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Abstract.

Terrestrial vegetation plays an important role in shaping the Earth’s climate due to its control on the global carbon cycle.

Understanding and predicting vegetation phenology and biomass turnover into soil organic matter is therefore of great impor-

tance for our understanding and quantification of carbon exchange with the atmosphere, which varies seasonally. In the past,

models of tree phenology have been developed extensively, but equivalent models for herbaceous ecosystems, which cover a5

significant area of the terrestrial land surface and provide many ecosystem services to humans, have been much more poorly

developed for both the start and the end of season. These limitations may be due to spatially and temporally sparse observa-

tional data in grasslands, but more importantly, their distribution across a large range of climatic and environmental conditions,

as well as a lack of understanding of underlying processes. It follows that a refined autumn phenology model for grasslands is

a necessary component of land surface models (LSMs). Here we present a novel approach to grassland autumn phenology by10

introducing a general, dynamic leaf turnover model controlled by environmental conditions into the QUINCY (QUantifying

Interactions between terrestrial Nutrient CYcles and the climate system) LSM and show that decoupling leaf senescence from

growing season triggers improves site-level carbon dynamics in herbaceous systems globally. We tested the model at 59 sites

with differing climates and show that our model was able to reduce errors in gross primary productivity (GPP) predictions

as well as in the timing of the onset of leaf senescence, especially in seasonally dry and very cold sites. Our model is able15

to reduce the root mean square error (RMSE) of daily GPP at a seasonally dry site from 1.25 to 0.76 g C m−2 d−1. At a

seasonally cold and light-limited site, RMSE decreased from 0.6 to 0.46 g C m−2 d−1 and at a temperate, oceanic site, from

1.56 to 1.20 g C m−2 d−1. Our study provides a way forward towards general, non PFT or site-specific autumn phenology

modules in LSMs, as well as improving predictions of carbon fluxes in grassland ecosystems globally.
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1 Introduction20

Anthropogenic global change is severely impacting the Earth’s terrestrial ecosystems, through changes in atmospheric gas

concentrations and their ensuing warming effect on the climate and changes in precipitation regimes, as well as changes in

land use (Kennedy et al., 2019; Halpern et al., 2008). Grassland ecosystems cover roughly 40% of the global land area (Suttie

et al., 2005; Lemaire et al., 2011) and constitute a vast storage of carbon above- and below-ground, representing roughly one

third of the terrestrial carbon stock (White, 2000; Bai and Cotrufo, 2022). They are often intensively managed ecosystems,25

provide a multitude of ecosystem services such as biodiversity, carbon storage, climate change mitigation (Scurlock and Hall,

1998), pollination, and dairy and meat production (Bengtsson et al., 2019) and further the livelihood of approximately 1 billion

people directly depends on them (Suttie et al., 2005). Despite their demonstrated importance for climate, human activities and

ecosystems, grasslands and their services are at risk due to global change and they could be particularly sensitive to droughts

(Radolinski et al., 2025) through their comparably shallow rooting depth and thus reliance on shallow soil water and droughts30

are predicted to strongly increase regionally with further future climate warming (Cherwin and Knapp, 2012).

Land surface models (LSMs), which simulate biogeochemical cycles in terrestrial vegetation and soils as well as energy

and water cycles play a crucial role in understanding the responses of these important ecosystems under a changing future

climate. One of the biggest challenges that site-level models are able to overcome, but which becomes less straight-forward

on a global scale, is that grasslands are diverse systems in very different climates, but LSMs commonly split them only into35

two plant functional types (PFTs; C3 and C4 grasses). In reality, climatic factors, seasonality and plant life-strategies and how

plants respond to their environment, vary greatly (Harrison et al., 2010; Butler et al., 2022; Dixon et al., 2014). Despite their

seemingly simple vertical structure compared to other ecosystems, e.g., tropical rain forests, LSMs consistently struggle to

simulate carbon and nutrient dynamics in grassland ecosystems (Whitley et al., 2016; Fisher et al., 2014; Haynes et al., 2019;

Schwalm et al., 2010) and fail to reproduce observed responses of grasslands to global change factors such as elevated CO2 and40

warming (De Kauwe et al., 2017). The division of tree ecosystems into a larger number of PFTs certainly allows for a better

distinction and representation of forests in LSMs due to much smaller ranges of climatic conditions within one PFT (e.g., rain

forest PFT), which may explain better model performance in these ecosystems (Balzarolo et al., 2014). However, many LSMs

also still lack proper representation of leaf phenology of grasses (Balzarolo et al., 2014) and simplified mechanisms like leaf

senescence below a temperature threshold may therefore work well enough for tree PFTs but not for herbaceous PFTs due to45

their large geographic distribution.

Phenology, the study of the timing of recurring plant life-history events, is a key process for understanding the impacts of

climate change on vegetation as shifts in phenology can have a multitude of implications for plants, such as shifts in growing

season length which have implications for the carbon cycle or mismatches in timing of phenological events that decrease fitness

and make plants more vulnerable to extreme events (Richardson et al., 2013). In modeling, a lot of focus has been placed on50

spring phenology processes in tree ecosystems (Richardson and OKeefe, 2009; Fu et al., 2012; Chen et al., 2015), but much

more uncertainty remains about the end of season, especially in grasslands (Haynes et al., 2019; Balzarolo et al., 2014). Yet,

a better understanding of end of season phenological processes at the global scale is important for reducing uncertainty in
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ecosystem carbon dynamics but also nutrient cycling in terms of litter inputs from vegetation to the soil. Over the last decade,

more attempts have been made to close this gap (Lang et al., 2019; Chen et al., 2024; Yang et al., 2023), but these studies have55

either focused on modeling single sites based on plant species composition (Yang et al., 2023) or only certain regions like the

boreal region in the case of Chen et al. (2024) or the Qinghai–Tibetan plateau (Lang et al., 2019). Thus, a general globally-

consistent senescence scheme in LSMs is still lacking for grasslands. The current ’default’ herbaceous phenology in models is

often based on on-off growing season switches, where the growing seasons ends if air temperature and/or soil moisture drops

below a certain threshold, which induces turnover of leaf and root tissue (Krinner et al., 2005; Sitch et al., 2003; Peano et al.,60

2021). Further, current LSMs frequently focus on temperature thresholds in autumn phenology but many grasslands globally

are water limited systems due to their biogeography (Fang et al., 2018) and there is also evidence that decreasing day length as

a signaling mechanism in herbaceous plants plays an important role for autumn phenology (Lang et al., 2019).

In this study, we introduce a novel representation of grassland senescence dynamics inspired by Yang et al. (2023) into the

LSM QUantifying Interactions between terrestrial Nutrient CYcles and the climate system (QUINCY) (Thum et al., 2019), in65

order to provide a critical step towards more accurate predictions in herbaceous systems globally. We found that the default

leaf turnover model in QUINCY with its threshold approach (hereafter ’default model’), like many other LSMs, often lacked

the flexibility needed to represent a broad range of grassland ecosystems and that the model was frequently responding slowly

to unfavorable environmental conditions (e.g., drought) leading to a very delayed shedding of leaves. We test if replacing

the existing threshold approach with a direct control of leaf senescence through environmental conditions improves end of70

season dynamics in grasslands. We first investigated the model’s performance at four sites with contrasting climates for an in

depth analysis and then at 56 eddy covariance PLUMBER2 sites (Ukkola et al., 2021) for broader, global testing. We tested the

model’s capabilities in predicting Gross Primary Productivity (GPP) dynamics, End Of Season date (EOS) and Leaf Area Index

(LAI) dynamics. We hypothesize that improving the phenological end of season performance of the model will improve annual

GPP predictions, as resources for growth for the following years will be affected if grasslands are able to respond adequately in75

terms of timing and carbon flux magnitudes to unfavorable conditions. We evaluate our results using GPP from eddy covariance

flux data (EC flux, Ukkola et al. (2021)) and Green Chromatic Coordinate (GCC), a vegetation index for phenology from the

PhenoCam network (Seyednasrollah et al., 2019).

2 Methods

2.1 Model overview80

QUINCY is a land surface model that simulates a fully coupled carbon (C), nitrogen (N), phosphorus (P) and water and energy

cycle as well as tracking 13C, 14C and 15N isotopes. The full model description can be found in Thum et al. (2019) and in

follow-up studies introducing processes such as permafrost freeze-thaw cycles in the Arctic (Lacroix et al., 2022) and variable

leaf N content (Caldararu et al., 2020). Below we provide a short description of the model structure as well as details relevant

for leaf turnover and end of season dynamics. For the purpose of this study, we use QUINCY as a C-N only model, with no85

impact of phosphorous availability.
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QUINCY has 14 PFTs, two of which are herbaceous non-managed PFTs (C3 and C4 grasses). Plants are comprised of pools

of carbon, nitrogen and phosphorus and are split into leaf, fine root, coarse root, sapwood, heartwood, fruit, seedbed, labile and

reserve pools, where grass PFTs do not have woody pools, i.e. heartwood and coarse roots. The non-structural labile carbon

pool is a short-term storage pool, where newly assimilated carbon from photosynthesis and nutrients taken up by the roots90

are stored prior to allocation to respiration, growth and storage. The second non-structural longer term reserve pool stores

resources for the next growing season and provides resilience against inter-annual variability. C and N can flow between these

two storage pools seasonally and based on resource availability and demand. At the start of and during the whole growing

season, necessary resources can be pulled out of the reserve pool into the labile pool for growth and maintenance of new and

existing tissue. Resources are moved into the reserve pool based on a target reserve pool size that depends on how much C95

is required to replace growth of leaves and fine roots annually. The reserve pool is further scaled by a PFT-specific parameter

(ktarget
reserve) that symbolizes risk avoidance. When the reserve pool becomes too large, resources are moved back into the labile

pool.

The start of the growing season is determined by heat accumulation through growing degree days (GDD) since last dormancy

accounting for PFT-specific chilling requirements and soil moisture above a PFT-specific threshold (Eq. A1 and A2 and Table100

C1). Further, GDD can only start accumulating if snow cover thickness is less than 2 cm and the soil is not frozen (Lacroix

et al., 2022). Outside the growing season all growth fluxes are set to zero but the labile pools remain outside the growing season

to provide resources for maintenance respiration of persisting tissue such as fine roots in cold grasslands (fine root persistence

described in Section 2.2).

Plant growth in QUINCY is a balance of source (photosynthesis and nutrient uptake) and sink processes (tissue production,105

respiration, storage) and C and N taken up by plants enter the labile pool and are distributed from there towards the three

sinks. For each tissue type, maintenance respiration is determined by N content and tissue temperature and has priority over

new growth. The growth of new tissue is determined by tissue stoichiometry and allometry as well as regulated by meristem

activity which is reduced by low soil moisture and temperature.

Photosynthesis in QUINCY’s multi-layer canopy is calculated separately for sunlit and shaded leaves and is directly affected110

by soil N availability, since leaf N content, which determines photosynthetic capacity, depends on soil available N. Leaf N is

vertically distributed in the canopy and decreases exponentially from the top to the bottom-most layer. Further, photosynthesis

is regulated by sink limitation when growth is limited by water, temperature or a lack of nutrients. In this case, labile C

accumulates beyond its target size, which then down-regulates photosynthetic activity. Stomatal conductance is calculated

following the ’Medlyn’ formulation (Medlyn et al., 2011) and it is limited by soil moisture.115

Fine roots of plants are distributed over the entire soil column, but their density generally exponentially decreases with depth.

Plants adjust their root distribution dynamically over time to the active layer in the case of permafrost (Lacroix et al., 2022).

If water and/or nutrients become limiting, carbon allocation to roots increases. Plant nutrient uptake linearly depends on fine

root biomass in each soil layer. Plant water uptake is driven by transpiration which is regulated by water stress. Water stress is

calculated based on soil water potential and root fraction for each soil layer, so plant water uptake depends on the root profile120

and transpiration.
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Living biomass turns over into litter based on the conditions described in the next section and litter is then split into slow-

(structural) and fast- (metabolic) decomposing pools in the soil.

The soil in QUINCY is divided into 15 layers of varying layer thickness that increase with depth and total soil depth is 9.5

m. The soil is split into five organic matter pools (slow and fast turning soil organic matter (SOM) and metabolic, structural125

and woody litter), which are calculated using first-order kinetics and the formation of SOM follows the CENTURY approach

(Parton et al., 1993). Soluble, inorganic nutrients in the soil are available for plant and soil microbial uptake and they compete

for these resources. Physical soil properties, such as water content at saturation and field capacity as well as parameters for

the water retention curve come from Saxton and Rawls (2006). Soil temperature and moisture are calculated per layer of soil

and depend on physical soil properties as well as transport and water and energy exchange with the atmosphere. QUINCY also130

features snow and freeze-thaw processes (Lacroix et al., 2022) that influence soil heat and water exchanges as well as inhibiting

fine root growth and nutrient uptake in frozen soil layers.

2.2 Default end of season dynamics

During the growing season, leaves turn over at a low, constant rate (1/τleaf ) to simulate a basic level of herbivory. For the grass

PFTs, the growing season ends if either the average air temperature (Tair) over the previous 7 days (τphen) is lower than T sen
air135

or soil moisture stress on stomatal conductance or photosynthesis (βgs
soil) over τphen is lower than a fixed threshold βsen

soil or by

a carbon starvation condition, where the carbon balance of the plant over τphen is negative, i.e., C required for maintenance

(Rmaint, labile) is higher than labile C assimilated through photosynthesis (GPPτlabile
). A minimum leaf age requirement

(ageleaf
min ) for ending the growing season prevents the death of young leaves in the early growing season, where temperatures

can fluctuate around 0◦C (Eq. 1- 4). Once the end of the growing season is reached, all leaves and sapwood (stems) are shed140

at a rate of LAItarget

LAI until LAI reaches zero at which point leaf turnover (f leaf
turn) is set to 1. The default leaf turnover model is

shown in Eq. 5. In summary the end of the growing season is triggered when:

ageleaf
mean > ageleaf

min (1)

and one of the following conditions is met:

Tair < T sen
air (2)145

or βgs
soil < βsen

soil (3)

or GPPτlabile
< Rmaint, labile (4)

Once the end of the season is reached, grasses shed above-ground biomass, including both leaf and stem tissue, at a rate

calculated by:

f leaf
turn = max

(
1

τleaf
,fshed,max×

LAItarget

LAI

)
(5)150
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; where, LAItarget is a model-wide variable determined by root-to-leaf biomass ratio, fine root biomass and constrained to

below the parameter LAItarget, max (Table 1).

During the growing season, fine roots also turn over continuously (Eq. A3). At the end of the growing season, fine roots

broadly follow an annual or perennial strategy depending on the climatic conditions at the time of senescence (Poppenwimer155

et al., 2023). They are either shed or retained over the dormancy period depending on the type of grassland (Eq. A4-A6). In

cold grasslands, i.e., where low temperatures initiated the end of the growing season, fine roots are maintained throughout the

dormancy period and in seasonally dry grasslands, i.e., where water stress triggers the end of the growing season, fine roots are

shed and then regrown once the growing season starts again. If the end of the growing season is initiated by neither cold nor

drought but through a negative carbon balance, roots are also shed (Eq. A7 and Eq. A8). Storage pools (labile and reserve) are160

maintained throughout the unfavorable season.

2.3 Dynamic turnover model

Due to the default models’ basic representation of end of season dynamics and building on Yang et al. (2023)’s species-specific

drought response model in Australian herbaceous systems, we have developed a new representation of leaf turnover to make

QUINCY more dynamic and process based (hereafter ‘dynamic turnover model’). We have decoupled leaf turnover from165

the growing season and represent it as a continuous function of air temperature, soil water availability and day length. This

allows plant growth to be constrained by multiple environmental factors simultaneously and allows biomass turnover on a more

continuous basis, as a more accurate representation of multi-species systems. Additionally, the model formulation also includes

co-limitation of multiple factors, either concurrent or at different times of year and importantly allows for leaf abscission during

the growing season if conditions become unfavorable.170

Turnover in the dynamic model is dictated by three components: temperature, moisture and day length which are shown in

Figure 1. The temperature component (Fig. 1a) which has been adapted from the temperature control function on the meristem

of the model f temp
tun is calculated as:

f temp
turn = e−((λtemp×Tair)ktemp) (6)

; where λtemp and ktemp are scaling factors and Tair is the air temperature in ◦Celsius averaged over τphen.175

The moisture component of the model increases leaf turnover linearly from its minimum value 0 at soil water potential in

the rooting zone (Ψsoil) at 0 MPa to its maximum value 1 at Ψmin
leaf (Permanent Wilting Point, PWP, see Fig. 1b). The soil water

potential in the root zone is defined as the water potential within soil layers where roots are present, weighted by the fraction of

roots present in the individual layers. We have opted for a linear relationship between Ψsoil and fturn,leaf due to the non-linear180

relationship between Ψsoil and soil water content (SWC; θsoil) (Eq. 7).
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fmoist
turn = min

(
1,

Ψsoil

Ψmin
leaf

)
(7)

; where Ψsoil denotes the soil water potential in the rooting zone and Ψmin
leaf is the minimum leaf water potential.

Having a day length component in the dynamic model is important especially for high-latitude grasslands for two reasons.185

First, autumn phenology in those regions happens rapidly which can be attributed to the short growth period (∼ 3 months of

snow-free season) and second, light may become a limiting resource for plants toward the end of the growth period (Chapin III

et al., 2012; Richardson et al., 2012; Tang et al., 2016). We utilize the difference in day length throughout the year to capture

the rapid autumn phenology at higher latitudes (Chapin III et al., 2012) whilst still retaining a low impact of day length at lower

latitudes where phenological events take longer and light may not be a limiting factor. We choose this approach over other more190

direct measures of photosynthetically active radiation (PAR) such as photosynthetic photon flux density (PPFD), because such

metrics are strongly influenced by short-term meteorological variability and we wanted to avoid that our model responds to

conditions such as prolonged cloud-coverage by shedding leaves at the wrong time of the year. Moreover, when averaged over

longer time scales, PPFD exhibits a seasonal pattern that closely aligns with the annual cycle of daylight duration, therefore

providing no significant advantages over the simpler day length approach. Day length is calculated based on latitude and solar195

declination. Latitude is converted to radians and solar declination is calculated per day of the year (DOY). We use the rate at

which days get shorter to shed increasingly more leaves. If day length is increasing or more than 15 h of day light are available,

the day light impact on leaf turnover is zero (Eq. 8). After the summer solstice and once day length starts to decrease (end of

polar day at sites where that is the case) and less than 15 hours of day light are available, we use the difference between the

length of the current day and the length of the previous day to calculate the rate of change over the current day length to shed200

increasingly more leaves until the maximum rate is reached at the September (March on Southern hemisphere) equinox (Eq.

9). From the equinox the shedding rate decreases again until the winter solstice or when day length reaches zero (polar night)

(Eq. 10). The use of solstices and equinoxes follows directly from the geometry of Earth’s orbit. The solstices mark the turning

points of this cycle where the Sun’s declination changes the most slowly at the summer and winter solstices, so daily changes

in day length approach zero. At the equinoxes the Sun crosses the celestial equator, where the rate of change of declination205

is maximized, and therefore the rate of change of day length is also at its maximum. In summary, the three cases of the light

component are calculated as:

if polar day, day length increases, or day length > 15h:

f light
turn = 0 (8)210

if day length is < 15h and day length is decreasing:

f light
turn =

rate of change

current day length
(9)
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if polar night:

f light
turn = 1 (10)

; where rate of change
current day length is the quotient of the rate of change (previous daylength - current daylength) and the divisor cur-215

rent daylength.

Using this approach, we are able to increase the rate at which leaves are shed in high latitudes, while lower latitudes remain

virtually unaffected as the rate of change of day length at lower latitudes is much lower (see Fig. 1c).

The full dynamic leaf turnover representation is shown in Eq. 11. Day length, temperature and soil moisture components220

of the model interact with each other so that conditions where more than one factor is limiting, leaf turnover is higher than

under conditions where only of the factors is limiting. The maximum turnover rate per timestep is capped through a parameter

fshed,max, which prevents shedding of all leaves at once.

f leaf
turn = (f temp

turn +fmoist
turn +f light

turn −f temp
turn ×fmoist

turn −f temp
turn ×f light

turn −fmoist
turn ×f light

turn −f temp
turn ×fmoist

turn ×f light
turn )×fshed,max (11)

The parameter fshed,max, which is also part of the default model and prevents grasses from shedding all leaves immediately225

when the growing season ends, is set to 5% (0.05) by default. We have kept this parameter in the dynamic model but ran a

parameter sensitivity test in QUINCY to optimize fshed,max as 5% imposes a too slow shedding of leaves under unfavorable

conditions. The results of our sensitivity test reveal that 10% or a shedding of all leaves over 10 days at the highest shedding

rate (fshed,max = 0.1) is a more suitable value for our model. Finally, we have added an additional condition to the growing

season in the dynamic model so that an accumulated snow depth of > 2cm stops the growing season.230
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Figure 1. The three components of the dynamic turnover model, temperature (a) moisture (b) and day length response (c) and their impact

on f leaf
turn. The day length response is shown for different latitudes and the left part of the figure is an enlarged view of the right day length

plot to show the exact pattern as well as timing of turnover response to changing day length.
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Table 1. Parameters and variables in the default and dynamic turnover model calculations.

Parameter/Variable Value Unit Description Citation

βgs
soil 1− Ψsoil

Ψmin
leaf

- Stomatal response to soil moisture constraints Thum et al. (2019)

βflush
soil 0.75 - Soil moisture threshold on stomatal cond. for leaf flushing Thum et al. (2019)

βsen
soil 0.02 - Soil moisture threshold to end growing season Thum et al. (2019)

ktemp 2.0 - k in temperature response function of dynamic turnover Thum et al. (2019)

fshed,max 0.05 (5%) - Leaf shedding constraint per timestep (default model) Thum et al. (2019)

fshed,max 0.1 (10%) - Leaf shedding constraint per timestep (dynamic model) This study

τpheno 7 days Moving average for phenological processes Thum et al. (2019)

τleaf 3.85 months Average turnover time of a leaf Kattge et al. (2011)

τfine root 0.7 years Average turnover time of a fine root Ahrens et al. (2014)

LAItarget m2/m2 Target Leaf Area Index Thum et al. (2019)

LAItarget, max 5 m2/m2 Maximum target Leaf Area Index, constraining LAItarget Thum et al. (2019)

T sen
air 0 ◦C Temperature threshold to end growing season Thum et al. (2019)

Tair
◦C 7-day moving average air temperature

in response function of dynamic turnover -

ageleaf
min 10 days Minimum leaf age requirement to end growing season Thum et al. (2019)

λtemp 0.5 - Lambda in temperature response function of dynamic turnover Thum et al. (2019)

Ψsoil MPa Soil water potential in the rooting zone Thum et al. (2019)

Ψmin
leaf -1.5 MPa Minimum leaf water potential Hickler et al. (2006)

ktarget
reserve 1.0 - Fraction of annual leaf + fine root biomass that is

the target size of the long-term reserve pool Thum et al. (2019)
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2.4 Data description

2.4.1 Site description

We selected four main sites for model development and evaluation (Table 2) based on their differing environmental conditions

and available data to test model performance at different extremes as well as at moderate environmental conditions, that may235

be affected by temperature (i.e., low temperatures in winter) as well as soil moisture changes (e.g., dry season). The arctic site

was chosen specifically due to its location north of the Arctic circle to test our model under polar day/night conditions.

The first site is a seasonally dry ’dehesa’ site (Köppen-Geiger: Csa), Majadas de Tiétar, Spain (PLUMBER2: ES-LMa;

39◦56’24.68"N, 5◦46’28.70" W). The mean annual precipitation (MAP) is 650 mm, the dry season starts in May and lasts

until September at which point it starts to rain again and the main rainfall occurs throughout the winter months and spring.240

The mean annual air temperature (MAAT) is 16.7 ◦C (Luo et al., 2018). The second site is a seasonally cold montane meadow

(MAT: 10.9◦C; MAP: 1036.7 mm, Köppen-Geiger: Dfb) located in the Austrian Alps, the ClimGrass experimental site at the

Agricultural Research and Education Centre Raumberg-Gumpenstein, Austria (hereafter CGE). This montane meadow site is

managed through biomass harvesting three times a year during the growing season. The site does not have a flux tower. The third

site, Toolik Lake (US-Tol) located in the Alaskan tundra (Köppen-Geiger: ET) near Toolik Field Station was selected to test245

the light-limitation in our dynamic turnover model. The vegetation at the site consists of tussock and wet sedge tundra and the

MAAT and MAP at Toolik Lake are -7.9◦C and 130.5 mm, respectively. The fourth site near Dripsey, Ireland (PLUMBER2:

IE-Dri), a grassland intensively managed for grazing and silage harvesting (more details in Kiely et al. (2018)), does not

experience severe dry seasons or cold temperatures and was therefore chosen to test our model under ’moderate’ conditions

(MAAT: 9.6◦C; MAP: 1271.8 mm, Köppen-Geiger:Cfb)). The vegetation at Dripsey is classified as grasslands (IGBM: GRA)250

by the European Fluxes Database Cluster (www.europe-fluxdata.eu).

Furthermore, to test global applicability of our model beside the four main sites, we have tested it at a number of sites (Fig.

B1) across different climates of the PLUMBER2 dataset (Ukkola et al., 2021). PLUMBER2 is a quality-controlled synthesis

of FLUXNET2015, La Thuile and OzFlux flux data from 170 sites, created specifically for evaluating land surface models. For

this we have selected all sites classed as short-stature herbaceous vegetation, which results in 56 grassland sites spanning 14255

Köppen-Geiger climatic zones that range from unproductive to highly productive grasslands with mean annual GPP of 42.60

to 2596.5 g C m−2 year −1.
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2.4.2 Data used for evaluation

We use Gross Primary Productivity (GPP) data from eddy covariance towers at the three sites ES-LMa, IE-Dri and US-Tol. For

ES-LMa data is available from 2003 to 2006 in PLUMBER2 and we also used flux data from 2015 to 2018 for ES-LMa from260

Nair et al. (2024). For IE-Dri flux data in PLUMBER2 is available from 2002 to 2005. For US-Tol we use GPP data from the

FLUXNET site US-ICs (Imnavait Creek Watershed), which is located approximately 10 km east of Toolik Field station. Data

is available as FLUXNET community product from 2014-2016 and we aggregated GPP from half-hourly to daily GPP for this

site as well. CGE is a miniFACE site so there is no GPP data available for this site. For the PLUMBER2 subset of sites (56

sites), we calculated mean annual GPP for the two models and compared it with observations.265

As well as GPP data, we use Green Chromatic Coordinate (GCC) data from PhenoCam images from the PhenoCam network

(Seyednasrollah et al., 2019; Richardson et al., 2018) to test our model at ES-LMa, US-Tol and CGE. IE-Dri does not have a

PhenoCam camera. GCC data reflects the greenness of the vegetation, and can be used to infer the start and end of the growing

season. GCC is calculated from visible light RGB bands (Sonnentag et al., 2012) to suppress noise in the data (Richardson

et al., 2018). We used the phenocamapi R package (Seyednasrollah, 2018) to obtain the GCC data and the available years for270

each site are shown in Table 2. We compare the GCC data with model LAI to investigate the timing of leaf senescence. For

the purpose of visualizing and comparing seasonal dynamics rather than actual magnitude of LAI compared to GCC, we have

normalized predicted LAI and observed GCC relative to the mean annual maximum and minimum value of each metric. LAI,

being a metric of leaf area to ground area, is a three dimensional metric, whereas GCC, being derived from images of the

canopy, is a two dimensional metric. Keenan et al. (2014) shows that LAI lags behind GCC at high LAI values, since GCC can275

reach its seasonal peak when leaves are not fully developed and therefore LAI has not reached its peak yet. Similarly, during

leaf senescence GCC can decrease earlier than LAI. However, both metrics follow a broadly similar pattern and are able to

show seasonal changes to the canopy.

2.4.3 End of season dynamics

To test if we are able to predict the end of the growing season more accurately with our new dynamic model, we estimated and280

compared end-of-season (EOS) dates for the EC data (observed daily GPP) and the default and the dynamic model (predicted

daily GPP) using the ’phenofit’ package (Kong et al., 2022) in R (Team, 2021). We rough fitted the data with a weighted

HANTs function (Verhoef, 1996; Yang et al., 2015a). Next, weight updating using the TIMESTAT function (Jönsson and

Eklundh, 2004) and finally fine fitting the data using logistic approach ’Elmore’ (Elmore et al., 2012). EOS dates were then

estimated from the resulting smoothed GPP values with the derivative method (DER). Sites where no growing season or285

multiple growing seasons could be detected were excluded from the analysis resulting in 37 sites. For more information and a

detailed overview of these methods refer to Kong et al. (2020, 2022). The estimated EOS dates for the four main sites ES-LMa,

CGE, IE-Dri and US-Tol are displayed in Figure B3.

Since the aim of our model is to improve EOS dynamics, we further use these estimated EOS dates to quantify how well the

two models (default and dynamic) fit the period of senescence in EC data. We test how well predicted GPP fits the observed290
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GPP for the period from the calculated EOS date until the first absolute minimum in daily GPP (14-day smoothed) following

the EOS date, but before the next growing season starts. We used the overlap of the calculated periods EOSflux−minflux

and EOSQ−minQ (flux = EC flux; Q = QUINCY) for the analysis. The start of the growing season is also calculated with

the phenofit package using the same setup and we excluded sites with double growing seasons and sites with growing seasons

that span multiple years resulting in 32 sites.295

All statistical analyses were done in R. For mean absolute error (MAE), root mean square error (RMSE) and normalized

RMSE (NRMSE, normalized with observedmax− observedmin) we used the corresponding functions from the hydroGOF

package (Zambrano-Bigiarini, 2024). Correlation coefficients were calculated using the method ’Pearson’ (ρ), adjusted r2

calculated from linear model, F-statistic (df) from ANOVA and p-values using TukeyHSD for three pairs of group means.

Global Köppen-Geiger climate classes for each site were extracted from raster data with 1km resolution (Beck et al., 2018).300

2.4.4 Model driving data and setup

QUINCY is driven by atmospheric forcing data from site-level measurements. Half-hourly air temperature and precipitation

data as well as downward radiation, air pressure, humidity and wind velocity used are from PLUMBER2 (Ukkola et al., 2021)

or site level measurements in the case of ES-LMa and CGE. Soil properties in QUINCY are prescribed at site level from the

SoilGrids database (Hengl, 2017), atmospheric CO2 comes from Le Quéré et al. (2018), N deposition from Lamarque et al.305

(2010, 2011) and P deposition from Brahney et al. (2015) and Chien et al. (2016). Meteorological forcing data from 1901

until the begining of each site recording period was created with repeated years of available data, and with fully transient CO2

and nutrient deposition. We ran QUINCY with coupled C-N cycling and prescribed P. The model requires a spin-up period to

equilibrate vegetation and soil pools, which for the purpose of this study was 500 years with repeated data from 1901-1930,

including a spin-up accelerator for slow soil pools. After the spin-up period, simulations for the four main sites start in 1901310

and were run until the last year of available meteorological data, which vary per site. For the multi-site analysis, the spin-up

length was the same as for the four main sites but the simulations all ran for 124 years (1901-2024). Snow is enabled and fire

disturbance was disabled and PFTs are parameterized with data taken from the TRY dataset (Kattge et al., 2011), which is a

global dataset of plant traits.

3 Results315

3.1 Site-level seasonality

The dynamic turnover model improves the response of grasses to seasonal moisture, cold and light limitation. Across all four

main sites, we are able to reduce error and improve model fit in predicting seasonal trends of GPP and LAI (Fig. 2 and Table 3),

except for LAI/GCC fit of US-Tol where the RMSE is unchanged in the dynamic compared to the default model (RMSE: 0.39

and 0.39, respectively). Further, IE-Dri shows improved annual GPP estimates (Fig. 3 and Table 4) and together with ES-LMa320

also shows significant increases in long term soil C storage (Fig. 4 and Table C3).
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In the seasonally dry grassland, ES-LMa, we are able to reduce the delay of the onset of senescence (Fig. 2b) and the overall

seasonal dynamics of modeled GPP (Fig. 2a) fit the EC data better in our dynamic model compared to the default model

(adj. r2 = 0.77 and 0.88, and RMSE 1.25 g C m−2 d−1 and 0.76 g C m−2 d−1, respectively, see Table 3). The dynamic

turnover improves daily GPP fit in spring and immediately before the dry season, as well as after the dry summer period at325

the start of the new growing season. This leads to an increase in annual GPP (from default: 481.80± 338.143 to dynamic:

613.06 ± 403.52 g C m−2 y−1, Fig. 3 and Table 4) meaning that the dynamic model’s annual GPP is closer to the observed

annual GPP (EC) of 729.43± 479.62 g C m−2 y−1, although the default model is not significantly different from the EC

data to begin with. Further, there is no detectable significant difference in annual GPP between the default and dynamic model

(Table 4). However, overall long-term ecosystem C storage in the dynamic model is higher than in the default model (Fig. 4).330

The same improvements as in the seasonal GPP dynamics can also be seen in the modeled LAI compared with GCC. We are

able to reduce RMSE from 0.17 in the default model to 0.15 in the dynamic model and increase the adj. r2 from 0.10 to 0.39

(Fig. 2b). Although, the seasonal mismatch of LAI and GCC is still quite pronounced in the dynamic model, this is expected

due to the comparison of two different metrics.

For the montane, seasonally cool grassland, CGE, where cold winter temperatures are the main determinant of leaf senes-335

cence, the default model was unable to capture the onset of winter and showed a delay of nearly 60 days (Fig. 2f). With the

direct response to temperature in our dynamic model we are able to shed leaves quicker at the end of the season around Novem-

ber and therefore achieve an overall better fit of predicted LAI to observed GCC (adj. r2 default model: 0.31, dynamic model:

0.36) and we are able to reduce RMSE from 0.27 to 0.23. Leaves also start to grow earlier in spring compared to the default

model as shown by an earlier increase in LAI, which brings the start of the season closer to the observed start of the growing340

season as shown by the GCC data. Long-term C storage however remains unaffected by the dynamic model (Fig. 4 and Table

C3).

At the cold and seasonally light-limited site, US-Tol, the default model was unable to reproduce GPP dynamics, espe-

cially in the summer, where it underestimated the magnitude of daily and consequently annual GPP (Fig. 3). Similarly to

ES-LMa, the dynamic model is able to reduce the error in daily GPP here (Fig. 2c). The RMSE of daily GPP was reduced from345

0.60 g C m−2 d−1 in the default model to 0.46 g C m−2 d−1 with the dynamic model (Table 3) and annual GPP increased

from 191.10± 8.49 in the default model to 204.30± 12.72 g C m−2 y−1, compared to the EC flux annual GPP estimate

of 224.57± 22.72 g C m−2 y−1 (Table 4). Although the mean differences exceed the inter-annual standard deviations, the

ANOVA indicates that annual GPP of neither model is significantly different from each other nor from the EC flux estimate

(p > 0.05, Fig. 3 and Table 4), likely reflecting the small sample size (n years = 3). The increase, especially in summer daily350

GPP, also leads to a better model fit of the dynamic model (adj. r2: 0.76 (default) and 0.86 (dynamic)), but LAI still shows an

overall poor fit in the dynamic model (adj. r2: 0.0002 (default) and 0.0028 (dynamic)) even though we are able to replicate the

steeper drop of GCC better and shift the date of minimum LAI from mid January to early November (Fig. 5d). Just as at the

seasonally cold site CGE, long term C storage remains unaffected with negligible decreases in SOC stock (Fig. 4 and Table

C3).355
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At IE-Dri, a site that is neither driven by strong temperature nor moisture fluctuations or extremes, with a more continuous

growing season and turnover, the dynamic model performs very well (Fig. 2e), as the capacity for continuous turnover is a

key new factor in the model. The main drivers of leaf turnover at IE-Dri are soil moisture and day length, though their overall

contributions remain small (Fig. B2). With the dynamic model, we can capture the seasonal GPP fluctuations and its amplitude

accurately and we reduce the RMSE of daily GPP from 1.56 in the default model to 1.20 in the dynamic model and increase360

the fit from 0.83 to 0.86 (adj. r2) compared to daily EC flux GPP (Table 3). This also leads to a significant increase in annual

GPP from the default model with 1519.36± 75.43 to 1780.66± 54.45 g C m−2 y−1 in the dynamic model (p = 0.03, Fig. 3

and Table 4) and annual GPP, which in the default model differed significantly (p= 0.01, Table 4) from the observed EC annual

GPP (1859.25± 132.35 g C m−2 y−1), shows no significant difference in the dynamic model (p = 0.59). This also influences

long-term C storage, where the dynamic model shows a significantly higher C stock in soil and vegetation (Fig. 4 and Table365

C3).
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Figure 2. Default and dynamic turnover model performance at sites ES-LMa (a), US-Tol (c) and IE-Dri (e) with mean daily GPP and ES-

LMa (b) US-Tol (d) and CGE (f) with normalized mean daily LAI and GCC. Shaded areas show one standard deviation.
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Table 3. Default and dynamic turnover model fits (Pearson’s ρ and adjusted r2) and errors (MAE, RMSE, NRMSE) against EC flux data at

ES-LMa, IE-Dri and US-Tol with mean daily GPP (g C m−2) and ES-LMa, US-Tol and CGE with normalized mean daily LAI compared

with normalized PhenoCam GCC.

Site ID Variable Default Model Dynamic Model

MAE RMSE NRMSE Correlation ρ adj. r2 MAE RMSE NRMSE Correlation ρ adj. r2

ES-LMa GPP (g C) 1.00 1.25 18.40 0.88 0.77 0.59 0.76 11.10 0.94 0.88

IE-Dri GPP (g C) 1.14 1.56 13.10 0.91 0.83 0.88 1.20 10.10 0.92 0.86

US-Tol GPP (g C) 0.37 0.60 13.50 0.87 0.76 0.30 0.46 10.40 0.93 0.86

ES-LMa LAI/GCC 0.13 0.17 35.00 0.32 0.10 0.11 0.15 29.80 0.62 0.39

US-Tol LAI/GCC 0.31 0.39 48.90 - 0.00 0.31 0.39 49.50 - 0.00

CGE LAI/GCC 0.22 0.27 35.80 0.56 0.31 0.20 0.23 30.80 0.60 0.36
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Figure 3. Mean annual GPP and 25th - and 75th - percentile for ES-LMa, IE-Dri and US-Tol for the two models (default and dynamic) as

well as EC flux data with number of available years of data (n, see Table 2). The displayed simulations for the default and dynamic model

matches the time series range of the EC data. Letters above each bar indicate significance level, where significance between the pairs of

group means is indicated by different letters (for ANOVA p-values see Table 4).
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Figure 4. Mean annual ecosystem C (a), vegetation C (b) and soil organic carbon (SOC; c) of the default model and dynamic model at the

four main sites IE-Dri, CGE, ES-LMa and US-Tol for the years 2000-2022. Statistical results are shown in Table C3.
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3.2 Multi-site comparison

We tested the performance of our dynamic model at 56 sites across climate zones. We tested the whole season fit using mean

annual GPP (Fig. 5a and b and Table C2), our models’ capability to predict the onset of senescence using end of season date for

the same sites (Fig. 5c and 5d and Table 5), as well as end of season fit, i.e., the senescence period between the end of season370

date to the first following minimum GPP, before the next growing seasons starts (Fig. 6 and Table 6).

Over all sites, both the default and dynamic models have similar model fits (Table 5, however, the dynamic model performs

better in several key areas. The default model consistently underestimates annual GPP at tropical savanna and hot summer

Mediterranean sites (Aw: 665.00 (default) vs 1358.00 (EC), n site years = 17; Csa: 592.00 (default) vs 967.00 g C m−2 yr−1

(EC), n site years = 21), while overestimating GPP in both hot and cold semi-arid sites (BSh: 731.00 (default) vs 661.00 (EC), n375

site years = 20; BSk: 522.00 (default) vs 210.00 g C m−2 year−1 (EC), n site years = 36). The dynamic model improves model

fit at tropical savanna sites (RMSE default: 698.86 and dynamic: 681.06), although the GPP remains low (dynamic: 685.00

g C m−2 yr−1), and the dynamic model shows a significant improvement at Mediterranean sites (RMSE default: 482.72 and

dynamic: 315.81). Model GPP at subarctic and tundra sites is also improved by the dynamic turnover (ET: 358.00 (EC), 157.00

(default), 171.00 g C m−2 yr−1 (dynamic) and RMSE: 220.77 (default) vs 202.24 (dynamic, n site years = 16) ; Dwc: 318.00380

(EC), 358.00 (default), 393.00 g C m−2 yr−1 (dynamic), n site years = 2).

The model performance in predicting EOS dates (Fig. 5c and Fig. 5d and Table 5) follows a pattern similar to the annual

GPP results, except that Csa sites perform worse in the dynamic model (RMSE: 26.65 (default) and 52.41 days (dynamic)) and

BSh (hot semi-arid) and BWh (hot desert climate) show reduced errors. Overall, the model shows improved RMSE of EOS

dates at 12 out of 37 sites. The dynamic model performs better again at Aw, Dwc and ET sites compared to the default model.385

At tropical savanna (Aw) sites the dynamic model overestimates the EOS date compared to EC flux data where the end of the

season is on DOY 150. The dynamic model EOS is 166 and the default model is 144. However, the dynamic model shows a

lower RMSE of 45.50 days compared with the default model where RMSE is 56.89 days (n sites = 3). At hot semi-arid sites

(BSh) the dynamic model shows a significant improvement over the default model with a near perfect match of EOS DOY

(EC: 165, default: 188, dynamic: 164) and RMSE reduces from 53.97 to 45.78 days (n sites = 4). Hot desert sites (BWh) on the390

other hand, show a reduced RMSE from 74.81 (default) to 71.26 days (dynamic, n sites = 3) but similarly to tropical savanna

sites, place the EOS date later in the year (EC: 174, default: 169, dynamic: 209). At subarctic sites, the EOS is a week earlier in

the dynamic model, moving it closer to the EC EOS (EC: 268, default: 299, dynamic: 292) and has a reduced RMSE (default:

31.00, dynamic: 24.00). At the tundra site the dynamic model shows a similar trend but only a fractional improvement of

one day (EOS EC: 259, default: 284, dynamic: 283) which results in a marginally improved RMSE (default: 25.00, dynamic:395

24.00).
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Figure 5. Capability of the default and the dynamic turnover model to predict mean annual GPP (a and b) compared to observed EC flux

mean annual GPP (g C m−2 y−1) at 56 sites (see Table C2) as well as mean EOS dates (c and d) at 37 sites (see Table 5) of the default

and the dynamic model and compared with EC flux EOS dates. EOS dates were calculated from daily GPP using ’phenofit’ package (Kong

et al., 2022). The number of sites is lower in the panel c and d due to the exclusion of sites with dual growing seasons or where no EOS could

be detected. This is documented in detail in Section 2.4.3. Error bars are 1 sd representing inter-annual variation and the colors and point

shapes represent Köppen-Geiger climate zones. The climate zones displayed are: Aw: Tropical Savanna, As: Tropical Dry Summer, BSh:

Hot Semi-Arid, BSk: Cold Semi-Arid, BWh: Hot Desert, BWk: Cold Desert, Cfa: Humid Subtropical, Cfr: Temperate Fully Humid Warm

Summer, Csa: Hot-Summer Mediterranean, Csb: Warm-Summer Mediterranean, Dfb: Humid Continental Warm Summer, Dfc: Subarctic

Cold Summer, Dwa: Continental Dry Winter Hot Summer, Dwb: Continental Dry Winter Warm Summer, Dwc: Continental Dry Winter

Cold Summer, ET: Tundra.
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Table 5. Mean EOS dates (’Mean EOS’) of EC data, default and dynamic model for 13 different Köppen-Geiger climate classes (’KG class’;

37 sites in total) shown in Fig. 5c and d as well as associated errors (in days; MAE, RMSE, NRMSE) between EC data and default model

and between EC data and dynamic model. ’n sites’ indicates the number of sites within each climate class.

KG class n sites Mean EOS EC flux - Default Model EC flux - Dynamic Model

EC Default Dynamic MAE RMSE NRMSE MAE RMSE NRMSE

All Sites 37 - - - 36.16 45.07 21.3 44.28 54.33 25.7

Aw 3 150 144 166 54.12 56.89 72.9 39.30 45.50 58.3

BSh 4 165 188 164 50.82 53.97 30.1 45.68 45.78 25.5

BSk 5 216 200 203 73.20 74.65 45.9 59.13 75.04 46.1

BWh 3 174 169 209 62.87 74.81 47.2 69.68 71.26 45.0

BWk 1 165 187 137 22.55 22.55 - 27.67 27.67 -

Cfa 5 214 202 265 40.17 48.13 49.9 71.59 75.20 77.9

Cfb 6 262 273 277 20.48 29.93 66.7 22.38 34.88 77.8

Csa 4 225 219 192 23.72 26.65 19.1 52.79 53.41 38.2

Csb 2 213 179 161 33.79 42.46 61.5 81.63 96.71 140.2

Dwa 1 222 243 261 21.50 21.50 - 39.50 39.50 -

Dwb 1 241 286 288 45.00 45.00 - 47.00 47.00 -

Dwc 1 268 299 292 31.00 31.00 - 24.00 24.00 -

ET 1 259 284 283 25.00 25.00 - 24.00 24.00 -

The final analysis in which we separated leaf senescence from the rest of the year to quantify site level end of season fit

of daily GPP (Fig. 6 and Table 6) reveals that the dynamic model overall performs better across the 32 sites in terms of error

(RMSE default: 1.39 g C m−2 d−1, dynamic: 1.13 g C m−2 d−1). The dynamic model shows a better fit at 17 of the sites

(lower RMSE) which span across a wide range of climates, from cold-winter, semi-arid (BSk: n sites = 2), over oceanic (Cfb:400

n = 2), humid-continental (Dfb: n = 6; Dwb: n = 1) and humid subtropical (Cfa: n =3) to dry-winter (Dwc: n = 1), subarctic

(Dfc: n = 1) and tundra climates (ET; n = 1). At hot semi-arid (BSh: n = 2), but also some oceanic (Cfb: n = 4) and some humid

subtropical (Cfa: n =2), hot-summer Mediterranean (Csa: n = 2) and continental (Dfb, Dfc and Dwb; n = 1 each) sites the

dynamic model perform less well. Generally, the fit of senescence periods is better at sites where the dynamic model struggled

to estimate annual GPP and EOS date. The extracted periods represent the overlap between the individual EOS periods of405

EC data and the two models, so it is decoupled from the actual EOS dates, since it is difficult to evaluate the significance of

calculating singular dates, which change based on the method used, it may be more important to look at the entire senescence

period.
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Figure 6. End of season (EOS) fit of modeled mean daily GPP (g C m−2 d−1; blue: default and orange: dynamic model) and flux tower

mean daily GPP (g C m−2 d−1; green) at 32 sites between the EOS date and the date of the first minimum GPP following the EOS (see

Table 6 for dates). The EOS period displayed for each data source is defined as the period between the calculated mean EOS date and the

first mean minimum GPP date following it and for comparison the overlap of all end of season periods (EC flux, default and dynamic model)

is used here. The shaded areas represent 1 standard deviation. The EOS dates are calculated using ’phenofit’ package (Kong et al., 2022) and

only sites with one EOS date per year have been selected.
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Table 6. Model error of the senescence periods shown in Fig. 6 for 32 PLUMBER2 sites and 12 Köppen-Geiger climate classes (’KG class’).

The shared senescence period from ’EOS DOY’ to ’DOY min GPP’ is the overlap of the end of season periods of all three data sources (EC

flux, default and dynamic model). For each data source the end of season period is determined as the time between calculated EOS date and

day of the year when GPP reaches its minimum following this EOS date. EOS DOY and DOY min GPP are averaged over available site

years. The Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE) describe the

model fit of the senescence period. At sites where the mean minimum GPP date is smaller than the corresponding EOS date (e.g., AT-Neu),

the senescence period spans across into the new year.

Site-ID KG class EOS DOY DOY min GPP Default Model Dynamic Model

MAE RMSE NRMSE MAE RMSE NRMSE

All Sites - - - 0.98 1.39 15.20 0.82 1.13 12.70

AT-Neu Dfb 301 9 0.44 0.56 9.00 0.39 0.49 10.70

AU-Rig Cfa 345 23 2.44 2.76 53.40 2.14 2.28 120.60

AU-Sam Cfa 258 283 3.44 3.57 96.40 2.35 2.45 147.40

AU-Stp BSh 193 277 0.57 0.58 159.10 0.77 0.77 119.30

AU-TTE BWh 140 148 0.17 0.21 37.90 0.53 0.53 177.10

AU-Ync BSk 169 187 0.65 0.65 285.30 0.46 0.48 56.00

CA-NS6 Dfc 263 325 0.39 0.57 42.70 0.31 0.47 34.50

CA-NS7 Dfc 262 317 0.64 0.86 108.40 0.68 0.94 117.40

CA-SF3 Dfb 264 335 0.43 0.52 13.60 0.38 0.47 12.30

CH-Cha Cfb 304 32 1.09 1.30 20.40 1.82 1.96 47.80

CH-Fru Dfb 294 29 0.36 0.48 8.00 0.73 0.97 21.40

CH-Oe1 Cfb 281 31 0.33 0.44 6.50 0.54 0.79 11.70

CN-Cng Dwa 262 345 0.81 1.16 37.40 1.01 1.35 108.30

CN-Dan Dwc 300 335 0.49 0.66 330.70 0.23 0.33 46.00

CN-Du2 Dwb 289 341 0.98 1.34 299.90 0.80 1.17 263.00

CN-HaM ET 285 327 0.27 0.33 25.70 0.22 0.29 22.60

DE-Gri Dfb 286 30 0.43 0.50 10.30 0.26 0.37 8.90

DE-SfN Dfb 283 29 0.81 1.03 30.90 0.52 0.65 21.50

FR-Lq2 Cfb 311 25 0.62 0.97 13.30 0.81 1.17 16.00

IE-Dri Cfb 272 346 0.48 0.63 11.40 0.37 0.49 8.80

IT-MBo Dfb 295 18 0.59 0.73 29.70 0.46 0.62 21.00

NL-Ca1 Cfb 267 360 0.47 0.55 11.80 0.68 0.78 16.70

NL-Hor Cfb 276 17 0.63 0.78 20.10 0.62 0.70 18.20

PT-Mi2 Csa 179 221 0.28 0.31 13.60 0.65 0.87 28.80

US-AR1 Cfa 234 38 1.35 1.52 34.90 1.49 1.61 56.90
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Table 6. Continued.

Site-ID KG class EOS DOY DOY min GPP Default Model Dynamic Model

MAE RMSE NRMSE MAE RMSE NRMSE

US-AR2 Cfa 336 35 1.03 1.15 25.20 0.88 1.03 62.20

US-FPe BSk 278 360 1.31 1.74 32.30 1.11 1.65 30.60

US-Goo Cfa 298 359 2.93 3.02 163.60 3.13 3.22 163.00

US-Los Dfb 279 7 1.21 1.47 34.10 0.60 0.77 31.10

US-Var Csa 185 250 1.10 1.16 400.20 1.14 1.16 401.90

US-Whs BSk 337 355 0.88 0.88 519.40 0.86 0.92 150.20

ZA-Kru BSh 130 225 1.07 1.39 18.70 1.22 1.51 20.30

4 Discussion

In this study, we present a new dynamic leaf turnover model that is applicable globally in grasslands as implemented in the410

QUINCY model. Our results show that grasses are able to respond more accurately to environmental conditions by directly

controlling leaf shedding with meteorological conditions continuously and interactively. At four sites of differing climate we

demonstrate how improving end of season phenology has implications for seasonal carbon dynamics, LAI and annual GPP as

well as long term C storage. On a global scale, we show that our new model is able to reduce biases in the senescence period

model fit, and again, annual GPP across a wide range of climate zones while also highlighting its shortcomings and the need415

for a refined model that can account for plant adaptations to their environment and the consequently differing responses to

unfavorable growing conditions.

4.1 Beyond temperature response end of season thresholds

Traditional leaf phenology research often focused on mid-latitude temperate systems, where a temperature threshold for both

start of season and end of season may be a good approximation, but even in those ecosystems, the modeling focus has been420

largely on start of season phenology, with end of season processes being much more poorly understood. While progress has

been made in stand alone phenology models (Lang et al., 2019; Yang et al., 2023), implementation in LSMs has been slow

(Richardson et al., 2012; Chen et al., 2024).

Grasslands may be one of the most moisture-sensitive ecosystems on the planet (Cherwin and Knapp, 2012) and drought

frequency and intensity is expected to increase with climate change (Spinoni et al., 2018). Yet, models are not able to reproduce425

observed drought responses of grasslands (De Kauwe et al., 2017), even though the timing of these events has implications

on C fluxes (Felton and Goldsmith, 2023) and the capability of shifting grasslands from a C sink to a source (Zhang et al.,

2020). With our new dynamic model we are able to capture the seasonal drought response in a dehesa, savanna-like, ecosystem,

ES-LMa, more accurately and show that controlling senescence as a continuous process rather than a classical threshold end of

season can lead to better whole-season model performance. Arid and semi-arid grasslands are frequently composed of species430
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with a variety of levels of drought resistance and a threshold approach can be unsuitable, therefore having a dynamic response

to changes in soil moisture conditions can be more ecologically relevant. We show that improving end of season phenology

impacts the whole year by alleviating constraints placed on early season growth in threshold models (here: after the dry summer

at ES-LMa), which leads to higher early season growth and a better fit with the EC data. Further, more accurate leaf senescence

can reduce carbon costs in plants as maintaining leaves requires carbon allocation to respiration. Importantly, we show that435

improving leaf turnover does not only affect seasonal dynamics, but impacts long term C storage, as well (Fig. 4), where our

dynamic model shows significantly higher C storage in the entire ecosystem.

Photosynthetic activity is primarily limited by light and even more so in high latitude ecosystems. At present, light limitation

may not be very relevant at high latitudes as snowfall occurs before day length becomes very limiting, but under future climate

which will shift the snow-free period later into the year (Myers-Smith et al., 2019), light limitation may become increasingly440

important (Lang et al., 2019; Richardson et al., 2012; Tang et al., 2016). This also applies to spring phenology, where earlier

snow melt and higher spring temperatures may be able to extend the growing season, however plants may not be able to take

advantage of this extended growing season as the short photoperiod very early in the year becomes limiting (Chapin III et al.,

2012). Our model could predict high latitude grasslands more accurately and give evidence for the importance of day length

control in leaf turnover (Ren et al., 2022, 2019; Sakuraba, 2021). Our dynamic model is able to reproduce the end of the season445

better at US-Tol and to a certain extend improves the peak GPP in the summer at this site. However, peak GPP in the dynamic

model is still underestimated compared to observations, similarly to other tundra sites (Table C2). This is likely due to the

model’s shortcomings in representing nutrient availability in high-latitudes, an issue common across LSMs (Kou-Giesbrecht

et al., 2023).

Continental climates are characterized by seasonal temperature variations and temperature is one of the main drivers for450

autumn phenology in grasslands (Ren et al., 2022). Higher temperatures in autumn have been shown to delay the onset of leaf

senescence in herbaceous plants (Jeong et al., 2011) and climate change is predicted to prolong the growing season later into

the year (Arndt et al., 2019), so it is important for models to accurately predict autumn phenology and dynamically respond to

changes in temperature. Our dynamic model is able to predict the onset of senescence at CGE better than the default threshold

model and is able to reproduce the observed ’brown-down’ in the GCC better (Fig. 2). Even at more extreme cold sites such455

as the tundra site US-Tol, we were able to improve the end of the season and shift the minimum LAI forward by 60 days and

closer to the observed minimum GCC. Yet, LAI lags behind the GCC data at both sites in regard to timing of its peak and end of

season, but this is expected and consistent with other observations (Keenan et al., 2014; Bórnez et al., 2020). Since GCC is the

green fraction of an image taken of the canopy from above and LAI is a measure of leaf area per ground area, greenness of the

upper canopy may start to decrease while leaf area is still very large, causing a lag in the data compared to actual leaf biomass.460

However, since GPP at US-Tol also shows a lagged response in autumn phenology, we can assume that the mismatch in GCC

and LAI can not solely be contributed to them being different metrics. This lag in GPP is very likely not caused by issues with

the dynamic leaf turnover representation alone, but rather leaf growth in QUINCY, as the growing season at US-Tol on average

ends only at 280 (see Fig. B3) at which point GPP is already near zero in the EC flux data. Decoupling leaf growth from the

growing season, which is also based on a threshold approach may solve this issue. Further, CGE is a managed grassland subject465
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to regular mowing and we did not include a mowing scheme into our model. This leads to sharp drops in greenness after each

mowing event, which is lacking in our model (Joseph et al., 2025). This likely at least partly contributed to this mismatch of

GCC and LAI apart from them being two different metrics. Finally, our model is also able to improve whole season fit of GPP

even at sites that do not experience (severe) cold nor dry periods throughout the year, such as we have shown at the site IE-Dri.

The gradual shedding of leaves which is required to replicate these moderate conditions, is only achievable with our flexible470

approach and the default threshold model which essentially applies the same shedding rate in all climates, cannot reproduce

this. As a result we are able to significantly improve annual GPP, match observed GPP closely and show that improving end

of season dynamics strongly impacts annual GPP predictions as well as long-term C storage (Fig. 4), which contributes to

reducing uncertainties present in global carbon budgets (Bai and Cotrufo, 2022).

4.2 Model flexibility and generality475

Our model does not prescribe apriori which of the three triggers is limiting and we show that the model is widely applicable

at sites across the globe. It provides a first step towards more flexible, physiology-driven leaf turnover but highlights the need

for a more adaptable drought model that is able to incorporate different drought responses such as presented in Yang et al.

(2023). The model is able to capture end of season phenology more accurately across a wide range of climates (see Fig. 6 and

Table 6). A poorer model fit at some of the sites with the dynamic model is likely caused by knock-on effects from changes480

in growing season length on new growth at the start of season. The default turnover model may get things right for the wrong

reason and may have been able to ’mask’ delayed start of season as it frequently allowed for very long growing seasons which

do not match site observations from EC data, and therefore in terms of carbon budgets (e.g., annual GPP). Furthermore, the

dynamic model allows for leaf turnover during the entire growing season which may further impact early season growth by

inducing leaf senescence of young leaves if conditions become harsher. This is a more appropriate response and is able to485

capture events such as late frost in spring that damages leaves, but the default model which effectively removed leaf turnover

during the growing season was not able to capture this and therefore placed less pressure on the already underestimated early

season growth in QUINCY.

Our model performs well in terms of annual GPP at sites with strong seasonality of precipitation (Aw: tropical savanna

and Csa: hot summer Mediterranean) and also temperature (winter-dry subarctic and tundra, Table C2). This shows that our490

model is able to capture the extreme ends of climatic conditions to induce leaf senescence. However, at a number of seasonally

cold sites the dynamic model (temperate/continental) shows a worse fit. This means that either temperature sensitivity of our

dynamic model is not optimized, so the model is not cold-sensitive enough at sites with less harsh winters, as our model only

has one temperature response function and plants are adapted to the environment they grow in (Körner, 2016), or plants in

seasonally cold sites lack light signaling which triggers senescence through gene expression (Sakuraba, 2021) rather than light495

starvation and our model only accounts for the latter. The subarctic (Dwc) site is CN-Dan located at 30.49◦N, which means

that the subarctic climate of the site is a result of altitude rather than latitude. This means that day length turnover in the model

has a near zero impact at CN-Dan and the same goes for the second tundra (ET) site, CN-HaM, at 37.37◦N. Since the model

performs better at these two sites and the sites are located at mid-latitude like the other temperate/continental sites that perform
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worse in the model with the only difference being altitude, it could point toward a lacking temperature sensitivity to cold-500

hardiness, not a lack of day length control for the worse model fit at continental/temperate sites. Further, models often lack

proper representation of constraints on photosynthesis at mid-latitudes which can influence annual GPP, such as the suppressing

of photosynthetic activity by low temperature which may contribute to the poor model fit at these sites (Luo et al., 2023; Makela

et al., 2004; Mäkelä et al., 2008).

Autumn phenology and its timing (Dragoni et al., 2011; Hollinger et al., 2004; Richardson et al., 2010) is a key part of505

ecosystem functioning and has been shown to play an important role in predicting net ecosystem productivity (Wu et al.,

2013). The dynamic model improves the accuracy of the timing of leaf senescence at subarctic (Dwc) and tundra sites (ET),

but not at temperate sites (C climates). Thus, further showing that the model as is parameterized now may be more appropriate

for harsher climates and less so for temperate sites. Although, the number of sites with ET and Dwc climate is very low

(between one and two sites per class and metric) which reduces confidence in these results, those sites as well as the tundra510

site US-Tol consistently perform better in terms of errors across all three metrics that we have tested (annual GPP, EOS date

and EOS period). Beside the Dwc and ET sites, the model performs better at tropical savanna sites (Aw), and unlike annual

GPP, at hot semi-arid and desert sites (BSh and BWh). However, at hot summer Mediterranean sites (Csa), where the end

of season is in the summer months caused by a lack of precipitation, the model performs less well. It should be noted that

ES-LMa (Csa) is not part of this analysis. At Csa sites, the estimated EOS date in the dynamic model is day 192 (default: 219).515

This is earlier than the estimated EOS date of the EC data (DOY 225), which suggests that our model, to a certain degree, has

become too moisture-sensitive in ecosystems that are defined by dry summers, yet at tropical savannas, ecosystems that are

also characterized by strong seasonal rain patterns and at hot semi-arid and desert sites the model has improved. This highlights

that grasslands have vastly different responses to drought and may show the need for a better drought model, like Yang et al.

(2023) with different drought responses of ecosystems.520

The mismatch in moisture sensitivity is also reflected when extracting the senescence period from the whole year, where

our model performs well at sites that do not have a dry season (12 of 18 sites with climate Cfa, Cfb, Dfb, Dfc; indicated by

second letter ’f’) and it performs less well at sites that are either summer- (second letter ’s’) or winter-dry (second letter ’w’),

with the exception of two cold, semi-arid sites (BSk), one hemi-boreal site (CN-Du2) and one winter-dry subarctic site (Dwc,

site CN-Dan). However, Yang et al. (2015b) finds that temperature rather than precipitation is the main driver for autumn525

phenology in Chinese herbaceous species, which could explain why the model performed better at CN-Du2 and CN-Dan even

though seasonally dry sites generally show a weaker fit in our model. Furthermore, at US-Whs, one of the two summer-dry

BSk sites located at a relatively high elevation (1380 m a.s.l.), leaf turnover appears to be driven primarily by temperature

rather than moisture, which may explain the better model performance there. The generally better fit at mesic sites, as well

subarctic/tundra sites could indicate that our model may struggle to reproduce species-specific water-stress adaptations.530

Overall the model allows for interaction between triggers and co-limitation, which works well in terms of end of season

fit at subarctic sites and temperate/continental sites in central Europe, systems which experience both temperature and light-

limitation in both reality and the model. However, other sites in similar climates perform less well, showing the existing

uncertainty and high site-specificity of which factor is more important in a co-limitation ecosystem (Estiarte and Peñuelas,
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2015). We show that the model is suitable for many herbaceous ecosystems with differing climatic conditions across the globe535

but its varying performance across similar ecosystems further shows that species- and site-specific adaptations to environmental

conditions bring a high uncertainty into modeling grassland leaf turnover and may call for more adaptable responses. Still, our

model provides a first step away from threshold-controls in LSMs and towards more process-based models.

Under future conditions where sites may move into more seasonally dry regimes, the dynamic turnover representation may

be more adaptable than the previous threshold approach and it consistently performs better at simulating tropical savanna540

systems. Further, day length provides a hard threshold even as the climate gets warmer and many studies show that plants use

it as signaling to induce leaf senescence (Sakuraba, 2021; Lang et al., 2019; Ren et al., 2022). With the incorporation of day

length, we can simulate future subarctic and tundra ecosystems better than the previous threshold model which often predicted

very long growing seasons well into the light-limited winter, such as we have shown at US-Tol.

4.3 Limitations and future directions545

All herbaceous plants share the same leaf turnover in QUINCY and there is no current representation of different life strategies.

To improve our current model, the triggers for leaf senescence in herbaceous plants across different climates need further

attention, even though efforts over the last decade have been made to close this gap (Lang et al., 2019), but most studies only

focus on single sites or species so that there is limited understanding of how day length, temperature and precipitation jointly

determine leaf senescence across the globe. Even if this gap is slowly being filled, it will be very difficult to capture differing550

responses to seasonality caused by differences on a species-level with ecosystem scale data. Our continuous model is a first

step towards addressing this issue, however, we also show that this needs further attention in the form of site-specific responses

based on climate under the assumption that plants are adapted to the environment they grow in (Körner, 2016). Further, limited

data availability for some of the sites introduced uncertainty into our results and reduced statistical power. A limited number of

continuous data spanning multiple years combined with the frequency of extreme events over the last decades complicates the555

development of a general model for leaf turnover. Finally, many grasslands are intensively managed systems, which we do not

consider in this study. Management of grasslands, through grazing, harvesting or fertilizer use, has a variety of implications

for ecosystem functioning and since we do not consider them in our model, but compare it to EC data from these managed

systems, our results were likely impacted by this as well.

Potential future directions include the incorporation of a drought response parameter based on site level climatological and560

soil hydrological conditions, to represent local adaptation, so that sites with little soil moisture and temperature fluctuations

would show a stronger drought response than seasonally cold or dry and (semi-) arid systems which are more adapted to

these conditions. Currently fshed,max ensures shedding of leaves at maximum stress over 10 days. This fixed parameter could

be replaced with a flexible drought and temperature sensitive variable, similar to the models of De Kauwe et al. (2015) and

Yang et al. (2023), to allow for different shedding rates under different climatic conditions. Yet, different plant responses to565

stress (tolerance, avoidance and escape) as described in Levitt (1977) will make the development of a general global response

very difficult. Next to moisture and temperature it may be worth investigating the day length component of our model, as it

currently virtually only impacts sites at high latitudes to simulate light starvation. However, plants use day length conditions
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of the environment to track seasons and induce senescence as a response to decreasing day length (Sakuraba, 2021) as a way

to avoid harsher conditions of winter and Ren et al. (2022) found that more than a third of the variation of leaf senescence can570

be explained by hours of daylight in herbaceous species and up to 60% for graminoids in China. An updated day length model

may therefore expand into lower latitudes as well, though this may compromise the accurate representation of Mediterranean

ecosystems where a lot of growth happens after the dry summer as the first rain occurs in autumn, which would then coincide

with the day length model increasing its leaf shedding rate.

5 Conclusions575

In this study, we presented a new global leaf turnover model for herbaceous plants in the LSM QUINCY. The new model

allows plants to directly shed leaves in response to environmental conditions and replaces the old threshold-based growing

season approach utilized by many LSMs and represents a more ecologically realistic approach to modeling leaf senescence.

We found that decoupling end of season leaf turnover from the growing season trigger, substantially improved the model fit

with observational data across a wide range of grasslands and also created knock-on effects in the next season where previous580

constraints on early season growth were lifted through quicker response to environmental stressors in the previous season. We

show that the timing of onset of leaf senescence significantly impacted C dynamics which significantly impacted long-term

C storage in grasslands. Our results highlight the importance of representing phenological processes in grasslands in LSMs

accurately, but also show the need for more refined phenology modules that are able to account for plant adaptations and

differentiated responses to seasonality in grasslands.585
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Code and data availability. The QUINCY model codes are available under a GPL v3 license. The scientific code of QUINCY relies

on software infrastructure from the MPI-ESM environment, which is subject to the MPI-M License Agreement in its most recent form

(https://www.bgc-jena.mpg.de/en/bsi/projects/quincy/software). The source code is available online via MPI-BGC (2019) at https://doi.org/

10.17871/quincy-model-2019, but access is limited to registered users. Readers interested in running the model should request a username

and password via the Git repository. Model users are strongly encouraged to follow the fair-use policy (https://www.bgc-jena.mpg.de/en/590

bsi/projects/quincy/software). The R code used for statistical analyses and figures can be found at https://github.com/TCD-Group-PEM/

publications-data-and-code/tree/main/quincy-grassland-turnover. PLUMBER2 data used for forcing and evaluation is available at https://

doi.org/10.25914/5fdb0902607e1 (Ukkola, 2020). ES-LMa GPP data for 2015 to 2018 is available at https://doi.org/10.5281/zenodo.1314194

(Carrara et al., 2018) and PhenoCam data for ES-LMa, CGE and US-Tol is available at https://doi.org/10.3334/ORNLDAAC/2389 (Zimmer-

man et al., 2025) (PhenoCam site names: eslma, gumpenstein and NEON.D18.TOOL.DP1.00033).595

Appendix A: Growing season equations

The growing season start for herbaceous PFTs is described as a function of the accumulated growing degree days (GDDacc)

as:

GDDacc > GDDmax
req × exp(−kgdd

dormance×NDdormance) , and (A1)

βgs
soilτpheno

> βflush
soil (A2)600

; where GDDacc are current accumulated growing degree days above the temperature threshold since last dormancy and

NDdormancy the number of days of dormancy since the last growing season, GDDmax
req is a PFT-specific growing degree day

requirement and kgdd
dormance is a PFT-specific scaling factor (see Table C1).

During the growing season, fine roots turn over continuously:

ffine root
turn =

1
τfine root

(A3)605

; where τfine root is a PFT-specific parameter describing the average turnover time of a fine root.

At the end of the growing season, roots are either shed or maintained throughout the dormancy period depending on what

triggered the end of the season. Growing season type 1 is assigned when:

Tair < T sen
air (A4)

; where Tair is the weekly air temperature, T sen
air is a PFT-specific air temperature threshold.610

Growing season type 2 is assigned when:

βgs
soil < βsen

soil (A5)

; where βgs
soil is a factor limiting stomatal conductance based on soil moisture, βsen

soil is a PFT-specific soil moisture threshold.
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Growing season type 3 is assigned when:

GPPlabile < Rmaint (A6)615

; where GPPτlabile
is labile C assimilated through photosynthesis averaged over the last 7 days and Rmaint is labile C

respired for maintenance.

In cold perennial grasslands (growing season type 1), roots are maintained throughout the dormancy period and turn over at

a constant rate:

ffine root
turn =

1
τfine root

(A7)620

; where ffine root
turn is the fine root turnover, τfine root is the average turnover time of a fine root in years.

In warm annual grasslands or if a negative carbon balance triggered the end of the growing season, roots are shed at the same

rate as leaves:

ffine root
turn = f leaf

turn (A8)

; where ffine root
turn is the fine root turnover and f leaf

turn is the leaf turnover.625

The leaf and fine root litterfall rate in QUINCY is calculated as living biomass times turnover fraction of leaves or fine roots

(f leaf
turn) per time step:

fluxX
litter = fluxX

litter + vegX
pool× fX

turn (A9)

; where x denotes the pool, in this case fine roots or leaves.
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Appendix B: Figures630

Figure B1. Locations of all 56 PLUMBER2 sites used in this study as well as the non-PLUMBER2 sites ES-LMa and US-Tol with mean

annual GPP from EC data.
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Figure B2. The three components of the dynamic leaf turnover model, temperature (red), moisture (blue) and day length (orange) response

and their combined impact (green) at the four main sites ES-LMa (a), CGE (b), IE-Dri (c) and US-Tol (d). ES-LMa shows mostly moisture-

driven leaf turnover, CGE temperature-driven leaf turnover, IE-Dri is slightly controlled by moisture and US-Tol shows a combination of all

three.
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Figure B3. EOS thresholds from EC data, default and dynamic model at the four main sites with methods: threshold 10 % (TRS1), 20 %

(TRS2), 50 % (TRS5), derrivative (DER), Inflection and Gu from ’phenofit’ package (Kong et al., 2022).
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Appendix C: Tables

Table C1. Parameters and variables in growing season equations.

Parameter C3 grasses C4 grasses Unit Description

GDDmax
req 20.0 40.0 ◦C days maximum GDD requirement

kgdd
dormance 0.0027 0.0027 - scaling factor in GDD calculation

βflush
soil 0.75 0.75 - Soil moisture threshold on leaf flushing

τfine root 0.7 0.7 years average turnover time of a fine root from Ahrens et al. (2014)

T sen
air 0.0 0.0 ◦C 7-day air temperature threshold to end growing season

βsen
soil 0.02 0.02 - Soil moisture threshold to end growing season
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Table C2. Mean annual GPP (g C m−2 y−1), Mean absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Root Mean

Square Error (NRMSE) of mean annual GPP across 13 Köppen-Geiger climate classes (’KG class’, 56 flux sites) for the default and dynamic

model.

KG class n sites (site years) Mean annual GPP Default Model Dynamic Model

EC Default Dynamic MAE RMSE NRMSE MAE RMSE NRMSE

All Sites 56 (275) 872.31 841.15 786.28 311.94 409.75 16.00 451.42 599.10 23.50

Aw 3 (17) 1358.00 665.00 685.00 692.91 698.86 176.30 673.33 681.06 171.80

BSh 5 (20) 661.00 731.00 925.00 248.55 339.58 46.90 337.55 417.71 57.70

BSk 6 (36) 210.00 522.00 625.00 312.02 366.74 112.90 415.29 466.70 143.60

BWh 3 (14) 561.00 503.00 572.00 364.52 420.97 71.00 465.46 504.57 85.00

BWk 1 (7) 434.00 603.00 752.00 169.15 169.15 - 318.48 318.48 -

Cfa 5 (21) 992.00 1455.00 1614.00 498.39 602.96 47.70 621.98 711.69 56.30

Cfb 6 (30) 1836.00 1584.00 1186.00 314.20 364.71 31.10 733.00 902.29 77.00

Csa 4 (21) 967.00 592.00 864.00 375.45 482.72 62.70 248.33 315.81 41.00

Csb 2 (6) 1013.00 1319.00 1402.00 306.25 425.45 520.80 389.41 505.98 619.30

Dfb 9 (63) 1285.00 1151.00 670.00 291.11 424.09 23.90 655.55 869.91 49.00

Dfc 5 (15) 404.00 269.00 219.00 145.01 204.16 117.60 184.73 223.90 129.00

Dsb 1 (1) 445.00 461.00 340.00 16.25 16.25 - 105.48 105.48 -

Dsc 1 (2) 235.00 92.00 50.00 142.70 142.70 - 184.63 184.63 -

Dwa 1 (2) 591.00 778.00 807.00 187.32 187.32 - 215.84 215.84 -

Dwb 1 (2) 303.00 592.00 611.00 288.26 288.26 - 307.76 307.76 -

Dwc 1 (2) 318.00 458.00 393.00 139.85 139.85 - 74.70 74.70 -

ET 2 (16) 358.00 157.00 171.00 200.64 220.77 44.20 186.58 202.24 40.50
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Table C3. Dynamic and default model mean annual ecosystem C, vegetation C and SOC (kg m−2) across four sites and 23 years (2000-

2022) with t-statistics, df and p-value from Welch’s t-test. Figure 4.

Site Variable t-statistic df p-value dynamic model mean (kg m−2) default model mean (kg m−2)

CGE Eco C -0.03 43.61 0.98 24.80 24.80

CGE Veg C -0.03 37.03 0.98 0.77 0.77

CGE SOC -0.02 43.84 0.99 24.03 24.04

ES-LMa Eco C 59.46 41.41 <0.001 10.00 7.68

ES-LMa Veg C 5.32 42.65 <0.001 0.39 0.29

ES-LMa SOC 89.87 40.78 <0.001 9.62 7.39

IE-Dri Eco C 125.59 42.84 <0.001 30.79 27.85

IE-Dri Veg C 13.81 43.98 <0.001 0.95 0.74

IE-Dri SOC 202.05 43.81 <0.001 29.84 27.10

US-Tol Eco C -14.36 43.39 <0.001 11.03 11.16

US-Tol Veg C -0.94 41.18 0.34 0.14 0.14

US-Tol SOC -17.26 43.68 <0.001 10.89 11.03
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