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51 Abstract

32 Emergency Response Automation (ERA) is becoming a critical component of managing
33 low-probability, high-consequence natural hazards and cascading technological emergencies under severe
34  time pressure. This systematic review consolidates ERA research from a safety-science and
35  reliability-engineering perspective, with particular emphasis on applications to earthquakes, floods,
36  wildfires and other environmental hazards. Following PRISMA 2020 guidelines, we analysed 198
37  peer-reviewed studies (2010-2025) on automated, intelligent and data-driven emergency response
38  technologies. A four-layer ERA framework—perception and monitoring, data and decision-making,
39  automated response and control, and feedback and learning—was developed to integrate heterogeneous
40  findings and trace the evolution of ERA. Empirical evidence from operational systems is contrasted with
41 simulation-based demonstrations to assess reliability, availability, fault tolerance and human performance.
42 Persistent challenges include data and model uncertainty under distributional shift, limited verification and
43 validation of decision algorithms, opaque human—automation coordination, and gaps in interoperability,
44 governance and trust. We outline a research agenda that links ERA development with resilience engineering,
45  Safety-II and socio-technical systems design, and propose standardised metrics and evidence-grading
46  principles to support reliable and trustworthy ERA deployment in complex infrastructures exposed to
47  natural and technological hazards.

48 Keywords: emergency response automation, system reliability, system safety, intelligent
49  decision-making, artificial intelligence, digital twin

50
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si 1 Introduction

52 In recent decades, disasters—particularly natural hazards and their cascading technological
53 impacts—have become increasingly frequent and complex, spanning climate hazards, industrial accidents
54 and public health crises(Yu et al., 2018). For example, the 1982 Edmonton well blowout in Canada was
55 quickly controlled through prompt ignition, averting a major explosion(Gephart, 1988). In contrast, the
56 2003 Kaixian gas-well blowout in Chongqing released hydrogen sulfide, causing over 190 deaths and the
57  evacuation of tens of thousands(Jianfeng et al., 2009). Such comparative cases highlight the core value of
58  timely response and scientifically grounded decision-making in emergency management. Yet, despite
59  unprecedented advances in sensing, communication and information technologies, emergency operations in
60  many countries remain characterised by fragmented data streams, incompatible platforms and
61 organisational "information silos". This raises a central question for this review: why do information silos
62  persist in an era of highly advanced technology, and how can ERA be designed to overcome them in
63 safety-critical emergency operations?

64 Driven by the rapid advancement of automation, artificial intelligence (AI), and digital twin
65  technologies, the field of emergency management is undergoing a profound transformation (Kyrkou et al.,
66  2022). The concept of Emergency Response Automation (ERA) has emerged as a comprehensive
67  framework that integrates these technologies to enhance system responsiveness and reliability. ERA has
68  demonstrated the potential to improve situational awareness, accelerate information processing, and enable
69  coordinated resource allocation across multiple actors and domains(Yang et al., 2013). Its deployment in
70  critical operations has been increasingly evident—for instance, supporting proactive containment strategies
71 during the COVID-19 pandemic(Andrejevic and O’Neill, 2024), enabling automated resource scheduling
72 after the Fukushima nuclear disaster(Nagatani et al., 2013), and improving response efficiency at China’s

73 Qinshan and Hongyanhe nuclear power plants(Chen et al., 2018). Greater reliance on automation also
3.
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creates challenges: reliability, interoperability, accountability, and human—machine teaming in high-risk
contexts. We examine each through a system-safety lens and propose measurable safeguards.

From the perspective of reliability engineering, ERA offers a unique opportunity to bridge intelligent
automation with the quantitative assurance of system dependability, providing structured frameworks for
assessing robustness, fault tolerance, and safety performance across heterogeneous emergency operations.
Human responders still provide irreplaceable intuition, ethical reasoning, and adaptability—elements that
current automated systems cannot fully replicate. Thus, the key challenge is to design intelligent systems
that augment human judgment and build operational trust under time pressure.

Table 1. Overview of recent literature reviews in emergency response and disaster management.

Serial No. Authors Focus Area

An overview of IoT in the Urban/ Infrastructure

1 H Saputra(Saputra et al., 2025 L
aputra(Saputra et al., ) direction
) ) The Role of Drones in emergency logistics and material
2 A Jazairy(Jazairy et al., 2025) .
delivery.
Provide a comprehensive understanding of the Internet
R Damasevic¢ius(Damasevicius . T
3 of Emergency Services and its implications for

etal., 2023) emergency response and disaster management.

A comprehensive review of the role of social media in
L Dwarakanath(Dwarakanath et

4 emergency response after disasters based on machine
al., 2021) .
learning.
U Lagap(Lagap and Ghaffarian, The Application and Challenges of Digital Twin in
5 2024) Post-Disaster Risk Management.
A Special Review of Digital Twins in Wildfire
6 Y Li(Li et al., 2024)
Management.
Overall assessment of disaster management systems,
7 SM Khan(Khan et al., 2023) with a focus on methods/tools and challenges.
) _ The Application of Al Methods Based on Social media
8 SK Abid(Abid et al., 2025) and Crowdsourced Data in Disaster Management.
A comprehensive review of the disaster emergency
9 Y Feng(Feng and Cui, 2021) response system is conducted, including the current

situation and future prospects.

Recent reviews on emergency response, summarized in Table 1, indicate that although prior studies
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84  have examined diverse technologies and their domain-specific applications, several research gaps remain.
85 Existing literature is still fragmented, offering limited insights into cross-domain regularities and theoretical
86  integration with reliability and safety science. Moreover, few studies provide a systematic synthesis linking
87  technological evolution with operational, human, and organizational dimensions.

88 To address these gaps, this review adopts a safety-science and reliability-engineering perspective on
89  ERA, with a primary focus on natural hazards and environmental emergencies. Drawing on a
90  PRISMA-guided review of 198 peer-reviewed studies (2010-2025) on automated, intelligent and
91 data-driven emergency response, we propose a four-layer ERA framework—perception and monitoring,
92  data and decision-making, automated response and control, and feedback and learning—to integrate
93 heterogeneous findings, identify cross-domain patterns and expose interoperability challenges that sustain
94 information silos.

95 The review is guided by the following research questions:

96 RQI: How do ERA capabilities at each layer align with reliability and system-safety metrics,
97  including availability and uptime, fault tolerance and graceful degradation, timeliness and accuracy
98  trade-offs, resilience under degraded communications, and human performance in natural and technological
99  hazard contexts?

100 RQ2: Across hazards and settings—with particular emphasis on natural hazards—which ERA
101 approaches show moderate or strong empirical support for improving safety-relevant outcomes, and which
102 remain limited to simulations, prototypes or small-scale demonstrations?

103 RQ3: What failure modes, bias sources, interoperability barriers and human—automation coordination
104  issues most threaten ERA dependability, and what assurance mechanisms have been proposed or
105  implemented to mitigate these risks?

106 From a safety-science perspective, this review makes three main contributions. First, it proposes an

_5-
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107 integrative four-layer ERA architecture that links automation functions to risk-reduction mechanisms in
108 safety-critical socio-technical systems, and identifies interoperability as a core design principle for
109  overcoming information silos. Second, it maps ERA applications across hazard types, technologies and
110 capabilities, revealing cross-domain patterns and systematic gaps in reliability assurance, including limited
111 stress-testing under uncertainty, inadequate fail-safe and fail-operational design, and weak support for
112 human—automation teaming. Third, it advances a research agenda that connects ERA with resilience
113 engineering, Safety-II and the governance of emerging technologies, highlighting priorities for validating
114 intelligent decision-making, allocating control between humans and automated agents, and establishing
115  institutional arrangements for trustworthy ERA deployment.

116 The remainder of this paper is organised as follows. Section 2 describes the review methodology;
117 Section 3 introduces the ERA framework and classifies the evidence base; Sections 4 and 5 analyse ERA
118  capabilities, applications and reliability issues, with emphasis on natural-hazard scenarios; Section 6
119 synthesises cross-cutting trends, limitations and future directions; and Section 7 concludes with key

120 implications for strengthening global disaster response.
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Fig.1 System framework diagram.

2 Methodology

This review focuses on Emergency Response Automation (ERA), defined as the integration of
intelligent, automated, and data-driven technologies to support or partially substitute human
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127  decision-making and operational activities across all phases of emergency management.

128 Following the PRISMA guidelines(Page et al., 2021), we conducted a comprehensive search for
129 2010-2025 (last search across all sources: 27 September 2025). As illustrated in Fig. 2, the evidence base is
130 heavily skewed towards recent work: 90.4% of the cited studies were published in 2010 or later, and almost
131 60% appeared between 2020 and 2025. Only a small number of classic references prior to 2000 were
132 retained to provide historical and theoretical context. Fig. 3 presents the PRISMA 2020 flow of records
133 through identification, screening, and inclusion. Searches spanned Web of Science, Scopus, IEEE Xplore,
134 and PubMed, supplemented by Google Scholar (top 10% per year by relevance and citations; n =

135 54)(Zhang et al., 2019). The Boolean strategy combined three concept groups with “AND” :

136 (1) emergency (“emergency,” “disaster,” “pandemic,” “incident,” “accident”);
137 (2) automation (“automate,” “autonomous,” “artificial intelligence”);
138 (3) activities (“response,” “planning,” “monitoring,” “prediction”).
120+
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139 Publication period
140 Fig. 2 Temporal distribution of ERA-related references.
141 After deduplication in EndNote, two reviewers independently screened titles/abstracts/full texts.

142 Inclusion required peer-reviewed English studies (2010-2025) explicitly addressing automated, intelligent,
8-
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143 or data-driven emergency response and providing empirical, modeling, or conceptual contributions.
144  Discrepancies were resolved by consensus; Cohen’s k = 0.86 on a 20% random subset indicated high
145 agreement. Ultimately, 198 studies were included.

146 We applied a concise five-domain Reliability & Reproducibility (R&R) rubric (0-2 each; total 0—10):
147  (D1) external validity; (D2) completeness of quantitative safety metrics (e.g., latency, FAR/MDR,
148  availability/uptime, recovery time/MTTR); (D3) baseline/comparator; (D4) sample/condition diversity; (D5)
149 reporting transparency. Two reviewers scored independently and reconciled by consensus; agreement on a
150  20% calibration set was k= 0.86. Totals map to High (8-10), Moderate (5-7), Low (0—4). Safeguards: if
151 D2 =0 the tier cannot exceed Moderate; if =2 domains = 0 the tier is Low. NR (not reported) scored 0. To

152 conserve space, tables report only the tier (H/M/L).



https://doi.org/10.5194/egusphere-2025-5776
Preprint. Discussion started: 12 January 2026
(© Author(s) 2026. CC BY 4.0 License.

153

154

155

156

157

ldentification

Screening

Included

EGUsphere\

Identification of new studies via databases and registers

Records ide
Databases

ntified from:
(n=1.937):

‘Web of Science (n = 455)

Scopus (
IEEE Xplor
PubMed

n=283)
e (n=978)
(n=166)

Google Scholar (n = 54)

Records removed before screening:
Duplicate records (n=107)

Records screened Records excluded
(n=1,830) (n=1,244)
r
Reports sought for retrieval Reports not retrieved
(n = 586) (r=43)
Reports excluded:

Reports assessed for eligibility

(n=

543)

MNew studies included in review

(n=

198)

*MNon-English papers removed (n = 5)

«Mo empirical/modeling/conceptual
contribution to disaster
managementr (n = 97)

*Mot relevant to three core
concepts (n = 243)

Fig.3 PRISMA 2020 flow diagram for the systematic review.

3 Composition and Definition
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ERA refers to the automatic initiation and execution of emergency measures through sensors, data

processing, and intelligent decision-making technologies, enabling rapid response to incidents such as
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158  security threats, natural disasters, and public health emergencies with minimal human

159 intervention(Matracia et al., 2022).

160 3.1 System framework

161 The four-layer architecture of ERA proposed in this study was developed through a dual-path
162 approach of empirical induction and theoretical validation.

163 First, using thematic synthesis, two researchers independently reviewed and cross-compared 198
164  selected studies through multiple iterative rounds. This process identified four recurring functional
165  categories consistently appearing in ERA-related research—Perception, Decision-Making, Response &
166  Control, and Feedback & Learning.

167 Second, this four-layer structure aligns with well-established automation paradigms in other domains.
168  Comparable hierarchical closed-loop architectures can be observed in robotics(Brooks, 1991), industrial
169  control systems(Nagorny et al., 2012), and reliability management frameworks(Hollnagel, 2018), all of
170  which encompass a complete “Perceive—Reason—Act—Learn” process. Such consistency demonstrates that
171 the ERA framework reflects a widely recognized structural logic across automation-intensive systems.

172 Finally, from the perspectives of systems engineering and cybernetics(Gonzalez et al., 2021), the
173 four-layer architecture ensures both functional completeness and logical closed-loop reliability. Therefore,
174 the proposed architecture is grounded in both empirical evidence and cross-domain theoretical foundations,

175  providing a robust scientific basis for the development of adaptive and reliable ERA systems (Fig. 1).

176 3.2 From Manual Sensing to Intelligent Surveillance

177 Over the past six decades, risk perception and monitoring technologies have evolved from manual

178  field observations to intelligent, data-driven monitoring systems. Fig.4 illustrates this evolution, which can

-11-
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179 be summarized into four interrelated phases.

ol 0
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. . -
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Manual Perception Remote and Networked and Intelligent and
and Early Automated Multimodal Cognitive
180 Instrumentation Sensing Monitoring Monitoring
181 Fig.4 Diagram of the evolution of the risk perception and monitoring layer.
182 (1) Manual Perception and Early Instrumentation
183 In the earliest stage, disaster perception relied on human operators, analog instruments, and visual

184  inspection. Meteorological observers manually recorded rainfall and seismic activity(Schweitzer and Lee,

185  2003); industrial workers conducted periodic checks using portable gas detectors(Hemingway et al., 2012);

186  and public health surveillance depended on field sampling. Although these methods provided basic

187  situational awareness, they were constrained by time delays(Fonollosa et al., 2018), limited coverage, and

188  subjective bias(Dang et al., 2018). Automation was virtually absent—the perception layer of ERA remained

189  entirely human-centered.

190 (2) Remote and Automated Sensing

191 With the rise of remote sensing satellites, radar networks, and early wireless sensor systems,

192 monitoring gradually shifted toward automation(Ko et al., 2009; Kodali and Yerroju, 2017). Satellite-based

193 systems enabled continuous observation of floods, landslides, and wildfires(Al-Hady et al., 2023; Mois et

194  al., 2017); fixed gas and infrared sensors provided near-real-time industrial monitoring(Chraim et al., 2015;

195  Jain and Kushwaha, 2012; Ni et al., 2018); and digital epidemiology systems aggregated hospital data for

196  disease detection(Adiga et al., 2020). This phase marked the first integration of automated data acquisition

-12-
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197 into ERA, significantly improving detection timeliness and reliability.

198 (3) Networked and Multimodal Monitoring

199 The emergence of IoT and multi-sensor fusion technologies enabled risk perception to become
200  multimodal—integrating visual, acoustic, thermal, and social data for comprehensive situational
201 awareness(Alamdar et al.,, 2015). Seismic sensors linked with drones enhanced earthquake
202 assessment(Contreras et al., 2021); fiber-optic sensors detected industrial leakage and overheating(Ashry et
203 al., 2022); and mobile apps supplied real-time epidemic data(Moses et al., 2021). These networked sensing
204  nodes laid the foundation for adaptive ERA architectures, where data streams directly informed early
205  warning and resource allocation.

206 (4) Intelligent and Cognitive Monitoring

207 The current phase is characterized by the convergence of Al, edge computing, and digital twin
208  technologies. Intelligent monitoring now extends beyond anomaly detection toward pattern recognition and
209  predictive diagnostics. Deep learning models extract complex spatiotemporal features from multi-source
210  data to identify emerging risk hotspots in real time. In public health, Al-driven systems integrate genomic
211 sequencing data with population mobility and social indicators to forecast epidemic trajectories(Hadfield et
212 al, 2018; Ongesa et al., 2025), COVID-19 early-warning system (EWS) uses hospital diagnostic data and
213 thermal sensors for contactless screening(Ding et al., 2025; Haque et al., 2024). In industrial safety,
214 computer vision and reinforcement learning models autonomously diagnose abnormal equipment behavior,
215  while explainable Al enhances operator trust in automated alerts(Rivas and Abrao, 2020; Sayed and Gabbar,
216 2017). In natural disaster management ,forest fire monitoring relies on IoT, thermal imaging, drones, and
217 Al algorithms to achieve early fire detection and spread prediction(Kavitha et al., 2023; Mehta et al., 2021),
218  DMSEEW system combines GPS and seismic sensors with ML to enhance earthquake early warning
219  accuracy(Becker et al., 2020). Additionally, the integration of big data technology enables automatic

-13-
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220  analysis of multi-source information such as social media, news reports, and police records to help predict
221  and identify potential social security threats (e.g., the Violent Behavior Detection System (VBDS) applies
222 deep learning to CCTV footage to detect violent behaviors(Shubber and Al-Ta’i, 2022)) .Based on natural
223 language processing and machine learning technologies, automated systems can monitor large volumes of
224 open data sources in real time, detect early warning information related to violence, riots, terrorist activities,
225 and provide decision support(Florea et al., 2022; Montasari, 2024; Robertson et al., 2019). These advances
226  are propelling ERA from reactive monitoring to proactive risk anticipation.

227 Across these phases, the transition from human-centered to human—machine hybrid perception has
228  continuously enhanced the reliability, scalability, and cross-domain applicability of automated emergency

229  response systems.

230 3.3 Evolution of Data-Driven Decision-Making

231 Serving as the cognitive core of ERA, the decision layer has progressed from deterministic, rule-based
232 systems to adaptive, data-driven intelligent engines. Fig. 5 illustrates this evolution across four interrelated

233 stages, each enhancing analytical capability and autonomy built upon its predecessors.

Rule-Based Al-Driven
Decision —>| Knowledge —> ->
Support Integration
=H /\/ OS 3
234
235 Fig.5 Diagram of the evolution of data analytics and the decision-making hierarchy.
236 (1) Rule-Based Decision Support

_14-
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237 Early systems relied on fixed logical rules and expert-defined procedures. Classical models such as
238  Montgomery’s sequential decision model(Montgomery and Svenson, 1976) and Simon’s DSS framework
239  (intelligence—design—choice) (Simon, 1960) structured decision processes through rule- and case-based
240  reasoning. Applications in nuclear and chemical plants used predefined rules to ensure consistency and
241 auditability. Although limited in real-time adaptability and cross-domain generalization, these systems
242 established the transparent decision logic that underpinned later intelligent frameworks.

243 (2) AI-Driven Knowledge Integration

244 With the expansion of sensor networks and computing power, rule-based DSS evolved into hybrid Al
245  systems combining symbolic reasoning and probabilistic inference. Bayesian networks and GIS-based tools
246  enabled dynamic, multi-source situational assessment and predictive mapping(Bhatt and Zaveri, 2002).
247  Group decision support(Cua and Heaton, 2007) and game theory—based optimization models enhanced
248  interagency coordination under uncertainty(Brown and Vassiliou, 1993), reducing the isolation of
249  single-agent frameworks. This phase bridged deterministic rules with adaptive analytical reasoning through
250  Al-enabled knowledge integration.

251 (3) Machine Learning and Predictive Analytics

252 The proliferation of digital and sensor data shifted decision-making toward autonomous learning.
253 Algorithms such as neural networks(Liao et al., 2011), SVMs(Taamneh and Taamneh, 2021), and random
254 forests learned nonlinear risk—outcome relationships, enabling rapid forecasting of evolving emergencies(L.
255  Wang et al., 2024). Applications included wildfire propagation prediction(Bot and Borges, 2022; Pereira et
256  al., 2022; Sayad et al., 2019), explosion early warning, and evacuation optimization(Al-Hady et al., 2023)
257 (Huang et al., 2024; Riippel and Schatz, 2011; Zverovich et al., 2016). Unlike prior hybrid systems, these
258  models derived decision rules directly from data, providing real-time adaptability to changing
259  environments.

-15-
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260
261 (4) Deep Learning and Explainable Al
262 Recent advances have integrated deep learning—based perception technologies—such as natural

263 language processing for text and social media analytics(Imran et al., 2014), computer vision for image and
264  drone interpretation(Robertson et al., 2019), and multi-task learning for multi-hazard prediction—with
265 explainable decision modules emphasizing transparency and human trust (For complex events, multi-task
266  learning (MTL) has become pivotal, with Alam's MEDIC dataset demonstrating a 30% reduction in
267  computational overhead without accuracy loss(Alam et al., 2023)) .Representative systems include
268  Al-driven disaster response platforms (e.g., Fertier's AIC system dynamically generate response
269  strategies(Fertier et al., 2020)), vision-based recognition frameworks (e.g., VGG/YOLO(Robertson et al.,
270  2019)), medical emergency decision centers(Althouse et al., 2015), and generative Al decision support
271  systems. These examples demonstrate how advanced neural architectures enable real-time linkage between
272 perception and strategic decision-making. While these models substantially enhance accuracy and
273 adaptability, they introduce new challenges in interpretability, ethical reliability, and human—machine
274 collaboration.

275 Overall, the transition from rule-based determinism to data-driven adaptivity reflects a continuous
276  enhancement in probabilistic reasoning, autonomous learning, and human—machine synergy—forming the
277  intelligent, context-aware decision engine that now underpins reliable and adaptive emergency

278 management.

279 3.4 Automated Response and Control

280 The automated response and control layer constitutes the operational core of the ERA system,

281 translating analytical outputs from the decision-making layer into executable actions. Through automation

-16-
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282  platforms and standardized communication protocols, it integrates firefighting, power, communication, and
283  transportation subsystems. Fig.6 illustrates its evolution along four major technological pathways,

284  reflecting the convergence of perception, computation, and coordination capabilities.

Rille'Based and Logic-Driven Intelligent
Integration: Interconnection: Al-

Microprocessors Driven and Edge-

and Rule Engines [l Enabled Collaboration

Hardware-Triggered

Adaptive Autonomy
Responses

> ~

i - .

Translates analytical
outputs into
executable actions

285 - R N Z X J
286 Fig.6 Diagram of the evolution of the automatic response and control layer.

287 (1) Rule-Based and Hardware-Triggered Responses

288 The initial stage of automation was dominated by single-sensor and threshold-triggered mechanisms,

289  where systems were activated only upon anomaly detection. For instance, Graf’s debris-flow monitoring
290  system(Badoux et al., 2009) enabled early warning functions but remained entirely dependent on manual
291  verification and intervention(Jafari et al., 2020). Automation during this stage was characterized by
292  passivity and localization, featuring unidirectional signal transmission from sensors to operators, with
293 limited inter-system communication or adaptive decision-making logic.

294 (2) Logic-Driven Integration

295 The second stage marked a transition from manual activation to programmable logic control, driven by
296  the introduction of microprocessors and rule-based engines. Emergency response systems for hazardous
297  materials(Zografos et al., 2000)and dynamic seismic mapping platforms (Bingli et al., 2014) enabled
298  automation based on predefined rules and contextual thresholds. Concurrently, advances in mobile and

299  wireless communication facilitated remote alerts and cross-platform coordination(Kuantama et al., 2013,

-17-
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300  2012). For example, Azid et al. developed an Android-based flood warning application utilizing web
301 services for automatic notifications(Sung et al., 2022), while De Souza et al. integrated real-time
302  hydrological monitoring with user geolocation to deliver context-aware SMS alerts(De Souza et al., 2015).
303  Automation at this stage exhibited logic-driven and distributed characteristics, yet remained constrained by
304  static rules and limited situational awareness.

305 (3) Intelligent Interconnection

306 With the integration of deep learning, the Internet of Things (IoT), and 5G/B5SG communication
307  networks(Dixit et al., 2022; Euchi, 2021), automated response systems entered the stage of intelligent
308 interconnection. Technologies such as device-to-device communication(Ahmed et al., 2019; Ever et al.,
309  2020)and the Internet of Emergency Services (IoES) enabled multi-channel, low-latency information
310  exchange among heterogeneous agencies(Damasevicius et al., 2023). Multi-access edge computing and
311  service-oriented architectures facilitated real-time deployment of adaptive services, while intelligent
312 transportation systems provided the foundation for networked emergency mobility(Chen and Englund,
313 2018). Al models—including CNN-based incident detection(Kim et al., 2019)and deep recurrent neural
314  network-based event classification(dos Santos et al., 2019)—further enhanced the precision of automated
315  control. This phase can be summarized as the “Al + Edge + Connectivity” paradigm, representing a shift
316 from deterministic rule execution to context-aware, data-driven orchestration.

317 (4) Adaptive Autonomy

318 Since the 2020s, ERA systems have evolved toward adaptive and decentralized coordination, enabling
319  dynamic sharing of authority(Chen et al., 2008) and resources across multiple agencies (Janssen et al.,
320  2010)( IoT + BIM systems for fire detection and suppression, integrating sprinkler control and escape route
321 optimization(Annadurai et al., 2024; Jiang et al., 2023; Mondal et al., 2023)). Architectures based on
322 ontology and multi-agent systems support semantic interoperability and autonomous negotiation among

-18-
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323 heterogeneous organizations(Maalel and Ghézala, 2019). Rule-/ontology-based emergency
324  decision-support systems integrate event-driven reasoning and semantic inference to keep a continuously
325  updated operational picture and support rapid task (re)allocation and resource redistribution(Cui et al.,
326  2024). Meanwhile, the Matter-IoT framework improves device interoperability and response reliability
327  through standardized protocols(Bhardwaj and Joshi, 2024). The emergence of the digital twin
328 paradigm(Fan et al., 2021)further propels the transition from operational automation to cyber-physical
329  co-evolution, where continuously updated situational data refine simulation models to optimize control
330  strategies. Overall, this stage represents a transformation from passive automation to adaptive autonomy,
331 emphasizing continuous learning, coordination, and optimization.

332 This evolution reflects not only technological iteration but also multidimensional integration pathways:
333 (1) Vertical integration — standardizing data interfaces to link the perception, decision, and execution
334 layers; (2) Horizontal integration — achieving semantic and protocol-level interoperability among
335  heterogeneous response agencies;

336 (3) Cognitive integration — embedding learning algorithms for continual adaptation under uncertainty.
337  Thus, automation in ERA is shifting from task automation toward autonomous collaboration, laying the

338  foundation for a resilient, data-driven emergency management network.

339 3.5 Enabling Adaptive Learning and Continuous

340  Optimization

341 The feedback layer represents the adaptive capability of ERA systems, operating as a continuous
342 optimization loop across the disaster management cycle. Fig.7 illustrates how an effective feedback
343  mechanism transforms ERA from rule-based static models into dynamic, data-driven systems capable of
344  real-time self-optimization.
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346 Fig.7 Diagram of the evolution of the subsequent feedback and adjustment layer.

347 (1) Manual and retrospective feedback

348 Early ERA studies primarily focused on retrospective analyses of emergency events or simulation

349  exercises, heavily relying on manually written performance evaluations and post-incident
350  reports(Ramabrahmam et al., 1996). During this period, feedback mechanisms lacked autonomous design;
351 lessons learned were integrated manually, and complex resource coordination still depended on human
352 intervention. Consequently, feedback played only a limited corrective role and was insufficient to support
353 continuous system improvement.

354 (2) Semi-dynamic feedback through real-time monitoring

355 With advances in sensing, communication, and computational technologies, feedback layers gradually
356  incorporated real-time monitoring and automated evaluation capabilities(Badoux et al., 2009; Ding et al.,
357  2022; Gasparini et al., 2007). Researchers began improving alarm performance, enhancing the utilization of
358  monitoring data, and integrating location-based path planning models to coordinate disaster logistics and
359  resource deployment(Yi and Ozdamar, 2007). The convergence of BIM—GIS—IoT technologies further
360  enhanced system interoperability, enabling more efficient spatial and situational data
361 exchange(Boguslawski et al., 2015; Sani and Abdul Rahman, 2018). These developments marked a shift

362  from static, post-event analysis toward semi-dynamic feedback, where systems could trigger limited
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363 adaptive actions based on predefined thresholds or simple rule sets.

364 (3) Intelligent and predictive feedback systems

365 The rise of artificial intelligence, machine learning, and big data analytics has transformed the
366  feedback layer into an intelligent decision support system. By integrating real-time medical, transportation,
367  and social data streams via the Internet of Things, ERA systems can dynamically reallocate resources and
368  adjust operational priorities in evolving scenarios(Zhang et al., 2014; G. Zhang et al., 2024). Deep learning
369  algorithms detect emerging risk patterns and predict disaster evolution trends, allowing the system to
370  proactively reconfigure response strategies before performance degradation occurs. For instance, real-time
371 social media data mining assists public health agencies in adjusting medical resource allocation(Rathore et
372 al., 2016), while reinforcement learning models continuously refine decision policies based on performance
373 feedback(Arulkumaran et al., 2017; Li, 2024).

374 Overall, the evolution of the feedback layer reflects a paradigm shift from retrospective correction to
375 continuous and predictive adaptation. This transformation establishes a solid theoretical foundation for the
376  cross-domain application analysis discussed in the following section.

377 The above constitutes the four core layers of the ERA system, providing a foundational framework for

378  the subsequent application scenario analysis.

s» 4 Advantages of ERA

380 The advantages of ERA can be summarized in four points: data analysis, rapid response, precise

381 location and intelligent dispatch.

322 4.1 Data-Driven Decision Advantages

383 The integration of Al and big data into ERA systems has enabled the consolidation of multi-source
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384  information, thereby enhancing prediction accuracy and situational awareness throughout the entire
385 emergency management cycle. For instance, the Johns Hopkins University Global COVID-19 Surveillance
386  Platform established a real-time data acquisition (Sheng et al., 2021)and reporting mechanism that
387  significantly supported timely responses during large-scale public health crises(Kamel Boulos and
388  Geraghty, 2020). Similar mechanisms have been implemented in Japan’s Earthquake Early Warning System,
389  where automated seismic data processing allows alerts to be issued within seconds(Kumar et al., 2022; H.
390  Zhang et al., 2024).These systems demonstrate that automation can effectively augment human judgment in
391 real-world emergency contexts. The National Oceanic and Atmospheric Administration (NOAA) in the
392 United States provides another example: its Al-driven hurricane forecasting models generate automated
393  predictions that support expert deliberations, while human coordinators ultimately decide when and how to

394 issue community alerts(Jafarzadegan et al., 2023; Lam et al., 2023).

305 4.2 Temporal Efficiency in Rapid Response

396 Real-time monitoring and analytics enable Emergency Response Automation (ERA) systems to
397  rapidly detect incidents and trigger timely responses, thereby minimizing latency. For example, Zheng et al.
398  proposed the ChangeOS framework for multi-hazard decision support (Zheng et al., 2021); other
399 implementations include a rapid emergency system for hydrogen leakage(C. Wang et al., 2024) and a
400  real-time threshold-based flood emergency activation mechanism(Zhou et al., 2024). Technological
401 responsiveness must align with human readiness and coordination. Automated alerts are effective only
402  when responders can interpret and trust system outputs. Thus, ERA efficiency relies not just on

403 computational speed but on training, trust, and teamwork enabling human—machine collaboration.
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s+ 4.3 Geospatial Precision in Resource Allocation

405 Accurate localization at the incident scene is a critical function of ERA systems(Ang et al., 2022;
406  Khan et al., 2022). For instance, following the 2010 Haiti earthquake, Geographic Information System (GIS)
407  technologies were employed to precisely identify the most severely affected regions(Corbane et al., 2011).
408 Similarly, after the 2015 Nepal earthquake, the integration of satellite imagery and real-time unmanned
409  aerial vehicle (UAV) data not only supported emergency response operations(Ge et al., 2015) but also
410  provided rescue teams with precise navigation information. Liu and You and colleagues utilized UAVs to
411 develop optimized resource allocation schemes, determine efficient distribution routes and equipment
412 utilization plans, and design medical supply transportation strategies, thereby providing robust operational
413 support for emergency missions(Liu and You, 2020). In addition, real-time tracking of rescue personnel and
414  materials has ensured highly coordinated and efficient response operations(Balta et al., 2017; Damasevicius
415 et al., 2023). Collectively, these applications demonstrate how fine-grained geospatial information and

416  real-time tracking enable ERA systems to match resources to needs with high spatial precision.

s217 4.4 Computational Optimization for Intelligent Dispatch

418 Intelligent dispatching systems leverage predictive modeling to optimize resource allocation and
419  logistics scheduling. During the COVID-19 pandemic, numerous regions employed artificial intelligence
420  and digital platforms to manage medical supplies and personnel, effectively alleviating shortages and
421 enhancing coordination efficiency(Lv et al., 2021; Van Der Schaar et al., 2021). Compared with ground
422 transportation, unmanned aerial vehicles (UAVs) reduced emergency medical delivery times by several
423 minutes(Claesson et al., 2017)( UAVs shortened AED delivery by 2—8 minutes, and up to 7 minutes with
424 optimized routing) (Roberts et al., 2023). However, achieving such benefits requires more than algorithmic

425 sophistication. Institutional readiness—including regulatory flexibility and financial support—and robust
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426 data-sharing agreements play equally critical roles in determining whether automated dispatching can
427  operate at scale. The strength of intelligent dispatching therefore lies in the synergistic interplay between
428  technological capability and institutional collaboration, ensuring that automation functions within

429  trustworthy, coordinated and well-regulated emergency management systems.

s S Typical Application Scenarios

431 Emergency response automation technology has been systematically applied in various fields,
432 including natural disasters(Sun et al., 2020), industrial disasters(Aziz et al., 2014), public health(Murthy et
433 al., 2017), social security and public safety emergency response automation(Chowdhury et al., 2023), and
434  military combat and security emergency response automation(Sciences et al., 2017). Despite the diversity

435  of application scenarios, the core logic of these systems all adhere to a closed-loop framework of

436 “monitoring-assessment-decision-response”(Casartelli et al., 2025; Cook and Dorussen, 2021; Stoto et al.,
437 2013).
438 This section summarizes the representative emergency response systems and platforms that frequently

439  appear in the literature, clarifying their core functions, key technologies, application contexts, and strength

440  of supporting evidence. The selection criteria for these systems include:

441 (1) recurrent appearance across multiple peer-reviewed studies;
442 (2) coverage of diverse technological pathways;
443 (3) demonstration of typical trade-offs among perception, decision-making, execution, and learning

444  capabilities.

445 5.1 Cross-System Comparative Analysis

446 To ensure transparent cross-system comparison, each representative system was mapped to six
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447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

469

commonly cited ERA capability dimensions:

(1) multi-source sensing and monitoring,

(2) decision support and automation,

(3) execution and deployment,

(4) interoperability and data sharing,

(5) robustness and fault tolerance,

(6) adaptive learning.

Each system’s performance was semi-quantitatively rated as strong (S), medium (M), or weak (W)

under an evidence-grading scheme emphasizing reproducibility and rigor. Ratings considered field or

multi-site validation, comparative or pre—post analyses, sample size and reporting completeness, and the

availability of quantitative indicators e.g., detection latency, false-alarm rate, task-success ratio. Studies

with incomplete metrics or potential bias—such as missing control comparisons or unclear

validation—were recorded and downgraded accordingly. Systems supported only by conceptual models or

small pilots were rated lower. Table 2 presents the resulting capability matrix, interpreted with supporting

evidence in Table 3.

From these evaluations, several convergent and divergent patterns emerge:

Common Features:

(1) Layered architecture: Most systems follow a perception — analysis — decision — execution

sequence, validating the four-layer ERA framework.

(2) Sensing priority: Investment concentrates on early detection (sensor networks, remote sensing,

video analytics) to ensure rapid situational awareness.

(3) Human-in-the-loop: While automated rules exist, critical decisions generally retain human

oversight.
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470 (4) Limited adaptability: Few operational systems enable real-time learning; most remain in prototype
471 stages.

472 (5) Interoperability gaps: Persistent data silos continue to hinder coordination and efficiency.

473 Based on these evaluations, several convergent patterns and distinct divergences can be identified:

474 Distinctive Features:

475 (1) Execution intensity: Logistics systems emphasize automated execution, whereas monitoring

476  systems primarily support human decisions.

477 (2) Robustness requirements: Natural hazard systems must handle sensor noise and false alarms, while
478  industrial systems rely on deterministic logic to reduce false positives.

479 (3) Evidence maturity: Some systems, such as medical UAV platforms, have field validation, whereas
480  others remain in prototype or simulation stages.

481 (4) Privacy and ethics: Urban surveillance systems face privacy and public acceptance challenges
482  absent in closed industrial settings.

483 Overall, the ERA framework demonstrates broad applicability, but system designs must balance
484  trade-offs among sensing accuracy, automation, interoperability, and socio-legal constraints. Future
485  research should advance ERA systems from conceptual models to reliable, interoperable, and operational

486 solutions.
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490 Building upon the preceding system-level and capability-level analyses, we now focus on the shared
491  technological foundations that enable efficient ERA. Table 4 provides a cross-domain synthesis of the key
492  enabling technologies. These technologies are widely deployed across different operational contexts and
493 collectively support perception, decision-making, coordination, and adaptive control under conditions of
494 uncertainty.

495 This integrative perspective aligns with the principles of the U.S. National Incident Management
496  System (NIMS) and the Incident Command System (ICS), both of which emphasize interoperability,
497  unified command, and flexible coordination. Similarly, a cross-domain ERA architecture emphasizes
498  technological convergence over fragmentation, advocating a transition from domain-specific automation
499  toward a systemic, learning-oriented, and trust-enhancing framework for intelligent emergency

500  management.
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s47 5.2 Summary

548 This section maps representative ERA systems onto a clearly defined capability matrix and
549  integrates cross-system evidence. This approach reveals both the generic capability dimensions of
550  ERA and the system-specific trade-offs involving robustness, interoperability, and operational
551 autonomy. In doing so, it establishes an empirical bridge between conceptual frameworks and
552 operational realities.

553 The innovation of this approach lies in two aspects:

554 (1) establishing a transparent evidence mapping from concrete systems to framework
555 components;

556 (2) deriving cross-domain, non-siloed research priorities based on this mapping to guide future

557  ERA development.

sss 6 Discussion

559 Despite significant advances in automation and intelligence, contemporary ERA systems face
560  persistent implementation bottlenecks rooted in technological, organizational, and societal factors.
561 Based on evidence extracted from the literature, this section synthesizes major challenges, articulates
562  implications for Safety Science practice, and proposes actionable, verifiable research directions to

563 bridge current gaps.

se4 6.1 Analysis of system limitations and challenges

565 Current ERA systems exhibit four primary limitations: data quality, system compatibility,
566  privacy/security, and cost-effectiveness. We elucidate these issues with supporting literature.

567 ERA face dual challenges of accuracy and completeness at the data level. Errors, missing data,
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568 or delays in real-time data can directly lead to decision-making biases, while communication
569  disruptions caused by damaged infrastructure in disaster-affected areas further exacerbate this
570 issue(Cao et al., 2023; Rak et al., 2021). For example, in the 2018 Indonesian earthquake, severe
571 damage to power and communication facilities caused the ERA to collapse, and technologies such as
572 drones were unable to fully replace traditional methods due to limitations such as weather and
573 battery life(Yulianto et al., 2020).

574 System compatibility and cross-domain coordination are another major challenge. Differences
575 in technical standards and data formats across departments, regions, and even countries create
576  information silos, and cross-border rescue operations also face regulatory conflicts(Suggett, 2012).
577  In the 2015 Nepal earthquake, inconsistent system standards among countries made resource
578 integration difficult(Rai et al., 2021), and the 2021 Ar River Valley flood incident also faced issues
579  of ineffective communication between emergency response systems(Miiller et al., 2023). The
580  European GDPR imposes compliance constraints on cross-border data transmission(Voss, 2019).

581 Privacy security and social trust crises are increasingly prominent. The system's reliance on
582  personal data may lead to leakage risks (Velev and Zlateva, 2023). On December 23, 2015, a
583 coordinated cyberattack on Ukraine’s distribution utilities caused power outages affecting hundreds
584  of thousands of customers(Sullivan and Kamensky, 2017). Personal information leakage incidents in
585  multiple countries during the pandemic have exacerbated public concerns(Chan and Saqib, 2021;
586  Wang et al.,, 2024). When using drones for rescue missions, network security issues must be
587  considered (Papyan et al., 2024; Sindiramutty et al., 2024). Data confidentiality(Sciancalepore,
588  2024). Additionally, Al algorithm bias and decision-making opacity further erode trust, while
589  insufficient technical capabilities among frontline personnel also constrain system

590  effectiveness(Gevaert et al., 2021). Accordingly, we need corresponding methods to protect personal
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591 information, sensitive information, and other data(Seba et al., 2019).

592 Costs and talent shortages pose practical constraints. The procurement of hardware, software
593  development, and ongoing maintenance require substantial funds, which may pose financial
594 pressures for small and medium-sized enterprises or regions and departments with poorer economic
595 conditions. Peer-reviewed assessments indicate that operating a West Coast EEW system such as
596 ShakeAlert requires sustained annual O&M funding, and cost—benefit analyses show that avoided
597  losses from even a single moderate earthquake can offset about a year of operations(Strauss and
598  Allen, 2016) (Given et al., 2018), and developing countries in particular face a shortage of high-end
599  technical talent.

600 These controversies fundamentally reflect the deep-seated contradiction between “technological
601 availability” and “system reliability,” necessitating the establishment of an interdisciplinary research

602 framework.

63 6.2 Implications for Safety Science practice
604  6.2.1Reliability engineering implications

605 ERA should be designed and evaluated against reliability metrics—availability/MTBF, fault
606  tolerance, and time-critical performance. Tools such as FMEA and fault/causal graphs can localize
607 failure propagation and support uncertainty-aware thresholds. Where the literature reports
608 operational or multi-site evaluations, we recommend reporting FAR, missed detections, latency, and

609  recovery time relative to baseline systems to enable evidence grading(Xu et al., 2012).

610  6.2.2Human factors and adoption

611 Human-in-the-loop (HITL) controls and explainable Al (XAI) should target workload, situation
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612 awareness, and calibrated trust. Training and rehearsal can reduce misuse/disuse, especially under
613 degraded communications. We recommend tracking workload/trust alongside technical metrics, in
614  line with our findings that explainable Al and human-machine collaboration are pivotal for

615  trustworthy ERA(Hancock et al., 2011; Hoff and Bashir, 2015).

616 6.2.3Standards and interoperability

617 Cross-agency operations benefit from standards-aligned data models and interfaces consistent
618 with incident-management practice(Elmhadhbi et al., 2020; Salvador et al., 2019). As a minimum
619 viable interoperability set, we recommend (1) schema mappings and API/message profiles aligned
620  with the roles and message types used in incident command, and (2) event-logging conventions for
621 traceability across agencies and operational periods—directly addressing the interoperability gaps

622 highlighted in 6.1 and reflecting the NIMS/ICS emphasis on unified coordination.

63 6.3 Next-generation ERA model framework

624 Building on the proposed four-layer ERA architecture, this study presents a next-generation
625 integrated model that enables end-to-end collaboration and adaptive evolution across heterogeneous
626  systems. Fig.8 illustrates this model, which extends conventional multilayer structures and provides
627  aforward-looking framework for ERA development in complex, data-intensive environments.

628 At its core, the model introduces three interrelated pillars, serving both as technological
629  enablers and methodological foundations:

630 (1) Digital Twin Middleware Platform (DTMP): Synchronizes virtual and physical systems to
631 enable real-time simulation, validation, and adaptive optimization.

632 (2) Al-Expert Hybrid Decision Engine (AI-E): Integrates machine intelligence with expert
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633

634

635

636

637

638

reasoning to generate interpretable and trustworthy decisions.

(3) Intelligent IoT Edge Network (I-IEN): Combines 6G communications, blockchain-based

data integrity assurance, and edge computing to ensure resilient connectivity and secure, low-latency

information flow.

Next-Generation ERA Framework

Three core pillars

Digital Twin Middleware AL Expert Hybrid . pioen¢ 10T Edge Network

Platform (DTMP) Decision Engme Combines 6G communications,
Maintains dynamic synchronization Integrates machine blockchain-based data integrity
between virtual and physical intelligence and expert assurance, and edge computing to
systems, enabling real-time reasoning to produce ensure resilient connectivity and
simulation, verification, and interpretable, tl‘ustwqrt_hy, secure, low-latency information flow.
adaptive optimization. and context-aware decisions.
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Fig.8 Key Interaction Flow of ERA System.
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639 Unlike conventional ERA systems that follow rigid workflows, this model emphasizes
640  closed-loop autonomy—including self-perception, self-diagnosis, and self-deployment—supported
641 by transparent data traceability and adaptive learning. This marks ERA’s evolution from a toolset to
642  anintelligent, self-organizing system.

643 Each pillar defines quantifiable research dimensions: DTMP enables assessment of predictive
644  accuracy and latency reduction; AI-E allows evaluation of decision interpretability and
645 human-machine trust; I-IEN facilitates measurement of communication resilience and coordination
646  efficiency. These metrics provide a foundation for cross-domain empirical validation and address
647  long-standing methodological gaps such as non-standardized evaluation and limited reproducibility.
648 To ensure comparability, the framework integrates three methodological mechanisms:
649  structured data fusion, heterogeneity management through ensemble learning, and uncertainty
650  quantification via probabilistic reasoning. Together, these mechanisms enhance robustness and
651 transparency, advancing ERA toward an evidence-driven, adaptive system capable of learning,

652 coordination, and evolution under uncertainty.

653 6.4 Theoretical positioning

654 To deepen the theoretical foundations of the next-generation ERA architecture, a comparative
655 analysis was conducted with three representative theoretical models in the emergency response
656 domain: the OODA loop(Brehmer, n.d.; Sullivan and Kamensky, 2017; Von Lubitz et al., 2008), the
657 State Emergency Management System (SEMS) based on the Incident Command System (ICS)
658 (Kano et al., 2007), and Resilience Engineering(Park et al., 2013). These models represent,
659  respectively, iterative cognition, hierarchical coordination, and adaptive recovery perspectives that

660  have shaped modern emergency management paradigms.
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661 Structurally, the ERA framework can be mapped onto these theories (Table 5). Its
662  “perception—decision—communication—response” cycle parallels the OODA loop, while its
663 communication and response layers support the collaborative and modular characteristics of SEMS.
664  From a resilience perspective, ERA’s functional chain of
665 “identification—regulation—reconstruction—optimization” embodies the adaptive learning principles
666  of Resilience Engineering. However, the significance of this alignment lies not in structural
667  similarity, but in its transformation of the wunderlying cognitive and organizational
668 logic—transitioning from human-coordinated systems to intelligent autonomous systems.

669 ERA extends these classical models in three key dimensions.

670 First, it generalizes the OODA loop through multimodal sensing and explainable Al, enabling
671 autonomous perception and decision cycles that surpass human speed and situational coverage.

672 Second, it advances beyond SEMS’s procedural rigidity by employing data-driven scheduling
673  and blockchain-assisted coordination, thereby enhancing elasticity in heterogeneous, multi-agency
674  operations.

675 Third, it evolves Resilience Engineering toward a proactive paradigm: by coupling digital twins
676  and edge intelligence, the system can predict, simulate, and optimize response strategies in real time.
677 Yet, the theoretical strengths of ERA are context-dependent. In real-world environments,
678  technical and environmental constraints may limit its advantages. The 2011 Fukushima nuclear
679  accident illustrates this boundary: although multiple automated systems were deployed, high
680  radiation and signal interference caused severe communication failures and delayed robotic
681 operations. This underscores that automation alone cannot guarantee resilience unless systems
682  incorporate environmentally adaptive redundancy, fault tolerance, and recovery coordination among

683 agents. In other words, the theoretical superiority of ERA requires robust implementation
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684  mechanisms to withstand anomalous disturbances.

685 Therefore, the ERA framework should be viewed not as a replacement for human-centered
686  models but as an evolutionary complement—enhancing decision efficiency and resilience through
687  integration rather than substitution. Future theoretical exploration should focus on validating under
688  which conditions ERA’s advantages emerge, by linking architectural performance indicators with
689  empirical data from real or simulated disaster scenarios. Such a comparative, evidence-based
690  approach will substantiate the theoretical claims and delineate their operational boundaries.

691 Table 5. Advantages of ERA in case simulations.

Model Key features Performance in this case ERA System Corresponding Capabilities
OODA Linear The command center initiated a ERA integrates multi-source perception and
Loop cycle: Observe response based on sensor data, but Al-driven decision-making, automating the

— Orient — communication  disruptions and “Orient” and “Decide” functions and enabling

Decide — Act conflicting inputs caused several rapid contingency simulations within seconds
minutes of delay, hindering full to enhance response speed and coverage.
situational coverage.

SEMS Emphasize Inconsistent information channels and ERA employs a 6G-blockchain communication
organizational uncoordinated ~ operations among layer as a task-scheduling platform to enable
structure and firefighting, medical, and cross-organizational coordination, consensus,
division of transportation agencies result in and resource sharing, replacing static
responsibilities fragmented responses. processes.

(ICS framework)

Resilience Focus on system During early disaster stages, localized The ERA system employs a self-feedback

Engineeri  fault tolerance, system failures at transport and redeployment mechanism: when a robot fails

ng recovery, and medical hubs create communication and returns, the Al dynamically reschedules
learning blind spots, delaying manual and reconstructs task paths based on real-time
mechanisms. instructions and feedback. information, showcasing self-healing and

adaptive learning.
62 6.5 Future trends
693 The future evolution of ERA is expected to advance along five interdependent technological
694  trajectories: intelligent sensing, autonomous and explainable decision-making, resilient
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695 communication, digital-twin-based simulation, and intelligent multi-agent collaboration. Collectively,
696  these pathways aim to overcome persistent limitations in data fragmentation, communication
697  disruption, decision uncertainty, and coordination inefficiency. Nevertheless, progress in these
698 domains must move beyond conceptual frameworks toward quantifiable, evidence-supported, and
699  cross-domain validated technological advancements.

700 (1) Intelligent Sensing

701 Next-generation sensing systems will adopt multi-source, heterogeneous, and adaptive
702 architectures, integrating MEMS, microwave, optical, and gas sensors for real-time detection of
703 diverse hazards such as fires, toxic releases, and structural deformations (Donta et al., 2023; Nanda
704 et al., 2023; Ortiz-Garcés et al., 2023). The convergence of user-edge computing (UEC) allows
705  priority processing of critical data (e.g., UAV-acquired disaster imagery) in constrained
706 environments(Sun et al., 2025), while blockchain integration enhances secure data storage and
707  interagency information sharing (Habib et al., 2024; Treiblmaier and Rejeb, 2023). This fusion has
708  the potential to mitigate data silos and transmission latency(Zhang et al., 2025). However, scalability
709  remains a central technical bottleneck for large-scale blockchain implementation(Chamola et al.,
710 2020; Satheesh et al., 2025). Future empirical work should report measurable indicators—detection
711  latency, accuracy, and false alarm rate—to verify practical effectiveness under both simulated and
712 field conditions.

713 (2) Autonomous and Explainable Decision-Making

714 Al-driven decision frameworks will increasingly emphasize adaptability, interpretability, and
715  multimodal data fusion(Hsiao et al., 2025; Wibowo et al., 2025). The integration of
716  Dempster—Shafer Theory (DST) with Al models enables conflict resolution under uncertainty(Fei et

717 al, 2024), while generative Al tools (e.g., ChatGPT-type models) may support rapid scenario
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718  modeling and knowledge extraction under time or resource constraints(Maceika et al., 2024).
719  Moreover, multimodal neural networks combining natural language processing and computer vision
720  can leverage unstructured data from social media and sensor feeds to enhance situational awareness
721 (Su et al., 2021). Yet, the real-world performance of these systems remains insufficiently validated.
722 Future studies should systematically quantify gains in decision accuracy, processing efficiency, and
723 operator trust relative to rule-based and expert systems, and explicitly incorporate explainability
724  metrics and human-machine collaboration performance into evaluation protocols to strengthen
725  operational reliability.

726 (3) Resilient Communication and Network Intelligence

727 Current 5G systems face inherent constraints in latency, energy consumption, and coverage.
728  Emerging 6G architectures—integrating quantum communication, terahertz transmission, and
729 low-Earth-orbit (LEO) satellite constellations—are poised to deliver seamless and resilient
730 connectivity for emergency operations(Aldrees et al., 2025; Liu et al., 2025; Uusitalo et al., 2021).
731 Meanwhile, the combination of software-defined networking (SDN) and UAV relay networks can
732 dynamically reconstruct disrupted communication infrastructures, ensuring network continuity in
733 disaster zones(Abir et al., 2023). These paradigms demand rigorous empirical verification,
734 particularly under realistic operational loads, to quantify metrics such as end-to-end latency, packet
735 loss, and network resilience. The convergence of Al and 6G technologies will ultimately enable a
736 closed-loop emergency management ecosystem, integrating pre-disaster forecasting, real-time

737  response, and post-disaster recovery  (Ariyachandra and Wedawatta, 2023; Zio and Miqueles,

738 2024).
739 (4) Digital Twins and Simulation-Driven Decision-Making
740 Digital-twin-based platforms offer a dynamic, data-driven representation of disaster systems,
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741 facilitating predictive analytics and operational optimization(Ghaffarian, 2025). While their
742 applications in industrial and construction safety are promising(Ariyachandra and Wedawatta, 2023),
743 challenges persist regarding uncertainty quantification, cybersecurity, and standardization of
744  modeling frameworks. Coupling digital twins with edge and distributed computing may further
745 support low-latency, scalable strategy adaptation during real-time operations(Zio and Miqueles,
746  2024). Future research should focus on quantifying performance improvements, including reductions
747  in decision latency, enhancements in resource allocation efficiency, and gains in predictive accuracy,
748  while ensuring transparency in model validation and uncertainty assessment.

749 (5) Intelligent Multi-Agent Collaboration

750 Next-generation ERA operations will increasingly depend on collaborative intelligent
751 entities—such as UAVs, ground robots, and Al-assisted agent swarms(Moosavi et al., 2024). Robotic
752 systems already demonstrate strong performance in hazardous search-and-rescue and medical
753 support missions(Pillai et al., 2024). Future architectures should integrate multi-agent coordination
754  frameworks and human—machine collaboration models to optimize task allocation, minimize
755 operational conflicts, and enhance system robustness(Daud et al., 2022; Mourtzis et al., 2024).
756  Quantitative performance measures—such as task completion time, coverage efficiency, and safety
757  indices—should become standardized evaluation criteria to enable cross-study comparability and

758 cumulative evidence building.

159 1. Conclusion

760 These findings suggest that the central challenge for the coming decade is not only to make
761 ERA more intelligent, but to make it systematically safer, more interoperable and more accountable.

762  To this end, we argue that next-generation ERA should be explicitly guided by a set of design
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763 principles, among which privacy-by-design and fail-safe design must be treated as non-negotiable
764  requirements rather than optional add-ons. Privacy-by-design calls for embedding data-protection
765 and privacy safeguards into architectures, algorithms and workflows from the outset, using measures
766  such as data minimisation, encryption, privacy-preserving analytics and transparent governance.
767  Fail-safe (and, where necessary, fail-operational) design requires explicit hazard analysis,
768  redundancy and graceful degradation, conservative automated actions under uncertainty and clear
769  escalation paths to human control, verified through realistic stress-testing. Two additional, closely
770  related principles emerge from the evidence base. Interoperability-by-design is essential to
771 overcoming information silos: ERA should be built on common data models, open or
772 well-documented interfaces and minimum interoperability profiles that allow heterogeneous systems
773 and organisations to share information and coordinate actions during multi-hazard events. At the
774  same time, human-centred and transparent automation is needed to ensure that ERA augments rather
775  than replaces human expertise, by aligning automation levels and interfaces with human cognitive
776  capacities and providing meaningful explanations of system recommendations. Taken together, these
777  principles offer a concise roadmap for translating fragmented technological advances into reliable,
778  trustworthy ERA systems for disaster risk reduction. Future research should therefore focus on
779  co-designing architectures, metrics and governance mechanisms that embed privacy-by-design and
780  fail-safe principles from the outset, while operationalising interoperability and human-centred

781 automation in real multi-hazard environments.
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