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Abstract. Soil moisture retrievals from satellite sensors operating at different microwave frequencies provide diverse and 

complementary data sources for assimilation. However, fully exploiting the advantages of each frequency band while 

increasing the volume of assimilated observations remains a challenge. This study assimilates soil-moisture retrievals from 

three dominant-frequency instruments—SMAP (Soil Moisture Active–Passive), ASCAT (Advanced Scatterometer), and 

MWRI (Microwave Radiation Imager)—into the Common Land Model (CoLM) via the Simplified Extended Kalman Filter 15 

(SEKF). On the basis of a systematic assessment of the disparate impacts of each single-band product, we propose and test a 

synergistic multi-satellite assimilation framework that optimally combines the complementary information inherent in the 

multi-frequency observations. Results show that assimilating soil-moisture retrievals significantly improves the accuracy of 

the CoLM land-surface model; nevertheless, the effectiveness of each product exhibits a pronounced dependency on 

vegetation type. Analyses of simultaneous multi-source assimilation indicate that, when SMAP and ASCAT products are 20 

already ingested, the additional introduction of MWRI data over low-stature vegetation further enhances the joint 

assimilation performance. Validation against in-situ observations across China demonstrates that the largest improvements 

occur in the central and western parts of the country: the domain-mean correlation coefficient rises by about 0.25, while the 

error declines from 0.068 to 0.058 m³m⁻³. This indicates that improvements from multi-sensor assimilation stem not only 

from increased data volume but also from the complementary characteristics of the assimilated products. These findings 25 

provide valuable insights into the design of synergistic multi-sensor land data assimilation systems and contribute to 

improving land surface modeling, as well as weather and climate prediction accuracy. 

1 Introduction 

Soil moisture is a critical component of the terrestrial water and energy cycles, exerting strong influences on agricultural 

productivity, weather and climate prediction, water resources management, and climate change (Seneviratne et al., 2010; 30 

Taylor, 2015; Wanders et al., 2019b; Zhang et al., 2002). In the climate system, soil moisture primarily modulates the 
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partitioning of surface sensible and latent heat fluxes, thereby directly influencing the energy exchange processes involved in 

land–atmosphere interactions (Lin et al., 2010; Zhan and Lin, 2011; Zhou et al., 2020). Because soil moisture has memory 

properties, soil moisture anomalies can persist from weeks to months (Koster et al., 2020; 詹艳玲 et al., 2020). This 

providing a crucial source of predictability for sub-seasonal to seasonal forecasts, particularly in the context of extreme 35 

events such as droughts and heatwaves (Zhou et al., 2019). In weather systems, soil moisture changes the thermodynamic 

structure of the near-surface atmospheric boundary layer, which influencing precipitation patterns. It also plays a critical role 

in triggering deep convection by modulating atmospheric stability (Taylor, 2015; Wanders et al., 2019a) 

Land surface models (LSMs) provide one of the primary means for estimating soil moisture with high spatiotemporal 

continuity. Improving LSM accuracy is essential for producing reliable soil moisture estimates, advancing understanding of 40 

land–atmosphere interactions, and enhancing the skill of weather and climate forecasts in coupled land–atmosphere 

modeling systems (Dai et al., 2003; Lawrence et al., 2019). 

Optimizing initial conditions is a crucial method to improving model performance. Through data assimilation combined with 

soil moisture observations, one can obtain initial conditions that are closest to the truth and suitable for the model. The 

effectiveness of data assimilation improvements primarily depends on accurate observational data. Although the 45 

International Soil Moisture Network (ISMN) integrates in situ measurements from multiple countries to provide long-term 

time series of multi-layer soil moisture (Dorigo et al., 2021), the high spatial heterogeneity of soil moisture makes it difficult 

to comprehensively represent regional or global conditions based solely on limited in-situ data.  

Over the past few decades, satellite-based microwave remote sensing of soil moisture has made significant progress, 

becoming the primary source for continuous, large-scale soil moisture data. Microwave sensors can penetrate clouds and 50 

atmospheric aerosols, enabling the acquisition of surface information under most weather conditions. Differences in the 

dielectric properties of wet and dry soils enable the retrieval of soil moisture. Using microwave observations across different 

frequency bands, various soil moisture products have been developed. Passive microwave instruments that can be used for 

soil moisture retrieval typically operate in the X-, C-, and L-band frequencies, such as the X-band MWRI (Kang et al., 2021; 

Zhu et al., 2019), C-band SMMR (Njoku et al., 1980), AMSR-E (Njoku et al., 2003), AMSR2 (Parinussa et al., 2015), and 55 

the L-band SMOS (Kerr et al., 2012). Active microwave sensors mainly include the C-band AMI Scatterometer (Zribi, 2003), 

ASCAT (Bartalis et al., 2007; Zhao et al., 2021), and Sentinel-1 SAR (Paloscia et al., 2013). Furthermore, the SMAP 

satellite combines L-band active and passive microwave sensing to further enhance the accuracy of soil moisture retrieval 

(Entekhabi et al., 2010). 

Considerable progress has been achieved in data assimilation studies using various satellite-retrieved datasets (Draper et al., 60 

2009; Kumar et al., 2006, 2009, 2014; Lin et al., 2017; Liu et al., 2013; Santanello et al., 2016). AMSR retrieval data have 

been widely used in assimilation studies with LSM such as SiB2 and CLM4.5, significantly improving the simulation 

accuracy of variables like soil moisture, evapotranspiration, and surface runoff (Draper and Reichle, 2015; Liu and Mishra, 

2017). Many studies based on the Ensemble Kalman Filter (EnKF) have demonstrated the positive impact of assimilating 

ASCAT-retrieved soil moisture on land surface and flood prediction models (Brocca et al., 2012; Shan et al., 2024; Wanders 65 
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et al., 2019b). Regarding SMAP data, Tian et al. (2023) demonstrated that assimilation of SMAP products not only enhanced 

land surface model forecasts but also improved parameter estimation. Shen et al. (2024) employed an image-based data 

assimilation approach to enhance the spatial distribution characteristics of soil moisture over inland East Asia. 

However, owing to limitations in sensor capabilities and insufficient satellite orbital coverage, remote-sensing data provided 

by any single instrument inevitably exhibit certain deficiencies. Passive microwave sensors provide broad coverage but 70 

coarse resolution (tens of kilometers), making it difficult to resolve local-scale variability (Das et al., 2023; Njoku and 

Entekhabi, 1996). Active microwave sensors offer finer resolution but lower temporal sampling due to long revisit periods. 

Moreover, the sensitivity of different microwave frequencies (L-, C-, and X-bands) to soil moisture varies with vegetation, 

surface roughness, and soil properties, leading to differences in retrieval accuracy and assimilation performance. For 

example, L-band missions (SMOS, SMAP) penetrate vegetation well but exhibit larger errors over complex terrain 75 

(Wigneron et al., 2017). C-band sensors (ASCAT, Sentinel-1) have high temporal resolution but variable accuracy across 

vegetation types and seasons (Chen et al., 2018; El Hajj et al., 2017). X-band sensors perform well over bare soil but suffer 

increased errors in vegetated areas due to strong scattering (Kang et al., 2021). 

With growing interest in satellite remote sensing, many countries have launched polar-orbiting meteorological satellites 

carrying microwave imagers, forming a global collaborative observation network (Peng et al., 2021; Piepmeier et al., 2017). 80 

Atmospheric data assimilation studies have shown that combining observations from multiple satellites with complementary 

orbits and sensing characteristics can increase coverage by more than 20%, enhancing assimilation performance and 

improving numerical weather prediction (Chambon et al., 2023; Li et al., 2024; Zapotocny et al., 2007). In contrast, multi-

satellite synergistic assimilation in the land domain, particularly for soil moisture, remains limited. Existing studies have 

largely emphasized the benefit of increased data volume (Khaki et al., 2019; Kolassa et al., 2017; Seo et al., 2021), while 85 

paying less attention to exploiting the unique strengths of products from different frequency bands. Current schemes often 

adopt a unified error, ignoring differences in vegetation penetration and surface sensitivity among microwave sensors (Dash 

and Sinha, 2019), which may introduce errors from mismatched observation characteristics. Although, algorithm advances 

have narrowed the technical accuracy gap among soil moisture retrievals from different frequencies, the intrinsic physical 

properties of the instruments remain (Dorigo et al., 2010). The key distinction lies in vegetation penetration, L-band sensors 90 

penetrate vegetation well and perform best in moderately vegetated areas; C-band sensors have moderate penetration and are 

sensitive to vegetation changes; X-band sensors have weak penetration and mainly capture near-surface signals (Jackson and 

Schmugge, 1991; Kerr et al., 2010; Owe et al., 2001). Therefore, this study first quantifies the vegetation-type-dependent 

heterogeneity in the assimilation efficacy of diverse satellite retrievals, thereby delineating the relative advantages associated 

with each spectral band. Building on this insight, a vegetation-aware multi-satellite data-assimilation framework will be 95 

formulated to harness complementary observational information and engender synergistic improvements, ultimately 

advancing the accuracy of numerical prediction. 
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The remainder of this paper is organized as follows. Section 2 details the data used in this study. Section 3 describes the 

CoLM, the SEKF method, and the corresponding experimental design. Section 4 presents and discusses the numerical results 

in detail. Finally, Section 5 summarizes the main conclusions of the study. 100 

2 Datasets 

2.1 Satellite datasets 

Informed by the complementary strengths of active and passive microwave sensing at divergent frequencies, this study 

assimilates soil-moisture retrievals from three mainstream sensors: the U.S. Soil Moisture Active Passive (SMAP), the 

European Advanced Scatterometer (ASCAT), and China’s Microwave Radiation Imager (MWRI). The data period covers 105 

June to August 2022. 

The SMAP soil moisture retrievals were obtained from the Level-2 L2_SM_P_E product provided by the National Snow and 

Ice Data Center (NSIDC), USA (ONeill et al., 2023). The product is available at multiple horizontal resolutions; the 36-km 

dataset is adopted here. 

ASCAT retrievals are obtained from the Advanced Scatterometer carried on the Metop satellite series launched by the 110 

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), which provides global soil moisture 

estimates via C-band radar backscatter (Bartalis et al., 2007). This study uses the ASCAT H SAF H113 product with a 

spatial resolution of 12.5 km. Soil moisture is retrieved using a change detection algorithm that links radar backscatter 

variations to soil moisture changes. Volumetric water content is then obtained by converting soil water saturation using 

porosity data from the ESA-CCI (European Space Agency Climate Change Initiative). 115 

The MWRI soil moisture data are from a dataset developed by the National Satellite Meteorological Center of China 

Meteorological Administration (CMA) (Kang et al., 2021). The MWRI instrument aboard the FY-3D satellite provides 

global microwave radiation measurements twice daily. The daily soil moisture product, with a horizontal resolution of 25 km 

on an EASE-Grid projection, integrates data from ascending and descending orbits. Surface soil moisture is retrieved from 

MWRI channel brightness temperature using a retrieval model. 120 

Given that the spatial resolution of satellite products exceeds that of the LSM (about 1.4°×1.4°), all satellite soil moisture 

retrievals within each model grid cell were spatially averaged to prevent introducing excessive small-scale variability. The 

resulting spatially averaged soil moisture distribution is shown in Figure 1. 
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Figure 1: Spatial distribution of grid-averaged soil moisture on June 2, 2022, from (a) SMAP, (b) ASCAT, and (c) MWRI. 125 

2.2 In-Situ Data 

In-situ data were selected to validate the assimilation results. Soil moisture and precipitation observations were obtained 

from the ISMN and the CMA station network. The ISMN comprises over 1,400 stations across 35 international networks 

(Dorigo et al., 2021). The CMA network includes more than 2,400 surface meteorological stations in China, with 
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approximately 600 equipped with soil moisture and soil temperature sensors. For this study, soil moisture observations at 10 130 

cm depth were used. 

2.3 ERA5-Land Reanalysis Data 

To improve the global applicability of validation, this study incorporates the ERA5-Land dataset developed by the European 

Centre for Medium-Range Weather Forecasts (ECMWF) under the Copernicus Climate Change Service (C3S) (Muñoz-

Sabater, 2019). ERA5-Land is a high-resolution enhancement of the ERA5 reanalysis, focusing on land surface variables. Its 135 

soil moisture product includes four layers (0–7 cm, 7–28 cm, 28–100 cm, and 100–289 cm) providing volumetric water 

content. 

3 Model and Experimental Design 

3.1 CoLM model 

This study uses the CoLM to simulate land surface processes. Developed primarily by Chinese research institutions, CoLM 140 

originated from integrating the IAP94 and CLM frameworks through collaboration between the Institute of Atmospheric 

Physics, Chinese Academy of Sciences, and NCAR. The model represents coupled soil hydrothermal and vegetation 

ecophysiological processes, and is widely applied in Earth system studies. We use the 2014 version, which incorporates 

major advances in soil physics and vegetation parameterizations, including an updated soil hydraulic scheme and a two-big-

leaf canopy model. The model consists of 10 vertically stratified soil layers from the surface to bedrock. Soil moisture is 145 

simulated by numerically solving the Richards equation, accounting for root uptake, infiltration, and surface and subsurface 

runoff. Vegetation processes follow a plant functional type (PFT) approach, with a two-big-leaf scheme separating sunlit and 

shaded leaves to better represent canopy radiative and energy transfer (Dai et al., 2003; Li et al., 2017). Hydrological 

processes include precipitation interception, infiltration, evapotranspiration, and runoff generation, with subgrid-scale 

heterogeneity in topography, soil, and vegetation types explicitly considered. 150 

3.2. CoLM Atmospheric Forcing 

The atmospheric forcing data are derived from the ERA5 near-surface atmospheric variables, including downward 

shortwave and longwave radiation, precipitation, air pressure, specific humidity, air temperature, and wind speed. A bilinear 

interpolation method was used to interpolate the ERA5 data from its original 0.25° horizontal resolution to a 1.4°. The data 

have a temporal resolution of 3 hours and cover the period from January 1, 1979, to December 31, 2022. The numerical 155 

solution employs an explicit finite-difference method with a time step of 30 minutes to ensure simulation stability and 

accuracy. Model outputs, which include soil temperature, moisture, surface fluxes, evapotranspiration, and runoff, provide 

the basis for subsequent data assimilation and evaluation. 
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3.3. SEKF assimilation system 

To accommodate the strong nonlinearities characteristic of land-surface processes, the Simplified Extended Kalman Filter 160 

(SEKF)—an assimilation scheme that dispenses with the adjoint model—is employed herein for soil-moisture data 

assimilation. SEKF was proposed by Hess (2001) and Balsamo et al. (2004) based on the Extended Kalman Filter (EKF). It 

approximates the derivative of the nonlinear observation operator by adding appropriate perturbations, thereby avoiding the 

development of a cumbersome adjoint model. Compared to the EKF, SEKF does not require local linearization of model 

equations and updates the observation operator gradient in real time, thereby retaining some flow-dependent error 165 

characteristics. The method is computationally efficient and has been implemented in land data assimilation systems such as 

that of ECMWF (Drusch et al., 2009; Herbert et al., 2024). 

The analysis update step of the SEKF is consistent with the Kalman filter. First, the state is updated by weighting the 

difference between the observation and the simulated observation (i.e., Observation-Minus-Background, OMB) with the 

Kalman gain matrix K: 170 

𝒙! = 𝒙" +𝐊%𝒚 −𝓗)𝒙"*+           (1) 

Here, 𝒙!is the analysis state, 𝒙" is the background state, y is the observation, 𝓗 is the nonlinear observation operator. The 

Kalman gain matrix K is computed as follows: 

𝐊 = 𝐁𝐇#(𝐇𝐁𝐇# + 𝐑)$%           (2) 

B is the background error covariance, R is the observation error covariance, and H is the linearized observation operator. To 175 

account for the nonlinear nature of the observation operator in LSM, the SEKF computes H using a finite-difference 

perturbation approach. Specifically, a small perturbation 𝛿𝐱& is applied to each component 𝐱' of the state vector, and the 

resulting change in the simulated observation is used to approximate the first-order derivative of the observation operator 

with respect to that state component: 

𝐇'& =
𝓗(𝐱!+,𝐱!)$𝓗(𝐱!)

.𝐱"
            (3) 180 

The observation operator is estimated using the finite-difference approach described above. Each perturbation must be small 

enough to satisfy the linear approximation yet large enough to avoid numerical noise. Based on previous research (Bai et al., 

2025), perturbations of 0.001, 0.0001, 0.0001, 0.0001, 0.0005, 0.001, and 0.0005 m3m−3 are applied to the top seven soil 

layers, respectively. Consistent with Albergel et al. (2017), the retrieved soil moisture from satellite products is mapped to 

the model’s second soil layer. 185 

3.4. Experiment design 

The primary objective of this study is to quantify the extent to which assimilating diverse soil-moisture retrievals can 

enhance the shill of the CoLM in simulating the land surface variables. To ensure the deep-layer soil variables reached a 
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statistical equilibrium, the model was first spun up for 342 years from a cold start. Subsequently, a series of sensitivity 

experiments were designed to quantify the assimilation efficacy of different soil moisture products. 190 

Three groups of numerical experiments were conducted. The first is a control experiment (CTL), serving as a reference 

benchmark. In CTL, the CoLM was integrated from a hot start for two months (2 June–1 August 2022) without data 

assimilation. In the second experiment suite, the SEKF assimilation module is activated to sequentially ingest SMAP-, 

ASCAT-, and MWRI-derived soil-moisture products, designated as the L, C, and X experiments, respectively. Each 

experiment consists of one month of daily assimilation cycles, followed by a one-month free forecast. Observations were 195 

assimilated once daily at 0000 UTC. Following Bai et al. (2025), observation and background error statistics were derived 

from the RMSE between CTL and ERA5 reanalysis during June–August 2022. The third group of experiments was 

conducted to investigate the effects of continuous data assimilation on model performance in simulating the soil moisture. 

This set involved continuous assimilation over the entire two-month study period, encompassing the assimilation of single 

datasets (L, C, and X), their pairwise combinations (L+C, L+X, C+X), and all three datasets simultaneously (L+C+X). A 200 

summary of all experiment configurations is provided in Table 1. 

Table 1. Experiment design. 

Group Experiment Assimilated product(s) Assimilation phase Forecast phase 

One CTL   20220602-20220801 

Two L SMAP 20220602-20220703 20220703-20220801 

 C ASCAT As above As above 

 X MWRI As above As above 

Three L SMAP 20220602-20220801  

 C ASCAT As above  

 X MWRI As above  

 L+C SMAP+ASCAT As above  

 L+X SMAP+MWRI As above  

 C+X ASCAT+MWRI As above  

 L+C+X SMAP+ASCAT+MWRI As above  

4. Results  

4.1. Comparison of Assimilation Performance for Different Frequency Bands 

Comparing Group 1 (CTL) and Group 2 (assimilation experiments) clarifies the forecast improvements from land data 205 

assimilation. ERA5-Land soil moisture is used to quantify the effect of assimilating L-, C-, and X-band satellite retrievals on 

the simulations. Figure 2 shows spatial correlation coefficients (R) and root-mean-square error (RMSE) relative ERA5-Land. 
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Assimilation from all three bands improves soil moisture accuracy across 0–1 m, with band- and depth-dependent 

magnitudes. C-band yields the largest gains, R increases by 0.15, 0.12, and 0.09 and RMSE decreases by 0.020, 0.015, and 

0.012 m³m⁻³ for the 0–7 cm, 7–28 cm, and 30–100 cm layers, respectively. L-band ranks second in performance and exhibits 210 

clear depth-dependent variations. At the surface layer, its ΔR reaches 0.13, which exceeds that of X-band (0.11). In the 

second layer, the improvements are comparable between the two, while in the third layer, L-band performs slightly worse 

than X-band. In the forecast phase, the results differ from those in the assimilation phase. L-band shows the smallest 

improvement in both R and RMSE, suggesting a more rapid loss of its assimilation impact. In contrast, the effects of C- and 

X-band assimilation remain more persistent throughout the forecast period. 215 

 
Figure 2: Spatial correlation coefficients (left panels) and RMSE (right panels) of soil moisture relative to ERA5-Land for 
different experiments. (a, c, e) is spatial correlation coefficients for layer 1, layer 2, and layer 3, respectively, and (b, d, f) is the 
corresponding RMSE for layer 1, layer 2, and layer 3, respectively. The region to the left of the vertical dashed line denotes the 
assimilation phase, and the region to the right denotes the forecast phase. The dashed line represents the CTL, while red, green, 220 
and purple lines represent the assimilation of L-, C-, and X-band soil moisture products, respectively.  

 

To further explore the causes of performance differences among the frequency bands, the mean first-layer soil moisture is 

analyzed. As shown in Figure 3, the analysis fields exhibit notable spatial variations and a clear latitudinal dependence. Over 

southeastern China between 10°–30°N, all three experiments identify the region as having high soil moisture, yet the L 225 

experiment is comparatively wetter and in closer agreement with ERA5-Land. At higher latitudes, such as northern Canada 
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and Siberia, the dry–wet contrast is more pronounced in the X- and C-band experiments. However, the L-band experiment 

exhibits an overly dry bias that deviates from ERA5-Land. In the wetter regions of southeastern Australia, the X-band results 

most closely match ERA5-Land, while the C-band experiment displays a distinct dry bias. These results indicate that the 

assimilation performance of different frequency bands exhibits strong regional dependence. 230 

 
Figure 3: Spatial distribution of mean soil moisture in the top layer during 2 June to 3 July 2022. (a)–(c) show the analysis fields 
from the L-, C-, and X-band assimilation experiments, respectively, and (d) shows the corresponding ERA5-Land soil moisture. 

 

To further clarify the regional dependence of assimilation performance, the global land surface was divided into three 235 

latitudinal bands: 90°S–30°S, 30°S–30°N, and 30°N–90°N. Spatial correlation coefficients and RMSE were computed for 

each zone, as shown in Figure 4. In the CTL, the best model performance can be found in the tropics (30°S–30°N), where 

spatial correlation reached 0.8 and RMSE was approximately 0.115 m³m⁻³. In contrast, performance was poorest in the 

Northern Hemisphere (30°N–90°N), with correlation around 0.4 and RMSE exceeding 0.15 m³m⁻³. 

Assimilation experiments show that in the Southern Hemisphere and tropical regions, the L-band provides the most notable 240 

improvement during both the assimilation and forecast phases. For example, in the 90°S–30°S band, the second-layer soil 

moisture correlation increased by 0.10 and RMSE decreased by 0.015 m³m⁻³. However, in the Northern Hemisphere (30°N–

90°N), the C- and X-band experiments outperformed L-band assimilation. In particular, C-band assimilation improved the 

second-layer correlation by 0.16 and reduced RMSE by 0.024 m³m⁻³ relative to the CTL, indicating the best performance in 

this region. 245 
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Figure 4: Spatial correlation coefficients (left panels) and RMSE (right panels) of soil moisture relative to ERA5-Land across 
different latitudinal zones for the four experiments. (a, c, e) is spatial correlation coefficients for layer 1, layer 2, and layer 3, 
respectively, and (b, d, f) is the corresponding RMSE for layer 1, layer 2, and layer 3, respectively. The left and right sides of the 
vertical dashed line correspond to the assimilation and forecast phases, respectively. Gray represents the control experiment, while 250 
blue, yellow, and pink represent assimilation of SMAP, ASCAT, and FY-3D soil moisture products, respectively.  

 

Given the differing penetration capabilities of microwave frequencies and the strong correlation between vegetation density 

and latitude, variations in vegetation type likely contribute to the observed latitudinal differences in assimilation performance. 

Figure 5 shows the evaluation results of the assimilation experiments across different vegetation types, validated against 255 

ERA5-Land to ensure sufficient sample sizes. The vegetation types are arranged in order of increasing density. Assimilation 

of MWRI X-band data performs best in sparsely vegetated regions, with consistent improvements across all soil depths. In 

contrast, in densely vegetated areas, the deeper penetration of lower-frequency sensors becomes evident. SMAP (L-band) 

demonstrates the most stable performance, particularly in deeper soil layers. For example, in temperate broadleaf forests 

(BET Temperate), the improvement in correlation for deep-layer soil moisture exceeds that of the surface layer, while the X-260 

band experiment exhibits a negative impact. These results align with findings from Mousa and Shu (2020), who used the 

Triple Collocation method and reported that SMAP significantly outperformed ASCAT in forested regions of Africa. 
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Figure 5: Changes in correlation coefficient (left panels; after-minus-before assimilation) and RMSE (right panels; after-minus-
before assimilation) of soil moisture relative to ERA5-Land during 2 June to 3 July 2022, shown as a function of vegetation type. (a, 265 
c, e) is correlation coefficients for layer 1, layer 2, and layer 3, respectively, and (b, d, f) is the corresponding RMSE for layer 1, 
layer 2, and layer 3, respectively. 

 

Recognizing that reanalysis data are not absolute truth, we further evaluated the assimilation performance using in situ 

observations from China. Figure 6 presents correlation and RMSE statistics for each experiment, ordered by increasing 270 

vegetation cover. Some vegetation types are omitted due to a lack of corresponding station data. The correlation results show 

that both L-band and C-band assimilation consistently improve model performance across all available vegetation types, 

except in the Arctic Grass region where RMSE increases slightly. Notably, in densely vegetated areas, assimilation of the 

MWRI product leads to a decline in correlation, highlighting its limited effectiveness under dense canopy conditions. These 

findings are consistent with the reanalysis-based evaluation and reinforce the robustness of the earlier conclusions. 275 
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Figure 6: Same as Figure 5, but for comparison between model soil moisture and in situ observations at 0–10 cm depth. (a) is 
correlation coefficients for 0-l0 cm, and (b) is the corresponding RMSE for 0-10 cm. 

 

As defined in the experimental design, the primary difference among the experiments lies in the observation data used. 280 

Given that all satellite products achieve near-global coverage during the one-month continuous assimilation period, 

differences in assimilation performance are largely attributed to observation errors. To explore the relationship between 

assimilation performance and vegetation type, we evaluated the retrieval accuracy of each satellite product using in situ soil 

moisture observations under different vegetation types. Figure 7 presents the correlation and RMSE of SMAP, ASCAT, and 

MWRI retrievals against in situ measurements, with vegetation types ordered as in Figure 5. 285 

The retrieval accuracy of all three products exhibits a clear dependence on vegetation density. SMAP shows increasing 

correlation and decreasing RMSE with higher vegetation cover, reflecting the stronger canopy penetration capability of L-

band radiometry. In contrast, ASCAT and MWRI retrievals degrade as vegetation density increases, performing best in 

sparsely vegetated and bare soil regions. These results suggest that spatial variations in assimilation performance are 

primarily driven by the intrinsic differences in retrieval accuracy among the products. The longer wavelength of the L-band 290 

enables SMAP to maintain high accuracy in densely vegetated areas, while C-band (ASCAT) and X-band (MWRI) retrievals 

are more strongly affected by vegetation-induced scattering and attenuation. 

 
Figure 7: Correlation coefficients (a) and RMSE (b) between satellite-retrieved soil moisture and in situ observations. Light blue, 
orange, and red bars represent SMAP, ASCAT, and FY-3D products, respectively. 295 
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The vegetation-dependent differences in assimilation performance may help explain the pattern observed in Figure 2, where 

the impact of L-band assimilation decays more rapidly during the forecast phase. While L-band performs best in regions 

with dense vegetation and high precipitation (Mousa and Shu, 2020), soil moisture in these areas is frequently influenced by 

strong meteorological forcings such as rainfall. As a result, the assimilated information is more likely to be masked by 300 

subsequent hydrometeorological variability, leading to faster loss of forecast skill. In contrast, C- and X-band retrievals 

perform better in regions with low-to-moderate vegetation cover and more arid conditions (Sun et al., 2017). In these areas, 

less frequent precipitation and slower soil moisture dynamics allow the assimilated signal to persist longer, resulting in better 

forecast retention. 

4.2. Synergistic Assimilation Performance Analysis 305 

The preceding analyses demonstrate marked disparities in the assimilation efficacy of individual satellite products, 

underscoring the imperative of simultaneous multi-satellite data assimilation. To quantify the incremental benefit of 

assimilating various satellite-data combinations, Figure 8 displays the probability density functions (PDFs) of the differences 

between the spatial correlation coefficients of soil-moisture analyses from each assimilation experiment and those from the 

control experiment, with correlations calculated against in-situ observations. All PDFs exhibit a pronounced positive skew, 310 

indicating that every assimilation experiment outperforms the control. Moreover, dual-satellite assimilation systematically 

surpasses single-satellite assimilation, corroborating the added value of synergistic multi-source data integration for 

enhanced assimilation efficacy. Among the combinations, the L+C experiment (SMAP + ASCAT) shows the best 

performance. This improvement is likely due to the complementary characteristics of L- and C-band sensors under varying 

vegetation conditions: L-band performs well in densely vegetated areas, while C-band is more effective in low-to-moderate 315 

vegetation environments. Together, they provide more balanced and robust performance across diverse land surface 

conditions. This is consistent with the findings of Kim et al. (2018), who employed a method based on maximizing the 

correlation coefficient to merge different soil moisture products. Their results indicated that SMAP exhibited broader 

compatibility with products from other frequency bands. Notably, in densely vegetated regions, the combination of SMAP 

and ASCAT outperformed other fusion schemes. However, assimilating all three satellite products (L+C+X) does not further 320 

improve performance over the L+C combination and, in some cases, leads to degradation. For example, the probability 

density function of performance metrics shows more frequent negative values in the L+C+X case compared to L+C. This 

suggests that the inclusion of lower-quality data can reduce overall assimilation effectiveness in multi-source systems. 
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Figure 8: Probability density distributions of the correlation coefficient differences between assimilation experiments and the CTL, 325 
based on in situ observations. Legend values indicate the mean correlation improvement for each experiment. 

 

To explain the negative impact observed when adding X-band data to the L+C combination, we analyzed a subset of 

representative vegetation types, Temperate Needleleaf Forest (NET Temperate), non-Arctic grassland, and corn. Figure 9 

shows the changes in correlation and RMSE when a third satellite product is added to a two-source combination for each 330 

vegetation type. Adding SMAP (L-band) to the C+X combination led to consistent improvements across all three vegetation 

types, with increases in correlation and reductions in RMSE. This effect was most pronounced in non-Arctic grasslands, 

where correlation improved by 0.09 and RMSE decreased by 0.0015 m³m⁻³. Adding ASCAT (C-band) to the L+X 

combination also improved performance, though to a lesser extent. In contrast, incorporating MWRI (X-band) into the L+C 

combination produced minimal benefit and even reduced the correlation in the densely vegetated NET Temperate region. 335 
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Figure 9: Changes in correlation coefficient (a) and RMSE (b) between model output and in situ observations after adding a third 
satellite product to each two-product assimilation combination, shown for selected vegetation types.  

 

To better understand how vegetation influences the assimilation performance of different satellite products, a time-series 340 

validation was conducted using in situ observations. Figure 10 presents daily mean soil moisture from model simulations 

across different assimilation experiments, along with satellite retrievals and station observations. For the Corn vegetation 

type (Fig. 10c), the L+C+X experiment (DA_ALL) showed the highest accuracy, achieving a correlation of 0.83 with station 

data, compared to 0.56 for the control and 0.79 for the L+C experiment. The inclusion of X (FY-3D) data improved the 

model’s ability to capture soil moisture responses to rainfall events, especially when L- and C-band data were unavailable on 345 

certain days (e.g., July 12). During the mid-July precipitation event, all experiments captured the sharp increase in soil 

moisture, but DA_ALL reproduced both the peak (July 11) and the subsequent dry-down (July 12–13) with greater fidelity. 

At the non-Arctic grassland site (Fig. 10b), FY-3D assimilation also contributed positively. The correlation in DA_ALL 

reached 0.43, compared to 0.23 for L+C. During the rainfall event on July 29, FY-3D provided supplementary data that 

compensated for missing L- and C-band inputs, enabling better simulation of daily moisture dynamics. 350 

In contrast, a different pattern emerged in NET Temperature area (Fig. 10a). The time-series correlation for DA_ALL (0.53) 

was notably lower than that of L+C (0.63), consistent with the spatially averaged results. Between June 2 and June 20, FY-

3D soil moisture exhibited a distinct pattern—first decreasing, then increasing, then decreasing again—while other products 

and in situ observations remained low and stable. The increase in soil moisture was only observed after continuous rainfall 

during July 5–10. The early divergence of FY-3D from both satellite and station observations led to erroneous updates 355 

during assimilation, degrading overall accuracy. This highlights the instability of the FY-3D product in densely vegetated 

environments, where signal scattering and attenuation significantly reduce retrieval reliability. 
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Figure 10: Time series of daily mean soil moisture from model simulations, satellite retrievals, and in situ observations for 
different assimilation experiments. The green solid line represents in situ observations. Black, orange, and blue solid lines indicate 360 
soil moisture simulations from the control experiment, the L+C+X assimilation experiment, and the L+C assimilation experiment, 
respectively. Red, blue, and black dots represent L-, C-, and X-band satellite soil moisture products, respectively. Blue bars denote 
daily precipitation. 

 

The preceding analysis demonstrates that adding more satellite products does not necessarily lead to improved assimilation 365 

performance. A key to maximizing the benefit of multi-source data is to strategically select complementary combinations 

based on sensor characteristics. To this end, an additional experiment was conducted, referred to as the NEW experiment, 

which assimilates only L- and C-band soil moisture products over densely vegetated regions, and all three bands (L, C, and 

X) elsewhere. Figure 11 shows the probability density distribution of correlation coefficient differences relative to the CTL 

for the NEW, L+C, and L+C+X experiments. The distributions for L+C and L+C+X are largely similar, indicating that the 370 

inclusion of MWRI (X-band) does not provide a clear advantage over the L+C combination. 

In contrast, the NEW experiment exhibits notably better performance. Its mean correlation improvement reaches 0.17, and 

its probability density in the high-positive range (0.6–0.75) is significantly higher than that of L+C and slightly higher than 

L+C+X (see right inset of Fig. 11). This indicates that the optimized combination in the NEW experiment improves both the 

stability and overall effectiveness of the assimilation system. Furthermore, in the negative difference range (–0.2 to –0.1), the 375 

NEW experiment shows substantially lower probability density than L+C+X (see left inset), suggesting a reduced risk of 

performance degradation due to X-band data in densely vegetated areas. These results confirm that the NEW experiment 

achieves superior assimilation performance by employing a more targeted multi-source data combination strategy. 
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Figure 11: Probability density distributions of the correlation coefficient differences between assimilation experiments (NEW, L+C, 380 
and L+C+X) and the CTL, based on in situ observations. 

 

To illuminate spatial heterogeneities in assimilation performance, we leverage existing in-situ networks to focus on two 

climatologically and ecologically distinct sub-regions of China: the central-west and the southeast. These areas exhibit 

contrasting vegetation characteristics—the former dominated by low-stature vegetation and bare ground, the latter by dense, 385 

high-biomass canopies—thereby providing a natural laboratory for evaluating spatially varying assimilation efficacy. In the 

CTL, correlation in the central-western region showed a north–south gradient, with a regional average of 0.25, whereas the 

southeastern region performed better, with an average correlation of 0.52. Data assimilation significantly improved soil 

moisture simulations in both regions. In the NEW experiment, the correlation in the central-western region increased to 0.5, 

with especially large improvements (often >0.5) in the north. The southeastern region also improved, with the average 390 

correlation rising to 0.58. 
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Figure 12: Spatial distribution of correlation coefficients between simulated and observed soil moisture. (a, b) show CTL results 
for central-west and southeast China, respectively, (c, d) show NEW experiment results for central-west and southeast China, 
respectively, and (e, f) show correlation differences between the NEW experiment and L+C and between the NEW experiment and 395 
L+C+X, respectively. 

 

Unbiased RMSE (ubRMSE) between modeled and observed soil moisture is shown in Figure 13. Compared to the CTL, the 

NEW experiment exhibited a remarkable reduction in ubRMSE in both regions. In central-western China, the ubRMSE 

decreased from 0.068 to 0.058, and in southeastern China, it declined from 0.055 to 0.052. ubRMSE differences shows 400 

predominantly negative values (blue), indicating that the NEW scheme reduced model error across most areas. However, 
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localized increases in ubRMSE were also identified, indicating the need for further optimization strategies in multi-satellite 

data assimilation. 

 

 405 
Figure 13: Same as Fig. 12 except for ubRMSE. 
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5. Summary and Discussion 

The effectiveness of assimilating satellite-based soil moisture retrievals in improving LSM performance has been widely 

recognized. With the rapid advancement of satellite remote sensing technology, numerous microwave radiometer-equipped 

polar-orbiting meteorological satellites have been launched globally, providing increasingly abundant observational 410 

resources. Against this background, effectively leveraging multi-source microwave data has become a key scientific 

challenge for enhancing land surface simulations. In this study, we develop a vegetation-adaptive framework for 

constructing optimal multi-satellite assimilation systems. Soil moisture retrievals from sensors operating at different 

microwave frequencies (SMAP L-band, ASCAT C-band, and MWRI X-band) were assimilated using the SEKF. Beyond 

systematic evaluation of each frequency band's performance, we established quantitative criteria for optimal sensor 415 

combination and developed decision rules for dynamic sensor weighting based on local vegetation characteristics, providing 

a paradigm shift from volume-driven to complementarity-driven data fusion strategies. 

The findings show that assimilating satellite soil moisture products significantly improves simulations of both surface and 

root-zone soil moisture. However, assimilation performance varies substantially with vegetation type. In densely vegetated 

regions, assimilating SMAP L-band retrievals consistently yields superior results due to the strong vegetation penetration 420 

capability of the L-band. In contrast, in sparsely vegetated high-latitude regions, MWRI (X-band) and ASCAT (C-band) 

products exhibit higher sensitivity to soil moisture variability and provide better assimilation outcomes. Vegetation-specific 

evaluation reveals that these differences stem from frequency-dependent vegetation penetration, which affects retrieval 

accuracy.  

Importantly, the results also demonstrate that increasing the number of assimilated satellite products does not always lead to 425 

improved performance. The combined assimilation of SMAP and ASCAT outperforms single-sensor assimilation. Further 

improvement is achieved only when MWRI data are selectively incorporated in regions with low vegetation cover. These 

results reveal that optimal sensor combination must be vegetation-adaptive. Accordingly, we developed a systematic 

framework that dynamically selects sensor combinations based on local vegetation conditions, prioritizing SMAP+ASCAT 

in most regions while conditionally adding MWRI only in sparse vegetation areas. This highlights that the effectiveness of 430 

multi-source assimilation depends not only on data volume but also on the complementarity of the assimilated information. 

While this study focused primarily on the role of vegetation density, other environmental factors such as terrain elevation, 

precipitation, and temperature can also influence the retrieval errors of different frequency bands. For instance, terrain-

induced variations in local incidence angles can alter the polarization and scattering characteristics of microwave signals, 

thereby affecting retrieval accuracy (Gibon et al., 2024). Seasonal variations in vegetation cover, rainfall distribution, and 435 

temperature may also systematically impact retrieval performance (Liu et al., 2022). Future work should explore the 

influence of these factors through statistical or machine learning approaches to model their relationships with retrieval errors 

(Kim et al., 2023). Incorporating such models into multi-sensor assimilation frameworks may further enhance performance. 
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Finally, this study is based on offline land surface model simulations and does not account for land–atmosphere interactions, 

which may limit the generalizability of the proposed assimilation strategy in forecasting applications. Future studies should 440 

apply and evaluate the assimilation schemes within coupled land–atmosphere systems to better support improvements in 

weather and climate prediction. 

 

Code and data availability. The Common Land Model (CoLM, version 2014) used in this study was downloaded from the w

ebsite of the Land–Atmosphere Interaction Research Group at Sun Yat-sen University: http://globalchange.bnu.edu.cn/resear445 

ch/models (Ji et al., 2014, last access: 13 January 2025). SMAP soil moisture data are available from the NASA National Sn

ow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC): https://doi.org/10.5067/BN36FXOMMC4C (O

Neill et al., 2023). The ASCAT surface soil moisture data can be downloaded from the EUMETSAT Data Store (https://data.

eumetsat.int/data/map/EO:EUM:DAT:METOP:SOMO25, last access: 20 January 2025). The ISMN in-situ soil moisture me

asurements can be downloaded from the International Soil Moisture Network (https://ismn.earth/en/dataviewer, last access: 1450 

1 May 2025). ERA5-Land reanalysis data are available from the Copernicus Climate Data Store (CDS): https://doi.org/10.24

381/cds.e2161bac (Muñoz-Sabater, 2019). The code of the Common Land Model (CoLM) version 2014 and the source code 

of the assimilation system, as well as the data process software codes and the model outputs’ data, have been uploaded to Ze

nodo repositories, which are available at https://doi.org/10.5281/zenodo.17661825 (Bai., 2025).  
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