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Abstract31

Emergency Response Automation (ERA) is becoming a critical component of managing32

low-probability, high-consequence natural hazards and cascading technological emergencies under severe33

time pressure. This systematic review consolidates ERA research from a safety-science and34

reliability-engineering perspective, with particular emphasis on applications to earthquakes, floods,35

wildfires and other environmental hazards. Following PRISMA 2020 guidelines, we analysed 19836

peer-reviewed studies (2010–2025) on automated, intelligent and data-driven emergency response37

technologies. A four-layer ERA framework—perception and monitoring, data and decision-making,38

automated response and control, and feedback and learning—was developed to integrate heterogeneous39

findings and trace the evolution of ERA. Empirical evidence from operational systems is contrasted with40

simulation-based demonstrations to assess reliability, availability, fault tolerance and human performance.41

Persistent challenges include data and model uncertainty under distributional shift, limited verification and42

validation of decision algorithms, opaque human–automation coordination, and gaps in interoperability,43

governance and trust. We outline a research agenda that links ERA development with resilience engineering,44

Safety-II and socio-technical systems design, and propose standardised metrics and evidence-grading45

principles to support reliable and trustworthy ERA deployment in complex infrastructures exposed to46

natural and technological hazards.47

Keywords: emergency response automation, system reliability, system safety, intelligent48

decision-making, artificial intelligence, digital twin49
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1 Introduction51

In recent decades, disasters—particularly natural hazards and their cascading technological52

impacts—have become increasingly frequent and complex, spanning climate hazards, industrial accidents53

and public health crises(Yu et al., 2018). For example, the 1982 Edmonton well blowout in Canada was54

quickly controlled through prompt ignition, averting a major explosion(Gephart, 1988). In contrast, the55

2003 Kaixian gas-well blowout in Chongqing released hydrogen sulfide, causing over 190 deaths and the56

evacuation of tens of thousands(Jianfeng et al., 2009). Such comparative cases highlight the core value of57

timely response and scientifically grounded decision-making in emergency management. Yet, despite58

unprecedented advances in sensing, communication and information technologies, emergency operations in59

many countries remain characterised by fragmented data streams, incompatible platforms and60

organisational "information silos". This raises a central question for this review: why do information silos61

persist in an era of highly advanced technology, and how can ERA be designed to overcome them in62

safety-critical emergency operations?63

Driven by the rapid advancement of automation, artificial intelligence (AI), and digital twin64

technologies, the field of emergency management is undergoing a profound transformation (Kyrkou et al.,65

2022). The concept of Emergency Response Automation (ERA) has emerged as a comprehensive66

framework that integrates these technologies to enhance system responsiveness and reliability. ERA has67

demonstrated the potential to improve situational awareness, accelerate information processing, and enable68

coordinated resource allocation across multiple actors and domains(Yang et al., 2013). Its deployment in69

critical operations has been increasingly evident—for instance, supporting proactive containment strategies70

during the COVID-19 pandemic(Andrejevic and O’Neill, 2024), enabling automated resource scheduling71

after the Fukushima nuclear disaster(Nagatani et al., 2013), and improving response efficiency at China’s72

Qinshan and Hongyanhe nuclear power plants(Chen et al., 2018). Greater reliance on automation also73
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creates challenges: reliability, interoperability, accountability, and human–machine teaming in high‑risk74

contexts. We examine each through a system‑safety lens and propose measurable safeguards.75

From the perspective of reliability engineering, ERA offers a unique opportunity to bridge intelligent76

automation with the quantitative assurance of system dependability, providing structured frameworks for77

assessing robustness, fault tolerance, and safety performance across heterogeneous emergency operations.78

Human responders still provide irreplaceable intuition, ethical reasoning, and adaptability—elements that79

current automated systems cannot fully replicate. Thus, the key challenge is to design intelligent systems80

that augment human judgment and build operational trust under time pressure.81

Table 1. Overview of recent literature reviews in emergency response and disaster management.82

Serial No. Authors Focus Area

1 H Saputra(Saputra et al., 2025)
An overview of IoT in the Urban/ Infrastructure
direction

2 A Jazairy(Jazairy et al., 2025)
The Role of Drones in emergency logistics and material
delivery.

3
R Damaševičius(Damaševičius
et al., 2023)

Provide a comprehensive understanding of the Internet
of Emergency Services and its implications for
emergency response and disaster management.

4
L Dwarakanath(Dwarakanath et
al., 2021)

A comprehensive review of the role of social media in
emergency response after disasters based on machine
learning.

5
U Lagap(Lagap and Ghaffarian,
2024)

The Application and Challenges of Digital Twin in
Post-Disaster Risk Management.

6 Y Li(Li et al., 2024)
A Special Review of Digital Twins in Wildfire
Management.

7 SM Khan(Khan et al., 2023)
Overall assessment of disaster management systems,
with a focus on methods/tools and challenges.

8 SK Abid(Abid et al., 2025)
The Application of AI Methods Based on Social media
and Crowdsourced Data in Disaster Management.

9 Y Feng(Feng and Cui, 2021)
A comprehensive review of the disaster emergency
response system is conducted, including the current
situation and future prospects.

Recent reviews on emergency response, summarized in Table 1, indicate that although prior studies83
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have examined diverse technologies and their domain-specific applications, several research gaps remain.84

Existing literature is still fragmented, offering limited insights into cross-domain regularities and theoretical85

integration with reliability and safety science. Moreover, few studies provide a systematic synthesis linking86

technological evolution with operational, human, and organizational dimensions.87

To address these gaps, this review adopts a safety-science and reliability-engineering perspective on88

ERA, with a primary focus on natural hazards and environmental emergencies. Drawing on a89

PRISMA-guided review of 198 peer-reviewed studies (2010–2025) on automated, intelligent and90

data-driven emergency response, we propose a four-layer ERA framework—perception and monitoring,91

data and decision-making, automated response and control, and feedback and learning—to integrate92

heterogeneous findings, identify cross-domain patterns and expose interoperability challenges that sustain93

information silos.94

The review is guided by the following research questions:95

RQ1: How do ERA capabilities at each layer align with reliability and system-safety metrics,96

including availability and uptime, fault tolerance and graceful degradation, timeliness and accuracy97

trade-offs, resilience under degraded communications, and human performance in natural and technological98

hazard contexts?99

RQ2: Across hazards and settings—with particular emphasis on natural hazards—which ERA100

approaches show moderate or strong empirical support for improving safety-relevant outcomes, and which101

remain limited to simulations, prototypes or small-scale demonstrations?102

RQ3: What failure modes, bias sources, interoperability barriers and human–automation coordination103

issues most threaten ERA dependability, and what assurance mechanisms have been proposed or104

implemented to mitigate these risks?105

From a safety-science perspective, this review makes three main contributions. First, it proposes an106
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integrative four-layer ERA architecture that links automation functions to risk-reduction mechanisms in107

safety-critical socio-technical systems, and identifies interoperability as a core design principle for108

overcoming information silos. Second, it maps ERA applications across hazard types, technologies and109

capabilities, revealing cross-domain patterns and systematic gaps in reliability assurance, including limited110

stress-testing under uncertainty, inadequate fail-safe and fail-operational design, and weak support for111

human–automation teaming. Third, it advances a research agenda that connects ERA with resilience112

engineering, Safety-II and the governance of emerging technologies, highlighting priorities for validating113

intelligent decision-making, allocating control between humans and automated agents, and establishing114

institutional arrangements for trustworthy ERA deployment.115

The remainder of this paper is organised as follows. Section 2 describes the review methodology;116

Section 3 introduces the ERA framework and classifies the evidence base; Sections 4 and 5 analyse ERA117

capabilities, applications and reliability issues, with emphasis on natural-hazard scenarios; Section 6118

synthesises cross-cutting trends, limitations and future directions; and Section 7 concludes with key119

implications for strengthening global disaster response.120
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121

Fig.1 System framework diagram.122

123

2 Methodology124

This review focuses on Emergency Response Automation (ERA), defined as the integration of125

intelligent, automated, and data-driven technologies to support or partially substitute human126
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decision-making and operational activities across all phases of emergency management.127

Following the PRISMA guidelines(Page et al., 2021), we conducted a comprehensive search for128

2010–2025 (last search across all sources: 27 September 2025). As illustrated in Fig. 2, the evidence base is129

heavily skewed towards recent work: 90.4% of the cited studies were published in 2010 or later, and almost130

60% appeared between 2020 and 2025. Only a small number of classic references prior to 2000 were131

retained to provide historical and theoretical context. Fig. 3 presents the PRISMA 2020 flow of records132

through identification, screening, and inclusion. Searches spanned Web of Science, Scopus, IEEE Xplore,133

and PubMed, supplemented by Google Scholar (top 10% per year by relevance and citations; n =134

54)(Zhang et al., 2019). The Boolean strategy combined three concept groups with “AND”:135

(1) emergency (“emergency,” “disaster,” “pandemic,” “incident,” “accident”);136

(2) automation (“automate,” “autonomous,” “artificial intelligence”);137

(3) activities (“response,” “planning,” “monitoring,” “prediction”).138

139

Fig. 2 Temporal distribution of ERA-related references.140

After deduplication in EndNote, two reviewers independently screened titles/abstracts/full texts.141

Inclusion required peer-reviewed English studies (2010–2025) explicitly addressing automated, intelligent,142
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or data-driven emergency response and providing empirical, modeling, or conceptual contributions.143

Discrepancies were resolved by consensus; Cohen’s κ = 0.86 on a 20% random subset indicated high144

agreement. Ultimately, 198 studies were included.145

We applied a concise five‑domain Reliability & Reproducibility (R&R) rubric (0–2 each; total 0–10):146

(D1) external validity; (D2) completeness of quantitative safety metrics (e.g., latency, FAR/MDR,147

availability/uptime, recovery time/MTTR); (D3) baseline/comparator; (D4) sample/condition diversity; (D5)148

reporting transparency. Two reviewers scored independently and reconciled by consensus; agreement on a149

20% calibration set was κ = 0.86. Totals map to High (8–10), Moderate (5–7), Low (0–4). Safeguards: if150

D2 = 0 the tier cannot exceed Moderate; if ≥2 domains = 0 the tier is Low. NR (not reported) scored 0. To151

conserve space, tables report only the tier (H/M/L).152
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153

Fig.3 PRISMA 2020 flow diagram for the systematic review.154

3 Composition and Definition155

ERA refers to the automatic initiation and execution of emergency measures through sensors, data156

processing, and intelligent decision-making technologies, enabling rapid response to incidents such as157
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security threats, natural disasters, and public health emergencies with minimal human158

intervention(Matracia et al., 2022).159

3.1 System framework160

The four-layer architecture of ERA proposed in this study was developed through a dual-path161

approach of empirical induction and theoretical validation.162

First, using thematic synthesis, two researchers independently reviewed and cross-compared 198163

selected studies through multiple iterative rounds. This process identified four recurring functional164

categories consistently appearing in ERA-related research—Perception, Decision-Making, Response &165

Control, and Feedback & Learning.166

Second, this four-layer structure aligns with well-established automation paradigms in other domains.167

Comparable hierarchical closed-loop architectures can be observed in robotics(Brooks, 1991), industrial168

control systems(Nagorny et al., 2012), and reliability management frameworks(Hollnagel, 2018), all of169

which encompass a complete “Perceive–Reason–Act–Learn” process. Such consistency demonstrates that170

the ERA framework reflects a widely recognized structural logic across automation-intensive systems.171

Finally, from the perspectives of systems engineering and cybernetics(González et al., 2021), the172

four-layer architecture ensures both functional completeness and logical closed-loop reliability.Therefore,173

the proposed architecture is grounded in both empirical evidence and cross-domain theoretical foundations,174

providing a robust scientific basis for the development of adaptive and reliable ERA systems (Fig. 1).175

3.2 From Manual Sensing to Intelligent Surveillance176

Over the past six decades, risk perception and monitoring technologies have evolved from manual177

field observations to intelligent, data-driven monitoring systems. Fig.4 illustrates this evolution, which can178
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be summarized into four interrelated phases.179

180

Fig.4 Diagram of the evolution of the risk perception and monitoring layer.181

(1) Manual Perception and Early Instrumentation182

In the earliest stage, disaster perception relied on human operators, analog instruments, and visual183

inspection. Meteorological observers manually recorded rainfall and seismic activity(Schweitzer and Lee,184

2003); industrial workers conducted periodic checks using portable gas detectors(Hemingway et al., 2012);185

and public health surveillance depended on field sampling. Although these methods provided basic186

situational awareness, they were constrained by time delays(Fonollosa et al., 2018), limited coverage, and187

subjective bias(Dang et al., 2018). Automation was virtually absent—the perception layer of ERA remained188

entirely human-centered.189

(2) Remote and Automated Sensing190

With the rise of remote sensing satellites, radar networks, and early wireless sensor systems,191

monitoring gradually shifted toward automation(Ko et al., 2009; Kodali and Yerroju, 2017). Satellite-based192

systems enabled continuous observation of floods, landslides, and wildfires(Al-Hady et al., 2023; Mois et193

al., 2017); fixed gas and infrared sensors provided near-real-time industrial monitoring(Chraim et al., 2015;194

Jain and Kushwaha, 2012; Ni et al., 2018); and digital epidemiology systems aggregated hospital data for195

disease detection(Adiga et al., 2020). This phase marked the first integration of automated data acquisition196
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into ERA, significantly improving detection timeliness and reliability.197

(3) Networked and Multimodal Monitoring198

The emergence of IoT and multi-sensor fusion technologies enabled risk perception to become199

multimodal—integrating visual, acoustic, thermal, and social data for comprehensive situational200

awareness(Alamdar et al., 2015). Seismic sensors linked with drones enhanced earthquake201

assessment(Contreras et al., 2021); fiber-optic sensors detected industrial leakage and overheating(Ashry et202

al., 2022); and mobile apps supplied real-time epidemic data(Moses et al., 2021). These networked sensing203

nodes laid the foundation for adaptive ERA architectures, where data streams directly informed early204

warning and resource allocation.205

(4) Intelligent and Cognitive Monitoring206

The current phase is characterized by the convergence of AI, edge computing, and digital twin207

technologies. Intelligent monitoring now extends beyond anomaly detection toward pattern recognition and208

predictive diagnostics. Deep learning models extract complex spatiotemporal features from multi-source209

data to identify emerging risk hotspots in real time. In public health, AI-driven systems integrate genomic210

sequencing data with population mobility and social indicators to forecast epidemic trajectories(Hadfield et211

al., 2018; Ongesa et al., 2025), COVID-19 early-warning system (EWS) uses hospital diagnostic data and212

thermal sensors for contactless screening(Ding et al., 2025; Haque et al., 2024). In industrial safety,213

computer vision and reinforcement learning models autonomously diagnose abnormal equipment behavior,214

while explainable AI enhances operator trust in automated alerts(Rivas and Abrao, 2020; Sayed and Gabbar,215

2017). In natural disaster management ,forest fire monitoring relies on IoT, thermal imaging, drones, and216

AI algorithms to achieve early fire detection and spread prediction(Kavitha et al., 2023; Mehta et al., 2021),217

DMSEEW system combines GPS and seismic sensors with ML to enhance earthquake early warning218

accuracy(Becker et al., 2020). Additionally, the integration of big data technology enables automatic219
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analysis of multi-source information such as social media, news reports, and police records to help predict220

and identify potential social security threats (e.g., the Violent Behavior Detection System (VBDS) applies221

deep learning to CCTV footage to detect violent behaviors(Shubber and Al-Ta’i, 2022)) .Based on natural222

language processing and machine learning technologies, automated systems can monitor large volumes of223

open data sources in real time, detect early warning information related to violence, riots, terrorist activities,224

and provide decision support(Florea et al., 2022; Montasari, 2024; Robertson et al., 2019). These advances225

are propelling ERA from reactive monitoring to proactive risk anticipation.226

Across these phases, the transition from human-centered to human–machine hybrid perception has227

continuously enhanced the reliability, scalability, and cross-domain applicability of automated emergency228

response systems.229

3.3 Evolution of Data-Driven Decision-Making230

Serving as the cognitive core of ERA, the decision layer has progressed from deterministic, rule-based231

systems to adaptive, data-driven intelligent engines. Fig. 5 illustrates this evolution across four interrelated232

stages, each enhancing analytical capability and autonomy built upon its predecessors.233

234

Fig.5 Diagram of the evolution of data analytics and the decision-making hierarchy.235

(1) Rule-Based Decision Support236
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Early systems relied on fixed logical rules and expert-defined procedures. Classical models such as237

Montgomery’s sequential decision model(Montgomery and Svenson, 1976) and Simon’s DSS framework238

(intelligence–design–choice) (Simon, 1960) structured decision processes through rule- and case-based239

reasoning. Applications in nuclear and chemical plants used predefined rules to ensure consistency and240

auditability. Although limited in real-time adaptability and cross-domain generalization, these systems241

established the transparent decision logic that underpinned later intelligent frameworks.242

(2) AI-Driven Knowledge Integration243

With the expansion of sensor networks and computing power, rule-based DSS evolved into hybrid AI244

systems combining symbolic reasoning and probabilistic inference. Bayesian networks and GIS-based tools245

enabled dynamic, multi-source situational assessment and predictive mapping(Bhatt and Zaveri, 2002).246

Group decision support(Cua and Heaton, 2007) and game theory–based optimization models enhanced247

interagency coordination under uncertainty(Brown and Vassiliou, 1993), reducing the isolation of248

single-agent frameworks. This phase bridged deterministic rules with adaptive analytical reasoning through249

AI-enabled knowledge integration.250

(3) Machine Learning and Predictive Analytics251

The proliferation of digital and sensor data shifted decision-making toward autonomous learning.252

Algorithms such as neural networks(Liao et al., 2011), SVMs(Taamneh and Taamneh, 2021), and random253

forests learned nonlinear risk–outcome relationships, enabling rapid forecasting of evolving emergencies(L.254

Wang et al., 2024). Applications included wildfire propagation prediction(Bot and Borges, 2022; Pereira et255

al., 2022; Sayad et al., 2019), explosion early warning, and evacuation optimization(Al-Hady et al., 2023)256

(Huang et al., 2024; Rüppel and Schatz, 2011; Zverovich et al., 2016). Unlike prior hybrid systems, these257

models derived decision rules directly from data, providing real-time adaptability to changing258

environments.259
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260

(4) Deep Learning and Explainable AI261

Recent advances have integrated deep learning–based perception technologies—such as natural262

language processing for text and social media analytics(Imran et al., 2014), computer vision for image and263

drone interpretation(Robertson et al., 2019), and multi-task learning for multi-hazard prediction—with264

explainable decision modules emphasizing transparency and human trust (For complex events, multi-task265

learning (MTL) has become pivotal, with Alam's MEDIC dataset demonstrating a 30% reduction in266

computational overhead without accuracy loss(Alam et al., 2023)) .Representative systems include267

AI-driven disaster response platforms (e.g., Fertier's AIC system dynamically generate response268

strategies(Fertier et al., 2020)), vision-based recognition frameworks (e.g., VGG/YOLO(Robertson et al.,269

2019)), medical emergency decision centers(Althouse et al., 2015), and generative AI decision support270

systems. These examples demonstrate how advanced neural architectures enable real-time linkage between271

perception and strategic decision-making. While these models substantially enhance accuracy and272

adaptability, they introduce new challenges in interpretability, ethical reliability, and human–machine273

collaboration.274

Overall, the transition from rule-based determinism to data-driven adaptivity reflects a continuous275

enhancement in probabilistic reasoning, autonomous learning, and human–machine synergy—forming the276

intelligent, context-aware decision engine that now underpins reliable and adaptive emergency277

management.278

3.4 Automated Response and Control279

The automated response and control layer constitutes the operational core of the ERA system,280

translating analytical outputs from the decision-making layer into executable actions. Through automation281
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platforms and standardized communication protocols, it integrates firefighting, power, communication, and282

transportation subsystems. Fig.6 illustrates its evolution along four major technological pathways,283

reflecting the convergence of perception, computation, and coordination capabilities.284

285

Fig.6 Diagram of the evolution of the automatic response and control layer.286

(1) Rule-Based and Hardware-Triggered Responses287

The initial stage of automation was dominated by single-sensor and threshold-triggered mechanisms,288

where systems were activated only upon anomaly detection. For instance, Graf’s debris-flow monitoring289

system(Badoux et al., 2009) enabled early warning functions but remained entirely dependent on manual290

verification and intervention(Jafari et al., 2020). Automation during this stage was characterized by291

passivity and localization, featuring unidirectional signal transmission from sensors to operators, with292

limited inter-system communication or adaptive decision-making logic.293

(2) Logic-Driven Integration294

The second stage marked a transition from manual activation to programmable logic control, driven by295

the introduction of microprocessors and rule-based engines. Emergency response systems for hazardous296

materials(Zografos et al., 2000)and dynamic seismic mapping platforms (Bingli et al., 2014) enabled297

automation based on predefined rules and contextual thresholds. Concurrently, advances in mobile and298

wireless communication facilitated remote alerts and cross-platform coordination(Kuantama et al., 2013,299
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2012). For example, Azid et al. developed an Android-based flood warning application utilizing web300

services for automatic notifications(Sung et al., 2022), while De Souza et al. integrated real-time301

hydrological monitoring with user geolocation to deliver context-aware SMS alerts(De Souza et al., 2015) .302

Automation at this stage exhibited logic-driven and distributed characteristics, yet remained constrained by303

static rules and limited situational awareness.304

(3) Intelligent Interconnection305

With the integration of deep learning, the Internet of Things (IoT), and 5G/B5G communication306

networks(Dixit et al., 2022; Euchi, 2021), automated response systems entered the stage of intelligent307

interconnection. Technologies such as device-to-device communication(Ahmed et al., 2019; Ever et al.,308

2020)and the Internet of Emergency Services (IoES) enabled multi-channel, low-latency information309

exchange among heterogeneous agencies(Damaševičius et al., 2023). Multi-access edge computing and310

service-oriented architectures facilitated real-time deployment of adaptive services, while intelligent311

transportation systems provided the foundation for networked emergency mobility(Chen and Englund,312

2018). AI models—including CNN-based incident detection(Kim et al., 2019)and deep recurrent neural313

network–based event classification(dos Santos et al., 2019)—further enhanced the precision of automated314

control. This phase can be summarized as the “AI + Edge + Connectivity” paradigm, representing a shift315

from deterministic rule execution to context-aware, data-driven orchestration.316

(4) Adaptive Autonomy317

Since the 2020s, ERA systems have evolved toward adaptive and decentralized coordination, enabling318

dynamic sharing of authority(Chen et al., 2008) and resources across multiple agencies (Janssen et al.,319

2010)( IoT + BIM systems for fire detection and suppression, integrating sprinkler control and escape route320

optimization(Annadurai et al., 2024; Jiang et al., 2023; Mondal et al., 2023)). Architectures based on321

ontology and multi-agent systems support semantic interoperability and autonomous negotiation among322
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heterogeneous organizations(Maalel and Ghézala, 2019). Rule-/ontology-based emergency323

decision-support systems integrate event-driven reasoning and semantic inference to keep a continuously324

updated operational picture and support rapid task (re)allocation and resource redistribution(Cui et al.,325

2024). Meanwhile, the Matter-IoT framework improves device interoperability and response reliability326

through standardized protocols(Bhardwaj and Joshi, 2024). The emergence of the digital twin327

paradigm(Fan et al., 2021)further propels the transition from operational automation to cyber-physical328

co-evolution, where continuously updated situational data refine simulation models to optimize control329

strategies. Overall, this stage represents a transformation from passive automation to adaptive autonomy,330

emphasizing continuous learning, coordination, and optimization.331

This evolution reflects not only technological iteration but also multidimensional integration pathways:332

(1) Vertical integration — standardizing data interfaces to link the perception, decision, and execution333

layers; (2) Horizontal integration — achieving semantic and protocol-level interoperability among334

heterogeneous response agencies;335

(3) Cognitive integration — embedding learning algorithms for continual adaptation under uncertainty.336

Thus, automation in ERA is shifting from task automation toward autonomous collaboration, laying the337

foundation for a resilient, data-driven emergency management network.338

3.5 Enabling Adaptive Learning and Continuous339

Optimization340

The feedback layer represents the adaptive capability of ERA systems, operating as a continuous341

optimization loop across the disaster management cycle. Fig.7 illustrates how an effective feedback342

mechanism transforms ERA from rule-based static models into dynamic, data-driven systems capable of343

real-time self-optimization.344
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345

Fig.7 Diagram of the evolution of the subsequent feedback and adjustment layer.346

(1) Manual and retrospective feedback347

Early ERA studies primarily focused on retrospective analyses of emergency events or simulation348

exercises, heavily relying on manually written performance evaluations and post-incident349

reports(Ramabrahmam et al., 1996). During this period, feedback mechanisms lacked autonomous design;350

lessons learned were integrated manually, and complex resource coordination still depended on human351

intervention. Consequently, feedback played only a limited corrective role and was insufficient to support352

continuous system improvement.353

(2) Semi-dynamic feedback through real-time monitoring354

With advances in sensing, communication, and computational technologies, feedback layers gradually355

incorporated real-time monitoring and automated evaluation capabilities(Badoux et al., 2009; Ding et al.,356

2022; Gasparini et al., 2007). Researchers began improving alarm performance, enhancing the utilization of357

monitoring data, and integrating location-based path planning models to coordinate disaster logistics and358

resource deployment(Yi and Özdamar, 2007). The convergence of BIM–GIS–IoT technologies further359

enhanced system interoperability, enabling more efficient spatial and situational data360

exchange(Boguslawski et al., 2015; Sani and Abdul Rahman, 2018). These developments marked a shift361

from static, post-event analysis toward semi-dynamic feedback, where systems could trigger limited362
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adaptive actions based on predefined thresholds or simple rule sets.363

(3) Intelligent and predictive feedback systems364

The rise of artificial intelligence, machine learning, and big data analytics has transformed the365

feedback layer into an intelligent decision support system. By integrating real-time medical, transportation,366

and social data streams via the Internet of Things, ERA systems can dynamically reallocate resources and367

adjust operational priorities in evolving scenarios(Zhang et al., 2014; G. Zhang et al., 2024). Deep learning368

algorithms detect emerging risk patterns and predict disaster evolution trends, allowing the system to369

proactively reconfigure response strategies before performance degradation occurs. For instance, real-time370

social media data mining assists public health agencies in adjusting medical resource allocation(Rathore et371

al., 2016), while reinforcement learning models continuously refine decision policies based on performance372

feedback(Arulkumaran et al., 2017; Li, 2024).373

Overall, the evolution of the feedback layer reflects a paradigm shift from retrospective correction to374

continuous and predictive adaptation. This transformation establishes a solid theoretical foundation for the375

cross-domain application analysis discussed in the following section.376

The above constitutes the four core layers of the ERA system, providing a foundational framework for377

the subsequent application scenario analysis.378

4 Advantages of ERA379

The advantages of ERA can be summarized in four points: data analysis, rapid response, precise380

location and intelligent dispatch.381

4.1 Data-Driven Decision Advantages382

The integration of AI and big data into ERA systems has enabled the consolidation of multi-source383
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information, thereby enhancing prediction accuracy and situational awareness throughout the entire384

emergency management cycle. For instance, the Johns Hopkins University Global COVID-19 Surveillance385

Platform established a real-time data acquisition (Sheng et al., 2021)and reporting mechanism that386

significantly supported timely responses during large-scale public health crises(Kamel Boulos and387

Geraghty, 2020). Similar mechanisms have been implemented in Japan’s Earthquake Early Warning System,388

where automated seismic data processing allows alerts to be issued within seconds(Kumar et al., 2022; H.389

Zhang et al., 2024).These systems demonstrate that automation can effectively augment human judgment in390

real-world emergency contexts. The National Oceanic and Atmospheric Administration (NOAA) in the391

United States provides another example: its AI-driven hurricane forecasting models generate automated392

predictions that support expert deliberations, while human coordinators ultimately decide when and how to393

issue community alerts(Jafarzadegan et al., 2023; Lam et al., 2023).394

4.2 Temporal Efficiency in Rapid Response395

Real-time monitoring and analytics enable Emergency Response Automation (ERA) systems to396

rapidly detect incidents and trigger timely responses, thereby minimizing latency. For example, Zheng et al.397

proposed the ChangeOS framework for multi-hazard decision support (Zheng et al., 2021); other398

implementations include a rapid emergency system for hydrogen leakage(C. Wang et al., 2024) and a399

real-time threshold-based flood emergency activation mechanism(Zhou et al., 2024). Technological400

responsiveness must align with human readiness and coordination. Automated alerts are effective only401

when responders can interpret and trust system outputs. Thus, ERA efficiency relies not just on402

computational speed but on training, trust, and teamwork enabling human–machine collaboration.403
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4.3 Geospatial Precision in Resource Allocation404

Accurate localization at the incident scene is a critical function of ERA systems(Ang et al., 2022;405

Khan et al., 2022). For instance, following the 2010 Haiti earthquake, Geographic Information System (GIS)406

technologies were employed to precisely identify the most severely affected regions(Corbane et al., 2011).407

Similarly, after the 2015 Nepal earthquake, the integration of satellite imagery and real-time unmanned408

aerial vehicle (UAV) data not only supported emergency response operations(Ge et al., 2015) but also409

provided rescue teams with precise navigation information. Liu and You and colleagues utilized UAVs to410

develop optimized resource allocation schemes, determine efficient distribution routes and equipment411

utilization plans, and design medical supply transportation strategies, thereby providing robust operational412

support for emergency missions(Liu and You, 2020). In addition, real-time tracking of rescue personnel and413

materials has ensured highly coordinated and efficient response operations(Balta et al., 2017; Damaševičius414

et al., 2023). Collectively, these applications demonstrate how fine-grained geospatial information and415

real-time tracking enable ERA systems to match resources to needs with high spatial precision.416

4.4 Computational Optimization for Intelligent Dispatch417

Intelligent dispatching systems leverage predictive modeling to optimize resource allocation and418

logistics scheduling. During the COVID-19 pandemic, numerous regions employed artificial intelligence419

and digital platforms to manage medical supplies and personnel, effectively alleviating shortages and420

enhancing coordination efficiency(Lv et al., 2021; Van Der Schaar et al., 2021). Compared with ground421

transportation, unmanned aerial vehicles (UAVs) reduced emergency medical delivery times by several422

minutes(Claesson et al., 2017)( UAVs shortened AED delivery by 2–8 minutes, and up to 7 minutes with423

optimized routing) (Roberts et al., 2023). However, achieving such benefits requires more than algorithmic424

sophistication. Institutional readiness—including regulatory flexibility and financial support—and robust425
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data-sharing agreements play equally critical roles in determining whether automated dispatching can426

operate at scale. The strength of intelligent dispatching therefore lies in the synergistic interplay between427

technological capability and institutional collaboration, ensuring that automation functions within428

trustworthy, coordinated and well-regulated emergency management systems.429

5 Typical Application Scenarios430

Emergency response automation technology has been systematically applied in various fields,431

including natural disasters(Sun et al., 2020), industrial disasters(Aziz et al., 2014), public health(Murthy et432

al., 2017), social security and public safety emergency response automation(Chowdhury et al., 2023), and433

military combat and security emergency response automation(Sciences et al., 2017). Despite the diversity434

of application scenarios, the core logic of these systems all adhere to a closed-loop framework of435

“monitoring-assessment-decision-response”(Casartelli et al., 2025; Cook and Dorussen, 2021; Stoto et al.,436

2018).437

This section summarizes the representative emergency response systems and platforms that frequently438

appear in the literature, clarifying their core functions, key technologies, application contexts, and strength439

of supporting evidence. The selection criteria for these systems include:440

(1) recurrent appearance across multiple peer-reviewed studies;441

(2) coverage of diverse technological pathways;442

(3) demonstration of typical trade-offs among perception, decision-making, execution, and learning443

capabilities.444

5.1 Cross-System Comparative Analysis445

To ensure transparent cross-system comparison, each representative system was mapped to six446
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commonly cited ERA capability dimensions:447

(1) multi-source sensing and monitoring,448

(2) decision support and automation,449

(3) execution and deployment,450

(4) interoperability and data sharing,451

(5) robustness and fault tolerance,452

(6) adaptive learning.453

Each system’s performance was semi-quantitatively rated as strong (S), medium (M), or weak (W)454

under an evidence-grading scheme emphasizing reproducibility and rigor. Ratings considered field or455

multi-site validation, comparative or pre–post analyses, sample size and reporting completeness, and the456

availability of quantitative indicators e.g., detection latency, false-alarm rate, task-success ratio. Studies457

with incomplete metrics or potential bias—such as missing control comparisons or unclear458

validation—were recorded and downgraded accordingly. Systems supported only by conceptual models or459

small pilots were rated lower. Table 2 presents the resulting capability matrix, interpreted with supporting460

evidence in Table 3.461

From these evaluations, several convergent and divergent patterns emerge:462

Common Features:463

(1) Layered architecture: Most systems follow a perception → analysis → decision → execution464

sequence, validating the four-layer ERA framework.465

(2) Sensing priority: Investment concentrates on early detection (sensor networks, remote sensing,466

video analytics) to ensure rapid situational awareness.467

(3) Human-in-the-loop: While automated rules exist, critical decisions generally retain human468

oversight.469
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(4) Limited adaptability: Few operational systems enable real-time learning; most remain in prototype470

stages.471

(5) Interoperability gaps: Persistent data silos continue to hinder coordination and efficiency.472

Based on these evaluations, several convergent patterns and distinct divergences can be identified:473

Distinctive Features:474

(1) Execution intensity: Logistics systems emphasize automated execution, whereas monitoring475

systems primarily support human decisions.476

(2) Robustness requirements: Natural hazard systems must handle sensor noise and false alarms, while477

industrial systems rely on deterministic logic to reduce false positives.478

(3) Evidence maturity: Some systems, such as medical UAV platforms, have field validation, whereas479

others remain in prototype or simulation stages.480

(4) Privacy and ethics: Urban surveillance systems face privacy and public acceptance challenges481

absent in closed industrial settings.482

Overall, the ERA framework demonstrates broad applicability, but system designs must balance483

trade-offs among sensing accuracy, automation, interoperability, and socio-legal constraints. Future484

research should advance ERA systems from conceptual models to reliable, interoperable, and operational485

solutions.486
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Building upon the preceding system-level and capability-level analyses, we now focus on the shared490

technological foundations that enable efficient ERA. Table 4 provides a cross-domain synthesis of the key491

enabling technologies. These technologies are widely deployed across different operational contexts and492

collectively support perception, decision-making, coordination, and adaptive control under conditions of493

uncertainty.494

This integrative perspective aligns with the principles of the U.S. National Incident Management495

System (NIMS) and the Incident Command System (ICS), both of which emphasize interoperability,496

unified command, and flexible coordination. Similarly, a cross-domain ERA architecture emphasizes497

technological convergence over fragmentation, advocating a transition from domain-specific automation498

toward a systemic, learning-oriented, and trust-enhancing framework for intelligent emergency499

management.500
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5.2 Summary547

This section maps representative ERA systems onto a clearly defined capability matrix and548

integrates cross-system evidence. This approach reveals both the generic capability dimensions of549

ERA and the system-specific trade-offs involving robustness, interoperability, and operational550

autonomy. In doing so, it establishes an empirical bridge between conceptual frameworks and551

operational realities.552

The innovation of this approach lies in two aspects:553

(1) establishing a transparent evidence mapping from concrete systems to framework554

components;555

(2) deriving cross-domain, non-siloed research priorities based on this mapping to guide future556

ERA development.557

6 Discussion558

Despite significant advances in automation and intelligence, contemporary ERA systems face559

persistent implementation bottlenecks rooted in technological, organizational, and societal factors.560

Based on evidence extracted from the literature, this section synthesizes major challenges, articulates561

implications for Safety Science practice, and proposes actionable, verifiable research directions to562

bridge current gaps.563

6.1 Analysis of system limitations and challenges564

Current ERA systems exhibit four primary limitations: data quality, system compatibility,565

privacy/security, and cost-effectiveness. We elucidate these issues with supporting literature.566

ERA face dual challenges of accuracy and completeness at the data level. Errors, missing data,567
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or delays in real-time data can directly lead to decision-making biases, while communication568

disruptions caused by damaged infrastructure in disaster-affected areas further exacerbate this569

issue(Cao et al., 2023; Rak et al., 2021). For example, in the 2018 Indonesian earthquake, severe570

damage to power and communication facilities caused the ERA to collapse, and technologies such as571

drones were unable to fully replace traditional methods due to limitations such as weather and572

battery life(Yulianto et al., 2020).573

System compatibility and cross-domain coordination are another major challenge. Differences574

in technical standards and data formats across departments, regions, and even countries create575

information silos, and cross-border rescue operations also face regulatory conflicts(Suggett, 2012).576

In the 2015 Nepal earthquake, inconsistent system standards among countries made resource577

integration difficult(Rai et al., 2021), and the 2021 Ar River Valley flood incident also faced issues578

of ineffective communication between emergency response systems(Müller et al., 2023). The579

European GDPR imposes compliance constraints on cross-border data transmission(Voss, 2019).580

Privacy security and social trust crises are increasingly prominent. The system's reliance on581

personal data may lead to leakage risks (Velev and Zlateva, 2023). On December 23, 2015, a582

coordinated cyberattack on Ukraine’s distribution utilities caused power outages affecting hundreds583

of thousands of customers(Sullivan and Kamensky, 2017). Personal information leakage incidents in584

multiple countries during the pandemic have exacerbated public concerns(Chan and Saqib, 2021;585

Wang et al., 2024). When using drones for rescue missions, network security issues must be586

considered (Papyan et al., 2024; Sindiramutty et al., 2024). Data confidentiality(Sciancalepore,587

2024). Additionally, AI algorithm bias and decision-making opacity further erode trust, while588

insufficient technical capabilities among frontline personnel also constrain system589

effectiveness(Gevaert et al., 2021). Accordingly, we need corresponding methods to protect personal590
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information, sensitive information, and other data(Seba et al., 2019).591

Costs and talent shortages pose practical constraints. The procurement of hardware, software592

development, and ongoing maintenance require substantial funds, which may pose financial593

pressures for small and medium-sized enterprises or regions and departments with poorer economic594

conditions. Peer-reviewed assessments indicate that operating a West Coast EEW system such as595

ShakeAlert requires sustained annual O&M funding, and cost–benefit analyses show that avoided596

losses from even a single moderate earthquake can offset about a year of operations(Strauss and597

Allen, 2016) (Given et al., 2018), and developing countries in particular face a shortage of high-end598

technical talent.599

These controversies fundamentally reflect the deep-seated contradiction between “technological600

availability” and “system reliability,” necessitating the establishment of an interdisciplinary research601

framework.602

6.2 Implications for Safety Science practice603

6.2.1Reliability engineering implications604

ERA should be designed and evaluated against reliability metrics—availability/MTBF, fault605

tolerance, and time-critical performance. Tools such as FMEA and fault/causal graphs can localize606

failure propagation and support uncertainty-aware thresholds. Where the literature reports607

operational or multi-site evaluations, we recommend reporting FAR, missed detections, latency, and608

recovery time relative to baseline systems to enable evidence grading(Xu et al., 2012).609

6.2.2Human factors and adoption610

Human-in-the-loop (HITL) controls and explainable AI (XAI) should target workload, situation611
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awareness, and calibrated trust. Training and rehearsal can reduce misuse/disuse, especially under612

degraded communications. We recommend tracking workload/trust alongside technical metrics, in613

line with our findings that explainable AI and human–machine collaboration are pivotal for614

trustworthy ERA(Hancock et al., 2011; Hoff and Bashir, 2015).615

6.2.3Standards and interoperability616

Cross-agency operations benefit from standards-aligned data models and interfaces consistent617

with incident-management practice(Elmhadhbi et al., 2020; Salvador et al., 2019). As a minimum618

viable interoperability set, we recommend (1) schema mappings and API/message profiles aligned619

with the roles and message types used in incident command, and (2) event-logging conventions for620

traceability across agencies and operational periods—directly addressing the interoperability gaps621

highlighted in 6.1 and reflecting the NIMS/ICS emphasis on unified coordination.622

6.3 Next-generation ERAmodel framework623

Building on the proposed four-layer ERA architecture, this study presents a next-generation624

integrated model that enables end-to-end collaboration and adaptive evolution across heterogeneous625

systems. Fig.8 illustrates this model, which extends conventional multilayer structures and provides626

a forward-looking framework for ERA development in complex, data-intensive environments.627

At its core, the model introduces three interrelated pillars, serving both as technological628

enablers and methodological foundations:629

(1) Digital Twin Middleware Platform (DTMP): Synchronizes virtual and physical systems to630

enable real-time simulation, validation, and adaptive optimization.631

(2) AI–Expert Hybrid Decision Engine (AI-E): Integrates machine intelligence with expert632
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reasoning to generate interpretable and trustworthy decisions.633

(3) Intelligent IoT Edge Network (I-IEN): Combines 6G communications, blockchain-based634

data integrity assurance, and edge computing to ensure resilient connectivity and secure, low-latency635

information flow.636

637

Fig.8 Key Interaction Flow of ERA System.638
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Unlike conventional ERA systems that follow rigid workflows, this model emphasizes639

closed-loop autonomy—including self-perception, self-diagnosis, and self-deployment—supported640

by transparent data traceability and adaptive learning. This marks ERA’s evolution from a toolset to641

an intelligent, self-organizing system.642

Each pillar defines quantifiable research dimensions: DTMP enables assessment of predictive643

accuracy and latency reduction; AI-E allows evaluation of decision interpretability and644

human–machine trust; I-IEN facilitates measurement of communication resilience and coordination645

efficiency. These metrics provide a foundation for cross-domain empirical validation and address646

long-standing methodological gaps such as non-standardized evaluation and limited reproducibility.647

To ensure comparability, the framework integrates three methodological mechanisms:648

structured data fusion, heterogeneity management through ensemble learning, and uncertainty649

quantification via probabilistic reasoning. Together, these mechanisms enhance robustness and650

transparency, advancing ERA toward an evidence-driven, adaptive system capable of learning,651

coordination, and evolution under uncertainty.652

6.4 Theoretical positioning653

To deepen the theoretical foundations of the next-generation ERA architecture, a comparative654

analysis was conducted with three representative theoretical models in the emergency response655

domain: the OODA loop(Brehmer, n.d.; Sullivan and Kamensky, 2017; Von Lubitz et al., 2008), the656

State Emergency Management System (SEMS) based on the Incident Command System (ICS)657

(Kano et al., 2007), and Resilience Engineering(Park et al., 2013). These models represent,658

respectively, iterative cognition, hierarchical coordination, and adaptive recovery perspectives that659

have shaped modern emergency management paradigms.660
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Structurally, the ERA framework can be mapped onto these theories (Table 5). Its661

“perception–decision–communication–response” cycle parallels the OODA loop, while its662

communication and response layers support the collaborative and modular characteristics of SEMS.663

From a resilience perspective, ERA’s functional chain of664

“identification–regulation–reconstruction–optimization” embodies the adaptive learning principles665

of Resilience Engineering. However, the significance of this alignment lies not in structural666

similarity, but in its transformation of the underlying cognitive and organizational667

logic—transitioning from human-coordinated systems to intelligent autonomous systems.668

ERA extends these classical models in three key dimensions.669

First, it generalizes the OODA loop through multimodal sensing and explainable AI, enabling670

autonomous perception and decision cycles that surpass human speed and situational coverage.671

Second, it advances beyond SEMS’s procedural rigidity by employing data-driven scheduling672

and blockchain-assisted coordination, thereby enhancing elasticity in heterogeneous, multi-agency673

operations.674

Third, it evolves Resilience Engineering toward a proactive paradigm: by coupling digital twins675

and edge intelligence, the system can predict, simulate, and optimize response strategies in real time.676

Yet, the theoretical strengths of ERA are context-dependent. In real-world environments,677

technical and environmental constraints may limit its advantages. The 2011 Fukushima nuclear678

accident illustrates this boundary: although multiple automated systems were deployed, high679

radiation and signal interference caused severe communication failures and delayed robotic680

operations. This underscores that automation alone cannot guarantee resilience unless systems681

incorporate environmentally adaptive redundancy, fault tolerance, and recovery coordination among682

agents. In other words, the theoretical superiority of ERA requires robust implementation683
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mechanisms to withstand anomalous disturbances.684

Therefore, the ERA framework should be viewed not as a replacement for human-centered685

models but as an evolutionary complement—enhancing decision efficiency and resilience through686

integration rather than substitution. Future theoretical exploration should focus on validating under687

which conditions ERA’s advantages emerge, by linking architectural performance indicators with688

empirical data from real or simulated disaster scenarios. Such a comparative, evidence-based689

approach will substantiate the theoretical claims and delineate their operational boundaries.690

Table 5. Advantages of ERA in case simulations.691

6.5 Future trends692

The future evolution of ERA is expected to advance along five interdependent technological693

trajectories: intelligent sensing, autonomous and explainable decision-making, resilient694

Model Key features Performance in this case ERA System Corresponding Capabilities

OODA
Loop

Linear
cycle: Observe
→ Orient →
Decide →Act

The command center initiated a
response based on sensor data, but
communication disruptions and
conflicting inputs caused several
minutes of delay, hindering full
situational coverage.

ERA integrates multi-source perception and
AI-driven decision-making, automating the
“Orient” and “Decide” functions and enabling
rapid contingency simulations within seconds
to enhance response speed and coverage.

SEMS Emphasize
organizational
structure and
division of
responsibilities
(ICS framework)

Inconsistent information channels and
uncoordinated operations among
firefighting, medical, and
transportation agencies result in
fragmented responses.

ERA employs a 6G–blockchain communication
layer as a task-scheduling platform to enable
cross-organizational coordination, consensus,
and resource sharing, replacing static
processes.

Resilience
Engineeri
ng

Focus on system
fault tolerance,
recovery, and
learning
mechanisms.

During early disaster stages, localized
system failures at transport and
medical hubs create communication
blind spots, delaying manual
instructions and feedback.

The ERA system employs a self-feedback
redeployment mechanism: when a robot fails
and returns, the AI dynamically reschedules
and reconstructs task paths based on real-time
information, showcasing self-healing and
adaptive learning.
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communication, digital-twin-based simulation, and intelligent multi-agent collaboration. Collectively,695

these pathways aim to overcome persistent limitations in data fragmentation, communication696

disruption, decision uncertainty, and coordination inefficiency. Nevertheless, progress in these697

domains must move beyond conceptual frameworks toward quantifiable, evidence-supported, and698

cross-domain validated technological advancements.699

(1) Intelligent Sensing700

Next-generation sensing systems will adopt multi-source, heterogeneous, and adaptive701

architectures, integrating MEMS, microwave, optical, and gas sensors for real-time detection of702

diverse hazards such as fires, toxic releases, and structural deformations (Donta et al., 2023; Nanda703

et al., 2023; Ortiz-Garcés et al., 2023). The convergence of user-edge computing (UEC) allows704

priority processing of critical data (e.g., UAV-acquired disaster imagery) in constrained705

environments(Sun et al., 2025), while blockchain integration enhances secure data storage and706

interagency information sharing (Habib et al., 2024; Treiblmaier and Rejeb, 2023). This fusion has707

the potential to mitigate data silos and transmission latency(Zhang et al., 2025). However, scalability708

remains a central technical bottleneck for large-scale blockchain implementation(Chamola et al.,709

2020; Satheesh et al., 2025). Future empirical work should report measurable indicators—detection710

latency, accuracy, and false alarm rate—to verify practical effectiveness under both simulated and711

field conditions.712

(2) Autonomous and Explainable Decision-Making713

AI-driven decision frameworks will increasingly emphasize adaptability, interpretability, and714

multimodal data fusion(Hsiao et al., 2025; Wibowo et al., 2025). The integration of715

Dempster–Shafer Theory (DST) with AI models enables conflict resolution under uncertainty(Fei et716

al., 2024), while generative AI tools (e.g., ChatGPT-type models) may support rapid scenario717
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modeling and knowledge extraction under time or resource constraints(Maceika et al., 2024).718

Moreover, multimodal neural networks combining natural language processing and computer vision719

can leverage unstructured data from social media and sensor feeds to enhance situational awareness720

(Su et al., 2021). Yet, the real-world performance of these systems remains insufficiently validated.721

Future studies should systematically quantify gains in decision accuracy, processing efficiency, and722

operator trust relative to rule-based and expert systems, and explicitly incorporate explainability723

metrics and human–machine collaboration performance into evaluation protocols to strengthen724

operational reliability.725

(3) Resilient Communication and Network Intelligence726

Current 5G systems face inherent constraints in latency, energy consumption, and coverage.727

Emerging 6G architectures—integrating quantum communication, terahertz transmission, and728

low-Earth-orbit (LEO) satellite constellations—are poised to deliver seamless and resilient729

connectivity for emergency operations(Aldrees et al., 2025; Liu et al., 2025; Uusitalo et al., 2021).730

Meanwhile, the combination of software-defined networking (SDN) and UAV relay networks can731

dynamically reconstruct disrupted communication infrastructures, ensuring network continuity in732

disaster zones(Abir et al., 2023). These paradigms demand rigorous empirical verification,733

particularly under realistic operational loads, to quantify metrics such as end-to-end latency, packet734

loss, and network resilience. The convergence of AI and 6G technologies will ultimately enable a735

closed-loop emergency management ecosystem, integrating pre-disaster forecasting, real-time736

response, and post-disaster recovery (Ariyachandra and Wedawatta, 2023; Zio and Miqueles,737

2024).738

(4) Digital Twins and Simulation-Driven Decision-Making739

Digital-twin-based platforms offer a dynamic, data-driven representation of disaster systems,740
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facilitating predictive analytics and operational optimization(Ghaffarian, 2025). While their741

applications in industrial and construction safety are promising(Ariyachandra and Wedawatta, 2023),742

challenges persist regarding uncertainty quantification, cybersecurity, and standardization of743

modeling frameworks. Coupling digital twins with edge and distributed computing may further744

support low-latency, scalable strategy adaptation during real-time operations(Zio and Miqueles,745

2024). Future research should focus on quantifying performance improvements, including reductions746

in decision latency, enhancements in resource allocation efficiency, and gains in predictive accuracy,747

while ensuring transparency in model validation and uncertainty assessment.748

(5) Intelligent Multi-Agent Collaboration749

Next-generation ERA operations will increasingly depend on collaborative intelligent750

entities—such as UAVs, ground robots, and AI-assisted agent swarms(Moosavi et al., 2024). Robotic751

systems already demonstrate strong performance in hazardous search-and-rescue and medical752

support missions(Pillai et al., 2024). Future architectures should integrate multi-agent coordination753

frameworks and human–machine collaboration models to optimize task allocation, minimize754

operational conflicts, and enhance system robustness(Daud et al., 2022; Mourtzis et al., 2024).755

Quantitative performance measures—such as task completion time, coverage efficiency, and safety756

indices—should become standardized evaluation criteria to enable cross-study comparability and757

cumulative evidence building.758

7. Conclusion759

These findings suggest that the central challenge for the coming decade is not only to make760

ERA more intelligent, but to make it systematically safer, more interoperable and more accountable.761

To this end, we argue that next-generation ERA should be explicitly guided by a set of design762
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principles, among which privacy-by-design and fail-safe design must be treated as non-negotiable763

requirements rather than optional add-ons. Privacy-by-design calls for embedding data-protection764

and privacy safeguards into architectures, algorithms and workflows from the outset, using measures765

such as data minimisation, encryption, privacy-preserving analytics and transparent governance.766

Fail-safe (and, where necessary, fail-operational) design requires explicit hazard analysis,767

redundancy and graceful degradation, conservative automated actions under uncertainty and clear768

escalation paths to human control, verified through realistic stress-testing. Two additional, closely769

related principles emerge from the evidence base. Interoperability-by-design is essential to770

overcoming information silos: ERA should be built on common data models, open or771

well-documented interfaces and minimum interoperability profiles that allow heterogeneous systems772

and organisations to share information and coordinate actions during multi-hazard events. At the773

same time, human-centred and transparent automation is needed to ensure that ERA augments rather774

than replaces human expertise, by aligning automation levels and interfaces with human cognitive775

capacities and providing meaningful explanations of system recommendations. Taken together, these776

principles offer a concise roadmap for translating fragmented technological advances into reliable,777

trustworthy ERA systems for disaster risk reduction. Future research should therefore focus on778

co-designing architectures, metrics and governance mechanisms that embed privacy-by-design and779

fail-safe principles from the outset, while operationalising interoperability and human-centred780

automation in real multi-hazard environments.781
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