

1 Quantifying within-catchment spatial variability of hydrological droughts in 2 cold, humid regions

3 Gabriel Bastien-Beaudet¹, Marc-André Bourgault², Audrey Maheu¹

4

5 ¹ Institut des sciences de la forêt tempérée, Université du Québec en Outaouais, Québec, Canada

6 ² Département de géographie, Université Laval, Québec, Canada

7 Corresponding author: Gabriel Bastien-Beaudet (gabriel.bastien-beaudet@uqo.ca)

8 Abstract

9 Although catchments serve as the primary unit for water resources management, the spatial distribution of
10 hydrological droughts within catchments remains poorly documented. Many drought assessments rely on
11 sparse gauge networks and presume spatial coherence across the hydrometric network, an assumption that is
12 rarely verified. This study provides one of the first large-scale assessment of within-catchment spatial
13 variability in hydrological droughts, focusing on cold, humid regions. Using 52-year streamflow timeseries of
14 thousands of stream reaches spread across 109 catchments, we examined the duration, severity, and spatial
15 extent of droughts identified with the Standardized Streamflow Index (SSI). Hydrological droughts showed
16 greater within-catchment spatial variability than previously documented: 37% of events were widespread
17 (>90% of the catchment), while 14% were highly localized (<10% of the network). As a result, a single
18 downstream stream gauge would have missed about 30% of drought events within a given catchment, whereas
19 increasing monitoring density to one gauge per 100 km² raised detection rates to nearly 100% in most
20 catchments. The spatial extent of droughts varied significantly with their severity: events spanning over 90%
21 of the network were, on average, twice as severe as those affecting less than 10%. Our findings show that
22 hydrological droughts can be highly variable across hydrometric networks in cold, humid regions, highlighting
23 the importance of integrating spatial variability into drought management and investigating its controlling
24 factors.

25 **Keywords:** streamflow drought, within-catchment variability, spatial coherence, spatial extent, drought 32
26 monitoring, water resources

27 Highlights:

- 28 • 37% of droughts were widespread, affecting >90% of the catchment, while 14% were highly localized,
29 impacting <10% of the network.
- 30 • Catchment-wide hydrological droughts are, on average, twice as severe as localized events.
- 31 • Using only a stream gauge may fail to detect ~30% of droughts, misrepresenting conditions across the
32 catchment.
- 33

34 1. Introduction

35 Climate change is intensifying the global water cycle (Allan *et al.*, 2020) and is projected to increase the
36 severity of hydrological droughts (Prudhomme *et al.*, 2014). Hydrological droughts occur when streamflow
37 falls largely below the long-term average in streams or rivers (Van Loon, 2015). When coinciding with low
38 flow periods, such events can disrupt public water supply (Wang *et al* 2022), impair river navigation, cause
39 economic losses in the recreation industry (Wlostowski *et al* 2022) and trigger cascading impacts on water
40 quality (Mosley 2015) and ecosystem health (Bond *et al* 2008). Even outside low-flow periods, hydrological
41 droughts can compromise reservoir reliability (Simeone *et al* 2024) and affect freshwater and riparian
42 organisms whose life cycles are closely tied to the natural flow regime (Lytle and Poff 2004). In regions relying
43 on surface waters for irrigation, hydrological droughts can threaten reservoir storage and food production
44 systems (Lopez-Nicolas *et al* 2017, Pourmahmoud *et al* 2023). Hydrological droughts also pose risks to power
45 generation, limiting hydropower and thermoelectric production due to reduced water availability for cooling
46 (Van Vliet *et al* 2016, Wan *et al* 2021). Given these widespread and diverse impacts, comprehensive, year-
47 round assessments of hydrological droughts, both within and outside of low-flow periods, are essential for
48 evaluating seasonal water availability and guiding water resources management.

49 Effective drought management requires understanding both the temporal and spatial dynamics of
50 meteorological to hydrological drought propagation. While time lags between meteorological and hydrological
51 droughts have been extensively examined, enabling earlier anticipation of low flows and more timely
52 mitigation, the spatial variability of drought impacts across hydrometric networks remains far less studied. For
53 example, several studies have investigated how meteorological droughts evolve into hydrological droughts,
54 highlighting differences in propagation dynamics between humid and semi-arid climates (Wu *et al* 2024, Zhou
55 *et al* 2024, Bevacqua *et al* 2021). However, few propagation studies explicitly address spatial variability.
56 Evidence from Central Europe suggests that the spatial extent of droughts tends to expand as they propagate
57 from meteorological to hydrological events (Brunner and Chartier-Rescan 2024), highlighting the need to
58 better consider spatial dimensions in drought assessments.

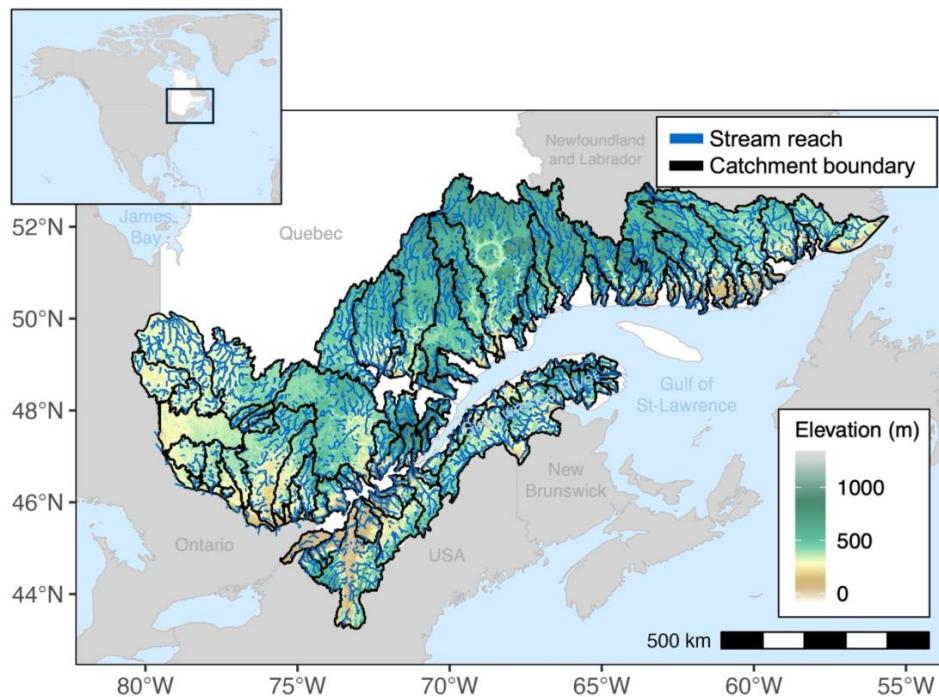
59 Spatial coherence, or the tendency of hydrological droughts to occur simultaneously across multiple locations,
60 is particularly important for risk management and adaptation planning. For example, in Great Britain, climate
61 change is projected to increase the co-occurrence of droughts across regions, potentially limiting the feasibility
62 of inter-regional water transfers (Tanguy *et al.*, 2023). In Brazil, measures of spatial connectedness revealed
63 that certain regions are more prone to compounding droughts, informing the design of risk-pooling systems
64 (Gesualdo *et al* 2024). Most studies on spatial coherence have focused on large-scale assessments across entire
65 countries or continents (e.g. Great Britain in Hannaford *et al.*, 2011; Iberian Peninsula in Lorenzo-Lacruz *et*
66 *al.*, 2013; United States in Apurv & Cai., 2020). While valuable for understanding broad drought propagation
67 mechanisms, such studies offer limited insight for catchment-scale water management, where decisions are
68 made based on local streamflow conditions.

69 In this study, we address this knowledge gap by examining how hydrological drought characteristics—
70 specifically duration and severity—vary within catchments using a highly spatialized streamflow dataset. We
71 hypothesize that severe droughts will exhibit high spatial coherence, affecting the majority (>90%) of the
72 hydrometric network, whereas mild droughts will be more spatially localized, impacting only limited (<10%)
73 portions of the catchment. By focusing on catchment-scale spatial variability, our work provides novel insights
74 into drought dynamics that are directly relevant for local water management and adaptation planning.

75 2. Methodology

76 2.1 Study area

77 This study was conducted in the southern portion of the province of Quebec, Canada (fig. 1). This region is
78 predominantly characterized by a warm-summer humid continental climate (Köppen climate classification
79 Dfb), with areas north of the 50th parallel falling within the subarctic climate zone (Dfc). Across the study area,
80 mean annual air temperatures vary between -4 and 8 °C, with a marked contrast between the cold (mean = -10
81 °C in winter) and warm season (mean = 23 °C in summer) (MELCCFP, 2012). Mean annual precipitation
82 range from 850 to 1450 mm across the study area, with about 25% falling as snow (Lachance-Cloutier et al.,
83 2017). The study targeted 109 individual unregulated catchments, free of flow regulation from dams.
84 Catchment drainage area ranged from 375 to 21 897 km² (median = 2165 km²) while elevation ranged from 0
85 to 1339 meters above sea level (median = 382 meters) (NRCan, 2013). Catchment boundaries and
86 characteristics were retrieved from the Quebec Hydrometric Network Geobase (MRNF, 2019), a high-
87 resolution hydrometric dataset.



88

89 **Figure 1.** Spatial domain of the study area with the 109 catchment boundaries (black lines) extracted from the Quebec
90 Hydrometric Network Geobase (MRNF, 2019), the stream reaches used in the study (dark green lines) and topography
91 from the Canadian Digital Elevation Model (NRCan, 2013). In certain catchments, fewer stream reaches were considered
92 given that catchment portions regulated by dams were not considered in the study. Additionally, only reaches with a
93 drainage area of 100 km² or greater were included due to high uncertainty in reconstructed flows for smaller catchments
94 (MELCCFP, 2018).

95

96 2.2 Historical Streamflow dataset

97 Hydrological droughts were identified using a streamflow dataset from the Hydroclimatological Atlas of
98 Southern Quebec (MELCCFP, 2023) which provides daily flow values from 1970 to 2022 for a dense
99 hydrological network of stream reaches spanning the region of southern Quebec. This dataset was developed
100 in two steps: i) hindcasting using the HYDROTEL semi-distributed hydrological model followed by ii) post-
101 processing with streamflow data assimilation using an optimal interpolation method (Lachance-Cloutier et al.,
102 2017). Details of the two steps are provided below, and additional, comprehensive details on model
103 configuration, calibration procedures, and validation results are provided in Malenfant et al. (2022). This
104 dataset is used operationally by multiple local government entities and private sector companies.

105 HYDROTEL is a physically based, semi-distributed hydrological model that defines computational units based
106 on land use, soil classification and geographical features (Fortin et al., 2001). For the streamflow
107 reconstruction, daily gridded air temperature and precipitation datasets were created by interpolating
108 observations from ~300 meteorological stations and used as model forcing inputs. A regional calibration
109 (Ricard et al 2013) was conducted to optimize average model performance across 70 watersheds, with
110 validation based on 151 stream gauges. Six model configurations were used to capture uncertainty relative to
111 process representation (e.g. choice of evapotranspiration model) and parameter estimation (Malenfant et al.,
112 2022). All configurations demonstrated good performance, with median Kling-Gupta Efficiency (KGE', Kling
113 et al., 2012) ranging between 0.72 and 0.78 (Malenfant et al., 2022).

114 HYDROTEL model hindcasts were post-processed using optimal interpolation as a data assimilation method.
115 Optimal interpolation aims to improve streamflow estimates by accounting for the spatial correlation of errors
116 (i.e. model deviations from observations) and a detailed description of the method is available in Lachance-
117 Cloutier et al. (2017). Streamflow observations were obtained from 279 stream gauges with minimal influence
118 from hydraulic structures (e.g. dams) and major lakes. The ratio between the variance of the observation error
119 and the variance of the model error was set to 0.25, effectively assigning four times greater weight to
120 observations than to model hindcasts when estimating streamflow at a reach with a nearby stream gauge and
121 no others in close proximity. Error correlation decreased with distance, reaching zero at 200 km. In a case study
122 involving 75 stream gauges across southern Quebec, optimal interpolation outperformed other streamflow
123 reconstruction methods relying solely on observations or model outputs, achieving a KGE' of 0.86 in a leave-
124 one-out cross-validation (Lachance-Cloutier et al., 2017).

125 From the streamflow reconstruction dataset, the daily median streamflow values were used to assess
126 hydrological droughts. Only reaches with a drainage area of 100 km² or greater were included due to high
127 uncertainty in modelled streamflow for smaller catchments (MELCCFP, 2018). Catchments with fewer than
128 10 reaches with available data were excluded, as such limited spatial coverage precludes meaningful
129 assessment of spatial coherence. In total, the spatial coherence of hydrological droughts was evaluated for 109
130 catchments, encompassing streamflow estimates for 6718 reaches (fig 1). These catchments had an average
131 reach length of 8.6 km, with streamflow estimates covering on average 51% of each catchment's total
132 hydrometric network length (Table 1).

133

134 **Table 1.** Characteristics of catchments and stream reaches used in this study. Available hydrometric network length per
135 catchment refers to the sum of lengths from stream reaches with available streamflow data in the catchment. Actual
136 hydrometric network length refers to the sum of lengths of all reaches (with and without streamflow data) in the
137 catchment.

Characteristics	Minimum	Mean	Median	Maximum
Catchment drainage area (km ²)	375	4055	2165	21897
Number of reaches per catchment	10	63	36	409
Length of individual stream reaches (km)	0.1	8.6	5.8	96.5
Available hydrometric network length per catchment (km)	40	536	233	3036
Proportion of available hydrometric network length to actual hydrometric network length per catchment (%)	12	51	53	89

138

139 **2.3 Standardized Streamflow Index**

140 Drought events were identified using the Standardized Streamflow Index (SSI) (Svensson et al., 2017; Lahaa
141 et al., 2017; Barker et al., 2016). The SSI is computed by fitting a statistical probability distribution to monthly
142 streamflow time series of each catchment, then transforming the monthly streamflow values into quantiles of
143 a standard normal distribution (mean zero, standard deviation one). Thus, each SSI value represents the number
144 of standard deviations a monthly streamflow deviates from the long-term average, enabling comparison across
145 time and space. To ensure an optimal fit, eight candidate distributions (2 parameters: gamma, Gumbel, logistic,
146 log-normal, normal, Weibull; 3 parameters: Generalized Extreme Value, Tweedie) were fitted to each monthly
147 time series of each stream reach. The best-fitting distribution was selected using Kuiper's goodness of fit test
148 (Kuiper, 1960), which is equally sensitive at the median and the tails of the distribution, making it appropriate
149 for the analysis of extreme events such as droughts. The Kuiper's test statistic sums the maximum negative
150 (D-) and maximum positive (D+) distances between two cumulative distribution functions and the distribution
151 minimizing this statistic was chosen as best. SSI values were truncated at -5 and 5 to limit uncertainty at
152 distribution extremes (Svensson et al., 2017). The SSI can be calculated over varying accumulation periods by
153 applying a backward-looking moving average on the monthly streamflow data before standardization. In this
154 study, three accumulation periods (1, 3 and 6 months) were considered which are denoted as SSI-1, SSI-3 and
155 SSI-6. The *SCI* package for R (Gudmundson & Stagge, 2014) was used to compute the SSI, in combination
156 with the *tweedie* package (Dunn, 2005).

157 **2.4 Drought event identification and characteristics**

158 Drought events were identified using the widely applied run theory (Yevjevich, 1967). Specifically, a drought
159 event was defined as a period when SSI values were continuously negative (SSI < 0) with at least one month
160 going under a pre-defined threshold (Barker et al., 2016). Threshold values of -1 (moderate), -1.5 (severe) and
161 -2 (extreme) have been suggested by McKee et al., (1993) and are widely used. A threshold of -1.5 was adopted
162 to focus on severe and extreme events, although sensitivity to this threshold was assessed.

163 First, drought events were identified at the reach-scale and three characteristics were computed for each event:
164 *duration* (number of months with SSI < 0), *severity* (sum of SSI values during an event) and *occurrence* (season
165 of drought onset). Second, droughts were identified at the catchment scale and concurrent reach-scale events
166 were grouped into a single event when they overlapped by at least one month. The median values of duration

167 and severity across reaches were used to characterize the catchment-scale event. Last, the *spatial extent* of a
168 catchment-scale drought was quantified as the ratio of stream length affected by drought at any point during
169 the event to the total stream length with available data. Droughts were considered as “widespread” when they
170 affected more than 90 % of the hydrometric network and as “localized” when they affected less than 10% of
171 the hydrometric network.

172 2.5 Statistical modelling of spatial coherence

173 To address the hypothesis that severe droughts are spatially coherent within a catchment, the relationship
174 between drought characteristics (duration and severity) and their spatial extent was examined. Given the strong
175 correlation between duration and severity ($R^2 = 0.87$), statistical modelling focused exclusively on *severity* as
176 it combines duration and intensity together into a single indicator. A Gaussian linear mixed model with an
177 identity link function was fitted to model drought *severity* as a function of the covariates. Fixed covariates were
178 *spatial extent* and *occurrence* (season of drought onset). To manage the dependency of drought events within
179 individual catchments, *catchment identifier* was used as random intercept. The year of drought onset (*year*)
180 was also used as random intercept to manage hydrological drought severity dependency between catchments.
181 Drought severity was log-transformed (natural logarithm) to stabilize the variance in the model. The model
182 was fitted using the glmmTMB package in R (Brooks et al., 2017).

183 2.6 Sensitivity of drought occurrence to streamflow monitoring density

184 The sensitivity of drought occurrence (i.e., the number of drought events) to streamflow monitoring density
185 (i.e., the number of stream reaches used to compute catchment-scale drought events) was assessed within each
186 catchment. This was done by comparing the number of drought events identified at the catchment scale with
187 those identified when only a single stream reach was used. For each of the 109 catchments, it was first assumed
188 that streamflow data were available only at the most downstream reach and the number of severe drought
189 events ($SSI < -1.5$) was calculated, following the approach described in Section 2.3. The paired values (full
190 network vs. single reach) were then used to evaluate the general tendency toward under- or overestimation of
191 drought occurrence across the study area. To ensure the results were not biased by the use of the most
192 downstream reach, the analysis was repeated by randomly selecting a single reach (without replacement) within
193 each catchment, repeated 100 times. For each catchment, the mean and standard deviation of the paired number
194 of events were calculated to further characterize the variability and tendency of drought occurrence estimates
195 based on single-reach monitoring.

196 Further analysis was performed to estimate the number of stream gauges (i.e. number of stream reaches used
197 to compute catchment-scale drought events) required to detect all drought events within a catchment. For each
198 catchment, an increasing number of stream reaches (from 1 up to the total number of reaches) was randomly
199 sampled and the number of severe drought events was computed at each step. The drought detection rate was
200 defined as the ratio of drought events detected using a reduced number of reaches to the total number of events
201 detected using all reaches. These detection rates were then analyzed in relation to monitoring density, expressed
202 as the number of reaches per 100 km² of drainage area. To account for the potential influence of catchment
203 size on drought variability, the analysis was conducted separately for meso-scale catchments (drainage area <
204 2500 km²) and large-scale catchments (drainage area > 2500 km²).

205 3. Results

206 All results presented below correspond to the 3-month accumulation period, unless otherwise stated, as
207 analyses conducted for the 1- and 6-month periods yielded similar results and are only presented in the
208 appendix A (Figures A1-A4, Table A1).

209 3.1 Drought occurrence, duration, severity at the catchment scale

210 Over the 52-year study period, catchments experienced an average of 26 drought events, corresponding on
211 average to one event every two years (Table 2). Droughts had a mean duration of 8 months and a mean
212 cumulative severity of -8.1, indicating that streamflow was on average one standard deviation below the long-
213 term mean for each month of a drought event. However, longer and more severe events also occurred, with
214 durations of up to 61 months and severity reaching -75. As expected, drought duration and severity were
215 strongly correlated ($R^2 = 0.87$), reflecting the accumulation of deficits over longer events. On average, 61 %
216 of a catchment's hydrometric network experienced droughts conditions during a given event. Overall, drought
217 characteristics were relatively consistent across seasons: duration, severity, and spatial extent were comparable
218 in spring, summer, and fall. In winter, droughts were slightly less severe and with a reduced spatial extent,
219 though the differences were modest.

220 **Table 2.** Annual and seasonal characteristics of catchment-scale hydrological drought events. Seasons are defined as:
221 winter = December/January/February, spring = March/April/May, summer = June/July/August, fall =
222 September/October/November. CV corresponds to the coefficient of variation.

Occurrence	Number of droughts per catchment			Duration (months)			Severity (-)			Spatial extent (% of stream length in drought)		
	Median	Mean	CV (%)	Median	Mean	CV (%)	Median	Mean	CV (%)	Median	Mean	CV (%)
All seasons	27	26	19	7	8	69	- 6.6	- 8.1	74	68	61	60
Winter	5	5	40	6	7	78	- 5.3	- 7.0	81	58	57	65
Spring	9	9	35	6	8	68	- 6.6	- 8.1	70	75	63	59
Summer	7	7	34	7	8	68	- 7.1	- 8.3	73	69	62	59
Fall	6	6	41	7	9	65	- 7.0	- 8.7	72	66	60	61

223

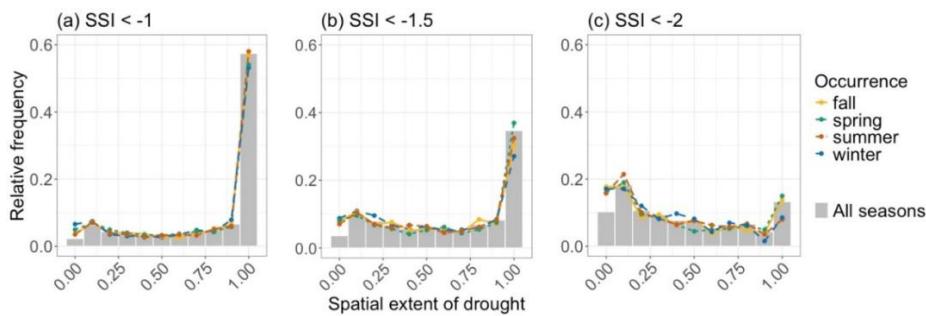
224 3.2 Spatial extent of drought varies widely across events.

225 On average, 61% of the hydrometric network length experienced severe drought during a given event, although
226 substantial variability was observed (CV = 60 %, Table 2).. Overall, 37% of events were widespread (affecting
227 > 90 % of the hydrometric network), while 14 % of events were localized (affecting < 10% of the hydrometric
228 network) (fig. 2b).

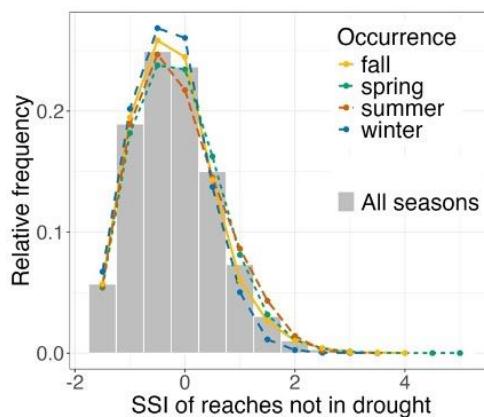
229 The threshold used to define drought events (i.e. one month with SSI < -1.5) had a strong influence on their
230 spatial extent, with spatial coherence decreasing as the threshold became more extreme (more negative). For
231 example, applying a moderate threshold (SSI < -1) resulted in strong spatial coherence, with 59 % of events
232 classified as widespread across the catchment (fig. 2a). In contrast, using an extreme threshold (SSI < -2)
233 reduced spatial extent and coherence (fig. 2c), producing a bimodal distribution of spatial coverage. One cluster
234 of events was widespread, although this represented only 14 % of all events, while a larger cluster of events

235 (29 %) was localized (fig. 2c). This pattern of reduced spatial coherence with more extreme thresholds was
236 consistent across all seasons (fig. 2).

237 During a given drought event, stream reaches not classified as experiencing drought typically had SSI values
238 well above the selected threshold, with some even showing above-average streamflow, while other parts of the
239 catchment were under drought conditions (fig. 3). For example, when using the severe threshold ($SSI < -1.5$),
240 38 % of reaches had SSI values greater than or equal to zero during drought events (fig. 3). More broadly, the
241 majority (80 % to 92 % depending on the threshold) of reaches not experienced drought conditions during a
242 catchment-scale event had SSI values at least 0.5 units above the threshold (fig. 3), indicating a clear distinction
243 from drought conditions. This pattern was consistent across all seasons.



244
245 **Figure 2.** Binned relative frequencies (displayed as both bars and overlaid lines) of the spatial extent of drought events
246 identified with three different thresholds: moderate ($SSI < -1$), severe ($SSI < -1.5$) and extreme ($SSI < -2$). Spatial extent
247 refers to the proportion of the hydrometric network length experiencing drought for a given event. Spatial extent was
248 binned in 11 bins of 0.1 (from 0 to 1) to calculate the relative frequencies of events with different spatial extents. Grey
249 bars represent the entire study area and dotted coloured line refer to the four seasons of drought occurrence (winter =
250 December/January/February, spring = March/April/May, summer = June/July/August, fall = September/October/November).
251



252
253 **Figure 3.** Binned relative frequencies (displayed as both bars and overlaid lines) of the Standardized Streamflow Index
254 (SSI) for reaches that were not experiencing drought during catchment-scale drought events. Drought events were
255 identified with the severe threshold ($SSI < -1.5$). Indices (SSI) were binned in 14 bins of 0.5 (from -1.5 to 5.0) to calculate
256 the relative frequencies of reaches with different SSI values. Grey bars represent the entire study area and dotted coloured
257 line refer to the four seasons of drought occurrence (winter = December/January/February, spring = March/April/May,
258 summer = June/July/August, fall = September/October/November).

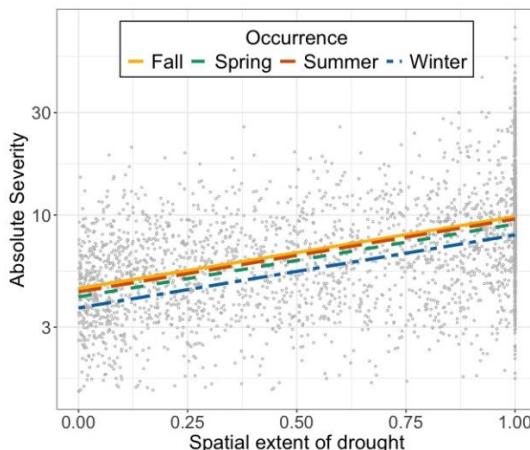
259 **3.3 Catchment-wide hydrological droughts are, on average, twice as severe as localized events.**

260 Results of the linear mixed model showed that the spatial extent of drought events had a significant influence
261 on their severity (Table 3, Figures B1-B3 of appendix B for model validation). Widespread drought events
262 affecting a larger proportion of the hydrometric network tended to be more severe (fig. 4). On average,
263 widespread events (spatial extent > 90%) were nearly twice (1.9 times) as severe as localized events (spatial
264 extent < 10%). Overall, a one-unit increase in spatial extent corresponded to a 2.2-fold ($e^{0.782}$) increase in
265 drought severity. Despite this trend, considerable variability remained, with some highly severe events
266 (severity > 10) occurring even when less than 25% of the catchment was affected (fig. 4). Droughts that began
267 in winter were significantly less severe, while no significant differences in severity were observed among
268 events initiated in spring, summer, or fall (fig. 4, table 3). These patterns held across different thresholds used
269 to define drought events ($SSI < -1, -1.5, \text{ or } -2$), although model intercepts increased and slopes decreased with
270 more extreme thresholds (e.g., $SSI < -2$) (Tables C1-C2, appendix C). The results were also robust to the length
271 of the SSI accumulation period (1, 3, or 6 months; Tables C3-C4, appendix C).

272 **Table 3.** Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the linear
273 mixed model assessing the influence of spatial extent and occurrence on the severity of drought events. Estimated values
274 of variance (σ) for $\sigma_{\text{catchmentID}}$ and σ_{year} are 0.018 and 0.031, respectively. Estimated R^2 value is 0.37 ($n = 2864$).

	Estimate	95% confidence interval	Standard error	z-value	p-value
(Intercept)	1.305	[1.228, 1.384]	0.040	32.78	< 0.001
Spatial extent	0.782	[0.729, 0.835]	0.027	28.86	< 0.001
Occurrence: Fall	0.187	[0.122, 0.251]	0.033	5.70	< 0.001
Occurrence: Spring	0.118	[0.056, 0.180]	0.032	3.71	< 0.001
Occurrence: Summer	0.172	[0.109, 0.234]	0.032	5.36	< 0.001

275



276

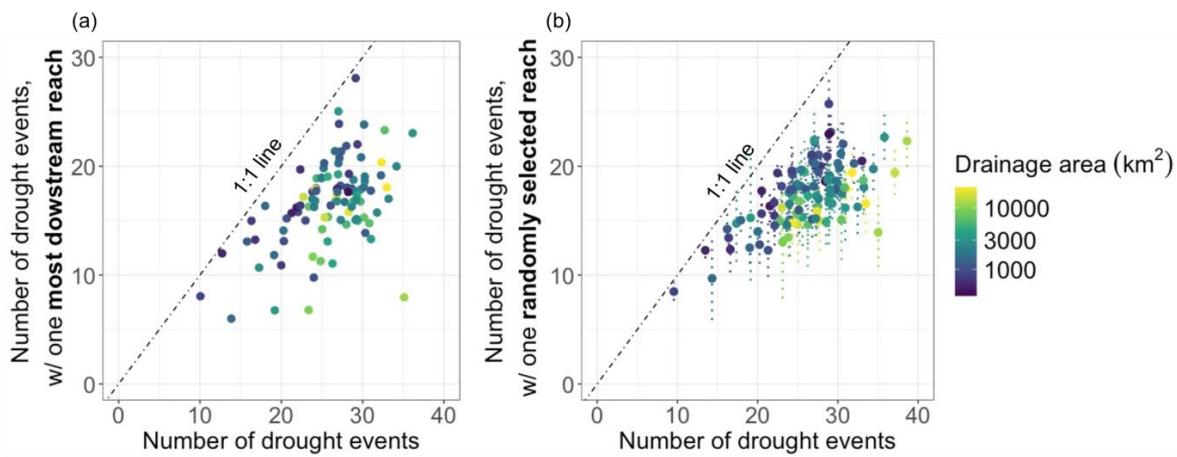
277 **Figure 4.** Relationship between the spatial extent of droughts (proportion of the hydrometric network experiencing
278 drought for a given event) and their severity (sum of absolute SSI values during event) across seasons (winter =
279 December/January/February, spring = March/April/May, summer = June/July/August, fall =
280 September/October/November). The severity is represented in log (natural logarithm) scale on the Y axis ($e^1 \sim 3, e^2 \sim$
281 $10, e^3 \sim 30$).

282 3.4 Relying on a single stream gauge may lead to undetected droughts.

283 The number of stream reaches experiencing drought within a catchment varied considerably between events
284 (fig. 2), which has important implications when assessing catchment-wide drought conditions with a single
285 stream gauge. To evaluate the potential for underdetection, streamflow data were assumed only available at
286 the most downstream reach of each of the 109 catchments and the number of severe drought events (SSI < -
287 1.5) was computed accordingly (fig. 5a). This approach systematically underestimated the number of events
288 (fig. 3), with an average of 9 events (min = 1, max = 27) per catchment missed, representing an average of 37
289 % (min = 3 %, max = 78 %) of events going undetected.

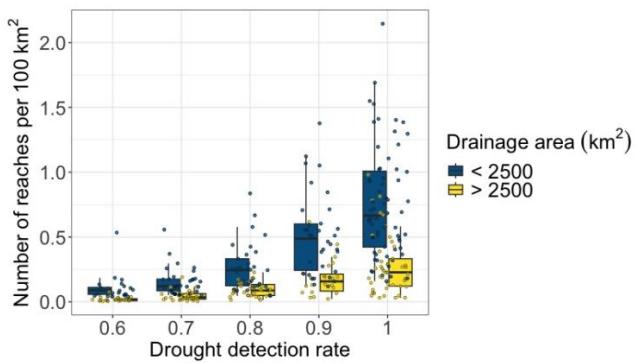
290 On average, two events per catchment (179 events in total) were only detected in a single reach and these
291 events were typically mild, with a median severity of -4.8 (max = -1.5, min = -19.0). Even when excluding
292 these single-reach events, an average of 7 events per catchment remained undetected, corresponding to 30 %
293 (min = 0 %, max = 76 %) of events on average. Using only the most downstream reach to identify drought
294 events led to a decrease in median drought severity from -6.6 (with all reaches) to -7.4 and a decrease in
295 maximum severity from -69.2 to -75.0, suggesting that although undetected events were often mild, some were
296 still highly severe. While fewer drought events were detected at the most downstream reach, the majority of
297 events (60%) detected corresponded to widespread events.

298 To assess whether this underdetection was specific to the most downstream reach, a resampling analysis was
299 performed by randomly selecting a single reach 100 times for each catchment (fig. 5b). Across all resampling
300 runs, the number of drought events was consistently underestimated compared to results obtained using the
301 full hydrologic network. On average, 35 % (min = 0%, max = 84%) of events went undetected, corresponding
302 to an average of 9 (min = 0, max = 28) missed events per catchment. Under this scenario, median severity
303 again decreased to -7.4 (vs. -6.6 for all reaches) and maximum severity declined further to -85.3 (vs. -75.0),
304 reinforcing the conclusion that reliance on a single monitoring location can lead to substantial underestimation
305 of drought frequency and severity.



306
307 **Figure 5.** Relationship between the number of drought events identified per catchment when using all the available
308 reaches (X-axis) and when using (a) only the most downstream reach of a catchment or (b) when using a randomly
309 selected reach. In (b), the points and the dotted lines represent the mean and standard deviation of the number of drought
310 events identified from each sampling. The color of the data points represents the catchment drainage area.

311 By progressively increasing the number of randomly sampled stream reaches per catchment, the theoretical
312 number of stream gauges required to detect all drought events was estimated for each catchment (fig. 6). The
313 drought detection rate, defined as the proportion of detected drought events, increased exponentially with
314 monitoring coverage eventually reaching a plateau when all events were captured. In meso-scale catchments,
315 most events were detected when at least 1 reach per 100 km² of drainage area was included, whereas large-
316 scale catchments required less extensive coverage, with fewer than 0.3 reaches per 100 km² sufficient to detect
317 most events. Reducing this monitoring density by half led to an average of 20 % of events going undetected in
318 large-scale catchments and 15 % in meso-scale catchments. When monitoring density was further reduced to
319 10 %, approximately 40 % of drought events were missed on average, regardless of catchment size.



320
321 **Figure 6.** Proportion of catchment-scale drought events detected when using an increasing number of randomly selected
322 reaches. The X-axis (drought detection rate) represents the ratio of drought events detected using a reduced number of
323 reaches to the total number of events detected using all reaches. The Y-axis represents the number of reaches per 100
324 km² of catchment drainage area. The color of boxplots and points represents the total drainage area in km².

325 **4. Discussion**

326 At the continental scale, atmospheric circulation patterns have been shown to explain the simultaneous
327 occurrence of hydrological droughts across catchments (Hannaford et al., 2011). Within the study area,
328 streamflow variability has been linked to large-scale climate drivers such as the North Atlantic Oscillation
329 (NAO) and the Pacific North American (PNA) pattern (Anctil & Coulibaly 2004; Biron et al., 2014). The
330 present study underscores the influence of smaller-scale processes that may interact with these broad
331 atmospheric patterns, as results indicate that hydrological droughts are not always spatially coherent at the
332 catchment scale. While many events (37%) affected more than 90 % of the hydrometric network within a
333 catchment, a notable fraction (14%) remained highly localized, impacting less than 10 % of the hydrometric
334 network (fig. 2).

335 Overall, the results support the hypothesis that drought severity is positively associated with spatial coherence,
336 with more severe events tending to be more widespread (table 3). Nonetheless, there was still substantial
337 variability in this relationship, and some severe droughts were highly localized. For example, events with
338 severity values lower than the 10th percentile were found to affect less than 10% of a catchment's hydrometric
339 network (fig. 4).

340 **4.1 Strong coupling between meteorological and hydrological droughts may limit spatial coherence in**
341 **cold, humid catchments**

342 Previous studies have shown that in cold and humid catchments of the eastern United States, hydrological
343 droughts are typically short in duration and closely aligned with meteorological conditions. For example,
344 hydrological droughts in this region are often limited to single year events (Patterson et al., 2013), in contrast
345 to catchments in drier climates, where multi-year droughts are more common due to greater hydrological
346 memory (de Lavenne et al., 2022). Consistent with these results, this study found that the median duration of
347 hydrological drought events remained below 12 months (table 2). Furthermore, in the eastern United States,
348 meteorological and hydrological droughts tend to be of similar duration, with the onset and recovery of
349 hydrological droughts largely controlled by meteorological droughts (Apurv & Cai, 2020).

350 This strong coupling suggests that spatial variability in precipitation may contribute to within-catchment
351 variability in hydrological drought occurrence. For example, localized rainfall events may alleviate drought
352 conditions in certain stream reaches while other parts of the catchment remain affected, potentially explaining
353 the observed lack of spatial coherence in some drought events. Given the well-established role of climate in
354 governing hydrological drought propagation (Apurv et al., 2017; Van Loon et al., 2014), further research is
355 needed to evaluate how within-catchment spatial variability in drought occurrence differs across climate zones.
356 For example, spatial coherence of hydrological droughts may be greater in dry regions compared to the patterns
357 observed in this study in humid, snowmelt-dominated catchments.

358 **4.2 The influence of catchment properties on drought spatial coherence remains unclear.**

359 This study revealed substantial spatial variability in drought occurrence within catchments. While
360 meteorological factors may contribute to this variability, catchment properties have also been shown to
361 influence the propagation of meteorological droughts into hydrological droughts. Properties of groundwater
362 systems have been linked to the development and persistence of hydrological droughts (Van Lanen et al.,
363 2013). For example, physical characteristics of bedrock, such as lithostratigraphic classes, have been found to
364 explain spatial variability in the baseflow index within the Thames River catchment (16 100 km², Bloomfield
365 et al., 2009). Similarly, properties of surface water systems can also influence drought dynamics. In the
366 Savannah River catchment (27 171 km², southeastern United States), stream order was a strong predictor of
367 hydrological drought duration (Veetil & Mishra 2020). In contrast, catchment area was not significantly
368 associated with drought duration or severity in the United Kingdom, although it did correlate with the number
369 of events (Barker et al., 2016). Catchment storage capacity has also been shown to influence drought
370 characteristics in cross-catchment studies (Konapala and Mishra 2020, Van Loon and Laaha 2015) and
371 sensitivity analyses (Van Lanen *et al* 2013) and this property may also affect within-catchment variability in
372 hydrological drought.

373 These findings highlight the need for further research to better understand the drivers of within-catchment
374 variability in hydrological drought occurrence. Improved understanding of local catchment properties that
375 buffer or exacerbate hydrological droughts could improve water resources management and drought
376 forecasting. This need is underscored by our finding that stream reaches not classified as under drought during
377 catchment-scale events were often well above the threshold used to define drought conditions, and even above
378 the historical mean in some cases (fig. 3). This suggests that local conditions may play a critical role in
379 preventing drought occurrence at specific locations within a catchment.

380

381 **4.3 Single-station data underestimate drought occurrence but accurately represent catchment-scale**
382 **duration and severity.**

383 Numerous studies have used data from stream gauges to investigate the propagation of meteorological droughts
384 into hydrological droughts across temperate (Barker et al., 2016; Bruno et al., 2022), tropical (Bevacqua et al.,
385 2021; Bhardwaj et al., 2020) and semi-arid (Meresa et al., 2023; Yildirim et al., 2022) climates. These studies
386 commonly rely on a single stream gauge to characterize hydrological droughts within meso-scale (10^2 – 10^3
387 km^2) or large-scale (10^4 – 10^7 km^2) catchments, often failing to capture within-catchment variability. Moreover,
388 large rivers are disproportionately represented in global hydrometric networks (Krabbenhoft et al., 2022). In
389 contrast, streamflow observations in headwater catchments remain sparse, limiting the ability to assess drought
390 conditions in these smaller, yet widespread and hydrologically important systems.

391 Findings from this study suggest that accurately capturing all hydrological drought events requires a
392 substantially denser monitoring network than is typically implemented. Specifically, meso-scale catchments
393 ($< 2500 \text{ km}^2$) would require approximately 1 stream gauge per 100 km^2 , and large-scale catchments (> 2500
394 km^2) about 0.3 stations per 100 km^2 . For example, detecting all events in a 1000 km^2 catchment would require
395 roughly 10 stations, while a 10000 km^2 catchment would require 30. Achieving a 90 % detection rate would
396 still necessitate ~ 6 and ~ 21 stations, respectively, in catchments of these sizes. In contrast, relying on a single
397 gauging station would result in an average detection rate of only 60% in a 1000 km^2 catchment and even less
398 in larger ones, reinforcing concerns about underdetection. While this analysis offers a high-level estimate of
399 the monitoring intensity required to detect hydrological droughts, it is likely that more optimal strategies could
400 be implemented (Mishra & Coulibaly, 2009). Given the growing importance of hydrometric networks in
401 monitoring droughts of increasing frequency and severity under climate change, these results highlight the
402 need to explicitly incorporate drought detection objectives into network design. Moreover, hydrological
403 drought assessments should increasingly aim to integrate multiple stream gauges to better capture within-
404 catchment variability. Rather than selecting entirely independent catchments, using nested catchments may
405 offer an effective strategy for monitoring hydrological droughts in cold, humid regions.

406 Existing hydrometric networks have played a key role in supporting the development of forecasting and early
407 warning systems for droughts (Guo et al., 2020). However, these systems may be biased in cold, humid regions
408 where our results indicate that ~ 30 % of events may go undetected when relying on a single stream gauge to
409 characterize hydrological droughts (fig. 5a). This underdetection was consistent regardless of the location of
410 the reach location, with a comparable proportion of missed events (35 %, fig. 5b) when reach location was
411 randomly selected within catchments rather than limited to the most downstream reach. While undetected
412 events were typically mild or spatially localized, some were nevertheless severe, underscoring the limitations
413 of using sparse monitoring to capture the full extent of drought conditions.

414 Despite limitations in capturing all drought events in a catchment with a single stream gauge, our analysis
415 showed that event characteristics such as duration and severity were generally consistent across a catchment.
416 Specifically, the coefficient of variation in drought severity among reaches within the same catchment was
417 relatively low (mean = 16%), indicating strong spatial coherence. As such, while a single station may fail to
418 detect some events, it can still provide a reliable estimate of the severity and duration of those that are detected.

419 **4.4 Limitations**

420 Hydrological drought characterization relied on a robust streamflow reconstruction dataset that nonetheless
421 contains incorporates uncertainty from observations and model hindcasts. The semi-distributed model was
422 calibrated with the KGE' as an objective function which is well suited for capturing variability in highly
423 seasonal flow regimes such as those found in the study area (Gupta et al., 2009). However, KGE' is less

424 sensitive to extreme flow values, and may therefore underrepresent flow extremes. The model was calibrated
425 using a regional approach which may reduce performance at the local scale. However, the assimilation of
426 observations into the final streamflow reconstruction dataset helps to mitigate these limitations. Uncertainty in
427 the streamflow reconstruction dataset was thoroughly assessed, with key sources including the density of
428 meteorological and hydrological stations, catchment size and the model's reliance on air temperature and
429 precipitation as input variables (Lachance-Cloutier et al., 2017; Martel et al., 2023). While errors in interpolated
430 data could influence the spatial coherence of hydrological droughts at the catchment scale, this effect is likely
431 limited, as results were consistent across time scales, drought thresholds, and catchments.

432 The use of streamflow reconstruction allowed for extensive spatial coverage across the study area, enabling a
433 comprehensive assessment of hydrological droughts. Importantly, the dataset provided streamflow time series
434 homogenized both in length (52 years) and period (1970–2022), thereby avoiding biases commonly associated
435 with inconsistencies in data availability when computing standardized indices (Hong et al., 2015; Laimighofer
436 & Laaha 2022). It also minimized uncertainty linked to methodological changes in streamflow measurement
437 over time (Hamilton & Moore 2012). Given the continued scarcity of observed streamflow data, particularly
438 in ungauged or headwater regions, streamflow reconstruction techniques appear a valuable approach to
439 improve understanding of within-catchment variability. Accordingly, streamflow reconstruction datasets are
440 increasingly being used to assess hydrological droughts (Smith et al 2019, Laraib et al 2024).

441 5. Conclusion

442 Many hydrometric networks have experienced a steady decline over recent decades (Spence et al 2007, Haile et
443 al 2022, Vörösmarty et al 2001) and this study stressed the importance of monitoring streamflow at multiple
444 locations to accurately assess hydrological droughts in cold, humid regions. Similar to recent studies on flash
445 droughts which highlighted that drought events can be concentrated in time (Christian et al., 2019), this study
446 demonstrated that hydrological droughts can also be concentrated in space. For example, 14 % of hydrological
447 droughts impacted less than 10% of the catchment's hydrometric network. These findings emphasize the need
448 for more work at the sub-catchment scale to better capture spatial variability in drought conditions when
449 managing surface waters. While the spatial extent of droughts is commonly considered in the assessment of
450 meteorological (Sharma & Mujumdar 2017), soil moisture (Sheffield et al., 2009) and groundwater (Tallaksen
451 et al., 2009) droughts, results suggest that this dimension deserves equal attention in the evaluation of
452 streamflow droughts.

453 CRediT Authorship contribution statement

454 **Gabriel Bastien-Beaudet:** Conceptualization; methodology; formal analysis; data curation; visualization;
455 writing – initial original draft; writing – review and editing. **Marc-André Bourgault:** writing – review and
456 editing; funding acquisition. **Audrey Maheu:** Conceptualization; writing – initial original draft; writing –
457 review and editing; funding acquisition.

458 Declaration of competing interest

459 The authors declare that they have no known competing financial interests or personal relationships that could
460 have appeared to influence the work reported in this paper.

461 **Funding information**

462 This research was supported by funding from Ouranos (Évolution des sécheresses hydrologiques dans le
463 Québec méridional face aux changements climatiques, 710800) and from the Natural
464 Sciences and Engineering Research Council of Canada (NSERC, Discovery grant awarded to A. Maheu,
465 RGPIN-2018-04199).

466 **Open Research**

467 The findings of this study were produced with data from the Hydroclimatological Atlas of Southern Quebec
468 (MELCCFP, 2023) and the Quebec Hydrographic Network Geobase (MRNF, 2019). All results can be
469 reproduced with processed data available from Bastien-Beaudet et al. (2024), licensed under CC BY 4.0. All
470 data processing and analysis were done with R software environment version 4.3.1 (R Core team, 2016), with
471 libraries specified in the methods and references section. All figures were produced with the “ggplot2” library
472 version 3.5.1 (Wickham et al., 2016), available under the MIT license.

473 **9. References**

- 474 Allan R P, Barlow M, Byrne M P, Cherchi A, Douville H, Fowler H J, Gan T Y, Pendergrass A G, Rosenfeld
475 D, Swann A L S, Wilcox L J and Zolina O (2020) Advances in understanding large-scale responses of the
476 water cycle to climate change. *Annals of the New York Academy of Sciences*, 1472, 49–75.
- 477 Anctil F and Coulibaly P (2004) Wavelet Analysis of the Interannual Variability in Southern Québec
478 Streamflow. *J. Climate*, 17 163–73.
- 479 Apurv, T., Sivapalan, M., & Cai, X. (2017). Understanding the role of climate characteristics in drought
480 propagation. *Water Resources Research*, 53, 9304–9329. <https://doi.org/10.1002/2017WR020629>
- 481 Apurv T and Cai X 2020 Drought Propagation in Contiguous U.S. Watersheds: A Process-Based
482 Understanding of the Role of Climate and Watershed Properties. *Water Resources Research*, 56(9),
483 e2020WR027755. <https://doi.org/10.1029/2020WR027755>
- 484 Barker L J, Hannaford J, Chiverton A and Svensson C 2016 From meteorological to hydrological drought
485 using standardised indicators. *Hydrol. Earth Syst. Sci.*, 20, 2483–505.
- 486 Bastien-Beaudet, G. (2024). Quantifying within-catchment spatial variability of hydrological droughts in cold,
487 humid regions (Version 1.0.2) [Dataset]. Zenodo. <https://doi.org/10.5281/zenodo.17664777>
- 488 Bevacqua A G, Chaffe P L B, Chagas V B P and AghaKouchak A (2021) Spatial and temporal patterns of
489 propagation from meteorological to hydrological droughts in Brazil. *Journal of Hydrology*, 603, 126902.
- 490 Bhardwaj K, Shah D, Aadhar S and Mishra V (2020) Propagation of Meteorological to Hydrological Droughts
491 in India. *JGR Atmospheres*, 125, e2020JD033455.
- 492 Biron S, Assani A A, Frenette J-J and Massicotte P (2014) Comparison of Lake Ontario and St. Lawrence
493 River hydrologic droughts and their relationship to climate indices. *Water Resources Research*, 50, 1396–
494 409.
- 495 Bloomfield J P, Allen D J and Griffiths K J (2009) Examining geological controls on baseflow index (BFI)
496 using regression analysis: An illustration from the Thames Basin, UK. *Journal of Hydrology*, 373, 164–76.
- 497 Bond N R, Lake P S and Arthington A H (2008) The impacts of drought on freshwater ecosystems: an
498 Australian perspective. *Hydrobiologia*, 600, 3–16.
- 499 Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J.,
500 Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-
501 inflated generalized linear mixed modeling. *The R Journal*, 9, 378–400. <https://doi.org/10.32614/RJ-2017-066>
- 503 Brunner M I and Chartier-Rescan C (2024) Drought Spatial Extent and Dependence Increase During Drought
504 Propagation From the Atmosphere to the Hydrosphere. *Geophysical Research Letters*, 51, e2023GL107918.
- 505 Bruno G, Avanzi F, Gabellani S, Ferraris L, Cremonese E, Galvagno M and Massari C (2022) Disentangling
506 the role of subsurface storage in the propagation of drought through the hydrological cycle. *Advances in
507 Water Resources*, 169, 104305.

- 508 Christian J I, Basara J B, Otkin J A and Hunt E D (2019) Regional characteristics of flash droughts across the
509 United States. *Environ. Res. Commun.*, 1, 125004.
- 510 Dunn, P. K., & Smyth, G. K. (2005). Series evaluation of Tweedie exponential dispersion models. *Statistics
511 and Computing*, 15, 267–280. <https://doi.org/10.1007/s11222-005-7022-4>
- 512 Fortin, J. P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., & Villeneuve, J. P. (2001). Distributed
513 watershed model compatible with remote sensing and GIS data. I: Description of model. *Journal of
514 hydrologic engineering*, 6(2), 91-99. [https://doi.org/10.1061/\(ASCE\)1084-0699\(2001\)6:2\(91\)](https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(91))
- 515 Gesualdo G C, Benso M R, Mendiondo E M and Brunner M I 2024 Spatially Compounding Drought Events
516 in Brazil. *Water Resources Research*, 60, e2023WR036629.
- 517 Gudmundsson, L., & Stagge, J. H. (2016). SCI: Standardized climate indices such as SPI, SRI or SPEI. R
518 package version 1.0-2. Retrieved from <https://CRAN.R-project.org/package=SCI>
- 519 Guo Y, Huang S, Huang Q, Leng G, Fang W, Wang L and Wang H (2020) Propagation thresholds of
520 meteorological drought for triggering hydrological drought at various levels. *Science of The Total
521 Environment*, 712, 136502.
- 522 Gupta H V, Kling H, Yilmaz K K and Martinez G F (2009) Decomposition of the mean squared error and NSE
523 performance criteria: Implications for improving hydrological modelling. *Journal of Hydrology*, 377, 80–
524 91.
- 525 Haile A T, Asfaw W, Rientjes T and Worako A W (2022) Deterioration of streamflow monitoring in Omo-
526 Gibe basin in Ethiopia. *Hydrological Sciences Journal*, 67, 1040–53.
- 527 Hamilton A S and Moore R D (2012) Quantifying Uncertainty in Streamflow Records. *Canadian Water
528 Resources Journal*, 37, 3–21.
- 529 Hannaford J, Lloyd-Hughes B, Keef C, Parry S and Prudhomme C (2011) Examining the large-scale spatial
530 coherence of European drought using regional indicators of precipitation and streamflow deficit.
531 *Hydrological Processes*, 25, 1146–62.
- 532 Hong X, Guo S, Zhou Y and Xiong L (2015) Uncertainties in assessing hydrological drought using streamflow
533 drought index for the upper Yangtze River basin. *Stoch Environ Res Risk Assess*, 29, 1235–47.
- 534 Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of
535 climate change scenarios. *Journal of Hydrology*, 424, 264–277.
536 <https://doi.org/10.1016/j.jhydrol.2012.01.010>
- 537 Konapala G and Mishra A (2020) Quantifying Climate and Catchment Control on Hydrological Drought in the
538 Continental United States. *Water Resources Research*, 56, e2018WR024620.
- 539 Krabbenhoft C A, Allen G H, Lin P, Godsey S E, Allen D C, Burrows R M, DelVecchia A G, Fritz K M,
540 Shanafield M, Burgin A J, Zimmer M A, Datry T, Dodds W K, Jones C N, Mims M C, Franklin C,
541 Hammond J C, Zipper S, Ward A S, Costigan K H, Beck H E and Olden J D (2022) Assessing placement
542 bias of the global river gauge network. *Nature Sustainability*, 5, 586–92.
- 543 Kuiper, N. H. (1960). Tests concerning random points on a circle. *Indagationes Mathematicae (Proceedings)*,
544 63, 38–47. [https://doi.org/10.1016/S0019-3577\(60\)80034-5](https://doi.org/10.1016/S0019-3577(60)80034-5)

- 545 Lachance-Cloutier S, Turcotte R and Cyr J-F (2017) Combining streamflow observations and hydrologic
546 simulations for the retrospective estimation of daily streamflow for ungauged rivers in southern Quebec
547 (Canada). *Journal of Hydrology*, 550, 294–306.
- 548 Laimighofer J and Laaha G (2022) How standard are standardized drought indices? Uncertainty components
549 for the SPI & SPEI case. *Journal of Hydrology*, 613, 128385.
- 550 Laraib M, Iqbal M, Waseem M, Arshed A B, Sultan U, Khan H U, Rahman A, Abbas K, Shah M A, Javaid S
551 and Tariq M A U R (2024) Natural streamflow reconstruction and quantification of hydrological drought in
552 the Soan River basin, Pakistan. *J American Water Resour Assoc*, 60, 741–54.
- 553 de Lavenne A, Andréassian V, Crochemore L, Lindström G and Arheimer B 2022 Quantifying multi-year
554 hydrological memory with Catchment Forgetting Curves. *Hydrol. Earth Syst. Sci.*, 26, 2715–32.
- 555 Lopez-Nicolas A, Pulido-Velazquez M and Macian-Sorribes H (2017) Economic risk assessment of drought
556 impacts on irrigated agriculture. *Journal of Hydrology*, 550, 580–9.
- 557 Lorenzo-Lacruz J, Morán-Tejeda E, Vicente-Serrano S M and López-Moreno J I (2013) Streamflow droughts
558 in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns. *Hydrol. Earth Syst. Sci.*, 17,
559 119–34.
- 560 Lytle D A and Poff N L (2004) Adaptation to natural flow regimes. *Trends in Ecology & Evolution*, 19, 94–
561 100.
- 562 Malenfant C, Lavigne, M-P, Mailhot E, El-Housni H, Pelletier-Dumont J, Lachance-Cloutier S. (2022). Atlas
563 hydroclimatique du Québec meridional, 2022 – Rapport technique, Direction de l'hydrologie et de
564 l'hydraulique, Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune
565 et des Parcs (MELCCFP). Retrieved from <https://www.cehq.gouv.qc.ca/atlas-hydroclimatique/rapport-atlas-hydroclimatique-2022.pdf>
- 567 Martel J-L, Arsenault R, Lachance-Cloutier S, Castaneda-Gonzalez M, Turcotte R and Poulin A (2023)
568 Improved historical reconstruction of daily flows and annual maxima in gauged and ungauged basins.
569 *Journal of Hydrology*, 623, 129777.
- 570 McKee T B, Doesken N J and Kleist J (1993) The relationship of drought frequency and duration to time scales.
571 In *Proceedings of the 8th Conference on Applied Climatology*, 17(22), 179–183.
- 572 [MELCCFP] Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des
573 Parcs. (2023). Atlas hydroclimatique du Québec méridional, Séries temporelles de débits (1970-2023).
574 [Dataset]. Retrieved from <https://www.cehq.gouv.qc.ca/atlas-hydroclimatique/carte-portrait/index.htm>
- 575 [MELCCFP] Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des
576 Parcs. (2018). Document d'accompagnement de l'Atlas hydroclimatique. Retrieved from
577 <https://www.cehq.gouv.qc.ca/atlas-hydroclimatique/doc-accompagnement.pdf>
- 578 [MELCCFP] Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des
579 Parcs. (2012). Normales climatiques 1981-2010. Retrieved from
580 <https://www.environnement.gouv.qc.ca/climat/normales/climat-qc.htm>

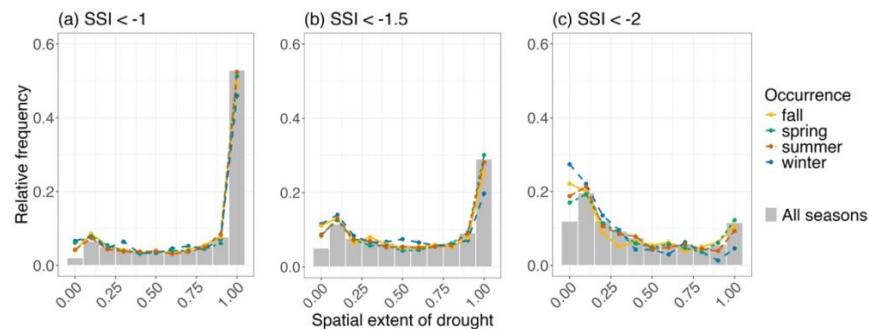
- 581 Meresa H, Zhang Y, Tian J and Abrar Faiz M (2023) Understanding the role of catchment and climate
582 characteristics in the propagation of meteorological to hydrological drought. *Journal of Hydrology*, 617,
583 128967.
- 584 Mosley L M (2015) Drought impacts on the water quality of freshwater systems; review and integration. *Earth-
585 Science Reviews*, 140, 203–14.
- 586 [MRNF] Ministère des Ressources naturelles et des Forêts. (2019) Géobase du réseau hydrographique du
587 Québec, version 1.1 [Dataset].. Direction de la référence géographique. [https://mrnf.gouv.qc.ca/repertoire-
588 géographique/reseau-hydrographique-grhq/](https://mrnf.gouv.qc.ca/repertoire-geographique/reseau-hydrographique-grhq/)
- 589 [NRCan] Natural Resources Canada (2013). *Canadian Digital Elevation Model Product Specifications*.
590 Government technical report, Government of Canada, Natural Resources Canada, Canada Centre for
591 Mapping and Earth observation, Sherbrooke (QC), Canada. Retrieved from
592 https://ftp.geogratis.gc.ca/pub/nrcan_rncan/elevation/cdem_mnec/doc/CDEM_product_specs.pdf
- 593 Patterson L A, Lutz B D and Doyle M W (2013) Characterization of Drought in the South Atlantic, United
594 States. *J American Water Resour Assoc*, 49, 1385–97.
- 595 Pourmahmoud J, Hashemy Shahdany S M and Roozbahani A (2023) Drought Risk Assessment for Surface
596 Water Distribution Systems in Irrigation Districts. *Water Resour Manage*, 37, 5325–42.
- 597 Prudhomme C, Giuntoli I, Robinson E L, Clark D B, Arnell N W, Dankers R, Fekete B M, Franssen W, Gerten
598 D, Gosling S N, Hagemann S, Hannah D M, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y and Wisser D
599 (2014) Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel
600 ensemble experiment. *Proc. Natl. Acad. Sci.*, 111, 3262–7.
- 601 R Core Team. (2016). R: A language and environment for statistical computing (version 4.3.1) [Software]. R
602 Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org/>.
- 603 Ricard S, Bourdillon R, Roussel D and Turcotte R (2013) Global Calibration of Distributed Hydrological
604 Models for Large-Scale Applications. *J. Hydrol. Eng.*, 18, 719–21.
- 605 Sharma S and Mujumdar P (2017) Increasing frequency and spatial extent of concurrent meteorological
606 droughts and heatwaves in India, *Scientific Reports*, 7, 15582.
- 607 Sheffield J, Andreadis K M, Wood E F and Lettenmaier D P (2009) Global and Continental Drought in the
608 Second Half of the Twentieth Century: Severity–Area–Duration Analysis and Temporal Variability of
609 Large-Scale Events. *Journal of Climate*, 22, 1962–81.
- 610 Simeone C E, Hammond J C, Archfield S A, Broman D, Condon L E, Eldardiry H, Olson C G and Steyaert J
611 C (2024) Declining Reservoir Reliability and Increasing Reservoir Vulnerability: Long-Term Observations
612 Reveal Longer and More Severe Periods of Low Reservoir Storage for Major United States Reservoirs.
613 *Geophysical Research Letters*, 51, e2024GL109476.
- 614 Smith K A, Barker L J, Tanguy M, Parry S, Harrigan S, Legg T P, Prudhomme C and Hannaford J (2019) A
615 multi-objective ensemble approach to hydrological modelling in the UK: an application to historic drought
616 reconstruction. *Hydrol. Earth Syst. Sci.*, 23, 3247–68.

- 617 Spence C, Saso P and Rausch J (2007) Quantifying the Impact of Hydrometric network Reductions on Regional
618 Streamflow Prediction in Northern Canada. *Canadian Water Resources Journal*, 32, 1–20.
- 619 Svensson C, Hannaford J and Prosdocimi I (2017) Statistical distributions for monthly aggregations of
620 precipitation and streamflow in drought indicator applications. *Water Resour. Res.*, 53, 999–1018.
- 621 Tallaksen L M, Hisdal H and Lanen H A J V (2009) Space–time modelling of catchment scale drought
622 characteristics. *Journal of Hydrology*, 375, 363–72
- 623 Tanguy M, Chevuturi A, Marchant B P, Mackay J D, Parry S and Hannaford J (2023) How will climate change
624 affect the spatial coherence of streamflow and groundwater droughts in Great Britain? *Environ. Res. Lett.*,
625 18, 064048.
- 626 Van Lanen H A J, Wanders N, Tallaksen L M and Van Loon A F (2013) Hydrological drought across the
627 world: impact of climate and physical catchment structure. *Hydrol. Earth Syst. Sci.*, 17, 1715–32.
- 628 Van Loon A F (2015) Hydrological drought explained. *WIREs Water*, 2, 359–92.
- 629 Van Loon A F and Laaha G (2015) Hydrological drought severity explained by climate and catchment
630 characteristics. *Journal of Hydrology*, 526, 3–14.
- 631 Van Loon A F, Tijdeman E, Wanders N, Van Lanen H A J, Teuling A J and Uijlenhoet R (2014) How climate
632 seasonality modifies drought duration and deficit. *JGR Atmospheres*, 119, 4640–56.
- 633 Van Vliet M T H, Sheffield J, Wiberg D and Wood E F (2016) Impacts of recent drought and warm years on
634 water resources and electricity supply worldwide. *Environ. Res. Lett.*, 11, 124021.
- 635 Veettil A V and Mishra A k. (2020) Multiscale hydrological drought analysis: Role of climate, catchment and
636 morphological variables and associated thresholds. *Journal of Hydrology*, 582, 124533.
- 637 Vörösmarty C, Askew A, Grabs W, Barry R G, Birkett C, Döll P, Goodison B, Hall A, Jenne R, Kitaev L,
638 Landwehr J, Keeler M, Leavesley G, Schaake J, Strzepek K, Sundarivel S S, Takeuchi K and Webster F
639 (2001) Global water data: A newly endangered species. *EoS Transactions*, 82 54–8.
- 640 Wan W, Zhao J, Popat E, Herbert C and Döll P (2021) Analyzing the Impact of Streamflow Drought on
641 Hydroelectricity Production: A Global-Scale Study. *Water Resources Research*, 57, e2020WR028087.
- 642 Wang T, Tu X, Singh V P, Chen X, Lin K, Lai R and Zhou Z (2022) Socioeconomic drought analysis by
643 standardized water supply and demand index under changing environment. *Journal of Cleaner Production*,
644 347, 131248.
- 645 Wickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2’ [Software]. *Create elegant data*
646 *visualisations using the grammar of graphics*. *Version*, 2(1), 1-189.
- 647 Wlostowski A N, Jennings K S, Bash R E, Burkhardt J, Wobus C W and Aggett G (2022) Dry landscapes and
648 parched economies: A review of how drought impacts nonagricultural socioeconomic sectors in the US
649 Intermountain West. *WIREs Water*, 9, e1571.
- 650 Wu J, Zhang J, Chen X, Wang Z, Guan T, Zhang X, Li X and Wang G (2024) Hydrological drought life-cycle:
651 Faster onset and recovery in humid than semi-arid basins in China. *Journal of Hydrology*, 644, 132083.

- 652 Yevjevich, V. M. (1967) An objective approach to definitions and investigations of continental hydrologic
653 droughts, 23, 25 p., Fort Collins, CO, USA: Colorado State University.
- 654 Yildirim G, Rahman A and Singh V P (2022) Meteorological and hydrological drought hazard, frequency and
655 propagation analysis: A case study in southeast Australia. *Journal of Hydrology: Regional Studies*, 44,
656 101229.
- 657 Zhou Z, Wang P, Li L, Fu Q, Ding Y, Chen P, Xue P, Wang T and Shi H (2024) Recent development on
658 drought propagation: A comprehensive review. *Journal of Hydrology*, 645, 132196.
- 659

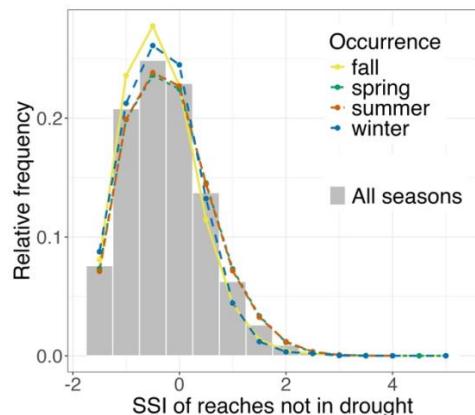
660 **Appendix A - Hydrological drought assessment for additional accumulation periods.**

661 **SSI-1**



662 **Figure A1.** Binned relative frequencies (displayed as both bars and overlaid lines) of the spatial extent of drought events
663 identified with three different thresholds: moderate ($SSI < -1$), severe ($SSI < -1.5$) and extreme ($SSI < -2$). Results are
664 shown for an accumulation period of **one month (SSI-1)**. Spatial extent refers to the proportion of the stream network
665 length experiencing drought for a given event. Spatial extent was binned in 11 bins of 0.1 (from 0 to 1) to calculate the
666 relative frequencies of events with different spatial extents. Grey bars represent the entire study area and dotted coloured
667 line refer to the four seasons of drought occurrence (winter = December/January/February, spring = March/April/May,
668 summer = June/July/August, fall = September/October/November).

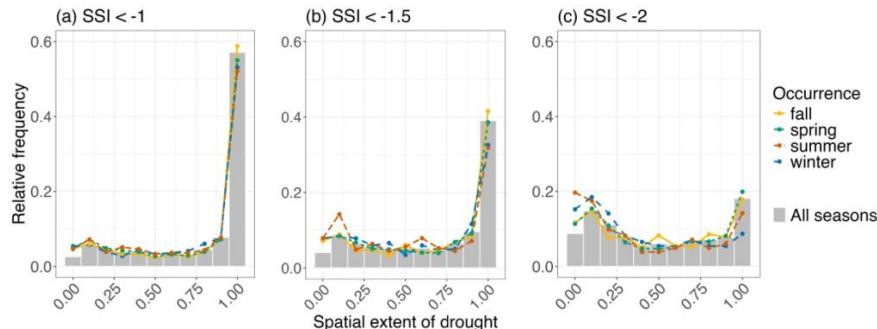
669



670 **Figure A2.** Binned relative frequencies (displayed as both bars and overlaid lines) of the Standardized Streamflow Index
671 (SSI) for reaches that were not in drought during drought events occurring in the catchment. Results are shown for an
672 accumulation period of **one month (SSI-1)**. Drought events were identified with the severe threshold ($SSI < -1.5$). Indices
673 (SSI) were binned in 14 bins of 0.5 (from -1.5 to 5.0) to calculate the relative frequencies of reaches with different SSI
674 values. Grey bars represent the entire study area and dotted coloured line refer to the four seasons of drought occurrence
675 (winter = December/January/February, spring = March/April/May, summer = June/July/August, fall =
676 September/October/November).

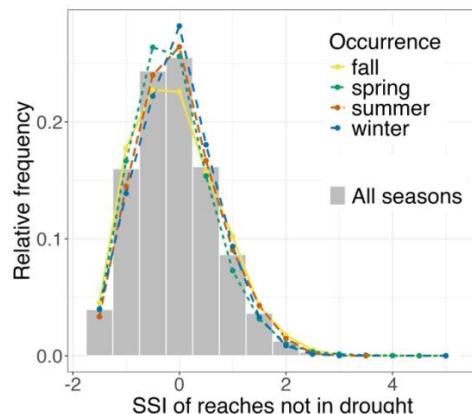
677

678 SSI-6



679 **Figure A3.** Binned relative frequencies (displayed as both bars and overlaid lines) of the spatial extent of drought events
680 identified with three different thresholds: moderate ($SSI < -1$), severe ($SSI < -1.5$) and extreme ($SSI < -2$). Results are
681 shown for an accumulation period of **six months (SSI-6)**. Spatial extent refers to the proportion of the stream network
682 length experiencing drought for a given event. Spatial extent was binned in 11 bins of 0.1 (from 0 to 1) to calculate the
683 relative frequencies of events with different spatial extents. Grey bars represent the entire study area and dotted coloured
684 line refer to the four seasons of drought occurrence (winter = December/January/February, spring = March/April/May,
685 summer = June/July/August, fall = September/October/November).

686



687 **Figure A4.** Binned relative frequencies (displayed as both bars and overlaid lines) of the Standardized Streamflow Index
688 (SSI) for reaches that were not in drought during drought events occurring in the catchment. Results are shown for an
689 accumulation period of **six months (SSI-6)**. Drought events were identified with the severe threshold ($SSI < -1.5$). Indices
690 (SSI) were binned in 14 bins of 0.5 (from -1.5 to 5.0) to calculate the relative frequencies of reaches with different SSI
691 values. Grey bars represent the entire study area and dotted coloured line refer to the four seasons of drought occurrence
692 (winter = December/January/February, spring = March/April/May, summer = June/July/August, fall =
693 September/October/November).

694

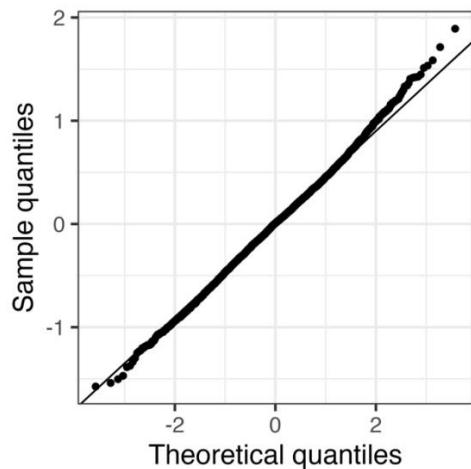
695 **Table A1.** Annual and seasonal characteristics of catchment-scale hydrological drought events per accumulation period
 696 (1, 3, 6 months) and season (winter = December/January/February, spring = March/April/May, summer =
 697 June/July/August, fall = September/October/December). CV corresponds to the coefficient of variation.

Occurrence	Accumulation period (months)	Number of droughts per catchment			Duration (months)			Severity (-)			Spatial extent (% of stream length in drought)		
		Median	Mean	CV (%)	Median	Mean	CV (%)	Median	Mean	CV (%)	Median	Mean	CV (%)
All seasons	1	37	37	23	4	5	69	- 4.5	- 5.5	71	59	56	66
	3	27	26	19	7	8	69	- 6.6	- 8.1	74	68	61	60
	6	16	16	20	11	13	73	- 10.3	- 13.4	79	80	65	56
Winter	1	5	6	50	4	4	69	- 3.6	- 4.3	68	48	50	71
	3	5	5	40	6	7	78	- 5.3	- 7.0	81	58	57	65
	6	3	3	54	10	12	78	- 8.6	- 10.7	84	73	62	59
Spring	1	12	12	32	4	5	77	- 4.2	- 5.4	77	67	59	64
	3	9	9	35	6	8	68	- 6.6	- 8.1	70	75	63	59
	6	6	7	33	11	13	73	- 11.0	- 13.9	74	82	65	56
Summer	1	12	12	29	5	6	65	- 5.3	- 6.3	69	62	57	65
	3	7	7	34	7	8	68	- 7.1	- 8.3	73	69	62	59
	6	2	3	54	10	15	76	- 9.7	- 14.6	86	63	59	63
Fall	1	8	8	38	5	5	57	- 5.1	- 5.3	58	55	55	68
	3	6	6	41	7	9	65	- 7.0	- 8.7	72	66	60	61
	6	4	4	50	11	13	67	- 10.8	- 13.6	77	85	68	53

698

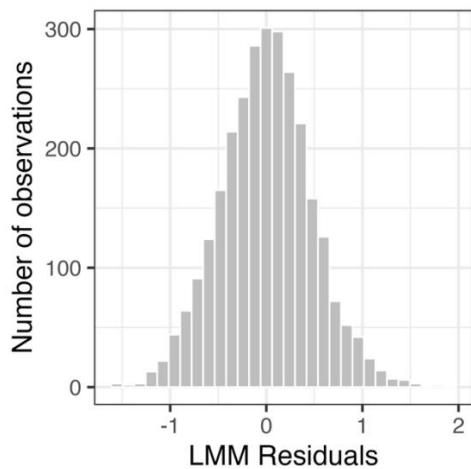
699

700 **Appendix B - Validation of the linear mixed model**

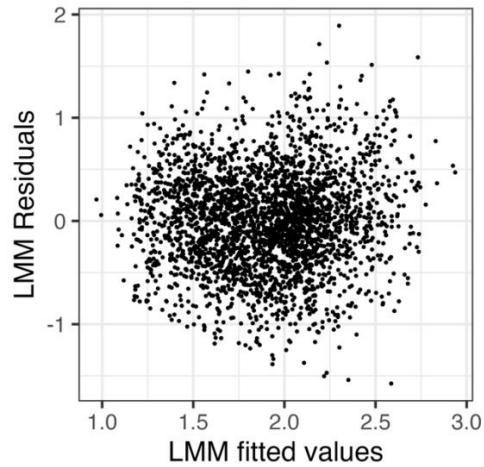


701 **Figure B1.** Normal Q-Q plot of the linear mixed model presented in Table 3.

702



703 **Figure B2.** Histogram of residuals of the linear mixed model presented in Table 3.



704 **Figure B3.** Residual analysis plot of the linear mixed model presented in Table 3.

705 **Appendix C - Linear mixed models results**

706 **Table C1.** Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the
707 linear mixed model for an **accumulation period of 3 months (SSI-3)**, with a **moderate threshold (SSI < -1)**.
708 Estimated values of variance (σ) for $\sigma_{\text{catchmentID}}$ and σ_{year} are 0.018 and 0.036, respectively. Estimated R^2 value is 0.42.
709 (n = 4124)

	Estimate	95% confidence interval	Std. error	z-value	p-value
(Intercept)	0.522	[0.438, 0.605]	0.042	12.28	< 0.001
Spatial extent	1.229	[1.173, 1.285]	0.028	43.14	< 0.001
Occurrence: Fall	0.185	[0.124, 0.245]	0.031	5.97	< 0.001
Occurrence: Spring	0.109	[0.052, 0.167]	0.029	3.74	< 0.001
Occurrence: Summer	0.214	[0.173, 0.274]	0.031	6.93	< 0.001

710

711 **Table C2.** Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the
712 linear mixed model for an **accumulation period of 3 months (SSI-3)**, with an **extreme threshold (SSI < -2)**.
713 Estimated values of variance (σ) for $\sigma_{\text{catchmentID}}$ and σ_{year} are 0.010 and 0.039, respectively. Estimated R^2 value is 0.32.
714 (n = 1707)

	Estimate	95% confidence interval	Std. error	z-value	p-value
(Intercept)	1.825	[1.739, 1.913]	0.045	41.00	< 0.001
Spatial extent	0.523	[0.457, 0.590]	0.034	15.41	< 0.001
Occurrence: Fall	0.193	[0.144, 0.271]	0.040	4.83	< 0.001
Occurrence: Spring	0.159	[0.081, 0.236]	0.040	4.00	< 0.001
Occurrence: Summer	0.167	[0.091, 0.243]	0.039	4.30	< 0.001

715

716 **Table C3.** Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the
717 linear mixed model an **accumulation period of 1 month (SSI-1)**, with a **severe threshold (SSI < -1.5)**. Estimated
718 values of variance (σ) for $\sigma_{\text{catchmentID}}$ and σ_{year} are 0.031 and 0.026, respectively. Estimated R^2 value is 0.40. (n = 4061)

	Estimate	95% confidence interval	Std. error	z-value	p-value
(Intercept)	0.919	[0.848, 0.990]	0.036	25.39	< 0.001
Spatial extent	0.764	[0.722, 0.807]	0.022	35.23	< 0.001
Occurrence: Fall	0.223	[0.171, 0.276]	0.027	8.31	< 0.001
Occurrence: Spring	0.131	[0.080, 0.182]	0.026	5.04	< 0.001
Occurrence: Summer	0.278	[0.230, 0.326]	0.025	11.29	< 0.001

719

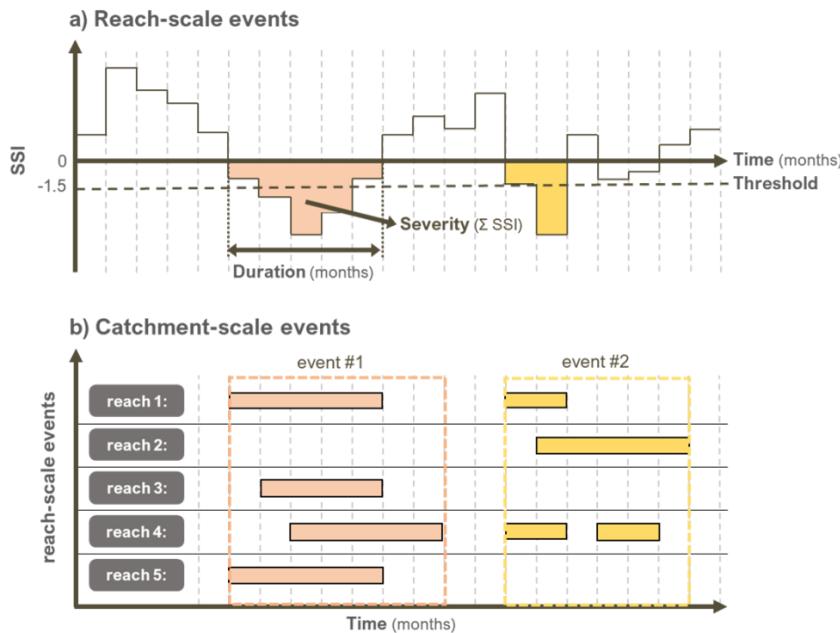
720 **Table C4.** Estimated regression parameters, standard errors, z-values, p-values and 95% confidence intervals of the
721 linear mixed model for an **accumulation period of 6 months (SSI-6)**, with a **severe threshold (SSI < -1.5)**.
722 Estimated values of variance (σ) for $\sigma_{\text{catchmentID}}$ and σ_{year} are 0.013 and 0.106, respectively. Estimated R^2 value is 0.48.
723 (n = 1761)

	Estimate	95% confidence interval	Std. error	z-value	p-value
(Intercept)	1.697	[1.578, 1.816]	0.061	28.01	< 0.001
Spatial extent	0.908	[0.836, 0.980]	0.037	24.68	< 0.001
Occurrence: Fall	0.089	[0.008, 0.168]	0.041	2.16	0.0307
Occurrence: Spring	0.078	[-0.0003, 0.155]	0.040	1.96	0.0501
Occurrence: Summer	0.096	[0.002, 0.190]	0.048	2.00	0.0454

724

725

726 **Appendix D: Visualization of the two-step process for identifying drought events**



727

728 **Figure D1.** Two-step process for identifying drought events at a) the reach scale (adapted from Zhang et al., 2022) and
729 b) the catchment scale. Panel (a) illustrates how drought events are identified from a time series of the Standardized
730 Streamflow Index (SSI) for reach #1 and characterized by their duration and severity. Panel (b) shows how reach-scale
731 events are aggregated to define catchment-scale events. When multiple events from the same reach were grouped into a
732 single catchment-scale event (event #2, reach 4), their duration and severity were summed. The overall characteristics of
733 each catchment-scale event were calculated as the median values of the corresponding reach-scale events.

734

735