/?site_no=01010000610

And to obtain real-time streamflow (or discharge) information for a USGS Site ID, you can use a URL of the form:

https://waterwatch.usgs.gov/ index.php?mt=real&st=01010000

Similarly, you can get information about all the sites that lie within a HUC8 watershed polygon by entering a URL of the

following form in your browser:

https://water.usgs.gov/ lookup/getwatershed?10250001615

Unfortunately, you can currently only obtain information this way for 8-digit HUC numbers. Both the site ID and HUC URLs

are included in the collated basin TSV file of the NextGen repo. The USGS makes its data available online through NWIS, the

National Water Information System. NWIS will be described in more detail in a subsequent section. When you download data

from the NWIS website, it is in a text file format called the RDB format (for relational database), which consists of a header

with a standardized format to describe the downloaded data followed by a sequence of newline-separated data records with620

tab-separated fields. USGS data can also be downloaded from the Water Quality Portal, which provides USGS NWIS data,

USDA STEWARDS data, and EPA STORETS data. Long before NWIS, STEWARDS, or STORET existed, starting in 1971,

the USGS used a system called WATSTORE (National Water Data Storage and Retrieval System). See Hutchinson (1975) for
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its documentation, which can still be helpful and contains parameter code listings. It is included in the HARBOR repo in the

folder USGS_NWIS_Web/Docs/WATSTORE.625

A2 NOAA-NWS Terminology

In NOAA NWS terminology, the word “location” may be used as a synonym for site. However, NWS has its own system

of assigning unique IDs to a site/location. The “NWS location ID” (or NWSLID or “Handbook 5 ID” or SID or 5-char ID)

typically has a base length of 5 alphanumeric characters. (Three or more additional characters are often added by the RFCs

according to their own needs, but this practice is not standardized.) These IDs start with a 3-letter prefix, which is usually an630

abbreviation of a city or station name, followed by a two-character alphanumeric SID state code. The SID state code starts

with the first letter of the state’s name, followed by a single digit from 1 to 9. See NOAA (2024db, Appendix A) for SID state

codes, e.g., Alaska = A2, Connecticut = C3, Florida = F1, Michigan = M4. NOAA or USGS sites that transmit their data to a

GOES satellite (called DCPs or Data Collection Platforms) also have a unique GOES (or NESDIS) ID. The NWS has the entire

US divided into 13 large regions/basins, and there is a River Forecast Center (RFC) for each of these regions. RFC names are635

abbreviated to 5 letters, where the last three letters are RFC and the first 2 are an abbreviation like MB for Missouri Basin. An

RFC region contains many County Warning Areas (CWAs), which each contain a Weather Forecast Office (WFO). However,

CWAs may intersect more than one RFC region near the RFC boundaries. Each CWA (and its associated WFO) has a unique

3-letter abbreviation, such as ABQ for Albuquerque, NM, or SLC for Salt Lake City, UT. A CWA can be further divided into

Hydrologic Service Areas (HSAs), which also have 3-letter abbreviations. In principle, each NWS location ID should “fall640

within” or “belong” to a particular RFC, CWA, and HSA, but a complete list of these mappings is not readily available on the

Web. Just as the USGS provides a URL for each USGS Site ID, NOAA’s NWPS (National Water Prediction Service) provides

a URL with information for each NWS location ID of the following form:

https://water.noaa.gov/gauges/rbum7

where rbum7 can be any NWS location ID. The NWPS also provides a URL with information for all sites within a given WFO645

of the form:

https://water.noaa.gov/area/EWX

where EWX can be replaced with any 3-letter WFO ID. In addition, each RFC has its own website with an interactive map

where information can be viewed for individual locations. The URLs all have the form: https://water.noaa.gov/rfc/wgrfc. The

NWPS also just released a new API (NOAA, 2024e) which can be used to obtain information associated with a particular650

USGS Site ID or NWS location ID.

Note that HADS (Hydrometeorological Automated Data System) is a real-time data acquisition and data distribution system

operated by the NWS Office of Dissemination. There is a NOAA HADS-to-USGS crosswalk table (NOAA-NCEP, 2024) that

provides mappings for some NWS Location IDs to equivalent USGS Site IDs and GOES (or NESDIS) IDs.655
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While NWS does not have a “site type” equivalent, sometimes a 5-character PEDTS code is provided and information

about the quantity that is observed at the site is embedded in this code. Parts of the code correspond to the letters in PEDTS:

PE=Physical Element, D=Duration Code, T=Type Code, and S=Source Code. PEDTS codes are defined in the “SHEF man-

ual” (NOAA, 2012). SHEF stands for Standard Hydrometeorological Exchange Format and was introduced by the NWS for660

interagency data sharing.

A3 USDA Terminology

The USDA (US Department of Agriculture) is the parent department for many other agencies, including the Agricultural

Research Service (ARS), the Forest Service (USFS), the Natural Resource Conservation Service (NRCS), and the Farm Service

Agency (FSA). Due to the importance of watersheds to both agriculture, forests, and other rural land, the USDA also engages665

in numerous hydrologic monitoring efforts, with a strong focus on variables other than streamflow. These include the ARS

Experimental Watershed Network, the USFS Watershed Condition Framework, and the NRCS Snow Survey and Water Supply

Forecasting (SSWSF) program, which runs the SCAN (Soil Climate Analysis Network) and SNOTEL (Snow Telemetry)

projects. The ARS Experimental Watershed effort is now part of CEAP (Conservation Effects Assessment Project) and its

Watershed Assessment Studies Network (WASN) led by NRCS (CEAP, 2021). Until recently, it was possible to browse and670

download data for the Experimental Watersheds in a given US state by entering a URL of the following form into a browser:

https://hrsl.ba.ars.usda.gov/wdc/md.htm|

where “md” is replaced by the 2-letter abbreviation for that state. Many of these pages have been discontinued, but nonetheless

contained useful links to all related data for a given site and can still be viewed with the “Internet Archive Wayback Machine”.

It is possible that alternative access methods have emerged, but the current status is unclear. Much of the data resource appears675

to be available from a USDA website called “Ag Data Commons”. However, the main way to obtain USDA data is by using

a system called STEWARDS (USDA-STEWARDS, 2024). STEWARDS does for the USDA-ARS what NWIS does for the

USGS. Similarly, WQX (previously STORET) plays this same role for the USEPA data. NWIS, STEWARDS, and WQX data

are also available through the Water Quality Portal (WQP), a service sponsored by the USGS and EPA. See WQP (2024).

A4 Latitudes, Longitudes, Elevations, Areas, and Datums680

While the concepts of latitude, longitude, and elevation may seem straightforward, when it comes to determining these values

for a given location on the surface of the Earth, one realizes that it isn’t really that simple. Even the concepts of latitude and lon-

gitude depend on whether one is treating the Earth as a sphere or an ellipsoid, and on deciding on where the center of the Earth

is located. A horizontal datum provides the mechanism for determining latitude and longitude at a point, and a vertical datum

does the same for elevation. One way to create a horizontal datum (which was used for NAD 1927, where NAD stands for North685

American Datum) is to pick an origin (e.g., Meades Ranch in Kansas) and to decide on the latitude and longitude of that origin

and then to work outward with careful surveys to create a network of control points that have latitudes and longitudes consistent

with (or relative to) that origin. A survey (or geodetic) marker is often anchored in rock at a datum control point. So, when

reporting the latitude and longitude for a point-type location, such as a streamgage, it is important to know the corresponding
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datum. In the US, NAD 1927, NAD 1983, and WGS 1984 are all used. The position of a given point can differ by as much as690

500 feet depending on which datum is used. WGS 1984 is a modern datum associated with GPS (Global Positioning System),

which uses satellite-based technology. Similarly, elevations must be specified relative to a particular vertical datum, and the

issues are very similar. For the US, the main ones are the National Geodetic Vertical Datum of 1929, and the North American

Vertical Datum of 1988. NOAA has plans to release new National Geodetic Survey datums in 2025. NOAA also provides

online conversion tools for both horizontal and vertical datums: NOAA-NCAT (2024) and NOAA-VDATUM (2024). Note695

that it is typically not necessary to specify more than 5 digits after the decimal for latitudes and longitudes, because 5-digits

provide accuracy to within about 1 meter. See Wikipedia (2024a, b, c). Keep in mind also that a reported latitude and longi-

tude may be for a streamgage (watershed outlet), a watershed centroid, a study region centroid, or the center of a bounding box.

In many cases, a river basin data provider will provide an ESRI shapefile for each watershed polygon in a given collection.700

This vector data file contains the latitudes and longitudes of a sequence of ordered points on the watershed boundary. For the

acquisition of associated topographic, soil, or climate forcing data it is often helpful to know the “geographic bounding box”

for a basin. This is given by just 4 numbers, namely the min and max or both latitude and longitude for all of the points on the

watershed boundary (plus some padding). This bounding box has been provided whenever possible in the collated basin TSV

file of the HARBOR Repo.705

Appendix B: A Brief History of the USGS and NOAA

Following a recommendation by the National Academy of Sciences, the USGS was established by Congress on March 3, 1879,

with Clarence King as its first Director. John Wesley Powell was the second Director of the USGS, from 1881-1894. Under

his leadership, the first USGS stream gages were installed on the Rio Grande River (near Embudo, New Mexico) as part of

the National Streamgaging Program in 1889. The fist automatic water-stage recorders at streamgages were installed as early710

as 1912. The rich history of the USGS from its inception in 1879 up to 1989 has been well-documented by Rabbitt (1989). In

addition, the history of the USGS Water Resources Division (WRD) has also been documented in a set of 8 volumes, although

only the last 4 volumes have been published (Ferguson, 1990; Hudson and Cragwall, 1996; Biesecker et al., 2000; Blakey et al.,

2005).

715

While NOAA was not formed until 1970, it brought several much older agencies together under one administration, includ-

ing the Survey of the Coast (created in 1807 while Thomas Jefferson was president), the Weather Bureau (from 1870), and the

U.S. Commission of Fish and Fisheries (from 1871). Also in 1970, the Weather Bureau was renamed to the National Weather

Service (NWS). See NOAA (2024c). In 1975, GOES-1, the first geostationary satellite owned and operated by NOAA was

launched. By 1982, NOAA’s GOES DCS (data collection system) had numerous users, including federal agencies, with the720

Department of the Interior (e.g., USGS), the Department of Commerce (e.g., NOAA), and the Department of Defense (e.g.,

USACE) being the three biggest users (about 85% of total). These developments led to the current state of affairs where data
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is (1) automatically collected throughout a network of stream gauges, (2) transmitted via a directional Yagi-Uda antenna to a

geostationary NOAA GOES satellite, (3) relayed to intermediate servers at Wallops Island, VA, and finally (4) made available

to users on USGS and NOAA websites. While most stream gages are operated and maintained by the USGS, they are typically725

funded through a partnership with other federal, state, local and tribal entities. An abbreviated timeline of NOAA’s history is

given in Table A1.

The USGS and NOAA have a long history of working together and both have responsibility for managing and modeling

the water resources of the US (along with the USACE, EPA, USDA, and others). Both agencies also have a history of work-730

ing together with academic researchers, passing knowledge back and forth between “research” and “operations”. NOAA’s 16

Cooperative Institutes (CIs) provide a key example of this collaboration, with CIROH (Cooperative Institute for Research to

Operations in Hydrology) being the most recent CI and the first to focus on hydrology. Both the USGS and NOAA’s OWP have

adopted the Basic Model Interface (BMI) standard for model interoperability which originated in the academic community

under NSF funding (Peckham et al., 2013). Both agencies are also working together on the “Hydrofabric” that underpins the735

Next Generation Water Resources Modeling Framework (NextGen) effort; see Blodgett et al. (2023). NextGen will be used for

National Water Model versions after 3.2.
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Year Important Event in NOAA’s History
1807 Survey of the Coast is created under President Thomas Jefferson.
1870 Weather Bureau is created by Congress under President Ulysses S. Grant.
1871 U.S. Commission of Fish and Fisheries is created.
1940 Weather Bureau is transferred from USDA to the Department of Commerce (DoC) by President Franklin

D. Roosevelt, due to its growing importance to the aviation industry.
1940 The Office of Hydrology (OH) is created within the Weather Bureau.
1946 The first two River Forecast Centers (RFC) are established by the Weather Bureau, one in Cincinnati,

OH and one in Kansas City, MO. Several RFCs were opened, merged, and closed between 1946 and
1979, resulting in the 13 RFCs we have today.

1951 Weather Bureau initiates aviation radio, which leads to NOAA Weather Radio in 1970. It is expanded
under Vice President Al Gore to cover 95% of the US population.

1967 The first Cooperative Institute, the Cooperative Institute for Research in Environmental Science (CIRES)
is created at the University of Colorado Boulder.

1970 NOAA is officially formed and brings several other agencies under one administration. The Weather
Bureau is renamed to the National Weather Service (NWS).

1975 NOAA’s first geostationary satellite, GOES-1, is launched.
1982 The GOES DSC has many users, including DoC/NOAA, DoI/USGS, DoD/USACE.
1992 The OH Hydrology Laboratory (HL) begins distributed modeling research.
1997 Office of Hydrology begins the Advanced Hydrologic Prediction Service (AHPS) program.
2000 Office of Hydrology (OH) is renamed to Office of Hydrologic Development (OHD).
2008 OHD begins the Community Hydrologic Prediction System (CHPS) based on Delft-FEWS.
2014 NOAA’s National Water Center (NWC) opens in Tuscaloosa, AL in mid-2014.
2015 The NWC has its ribbon-cutting ceremony in mid-2015.
2016 NOAA’s Office of Water Prediction (OWP) is created from OHD.
2016 NOAA’s National Water Model (NWM) version 1 is released in August.
2019 NWM version 2.0 is released, followed by version 2.1 in 2021, and version 3.0 in 2023.
2021 Work begins on Next Generation Water Resources Modeling Framework, to become NWM 4.0
2022 NOAA’s 16th cooperative institute is created, CIROH (Cooperative Institute for Research to Operations

in Hydrology), the first CI to focus on hydrology.
2024 NOAA’s NWS launches a new website called the National Water Prediction Service (NWPS) that

merges data from AHPS and OWP. This includes a new API for data access.

Table A1: Abbreviated NOAA History Timeline. A list of events in the history of NOAA that help to put the current work
into context. A much more detailed and interactive timeline for the National Weather Service is given at: NOAA (2024da).
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Figure 1. Venn diagram for various river basin data collections.

Figure 2. Venn diagram for three USGS river basin data collections, adapted from Normand (2021, Figure 1).
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Figure 3. The 13 NOAA NWS River Forecast Center (RFC) regions of the USA (from: noaa.gov/jetstream/rfcs).
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Figure 4. The NOAA NWS Weather Forecast Office (WFO) regions of the USA (from noaa.gov/jetstream/wfos).
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Figure 5. A hillshaded map of the 20 HLR regions within the conterminous US.

40

https://doi.org/10.5194/egusphere-2025-5786
Preprint. Discussion started: 7 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Figure 6. Oblique view of parameter space for the original Seasonal Water Balance method that shows significant gaps.
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Figure 7. Top view of parameter space for the original Seasonal Water Balance method that shows significant gaps.
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Figure 8. Oblique view of parameter space for the extended Seasonal Water Balance method that has no gaps.
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Figure 9. Plot of fs as a function of T
∗
, for δp values in {−1,−0.5,0,0.5,1}. For each curve, fs decreases from 1 to 0 as T

∗
increases, as

expected.
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Figure 10. Scatter plot of Extended Seasonal Water Balance (SWB) classifications for GAGES-II CONUS watersheds. The distribution of
red dots for class A1 is discussed in the main text. This plot was created with the create_swb_scatter_plot() function in plot_utils.py.
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