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Abstract 8 

Although catchments serve as the primary unit for water resources management, the spatial distribution of 9 

hydrological droughts within catchments remains poorly documented. Many drought assessments rely on 10 

sparse gauge networks and presume spatial coherence across the hydrometric network, an assumption that is 11 

rarely verified. This study provides one of the first large-scale assessment of within-catchment spatial 12 

variability in hydrological droughts, focusing on cold, humid regions. Using 52-year streamflow timeseries of 13 

thousands of stream reaches spread across 109 catchments, we examined the duration, severity, and spatial 14 

extent of droughts identified with the Standardized Streamflow Index (SSI). Hydrological droughts showed 15 

greater within-catchment spatial variability than previously documented: 37% of events were widespread 16 

(>90% of the catchment), while 14% were highly localized (<10% of the network). As a result, a single 17 

downstream stream gauge would have missed about 30% of drought events within a given catchment, whereas 18 

increasing monitoring density to one gauge per 100 km² raised detection rates to nearly 100% in most 19 

catchments. The spatial extent of droughts varied significantly with their severity: events spanning over 90% 20 

of the network were, on average, twice as severe as those affecting less than 10%. Our findings show that 21 

hydrological droughts can be highly variable across hydrometric networks in cold, humid regions, highlighting 22 

the importance of integrating spatial variability into drought management and investigating its controlling 23 

factors. 24 

Keywords: streamflow drought, within-catchment variability, spatial coherence, spatial extent, drought 32 25 

monitoring, water resources 26 

Highlights: 27 

• 37% of droughts were widespread, affecting >90% of the catchment, while 14% were highly localized, 28 

impacting <10% of the network. 29 

• Catchment-wide hydrological droughts are, on average, twice as severe as localized events. 30 

• Using only a stream gauge may fail to detect ~30% of droughts, misrepresenting conditions across the 31 

catchment. 32 

  33 
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1. Introduction  34 

Climate change is intensifying the global water cycle (Allan et al., 2020) and is projected to increase the 35 

severity of hydrological droughts (Prudhomme et al., 2014). Hydrological droughts occur when streamflow 36 

falls largely below the long-term average in streams or rivers (Van Loon, 2015). When coinciding with low 37 

flow periods, such events can disrupt public water supply (Wang et al 2022), impair river navigation, cause 38 

economic losses in the recreation industry (Wlostowski et al 2022) and trigger cascading impacts on water 39 

quality (Mosley 2015) and ecosystem health (Bond et al 2008). Even outside low-flow periods, hydrological 40 

droughts can compromise reservoir reliability (Simeone et al 2024) and affect freshwater and riparian 41 

organisms whose life cycles are closely tied to the natural flow regime (Lytle and Poff 2004). In regions relying 42 

on surface waters for irrigation, hydrological droughts can threaten reservoir storage and food production 43 

systems (Lopez-Nicolas et al 2017, Pourmahmoud et al 2023). Hydrological droughts also pose risks to power 44 

generation, limiting hydropower and thermoelectric production due to reduced water availability for cooling 45 

(Van Vliet et al 2016, Wan et al 2021). Given these widespread and diverse impacts, comprehensive, year-46 

round assessments of hydrological droughts, both within and outside of low-flow periods, are essential for 47 

evaluating seasonal water availability and guiding water resources management. 48 

Effective drought management requires understanding both the temporal and spatial dynamics of 49 

meteorological to hydrological drought propagation. While time lags between meteorological and hydrological 50 

droughts have been extensively examined, enabling earlier anticipation of low flows and more timely 51 

mitigation, the spatial variability of drought impacts across hydrometric networks remains far less studied. For 52 

example, several studies have investigated how meteorological droughts evolve into hydrological droughts, 53 

highlighting differences in propagation dynamics between humid and semi-arid climates (Wu et al 2024, Zhou 54 

et al 2024, Bevacqua et al 2021). However, few propagation studies explicitly address spatial variability. 55 

Evidence from Central Europe suggests that the spatial extent of droughts tends to expand as they propagate 56 

from meteorological to hydrological events (Brunner and Chartier‐Rescan 2024), highlighting the need to 57 

better consider spatial dimensions in drought assessments. 58 

Spatial coherence, or the tendency of hydrological droughts to occur simultaneously across multiple locations, 59 

is particularly important for risk management and adaptation planning. For example, in Great Britain, climate 60 

change is projected to increase the co-occurrence of droughts across regions, potentially limiting the feasibility 61 

of inter-regional water transfers (Tanguy et al., 2023). In Brazil, measures of spatial connectedness revealed 62 

that certain regions are more prone to compounding droughts, informing the design of risk-pooling systems 63 

(Gesualdo et al 2024). Most studies on spatial coherence have focused on large-scale assessments across entire 64 

countries or continents (e.g. Great Britain in Hannaford et al., 2011; Iberian Peninsula in Lorenzo-Lacruz et 65 

al., 2013; United States in Apurv & Cai., 2020). While valuable for understanding broad drought propagation 66 

mechanisms, such studies offer limited insight for catchment-scale water management, where decisions are 67 

made based on local streamflow conditions. 68 

In this study, we address this knowledge gap by examining how hydrological drought characteristics—69 

specifically duration and severity—vary within catchments using a highly spatialized streamflow dataset. We 70 

hypothesize that severe droughts will exhibit high spatial coherence, affecting the majority (>90%) of the 71 

hydrometric network, whereas mild droughts will be more spatially localized, impacting only limited (<10%) 72 

portions of the catchment. By focusing on catchment-scale spatial variability, our work provides novel insights 73 

into drought dynamics that are directly relevant for local water management and adaptation planning. 74 
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2. Methodology  75 

2.1 Study area 76 

This study was conducted in the southern portion of the province of Quebec, Canada (fig. 1). This region is 77 

predominantly characterized by a warm-summer humid continental climate (Köppen climate classification 78 

Dfb), with areas north of the 50th parallel falling within the subarctic climate zone (Dfc). Across the study area, 79 

mean annual air temperatures vary between -4 and 8 °C, with a marked contrast between the cold (mean = -10 80 

°C in winter) and warm season (mean = 23 °C in summer) (MELCCFP, 2012). Mean annual precipitation 81 

range from 850 to 1450 mm across the study area, with about 25% falling as snow (Lachance-Cloutier et al., 82 

2017). The study targeted 109 individual unregulated catchments, free of flow regulation from dams. 83 

Catchment drainage area ranged from 375 to 21 897 km2 (median = 2165 km2) while elevation ranged from 0 84 

to 1339 meters above sea level (median = 382 meters) (NRCan, 2013). Catchment boundaries and 85 

characteristics were retrieved from the Quebec Hydrometric Network Geobase (MRNF, 2019), a high-86 

resolution hydrometric dataset. 87 

 88 

Figure 1.  Spatial domain of the study area with the 109 catchment boundaries (black lines) extracted from the Quebec 89 

Hydrometric Network Geobase (MRNF, 2019), the stream reaches used in the study (dark green lines) and topography 90 
from the Canadian Digital Elevation Model (NRCan, 2013). In certain catchments, fewer stream reaches were considered 91 
given that catchment portions regulated by dams were not considered in the study. Additionally, only reaches with a 92 
drainage area of 100 km2 or greater were included due to high uncertainty in reconstructed flows for smaller catchments 93 
(MELCCFP, 2018). 94 

 95 
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2.2 Historical Streamflow dataset  96 

Hydrological droughts were identified using a streamflow dataset from the Hydroclimatological Atlas of 97 

Southern Quebec (MELCCFP, 2023) which provides daily flow values from 1970 to 2022 for a dense 98 

hydrological network of stream reaches spanning the region of southern Quebec. This dataset was developed 99 

in two steps: i) hindcasting using the HYDROTEL semi-distributed hydrological model followed by ii) post-100 

processing with streamflow data assimilation using an optimal interpolation method (Lachance-Cloutier et al., 101 

2017). Details of the two steps are provided below, and additional, comprehensive details on model 102 

configuration, calibration procedures, and validation results are provided in Malenfant et al. (2022). This 103 

dataset is used operationally by multiple local government entities and private sector companies. 104 

HYDROTEL is a physically based, semi-distributed hydrological model that defines computational units based 105 

on land use, soil classification and geographical features (Fortin et al., 2001). For the streamflow 106 

reconstruction, daily gridded air temperature and precipitation datasets were created by interpolating 107 

observations from ~300 meteorological stations and used as model forcing inputs. A regional calibration 108 

(Ricard et al 2013) was conducted to optimize average model performance across 70 watersheds, with 109 

validation based on 151 stream gauges. Six model configurations were used to capture uncertainty relative to 110 

process representation (e.g. choice of evapotranspiration model) and parameter estimation (Malenfant et al., 111 

2022). All configurations demonstrated good performance, with median Kling-Gupta Efficiency (KGE’, Kling 112 

et al., 2012) ranging between 0.72 and 0.78 (Malenfant et al., 2022).  113 

HYDROTEL model hindcasts were post-processed using optimal interpolation as a data assimilation method. 114 

Optimal interpolation aims to improve streamflow estimates by accounting for the spatial correlation of errors 115 

(i.e. model deviations from observations) and a detailed description of the method is available in Lachance-116 

Cloutier et al. (2017). Streamflow observations were obtained from 279 stream gauges with minimal influence 117 

from hydraulic structures (e.g. dams) and major lakes. The ratio between the variance of the observation error 118 

and the variance of the model error was set to 0.25, effectively assigning four times greater weight to 119 

observations than to model hindcasts when estimating streamflow at a reach with a nearby stream gauge and 120 

no others in close proximity. Error correlation decreased with distance, reaching zero at 200 km. In a case study 121 

involving 75 stream gauges across southern Quebec, optimal interpolation outperformed other streamflow 122 

reconstruction methods relying solely on observations or model outputs, achieving a KGE’ of 0.86 in a leave-123 

one-out cross-validation (Lachance-Cloutier et al., 2017).  124 

From the streamflow reconstruction dataset, the daily median streamflow values were used to assess 125 

hydrological droughts. Only reaches with a drainage area of 100 km2 or greater were included due to high 126 

uncertainty in modelled streamflow for smaller catchments (MELCCFP, 2018). Catchments with fewer than 127 

10 reaches with available data were excluded, as such limited spatial coverage precludes meaningful 128 

assessment of spatial coherence. In total, the spatial coherence of hydrological droughts was evaluated for 109 129 

catchments, encompassing streamflow estimates for 6718 reaches (fig 1). These catchments had an average 130 

reach length of 8.6 km, with streamflow estimates covering on average 51% of each catchment’s total 131 

hydrometric network length (Table 1).  132 

  133 
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Table 1. Characteristics of catchments and stream reaches used in this study. Available hydrometric network length per 134 
catchment refers to the sum of lengths from stream reaches with available streamflow data in the catchment. Actual 135 
hydrometric network length refers to the sum of lengths of all reaches (with and without streamflow data) in the 136 
catchment. 137 

Characteristics Minimum Mean Median Maximum 

Catchment drainage area (km2) 375 4055 2165 21897 

Number of reaches per catchment 10 63 36 409 

Length of individual stream reaches (km) 0.1 8.6 5.8 96.5 

Available hydrometric network length per catchment 

(km) 
40 536 

233 
3036 

Proportion of available hydrometric network length 

to actual hydrometric network length per catchment 

(%) 

12 51 53 89 

 138 

2.3 Standardized Streamflow Index  139 

Drought events were identified using the Standardized Streamflow Index (SSI) (Svensson et al., 2017; Lahaa 140 

et al., 2017; Barker et al., 2016). The SSI is computed by fitting a statistical probability distribution to monthly 141 

streamflow time series of each catchment, then transforming the monthly streamflow values into quantiles of 142 

a standard normal distribution (mean zero, standard deviation one). Thus, each SSI value represents the number 143 

of standard deviations a monthly streamflow deviates from the long-term average, enabling comparison across 144 

time and space. To ensure an optimal fit, eight candidate distributions (2 parameters: gamma, Gumbel, logistic, 145 

log-normal, normal, Weibull; 3 parameters: Generalized Extreme Value, Tweedie) were fitted to each monthly 146 

time series of each stream reach. The best-fitting distribution was selected using Kuiper’s goodness of fit test 147 

(Kuiper, 1960), which is equally sensitive at the median and the tails of the distribution, making it appropriate 148 

for the analysis of extreme events such as droughts. The Kuiper’s test statistic sums the maximum negative 149 

(D-) and maximum positive (D+) distances between two cumulative distribution functions and the distribution 150 

minimizing this statistic was chosen as best. SSI values were truncated at -5 and 5 to limit uncertainty at 151 

distribution extremes (Svensson et al., 2017). The SSI can be calculated over varying accumulation periods by 152 

applying a backward-looking moving average on the monthly streamflow data before standardization. In this 153 

study, three accumulation periods (1, 3 and 6 months) were considered which are denoted as SSI-1, SSI-3 and 154 

SSI-6. The SCI package for R (Gudmundson & Stagge, 2014) was used to compute the SSI, in combination 155 

with the tweedie package (Dunn, 2005). 156 

2.4 Drought event identification and characteristics  157 

Drought events were identified using the widely applied run theory (Yevjevich, 1967). Specifically, a drought 158 

event was defined as a period when SSI values were continuously negative (SSI < 0) with at least one month 159 

going under a pre-defined threshold (Barker et al., 2016). Threshold values of -1 (moderate), -1.5 (severe) and 160 

-2 (extreme) have been suggested by McKee et al., (1993) and are widely used. A threshold of -1.5 was adopted 161 

to focus on severe and extreme events, although sensitivity to this threshold was assessed.  162 

First, drought events were identified at the reach-scale and three characteristics were computed for each event: 163 

duration (number of months with SSI < 0), severity (sum of SSI values during an event) and occurrence (season 164 

of drought onset). Second, droughts were identified at the catchment scale and concurrent reach-scale events 165 

were grouped into a single event when they overlapped by at least one month. The median values of duration 166 
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and severity across reaches were used to characterize the catchment-scale event. Last, the spatial extent of a 167 

catchment-scale drought was quantified as the ratio of stream length affected by drought at any point during 168 

the event to the total stream length with available data. Droughts were considered as “widespread” when they 169 

affected more than 90 % of the hydrometric network and as “localized” when they affected less than 10% of 170 

the hydrometric network. 171 

2.5 Statistical modelling of spatial coherence 172 

To address the hypothesis that severe droughts are spatially coherent within a catchment, the relationship 173 

between drought characteristics (duration and severity) and their spatial extent was examined. Given the strong 174 

correlation between duration and severity (R2 = 0.87), statistical modelling focused exclusively on severity as 175 

it combines duration and intensity together into a single indicator. A Gaussian linear mixed model with an 176 

identity link function was fitted to model drought severity as a function of the covariates. Fixed covariates were 177 

spatial extent and occurrence (season of drought onset). To manage the dependency of drought events within 178 

individual catchments, catchment identifier was used as random intercept. The year of drought onset (year) 179 

was also used as random intercept to manage hydrological drought severity dependency between catchments. 180 

Drought severity was log-transformed (natural logarithm) to stabilize the variance in the model. The model 181 

was fitted using the glmmTMB package in R (Brooks et al., 2017). 182 

2.6 Sensitivity of drought occurrence to streamflow monitoring density 183 

The sensitivity of drought occurrence (i.e., the number of drought events) to streamflow monitoring density 184 

(i.e., the number of stream reaches used to compute catchment-scale drought events) was assessed within each 185 

catchment. This was done by comparing the number of drought events identified at the catchment scale with 186 

those identified when only a single stream reach was used. For each of the 109 catchments, it was first assumed 187 

that streamflow data were available only at the most downstream reach and the number of severe drought 188 

events (SSI < -1.5) was calculated, following the approach described in Section 2.3. The paired values (full 189 

network vs. single reach) were then used to evaluate the general tendency toward under- or overestimation of 190 

drought occurrence across the study area. To ensure the results were not biased by the use of the most 191 

downstream reach, the analysis was repeated by randomly selecting a single reach (without replacement) within 192 

each catchment, repeated 100 times. For each catchment, the mean and standard deviation of the paired number 193 

of events were calculated to further characterize the variability and tendency of drought occurrence estimates 194 

based on single-reach monitoring. 195 

Further analysis was performed to estimate the number of stream gauges (i.e. number of stream reaches used 196 

to compute catchment-scale drought events) require to detect all drought events within a catchment. For each 197 

catchment, an increasing number of stream reaches (from 1 up to the total number of reaches) was randomly 198 

sampled and the number of severe drought events was computed at each step. The drought detection rate was 199 

defined as the ratio of drought events detected using a reduced number of reaches to the total number of events 200 

detected using all reaches. These detection rates were then analyzed in relation to monitoring density, expressed 201 

as the number of reaches per 100 km² of drainage area. To account for the potential influence of catchment 202 

size on drought variability, the analysis was conducted separately for meso-scale catchments (drainage area < 203 

2500 km²) and large-scale catchments (drainage area > 2500 km²). 204 
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3. Results  205 

All results presented below correspond to the 3-month accumulation period, unless otherwise stated, as 206 

analyses conducted for the 1- and 6-month periods yielded similar results and are only presented in the 207 

appendix A (Figures A1-A4, Table A1). 208 

3.1 Drought occurrence, duration, severity at the catchment scale 209 

Over the 52-year study period, catchments experienced an average of 26 drought events, corresponding on 210 

average to one event every two years (Table 2). Droughts had a mean duration of 8 months and a mean 211 

cumulative severity of -8.1, indicating that streamflow was on average one standard deviation below the long-212 

term mean for each month of a drought event. However, longer and more severe events also occurred, with 213 

durations of up to 61 months and severity reaching -75. As expected, drought duration and severity were 214 

strongly correlated (R² = 0.87), reflecting the accumulation of deficits over longer events. On average, 61 % 215 

of a catchment’s hydrometric network experienced droughts conditions during a given event. Overall, drought 216 

characteristics were relatively consistent across seasons: duration, severity, and spatial extent were comparable 217 

in spring, summer, and fall. In winter, droughts were slightly less severe and with a reduced spatial extent, 218 

though the differences were modest. 219 

Table 2. Annual and seasonal characteristics of catchment-scale hydrological drought events. Seasons are defined as: 220 
winter = December/January/February, spring = March/April/May, summer = June/July/August, fall = 221 
September/October/November. CV corresponds to the coefficient of variation.  222 

Occurrence 

Number of droughts 

per catchment 
Duration (months) Severity (-) 

Spatial extent (% of stream 

length in drought) 

Median Mean 
CV 

(%) 
Median Mean 

CV 

(%) 
Median Mean 

CV 

(%) 
Median Mean 

CV  

(%) 
All seasons 27 26 19 7 8 69 - 6.6 - 8.1 74 68 61 60 

Winter 5 5 40 6 7 78 - 5.3 - 7.0 81 58 57 65 

Spring 9 9 35 6 8 68 - 6.6 - 8.1 70 75 63 59 

Summer 7 7 34 7 8 68 - 7.1 - 8.3 73 69 62 59 

Fall 6 6 41 7 9 65 - 7.0 - 8.7 72 66 60 61 

 223 

3.2 Spatial extent of drought varies widely across events. 224 

On average, 61% of the hydrometric network length experienced severe drought during a given event, although 225 

substantial variability was observed (CV = 60 %, Table 2).. Overall, 37% of events were widespread (affecting 226 

> 90 % of the hydrometric network), while 14 % of events were localized (affecting < 10% of the hydrometric 227 

network) (fig. 2b). 228 

The threshold used to define drought events (i.e. one month with SSI < -1.5) had a strong influence on their 229 

spatial extent, with spatial coherence decreasing as the threshold became more extreme (more negative). For 230 

example, applying a moderate threshold (SSI < -1) resulted in strong spatial coherence, with 59 % of events 231 

classified as widespread across the catchment (fig. 2a). In contrast, using an extreme threshold (SSI < -2) 232 

reduced spatial extent and coherence (fig. 2c), producing a bimodal distribution of spatial coverage. One cluster 233 

of events was widespread, although this represented only 14 % of all events, while a larger cluster of events 234 
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(29 %) was localized (fig. 2c). This pattern of reduced spatial coherence with more extreme thresholds was 235 

consistent across all seasons (fig. 2). 236 

During a given drought event, stream reaches not classified as experiencing drought typically had SSI values 237 

well above the selected threshold, with some even showing above-average streamflow, while other parts of the 238 

catchment were under drought conditions (fig. 3). For example, when using the severe threshold (SSI < -1.5), 239 

38 % of reaches had SSI values greater than or equal to zero during drought events (fig. 3). More broadly, the 240 

majority (80 % to 92 % depending on the threshold) of reaches not experienced drought conditions during a 241 

catchment-scale event had SSI values at least 0.5 units above the threshold (fig. 3), indicating a clear distinction 242 

from drought conditions. This pattern was consistent across all seasons.  243 

 244 
Figure 2. Binned relative frequencies (displayed as both bars and overlaid lines) of the spatial extent of drought events 245 
identified with three different thresholds: moderate (SSI < -1), severe (SSI < -1.5) and extreme (SSI < -2). Spatial extent 246 
refers to the proportion of the hydrometric network length experiencing drought for a given event. Spatial extent was 247 
binned in 11 bins of 0.1 (from 0 to 1) to calculate the relative frequencies of events with different spatial extents. Grey 248 
bars represent the entire study area and dotted coloured line refer to the four seasons of drought occurrence (winter = 249 
December/January/February, spring = March/April/May, summer = June/July/August, fall = 250 
September/October/November). 251 

 252 
Figure 3. Binned relative frequencies (displayed as both bars and overlaid lines) of the Standardized Streamflow Index 253 
(SSI) for reaches that were not experiencing drought during catchment-scale drought events. Drought events were 254 
identified with the severe threshold (SSI < -1.5). Indices (SSI) were binned in 14 bins of 0.5 (from -1.5 to 5.0) to calculate 255 
the relative frequencies of reaches with different SSI values. Grey bars represent the entire study area and dotted coloured 256 
line refer to the four seasons of drought occurrence (winter = December/January/February, spring = March/April/May, 257 
summer = June/July/August, fall = September/October/November). 258 
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3.3 Catchment-wide hydrological droughts are, on average, twice as severe as localized events. 259 

Results of the linear mixed model showed that the spatial extent of drought events had a significant influence 260 

on their severity (Table 3, Figures B1-B3 of appendix B for model validation). Widespread drought events 261 

affecting a larger proportion of the hydrometric network tended to be more severe (fig. 4). On average, 262 

widespread events (spatial extent > 90%) were nearly twice (1.9 times) as severe as localized events (spatial 263 

extent < 10%). Overall, a one-unit increase in spatial extent corresponded to a 2.2-fold (e0.782) increase in 264 

drought severity. Despite this trend, considerable variability remained, with some highly severe events 265 

(severity > 10) occurring even when less than 25% of the catchment was affected (fig. 4). Droughts that began 266 

in winter were significantly less severe, while no significant differences in severity were observed among 267 

events initiated in spring, summer, or fall (fig. 4, table 3). These patterns held across different thresholds used 268 

to define drought events (SSI < -1, -1.5, or -2), although model intercepts increased and slopes decreased with 269 

more extreme thresholds (e.g., SSI < -2) (Tables C1-C2, appendix C). The results were also robust to the length 270 

of the SSI accumulation period (1, 3, or 6 months; Tables C3-C4, appendix C). 271 

Table 3. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the linear 272 
mixed model assessing the influence of spatial extent and occurrence on the severity of drought events. Estimated values 273 
of variance (σ) for σcatchmentID and σyear are 0.018 and 0.031, respectively. Estimated R2 value is 0.37 (n = 2864). 274 

 Estimate 
95% confidence 

interval 

Standard 

error 
z-value p-value 

(Intercept) 1.305  [1.228, 1.384] 0.040 32.78 < 0.001 

Spatial extent 0.782 [0.729, 0.835] 0.027 28.86 < 0.001 

Occurrence: Fall 0.187 [0.122, 0.251] 0.033 5.70 < 0.001 

Occurrence: Spring 0.118 [0.056, 0.180] 0.032 3.71 < 0.001 

Occurrence: Summer 0.172 [0.109, 0.234] 0.032 5.36 < 0.001 

 275 

  276 
Figure 4. Relationship between the spatial extent of droughts (proportion of the hydrometric network experiencing 277 
drought for a given event) and their severity (sum of absolute SSI values during event) across seasons (winter = 278 
December/January/February, spring = March/April/May, summer = June/July/August, fall = 279 
September/October/November). The severity is represented in log (natural logarithm) scale on the Y axis (e1 ~ 3, e2 ~ 280 
10, e3 ~ 30). 281 
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3.4 Relying on a single stream gauge may lead to undetected droughts. 282 

The number of stream reaches experiencing drought within a catchment varied considerably between events 283 

(fig. 2), which has important implications when assessing catchment-wide drought conditions with a single 284 

stream gauge. To evaluate the potential for underdetection, streamflow data were assumed only available at 285 

the most downstream reach of each of the 109 catchments and the number of severe drought events (SSI < -286 

1.5) was computed accordingly (fig. 5a). This approach systematically underestimated the number of events 287 

(fig. 3), with an average of 9 events (min = 1, max = 27) per catchment missed, representing an average of 37 288 

% (min = 3 %, max = 78 %) of events going undetected. 289 

On average, two events per catchment (179 events in total) were only detected in a single reach and these 290 

events were typically mild, with a median severity of -4.8 (max = -1.5, min = -19.0). Even when excluding 291 

these single-reach events, an average of 7 events per catchment remained undetected, corresponding to 30 % 292 

(min = 0 %, max = 76 %) of events on average. Using only the most downstream reach to identify drought 293 

events led to a decrease in median drought severity from -6.6 (with all reaches) to -7.4 and a decrease in 294 

maximum severity from -69.2 to -75.0, suggesting that although undetected events were often mild, some were 295 

still highly severe. While fewer drought events were detected at the most downstream reach, the majority of 296 

events (60%) detected corresponded to widespread events. 297 

To assess whether this underdetection was specific to the most downstream reach, a resampling analysis was 298 

performed by randomly selecting a single reach 100 times for each catchment (fig. 5b). Across all resampling 299 

runs, the number of drought events was consistently underestimated compared to results obtained using the 300 

full hydrometric network. On average, 35 % (min = 0%, max = 84%) of events went undetected, corresponding 301 

to an average of 9 (min = 0, max = 28) missed events per catchment. Under this scenario, median severity 302 

again decreased to -7.4 (vs. -6.6 for all reaches) and maximum severity declined further to -85.3 (vs. -75.0), 303 

reinforcing the conclusion that reliance on a single monitoring location can lead to substantial underestimation 304 

of drought frequency and severity. 305 

 306 
Figure 5. Relationship between the number of drought events identified per catchment when using all the available 307 
reaches (X-axis) and when using (a) only the most downstream reach of a catchment or (b) when using a randomly 308 
selected reach. In (b), the points and the dotted lines represent the mean and standard deviation of the number of drought 309 
events identified from each sampling. The color of the data points represents the catchment drainage area. 310 
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By progressively increasing the number of randomly sampled stream reaches per catchment, the theoretical 311 

number of stream gauges required to detect all drought events was estimated for each catchment (fig. 6). The 312 

drought detection rate, defined as the proportion of detected drought events, increased exponentially with 313 

monitoring coverage eventually reaching a plateau when all events were captured. In meso-scale catchments, 314 

most events were detected when at least 1 reach per 100 km² of drainage area was included, whereas large-315 

scale catchments required less extensive coverage, with fewer than 0.3 reaches per 100 km² sufficient to detect 316 

most events. Reducing this monitoring density by half led to an average of 20 % of events going undetected in 317 

large-scale catchments and 15 % in meso-scale catchments. When monitoring density was further reduced to 318 

10 %, approximately 40 % of drought events were missed on average, regardless of catchment size. 319 

 320 
Figure 6. Proportion of catchment-scale drought events detected when using an increasing number of randomly selected 321 
reaches. The X-axis (drought detection rate) represents the ratio of drought events detected using a reduced number of 322 
reaches to the total number of events detected using all reaches. The Y-axis represents the number of reaches per 100 323 
km2 of catchment drainage area. The color of boxplots and points represents the total drainage area of catchments in km2. 324 

4. Discussion 325 

At the continental scale, atmospheric circulation patterns have been shown to explain the simultaneous 326 

occurrence of hydrological droughts across catchments (Hannaford et al., 2011). Within the study area, 327 

streamflow variability has been linked to large-scale climate drivers such as the North Atlantic Oscillation 328 

(NAO) and the Pacific North American (PNA) pattern (Anctil & Coulibaly 2004; Biron et al., 2014). The 329 

present study underscores the influence of smaller-scale processes that may interact with these broad 330 

atmospheric patterns, as results indicate that hydrological droughts are not always spatially coherent at the 331 

catchment scale. While many events (37%) affected more than 90 % of the hydrometric network within a 332 

catchment, a notable fraction (14%) remained highly localized, impacting less than 10 % of the hydrometric 333 

network (fig. 2). 334 

Overall, the results support the hypothesis that drought severity is positively associated with spatial coherence, 335 

with more severe events tending to be more widespread (table 3). Nonetheless, there was still substantial 336 

variability in this relationship, and some severe droughts were highly localized. For example, events with 337 

severity values lower than the 10th percentile were found to affect less than 10% of a catchment’s hydrometric 338 

network (fig. 4). 339 
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4.1 Strong coupling between meteorological and hydrological droughts may limit spatial coherence in 340 

cold, humid catchments 341 

Previous studies have shown that in cold and humid catchments of the eastern United States, hydrological 342 

droughts are typically short in duration and closely aligned with meteorological conditions. For example, 343 

hydrological droughts in this region are often limited to single year events (Patterson et al., 2013), in contrast 344 

to catchments in drier climates, where multi-year droughts are more common due to greater hydrological 345 

memory (de Lavenne et al., 2022). Consistent with these results, this study found that the median duration of 346 

hydrological drought events remained below 12 months (table 2). Furthermore, in the eastern United States, 347 

meteorological and hydrological droughts tend to be of similar duration, with the onset and recovery of 348 

hydrological droughts largely controlled by meteorological droughts (Apurv & Cai, 2020). 349 

This strong coupling suggests that spatial variability in precipitation may contribute to within-catchment 350 

variability in hydrological drought occurrence. For example, localized rainfall events may alleviate drought 351 

conditions in certain stream reaches while other parts of the catchment remain affected, potentially explaining 352 

the observed lack of spatial coherence in some drought events. Given the well-established role of climate in 353 

governing hydrological drought propagation (Apurv et al., 2017; Van Loon et al., 2014), further research is 354 

needed to evaluate how within-catchment spatial variability in drought occurrence differs across climate zones. 355 

For example, spatial coherence of hydrological droughts may be greater in dry regions compared to the patterns 356 

observed in this study in humid, snowmelt-dominated catchments. 357 

4.2 The influence of catchment properties on drought spatial coherence remains unclear. 358 

This study revealed substantial spatial variability in drought occurrence within catchments. While 359 

meteorological factors may contribute to this variability, catchment properties have also been shown to 360 

influence the propagation of meteorological droughts into hydrological droughts. Properties of groundwater 361 

systems have been linked to the development and persistence of hydrological droughts (Van Lanen et al., 362 

2013). For example, physical characteristics of bedrock, such as lithostratigraphic classes, have been found to 363 

explain spatial variability in the baseflow index within the Thames River catchment (16 100 km2, Bloomfield 364 

et al., 2009). Similarly, properties of surface water systems can also influence drought dynamics. In the 365 

Savannah River catchment (27 171 km2, southeastern United States), stream order was a strong predictor of 366 

hydrological drought duration (Veettil & Mishra 2020). In contrast, catchment area was not significantly 367 

associated with drought duration or severity in the United Kingdom, although it did corelate with the number 368 

of events (Barker et al., 2016). Catchment storage capacity has also been shown to influence drought 369 

characteristics in cross-catchment studies (Konapala and Mishra 2020, Van Loon and Laaha 2015) and 370 

sensitivity analyses (Van Lanen et al 2013) and this property may also affect within-catchment variability in 371 

hydrological drought. 372 

These findings highlight the need for further research to better understand the drivers of within-catchment 373 

variability in hydrological drought occurrence. Improved understanding of local catchment properties that 374 

buffer or exacerbate hydrological droughts could improve water resources management and drought 375 

forecasting. This need is underscored by our finding that stream reaches not classified as under drought during 376 

catchment-scale events were often well above the threshold used to define drought conditions, and even above 377 

the historical mean in some cases (fig. 3). This suggests that local conditions may play a critical role in 378 

preventing drought occurrence at specific locations within a catchment. 379 

 380 
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4.3 Single-station data underestimate drought occurrence but accurately represent catchment-scale 381 

duration and severity. 382 

Numerous studies have used data from stream gauges to investigate the propagation of meteorological droughts 383 

into hydrological droughts across temperate (Barker et al., 2016; Bruno et al., 2022), tropical (Bevacqua et al., 384 

2021; Bhardwaj et al., 2020) and semi-arid (Meresa et al., 2023; Yildirim et al., 2022) climates. These studies 385 

commonly rely on a single stream gauge to characterize hydrological droughts within meso-scale (102 – 103 386 

km2) or large-scale (104 – 107 km2) catchments, often failing to capture within-catchment variability. Moreover, 387 

large rivers are disproportionately represented in global hydrometric networks (Krabbenhoft et al., 2022). In 388 

contrast, streamflow observations in headwater catchments remain sparse, limiting the ability to assess drought 389 

conditions in these smaller, yet widespread and hydrologically important systems. 390 

Findings from this study suggest that accurately capturing all hydrological drought events requires a 391 

substantially denser monitoring network than is typically implemented. Specifically, meso-scale catchments 392 

(< 2500 km²) would require approximately 1 stream gauge per 100 km², and large-scale catchments (> 2500 393 

km²) about 0.3 stations per 100 km². For example, detecting all events in a 1 000 km² catchment would require 394 

roughly 10 stations, while a 10 000 km² catchment would require 30. Achieving a 90 % detection rate would 395 

still necessitate ~6 and ~21 stations, respectively, in catchments of these sizes. In contrast, relying on a single 396 

gauging station would result in an average detection rate of only 60% in a 1 000 km² catchment and even less 397 

in larger ones, reinforcing concerns about underdetection. While this analysis offers a high-level estimate of 398 

the monitoring intensity required to detect hydrological droughts, it is likely that more optimal strategies could 399 

be implemented (Mishra & Coulibaly, 2009). Given the growing importance of hydrometric networks in 400 

monitoring droughts of increasing frequency and severity under climate change, these results highlight the 401 

need to explicitly incorporate drought detection objectives into network design. Moreover, hydrological 402 

drought assessments should increasingly aim to integrate multiple stream gauges to better capture within-403 

catchment variability. Rather than selecting entirely independent catchments, using nested catchments may 404 

offer an effective strategy for monitoring hydrological droughts in cold, humid regions. 405 

Existing hydrometric networks have played a key role in supporting the development of forecasting and early 406 

warning systems for droughts (Guo et al., 2020). However, these systems may be biased in cold, humid regions 407 

where our results indicate that ~30 % of events may go undetected when relying on a single stream gauge to 408 

characterize hydrological droughts (fig. 5a). This underdetection was consistent regardless of the location of 409 

the reach location, with a comparable proportion of missed events (35 %, fig. 5b) when reach location was 410 

randomly selected within catchments rather than limited to the most downstream reach. While undetected 411 

events were typically mild or spatially localized, some were nevertheless severe, underscoring the limitations 412 

of using sparse monitoring to capture the full extent of drought conditions. 413 

Despite limitations in capturing all drought events in a catchment with a single stream gauge, our analysis 414 

showed that event characteristics such as duration and severity were generally consistent across a catchment. 415 

Specifically, the coefficient of variation in drought severity among reaches within the same catchment was 416 

relatively low (mean = 16%), indicating strong spatial coherence. As such, while a single station may fail to 417 

detect some events, it can still provide a reliable estimate of the severity and duration of those that are detected.  418 

4.4 Limitations 419 

Hydrological drought characterization relied on a robust streamflow reconstruction dataset that nonetheless 420 

contains incorporates uncertainty from observations and model hindcasts. The semi-distributed model was 421 

calibrated with the KGE’ as an objective function which is well suited for capturing variability in highly 422 

seasonal flow regimes such as those found in the study area (Gupta et al., 2009). However, KGE′ is less 423 
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sensitive to extreme flow values, and may therefore underrepresent flow extremes. The model was calibrated 424 

using a regional approach which may reduce performance at the local scale. However, the assimilation of 425 

observations into the final streamflow reconstruction dataset helps to mitigate these limitations. Uncertainty in 426 

the streamflow reconstruction dataset was thoroughly assessed, with key sources including the density of 427 

meteorological and hydrological stations, catchment size and the model’s reliance on air temperature and 428 

precipitation as input variables (Lachance-Cloutier et al., 2017; Martel et al., 2023). While errors in interpolated 429 

data could influence the spatial coherence of hydrological droughts at the catchment scale, this effect is likely 430 

limited, as results were consistent across time scales, drought thresholds, and catchments. 431 

The use of streamflow reconstruction allowed for extensive spatial coverage across the study area, enabling a 432 

comprehensive assessment of hydrological droughts. Importantly, the dataset provided streamflow time series 433 

homogenized both in length (52 years) and period (1970–2022), thereby avoiding biases commonly associated 434 

with inconsistencies in data availability when computing standardized indices (Hong et al., 2015; Laimighofer 435 

& Laaha 2022). It also minimized uncertainty linked to methodological changes in streamflow measurement 436 

over time (Hamilton & Moore 2012). Given the continued scarcity of observed streamflow data, particularly 437 

in ungauged or headwater regions, streamflow reconstruction techniques appear a valuable approach to 438 

improve understanding of within-catchment variability. Accordingly, streamflow reconstruction datasets are 439 

increasingly being used to assess hydrological droughts (Smith et al 2019, Laraib et al 2024). 440 

5. Conclusion 441 

Many hydrometric networks have experience a steady decline over recent decades (Spence et al 2007, Haile et 442 

al 2022, Vörösmarty et al 2001) and this study stressed the importance of monitoring streamflow at multiple 443 

locations to accurately assess hydrological droughts in cold, humid regions. Similar to recent studies on flash 444 

droughts which highlighted that drought events can be concentrated in time (Christian et al., 2019), this study 445 

demonstrated that hydrological droughts can also be concentrated in space. For example, 14 % of hydrological 446 

droughts impacted less than 10% of the catchment’s hydrometric network. These findings emphasize the need 447 

for more work at the sub-catchment scale to better capture spatial variability in drought conditions when 448 

managing surface waters. While the spatial extent of droughts is commonly considered in the assessment of 449 

meteorological (Sharma & Mujumdar 2017), soil moisture (Sheffield et al., 2009) and groundwater (Tallaksen 450 

et al., 2009) droughts,  results  suggest that this dimension deserves equal attention in the evaluation of 451 

streamflow droughts. 452 
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Appendix A - Hydrological drought assessment for additional accumulation periods. 660 

SSI-1  661 

Figure A1. Binned relative frequencies (displayed as both bars and overlaid lines) of the spatial extent of drought events 662 
identified with three different thresholds: moderate (SSI < -1), severe (SSI < -1.5) and extreme (SSI < -2). Results are 663 
shown for an accumulation period of one month (SSI-1). Spatial extent refers to the proportion of the stream network 664 
length experiencing drought for a given event. Spatial extent was binned in 11 bins of 0.1 (from 0 to 1) to calculate the 665 
relative frequencies of events with different spatial extents. Grey bars represent the entire study area and dotted coloured 666 
line refer to the four seasons of drought occurrence (winter = December/January/February, spring = March/April/May, 667 
summer = June/July/August, fall = September/October/November). 668 

 669 

Figure A2. Binned relative frequencies (displayed as both bars and overlaid lines) of the Standardized Streamflow Index 670 
(SSI) for reaches that were not in drought during drought events occurring in the catchment. Results are shown for an 671 
accumulation period of one month (SSI-1). Drought events were identified with the severe threshold (SSI < -1.5). Indices 672 
(SSI) were binned in 14 bins of 0.5 (from -1.5 to 5.0) to calculate the relative frequencies of reaches with different SSI 673 
values. Grey bars represent the entire study area and dotted coloured line refer to the four seasons of drought occurrence 674 
(winter = December/January/February, spring = March/April/May, summer = June/July/August, fall = 675 
September/October/November). 676 

  677 
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SSI-6  678 

Figure A3. Binned relative frequencies (displayed as both bars and overlaid lines) of the spatial extent of drought events 679 
identified with three different thresholds: moderate (SSI < -1), severe (SSI < -1.5) and extreme (SSI < -2). Results are 680 
shown for an accumulation period of six months (SSI-6). Spatial extent refers to the proportion of the stream network 681 
length experiencing drought for a given event. Spatial extent was binned in 11 bins of 0.1 (from 0 to 1) to calculate the 682 
relative frequencies of events with different spatial extents. Grey bars represent the entire study area and dotted coloured 683 
line refer to the four seasons of drought occurrence (winter = December/January/February, spring = March/April/May, 684 
summer = June/July/August, fall = September/October/November). 685 

 686 

Figure A4. Binned relative frequencies (displayed as both bars and overlaid lines) of the Standardized Streamflow Index 687 
(SSI) for reaches that were not in drought during drought events occurring in the catchment. Results are shown for an 688 
accumulation period of six months (SSI-6). Drought events were identified with the severe threshold (SSI < -1.5). Indices 689 
(SSI) were binned in 14 bins of 0.5 (from -1.5 to 5.0) to calculate the relative frequencies of reaches with different SSI 690 
values. Grey bars represent the entire study area and dotted coloured line refer to the four seasons of drought occurrence 691 
(winter = December/January/February, spring = March/April/May, summer = June/July/August, fall = 692 
September/October/November). 693 
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Table A1. Annual and seasonal characteristics of catchment-scale hydrological drought events per accumulation period 695 
(1, 3, 6 months) and season (winter = December/January/February, spring = March/April/May, summer = 696 
June/July/August, fall = September/October/December). CV corresponds to the coefficient of variation. 697 

Occurrence 

Accumulation 

period 

(months) 

Number of droughts 

per catchment 
Duration (months) Severity (-) 

Spatial extent (% of stream 

length in drought) 

Median Mean 
CV 

(%) 
Median Mean 

CV 

(%) 
Median Mean 

CV 

(%) 
Median Mean 

CV  

(%) 

All seasons 

1 37 37 23 4 5 69 - 4.5 - 5.5 71 59 56 66 

3 27 26 19 7 8 69 - 6.6 - 8.1 74 68 61 60 

6 16 16 20 11 13 73 - 10.3 - 13.4 79 80 65 56 

Winter 

1 5 6 50 4 4 69 - 3.6 - 4.3 68 48 50 71 

3 5 5 40 6 7 78 - 5.3 - 7.0 81 58 57 65 

6 3 3 54 10 12 78 - 8.6 - 10.7 84 73 62 59 

Spring 

1 12 12 32 4 5 77 - 4.2 - 5.4 77 67 59 64 

3 9 9 35 6 8 68 - 6.6 - 8.1 70 75 63 59 

6 6 7 33 11 13 73 - 11.0 - 13.9 74 82 65 56 

Summer 

1 12 12 29 5 6 65 - 5.3 - 6.3 69 62 57 65 

3 7 7 34 7 8 68 - 7.1 - 8.3 73 69 62 59 

6 2 3 54 10 15 76 - 9.7 - 14.6 86 63 59 63 

Fall 

1 8 8 38 5 5 57 - 5.1 - 5.3 58 55 55  68 

3 6 6 41 7 9 65 - 7.0 - 8.7 72 66 60 61 

6 4 4 50 11 13 67 - 10.8 - 13.6 77 85 68 53 

 698 

699 
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Appendix B - Validation of the linear mixed model 700 

Figure B1. Normal Q-Q plot of the linear mixed model presented in Table 3. 701 

 702 

Figure B2. Histogram of residuals of the linear mixed model presented in Table 3.  703 
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Figure B3. Residual analysis plot of the linear mixed model presented in Table 3.  704 
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Appendix C - Linear mixed models results 705 

Table C1. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the 706 
linear mixed model for an accumulation period of 3 months (SSI-3), with a moderate threshold (SSI < -1). 707 
Estimated values of variance (σ) for σcatchmentID and σyear are 0.018 and 0.036, respectively. Estimated R2 value is 0.42. 708 
(n = 4124) 709 

 Estimate 
95% confidence 

interval 
Std. error z-value p-value 

(Intercept) 0.522 [0.438, 0.605] 0.042 12.28 < 0.001 

Spatial extent 1.229 [1.173, 1.285] 0.028 43.14 < 0.001 

Occurrence: Fall 0.185 [0.124, 0.245] 0.031 5.97 < 0.001 

Occurrence: Spring 0.109 [0.052, 0.167] 0.029 3.74 < 0.001 

Occurrence: Summer 0.214 [0.173, 0.274] 0.031 6.93 < 0.001 

 710 

Table C2. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the 711 
linear mixed model for an accumulation period of 3 months (SSI-3), with an extreme threshold (SSI < -2). 712 
Estimated values of variance (σ) for σcatchmentID and σyear are 0.010 and 0.039, respectively. Estimated R2 value is 0.32. 713 
(n = 1707) 714 

 Estimate 
95% confidence 

interval 
Std. error z-value p-value 

(Intercept) 1.825 [1.739, 1.913] 0.045 41.00 < 0.001 

Spatial extent 0.523 [0.457, 0.590] 0.034 15.41 < 0.001 

Occurrence: Fall 0.193 [0.144, 0.271] 0.040 4.83 < 0.001 

Occurrence: Spring 0.159 [0.081, 0.236] 0.040 4.00 < 0.001 

Occurrence: Summer 0.167 [0.091, 0.243] 0.039 4.30 < 0.001 

 715 

Table C3. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the 716 
linear mixed model an accumulation period of 1 month (SSI-1), with a severe threshold (SSI < -1.5). Estimated 717 
values of variance (σ) for σcatchmentID and σyear are 0.031 and 0.026, respectively. Estimated R2 value is 0.40. (n = 4061) 718 

 Estimate 
95% confidence 

interval 
Std. error z-value p-value 

(Intercept) 0.919 [0.848, 0.990] 0.036 25.39 < 0.001 

Spatial extent 0.764 [0.722, 0.807] 0.022 35.23 < 0.001 

Occurrence: Fall 0.223 [0.171, 0.276] 0.027 8.31 < 0.001 

Occurrence: Spring 0.131 [0.080, 0.182] 0.026 5.04 < 0.001 

Occurrence: Summer 0.278 [0.230, 0.326] 0.025 11.29 < 0.001 

  719 

https://doi.org/10.5194/egusphere-2025-5783
Preprint. Discussion started: 22 January 2026
c© Author(s) 2026. CC BY 4.0 License.



28 

 

Table C4. Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the 720 
linear mixed model for an accumulation period of 6 months (SSI-6), with a severe threshold (SSI < -1.5). 721 
Estimated values of variance (σ) for σcatchmentID and σyear are 0.013 and 0.106, respectively. Estimated R2 value is 0.48. 722 
(n = 1761) 723 

 Estimate 
95% confidence 

interval 
Std. error z-value p-value 

(Intercept) 1.697 [1.578, 1.816] 0.061 28.01 < 0.001 

Spatial extent 0.908 [0.836, 0.980] 0.037 24.68 < 0.001 

Occurrence: Fall 0.089 [0.008, 0.168] 0.041 2.16 0.0307 

Occurrence: Spring 0.078 [-0.0003, 0.155] 0.040 1.96 0.0501 

Occurrence: Summer 0.096 [0.002, 0.190] 0.048 2.00 0.0454 

 724 

  725 

https://doi.org/10.5194/egusphere-2025-5783
Preprint. Discussion started: 22 January 2026
c© Author(s) 2026. CC BY 4.0 License.



29 

 

Appendix D: Visualization of the two-step process for identifying drought events 726 

 727 

Figure D1. Two-step process for identifying drought events at a) the reach scale (adapted from Zhang et al., 2022) and 728 
b) the catchment scale. Panel (a) illustrates how drought events are identified from a time series of the Standardized 729 
Streamflow Index (SSI) for reach #1 and characterized by their duration and severity. Panel (b) shows how reach-scale 730 
events are aggregated to define catchment-scale events. When multiple events from the same reach were grouped into a 731 
single catchment-scale event (event #2, reach 4), their duration and severity were summed. The overall characteristics of 732 
each catchment-scale event were calculated as the median values of the corresponding reach-scale events. 733 

 734 

 735 
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