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Abstract: Understanding the spatiotemporal dynamics of atmospheric carbon dioxide (CO2) is fundamental for advancing climate 

change research and designing effective mitigation strategies. Yet current analyses are constrained by two key limitations: sparse 

observations that hinder intra-urban assessment and relatively short monitoring periods that limit long-term consistency. To 10 

overcome these challenges, we developed a long-term atmospheric CO2 hindcast modeling framework that generates daily 1-km 

column-averaged dry-air mole fraction of CO2 (XCO2) across China for 2000–2020. The framework adapts the proven PM2.5 

hindcast approach to CO2 estimation by training an Extremely Randomized Trees model on the residuals between OCO-2 

observations and CarbonTracker simulations. The model integrates a comprehensive set of physically interpretable predictors—

including MAIAC aerosol optical depth (AOD), NO2, peroxyacetyl nitrate (PAN), meteorological variables, and land-use 15 

indicators—linking CO2 variability to co-emitted tracers and boundary-layer processes. Rigorous evaluation demonstrated high 

reliability (cross-validation R2 = 0.94–0.97, RMSE = 0.82–1.29 ppm; independent validation R2 = 0.82–0.97). The resulting long-

term, high-resolution dataset reveals distinct carbon hotspots and their evolution: the North China Plain remained persistently 

elevated with rapid increases during 2000–2010, while southern China exhibited accelerated growth after 2010. Enhancement 

analyses identified consistent intra-regional hotspots in southeastern Beijing-Tianjin-Hebei and northern Zhejiang, with emissions 20 

declining after 2012 and rebounding after 2018. During the Wuhan COVID-19 lockdown, urban cores showed sharper reductions 

than suburban areas. Our findings underscore the urgency of sustained, spatially targeted emission reduction efforts in future 

climate strategies. The proposed XCO2 hindcast modeling framework and the resulting long-term dataset provide a valuable 

foundation for advancing carbon-neutrality assessments and guiding climate policy across multiple spatial scales. 

1. Introduction 25 

With rapid urbanization and economic growth, anthropogenic activities such as fossil fuel combustion, industrial processes, and 

land-use changes have significantly increased atmospheric carbon dioxide (CO2) concentrations (Ma and Ogata, 2024). As the 

primary driver of global climate change, CO2 alters the Earth’s energy balance, accelerates 

global warming, and disrupts ecosystems and biodiversity (Kabir et al., 2023). Notably, China recorded a high atmospheric CO2 

concentration of 417 ppm in 2021 at the Mt. Waliguan atmospheric background monitoring site, underscoring the urgent need for 30 

effective monitoring and mitigation of its carbon footprint. Due to variations in local carbon sources and sinks, as well as 

atmospheric transport processes, atmospheric CO2 exhibits pronounced spatiotemporal variability—particularly in urban areas, 

where complex anthropogenic activities, land surface characteristics, and micro-environmental conditions play a significant role 

(Labzovskii et al., 2019; Zhang et al., 2021). Although multiple observation systems, including ground-based networks (TCCON, 

2022; WDCGG, 2024), chemical transport models and reanalyses (Andrew and Kenneth, 2023), and satellite-derived column-35 

https://doi.org/10.5194/egusphere-2025-5647
Preprint. Discussion started: 17 February 2026
c© Author(s) 2026. CC BY 4.0 License.



 

2 
 

averaged dry-air mole fraction of CO2 (XCO2) datasets (Hamazaki et al., 2004; Crisp et al., 2017), provide valuable information, 

significant challenges remain in achieving both high spatiotemporal resolution and long-term continuity. Developing a dataset that 

combines fine spatial detail, long temporal span, and daily temporal resolution is therefore critical for capturing carbon hotspots 

and their long-term dynamics—thereby advancing climate science, evaluating mitigation effectiveness, and informing sustainable 

development and carbon neutrality strategies. 40 

 

Various methods have been developed to fuse satellite‐retrieved XCO2 with ancillary information to improve the spatial and 

temporal continuity of atmospheric CO2 estimates. These approaches include geostatistical interpolation techniques such as co-

kriging (Bhattacharjee and Chen, 2020), regression models such as multiple linear regression (Guo et al., 2012), and machine-

learning frameworks ranging from extremely randomized trees (He et al., 2022b; Li et al., 2022) to deep-learning architectures 45 

such as ResNet and U-Net variants (Cui et al., 2024; He et al., 2024; Wu et al., 2024). Using satellite XCO2 retrievals as the 

dependent variable, several gap-free datasets have been produced for China at increasingly refined resolutions—for example, 0.1° 

products for 2015–2020 (Li et al., 2023; Liu et al., 2024) and 0.25° reconstructions for 2003–2019 (Zhang and Liu, 2023). Among 

the available satellite sensors, OCO-2 retrievals are most frequently employed because of their relatively fine footprint (~1–2 km) 

and daily revisit capability (Cui et al., 2024; Li et al., 2022; Wu et al., 2024). Nevertheless, since OCO-2 was launched in 2014 50 

and began providing high-resolution observations in 2015, the temporal coverage of fusion-based XCO2 datasets that rely 

exclusively on OCO-2 remains constrained to the recent decade. For instance, our earlier work developed a multi-source fusion 

model based on OCO-2 XCO2 to estimate daily 1-km concentrations across China for 2015–2020 (He et al., 2023b). A more recent 

study (Wang et al., 2025) presented a global 1-km daily XCO2 reconstruction for 2003–2023 by integrating multiple satellite 

products and environmental predictors within a deep-learning framework. While this work highlights the growing interest in long-55 

term, high-resolution CO2 mapping, the scarcity of fine-resolution retrievals prior to the OCO-2 era and the dependence on 

harmonized coarse-footprint observations underscore the continuing need for physically informed hindcast frameworks that can 

extend OCO-2–based estimates to earlier years with improved interpretability and physical consistency. 

 

A similar challenge has been addressed in the field of long-term PM2.5 estimation. In China, ground-based PM2.5 monitoring 60 

networks were only established in 2013, yet the need for multi-decadal exposure assessments prompted the development of 

hindcast frameworks to reconstruct earlier concentrations. Numerous studies have successfully employed statistical and machine-

learning models to generate gap-free, high-resolution PM2.5 datasets for pre-monitoring years (e.g., 2000–2012) despite the absence 

of direct observations (Geng et al., 2021; He et al., 2021; He et al., 2023c; Ma et al., 2016). These hindcast frameworks typically 

involve training models during periods with available measurements (e.g., post-2013) and applying the trained relationships to 65 

estimate concentrations for unmonitored years using long-term, consistently available predictors. Validation analyses have shown 

that such models can reproduce historical PM2.5 variability with reasonable fidelity, yielding leave-one-year-out cross-validation 

R² values of approximately 0.40–0.65. Importantly, the success of this approach depends not on replicating long-term trends, but 

on the relative stability of short-term (e.g., daily) relationships between the target variable and its driving factors over time (Ma et 

al., 2022). Building on this principle, a comparable hindcast framework can be extended to atmospheric XCO2 estimation. Although 70 

XCO2 exhibits a monotonic long-term increase due to the global carbon cycle, the short-term coupling between XCO2 and its 

meteorological and surface drivers remains physically consistent. Therefore, by leveraging OCO-2–based high-resolution XCO2 
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retrievals to train a multi-source fusion model and subsequently applying it to earlier years (e.g., 2000–2014) with continuous 

predictors, it is possible to produce a physically informed, long-term, high-resolution reconstruction of XCO2 that overcomes the 

limited temporal coverage of OCO-2. 75 

 

What are the levels of atmospheric CO2 in China, where are the hotspots, and how have they changed over time? To address these 

critical questions, we developed a long-term, gap-free XCO2 dataset at a daily scale with a spatial resolution of 0.01° (~1 km). This 

dataset was produced using a novel long-term XCO2 hindcast modeling framework, adapted from the PM2.5 hindcast modeling 

approach. The framework employs an Extremely Randomized Trees model to integrate multiple data sources related to atmospheric 80 

CO2 variations and extends predictions back to 2000, covering 15 years prior to the observation period. Additionally, the 

interpretable machine-learning tool, the SHapley Additive exPlanations (SHAP) local importance method, was utilized to explore 

the relationship between atmospheric CO2 and temperature. Our high-resolution XCO2 dataset and analysis provide essential 

insights for climate change research and eco-environmental management. 

2. Materials and methods 85 

Table S1 summarizes all the multi-source data utilized in this study, including satellite-retrieved and reanalyzed XCO2, air pollution 

and meteorological covariates, and geographic high-resolution datasets such as land cover, population density, and elevation. Given 

that the dependent variable—spatiotemporal high-resolution XCO2 data from the OCO-2 instrument—is only available for years 

after 2015, we trained the machine-learning model using samples from 2015 to 2020 and then applied this model to years prior to 

2015 to generate the hindcast long-term XCO2 dataset. The data sources, modeling, and validation processes are described in detail 90 

in this section.  

2.1 Data source and preprocessing 

2.1.1 OCO-2 and CarbonTracker XCO2 data 

In this study, we utilized two distinct XCO2 data sources to train the machine-learning model: satellite-retrieved XCO2 observations 

from OCO-2 and reanalyzed XCO2 data from CarbonTracker (CT). The OCO-2 satellite delivers a state-of-the-art spaceborne 95 

XCO2 dataset publicly available, featuring a fine spatial resolution of 1.29 km × 2.25 km and an accuracy of approximately 1 ppm. 

We obtained the OCO-2 Level 2 XCO2 V10r product (OCO2_L2_Lite_FP) for the years 2015–2020 from the Goddard Earth 

Sciences Data and Information Services Center (Michael and Eldering, 2020) and mapped the XCO2 retrievals to the nearest 0.01° 

grid cell. To ensure data reliability, we excluded records flagged as unreliable (i.e., xCO2_quality_flag = 0). The CT XCO2 data 

were derived from the CT2022 XCO2_1330LST product (https://gml.noaa.gov/), which provides global XCO2 distributions at 100 

13:30 local solar time with a coarser spatial resolution of 3° × 2° (Crisp et al., 2017). To integrate the CT data into our analysis, 

we resampled it to match the 0.01° grid resolution and calculated the residuals between OCO-2 XCO2 and CT XCO2, which were 

used as the dependent variable for model training. 

2.1.2 Air pollution and meteorological covariates 

Since nitrogen dioxide is a significant indicator of CO2 emissions, we utilized hourly reanalysis data from MERRA2-GMI 105 

(https://acd-ext.gsfc.nasa.gov/) (0.625° × 0.5°) and EAC4 (https://ads.atmosphere.copernicus.eu/) (0.75° × 0.75°), including 
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nitrogen dioxide (NO2) and peroxyacetyl nitrate (PAN). Recognizing that aerosol loading often co-varies with atmospheric CO2 

due to shared emission sources and boundary-layer processes (He et al., 2023b), we incorporated daily, high-resolution aerosol 

optical depth (AOD) fields derived from MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrievals 

(He et al., 2023a). To capture the processes of formation, transport, and dispersion of atmospheric CO2, hourly meteorological 110 

fields were sourced from ERA (https://apps.ecmwf.int/) (0.125° × 0.125°) and ERA5 (https://cds.climate.copernicus.eu/) (0.25° × 

0.25°) climate reanalysis products. These datasets included radiation, temperature, cloud cover, humidity, evaporation, 

precipitation, wind speed, total column ozone, and boundary layer height information. Additionally, we employed daily, 1-km 

Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless (TRIMS) land surface temperature (LST) data 

(https://data.tpdc.ac.cn/) to provide fine-scale gradient information for the machine-learning model. All hourly meteorological and 115 

air pollution data were averaged or accumulated to obtain daily values, and coarser-resolution data were resampled to a 0.01° × 

0.01° grid using bilinear interpolation. 

2.1.3 Geographic variables and auxiliary variables 

We obtained annual land cover classification data at a spatial resolution of 30 m for the years 2000 to 2020, derived from Landsat 

imagery using Google Earth Engine (Jie and Huang, 2022), yearly population data with a 1-km spatial resolution were sourced 120 

from Landscan (https://landscan.ornl.gov/), and monthly, 1-km vegetation index data were collected from MODIS Terra 

(https://ladsweb.modaps.eosdis.nasa.gov/). Elevation data at a 30-m resolution were retrieved from the ASTER Global Digital 

Elevation Model (Version 2) (http://gdex.cr.usgs.gov/). To align with the 1-km grid used in this study, each land cover parameter 

was aggregated by computing the fraction of each class within the corresponding grid cell, while the 30-m elevation data were 

interpolated to a 1-km resolution. 125 

 

We also included latitude and longitude, based on the centroids of the grid cells, to account for spatial variability in atmospheric 

CO2. Additionally, Julian day was incorporated as a temporal feature to help the model capture daily variation patterns. These 

spatial and temporal variables are commonly used in environmental pollutant estimation models to enhance predictive accuracy 

(Chen et al., 2024c; He et al., 2023b). 130 

2.2 Model development  

2.2.1 Feature engineering 

The potential predictors described in Section 2.1 (summarized in Table S2) may share overlapping information, potentially leading 

to increased model complexity and multicollinearity issues during training. To address this and reduce computational costs, we 

conducted a hierarchical clustering analysis based on Spearman rank-order correlations among the total of 50 explanatory variables. 135 

Using a heatmap of the correlated variables (Fig. S1), we identified 24 clusters by applying a threshold of 0.45. Within each cluster, 

variables were ranked by importance, and all but the top two were removed. This initial screening yielded 37 candidate explanatory 

variables, from which we further selected 21 top-ranked variables as the final feature set for model development. The final features 

used in the model are listed in Table 1. 

Table 1. Summary of predictors finally used in the fusion model and their corresponding data sources. 140 

Category Full name Spatial resolution Temporal 

frequency 

Data source 
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Air pollution Aerosol optical depth 0.01°×0.01° daily https://dataverse.harvard.edu/dataverse/at

mospheric_data_by_WHUT 

Total column nitrogen 

dioxide 

0.5°×0.625° hourly 

 

https://acd-ext.gsfc.nasa.gov/ 

Total column peroxyacetyl 

nitrate 

0.75°×0.75° 3-hourly https://ads.atmosphere.copernicus.eu/ 

Geographical 

variables 

Landcover-Cropland

   

30m×30m yearly https://zenodo.org/records/5816591/ 

Landcover-Grassland

  

Digital elevation model 30m×30m - http://gdex.cr.usgs.gov/ 

Normalized difference 

vegetation index 

1km×1km monthly https://ladsweb.modaps.eosdis.nasa.gov/ 

Population 30m×30m yearly https://landscan.ornl.gov/ 

Meteorological 

variables 

Land surface temperature 1km×1km daily https://cstr.cn/18406.11.Meteoro.tpdc.271

252/ 

Boundary layer height 0.125°×0.125° 6-hourly https://apps.ecmwf.int/ 

Evaporation 0.25°×0.25° hourly https://cds.climate.copernicus.eu/ 

Surface pressure    

TOA incident solar 

radiation 

   

Surface thermal radiation 

downwards 

   

Total column water vapour    

10-m U wind component    

10-m V wind component    

Total column ozone    

Auxiliary variables Longitude - - Constructed features 

Latitude  

Day of year 

 

2.2.2 Model description and training 

Using the explanatory variables described above, we developed an extremely randomized tree (ExtraTrees) model to estimate full-

coverage daily XCO2 across China from 2000 to 2020. The ExtraTrees algorithm constructs multiple randomized decision trees 

and aggregates their outputs to enhance predictive accuracy and robustness. The model was trained on the residuals between OCO-145 

2 and CT XCO2 as the dependent variable, using samples from 2015 to 2020. To optimize the model’s spatiotemporal predictive 

performance, we used a two-step hyperparameter tuning approach: Bayesian optimization to identify an optimal parameter range, 

followed by fine-tuning using grid search. The final set of hyperparameters was determined as follows: n_estimators=300, 

min_samples_split=5, min_samples_leaf=5, max_features=0.7, and max_depth=31. The trained model was then used to generate 

daily XCO2 predictions for each grid cell at a 0.01° spatial resolution for the entire study period (2000–2020), assuming that the 150 
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relationship between XCO2 and the predictors during 2015–2020 remained consistent throughout the study period (Ma et al., 2022). 

To interpret the model, we applied SHAP to reveal the localized contributions of individual predictors to the model’s output. 

2.3 Model validation 

2.3.1 Cross-validation methods of overall modeling performance 

Based on the 2015-2020 sample dataset, we assessed the predictive performance of the ExtraTrees model using 10-fold cross-155 

validation (CV) across three distinct strategies: sample-based, grid cell-based, and day-based, to evaluate its overall, spatial, and 

temporal predictive capabilities, respectively. In the sample-based approach, all observations were randomly divided into 10 

approximately equal-sized groups. For the grid cell-based CV, the observed grid cells were randomly partitioned into 10 equally 

sized groups. Similarly, in the day-based CV, the days spanning the entire time period were randomly divided into 10 equal groups. 

During each of the 10 iterations, nine groups were used as training data to build the model, while the remaining group was used 160 

for prediction.  

 

Given the absence of OCO-2 XCO2 observations before 2015, direct evaluation of the estimates for those years posed a challenge. 

To address this, we implemented the leave-one-year-out CV method to simulate a hindcast scenario for evaluating the model’s 

performance. This approach involved withholding data from one entire year during each round of model training, mimicking a 165 

situation where XCO2 observations for that year were unavailable. The model was then tested on the withheld year, allowing us to 

assess its predictive accuracy for pre-2015 estimates. This state-of-the-art evaluation method is widely recognized and has been 

successfully applied in previous atmospheric modeling studies, such as PM2.5 hindcasting for years without ground-level 

measurements (He et al., 2023c; He et al., 2023d; Ma et al., 2022). These complementary validation strategies provided a thorough 

assessment of the model’s predictive accuracy across different dimensions of the estimates. Finally, we assessed the model’s 170 

performance by comparing its estimates with the original OCO-2 retrievals across the ten validation rounds, using R2, root mean 

square error (RMSE), and mean absolute error (MAE) as evaluation metrics. 

2.3.2 Independent evaluation methods  

We also conducted an independent validation using observations from three ground-based carbon monitoring sites to evaluate the 

reliability of the model estimates. Two sites, Hefei (HF) and Xianghe (XH), are part of the Total Carbon Column Observing 175 

Network (TCCON), which uses Fourier Transform Spectrometers to measure total column CO2 since 2015. Following established 

protocols (TCCON, 2022), TCCON data were filtered to retain high-quality observations, selecting those with a fractional variation 

in the solar intensity parameter below 5%. The two sites were used to assess the spatial robustness of the high-resolution estimates. 

The third site, Mt. Waliguan (WLG), is part of the World Data Centre for Greenhouse Gases (WDCGG) under the World 

Meteorological Organization. Although the WDCGG data from Mt. Waliguan reflect near-surface CO2 concentrations rather than 180 

satellite-derived columnar XCO2 values, they were included to evaluate the hindcast estimates for years prior to 2015, focusing on 

trends in long-term atmospheric CO2 variations. The model’s XCO2 estimates were compared against ground-based observations 

at individual grid cells, as well as within larger spatial windows of 1 × 1, 10 × 10, and 100 × 100 grids surrounding each site. To 

ensure temporal alignment, ground-based observations were averaged over the time window corresponding to satellite overpass 

times (10:30–16:30) for the HF and XH stations, while for the WLG station, they were averaged over full natural days. Detailed 185 

information about the three ground-based CO2 monitoring sites is provided in Table S3. 
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2.4 Statistical analysis 

2.4.1 Long-term trend 

We applied least squares regression (Weatherhead et al., 1998), a widely used method for long-term trend analysis (Hsu et al., 

2012; Ma et al., 2016), at the pixel level to assess the long-term XCO2 trend and its spatial variability. The pixel-based slope was 190 

derived from the monthly mean XCO2 anomaly time series for each pixel, where anomalies were computed by subtracting the 

corresponding month’s average XCO2 over the entire study period. Given the overall rise in XCO2 levels from 2000 to 2020, the 

coefficient of variation, a normalized measure of dispersion defined as the standard deviation divided by the mean, was calculated 

from the spatial distribution of annual mean XCO2 values. This approach allows us to track changes in spatial variability over time. 

2.4.2 Detecting XCO2 enhancement 195 

We analyzed the spatiotemporal variations in carbon emissions at pixel level using the widely used XCO2 enhancement method, 

which measures deviation relative to a background value (Hakkarainen et al., 2016; Sheng et al., 2021), based on our gap-free 

XCO2 estimates. The daily background value was determined as the median XCO2 over mountainous areas near the target region 

(elevation >1000 m), which are minimally influenced by human emissions due to their lower population density and reduced 

industrial and traffic activity compared to adjacent urban areas. For example, in the case of Wuhan, the daily XCO2 enhancement 200 

for each pixel was calculated by subtracting the background value—defined as the median XCO2 over mountainous areas in 

western Hubei—from the corresponding XCO2 estimate, as expressed in Eq. (1). The resulting XCO2 enhancements were 

deseasonalized and detrended, where positive values indicate carbon sources, while negative values represent carbon sinks. To 

assess the impact of the COVID-19 lockdown in Wuhan, we examined XCO2 enhancement patterns before, during, and after the 

lockdown period, analyzing how Wuhan’s XCO2 enhancements changed across these phases. Additionally, we applied the same 205 

approach to the corresponding period in 2019 as a reference for comparison. The XCO2 daily median time series over the lockdown 

period in 2020 and the corresponding period in 2019 is shown in Fig. S2. 

𝛥XCO2  (𝑖, 𝑗, 𝑡) = XCO2 (𝑖, 𝑗, 𝑡) − XCO2
bg

 (𝑡)                                               (1) 

where ΔXCO2 (i, j, t) and XCO2 (i, j, t) are the XCO2 enhancement and value at pixel coordinate (i, j) on day t. XCO2bg(t) is the 

daily background XCO2 value on day t. This enhancement method was extended to two major urban agglomerations in China 210 

known for elevated XCO2 levels: the Beijing-Tianjin-Hebei (BTH) region and the Yangtze River Delta (YRD) region. The 

mountainous areas with elevations above 1000 m used to derive background values were located in western BTH for the BTH 

region, and in northern Zhejiang and eastern Anhui, adjacent to the YRD, for the YRD region. The corresponding daily background 

values are presented in Fig. S3. 

3. Results and Discussion 215 

3.1 Evaluation results of model performance 

3.1.1 Overall modeling performance 

Figure 1(a)–(c) shows the results of the overall, spatial, and temporal CV methods applied to the ExtraTrees model, demonstrating 

strong performance in estimating daily XCO2 at a 1-km resolution. The R2 and RMSE values for sample- and grid cell-based CV 

are both 0.97 and 0.82 ppm, respectively, while the corresponding values for day-based CV are 0.94 and 1.27 ppm. The similarity 220 
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in model performance between sample-based and grid cell-based CV can be attributed to the sparse and evenly distributed nature 

of OCO-2 XCO2 observations. Across the entire 2015–2020 training dataset, each grid cell contains approximately 1.7 OCO-2 

XCO2 observations on average, with exceeding 65% of grid cells containing only one observation. This distribution results in the 

training and validation sets for sample-based CV closely resembling those for grid cell-based CV. Regionally, the model 

demonstrates better predictive performance in North China compared to other regions, as evidenced by higher R2 values (0.95–225 

0.99 vs. 0.91–0.98) and lower RMSE values (0.61–1.12 ppm vs. 0.70–1.63 ppm) across the three types of validation results (Table 

S4). Figure 1(h) presents a histogram of prediction errors across different intervals, showing that the bias between OCO-2 

observations and model estimates follows a distribution that is approximately normal across XCO2 intervals. 

 

Figure 1. Performance of the long-term XCO2 hindcast machine-learning model based on CV results and ground-based independent 230 
validation. Scatterplots (a)-(d) show (a) sample-based, (b) grid cell–based, and (c) day-based 10-fold CV results, as well as (d) leave-one-

year-out CV results derived from the 2015–2020 sample dataset. Independent validation is presented as scatterplots of model-predicted 
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XCO2 versus TCCON observations at the (e) Hefei and (f) Xianghe sites, using a 1 km × 1 km spatial window for 2015–2020. In panels 

(a)–(f), point colors indicate data density, with colorbars at the upper and middle right for (a)–(d) and the middle right for (e)–(f). Panel 

(g) compares time series of model-predicted and Mt. Waliguan-observed XCO2 from 2000 to 2020. Panel (h) shows the distribution of 235 
biases between observed and predicted XCO2 across different intervals. 

3.1.2 Validation of pre-2015 estimates   

We employed a robust cross-validation approach, the leave-one-year-out CV, to evaluate the model’s predictive capability for 

years without OCO-2 observations. As shown in Fig. 1(d), the hindcast modeling framework effectively predicts long-term XCO2 

values with low uncertainty at the daily level, achieving a validation R2 of 0.94 and an RMSE of 1.29 ppm. These results are 240 

comparable to the accuracy metrics obtained from the day-based CV (Fig. 1(c)), indicating minimal overfitting in the hindcast 

XCO2 estimates for years prior to 2015. 

 

We also conducted an independent validation using ground-based observations to assess the reliability of the long-term, high-

resolution XCO2 estimates, particularly for years prior to 2015 when OCO-2 XCO2 observations were unavailable. The estimated 245 

XCO2 values were well correlated with observations from the two TCCON sites, achieving R2 values of 0.92 and 0.82 and RMSE 

values of 1.22 and 1.69 at 1×1 spatial matching window, respectively (Fig. 1e-f, see Table S5 for validation results at 10×10 and 

100×100 windows). These results highlight the strong spatial predictive capability of our machine-learning model. At the Mt. 

Waliguan site, the observed CO2 concentrations were systematically higher than our estimated XCO2 values, accompanied by a 

relatively large RMSE of 2.90 ppm. This discrepancy arises because Mt. Waliguan measures near-surface CO2 concentrations, 250 

whereas both satellite and TCCON sites observe total column CO2. Therefore, we do not use the RMSE from Mt. Waliguan as an 

indicator of model accuracy. Nevertheless, the estimated XCO2 values for 2000–2020 closely reproduced the day-to-day and 

interannual variations observed at WLG, with an R² of 0.97 (Fig. 1g), indicating that our model effectively captures the temporal 

dynamics of long-term XCO2 trends. 

3.1.3 SHAP importance 255 

We quantified the global and local contributions of input predictors in the high-resolution XCO2 modeling using average and local 

SHAP values (Fig.2). The analysis focused on the 2015–2020 samples across three major urban agglomerations—BTH, YRD, and 

Pearl River Delta (PRD). The overall contribution of each predictor was assessed using the mean absolute SHAP values, which 

capture the magnitude of influence regardless of direction. Among all predictors, the satellite-derived variable, MAIAC AOD, was 

a key driver in the prediction of high-resolution daily XCO2 estimates with the highest average contribution in BTH and ranked 260 

among the top four in both YRD and PRD. Although CO2 itself is not an aerosol component, AOD serves as an indirect indicator 

of fossil-fuel combustion intensity and atmospheric mixing conditions that influence both particulate and gaseous pollutant 

accumulation. Regions and periods with elevated AOD typically correspond to strong anthropogenic activity, shallow planetary 

boundary layers, and enhanced co-emission of carbonaceous species, all of which contribute to localized increases in column CO2. 

Including AOD as a predictor thus provides physically interpretable information on emission strength and vertical mixing that 265 

complements other meteorological and chemical variables in the model. Therefore, the strong contribution of high-resolution 

MAIAC AOD, both spatially and temporally, reinforces the reliability of our daily XCO2 estimates in densely populated regions 

by improving the representation of fine-scale gradients, particularly in areas lacking direct observations. 
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 270 

Figure 2. of each predictor on XCO2 levels quantified using the SHAP method over the BTH (left panel), YRD (middle panel), and PRD 

(right panel) regions: (a) average contribution based on mean absolute SHAP values averaged across grid cell-day samples, with colors 

indicating predictor categories; (b) distribution of SHAP values for each predictor, with color indicating normalized predictor values. 

3.2 Comparisons with other XCO2 datasets and advantages 

3.2.1 Improved estimation accuracy 275 

Several previous studies have also derived gap-free XCO2 datasets using machine learning techniques applied to multiple data 

sources and validated them against ground-based observations. However, their daily estimates generally demonstrated inferior 

performance compared to ours, with R2 [RMSE] values of 0.59–0.91 [1.28-2.82 ppm] at the two TCCON sites and R2 of 0.67 at 

the WLG site, as shown in Table 2. We also compared the agreements between our estimated XCO2 dataset and global greenhouse 

gas reanalysis products from CAMS and CT. At the daily level, CAMS and CT XCO2 showed lower consistency with ground-280 

based observations, exhibiting larger biases in both magnitude (RMSE=1.43 – 5.24 ppm) and trends (R2=0.33 - 0.95) relative to 

our dataset (R2=0.82 - 0.97 and RMSE=1.22 – 2.90 ppm; Fig. 1e–f and Table S5).  Additionally, we compared our accuracy against 

another long-term XCO2 dataset derived from the GOSAT instrument using spatiotemporal Kriging interpolation (Chen et al., 

2024b), a widely used approach for generating gap-free XCO2 data in earlier studies (Bhattacharjee and Chen, 2020; Chen et al., 

2024b). The interpolated XCO2 estimates demonstrated a significantly lower agreement with ground-based measurements than our 285 

machine-learning approach, with R2 values of 0.84, 0.77, and 0.92 for the HF, XH, and WLG stations, respectively. Therefore, 

with R2 [RMSE] values of 0.82–0.92 [1.22-1.69 ppm] for the TCCON sites and 0.97 [2.90 ppm] for WLG, our long-term XCO2 

estimates achieved better estimation accuracy. 

 

Table 2. Comparison of XCO2 data quality between this study and other datasets. 290 

Datasets Resolution Period XH HF WLG 
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3.2.2 Enhanced spatiotemporal resolution and coverage 

Our modeling output represents the first full-coverage, high spatiotemporal resolution (daily, 1-km) atmospheric CO2 dataset across 

China, spanning the longest period to date—from 2000 to 2020. In contrast, previous machine-learning studies have produced 

daily, 1-km XCO2 estimates, but their temporal coverage has generally been limited to post-2015 data. This shorter time span 295 

constrains the ability to analyze long-term atmospheric CO2 trends, which are essential for understanding climate change—a 

fundamentally long-term process. 

 

Figure 3 compares the spatial patterns revealed by our dataset with other widely-used long-term XCO2 datasets. At the national 

scale and over the long term, our high-resolution estimates (Fig. 3a) exhibit spatial patterns broadly consistent with CT’s coarse-300 

resolution data (Fig. 3b), achieving an average correlation coefficient r of 0.89 (Table S6) over the study period. However, CT’s 

estimates appear notably smoother at both daily and yearly scales, primarily due to their coarser resolution (2° × 3°) nature. By 

incorporating CT’s coarse-resolution data along with other predictors into our fusion modeling process, our outputs capture intra-

urban variations with greater accuracy, particularly in eastern China—a region characterized by complex topography, diverse 

natural landscapes, and intensive human activity (Table 2 and S4). We also compared our dataset with the CAMS global greenhouse 305 

gas reanalysis product (Fig. 3c). Similar to CT, the daily XCO2 data from CAMS share an average correlation of 0.69 with ours 

but, with a coarser spatial resolution (0.75° × 0.75°), fail to effectively capture intra-city variations. Additionally, our estimates 

exhibit greater spatial contrast compared to the GOSAT-based interpolated XCO2 data (Chen et al., 2024b) (Fig. 3d), while still 

maintaining moderate correlations, with an average r of 0.56. These of accuracy and spatiotemporal patterns underscore the unique 

Spatial Temporal R2 RMSE 

(ppm) 

R2 RMSE 

(ppm) 

R2 RMSE 

(ppm) 

Zhang et al., 2022 0.25° 1-month 2003-2019 - - - 1.18 - - 

Li et al., 2023 0.1° 1-day 2015-2020 0.86 1.71 0.86 1.71 - - 

Wang et al., 2023 0.25° 1-day 2010-2020 0.73 1.96 0.91 1.28 - - 

Li et al., 2022 0.01° 8-day 2015 - - 0.59 2.82 - - 

He et al., 2022 0.1° 1-day 2015-2018 - - 0.76 - 0.67 - 

Wu et al., 2024 1km 1-day 2015-2020 0.82 1.56 0.88 1.41 - - 

He et al., 2024 0.25° 1-month 2014-2022 - 1.29 - 0.93 - - 

Cui et al., 2024 0.1° 1-day 2015 - - - 1.36 - - 

CAMS (Inness, 

2019) 

0.75° 1-day 2003-2020 0.33 3.28 0.85 2.10 0.95 2.77 

CT (Andrew et al., 

2023) 

3°×2° 1-day 2000-2020 0.56 2.59 0.90 1.43 0.87 5.24 

GOSAT (Chen et 

al., 2024b) 

0.1° 3-day 2010-2019 0.77 2.03 0.84 1.50 0.92 2.90 

This study 0.01° 1-day 2000-2020 0.82 1.69 0.92 1.22 0.97 2.90 
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advantages of our long-term, high-resolution XCO2 dataset in capturing day-to-day variations and uncovering detailed spatial 310 

gradients in atmospheric CO2—features often missed by coarse-resolution datasets. 

 

Figure 3. Spatial distribution of XCO2 values at multiple spatial scales: (a) our predictions (0.01º ×0.01º), (b) CT product (2° × 3°), (c) 

CAMS product (0.75° × 0.75°), and GOSAT interpolations for a single day (1 July 2018; right column), along with the corresponding 

monthly (July 2018; middle column) and the annual mean for 2018 (left column). 315 
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3.3 Spatiotemporal patterns of atmospheric CO2 in China 

3.3.1 Overall spatial pattern and long-term trends 

Our modeling outputs effectively capture the long-term, high-resolution spatial patterns of atmospheric CO2 across China from 

2000 to 2020. Utilizing this dataset, this section focuses on a spatiotemporal analysis to uncover the levels of atmospheric CO2 and 320 

variations in hotspot locations over time. On average, the countrywide atmospheric CO2 level over the past two decades was 390.22 

ppm. As shown in Fig. 4a, the highest levels (>391.50 ppm) were concentrated in Shandong and Henan provinces, and gradually 

decreased across the broader North China Plain (NCP), with XCO2 ranging between 391.30 ppm and 391.50 ppm. Further 

reductions in XCO2 levels were observed moving south, west, and northeast. Overall, eastern China (>390.50 ppm) exhibited 

higher concentrations compared to the western and northeastern regions, where multiyear mean values were below 390.50 ppm. 325 

Within eastern China, the southeastern areas showed relatively lower concentrations, with multiyear mean values below 391 ppm.  

 

Figure 4. Spatial distributions of atmospheric CO2 concentrations and their long-term trends across China from 2000 to 2020. The upper 

panel shows spatial distributions of annual mean XCO2 for (a) 2000, (b) 2010, (d) 2015, and (e) 2020, as well as (c) the multi-year mean 

for 2000-2020. The lower panel shows the spatial distributions of statistically significant linear trends (p<0.05) for the periods (f) 2000-330 
2020, (g) 2001-2020, (h) 2011-2020, (i) 2016-2020. 

 

National atmospheric CO2 levels steadily increased from 369.34 ppm in 2000 to 413.12 ppm in 2020, accompanied by growing 

spatial heterogeneity, as revealed by our pixel-based long-term linear trend analysis (Fig. 4 (f)-(i) and Fig. S4). In 2000, XCO2 

exhibited minimal spatial variation, with a coefficient of variation of just 0.00086 (Fig. S4) and an east–west regional difference 335 
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of less than 1 ppm. Over the subsequent two decades, however, the east–west difference widened to approximately 3 ppm, and the 

coefficient of variation rose to 0.00213, driven by spatially heterogeneous increases in CO2 concentrations. The most pronounced 

increases were clustered in the NCP region, with slopes exceeding 2.25 ppm/yr (p < 0.05), followed by other parts of eastern China, 

which showed slightly smaller increases (slopes > 2.20 ppm/yr, p < 0.05). In contrast, western and northeastern China exhibited 

relatively smaller trends (slopes < 2.18 ppm/yr, p < 0.05). To further explore how trends evolved over time, we divided the study 340 

period into two decades: 2001–2010 and 2011–2020. Nationally, the average increasing trend was steeper in the second decade 

(2.42 ppm/yr) compared to the first (2.01 ppm/yr). However, the spatial distribution of hotspots also shifted. During 2001–2010, 

the highest increasing trends (slopes > 2.06 ppm/yr, p < 0.05) were concentrated in eastern China, particularly in the NCP, where 

slopes exceeded 2.12 ppm/yr (p < 0.05). In contrast, most western areas exhibited trends below 1.98 ppm/yr (p < 0.05). In the 

second decade (2011–2020), although the overall trend strengthened, the NCP showed comparatively smaller increases (slopes of 345 

2.38–2.42 ppm/yr, p < 0.05) relative to other regions. Meanwhile, southern China emerged as a hotspot, with trends ranging from 

2.44 to 2.48 ppm/yr (p < 0.05). Focusing on the most recent five years, the largest increasing trends were observed primarily in 

central and eastern provinces, such as Hubei, Hunan, Jiangxi, and Anhui. This highlights the spatiotemporal dynamic nature of 

long-term trends in atmospheric CO2 levels across China over the past two decades. 

 350 

The national average atmospheric CO2 concentrations over the past two decades were 392.27, 388.68, 388.85, and 390.06 ppm in 

spring, summer, autumn, and winter, respectively (Fig. S5 (a)-(d)). A distinct seasonal pattern emerged, with higher XCO2 levels 

in spring compared to summer and autumn across most regions of China. In spring, regions such as Northeast, East, and Central 

China exhibited seasonal average XCO2 concentrations exceeding 392 ppm, while in summer and autumn, XCO2 levels were below 

391 ppm across the majority of the country. This observed seasonal variation aligns with the findings of previous studies (He et 355 

al., 2022b; He et al., 2023b; Zhang and Liu, 2023). The linear trends of XCO2 for the four seasons from 2000 to 2020 showed 

similar spatial patterns, with higher increasing trends concentrated in eastern China (Fig. S5 (e)-(h)). Notably, the trends were 

particularly pronounced in the NCP and central China during winter, where most areas exhibited slopes exceeding 2.70 ppm/yr 

(Fig. S5 (h)). 

3.3.2 Short-term variability in carbon emission Carbon emission in COVID-19 lockdown 360 

Our daily XCO2 estimates effectively capture day-to-day variations in atmospheric CO2, enabling more precise quantification of 

carbon emission changes during short-term, high-impact events at fine spatial scales. This capability is critical for carbon 

management and for mitigating the adverse effects of acute emission fluctuations. To illustrate this, we analyzed carbon emission 

changes associated with the COVID-19 lockdown in Wuhan by comparing XCO2 enhancements before, during, and after the 

lockdown period (Fig.5 and Fig. S6). Across all areas of Wuhan and throughout the study period, Wuhan remained a carbon source 365 

relative to the background areas, as indicated by consistently positive enhancement values. However, during the lockdown period 

in 2020, the average XCO2 enhancement decreased significantly by 43.86% compared to the corresponding period in 2019. In 

contrast, the post-lockdown period showed similar enhancement levels between the two years, with an average of 0.24 ppm in 

2019 vs. 0.23 ppm in 2020. We also observed a substantial ~29.55% decrease in XCO2 enhancement during the pre-lockdown 

period, which can be attributed to the earlier timing of the Chinese Lunar New Year holiday in 2020 (January 24–30) compared to 370 

2019 (February 4–10). During the holiday, most industrial operations were suspended or significantly reduced, while daily 

commuting and freight transport declined sharply, leading to a notable reduction in human-induced carbon emissions. However, 
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during the first 10 days of both years, the average enhancements remained comparable, with a slight increase in 2020 (1.80 ppm 

in 2019 vs. 1.84 ppm in 2020), indicating that carbon emissions in the pre-COVID period of 2020 were similar to those in 2019. 

 375 

 

Figure 5. Spatiotemporal distribution of XCO2 enhancement in selected regions: (a) Spatial distribution of percentage changes in XCO2 

enhancement during the Wuhan lockdown in 2020 relative to the same period in 2019. (b) Comparison of XCO2 enhancement before 

(January 1–22), during (January 23–April 7), and after (April 8–May 31) the lockdown in 2020, relative to corresponding periods in 

2019. Spatial distributions of multiyear mean XCO2 enhancement in the (c) BTH and (d) YRD regions over 2000-2020; the inset bar 380 
plots present the multiyear, city-level mean XCO2 enhancement for each region, ranked from lowest to highest. (e) Annual mean time 

series of XCO2 enhancement for the BTH (black dotted line) and YRD (blue diamond line) regions. 

As shown in Fig. 5d, a striking difference emerged in the spatial patterns of XCO2 enhancements between the two years. During 

the lockdown period in 2020, XCO2 enhancements dropped by over 50% in downtown (central) Wuhan, while reductions were 

comparatively smaller (40–48%) in suburban areas. The northern suburban regions exhibited the least decline, with most reductions 385 

falling below 45%. These spatial differences in XCO2 enhancements offer valuable insights into urban carbon dynamics and 

underscore the utility of high-resolution XCO2 data in understanding anthropogenic emission patterns and informing targeted 

emission control strategies. 

 

3.3.3 Hotspots of inter- and intra-city carbon enhancement over time 390 

Based on the enhancement analysis using long-term, high-resolution XCO2 estimates, we examined detailed patterns of carbon 

emission hotspots across two major urban agglomerations in China (Fig. 5 and S7), both located in the NCP—a region previously 

identified as exhibiting elevated XCO2 in the spatiotemporal analysis. Corresponding to the overall XCO2 variation, the day-to-

day evolution of the median background XCO2 shows a clear long-term increasing trend with pronounced seasonality, averaging 

390.27 ± 13.46 ppm for the BTH region and 391.24 ± 13.64 ppm for the YRD region (Fig. S3). Both the BTH and YRD regions 395 
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exhibited clear seasonal patterns in XCO2 enhancements over the past two decades, with consistently higher values in winter and 

lower values in summer (Fig. S8).  

 

In the BTH region, the long-term average XCO2 enhancement displays a clear spatial gradient, decreasing from higher positive 

values (~1.50 ppm) in the southeast to near-zero or slightly negative values (~–0.55 ppm) in the northwest. At the city level, most 400 

areas exhibit a similar temporal pattern: a steady increase from 2000 to 2007, followed by a sharp drop in 2008, a rise again through 

2012, a decline until 2018, and a rebound in the final two years of the study period. The highest long-term enhancements are 

observed in Cangzhou (1.20 ppm), a southeastern city bordering Shandong Province, and Handan (1.17 ppm), located in southern 

Hebei—both adjacent to regions identified as XCO2 hotspots over the past two decades (Fig. 4). However, the city with the highest 

annual enhancement varied over time: Shijiazhuang led in the early 2000s, followed by Handan, and then Cangzhou from 2006 405 

onward. In contrast, the lowest enhancements were consistently observed in the northern cities of Zhangjiakou (0.14 ppm) and 

Chengde (0.18 ppm), which are characterized by higher elevations and lower anthropogenic emissions. In addition to inter-city 

differences, we also observed substantial intra-city variation. For example, southeastern Cangzhou, bordering the high-emission 

Shandong Province, showed consistently higher XCO2 enhancements than its northwestern part. Similarly, western Handan, near 

the border with Shanxi Province—a region with intensive coal-related activity—exhibited larger enhancements than the eastern 410 

part of the city. 

 

In the YRD region, XCO2 enhancements transitioned from near-zero or slightly negative values in the early 2000s (e.g., –0.05 ppm 

in 2000 and –0.08 ppm in 2002) to persistently positive values beginning around 2006. The enhancement peaked in 2012 at 0.34 

ppm, followed by moderate fluctuations and a general decline after 2013. In 2020, during the COVID-19 pandemic, the average 415 

enhancement dropped to 0.046 ppm—the lowest since 2005—indicating a notable reduction. At the city level, long-term 

enhancement values reveal clear spatial contrasts, with the highest and lowest values generally concentrated in northern and 

southern Zhejiang, respectively. Ningbo and Shaoxing (both ~0.23 ppm) emerged as persistent enhancement hotspots with the 

highest long-term averages. In contrast, Lishui (~0.00 ppm) and Wenzhou (–0.07 ppm), both located in southern Zhejiang, recorded 

near-zero or slightly negative values. Cities in Jiangsu broadly exhibited positive enhancements, with Xuzhou (0.22 ppm)—a 420 

northern city bordering Shandong— ranking first within Jiangsu and fourth across the entire YRD region. Meanwhile, eastern 

coastal cities such as Yancheng (0.03 ppm) and Nantong (0.075 ppm) showed relatively low enhancement values. Similar to the 

BTH region, significant intra-urban variations were also observed across the YRD. Typically, lower enhancements appeared on 

the coastal side of Yancheng and Nantong, while the southern parts of Quzhou, Jinhua, and Taizhou—which are adjacent to cities 

with lower overall enhancements—exhibited lower values than their northern counterparts that border higher-emission areas. In 425 

Shanghai, the southwestern districts, known for more intensive industrial activity, showed relatively higher enhancements 

compared to the Pudong New Area, which is characterized more by commercial, residential, and administrative development than 

by heavy industry. 

4. Discussion 

Our XCO2 fusion modeling framework produced daily 1-km resolution estimates across China for 2000–2020, achieving strong 430 

predictive performance (R² = 0.94–0.97; RMSE = 0.82–1.29 ppm) across four cross-validation schemes. These results surpass 

existing models—including our previous versions—in terms of accuracy, spatiotemporal resolution, and historical coverage (see 
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Section 3.2). First, a key innovation of this work is the adoption of the PM2.5 hindcast modeling framework, which enabled us to 

extend high-resolution XCO2 estimates to the pre-OCO-2 period. While previous global studies, such as Wang et al. (2025), 

generated long-term global XCO2 reconstructions by harmonizing multiple coarse-footprint satellite products, our approach 435 

anchors the estimation directly to OCO-2 XCO2 retrievals. The learned relationships between OCO-2 XCO2 and its predictors are 

then applied to earlier years (2000–2014), allowing the model to extend both the spatial coverage and temporal span of the OCO-

2 record. This represents the first effort to adapt the PM2.5 hindcast paradigm to national-scale XCO2 estimation in China, where 

data-availability challenges are analogous—PM2.5 observations began only after 2013, and OCO-2 data are available from 2015 

onward, despite the strong demand for long-term, high-resolution CO2 fields in climate and environmental studies. 440 

 

Second, our model improves long-term robustness through a residual-learning strategy that uses the difference between OCO-2 

and CT XCO2 as the dependent variable. This design allows the network to learn fine-scale, process-based deviations from large-

scale transport simulations rather than reproducing OCO-2 concentrations directly. Comparative experiments (Table S7) 

demonstrate that although models trained directly on OCO-2 XCO2 can achieve similar accuracy during the observed period (R² = 445 

0.98, RMSE = 0.75 ppm), they exhibit substantially higher uncertainty when extrapolated to unmonitored years (R² = 0.89, RMSE 

= 1.87 ppm). In contrast, the residual-based model yields more stable hindcast performance, confirming that CT XCO2 provides a 

physically consistent baseline for capturing long-term variability. When CT XCO2 was replaced with other carbon-related 

predictors, model performance deteriorated notably (temporal and leave-one-year-out R² = 0.24–0.53; RMSE = 3.04–4.52 ppm). 

 450 

Finally, the framework integrates a comprehensive suite of physically interpretable predictors—including MAIAC AOD, NO₂, 

PAN, meteorological variables, and land-use indicators—that represent key physical and chemical processes influencing column 

CO2 concentrations, such as co-emitted combustion tracers, biospheric uptake, and atmospheric transport. In particular, the 

satellite-derived MAIAC AOD emerged as a dominant driver of high-resolution daily XCO2 variability, showing high average 

contributions across the three densely populated urban regions (BTH, YRD, and PRD; Fig. 2).  These physically meaningful inputs, 455 

combined with the residual-learning design, make the framework data-driven yet physically informed, ensuring consistent 

performance across both space and time (Fig. 3). Rigorous validation—through leave-one-year-out cross-validation (Fig. 1d), 

independent comparison with ground-based measurements (Fig. 1e–g), and benchmarking against other long-term datasets (Table 

S6)—further supports the reliability and physical plausibility of our estimates, including those for the pre-2015 period lacking 

direct satellite retrievals. 460 

 

Benefiting from our long-term, high-resolution modeling framework, we investigated the spatial and temporal trends in 

atmospheric CO2 levels across China at multiple spatiotemporal scales. Nationally, a distinct east–west gradient was observed in 

XCO2 levels, with eastern China, particularly the NCP, exhibiting significantly higher concentrations than the west (Fig. 4), where 

most areas are characterized by mountainous terrain, deserts, and relatively low human activity (Fig. S8), consistent with previous 465 

studies(Lu et al., 2025). While a nationwide increasing trend in XCO2 was evident over the past two decades, the NCP region 

experienced steeper increases, highlighting a persistent and concentrated emission hotspot that warrants policy attention.  

 

Zoomed-in enhancement analyses for the BTH and YRD regions—two major urban clusters within the elevated-carbon NCP—

revealed persistent carbon emission hotspots at the city level (Fig. 5). In BTH, Cangzhou and Handan showed the highest long-470 

term enhancement values. These cities are located near provincial borders (e.g., Shandong and Shanxi) and are known for intensive 
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industrial activities, including steel production, heavy manufacturing, and coal consumption (Boxer, 2025; Deng and Dong, 2016) . 

In the YRD region, Zhoushan—an island city—recorded the highest long-term XCO2 enhancement. As part of the Ningbo–

Zhoushan Port, one of the busiest ports in the world, Zhoushan exhibited XCO2 levels comparable to those of major cities like 

Ningbo and Jiaxing (Table S8), likely due to its intensive port and shipping activities (Liu et al., 2025). However, the exceptionally 475 

high enhancement values may be partially attributable to modeling uncertainties. These uncertainties are likely associated with the 

coastal and island geographic setting, where challenges such as mixed land–ocean surfaces, lower observation density, and 

geolocation errors can affect the accuracy of high-resolution model outputs. In contrast, Ningbo and Shaoxing stood out as 

consistent enhancement hotspots, which can be attributed to their roles as dense industrial and port cities within the Hangzhou Bay 

economic zone, characterized by high energy consumption and significant transportation-related emissions. In contrast, cities such 480 

as Zhangjiakou and Chengde in BTH and Lishui and Wenzhou in YRD exhibited the lowest long-term enhancement values. These 

areas are relatively less industrialized, more mountainous, and benefit from greater vegetation cover and lower population density, 

contributing to their lower emissions and possible localized CO2 uptake. Thanks to the spatial detail provided by our 1-km modeling, 

we also identified intra-city variations. In both BTH and YRD, lower enhancements were generally found along coastal areas and 

in city zones bordering regions with lower emissions, while higher values were concentrated in industrial belts and inland districts 485 

with intensive energy use and limited ventilation.  

 

Temporally, enhancement trends in both regions (Fig. 5 and S7) generally increased during the first decade and peaked around 

2012, followed by a noticeable decline after 2013, aligning with the implementation of China’s major air quality initiatives, 

particularly the Air Pollution Prevention and Control Action Plan launched in 2013 (Shi et al., 2022). Notably, BTH experienced 490 

a sharp drop in enhancements in 2008, coinciding with the Beijing Olympics, when strict temporary measures were implemented 

to reduce industrial output and improve air quality in the capital and surrounding areas (Okuda et al., 2011). The effectiveness of 

these policies is reflected in the sustained downward trend in enhancements after 2013, supported by large-scale shifts toward 

cleaner energy, industrial upgrades, and tighter emission controls. However, our results also indicate a rebound in XCO2 

enhancements after 2018, particularly in the BTH region, potentially signaling a resurgence in economic activity and emissions. 495 

Although BTH's overall enhancement in 2020 declined relative to 2019 due to the COVID-19 pandemic, the drop was less 

pronounced than expected and remained higher than in previous years. Based on the 2012–2018 trend, a greater reduction would 

have been anticipated—suggesting that the lockdown may not have had a lasting suppressive effect on emissions, or that a rapid 

post-lockdown recovery offset short-term gains. These findings underscore the need for more stringent and sustained carbon 

control policies to prevent temporary improvements from reversing in the absence of long-term structural changes—particularly 500 

in light of China’s carbon neutrality goals. 

 

The COVID-19 lockdown in Wuhan further supports our findings, showing a variation pattern consistent with previous Wuhan-

specific (Zhang et al., 2023; Cole et al., 2020) that reported abrupt, large decreases (40-60%)) in fossil fuel activity and combustion 

tracers during the strictest lockdown period. This agreement underscores the capacity of our high-resolution estimates and the 505 

enhancement-based approach to capture short-term emission dynamics (Fig. 4; S7). We also observed markedly larger carbon 

emission reductions in downtown Wuhan than in suburban areas, likely reflecting stricter mobility restrictions and enforcement in 

the city center, where commercial, service, and transportation activities declined most sharply. Suburban zones likely maintained 

higher emissions from industry and residential energy use, which were less affected or resumed earlier during reopening. Thus, 

this case highlights the importance of considering intra-urban emission heterogeneity when designing emission control strategies. 510 
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The more substantial reductions in city centers suggest that targeted policies addressing suburban industrial and residential 

emissions are essential for achieving comprehensive and sustained emission reductions, especially under future low-carbon 

development goals and emergency response scenarios.  

 

5. Conclusions 515 

In this study, we developed a long-term XCO2 hindcast modeling framework that generates daily, 1-km atmospheric CO2 estimates 

across China for 2000–2020, extending coverage by 15 years prior to the availability of high-resolution OCO-2 observations. The 

framework adapts the well-established PM2.5 hindcast approach to carbon modeling by training an Extremely Randomized Trees 

model on the residuals between OCO-2 and CT XCO2. By integrating a comprehensive suite of physically interpretable, long-term 

predictors, including MAIAC AOD, NO₂, PAN, meteorological variables, and land-use indicators, the model provides physically 520 

informed, data-driven reconstructions of atmospheric CO2 with minimized bias and strong temporal continuity. The resulting high-

fidelity, fine-scale dataset enables detailed analyses of atmospheric carbon dynamics, intra- and inter-urban emission hotspots, and 

long-term regional trends relevant to carbon-neutrality and climate-mitigation strategies. The key findings are summarized as 

follows: 

(1) We successfully extended daily, high-resolution XCO2 data to a continuous 21-year period (2000–2020), by training a machine-525 

learning model on 2015-2020 samples and applying it hindcast XCO2 predictions for earlier years. Comparative analyses confirmed 

that the inclusion of CT data and residual modeling significantly improved the model’s robustness, especially for years without 

satellite observations. SHAP importance analysis indicates that daily, high-resolution MAIAC AOD is a major contributor to 

modeling XCO2 over the densely populated regions of BTH, YRD, and PRD, further supporting the representation of high-

resolution variations in our XCO2 estimates, particularly in unmonitored areas with intense human activity. 530 

(2) The NCP emerged as the most persistent long-term XCO2 hotspot, with Shandong and Henan provinces exhibiting the highest 

concentrations. While XCO2 levels rose nationwide throughout the study period, regional trends shifted over time—with the NCP 

region showing steeper increases during the first decade (2000–2010), and southern China exhibiting faster growth in the second 

decade (2011–2020), suggesting evolving spatial heterogeneity in emissions.  

(3) Enhancement analyses in the BTH and YRD regions, using adjacent mountainous areas as background, revealed distinct 535 

emission hotspots in southeastern BTH and northern Zhejiang and southern Jiangsu. Notably, intra-city variation was evident, with 

lower enhancements near coastal or lower-emission neighboring cities, and higher values in industrial inland areas. Following 

declines from 2012 to 2018, enhancements rebounded in recent years across both megaregions, raising concerns about a potential 

resurgence in emissions despite past control efforts.  

(4) The case study of Wuhan during the COVID-19 lockdown further demonstrated the model’s capacity to capture short-term 540 

emission dynamics. XCO2 enhancements declined citywide, with sharper reductions in downtown areas compared to suburban 

zones. This underscores the value of high-resolution XCO2 data for evaluating policy impacts and designing targeted mitigation 

strategies. 

Although this study focuses on China, the framework is readily transferable to other regions or global applications, given its 

reliance on publicly available predictors and a robust, generalizable methodology. The proposed XCO2 hindcast framework and 545 

dataset thereby offer a valuable resource for advancing carbon-cycle research, evaluating mitigation outcomes, and supporting 

data-driven climate policy across multiple spatial and temporal scales. 
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Supplement 

Eight tables, and eight figures provide additional information regarding model development and evaluation results of XCO2 high-

resolution modeling. 550 
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