

1 Increasing Earthquake Awareness: Seismo-at-school Switzerland

2 Maren Böse¹, Nadja Valenzuela¹, György Hetényi², Romain Roduit³, Irina Dallo⁴, Kerstin Bircher⁵, John
3 Clinton¹, Urs Fässler¹, Florian Haslinger¹, Tanja Jaeger⁶, Michèle Marti¹, Roman Racine¹, Anne Sauron³,
4 Shiba Subedi⁷, Stefan Wiemer¹

5 ¹Swiss Seismological Service (SED), ETH Zurich, Zurich, 8092, Switzerland

6 ²Institute of Earth Sciences, University of Lausanne, Lausanne, 1015, Switzerland

7 ³HES-SO Valais-Wallis, School of engineering, Sion, 1950, Switzerland

8 ⁴Federal Office for Civil Protection (FOCP), Bern, 3003, Switzerland

9 ⁵focusTerra, ETH Zurich, Zurich, 8092, Switzerland

10 ⁶EducETH Kompetenzzentrum für Lehren und Lernen, ETH Zurich, Zurich, 8092, Switzerland

11 ⁷Nepal Academy of Science and Technology, Lalitpur, Nepal

12

13 *Correspondence to:* Maren Böse (maren.boese@sed.ethz.ch)

14 **Abstract.** The *Increasing Earthquake Awareness in Switzerland* project set out to connect students, teachers, and the wider
15 public with earthquake science by reviving and extending the nationwide *seismo@school* initiative. Supported by the Swiss
16 National Science Foundation (SNSF) AGORA programme, the project developed a suite of multilingual teaching resources,
17 deployed near real-time seismic sensors in schools, and created hands-on activities to foster engagement of 12 to 18-year-olds.
18 Although Switzerland is exposed to only moderate seismic hazard, earthquakes remain the natural hazard with the highest
19 potential impact. Because most residents have never experienced a damaging earthquake, educational programmes play a
20 crucial role in raising awareness and strengthening preparedness. Moreover, *seismo@school* initiatives can inspire younger
21 generations to pursue geosciences by helping them appreciate the relevance of the field. This article presents the rationale,
22 implementation, and impact of the project, and may serve as a guide for other countries seeking to develop similar initiatives.
23 It examines how experiential, data-driven educational approaches can improve earthquake awareness and preparedness in
24 moderate-hazard regions, how school-based seismometers benefit both teaching and scientific monitoring while considering
25 the practical challenges of installation and operation, and what institutional and policy conditions are required to sustain such
26 efforts over the long term.

27 1 Introduction

28 Although Switzerland is not among the most seismically active regions in the world, earthquakes remain an underestimated
29 risk. Historical events such as the Basel earthquake of 1356 (Mw ~6.6) and the more recent 1946 Sierre earthquake (Mw 5.8)

30 - still recalled by some of the local population - highlight the hazard in a country where damaging earthquakes occur roughly
31 every 100 to 150 years (Wiemer et al., 2016; Fäh et al., 2011). National hazard models show overall moderate seismicity, with
32 the highest hazard in Valais, followed by Basel, Grisons, Central Switzerland, the St. Gallen Rhine Valley, and the rest of
33 Switzerland. Earthquakes represent the natural hazard with the greatest potential to cause casualties and economic losses in
34 Switzerland (FOCP, 2026; Wiemer et al., 2023). However, because few inhabitants have ever felt strong shaking, either
35 domestically or abroad, public awareness and preparedness remain low (Dallo et al., 2022a).

36 Although seismic hazard in Switzerland is moderate, strong earthquakes will occur again, and preparedness will be a major
37 advantage. Educational initiatives play a crucial role in building community resilience by embedding knowledge of earthquake
38 processes, hazard, and risk into school curricula and public discourse. International experience shows that citizen seismology
39 and educational seismology (*seismo@school*) programmes are particularly effective for engaging with the public and spreading
40 knowledge in earthquake prone countries (e.g., Chen et al., 2020). They also help motivate younger generations to study
41 geosciences, even in regions where earthquakes are less common (e.g., Denton et al., 2018). Key examples include the SISMOS
42 à l'École network in France, which has successfully run for over 25 years and is now formally integrated into the national high
43 school curriculum (Berenguer et al., 2020; Courboulex et al., 2012); the UK School Seismology Project (Butcher et al., 2011;
44 Denton et al., 2008), run by the British Geological Survey; the European EDUSEIS initiative (Zollo and Bobbio, 2000; Cantore
45 et al., 2003); and the long-running U.S. IRIS Seismographs in Schools programme (Braile et al., 2003). The success of these
46 programmes has been driven often by installation of low-cost seismometers at schools, as demonstrated, for example, in Nepal
47 (Subedi et al., 2020a, 2020b), Australia (AuSIS; Mousavi et al., 2022), Ukraine (Amashukeli et al., 2024), New Zealand
48 (CRISiSLab Challenge; Tan et al., 2022), Ireland (QuakeShake; <https://quakeshake.ie/home/>, last accessed November 2025),
49 or at Yale University (Löberich and Long, 2024).

50 Building on this international experience, a temporary project in Switzerland (Sornette and Haslinger, 2009), as well as on the
51 implementation of an educational seismology project in Nepal (Subedi et al., 2020a) by the University of Lausanne (UNIL),
52 the first phase of *seismo@school* in Switzerland was launched in 2021 in the French-speaking cantons of Vaud and Valais.
53 Over two years, a network of schools and school seismometers was established, led by UNIL, the University of Applied
54 Sciences and Arts in the Valais region (Haute École Spécialisée de Suisse Occidentale Valais-Wallis, HES-SO Valais-Wallis),
55 and the Earthquake Prevention Learning Centre (Centre de Prévention des Séismes, CPPS) in Sion.

56 To make this initiative a national programme, these institutions joined forces with the Swiss Seismological Service (SED) at
57 ETH Zurich (ETHZ) and other partners, which played a central role in expanding the network and offering further scientific
58 and operational expertise. Led by the SED, they launched the *Increasing Earthquake Awareness in Switzerland* project in May
59 (Dallo et al., 2023; Böse et al., 2024a; Hetényi et al., 2025). This 2-year project aimed to revitalise and expand
60 *seismo@school Switzerland* by supplying schools with updated comprehensive educational resources reflecting current
61 knowledge in seismology and related fields, classroom Raspberry Shake seismometers for earthquake recording, and direct

62 connections to active research. Additional objectives included strengthening STEM education and addressing the declining
63 number of students pursuing Earth Sciences and related fields as future career paths.

64 In this paper, we investigate how experiential, data-driven educational approaches can enhance earthquake awareness and
65 preparedness in moderate-hazard regions; how school-based seismometers support both teaching and scientific monitoring
66 while introducing practical challenges regarding installation and operation; and what institutional and policy conditions are
67 necessary to sustain such efforts over the long term. We first present the project components and their implementation,
68 including the development and dissemination of multilingual teaching materials on earthquake-related topics. We then examine
69 the benefits and limitations of deploying low-cost seismometers in schools, followed by the introduction of a student-
70 assembled seismometer kit designed to familiarise students with basic monitoring principles and foster engagement. In the
71 next section, we outline the methods and results of a survey conducted with teachers at participating schools at the end of the
72 project, which serves to evaluate the educational impact of the presented activities. Finally, we discuss the challenges
73 associated with implementation and long-term sustainability of *seismo-at-school* and propose possible pathways for future
74 developments of the initiative.

75 **2 Project Components and Implementation**

76 **2.1 Teaching Resources**

77 A central achievement of the programme was the development of a comprehensive set of teaching resources on earthquake-
78 related topics. While the official Swiss curriculum defines clear teaching objectives, existing educational materials -
79 particularly on socially relevant seismic themes - remain limited, underscoring the need for updated, multilingual, and visually
80 engaging resources aligned with the curriculum. The content of the resources was identified and developed in close
81 collaboration with scientists and teachers, beginning with an online survey to ensure relevance to classroom needs. The
82 materials were structured into five thematic modules (*General Earthquake Knowledge, Earthquake Monitoring and Raspberry*
83 *Shake, Seismic Hazard and Risk in Switzerland, Induced Seismicity, and Misinformation and Media Literacy*), each comprising
84 a general introduction and a Swiss-specific component. Each module combines explanatory texts with graphics and a variety
85 of interactive elements, including quizzes, experiments, and hands-on activities, expected to be completed within 1 to 2 hours.
86 The educational materials encourage active participation through practical exercises, critical thinking tasks, and real-world
87 examples, helping students connect scientific principles with everyday experience.

88 The resources can be used as stand-alone topics or complete modules, depending on curricular requirements and lesson
89 planning. This structure allows teachers to integrate the educational materials flexibly into science and geography lessons. To
90 maximise reach across Switzerland - a country with four official languages - and to facilitate international outreach, the
91 resources were translated into German, French, Italian, and English, and made available through a dedicated SED

92 *seismo@school* webpage (<http://seismo.ethz.ch/en/news-and-services/for-schools/teaching-resources>), last accessed
93 November 2025). The educational materials were promoted through (geography) teacher networks (e.g., online Teams groups),
94 workshops, and direct engagement with schools. The following sections provide a summary of each of the five modules.

95 **2.1.1 General Earthquake Knowledge**

96 The *General Earthquake Knowledge* module introduces the fundamental science of earthquakes, beginning with the role of
97 plate tectonics and fault movement in generating seismic activity. Students learn how stress accumulates along tectonic
98 boundaries and is released as seismic waves during earthquakes. The material explores where earthquakes occur – mostly
99 along active margins such as the Pacific *Ring of Fire*, but also in intraplate regions (such as Switzerland), volcanic zones, or
100 due to other natural phenomena and human activity triggering earthquakes. Different exercises and visual aids help illustrate
101 these geological processes and set the foundation for understanding earthquake origins.

102 A second focus of the module is the characterization and measurement of earthquakes. The differences between P-waves, S-
103 waves, and surface waves are discussed, along with concepts such as hypocentre, epicentre, magnitude, and intensity. Case
104 studies and analogies clarify how magnitude measures total energy release, while intensity captures local effects. Tools such
105 as seismograms, ShakeMaps, and early warning systems are introduced to show how scientists monitor and communicate
106 earthquake data and information to the public. These components combine theoretical knowledge with real-world applications,
107 encouraging students to interpret seismic information critically.

108 The final section addresses seismic risks, consequences, and preparedness. Students learn about direct impacts of earthquakes
109 like structural damage and casualties, as well as secondary hazards including tsunamis, landslides, and liquefaction. Emphasis
110 is placed on practical safety strategies such as earthquake resistant construction, earthquake insurance as well as
111 recommendations for actions to be taken *before, during, and after* a strong earthquake. Through exercises and scenario-based
112 tasks, students apply this knowledge to both Swiss and international contexts, raising awareness of earthquakes and their effects
113 while strengthening society's resilience.

114 **2.1.2 Earthquake Monitoring and Raspberry Shake**

115 The *Earthquake Monitoring and Raspberry Shake* module traces the history of earthquake detection from early instruments,
116 such as Zhang Heng's seismoscope, to today's highly sensitive electromechanical devices. Students are introduced to the Swiss
117 National Seismic Network, which includes over 200 permanent monitoring stations across the country operated by the SED.
118 A simple method is introduced to demonstrate how earthquakes can be located via triangulation, which uses differences in P-
119 and S-wave arrival times at various stations. By analysing seismograms and applying simple formulas, students gain hands-on
120 insight into this method and also learn why triangulation is not used in professional seismic monitoring.

121 The second part of the module focuses on Raspberry Shake seismometers, which are affordable and user-friendly devices to
122 record earthquakes mostly for non-professional use. In the scope of our *seismo@school* initiative, we deployed Raspberry
123 Shake seismometers in 46 Swiss schools (see **Figure 1, Chapter 2.2**). Students learn how geophones in the devices convert
124 ground vibrations into digital signals, which can then be visualized, for example, through the Raspberry Shake webpage
125 (<https://stationview.raspberryshake.org/>), allowing real-time exploration of seismograms, spectrograms, and daily helicorder
126 plots. The exercises highlight how everyday seismic *noise*, such as traffic, concerts or variable-frequency sources (helicopter,
127 washing machine), also appears in recordings, helping students distinguish natural from human-induced vibrations.

128 To extend the learning, students engage with programming and data analysis using a Jupyter Notebook. This environment
129 allows them to process and interpret recordings from the Swiss school network, familiarizing them with basics of scientific
130 programming. By connecting classroom learning to live data and real monitoring tools, the module combines theoretical
131 seismology with practical, technology-driven investigation. It provides an authentic experience of how earthquakes are
132 monitored, recorded, and data interpreted, while also encouraging students to conduct their own scientific projects.

133 2.1.3 Earthquake Hazard and Risk in Switzerland

134 The *Earthquake Hazard and Risk in Switzerland* module introduces the key concepts of earthquake hazard and risk,
135 emphasizing the distinction between natural probability and human vulnerability. *Hazard* refers to the likelihood or probability
136 of earthquakes occurring in a specific region, whereas *risk* describes the potential consequences or impacts these events may
137 have on people, infrastructure, and society. Using everyday analogies, students see how external events are unavoidable, yet
138 how preparedness and resilience influence outcomes. The module offers different exercises using Switzerland's seismic hazard
139 and risk maps to help students better understand the two terms.

140 Following the general introduction, the module examines the distribution of earthquake risk across Switzerland, showing how
141 urban areas like Basel, Geneva, Zurich, and Bern face higher risk due to dense populations and concentrated assets (Wiemer
142 et al., 2023). Historical examples, such as the 1356 Basel earthquake, illustrate how the consequences of seismic events vary
143 over time, reflecting differences in urban development, construction standards, and possibly societal preparedness between
144 past and present contexts. Earthquake scenarios for various Swiss cities illustrate the potential damage in terms of building
145 damage costs, fatalities, the number of people seeking shelter, and other key indicators of societal disruption (Marti et al.,
146 2023). By comparing different scenarios and conducting an exercise using the SED *Earthquake Risk Tool*
147 (www.seismo.ethz.ch/earthquake-country-switzerland/risk/earthquake-risk-tool/, last accessed November 2025), students
148 analyse and discuss the various factors influencing risk in detail. Finally, the Swiss case is set within global and European
149 contexts (Danciu et al., 2021; Crowley et al., 2021). Comparisons with higher-hazard regions in southern Europe highlight
150 Switzerland's moderate hazard but significant risk due to infrastructure density. Interactive mapping tools from European

151 (www.efehr.org, last accessed November 2025) and global hazard and risk models (<https://www.globalquakemodel.org/>, last
152 accessed November 2025) invite students to explore worldwide variations.

153 **2.1.4 Induced Seismicity**

154 The *Induced Seismicity* module examines how human activities – such as mining, dam construction, fracking, wastewater
155 injection, CO₂ storage, and deep geothermal energy projects – can trigger earthquakes (e.g., Moein et al., 2023). Although
156 most induced events are small and pose minimal risk, some have caused significant damage, raising important safety and risk
157 management concerns (Grigoli et al., 2017). Over recent decades, induced seismicity has become an increasingly prominent
158 multidisciplinary field of research, integrating perspectives from engineering, geology, and social sciences (e.g., Paluszny et
159 al., 2024). At the same time, these phenomena continue to provoke public and political debate. The module specifically
160 investigates induced seismicity in the context of deep geothermal energy, exploring it through multiple disciplinary and societal
161 lenses.

162 The module situates geothermal energy within Switzerland’s national climate strategy, emphasizing its potential contribution
163 to achieving net-zero emissions by 2050. Students examine the principles and applications of deep geothermal energy,
164 exploring both the opportunities and challenges associated with petrothermal and hydrothermal systems. These concepts are
165 illustrated through Swiss case studies, including Basel (2006) and St. Gallen (2013) projects (Mignan et al., 2015; Diehl et al.,
166 2017), where induced earthquakes ultimately led to the cancellation of geothermal operations, underscoring the complex
167 balance between renewable energy development and seismic risk management.

168 Classroom exercises include role-play debates, allowing students to adopt the perspectives of stakeholders such as residents,
169 authorities, environmental organisations, and energy companies. These activities foster discussion on balancing sustainable
170 energy development, public acceptance, and safety. By linking scientific understanding with social decision-making, the
171 module underscores the interdisciplinary nature of earthquake risks and energy policy.

172 **2.1.5 Misinformation and Media Literacy**

173 The *Misinformation and Media Literacy* module examines the dissemination of earthquake-related misinformation and fosters
174 students’ critical media literacy. It clarifies the distinctions between misinformation, disinformation, fake news, and conspiracy
175 theories, enabling students to critically assess information sources and understand how inaccurate narratives can shape public
176 perception and responses (Dallo et al., 2022b). Furthermore, the module provides insight into why false information is spread,
177 both consciously and unconsciously, and analyses how social media, messaging apps, and online platforms amplify its spread,
178 particularly in the aftermath of disasters. Real-world cases from the 2023 Türkiye-Syria and the 2023 Morocco earthquakes
179 illustrate these dynamics.

180 The module also addresses common earthquake myths. Students are presented with current knowledge on earthquake causes,
181 forecasting, and induced seismicity, and are required to apply this knowledge through practical exercises. By contrasting
182 misinformation with scientific explanations, students are encouraged to critically evaluate claims and to recognise the
183 boundaries of current understanding.

184 The final section focuses on developing practical media literacy skills. Exercises extend beyond the context of earthquakes
185 and promote transferable competencies for navigating digital information. This module helps students become better equipped
186 to identify misinformation, understand its psychological appeal, and take responsibility for how they share and interpret
187 information online.

188 **2.2 Raspberry Shake School Network Switzerland**

189 A second key element of the programme was the expansion of the *seismo@school* Raspberry Shake school network across
190 Swiss schools. In the earlier SNSF-funded initiative, UNIL and CPPS installed 23 vertical-component (1D) Raspberry Shake
191 geophones in the French-speaking cantons of Vaud and Valais, identified through newsletters from the cantonal Education
192 Departments. With the new *Increasing Seismic Awareness in Switzerland* project, we were able to expand this network to 46
193 secondary schools nationwide.

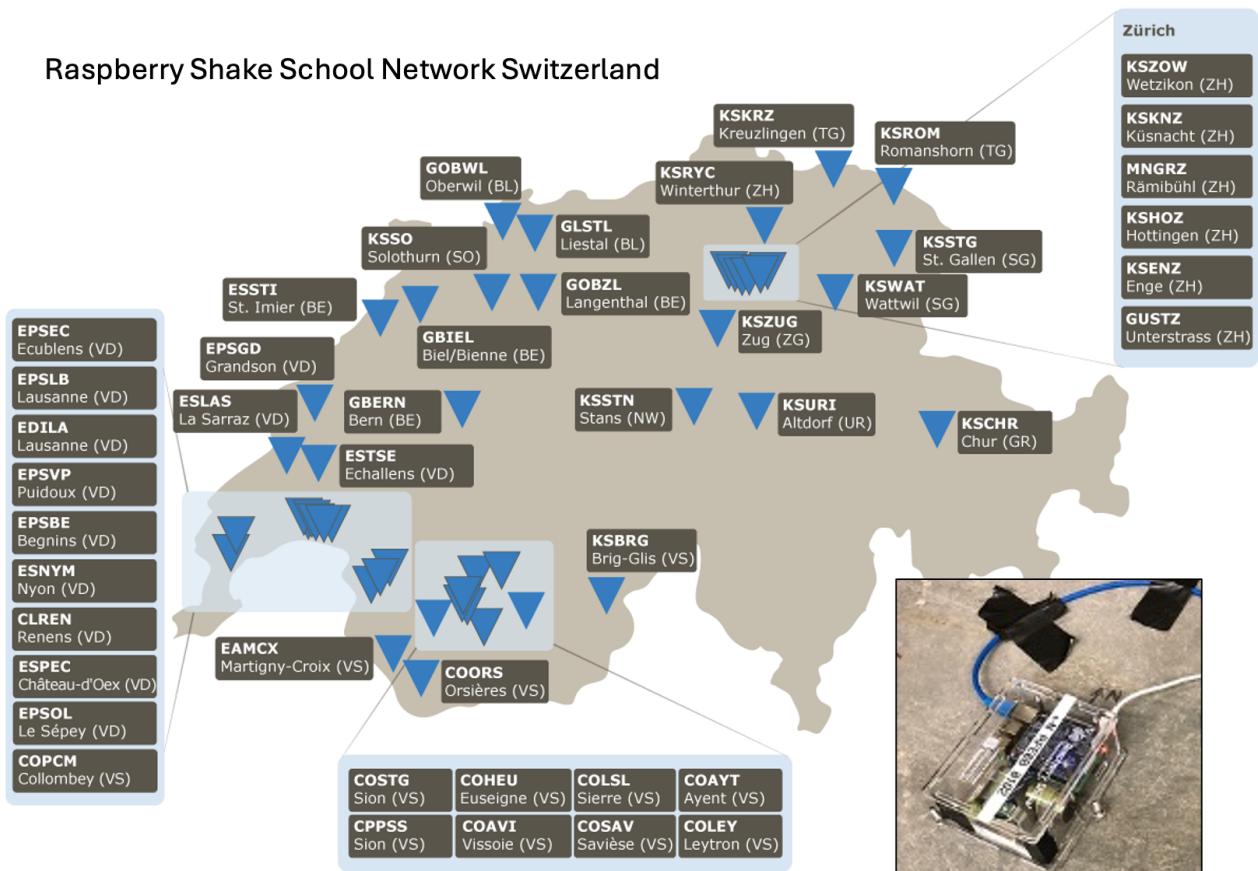
194 In Switzerland, the Swiss Seismological Service (SED) at ETH Zurich holds the official mandate for seismic monitoring and
195 providing the public with earthquake information and warnings (Böse et al., 2024b). To fulfil this role, the SED operates a
196 dense nationwide network composed of different modern seismometers and integrates near real-time data streams from
197 neighbouring countries (Clinton et al., 2011; Cauzzi & Clinton, 2013; Diehl et al., 2025). The service is supported by
198 professional scientific and technical staff on call around the clock to analyse seismic data and ensure reliable network and
199 infrastructure operations. Given this framework, it is natural to incorporate the *seismo@school* Raspberry Shake instruments
200 into the SED's monitoring infrastructure, despite their clear limitations compared to the high-quality sensors and digitizers
201 normally deployed. The school-based devices are significantly noisier – especially during daytime hours when students and
202 teachers are active in the buildings where they are installed – and occasionally underperform in time accuracy. However, care
203 has been taken in their installation to avoid excessive noise.

204 A critical aspect of integrating the Raspberry Shake into the Swiss seismic network was maintaining control over the data
205 flow. One of the main advantages of using Raspberry Shake instruments is their ease of setup and seamless integration into
206 the Raspberry Shake ecosystem. However, this convenience comes with limitations: data is routed through Raspberry Shake
207 servers and station names are constrained by their system. Also, the system may fail at any time and has failed in the past. To
208 ensure full control of data flow and management, all Raspberry Shakes included in the *seismo@school Switzerland* project
209 have a secondary stream to SED-ETHZ running a proprietary, but simple UDP protocol designed by Raspberry Shake. Data

210 is received by a seedlink plugin written by SED-ETHZ which converts the incoming data according to SED standards in respect
211 to network, station, location and channel naming as well as miniseed formatting. It is then incorporated into established
212 workflows for monitoring, archiving, distribution, and processing. In parallel, the data also continue to flow to the Raspberry
213 Shake servers, ensuring full availability within their system.

214 At the start of the project, we integrated the existing 1D Raspberry Shake school seismometers in Vaud and Valais into the
215 SED monitoring infrastructure. In parallel, we identified new schools in other cantons from a survey conducted at the start of
216 the project, using comprehensive email lists available at ETH Zurich. Schools expressing interest in hosting a Raspberry Shake
217 were contacted via email with details on participation requirements. Once a school had accepted these conditions, we shared
218 a detailed installation guide covering location selection, network configuration, sensor setup, and operation. We asked the
219 schools to install the Raspberry Shake sensor directly on the ground, on a firm and level surface, away from vibration sources
220 and ideally near a room corner. Installation in a basement and within a small building is preferable. The sensor should be
221 connected to power and Ethernet and configured via a web interface with site details, data forwarding, and the SED-ETHZ
222 server IP (preconfigured by us with the Raspberry Shake-specific port). Data should be sent to both the Raspberry Shake server
223 and the SED-ETHZ server. For 3-component seismometers, the device should be oriented to north, levelled, and secured in
224 place with cables marked to prevent movement. Schools were requested to document the installation, including site
225 coordinates, building details, and photos, and send this information back to us. Most schools identified their sub-basements or
226 server rooms as suitable locations, as these rooms are rarely used and generally have the necessary infrastructure. Schools in
227 Vaud and Valais also favoured the school library or temporary teaching rooms, where students could more easily access the
228 Raspberry Shakes with their teachers for in-class activities. We recommended teachers not to move the stations for teaching
229 purposes, and this was very well respected.

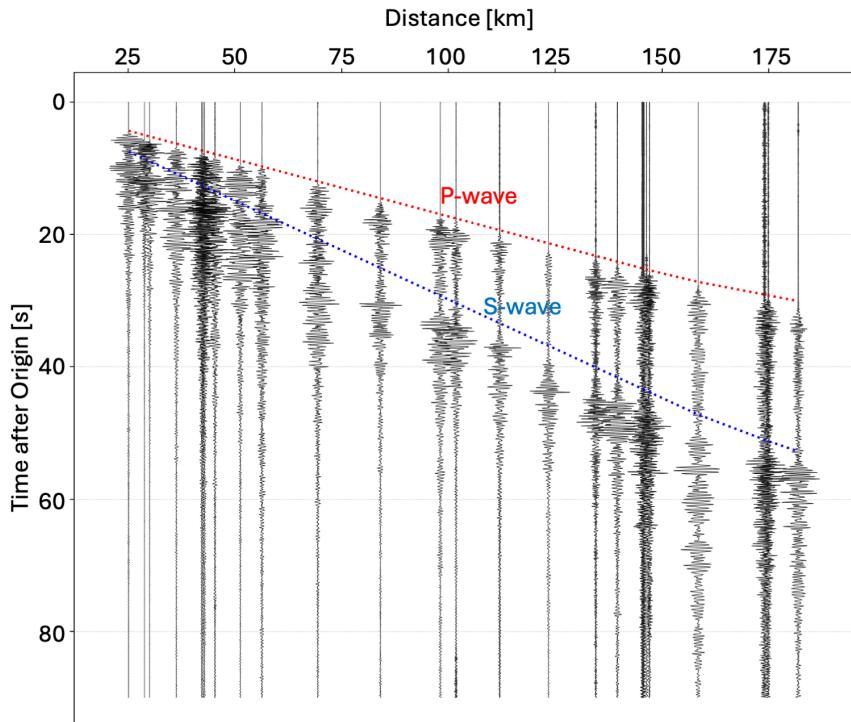
230 For the initial installations, we visited schools in person to assist with setup, familiarize ourselves with the process, and identify
231 potential issues to provide better guidance for subsequent schools. At later stages, when we were confident our documentation
232 was sufficient to allow independent high-quality installations, we shipped the Raspberry Shake units by post. Before shipping,
233 the standard SD cards in each unit were replaced with high-quality, industrial-grade 16 GB microSD cards, since SD cards are
234 a common point of failure, particularly when the system is not properly powered down before unplugging. Each Raspberry
235 Shake was also preconfigured with the appropriate port information, ensuring a straightforward setup process upon arrival.


236 A common challenge was ensuring that the Raspberry Shake could communicate continuously with the SED-ETHZ server
237 through the school's network. Some schools experienced firewall restrictions that blocked outgoing or incoming connections
238 required for data transmission. To address this, we provided detailed instructions on server and port configuration. Schools
239 were encouraged to work with their IT departments to verify that the Ethernet connection could reach external servers without
240 interruption. In some cantons, school IT is centrally managed by the Education Department, which requires additional
241 coordination to overcome firewall issues. Unfortunately, firewall settings at many schools are reset during vacation periods,

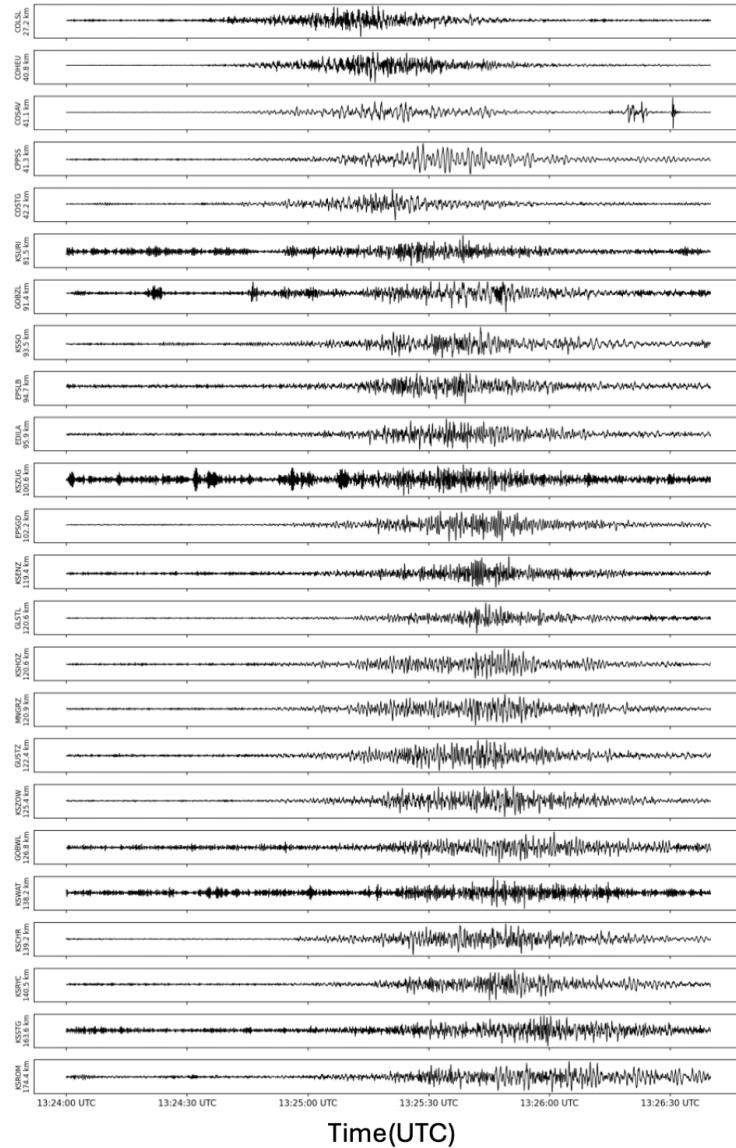
242 which can temporarily block Raspberry Shake data transmission. To mitigate this, schools were advised to check connectivity
243 after holidays and, where possible, to coordinate with IT administrators to implement persistent firewall rules or automated
244 reconnection procedures. This, however, remained a challenge throughout the project.

245 Over a period of two years, we were able to install an additional set of 23 3-component (3D) Raspberry Shake geophones in
246 secondary schools across Switzerland (**Figure 1**). While we initially contacted schools based on our survey, interest spread
247 quickly, and additional schools reached out to participate. Due to the limited funding, we could not accommodate all requests
248 and had to be selective, also considering the need for a well-balanced network across the country. Schools that were unable to
249 receive a sensor were offered the option to collaborate with nearby participating schools or to purchase their own seismometer,
250 which could then be integrated into the *seismo@school* network; to date, this has been realized by one school in the canton of
251 Lucerne. Despite several attempts, we have not yet been able to identify a suitable school in the canton of Ticino, in the Italian-
252 speaking part of Switzerland.

Raspberry Shake School Network Switzerland


253
254 **Figure 1:** The Raspberry Shake school network Switzerland, as of today including 46 seismometers, deployed in secondary
255 schools throughout the country.

256 Students, teachers, and other users have unrestricted access to data from the Raspberry Shake stations. Data can be accessed
257 via multiple platforms, including the Raspberry Shake DataView webpage, the ShakeNet mobile app, and the SED website.
258 The project has a fully open data policy (see **Data and Resources**). For advanced users, such as students working on school
259 projects, we provide a Jupyter notebook with example codes demonstrating how to access data through FDSN web services
260 and how to visualize it. Our teaching module *Earthquake Monitoring and Raspberry Shake* (see **Chapter 2.1.2**) provides
261 further guidance. To engage students and raise awareness of a newly installed Raspberry Shake, we encouraged schools to
262 start with interactive experiments, such as gathering students around the sensor or in a neighbouring room to perform jump
263 tests, for example with an increasing number of students, or by one person and decreasing distance to the seismometer. Several
264 schools have also announced the Raspberry Shake installation in internal newsletters to promote interest and participation.


265 Power Spectral Density (PSD) analysis, computed daily at the SED for all stations (see **Data and Resources**), provides a
266 quantitative framework for assessing the quality of seismic data from both high-quality SED stations and Raspberry Shake
267 school seismometers. PSDs measure how seismic signal power is distributed across frequencies, allowing separation of natural
268 seismic signals from anthropogenic noise. High-quality SED stations exhibit low, stable noise across both low frequencies
269 (<0.1 Hz, e.g., microseisms) and higher frequencies (>1 Hz). In contrast, Raspberry Shake school seismometers show elevated
270 noise above ~1 Hz during school hours, caused by human activity, footsteps, and machinery. Lower-frequency signals (<0.1
271 Hz) are generally more reliable, but low-cost Raspberry Shake instruments are not optimal for measuring very long-period
272 signals (e.g., periods >20–30 s) due to instrumental limitations. In general, above 1 Hz, the school seismometers are at or
273 below the Peterson high-noise model (Peterson, 1993), and some stations are well below this level.

274 Despite their limitations, we found that the Raspberry Shake seismometers can generally detect local earthquakes of magnitude
275 2.5 and larger at distances of up to ~330 km – consistent with observations by Subedi et al. (2020) –, as well as moderate- to
276 large-magnitude regional and teleseismic earthquakes, often even during noisy school days and more consistently at night, on
277 weekends, or during school vacations (**Figure 2**). Although their primary purpose remains educational, yet the school
278 seismometers have also proven scientifically valuable. While, by choice, they are not used for trigger-based detection or
279 standard automatic locations at the SED, they are integrated into automated event-based machine-learning re-location
280 pipelines, and 3-component station amplitudes contribute to automatic magnitude estimates. Additionally, the school sensors
281 are used in manual solutions for picking P and S phases, determining P-wave polarity and magnitude. They are often important
282 stations as they fill data gaps for depth estimation, focal mechanisms, and tomography. Notable events include a magnitude
283 (MLhc) 3.0 earthquake near Zürich (Affoltern am Albis, July 30, 2025) and a series of small earthquakes near Ebnet-Kappel
284 (June 2025), where Raspberry Shake seismometers provided valuable data, in particular for depth determination. Recently, the
285 detection of a suspicious signal at a Raspberry Shake school sensor in the canton of Vaud in October 2025 even triggered the
286 search for a meteorite crossing the sky that induced ground vibrations across western Switzerland (Kraft et al., in prep.).

287
288 **Figure 2:** Raspberry Shake school network recordings of the local 2024 magnitude (MLhc) 4.4 Sihltal earthquake. Red and
289 blue dashed lines mark theoretical P- and S-wave arrival times based on the regional velocity model.

290 The Raspberry Shake school network allows students to monitor real-time seismicity directly from their classrooms, fostering
291 a sense of ownership and engagement through active participation. Schools can investigate both local and global earthquakes
292 using data from their own instrument and undertake small research projects – for example, as part of a *Matura* thesis, an
293 independent research project carried out during the final year of upper secondary school in Switzerland (*Gymnasium*, *Lycée*,
294 or *Liceo*). An important aspect of the Raspberry Shake is that they can record all types of vibrations, not just those from
295 earthquakes. This includes traffic, sonic booms, concerts (e.g., the *Swift quakes* during a Taylor Swift concert in Zurich), and
296 landslides. Mass movements are of particular interest in Switzerland, where their frequency has increased over the last decade,
297 probably as a result of climate change. For example, a massive mass movement occurred in Blatten in Valais in southern
298 Switzerland on 28 May 2025, equivalent to a magnitude (MLhc) 3.1 earthquake. Although this event occurred during school
299 hours, it was well recorded by the entire Raspberry Shake school network across Switzerland beyond 175 km distance (**Figure**
300 **3**). Schools found this particularly impressive, partly due to the strong media coverage, and the event was frequently used in
301 lessons to discuss mass movements in the context of climate change and its impacts on Switzerland.

Mass movement in Blatten

Jump test

302
303 **Figure 3:** Left: Raspberry Shake school network recordings of a massive mass movement occurred in Blatten in
304 southern Switzerland on 28 May 2025, equivalent to a magnitude (MLhc) 3.1 earthquake. Right: ‘Jumping tests’ help students
305 understand how seismometers record seismic events (© Marion Loher).

302

303

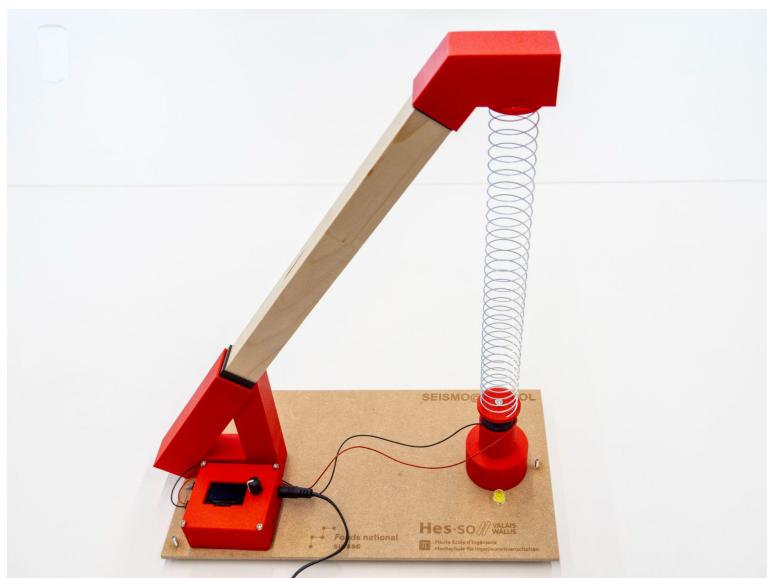
304

305

306

2.3 Exploratory Activities

307


To introduce students to the principles of earthquake detection, we created as a third key outcome of the project a compact do-it-yourself seismometer kit for schools, the *Lambda Slinky Seismometer* (**Figure 4**), named for its distinctive shape. The seismometer consists of a wooden base supporting a homemade coil, a load, and a box containing an Arduino and a screen

310 displaying real-time measurements. A gallows structure holds a Slinky spring with two magnets: one serving as the measuring
311 element and the other for centring and damping. The instrument is designed to record both seismic events and classroom jump
312 experiments. By turning a knob on the display unit, users can access the ten most recently recorded events, each showing the
313 corresponding date and time.

314 The housing and mechanical components can be 3D-printed, while the electronic parts are standard and readily available
315 online. The Arduino-based processor can easily be reprogrammed by teachers or students, allowing for further experimentation
316 and adaptation to classroom needs. The device can be assembled in roughly 30 minutes with the support of a step-by-step
317 video tutorial (http://static.seismo.ethz.ch/sedvideos/seismo_school/tutorial_de.mp4, last accessed November 2025), making
318 it accessible even for beginners. Once built, the seismometer reacts to small ground vibrations, such as footsteps or jumps, and
319 displays the resulting signals in real time on an Arduino screen.

320 Although the kit is not intended for scientific research, it provides an engaging and tangible demonstration of how seismic
321 instruments work. By letting students see their own movements converted into measurable signals, it bridges abstract concepts
322 of ground motion with a hands-on learning experience. This playful approach captures curiosity while reinforcing the physical
323 principles behind seismology. The project benefits from the so-called *IKEA effect*: learners feel greater attachment and
324 motivation when they build the tool themselves, turning assembly into an integral part of the educational journey. By owning
325 a physical device, the *IKEA effect* is most likely even stronger than owning “data” from one’s school seismometer. Around 20
326 kits have been distributed to schools across Switzerland so far, expanding opportunities for classroom experiments.

327

328 **Figure 4:** The *Lambda Slinky Seismometer* kit (here already assembled) for schools developed during the *seismo@school*
329 *Switzerland* project.

330 **2.4 Teacher, Student and International Engagement**

331 The educational resources developed during the project were promoted and disseminated through teacher networks and
332 educational events, reaching not only participating schools but also those without a seismometer. We organized several online
333 and in-person workshops, engaging approximately 60 teachers in total, to familiarize them with the new educational materials
334 and the Raspberry Shake seismometers. These workshops provided valuable opportunities for direct exchange with teachers,
335 allowing us to gain insights into everyday school practices. Furthermore, we obtained a clearer understanding of the teachers'
336 existing knowledge – what they already master and where gaps remain. Conversely, the teachers valued the opportunity to
337 discuss their questions directly with experts and to gain insights into ongoing research projects. As a result of these workshops,
338 additional schools contacted us, expressing interest in joining the *seismo@school* initiative. During these workshops and
339 through follow-up email communication teachers were guided also on how to access and interpret Raspberry Shake data. For
340 significant seismic events, we continue to provide seismograms and contextual background information. A recent survey
341 indicated that many teachers have actively used these materials in their classrooms to discuss seismic events with students.

342 Beyond workshops, student visits to ETH Zurich and the supervision of Matura theses provided opportunities for motivated
343 pupils to conduct original analyses. For example, one student developed a Dash app that visualizes data from the Raspberry
344 Shake school seismometers for selected local earthquakes and provides an approximate animation of P- and S-wave
345 propagation (<http://sas-viewer.ethz.ch/>, last accessed November 2025). School classes can also visit *focusTerra* at ETH Zurich
346 or the CPPS in Sion to complement their classroom learning with interactive exhibits on earthquakes and seismic phenomena.
347 Both locations feature earthquake simulators that reproduce ground shaking, allowing students to experience earthquakes in
348 an immersive and safe environment. Such simulators allow students to feel the ground motion associated with different
349 earthquakes – an experience that is especially valuable in Switzerland, where large earthquakes are rare. By combining the
350 direct physical experience with scientific explanations, these visits create a powerful and memorable learning experience that
351 bridges theoretical understanding and real-world perception of seismic phenomena.

352 At the international level, our team actively engaged with the global educational seismology community. To exchange ideas
353 we conducted two online meetings in 2025 with participants from ten countries, including France, United Kingdom, Ireland,
354 Ukraine, Germany, Nepal, New Zealand, Ecuador, and the United States of America. To further strengthen global partnerships,
355 the team supported in April 2025 the 5th International Workshop on Educational Seismology in Nepal and its associated
356 Earthquake Learning Exhibit (Subedi et al., 2025), organized to commemorate the 10th anniversary of the 2015 magnitude 7.9
357 Gorkha earthquake. The exhibition comprised 14 interactive modules, covering topics such as tectonic processes, seismic
358 waves, building construction, and practical, location-based safety guidance on what to do *before, during, and after* an

359 earthquake, as well as the installation of a seismometer. Approximately 2,000 pupils participated in this event. Pre- and
360 post-event surveys of several hundred participating students revealed substantial improvements in knowledge, heightened risk
361 perception, and increased intent to take preparedness actions. Subedi et al. (2025) highlight how the exhibition's experiential,
362 student-centred format effectively bridged scientific concepts and local realities to foster both individual and collective
363 preparedness through education. However, sustaining the impact will require follow-up interventions, institutionalization
364 through schools and local governance, and expanded training for teachers and volunteers. We propose that this model is
365 scalable and could serve as a replicable framework for earthquake education programmes in other vulnerable regions.
366 Regardless of the differences between Nepal and Switzerland, we aim to continue cooperation between the two countries for
367 knowledge and experience transfer in the domain of educational seismology. The educational materials and modules developed
368 during our project are currently being translated into Nepali for use within the local education system.

369 **3 Data and Methods**

370 Throughout the initiative (2023–2025), a combination of qualitative and quantitative approaches was used to monitor and
371 enhance the effectiveness of the developed activities while also providing insights into the overarching research interest (see
372 **Chapter 1**). This included two online surveys and a series of teacher workshops (May 2024, March 2025, and May 2025),
373 which offered structured opportunities to gather detailed feedback and better understand teachers' needs. Scientific accuracy
374 was ensured through reviews by experts from the relevant fields.

375 **3.1 Transdisciplinary approach**

376 The *seismo@school* initiative followed a transdisciplinary and iterative approach, bringing together teachers, partner
377 organisations with extensive experience in knowledge transfer and outreach, researchers, and communication specialists. This
378 collaborative framework ensured that all materials and activities were co-designed for practical and effective classroom use.
379 Such an approach aligns with the principles of transdisciplinary research, which focuses on the active involvement of diverse
380 stakeholders—not only scientists but also non-academic stakeholders such as teachers—who jointly frame the problems and
381 generate knowledge (Lang et al., 2012; Pearce & Ejderyan, 2020; Jahn et al., 2012)

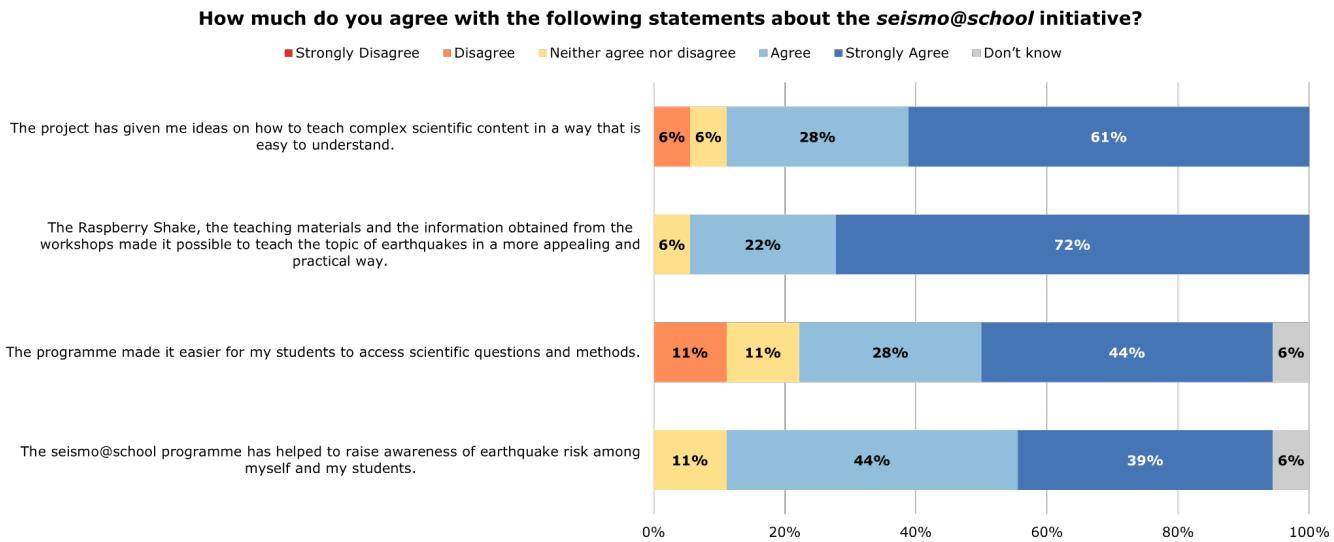
382 **3.2 Online surveys**

383 The first online survey was conducted between July and August 2023 among 49 teachers of grades 7 to 12 in the German-
384 speaking part of Switzerland. It provided an initial assessment of expectations and requirements regarding information
385 materials on current earthquake topics, proposed exploratory activities and experiments, interest in RS seismometers and
386 preferences for different teaching formats. The survey was created using Unipark (<https://www.tivian.com>, last accessed
387 December, 2025) and distributed via personal contacts and comprehensive email lists available at ETH Zurich. Participation

388 was anonymous, and responses could not be traced back to individuals. Teachers could voluntarily provide contact details, if
389 they were interested in receiving a seismometer, but these details were not linked to their answers.

390

391 A second online survey was conducted between August and September 2025 among participating teachers. Its aim was to
392 assess the initiative's effectiveness, i.e. to gain a comprehensive understanding of how schools evaluated the activities and the
393 provided teaching materials, in line with the overarching research interest. The questionnaire (see **Supplements**) comprised
394 23 questions covering four areas: overall impression and reach, use of Raspberry Shake seismometer, the *Lambda Slinky*
395 *Seismometer* and the developed teaching materials. The survey was created using Microsoft Forms (<https://forms.office.com>;
396 last accessed 28 November 2025) and distributed by email to all participants on 12 August 2025. Teachers had one month to
397 respond. The questionnaire was available in both German and French and sent to approximately 44 recipients across
398 participating schools. In total, 18 teachers responded, representing a response rate of 40.9%; two-thirds (67%) were German-
399 speaking and one-third (33%) French-speaking. The survey was anonymous, with an option for participants to voluntarily
400 disclose personal information at the end. All respondents were informed that the survey data would be used for the project's
401 final report and for scientific research purposes.


402 **4 Evaluation of Activities**

403 The following sections present the results of the second online survey, which provides the basis for the evaluation of activities.

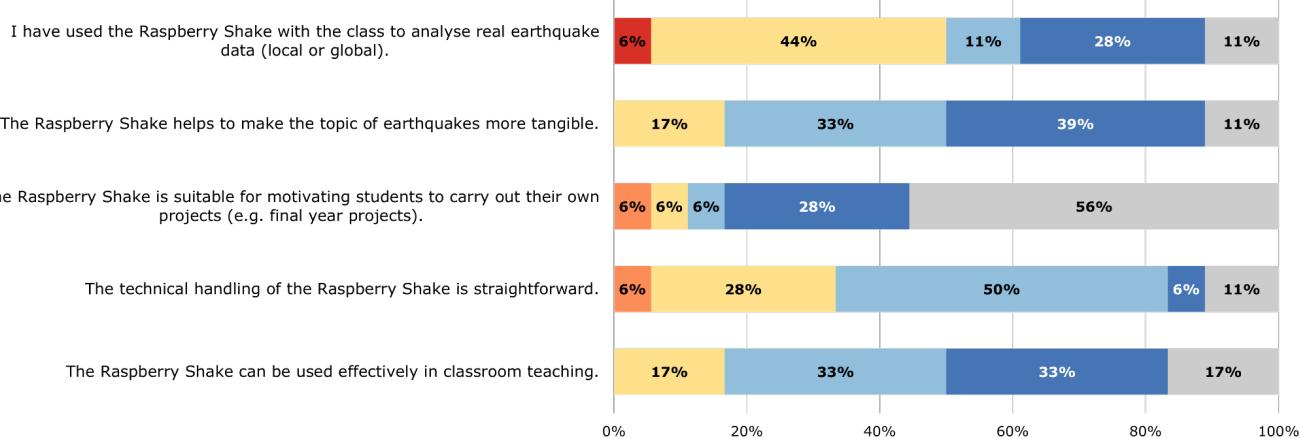
404 **4.1 General Impression**

405 Most respondents (78%) rated their participation in the *seismo@school* initiative very positively, while 22% gave a neutral
406 response. A large majority indicated that the initiative inspired their classroom teaching (89%) and helped raise awareness of
407 earthquake risk among both students and teachers (83%). Overall, participants expressed a high level of satisfaction with the
408 programme and considered it a valuable link between academic research and secondary education, promoting scientific
409 thinking and strengthening awareness of earthquake risk in school (**Figure 5**).

410 Teachers' qualitative feedback emphasised the educational benefits of transdisciplinary collaboration between schools and
411 scientific experts, particularly in terms of bridging the gap between scientific depth and practical classroom application. The
412 teachers particularly valued the workshops and the regular email updates about recent earthquake detections or other
413 phenomena recorded by the network.

414

415 **Figure 5:** Results of the online survey (question 1) on various statements about the general impression of the *seismo@school*
416 *Switzerland initiative*. Participants (n = 18) rated their agreement with four statements on a five-point Likert scale ranging
417 from 'strongly disagree' to 'strongly agree'. Percentages indicate the distribution of responses for each statement.


418 **4.2 Use of Raspberry Shake Seismometers in School Lessons**

419 Survey participants reported having already used the Raspberry Shake with more than 955 students. Thirteen teachers (72%)
420 agreed that the Raspberry Shake helps explain earthquakes more clearly, and two-thirds (66%) consider the seismometer well
421 suited for classroom use. Although a smaller group of teachers (38%) reported using the device to analyse local or global
422 earthquakes (**Figure 6**), several mentioned using the recordings of the Blatten landslide in May 2025 with their classes or
423 incorporating them into activities such as jumping tests or other recorded vibrations (e.g., trucks, train traffic, or machinery).
424 Some teachers also highlighted a couple of practical challenges and a need for additional guidance and technical support,
425 particularly regarding data management and network connectivity.

Please rate the following statements about the use of your *Raspberry Shake* seismometer

■ Strongly Disagree ■ Disagree ■ Neither agree nor disagree ■ Agree ■ Strongly Agree ■ Don't know

426

427 **Figure 6:** Results of an online survey on various statements regarding the use of Raspberry Shake seismometers in classrooms
428 (question 8). Participants (n = 18) rated their agreement with four statements on a five-point Likert scale ranging from 'strongly
429 disagree' to 'strongly agree'. Percentages indicate the distribution of responses for each statement.

430 **4.3 Teaching Materials and Seismometer Kit**

431 The teaching modules were published online between spring and summer 2025. Two-thirds of survey participants (66%) had
432 already viewed at least one module, but—given the short time before the survey and the start of the new school year—only about
433 one-third (33%) had used them in class. Among those who viewed at least one module, more than 80% rated them as good or
434 very good. Respondents valued the clarity of explanations, well-designed graphics, and the integration of realistic and locally
435 relevant examples. Teachers found the materials adaptable and pedagogically sound, although some reported time constraints
436 limiting full integration into their curricula.

437 By August 2025, we had distributed 21 *Lambda Slinky Seismometers* to schools across Switzerland (see **Chapter 2.3**). As
438 additional kits remain available, we will continue to provide them to interested Swiss schools. Of the 18 survey respondents,
439 11 reported owning such a device, and just over half of them (54%) found it exciting to use them in their lessons. According
440 to the comments, most teachers had not yet had the opportunity to use the device in class due to the summer holidays. A more
441 detailed evaluation will therefore be possible at a later stage.

442 **5 Discussions**

443 The *seismo@school Switzerland* initiative demonstrates how experiential, data-driven learning can translate complex
444 seismological concepts into meaningful classroom experiences. By combining real-time data with locally relevant examples,
445 students engage in observation, experimentation, and interpretation, thereby strengthening both conceptual understanding and

446 scientific literacy. Although the initiative requires significant effort from scientists to support its implementation, its success
447 depends primarily on effective knowledge transfer—through appropriate language and communication formats—rather than on
448 overcoming scientific challenges. Teachers emphasized that collaboration with scientific experts effectively bridged the gap
449 between research and school practice. This transdisciplinary approach aligns with the student-centred format advocated by
450 Subedi et al. (2025), who emphasize that immersive, locally contextualized education can foster preparedness and strengthen
451 the link between science and society. *Seismo@school* also aims to strengthen STEM education more broadly and may help
452 counter the global trend of declining student interest in Earth sciences (e.g., Martinez, 2022) and related disciplines as future
453 career paths.

454 While these findings highlight the project’s potential to enhance science education, certain methodological limitations should
455 be acknowledged. The survey conducted as part of the project provides an initial indication of its potential impact. Although
456 the response rate of 40.9% is acceptable, the overall sample size remains limited, which restricts the generalisability of the
457 findings. In addition, the survey period was relatively short, and many teachers will only implement the modules in the coming
458 months. Repeating the survey at a later stage would therefore be advisable. Furthermore, it would be valuable to assess the
459 direct impact on students (e.g., Subedi et al., 2025).

460 The integration of earthquake education in Swiss schools is shaped by *Lehrplan 21* (“*Study Plan 21*”), a joint curriculum
461 framework developed during 2010–2014 and adopted by 21 German-speaking or multi-language cantons and the Principality
462 of Liechtenstein for primary and lower secondary levels. Although *Lehrplan 21* promotes interdisciplinary, competence-
463 oriented teaching across geography, natural sciences, and technology, earthquakes receive only limited explicit coverage. The
464 situation is the same in the French-speaking part of the country and the *Plan d’Etudes Romand*. Implementation thus depends
465 largely on cantonal priorities and individual teacher engagement. Survey responses indicated that most teachers devote only a
466 few hours per semester to the topic, reflecting the limited curricular emphasis. The *seismo@school* resources and activities
467 developed during our programme partly compensate for this gap by offering ready-to-use materials aligned with *Lehrplan 21*,
468 which may enhance teachers’ confidence and motivation to address the subject within existing time constraints. Expanding the
469 number of instructional hours dedicated to earthquakes or natural hazards in official study plans would, however, require
470 educational–political efforts involving multi-year negotiations, beyond the scope of short-term (two-year) projects.

471 The introduction of Raspberry Shake and *Lambda Slinky Seismometers* creates tangible connections between theory and
472 observation, allowing students to collect and analyse real seismic data and (possibly unconsciously) benefit from the *IKEA*
473 effect. This practical engagement promotes curiosity and reveals the potential of open data for inquiry-based science education.
474 However, technical challenges—in particular regarding strict firewall settings in schools—highlight the need for ongoing
475 guidance and institutional support including IT experts. Sustained collaboration with schools will be essential to ensure
476 continuity and maintain data quality in classroom applications.

477 Beyond formal education, the initiative strengthens the interface between science and the public. Museum exhibitions, public
478 events, and multilingual online resources expand access to seismological knowledge and foster dialogue about earthquake risk.
479 By connecting classroom-based sensors to the national seismic network, *seismo@school* makes scientific data more accessible
480 and transparent, thereby reinforcing public trust in research institutions. This participatory element aligns with broader citizen-
481 science initiatives that link community engagement to shared awareness and resilience. The initiative aims for students to act
482 as intermediaries of knowledge, fostering awareness of earthquake science and preparedness beyond the classroom and into
483 their homes and neighbourhoods. This aspect can become an invaluable addition in countries located in high to very high
484 seismic hazard levels. A clear challenge remains the mid- to long-term funding of such efforts. The most promising avenue
485 for sustainability may lie in the development of appropriate policies on earthquake education (e.g., Hetényi & Subedi, 2023).

486 Although the *seismo@school* network was created primarily for educational purposes, the Raspberry Shake seismometers have
487 become a valuable complement to Switzerland's professional seismic monitoring system. They help reduce spatial data gaps
488 in the seismic network and enhance the characterization of local earthquakes. Moreover, integrating the Raspberry Shake
489 sensors into the professional seismic monitoring network of the Swiss Seismological Service ensures regular quality checks,
490 technical support, and long-term maintenance. In this way, both the schools and the professional network benefit. Overall,
491 *seismo@school Switzerland* illustrates how a locally embedded, student-centred initiative can simultaneously advance seismic
492 monitoring, scientific research, strengthen earthquake education, and enhance societal preparedness by raising awareness of
493 seismic risk among young people and their families.

494 6 Conclusions and Outlook

495 The revival and expansion of *seismo@school Switzerland* demonstrate the value of combining formal education, citizen
496 science, and professional monitoring in a single framework. Even in regions of moderate seismic hazard—but considerable
497 risk—, sustained educational efforts are essential to maintain awareness of earthquake risk and to prepare society for rare but
498 potentially damaging events, as well as for events people may face during travels to high-risk zones. The integration of real-
499 time instruments, modular teaching resources, and international collaboration positions Switzerland as an active partner in the
500 global educational seismology community.

501 This project has laid the groundwork for a sustainable, nationwide *seismo@school* initiative. In the near to mid-term, the
502 programme aims to continue supporting teachers and public engagement, expand the sensor network and learning materials—
503 particularly to include lower secondary schools—and deepen partnerships with international school programmes while
504 promoting Swiss-developed teaching materials abroad, for example in Nepal. Further efforts will focus on developing citizen
505 science components, strengthening integration with cantonal Education Departments, and broadening the teacher network to
506 include subjects such as physics, computer science, and mathematics. In parallel, collaboration within and among the Swiss
507 academic institutions involved in the project will be reinforced, and links to other earthquake-related natural hazards, including

508 volcanoes and tsunamis, will be explored. The *seismo@school* network now forms a strong foundation for long-term
509 collaboration between schools and Earth scientists in Switzerland. Participating in such a project as a scientist is both
510 meaningful and rewarding: it enables the achievement of multiple milestones and often elicits enthusiastic feedback - beyond
511 the inherent satisfaction of contributing to a societally relevant and useful initiative.

512 **Data availability**

513 Educational materials (available in English, German, French, and Italian) developed through this project can be accessed at
514 <http://seismo.ethz.ch/en/news-and-services/for-schools/teaching-resources/> (last accessed November 2025). Seismic
515 waveform data from the Raspberry Shake school network Switzerland (<http://seismo.ethz.ch/en/news-and-services/for-schools/raspberryshake-school-seismometer/>, last accessed November 2025) can be downloaded from the European Integrated
516 Data Archive (EIDA). The FDSN network code for the project is “S” (<https://networks.seismo.ethz.ch/en/networks/s/>).
517 Seismologists can access the data using standard FDSN services operated by the SED: for example metadata at
518 <https://eida.ethz.ch/fdsnws/station/1/query?network=S&format=text&level=sta&nodata=404> and waveform data can be
519 accessed from the dataselect service, e.g. <https://eida.ethz.ch/fdsnws/dataselect/1/> (last accessed November 2025). Citation
520 information: Swiss Seismological Service (SED) at ETH Zurich (2008), *Seismology at School Program, ETH Zurich*;
521 <https://doi.org/10.12686/SED-NETWORKS/S>. Daily updated Power Spectral Density (PSD) plots for all Raspberry Shake
522 school sensors (network code S) in Switzerland are available at <https://networks.seismo.ethz.ch/en/networks/s/psd/> (last
523 accessed November 2025).
524

525 **Supplement**

526 Supplementary material includes the school evaluation questionnaire (see **Chapter 3**).

527 **Author contributions**

528 Conceptualization: MB, NV, GH, RRo, ID; Installation and operation of RS school network: MB, GH, NV, RRa, RRo, JC,
529 UF, SS; Development and editing of teaching resources: NV (lead), ID, MB, GH, RRo, FH, MM, TJ, AS, KB; Development
530 of exploratory activities: RRo; Development, conduct, and analysis of survey: NV; Writing - original draft preparation: MB,
531 NV; Writing - review and editing: GH, RRo, ID, KB, JC, FH, MM, RRa, AS, SS, WS.

532 **Competing interests**

533 The authors declare that they have no conflict of interest.

534 **Ethical Statement**

535 This study did not involve human-subject research or the collection of personal data, since the survey could be conducted
536 anonymous. However, participants were able to voluntarily enter their details at the end of the survey. These were not required
537 for the evaluation at any time, nor were they passed on to third parties. Surveys were only conducted with individuals who
538 were involved in or interested in the project. Due to these reasons, this study did not require formal ethical approval under
539 Swiss guideline.

540 **Acknowledgements**

541 Special thanks to Patrik Weiss (ETHZ geography specialist and teacher), Orianne Tramaux and Bernhard Marti (geography
542 teachers in Vaud and Solothurn), Noé Henseler (student who developed the SAV during his Matura thesis), Vanille Ritz (SED-
543 ETHZ), Lorena Kuratle (SED-ETHZ), Federica Müller (SED-ETHZ), Noah Martini (SED-ETHZ), Federica Lanza (SED-
544 ETHZ), Philippe Roth (SED-ETHZ), Yannis Fritsche (SED-ETHZ), Savas Ceylan (SED-ETHZ), Stefan Heimers (SED-
545 ETHZ), Lukas Heiniger (SED-ETHZ), Ulrike Kastrup (ETH *focusTerra*), Ralph Schumacher (ETHZ MINT Center), Aurélien
546 Gay-des-Combes and Simon Hiscox (UNIL), Simone Zaugg, and the many teachers, school IT personnel, students, and
547 outreach partners who contributed their time, energy, and insights throughout the project. AI tools were used for language
548 refinement of this paper without modifying the scientific content.

549 **Financial support**

550 This project was supported by the Swiss National Science Foundation (SNSF) through AGORA project LAAGP0_21586.

551 **References**

552 Amashukeli, T., Farfuliak, L., Haniiev, O. and Petrenko, K.: Ukrainian Seismic Network: Current Status and Challenges,
553 Seismological Research Letters, 95(4), 2038–2040, <https://doi.org/10.1785/0220230337>, 2024.

554 Berenguier, J.-L., Balestra, J., Jouffray, F., Mourau, F., Courboulex, F. and Virieux, J.: Celebrating 25 years of seismology at
555 schools in France, Geosci. Commun., 3, 475–481, <https://doi.org/10.5194/gc-3-475-2020>, 2020.

556 Butcher, T. A., Denton, D. A. and Williams, S. D.: The British Geological Survey School Seismology Project, Physics
557 Education, 46(2), 174, 2011.

558 Braile, L., Hall, M., Taber, J. and Aster, R.: The IRIS education and outreach program, *Seismological Research Letters*, 74,
559 503–510, <https://doi.org/10.1785/gssrl.74.5.503>, 2003.

560 Böse, M., Danciu, L., Papadopoulos, A., Clinton, J., Cauzzi, C., Dallo, I., Mizrahi, L., Diehl, T., Bergamo, P., Reuland, Y.,
561 Fichtner, A., Roth, P., Haslinger, F., Massin, F., Valenzuela, N., Blagojević, N., Bodenmann, L., Chatzi, E., Fäh, D., Glueer,
562 F., Han, M., Heiniger, L., Janusz, P., Jozinovic, D., Kästli, P., Lanza, F., Lee, T., Martakis, P., Marti, M., Meier, M.-A., Mena
563 Cabrera, B., Mesimeri, M., Obermann, A., Sanchez-Pastor, P., Scarabello, L., Schmid, N., Shynkarenko, A., Stojadinovic, B.,
564 Giardini, D. and Wiemer, S.: Towards a Dynamic Earthquake Risk Framework for Switzerland, *Nat. Hazards Earth Syst. Sci.*,
565 24, 583–607, <https://doi.org/10.5194/nhess-24-583-2024>, 2024b.

566 Böse, M., Valenzuela, N., Dallo, I., Hetényi, G., Racine, R., Clinton, J. and Roduit, R.: Seismo@School – A Swiss-wide
567 initiative to bring current earthquake knowledge to schools, 39th General Assembly of the European Seismological
568 Commission, 22–27 September 2024, Corfu, Greece, 2024a.

569 Cantore, L., Bobbio, A., Di Martino, F., Petrilio, A., Simini, M. and Zollo, A.: The EduSeis Project in Italy: An Educational
570 Tool for Training and Increasing Awareness of Seismic Risk, *Seismological Research Letters*, 74(5), 596–
571 602, <https://doi.org/10.1785/gssrl.74.5.596>, 2003.

572 Cauzzi, C. and Clinton, J.: A High- and Low-Noise Model for High-Quality Strong-Motion Accelerometer Stations,
573 *Earthquake Spectra*, 29(1), 85–102, <https://doi.org/10.1193/1.4000107>, 2013.

574 Chen, K. H., Bossu, R. and Liang, W.-T.: Editorial: The Power of Citizen Seismology: Science and Social Impacts, *Front.*
575 *Earth Sci.*, 8, 610813, <https://doi.org/10.3389/feart.2020.610813>, 2020.

576 Clinton, J., Cauzzi, C., Fäh, D., Michel, C., Zweifel, P., Olivieri, M., Cua, G., Haslinger, F. and Giardini, D.: The current state
577 of strong motion monitoring in Switzerland, *Earthquake Data in Engineering Seismology: Predictive Models, Data*
578 *Management and Networks*, 219–233, 2011.

579 Courboulex, F., Bérenguer, J.-L., Tocheport, A., Bouin, M.-P., Calais, E., Dervaux, S., Virmoux, C. and Vincent, M. P.: Sismos
580 à l'Ecole: A worldwide network of real-time seismometers in schools, *Seismological Research Letters*, 83(5), 870–873, 2012.

581 Crowley, H., Dabbeek, J., Despotaki, V., Rodrigues, D., Martins, L., Silva, V., Romão, X., Pereira, N., Weatherill, G. and
582 Danciu, L.: European Seismic Risk Model (ESRM20), *FEFEHR Technical Report 002*, V1.0.0, 84
583 pp, <https://doi.org/10.7414/EUC-EFEHR-TR002-ESRM20>, 2021.

584 Dallo, I., Böse, M., Hetényi, G. and Roduit, R.: Seismo@School – A Swiss-wide initiative to bring current earthquake
585 knowledge to schools, 21st Swiss Geoscience Meeting, 17–19 Nov. 2023, Mendrisio, Switzerland, 2023.

586 Dallo, I., Marti, M., Clinton, J., Böse, M., Massin, F. and Zaugg, S.: Earthquake early warning in countries where damaging
587 earthquakes only occur every 50 to 150 years – The societal perspective, International Journal of Disaster Risk Reduction, 83,
588 103, <https://doi.org/10.1016/j.ijdrr.2022.103441>, 2022a.

589 Dallo, I., Corradini, M., Fallou, L. and Marti, M.: How to fight misinformation about earthquakes? – A Communication
590 Guide, <https://doi.org/10.3929/ethz-b-000530319>, 2022b.

591 Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y.,
592 Cotton, F., Wiemer, S. and Giardini, D.: The 2020 update of the European Seismic Hazard Model: Model Overview, EFEHR
593 Technical Report 001, V1.0.0, <https://doi.org/10.12686/a15>, 2021.

594 Denton, P.: Seismology in schools: 10 years on, Astronomy & Geophysics, 49(6), 6.13–6.14, <https://doi.org/10.1111/j.1468-4004.2008.49613.x>, 2008.

596 Denton, P., Fishwick, S., Lane, V. and Daly, D.: Football Quakes as a Tool for Student Engagement, Seismological Research
597 Letters, 89(5), 1902–1907, <https://doi.org/10.1785/0220180078>, 2018.

598 Diehl, T., Cauzzi, C., Clinton, J., Kraft, T., Kästli, P., Massin, F., Lanza, F., Simon, V., Grigoli, F., Hobiger, M., Roth, P.,
599 Haslinger, F. and Fäh, D.: Earthquakes in Switzerland and surrounding regions during 2019 and 2020, Swiss Journal of
600 Geosciences, 118, <https://doi.org/10.1186/s00015-025-00489-4>, 2025.

601 Diehl, T., Kraft, T., Kissling, E. and Wiemer, S.: The induced earthquake sequence related to the St. Gallen deep geothermal
602 project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity, J. Geophys. Res. Solid Earth, 122,
603 7272–7290, <https://doi.org/10.1002/2017JB014473>, 2017.

604 Fäh, D., Giardini, D., Kästli, P., Deichmann, N., Gisler, M., Schwarz-Zanetti, G., Alvarez-Rubio, S., Sellami, S., Edwards, B.,
605 Allmann, B., Bethmann, F., Wössner, J., Gassner-Stamm, G., Fritsche, S. and Eberhard, D.: ECOS-09 Earthquake Catalogue
606 of Switzerland Release 2011 Report and Database, Public catalogue, 17, 4, 2011.

607 Federal Office for Civil Protection (FOCP): National Risk Analysis Report. Disasters and Emergencies in Switzerland 2025,
608 FOCP, Bern, 2026.

609 Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile, T. A., Dost, B., Fernandez, M. G., Wiemer, S. and
610 Dahm, T.: Current challenges in monitoring, discrimination, and management of induced seismicity related to underground
611 industrial activities: A European perspective, *Rev. Geophys.*, 55, 310–340, <https://doi.org/10.1002/2016RG000542>, 2017.

612 Hetényi, G. and Subedi, S.: A call to action for a comprehensive earthquake education policy in Nepal, *Seismica*, 2(2),
613 242, <https://doi.org/10.26443/seismica.v2i2.242>, 2023.

614 Hetényi, G., Subedi, S., Roduit, R., Valenzuela, N., Böse, M. and Sauron, A.: Programmes scolaires dédiés comme actions de
615 science citoyenne: exemples du Népal et de la Suisse, *CitSciHelvetia'25*, 5–6 June 2025, Lausanne, Switzerland, 2025.

616 Jahn, T., Bergmann, M., and Keil, F.: Transdisciplinarity: Between mainstreaming and marginalization. *Ecological Economics*,
617 79, 1–10, <https://doi.org/10.1016/j.ecolecon.2012.04.017>, 2012.

618 Lang, D. J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., Swilling, M., and Thomas, C. J.: Transdisciplinary
619 research in sustainability science: Practice, principles, and challenges. *Sustainability Science*, 7(1), 25–43.
620 <https://doi.org/10.1007/s11625-011-0149-x>, 2012.

621 Löberich, E. and Long, M. D.: Follow the Trace: Becoming a Seismo-Detective with a Campus-Based Raspberry Shake
622 Seismometer, *Seismological Research Letters*, 95(4), 2538–2553, <https://doi.org/10.1785/0220230365>, 2024.

623 Marti, M., Dallo, I., Roth, P., Papadopoulos, A. N. and Zaugg, S.: Illustrating the impact of earthquakes: Evidence-based and
624 user-centered recommendations on how to design earthquake scenarios and rapid impact assessments, *International Journal of
625 Disaster Risk Reduction*, 90, 103674, <https://doi.org/10.1016/j.ijdrr.2023.103674>, 2023.

626 Martinez, S.: Geoscience enrollment and degrees continue to decline through 2021, *Geoscience Currents*, 172, American
627 Geosciences Institute, <https://profession.americangeosciences.org/research/geoscience-currents>, 2022.

628 Mignan, A., Landtwing, D., Kästli, P., Mena, B. and Wiemer, S.: Induced seismicity risk analysis of the 2006 Basel,
629 Switzerland, Enhanced Geothermal System project: Influence of uncertainties on risk mitigation, *Geothermics*, 53, 133–
630 146, <https://doi.org/10.1016/j.geothermics.2014.05.007>, 2015.

631 Moein, M. J. A., Langenbruch, C., Schultz, R. et al.: The physical mechanisms of induced earthquakes, *Nat. Rev. Earth
632 Environ.*, 4, 847–863, <https://doi.org/10.1038/s43017-023-00497-8>, 2023.

633 Paluszny, A., Schultz, R. and Zimmermann, G.: Induced seismicity in coupled subsurface systems, *Philos. Trans. A Math.
634 Phys. Eng. Sci.*, 382(2276), 20230193, <https://doi.org/10.1098/rsta.2023.0193>, 2024.

635 Pearce, B., and Ejderyan, O.: Joint problem framing as reflexive practice: Honing a transdisciplinary skill. *Sustainability*
636 *Science*, 15(3), 683–698. <https://doi.org/10.1007/s11625-019-00744-2>, 2020.

637 Peterson, J.: Observations and modeling of background seismic noise, U.S. Geol. Surv. Open-File Rept. 93-322, Albuquerque,
638 New Mexico, <https://doi.org/10.3133/ofr93322>, 1993.

639 Sornette, A. and Haslinger, F.: Seismo at school in Switzerland, *EMSC News*l., 24, 15, 2009.

640 Subedi, S., Hetényi, G., Denton, P. and Sauron, A.: Seismology at School in Nepal: A program for educational and citizen
641 seismology through a low-cost seismic network, *Front. Earth Sci.*, 8, 73, <https://doi.org/10.3389/feart.2020.00073>, 2020a.

642 Subedi, S., Hetényi, G. and Shackleton, R.: Impact of an educational program on earthquake awareness and preparedness in
643 Nepal, *Geosci. Commun.*, 3, 279–290, <https://doi.org/10.5194/gc-3-279-2020>, 2020b.

644 Subedi, S., Valenzuela, N., Dhami, P., Böse, M., Hetényi, G., Chardot, L., Adhikari, L. B., Bhattarai, M., Dhakal, R. P.,
645 Houghton, S. and Upreti, B. N.: Organizing an Earthquake Learning Exhibition for transferring geoscience knowledge to the
646 public: The example from Nepal, EGUsphere [preprint], <https://doi.org/10.5194/egusphere-2025-4131>, 2025.

647 Tan, M. L., Vinnell, L., Prasanna, R., Cui, A., Chandrakumar, C., Imtiaz, S. Y., Hong, B. and Viggers, Z.: CRISiSLab
648 Challenge: Hands-on learning with Raspberry Shake seismometers, Poster abstract, QuakeCoRE Annual
649 Meeting, <https://quakecore.nz/wp-content/uploads/2022/08/2022-Abstract-Book-FINAL.pdf>, 2022.

650 Wiemer, S., Danciu, L., Edwards, B. et al.: Seismic Hazard Model 2015 for Switzerland
651 (SUIhaz2015), <https://doi.org/10.12686/a2>, 2016.

652 Wiemer, S., Bazzurro, P., Bergamo, P., Cauzzi, C., Dallo, I., Danciu, L., Duvernay, B., Fagà, E., Fäh, D., Hammer, C.,
653 Haslinger, F., Kästli, P., Khodaverdian, A., Lestuzzi, P., Marti, M., Odabaşı, Ö., Panzera, F., Papadopoulos, A., Perron, V.,
654 Roth, P., Schmid, N., Valenzuela, N. and Zaugg, S.: Earthquake Risk Model of Switzerland ERM-
655 CH23, <https://doi.org/10.12686/a20>, 2023.

656 Zollo, A. and Bobbio, A.: The Educational Seismological Project: EDUSEIS, *Seismological Research Letters*, 71(5), 530–
657 535, 2000.