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8  Abstract

9  Although catchments serve as the primary unit for water resources management, the spatial distribution of
10 hydrological droughts within catchments remains poorly documented. Many drought assessments rely on
11 sparse gauge networks and presume spatial coherence across the hydrometric network, an assumption that is
12 rarely verified. This study provides one of the first large-scale assessment of within-catchment spatial
13 wvariability in hydrological droughts, focusing on cold, humid regions. Using 52-year streamflow timeseries of
14  thousands of stream reaches spread across 109 catchments, we examined the duration, severity, and spatial
15  extent of droughts identified with the Standardized Streamflow Index (SSI). Hydrological droughts showed
16  greater within-catchment spatial variability than previously documented: 37% of events were widespread
17 (>90% of the catchment), while 14% were highly localized (<10% of the network). As a result, a single
18  downstream stream gauge would have missed about 30% of drought events within a given catchment, whereas
19  increasing monitoring density to one gauge per 100 km? raised detection rates to nearly 100% in most
20  catchments. The spatial extent of droughts varied significantly with their severity: events spanning over 90%
21  of the network were, on average, twice as severe as those affecting less than 10%. Our findings show that
22 hydrological droughts can be highly variable across hydrometric networks in cold, humid regions, highlighting
23 the importance of integrating spatial variability into drought management and investigating its controlling
24 factors.

25  Keywords: streamflow drought, within-catchment variability, spatial coherence, spatial extent, drought 32
26  monitoring, water resources

27  Highlights:

28 e 37% of droughts were widespread, affecting >90% of the catchment, while 14% were highly localized,
29 impacting <10% of the network.

30 e Catchment-wide hydrological droughts are, on average, twice as severe as localized events.

31 e Using only a stream gauge may fail to detect ~30% of droughts, misrepresenting conditions across the
32 catchment.

33



https://doi.org/10.5194/egusphere-2025-5783
Preprint. Discussion started: 22 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

34 1. Introduction

35 Climate change is intensifying the global water cycle (Allan et al., 2020) and is projected to increase the
36  severity of hydrological droughts (Prudhomme et al., 2014). Hydrological droughts occur when streamflow
37  falls largely below the long-term average in streams or rivers (Van Loon, 2015). When coinciding with low
38  flow periods, such events can disrupt public water supply (Wang et a/ 2022), impair river navigation, cause
39  economic losses in the recreation industry (Wlostowski et a/ 2022) and trigger cascading impacts on water
40  quality (Mosley 2015) and ecosystem health (Bond et a/ 2008). Even outside low-flow periods, hydrological
41  droughts can compromise reservoir reliability (Simeone et a/ 2024) and affect freshwater and riparian
42  organisms whose life cycles are closely tied to the natural flow regime (Lytle and Poff 2004). In regions relying
43  on surface waters for irrigation, hydrological droughts can threaten reservoir storage and food production
44  systems (Lopez-Nicolas et al 2017, Pourmahmoud ef a/ 2023). Hydrological droughts also pose risks to power
45  generation, limiting hydropower and thermoelectric production due to reduced water availability for cooling
46  (Van Vliet et al 2016, Wan et al 2021). Given these widespread and diverse impacts, comprehensive, year-
47  round assessments of hydrological droughts, both within and outside of low-flow periods, are essential for
48  evaluating seasonal water availability and guiding water resources management.

49  Effective drought management requires understanding both the temporal and spatial dynamics of
50  meteorological to hydrological drought propagation. While time lags between meteorological and hydrological
51  droughts have been extensively examined, enabling earlier anticipation of low flows and more timely
52  mitigation, the spatial variability of drought impacts across hydrometric networks remains far less studied. For
53  example, several studies have investigated how meteorological droughts evolve into hydrological droughts,
54  highlighting differences in propagation dynamics between humid and semi-arid climates (Wu et al 2024, Zhou
55 et al 2024, Bevacqua et al 2021). However, few propagation studies explicitly address spatial variability.
56  Evidence from Central Europe suggests that the spatial extent of droughts tends to expand as they propagate
57  from meteorological to hydrological events (Brunner and Chartier-Rescan 2024), highlighting the need to
58  Dbetter consider spatial dimensions in drought assessments.

59  Spatial coherence, or the tendency of hydrological droughts to occur simultaneously across multiple locations,
60 s particularly important for risk management and adaptation planning. For example, in Great Britain, climate
61  change is projected to increase the co-occurrence of droughts across regions, potentially limiting the feasibility
62  of inter-regional water transfers (Tanguy et al., 2023). In Brazil, measures of spatial connectedness revealed
63  that certain regions are more prone to compounding droughts, informing the design of risk-pooling systems
64  (Gesualdo ef al 2024). Most studies on spatial coherence have focused on large-scale assessments across entire
65  countries or continents (e.g. Great Britain in Hannaford et al., 2011; Iberian Peninsula in Lorenzo-Lacruz et
66  al., 2013; United States in Apurv & Cai., 2020). While valuable for understanding broad drought propagation
67  mechanisms, such studies offer limited insight for catchment-scale water management, where decisions are
68  made based on local streamflow conditions.

69 In this study, we address this knowledge gap by examining how hydrological drought characteristics—
70  specifically duration and severity—vary within catchments using a highly spatialized streamflow dataset. We
71  hypothesize that severe droughts will exhibit high spatial coherence, affecting the majority (>90%) of the
72 hydrometric network, whereas mild droughts will be more spatially localized, impacting only limited (<10%)
73  portions of the catchment. By focusing on catchment-scale spatial variability, our work provides novel insights
74  into drought dynamics that are directly relevant for local water management and adaptation planning.
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75 2. Methodology
76 2.1 Study area

77  This study was conducted in the southern portion of the province of Quebec, Canada (fig. 1). This region is
78  predominantly characterized by a warm-summer humid continental climate (K6ppen climate classification
79  Dfib), with areas north of the 50 parallel falling within the subarctic climate zone (Dfc). Across the study area,
80  mean annual air temperatures vary between -4 and 8 °C, with a marked contrast between the cold (mean = -10
81  °C in winter) and warm season (mean = 23 °C in summer) (MELCCFP, 2012). Mean annual precipitation
82  range from 850 to 1450 mm across the study area, with about 25% falling as snow (Lachance-Cloutier et al.,
83  2017). The study targeted 109 individual unregulated catchments, free of flow regulation from dams.
84  Catchment drainage area ranged from 375 to 21 897 km? (median = 2165 km?) while elevation ranged from 0
85 to 1339 meters above sea level (median = 382 meters) (NRCan, 2013). Catchment boundaries and
86  characteristics were retrieved from the Quebec Hydrometric Network Geobase (MRNF, 2019), a high-
87  resolution hydrometric dataset.
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89  Figure 1. Spatial domain of the study area with the 109 catchment boundaries (black lines) extracted from the Quebec
90  Hydrometric Network Geobase (MRNF, 2019), the stream reaches used in the study (dark green lines) and topography
91 from the Canadian Digital Elevation Model (NRCan, 2013). In certain catchments, fewer stream reaches were considered
92  given that catchment portions regulated by dams were not considered in the study. Additionally, only reaches with a
93  drainage area of 100 km? or greater were included due to high uncertainty in reconstructed flows for smaller catchments
94  (MELCCFP, 2018).

95
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96 2.2 Historical Streamflow dataset

97  Hydrological droughts were identified using a streamflow dataset from the Hydroclimatological Atlas of
98  Southern Quebec (MELCCFP, 2023) which provides daily flow values from 1970 to 2022 for a dense
99  hydrological network of stream reaches spanning the region of southern Quebec. This dataset was developed
100  in two steps: 1) hindcasting using the HY DROTEL semi-distributed hydrological model followed by ii) post-
101  processing with streamflow data assimilation using an optimal interpolation method (Lachance-Cloutier et al.,
102 2017). Details of the two steps are provided below, and additional, comprehensive details on model
103 configuration, calibration procedures, and validation results are provided in Malenfant et al. (2022). This
104  dataset is used operationally by multiple local government entities and private sector companies.

105 HYDROTEL is a physically based, semi-distributed hydrological model that defines computational units based
106 on land use, soil classification and geographical features (Fortin et al., 2001). For the streamflow
107  reconstruction, daily gridded air temperature and precipitation datasets were created by interpolating
108  observations from ~300 meteorological stations and used as model forcing inputs. A regional calibration
109  (Ricard et al 2013) was conducted to optimize average model performance across 70 watersheds, with
110  validation based on 151 stream gauges. Six model configurations were used to capture uncertainty relative to
111 process representation (e.g. choice of evapotranspiration model) and parameter estimation (Malenfant et al.,
112 2022). All configurations demonstrated good performance, with median Kling-Gupta Efficiency (KGE’, Kling
113 etal, 2012) ranging between 0.72 and 0.78 (Malenfant et al., 2022).

114  HYDROTEL model hindcasts were post-processed using optimal interpolation as a data assimilation method.
115  Optimal interpolation aims to improve streamflow estimates by accounting for the spatial correlation of errors
116  (i.e. model deviations from observations) and a detailed description of the method is available in Lachance-
117  Cloutier et al. (2017). Streamflow observations were obtained from 279 stream gauges with minimal influence
118  from hydraulic structures (e.g. dams) and major lakes. The ratio between the variance of the observation error
119  and the variance of the model error was set to 0.25, effectively assigning four times greater weight to
120  observations than to model hindcasts when estimating streamflow at a reach with a nearby stream gauge and
121 no others in close proximity. Error correlation decreased with distance, reaching zero at 200 km. In a case study
122 involving 75 stream gauges across southern Quebec, optimal interpolation outperformed other streamflow
123 reconstruction methods relying solely on observations or model outputs, achieving a KGE’ of 0.86 in a leave-
124 one-out cross-validation (Lachance-Cloutier et al., 2017).

125  From the streamflow reconstruction dataset, the daily median streamflow values were used to assess
126  hydrological droughts. Only reaches with a drainage area of 100 km? or greater were included due to high
127  uncertainty in modelled streamflow for smaller catchments (MELCCEFP, 2018). Catchments with fewer than
128 10 reaches with available data were excluded, as such limited spatial coverage precludes meaningful
129  assessment of spatial coherence. In total, the spatial coherence of hydrological droughts was evaluated for 109
130  catchments, encompassing streamflow estimates for 6718 reaches (fig 1). These catchments had an average
131  reach length of 8.6 km, with streamflow estimates covering on average 51% of each catchment’s total
132 hydrometric network length (Table 1).

133
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134 Table 1. Characteristics of catchments and stream reaches used in this study. Available hydrometric network length per
135  catchment refers to the sum of lengths from stream reaches with available streamflow data in the catchment. Actual
136  hydrometric network length refers to the sum of lengths of all reaches (with and without streamflow data) in the
137  catchment.

Characteristics Minimum  Mean Median Maximum
Catchment drainage area (km?) 375 4055 2165 21897
Number of reaches per catchment 10 63 36 409
Length of individual stream reaches (km) 0.1 8.6 5.8 96.5
Available hydrometric network length per catchment 233

(km) 40 536 3036
Proportion of available hydrometric network length

to actual hydrometric network length per catchment 12 51 53 89
(%)

138
139 2.3 Standardized Streamflow Index

140  Drought events were identified using the Standardized Streamflow Index (SSI) (Svensson et al., 2017; Lahaa
141  etal., 2017; Barker et al., 2016). The SSI is computed by fitting a statistical probability distribution to monthly
142 streamflow time series of each catchment, then transforming the monthly streamflow values into quantiles of
143 astandard normal distribution (mean zero, standard deviation one). Thus, each SSI value represents the number
144 of standard deviations a monthly streamflow deviates from the long-term average, enabling comparison across
145  time and space. To ensure an optimal fit, eight candidate distributions (2 parameters: gamma, Gumbel, logistic,
146  log-normal, normal, Weibull; 3 parameters: Generalized Extreme Value, Tweedie) were fitted to each monthly
147  time series of each stream reach. The best-fitting distribution was selected using Kuiper’s goodness of fit test
148  (Kuiper, 1960), which is equally sensitive at the median and the tails of the distribution, making it appropriate
149  for the analysis of extreme events such as droughts. The Kuiper’s test statistic sums the maximum negative
150  (D-) and maximum positive (D+) distances between two cumulative distribution functions and the distribution
151 minimizing this statistic was chosen as best. SSI values were truncated at -5 and 5 to limit uncertainty at
152  distribution extremes (Svensson et al., 2017). The SSI can be calculated over varying accumulation periods by
153  applying a backward-looking moving average on the monthly streamflow data before standardization. In this
154  study, three accumulation periods (1, 3 and 6 months) were considered which are denoted as SSI-1, SSI-3 and
155  SSI-6. The SCI package for R (Gudmundson & Stagge, 2014) was used to compute the SSI, in combination
156  with the tweedie package (Dunn, 2005).

157 2.4 Drought event identification and characteristics

158  Drought events were identified using the widely applied run theory (Yevjevich, 1967). Specifically, a drought
159  event was defined as a period when SSI values were continuously negative (SSI < 0) with at least one month
160  going under a pre-defined threshold (Barker et al., 2016). Threshold values of -1 (moderate), -1.5 (severe) and
161 -2 (extreme) have been suggested by McKee et al., (1993) and are widely used. A threshold of -1.5 was adopted
162  to focus on severe and extreme events, although sensitivity to this threshold was assessed.

163  First, drought events were identified at the reach-scale and three characteristics were computed for each event:
164 duration (number of months with SSI <0), severity (sum of SSI values during an event) and occurrence (season
165  of drought onset). Second, droughts were identified at the catchment scale and concurrent reach-scale events
166  were grouped into a single event when they overlapped by at least one month. The median values of duration
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167  and severity across reaches were used to characterize the catchment-scale event. Last, the spatial extent of a
168  catchment-scale drought was quantified as the ratio of stream length affected by drought at any point during
169  the event to the total stream length with available data. Droughts were considered as “widespread” when they
170  affected more than 90 % of the hydrometric network and as “localized” when they affected less than 10% of
171  the hydrometric network.

172 2.5 Statistical modelling of spatial coherence

173 To address the hypothesis that severe droughts are spatially coherent within a catchment, the relationship
174  between drought characteristics (duration and severity) and their spatial extent was examined. Given the strong
175  correlation between duration and severity (R?= 0.87), statistical modelling focused exclusively on severity as
176 it combines duration and intensity together into a single indicator. A Gaussian linear mixed model with an
177  identity link function was fitted to model drought severity as a function of the covariates. Fixed covariates were
178  spatial extent and occurrence (season of drought onset). To manage the dependency of drought events within
179  individual catchments, catchment identifier was used as random intercept. The year of drought onset (vear)
180  was also used as random intercept to manage hydrological drought severity dependency between catchments.
181  Drought severity was log-transformed (natural logarithm) to stabilize the variance in the model. The model
182  was fitted using the glmmTMB package in R (Brooks et al., 2017).

183 2.6 Sensitivity of drought occurrence to streamflow monitoring density

184  The sensitivity of drought occurrence (i.e., the number of drought events) to streamflow monitoring density
185  (i.e., the number of stream reaches used to compute catchment-scale drought events) was assessed within each
186  catchment. This was done by comparing the number of drought events identified at the catchment scale with
187  those identified when only a single stream reach was used. For each of the 109 catchments, it was first assumed
188  that streamflow data were available only at the most downstream reach and the number of severe drought
189  events (SSI < -1.5) was calculated, following the approach described in Section 2.3. The paired values (full
190  network vs. single reach) were then used to evaluate the general tendency toward under- or overestimation of
191  drought occurrence across the study area. To ensure the results were not biased by the use of the most
192  downstream reach, the analysis was repeated by randomly selecting a single reach (without replacement) within
193  each catchment, repeated 100 times. For each catchment, the mean and standard deviation of the paired number
194  of events were calculated to further characterize the variability and tendency of drought occurrence estimates
195  based on single-reach monitoring.

196  Further analysis was performed to estimate the number of stream gauges (i.e. number of stream reaches used
197  to compute catchment-scale drought events) require to detect all drought events within a catchment. For each
198  catchment, an increasing number of stream reaches (from 1 up to the total number of reaches) was randomly
199  sampled and the number of severe drought events was computed at each step. The drought detection rate was
200  defined as the ratio of drought events detected using a reduced number of reaches to the total number of events
201  detected using all reaches. These detection rates were then analyzed in relation to monitoring density, expressed
202  as the number of reaches per 100 km? of drainage area. To account for the potential influence of catchment
203  size on drought variability, the analysis was conducted separately for meso-scale catchments (drainage area <
204 2500 km?) and large-scale catchments (drainage area > 2500 km?).
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205 3. Results

206  All results presented below correspond to the 3-month accumulation period, unless otherwise stated, as
207  analyses conducted for the 1- and 6-month periods yielded similar results and are only presented in the
208  appendix A (Figures A1-A4, Table Al).

209 3.1 Drought occurrence, duration, severity at the catchment scale

210 Over the 52-year study period, catchments experienced an average of 26 drought events, corresponding on
211  average to one event every two years (Table 2). Droughts had a mean duration of 8 months and a mean
212 cumulative severity of -8.1, indicating that streamflow was on average one standard deviation below the long-
213 term mean for each month of a drought event. However, longer and more severe events also occurred, with
214 durations of up to 61 months and severity reaching -75. As expected, drought duration and severity were
215  strongly correlated (R* = 0.87), reflecting the accumulation of deficits over longer events. On average, 61 %
216  of a catchment’s hydrometric network experienced droughts conditions during a given event. Overall, drought
217  characteristics were relatively consistent across seasons: duration, severity, and spatial extent were comparable
218  in spring, summer, and fall. In winter, droughts were slightly less severe and with a reduced spatial extent,
219  though the differences were modest.

220  Table 2. Annual and seasonal characteristics of catchment-scale hydrological drought events. Seasons are defined as:
221  winter = December/January/February, spring = March/April/May, summer = June/July/August, fall =
222 September/October/November. CV corresponds to the coefficient of variation.

Number of droughts . . Spatial extent (% of stream
Duration (months) Severity (-) .
per catchment length in drought)
Occurrence
. (&A% . (9\% . CV . (0%
Median Mean Median Mean Median Mean Median Mean

(%) (%) (%) (%)
All seasons 27 26 19 7 8 69 -66 -81 74 68 61 60
Winter 5 5 40 6 7 78 -53 -7.0 81 58 57 65
Spring 9 9 35 6 8 68 -6.6 -8.1 70 75 63 59
Summer 7 7 34 7 8 68 -7.1 -83 73 69 62 59
Fall 6 6 41 7 9 65 -7.0 -8.7 72 66 60 61

223
224 3.2 Spatial extent of drought varies widely across events.

225  Onaverage, 61% of the hydrometric network length experienced severe drought during a given event, although
226  substantial variability was observed (CV = 60 %, Table 2).. Overall, 37% of events were widespread (affecting
227  >90 % of the hydrometric network), while 14 % of events were localized (affecting < 10% of the hydrometric
228  network) (fig. 2b).

229  The threshold used to define drought events (i.e. one month with SSI < -1.5) had a strong influence on their
230  spatial extent, with spatial coherence decreasing as the threshold became more extreme (more negative). For
231  example, applying a moderate threshold (SSI < -1) resulted in strong spatial coherence, with 59 % of events
232 classified as widespread across the catchment (fig. 2a). In contrast, using an extreme threshold (SSI < -2)
233 reduced spatial extent and coherence (fig. 2¢), producing a bimodal distribution of spatial coverage. One cluster
234  of events was widespread, although this represented only 14 % of all events, while a larger cluster of events
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(29 %) was localized (fig. 2c). This pattern of reduced spatial coherence with more extreme thresholds was
consistent across all seasons (fig. 2).

During a given drought event, stream reaches not classified as experiencing drought typically had SSI values
well above the selected threshold, with some even showing above-average streamflow, while other parts of the
catchment were under drought conditions (fig. 3). For example, when using the severe threshold (SSI < -1.5),
38 % of reaches had SSI values greater than or equal to zero during drought events (fig. 3). More broadly, the
majority (80 % to 92 % depending on the threshold) of reaches not experienced drought conditions during a
catchment-scale event had SSI values at least 0.5 units above the threshold (fig. 3), indicating a clear distinction
from drought conditions. This pattern was consistent across all seasons.
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Figure 2. Binned relative frequencies (displayed as both bars and overlaid lines) of the spatial extent of drought events
identified with three different thresholds: moderate (SSI < -1), severe (SSI < -1.5) and extreme (SSI < -2). Spatial extent
refers to the proportion of the hydrometric network length experiencing drought for a given event. Spatial extent was
binned in 11 bins of 0.1 (from 0 to 1) to calculate the relative frequencies of events with different spatial extents. Grey
bars represent the entire study area and dotted coloured line refer to the four seasons of drought occurrence (winter =

December/January/February,  spring =  March/April/May, summer =  June/July/August, fall =
September/October/November).
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Figure 3. Binned relative frequencies (displayed as both bars and overlaid lines) of the Standardized Streamflow Index
(SSI) for reaches that were not experiencing drought during catchment-scale drought events. Drought events were
identified with the severe threshold (SSI < -1.5). Indices (SSI) were binned in 14 bins of 0.5 (from -1.5 to 5.0) to calculate
the relative frequencies of reaches with different SSI values. Grey bars represent the entire study area and dotted coloured
line refer to the four seasons of drought occurrence (winter = December/January/February, spring = March/April/May,
summer = June/July/August, fall = September/October/November).
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259 3.3 Catchment-wide hydrological droughts are, on average, twice as severe as localized events.

260  Results of the linear mixed model showed that the spatial extent of drought events had a significant influence
261  on their severity (Table 3, Figures B1-B3 of appendix B for model validation). Widespread drought events
262  affecting a larger proportion of the hydrometric network tended to be more severe (fig. 4). On average,
263  widespread events (spatial extent > 90%) were nearly twice (1.9 times) as severe as localized events (spatial
264  extent < 10%). Overall, a one-unit increase in spatial extent corresponded to a 2.2-fold (e°7%) increase in
265  drought severity. Despite this trend, considerable variability remained, with some highly severe events
266  (severity > 10) occurring even when less than 25% of the catchment was affected (fig. 4). Droughts that began
267  in winter were significantly less severe, while no significant differences in severity were observed among
268  events initiated in spring, summer, or fall (fig. 4, table 3). These patterns held across different thresholds used
269  to define drought events (SSI < -1, -1.5, or -2), although model intercepts increased and slopes decreased with
270  more extreme thresholds (e.g., SSI < -2) (Tables C1-C2, appendix C). The results were also robust to the length
271  of the SSI accumulation period (1, 3, or 6 months; Tables C3-C4, appendix C).

272 Table 3. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the linear
273 mixed model assessing the influence of spatial extent and occurrence on the severity of drought events. Estimated values
274  of variance (6) for Geachmenup and Gyesr are 0.018 and 0.031, respectively. Estimated R? value is 0.37 (n = 2864).

95% confidence Standard

Estimate . z-value p-value
interval error
(Intercept) 1.305 [1.228, 1.384] 0.040 32.78 <0.001
Spatial extent 0.782 [0.729, 0.835] 0.027 28.86 <0.001
Occurrence: Fall 0.187 [0.122, 0.251] 0.033 5.70 <0.001
Occurrence: Spring 0.118 [0.056, 0.180] 0.032 3.71 <0.001
Occurrence: Summer 0.172 [0.109, 0.234] 0.032 5.36 <0.001
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277  Figure 4. Relationship between the spatial extent of droughts (proportion of the hydrometric network experiencing
278  drought for a given event) and their severity (sum of absolute SSI values during event) across seasons (winter =
279  December/January/February,  spring =  March/April/May, summer =  June/July/August, fall =
280  September/October/November). The severity is represented in log (natural logarithm) scale on the Y axis (e! ~ 3, €* ~
281  10,¢€*~30).
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282 3.4 Relying on a single stream gauge may lead to undetected droughts.

283  The number of stream reaches experiencing drought within a catchment varied considerably between events
284  (fig. 2), which has important implications when assessing catchment-wide drought conditions with a single
285  stream gauge. To evaluate the potential for underdetection, streamflow data were assumed only available at
286  the most downstream reach of each of the 109 catchments and the number of severe drought events (SSI < -
287  1.5) was computed accordingly (fig. 5a). This approach systematically underestimated the number of events
288  (fig. 3), with an average of 9 events (min = 1, max = 27) per catchment missed, representing an average of 37
289 % (min = 3 %, max = 78 %) of events going undetected.

290  On average, two events per catchment (179 events in total) were only detected in a single reach and these
291  events were typically mild, with a median severity of -4.8 (max = -1.5, min = -19.0). Even when excluding
292  these single-reach events, an average of 7 events per catchment remained undetected, corresponding to 30 %
293 (min = 0 %, max = 76 %) of events on average. Using only the most downstream reach to identify drought
294  events led to a decrease in median drought severity from -6.6 (with all reaches) to -7.4 and a decrease in
295  maximum severity from -69.2 to -75.0, suggesting that although undetected events were often mild, some were
296  still highly severe. While fewer drought events were detected at the most downstream reach, the majority of
297  events (60%) detected corresponded to widespread events.

298  To assess whether this underdetection was specific to the most downstream reach, a resampling analysis was
299  performed by randomly selecting a single reach 100 times for each catchment (fig. 5b). Across all resampling
300  runs, the number of drought events was consistently underestimated compared to results obtained using the
301  full hydrometric network. On average, 35 % (min = 0%, max = 84%) of events went undetected, corresponding
302  to an average of 9 (min = 0, max = 28) missed events per catchment. Under this scenario, median severity
303  again decreased to -7.4 (vs. -6.6 for all reaches) and maximum severity declined further to -85.3 (vs. -75.0),
304 reinforcing the conclusion that reliance on a single monitoring location can lead to substantial underestimation
305  of drought frequency and severity.
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307  Figure 5. Relationship between the number of drought events identified per catchment when using all the available
308  reaches (X-axis) and when using (a) only the most downstream reach of a catchment or (b) when using a randomly
309  selected reach. In (b), the points and the dotted lines represent the mean and standard deviation of the number of drought
310  events identified from each sampling. The color of the data points represents the catchment drainage area.
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311 By progressively increasing the number of randomly sampled stream reaches per catchment, the theoretical
312 number of stream gauges required to detect all drought events was estimated for each catchment (fig. 6). The
313  drought detection rate, defined as the proportion of detected drought events, increased exponentially with
314  monitoring coverage eventually reaching a plateau when all events were captured. In meso-scale catchments,
315  most events were detected when at least 1 reach per 100 km? of drainage area was included, whereas large-
316  scale catchments required less extensive coverage, with fewer than 0.3 reaches per 100 km? sufficient to detect
317  most events. Reducing this monitoring density by half led to an average of 20 % of events going undetected in
318  large-scale catchments and 15 % in meso-scale catchments. When monitoring density was further reduced to
319 10 %, approximately 40 % of drought events were missed on average, regardless of catchment size.
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321  Figure 6. Proportion of catchment-scale drought events detected when using an increasing number of randomly selected

322 reaches. The X-axis (drought detection rate) represents the ratio of drought events detected using a reduced number of

323  reaches to the total number of events detected using all reaches. The Y-axis represents the number of reaches per 100

324  km? of catchment drainage area. The color of boxplots and points represents the total drainage area of catchments in km?.

325 4. Discussion

326 At the continental scale, atmospheric circulation patterns have been shown to explain the simultaneous
327  occurrence of hydrological droughts across catchments (Hannaford et al.,, 2011). Within the study area,
328  streamflow variability has been linked to large-scale climate drivers such as the North Atlantic Oscillation
329  (NAO) and the Pacific North American (PNA) pattern (Anctil & Coulibaly 2004; Biron et al., 2014). The
330  present study underscores the influence of smaller-scale processes that may interact with these broad
331  atmospheric patterns, as results indicate that hydrological droughts are not always spatially coherent at the
332 catchment scale. While many events (37%) affected more than 90 % of the hydrometric network within a
333 catchment, a notable fraction (14%) remained highly localized, impacting less than 10 % of the hydrometric
334  network (fig. 2).

335  Overall, the results support the hypothesis that drought severity is positively associated with spatial coherence,
336  with more severe events tending to be more widespread (table 3). Nonetheless, there was still substantial
337  variability in this relationship, and some severe droughts were highly localized. For example, events with
338  severity values lower than the 10 percentile were found to affect less than 10% of a catchment’s hydrometric
339  network (fig. 4).
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340 4.1 Strong coupling between meteorological and hydrological droughts may limit spatial coherence in
341  cold, humid catchments

342  Previous studies have shown that in cold and humid catchments of the eastern United States, hydrological
343  droughts are typically short in duration and closely aligned with meteorological conditions. For example,
344  hydrological droughts in this region are often limited to single year events (Patterson et al., 2013), in contrast
345  to catchments in drier climates, where multi-year droughts are more common due to greater hydrological
346 memory (de Lavenne et al., 2022). Consistent with these results, this study found that the median duration of
347  hydrological drought events remained below 12 months (table 2). Furthermore, in the eastern United States,
348  meteorological and hydrological droughts tend to be of similar duration, with the onset and recovery of
349  hydrological droughts largely controlled by meteorological droughts (Apurv & Cai, 2020).

350  This strong coupling suggests that spatial variability in precipitation may contribute to within-catchment
351  wvariability in hydrological drought occurrence. For example, localized rainfall events may alleviate drought
352 conditions in certain stream reaches while other parts of the catchment remain affected, potentially explaining
353  the observed lack of spatial coherence in some drought events. Given the well-established role of climate in
354  governing hydrological drought propagation (Apurv et al., 2017; Van Loon et al., 2014), further research is
355  needed to evaluate how within-catchment spatial variability in drought occurrence differs across climate zones.
356  For example, spatial coherence of hydrological droughts may be greater in dry regions compared to the patterns
357  observed in this study in humid, snowmelt-dominated catchments.

358 4.2 The influence of catchment properties on drought spatial coherence remains unclear.

359 This study revealed substantial spatial variability in drought occurrence within catchments. While
360 meteorological factors may contribute to this variability, catchment properties have also been shown to
361 influence the propagation of meteorological droughts into hydrological droughts. Properties of groundwater
362  systems have been linked to the development and persistence of hydrological droughts (Van Lanen et al.,
363  2013). For example, physical characteristics of bedrock, such as lithostratigraphic classes, have been found to
364  explain spatial variability in the baseflow index within the Thames River catchment (16 100 km?, Bloomfield
365 et al., 2009). Similarly, properties of surface water systems can also influence drought dynamics. In the
366  Savannah River catchment (27 171 km?, southeastern United States), stream order was a strong predictor of
367  hydrological drought duration (Veettil & Mishra 2020). In contrast, catchment area was not significantly
368  associated with drought duration or severity in the United Kingdom, although it did corelate with the number
369 of events (Barker et al., 2016). Catchment storage capacity has also been shown to influence drought
370  characteristics in cross-catchment studies (Konapala and Mishra 2020, Van Loon and Laaha 2015) and
371  sensitivity analyses (Van Lanen et a/ 2013) and this property may also affect within-catchment variability in
372 hydrological drought.

373  These findings highlight the need for further research to better understand the drivers of within-catchment
374  variability in hydrological drought occurrence. Improved understanding of local catchment properties that
375  buffer or exacerbate hydrological droughts could improve water resources management and drought
376  forecasting. This need is underscored by our finding that stream reaches not classified as under drought during
377  catchment-scale events were often well above the threshold used to define drought conditions, and even above
378  the historical mean in some cases (fig. 3). This suggests that local conditions may play a critical role in
379  preventing drought occurrence at specific locations within a catchment.

380
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381 4.3 Single-station data underestimate drought occurrence but accurately represent catchment-scale
382  duration and severity.

383  Numerous studies have used data from stream gauges to investigate the propagation of meteorological droughts
384  into hydrological droughts across temperate (Barker et al., 2016; Bruno et al., 2022), tropical (Bevacqua et al.,
385  2021; Bhardwaj et al., 2020) and semi-arid (Meresa et al., 2023; Yildirim et al., 2022) climates. These studies
386  commonly rely on a single stream gauge to characterize hydrological droughts within meso-scale (10% — 10°
387  km?)or large-scale (10*— 107 km?) catchments, often failing to capture within-catchment variability. Moreover,
388  large rivers are disproportionately represented in global hydrometric networks (Krabbenhoft et al., 2022). In
389  contrast, streamflow observations in headwater catchments remain sparse, limiting the ability to assess drought
390  conditions in these smaller, yet widespread and hydrologically important systems.

391 Findings from this study suggest that accurately capturing all hydrological drought events requires a
392  substantially denser monitoring network than is typically implemented. Specifically, meso-scale catchments
393 (<2500 km?) would require approximately 1 stream gauge per 100 km?, and large-scale catchments (> 2500
394  km?) about 0.3 stations per 100 km?. For example, detecting all events in a 1 000 km? catchment would require
395  roughly 10 stations, while a 10 000 km? catchment would require 30. Achieving a 90 % detection rate would
396  still necessitate ~6 and ~21 stations, respectively, in catchments of these sizes. In contrast, relying on a single
397  gauging station would result in an average detection rate of only 60% in a 1 000 km? catchment and even less
398  in larger ones, reinforcing concerns about underdetection. While this analysis offers a high-level estimate of
399  the monitoring intensity required to detect hydrological droughts, it is likely that more optimal strategies could
400  be implemented (Mishra & Coulibaly, 2009). Given the growing importance of hydrometric networks in
401  monitoring droughts of increasing frequency and severity under climate change, these results highlight the
402 need to explicitly incorporate drought detection objectives into network design. Moreover, hydrological
403  drought assessments should increasingly aim to integrate multiple stream gauges to better capture within-
404  catchment variability. Rather than selecting entirely independent catchments, using nested catchments may
405  offer an effective strategy for monitoring hydrological droughts in cold, humid regions.

406  Existing hydrometric networks have played a key role in supporting the development of forecasting and early
407  warning systems for droughts (Guo et al., 2020). However, these systems may be biased in cold, humid regions
408  where our results indicate that ~30 % of events may go undetected when relying on a single stream gauge to
409  characterize hydrological droughts (fig. 5a). This underdetection was consistent regardless of the location of
410  the reach location, with a comparable proportion of missed events (35 %, fig. 5b) when reach location was
411 randomly selected within catchments rather than limited to the most downstream reach. While undetected
412  events were typically mild or spatially localized, some were nevertheless severe, underscoring the limitations
413  of using sparse monitoring to capture the full extent of drought conditions.

414  Despite limitations in capturing all drought events in a catchment with a single stream gauge, our analysis
415  showed that event characteristics such as duration and severity were generally consistent across a catchment.
416  Specifically, the coefficient of variation in drought severity among reaches within the same catchment was
417  relatively low (mean = 16%), indicating strong spatial coherence. As such, while a single station may fail to
418  detect some events, it can still provide a reliable estimate of the severity and duration of those that are detected.

419 4.4 Limitations

420  Hydrological drought characterization relied on a robust streamflow reconstruction dataset that nonetheless
421  contains incorporates uncertainty from observations and model hindcasts. The semi-distributed model was
422  calibrated with the KGE’ as an objective function which is well suited for capturing variability in highly
423  seasonal flow regimes such as those found in the study area (Gupta et al., 2009). However, KGE' is less
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424  sensitive to extreme flow values, and may therefore underrepresent flow extremes. The model was calibrated
425  using a regional approach which may reduce performance at the local scale. However, the assimilation of
426  observations into the final streamflow reconstruction dataset helps to mitigate these limitations. Uncertainty in
427  the streamflow reconstruction dataset was thoroughly assessed, with key sources including the density of
428  meteorological and hydrological stations, catchment size and the model’s reliance on air temperature and
429  precipitation as input variables (Lachance-Cloutier et al., 2017; Martel et al., 2023). While errors in interpolated
430  data could influence the spatial coherence of hydrological droughts at the catchment scale, this effect is likely
431  limited, as results were consistent across time scales, drought thresholds, and catchments.

432 The use of streamflow reconstruction allowed for extensive spatial coverage across the study area, enabling a
433  comprehensive assessment of hydrological droughts. Importantly, the dataset provided streamflow time series
434  homogenized both in length (52 years) and period (1970-2022), thereby avoiding biases commonly associated
435  with inconsistencies in data availability when computing standardized indices (Hong et al., 2015; Laimighofer
436 & Laaha 2022). It also minimized uncertainty linked to methodological changes in streamflow measurement
437  over time (Hamilton & Moore 2012). Given the continued scarcity of observed streamflow data, particularly
438 in ungauged or headwater regions, streamflow reconstruction techniques appear a valuable approach to
439  improve understanding of within-catchment variability. Accordingly, streamflow reconstruction datasets are
440  increasingly being used to assess hydrological droughts (Smith ef a/ 2019, Laraib et a/ 2024).

441 5. Conclusion

442  Many hydrometric networks have experience a steady decline over recent decades (Spence e a/ 2007, Haile et
443 al 2022, Vorosmarty et al 2001) and this study stressed the importance of monitoring streamflow at multiple
444  locations to accurately assess hydrological droughts in cold, humid regions. Similar to recent studies on flash
445  droughts which highlighted that drought events can be concentrated in time (Christian et al., 2019), this study
446  demonstrated that hydrological droughts can also be concentrated in space. For example, 14 % of hydrological
447  droughts impacted less than 10% of the catchment’s hydrometric network. These findings emphasize the need
448  for more work at the sub-catchment scale to better capture spatial variability in drought conditions when
449  managing surface waters. While the spatial extent of droughts is commonly considered in the assessment of
450  meteorological (Sharma & Mujumdar 2017), soil moisture (Sheffield et al., 2009) and groundwater (Tallaksen
451 et al., 2009) droughts, results suggest that this dimension deserves equal attention in the evaluation of
452  streamflow droughts.
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Appendix A - Hvdrological drought assessment for additional accumulation periods.
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662  Figure Al. Binned relative frequencies (displayed as both bars and overlaid lines) of the spatial extent of drought events
663  identified with three different thresholds: moderate (SSI < -1), severe (SSI < -1.5) and extreme (SSI < -2). Results are
664  shown for an accumulation period of one month (SSI-1). Spatial extent refers to the proportion of the stream network
665  length experiencing drought for a given event. Spatial extent was binned in 11 bins of 0.1 (from 0 to 1) to calculate the
666 relative frequencies of events with different spatial extents. Grey bars represent the entire study area and dotted coloured
667 line refer to the four seasons of drought occurrence (winter = December/January/February, spring = March/April/May,
668  summer = June/July/August, fall = September/October/November).
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670  Figure A2. Binned relative frequencies (displayed as both bars and overlaid lines) of the Standardized Streamflow Index
671  (SSI) for reaches that were not in drought during drought events occurring in the catchment. Results are shown for an
672  accumulation period of one month (SSI-1). Drought events were identified with the severe threshold (SSI< -1.5). Indices
673  (SSI) were binned in 14 bins of 0.5 (from -1.5 to 5.0) to calculate the relative frequencies of reaches with different SSI
674  values. Grey bars represent the entire study area and dotted coloured line refer to the four seasons of drought occurrence
= March/April/May, summer = June/July/August, fall =

675  (winter = December/January/February, spring
676  September/October/November).
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679  Figure A3. Binned relative frequencies (displayed as both bars and overlaid lines) of the spatial extent of drought events
680  identified with three different thresholds: moderate (SSI < -1), severe (SSI < -1.5) and extreme (SSI < -2). Results are
681  shown for an accumulation period of six months (SSI-6). Spatial extent refers to the proportion of the stream network
682  length experiencing drought for a given event. Spatial extent was binned in 11 bins of 0.1 (from 0 to 1) to calculate the
683  relative frequencies of events with different spatial extents. Grey bars represent the entire study area and dotted coloured
684 line refer to the four seasons of drought occurrence (winter = December/January/February, spring = March/April/May,
685  summer = June/July/August, fall = September/October/November).
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687  Figure A4. Binned relative frequencies (displayed as both bars and overlaid lines) of the Standardized Streamflow Index
688  (SSI) for reaches that were not in drought during drought events occurring in the catchment. Results are shown for an
689  accumulation period of six months (SSI-6). Drought events were identified with the severe threshold (SSI<-1.5). Indices
690  (SSI) were binned in 14 bins of 0.5 (from -1.5 to 5.0) to calculate the relative frequencies of reaches with different SSI
691  values. Grey bars represent the entire study area and dotted coloured line refer to the four seasons of drought occurrence

692  (winter = December/January/February, spring = March/April/May, summer = June/July/August, fall =
693  September/October/November).
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695  Table Al. Annual and seasonal characteristics of catchment-scale hydrological drought events per accumulation period
696 (1, 3, 6 months) and season (winter = December/January/February, spring = March/April/May, summer =
697  June/July/August, fall = September/October/December). CV corresponds to the coefficient of variation.

) Number of droughts . . Spatial extent (% of stream
Accumulation Duration (months) Severity (-) .
Occurrence period per cafchment length in drought)
(months) Median Mean cv Median Mean cv Median Mean cv Median Mean cv
(%) (%) (%) (%)
1 37 37 23 4 5 69 -4.5 -55 71 59 56 66
All seasons 3 27 26 19 7 8 69 -6.6 -8.1 74 68 61 60
6 16 16 20 11 13 73 -103 -134 79 80 65 56
1 5 6 50 4 4 69 -3.6 -43 68 48 50 71
Winter 3 5 5 40 6 7 78 -53 -7.0 81 58 57 65
6 3 3 54 10 12 78 -8.6 -10.7 84 73 62 59
1 12 12 32 4 5 77 -42 -54 77 67 59 64
Spring 3 35 6 8 68 -6.6 -8.1 70 75 63 59
6 6 7 33 11 13 73 -11.0  -139 74 82 65 56
1 12 12 29 5 6 65 -53 -6.3 69 62 57 65
Summer 3 7 7 34 7 8 68 -7.1 -83 73 69 62 59
6 2 3 54 10 15 76 -9.7 -14.6 86 63 59 63
1 8 8 38 5 5 57 -5.1 -53 58 55 55 68
Fall 3 6 6 41 7 9 65 -7.0 -87 72 66 60 61
6 4 4 50 11 13 67 -108  -13.6 77 85 68 53
698
699
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700 Appendix B - Validation of the linear mixed model
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701  Figure B1. Normal Q-Q plot of the linear mixed model presented in Table 3.
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703  Figure B2. Histogram of residuals of the linear mixed model presented in Table 3.
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704  Figure B3. Residual analysis plot of the linear mixed model presented in Table 3.
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705 Appendix C - Linear mixed models results

706 Table C1. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the
707 linear mixed model for an accumulation period of 3 months (SSI-3), with a moderate threshold (SSI < -1).
708 Estimated values of variance (6) for Geachmenup and Gyear are 0.018 and 0.036, respectively. Estimated R? value is 0.42.
709 (n=4124)
959 fid
Estimate /o, conidence Std. error z-value p-value
interval
(Intercept) 0.522 [0.438, 0.605] 0.042 12.28 <0.001
Spatial extent 1.229 [1.173, 1.285] 0.028 43.14 <0.001
Occurrence: Fall 0.185 [0.124, 0.245] 0.031 5.97 <0.001
Occurrence: Spring 0.109 [0.052, 0.167] 0.029 3.74 <0.001
Occurrence: Summer 0.214 [0.173,0.274] 0.031 6.93 <0.001
710
711 Table C2. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the
712 linear mixed model for an accumulation period of 3 months (SSI-3), with an extreme threshold (SSI < -2).
713 Estimated values of variance () for Geachmenup and Gyer are 0.010 and 0.039, respectively. Estimated R? value is 0.32.
714 (n=1707)
9 fi
Estimate 93 A’, confidence Std. error z-value p-value
interval
(Intercept) 1.825 [1.739, 1.913] 0.045 41.00 <0.001
Spatial extent 0.523 [0.457, 0.590] 0.034 15.41 <0.001
Occurrence: Fall 0.193 [0.144, 0.271] 0.040 4.83 <0.001
Occurrence: Spring 0.159 [0.081, 0.236] 0.040 4.00 <0.001
Occurrence: Summer 0.167 [0.091, 0.243] 0.039 4.30 <0.001
715
716 Table C3. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the
717 linear mixed model an accumulation period of 1 month (SSI-1), with a severe threshold (SSI < -1.5). Estimated
718 values of variance () for Geaichmentin and Gyear are 0.031 and 0.026, respectively. Estimated R? value is 0.40. (n = 4061)
. 95% confidence
Estimate . Std. error z-value p-value
interval
(Intercept) 0.919 [0.848, 0.990] 0.036 25.39 <0.001
Spatial extent 0.764 [0.722, 0.807] 0.022 35.23 <0.001
Occurrence: Fall 0.223 [0.171, 0.276] 0.027 8.31 <0.001
Occurrence: Spring 0.131 [0.080, 0.182] 0.026 5.04 <0.001
Occurrence: Summer 0.278 [0.230, 0.326] 0.025 11.29 <0.001
719
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Table C4. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the
linear mixed model for an accumulation period of 6 months (SSI-6), with a severe threshold (SSI < -1.5).
Estimated values of variance () for Geachmenup and Gyer are 0.013 and 0.106, respectively. Estimated R? value is 0.48.

(n=1761)
Estimate 95%, confidence Std. error z-value p-value
interval

(Intercept) 1.697 [1.578, 1.816] 0.061 28.01 <0.001
Spatial extent 0.908 [0.836, 0.980] 0.037 24.68 <0.001
Occurrence: Fall 0.089 [0.008, 0.168] 0.041 2.16 0.0307
Occurrence: Spring 0.078 [-0.0003, 0.155] 0.040 1.96 0.0501
Occurrence: Summer 0.096 [0.002, 0.190] 0.048 2.00 0.0454
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726  Appendix D: Visualization of the two-step process for identifving drought events
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728  Figure D1. Two-step process for identifying drought events at a) the reach scale (adapted from Zhang et al., 2022) and
729  b) the catchment scale. Panel (a) illustrates how drought events are identified from a time series of the Standardized
730  Streamflow Index (SSI) for reach #1 and characterized by their duration and severity. Panel (b) shows how reach-scale
731  events are aggregated to define catchment-scale events. When multiple events from the same reach were grouped into a
732 single catchment-scale event (event #2, reach 4), their duration and severity were summed. The overall characteristics of
733 each catchment-scale event were calculated as the median values of the corresponding reach-scale events.
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