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Abstract: Understanding the spatiotemporal dynamics of atmospheric carbon dioxide (CO,) is fundamental for advancing climate
change research and designing effective mitigation strategies. Yet current analyses are constrained by two key limitations: sparse
10 observations that hinder intra-urban assessment and relatively short monitoring periods that limit long-term consistency. To
overcome these challenges, we developed a long-term atmospheric CO> hindcast modeling framework that generates daily 1-km
column-averaged dry-air mole fraction of CO, (XCO,) across China for 2000-2020. The framework adapts the proven PMas
hindcast approach to CO, estimation by training an Extremely Randomized Trees model on the residuals between OCO-2
observations and CarbonTracker simulations. The model integrates a comprehensive set of physically interpretable predictors—
15 including MAIAC aerosol optical depth (AOD), NO2, peroxyacetyl nitrate (PAN), meteorological variables, and land-use
indicators—linking CO; variability to co-emitted tracers and boundary-layer processes. Rigorous evaluation demonstrated high
reliability (cross-validation R? = 0.94-0.97, RMSE = 0.82-1.29 ppm; independent validation R? = 0.82-0.97). The resulting long-
term, high-resolution dataset reveals distinct carbon hotspots and their evolution: the North China Plain remained persistently
elevated with rapid increases during 2000-2010, while southern China exhibited accelerated growth after 2010. Enhancement
20 analyses identified consistent intra-regional hotspots in southeastern Beijing-Tianjin-Hebei and northern Zhejiang, with emissions
declining after 2012 and rebounding after 2018. During the Wuhan COVID-19 lockdown, urban cores showed sharper reductions
than suburban areas. Our findings underscore the urgency of sustained, spatially targeted emission reduction efforts in future
climate strategies. The proposed XCO: hindcast modeling framework and the resulting long-term dataset provide a valuable

foundation for advancing carbon-neutrality assessments and guiding climate policy across multiple spatial scales.

25 1. Introduction

With rapid urbanization and economic growth, anthropogenic activities such as fossil fuel combustion, industrial processes, and
land-use changes have significantly increased atmospheric carbon dioxide (CO2) concentrations (Ma and Ogata, 2024). As the
primary driver of global climate change, CO; alters the Earth’s energy balance, accelerates
global warming, and disrupts ecosystems and biodiversity (Kabir et al., 2023). Notably, China recorded a high atmospheric CO,
30 concentration of 417 ppm in 2021 at the Mt. Waliguan atmospheric background monitoring site, underscoring the urgent need for
effective monitoring and mitigation of its carbon footprint. Due to variations in local carbon sources and sinks, as well as
atmospheric transport processes, atmospheric CO> exhibits pronounced spatiotemporal variability—particularly in urban areas,
where complex anthropogenic activities, land surface characteristics, and micro-environmental conditions play a significant role
(Labzovskii et al., 2019; Zhang et al., 2021). Although multiple observation systems, including ground-based networks (TCCON,
35 2022; WDCGG, 2024), chemical transport models and reanalyses (Andrew and Kenneth, 2023), and satellite-derived column-
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averaged dry-air mole fraction of CO, (XCO_) datasets (Hamazaki et al., 2004; Crisp et al., 2017), provide valuable information,
significant challenges remain in achieving both high spatiotemporal resolution and long-term continuity. Developing a dataset that
combines fine spatial detail, long temporal span, and daily temporal resolution is therefore critical for capturing carbon hotspots
and their long-term dynamics—thereby advancing climate science, evaluating mitigation effectiveness, and informing sustainable

40 development and carbon neutrality strategies.

Various methods have been developed to fuse satellite-retrieved XCO, with ancillary information to improve the spatial and

temporal continuity of atmospheric CO; estimates. These approaches include geostatistical interpolation techniques such as co-
kriging (Bhattacharjee and Chen, 2020), regression models such as multiple linear regression (Guo et al., 2012), and machine-
45 learning frameworks ranging from extremely randomized trees (He et al., 2022b; Li et al., 2022) to deep-learning architectures
such as ResNet and U-Net variants (Cui et al., 2024; He et al., 2024; Wu et al., 2024). Using satellite XCO, retrievals as the
dependent variable, several gap-free datasets have been produced for China at increasingly refined resolutions—for example, 0.1°
products for 2015-2020 (Li et al., 2023; Liu et al., 2024) and 0.25° reconstructions for 2003-2019 (Zhang and Liu, 2023). Among
the available satellite sensors, OCO-2 retrievals are most frequently employed because of their relatively fine footprint (~1-2 km)
50 and daily revisit capability (Cui et al., 2024; Li et al., 2022; Wu et al., 2024). Nevertheless, since OCO-2 was launched in 2014
and began providing high-resolution observations in 2015, the temporal coverage of fusion-based XCO, datasets that rely
exclusively on OCO-2 remains constrained to the recent decade. For instance, our earlier work developed a multi-source fusion
model based on OCO-2 XCO; to estimate daily 1-km concentrations across China for 2015-2020 (He et al., 2023b). A more recent
study (Wang et al., 2025) presented a global 1-km daily XCO- reconstruction for 2003-2023 by integrating multiple satellite
55 products and environmental predictors within a deep-learning framework. While this work highlights the growing interest in long-
term, high-resolution CO, mapping, the scarcity of fine-resolution retrievals prior to the OCO-2 era and the dependence on
harmonized coarse-footprint observations underscore the continuing need for physically informed hindcast frameworks that can

extend OCO-2-based estimates to earlier years with improved interpretability and physical consistency.

60 A similar challenge has been addressed in the field of long-term PM;s estimation. In China, ground-based PM.s monitoring
networks were only established in 2013, yet the need for multi-decadal exposure assessments prompted the development of
hindcast frameworks to reconstruct earlier concentrations. Numerous studies have successfully employed statistical and machine-
learning models to generate gap-free, high-resolution PM, s datasets for pre-monitoring years (e.g., 2000-2012) despite the absence
of direct observations (Geng et al., 2021; He et al., 2021; He et al., 2023c; Ma et al., 2016). These hindcast frameworks typically

65 involve training models during periods with available measurements (e.g., post-2013) and applying the trained relationships to
estimate concentrations for unmonitored years using long-term, consistently available predictors. Validation analyses have shown
that such models can reproduce historical PM s variability with reasonable fidelity, yielding leave-one-year-out cross-validation
R2 values of approximately 0.40-0.65. Importantly, the success of this approach depends not on replicating long-term trends, but
on the relative stability of short-term (e.g., daily) relationships between the target variable and its driving factors over time (Ma et

70 al., 2022). Building on this principle, a comparable hindcast framework can be extended to atmospheric XCO; estimation. Although
XCO; exhibits a monotonic long-term increase due to the global carbon cycle, the short-term coupling between XCO; and its

meteorological and surface drivers remains physically consistent. Therefore, by leveraging OCO-2—based high-resolution XCO>
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retrievals to train a multi-source fusion model and subsequently applying it to earlier years (e.g., 2000-2014) with continuous
predictors, it is possible to produce a physically informed, long-term, high-resolution reconstruction of XCO, that overcomes the
75 limited temporal coverage of OCO-2.

What are the levels of atmospheric CO- in China, where are the hotspots, and how have they changed over time? To address these
critical questions, we developed a long-term, gap-free XCO; dataset at a daily scale with a spatial resolution of 0.01° (~1 km). This
dataset was produced using a novel long-term XCO; hindcast modeling framework, adapted from the PM: s hindcast modeling
80  approach. The framework employs an Extremely Randomized Trees model to integrate multiple data sources related to atmospheric
CO; variations and extends predictions back to 2000, covering 15 years prior to the observation period. Additionally, the
interpretable machine-learning tool, the SHapley Additive exPlanations (SHAP) local importance method, was utilized to explore
the relationship between atmospheric CO, and temperature. Our high-resolution XCO. dataset and analysis provide essential

insights for climate change research and eco-environmental management.

85 2. Materials and methods

Table S1 summarizes all the multi-source data utilized in this study, including satellite-retrieved and reanalyzed XCO,, air pollution
and meteorological covariates, and geographic high-resolution datasets such as land cover, population density, and elevation. Given
that the dependent variable—spatiotemporal high-resolution XCO; data from the OCO-2 instrument—is only available for years
after 2015, we trained the machine-learning model using samples from 2015 to 2020 and then applied this model to years prior to
90 2015 to generate the hindcast long-term XCO; dataset. The data sources, modeling, and validation processes are described in detail

in this section.

2.1 Data source and preprocessing
2.1.1 OCO-2 and CarbonTracker XCO: data

In this study, we utilized two distinct XCO; data sources to train the machine-learning model: satellite-retrieved XCO, observations
95 from OCO-2 and reanalyzed XCO; data from CarbonTracker (CT). The OCO-2 satellite delivers a state-of-the-art spaceborne
XCO; dataset publicly available, featuring a fine spatial resolution of 1.29 km x 2.25 km and an accuracy of approximately 1 ppm.
We obtained the OCO-2 Level 2 XCO, V10r product (OCO,_L2_Lite FP) for the years 2015-2020 from the Goddard Earth
Sciences Data and Information Services Center (Michael and Eldering, 2020) and mapped the XCOx retrievals to the nearest 0.01°
grid cell. To ensure data reliability, we excluded records flagged as unreliable (i.e., XCO,_quality_flag = 0). The CT XCO; data
100  were derived from the CT2022 XCO,_1330LST product (https://gml.noaa.gov/), which provides global XCO; distributions at
13:30 local solar time with a coarser spatial resolution of 3° x 2° (Crisp et al., 2017). To integrate the CT data into our analysis,
we resampled it to match the 0.01° grid resolution and calculated the residuals between OCO-2 XCO; and CT XCO,, which were

used as the dependent variable for model training.

2.1.2 Air pollution and meteorological covariates

105  Since nitrogen dioxide is a significant indicator of CO, emissions, we utilized hourly reanalysis data from MERRA2-GMI
(https://acd-ext.gsfc.nasa.gov/) (0.625° x 0.5°) and EAC4 (https://ads.atmosphere.copernicus.eu/) (0.75° x 0.75°), including
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nitrogen dioxide (NO2) and peroxyacetyl nitrate (PAN). Recognizing that aerosol loading often co-varies with atmospheric CO>
due to shared emission sources and boundary-layer processes (He et al., 2023b), we incorporated daily, high-resolution aerosol
optical depth (AOD) fields derived from MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrievals
110 (He et al., 2023a). To capture the processes of formation, transport, and dispersion of atmospheric CO,, hourly meteorological
fields were sourced from ERA (https://apps.ecmwf.int/) (0.125° x 0.125°) and ERA5 (https://cds.climate.copernicus.eu/) (0.25° x
0.25°) climate reanalysis products. These datasets included radiation, temperature, cloud cover, humidity, evaporation,
precipitation, wind speed, total column ozone, and boundary layer height information. Additionally, we employed daily, 1-km
Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless (TRIMS) land surface temperature (LST) data
115 (https://data.tpdc.ac.cn/) to provide fine-scale gradient information for the machine-learning model. All hourly meteorological and
air pollution data were averaged or accumulated to obtain daily values, and coarser-resolution data were resampled to a 0.01° x

0.01° grid using bilinear interpolation.

2.1.3 Geographic variables and auxiliary variables

We obtained annual land cover classification data at a spatial resolution of 30 m for the years 2000 to 2020, derived from Landsat
120 imagery using Google Earth Engine (Jie and Huang, 2022), yearly population data with a 1-km spatial resolution were sourced
from Landscan (https://landscan.ornl.gov/), and monthly, 1-km vegetation index data were collected from MODIS Terra
(https://ladsweb.modaps.eosdis.nasa.gov/). Elevation data at a 30-m resolution were retrieved from the ASTER Global Digital
Elevation Model (Version 2) (http://gdex.cr.usgs.gov/). To align with the 1-km grid used in this study, each land cover parameter
was aggregated by computing the fraction of each class within the corresponding grid cell, while the 30-m elevation data were

125  interpolated to a 1-km resolution.

We also included latitude and longitude, based on the centroids of the grid cells, to account for spatial variability in atmospheric

CO.. Additionally, Julian day was incorporated as a temporal feature to help the model capture daily variation patterns. These

spatial and temporal variables are commonly used in environmental pollutant estimation models to enhance predictive accuracy
130 (Chen et al., 2024c; He et al., 2023b).

2.2 Model development
2.2.1 Feature engineering

The potential predictors described in Section 2.1 (summarized in Table S2) may share overlapping information, potentially leading
to increased model complexity and multicollinearity issues during training. To address this and reduce computational costs, we

135 conducted a hierarchical clustering analysis based on Spearman rank-order correlations among the total of 50 explanatory variables.
Using a heatmap of the correlated variables (Fig. S1), we identified 24 clusters by applying a threshold of 0.45. Within each cluster,
variables were ranked by importance, and all but the top two were removed. This initial screening yielded 37 candidate explanatory
variables, from which we further selected 21 top-ranked variables as the final feature set for model development. The final features
used in the model are listed in Table 1.

140 Table 1. Summary of predictors finally used in the fusion model and their corresponding data sources.

Category Full name Spatial resolution ~ Temporal Data source

frequency
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Air pollution

Geographical
variables

Meteorological
variables

Auxiliary variables

Aerosol optical depth 0.01°x0.01° daily
Total column nitrogen 0.5°x0.625° hourly
dioxide

Total column peroxyacetyl  0.75°x0.75° 3-hourly
nitrate

Landcover-Cropland 30mx30m yearly
Landcover-Grassland

Digital elevation model 30mx30m -
Normalized difference  1kmx1km monthly
vegetation index

Population 30mx30m yearly
Land surface temperature ~ 1kmx1km daily

Boundary layer height 0.125°x0.125° 6-hourly

Evaporation 0.25°x0.25° hourly
Surface pressure

TOA  incident  solar

radiation

Surface thermal radiation

downwards

Total column water vapour

10-m U wind component

10-m V wind component

Total column ozone

Longitude - -
Latitude

Day of year

https://dataverse.harvard.edu/dataverse/at
mospheric_data_by_ WHUT
https://acd-ext.gsfc.nasa.gov/

https://ads.atmosphere.copernicus.eu/

https://zenodo.org/records/5816591/

http://gdex.cr.usgs.gov/

https://ladsweb.modaps.eosdis.nasa.gov/

https://landscan.ornl.gov/
https://cstr.cn/18406.11.Meteoro.tpdc.271
252/

https://apps.ecmwf.int/
https://cds.climate.copernicus.eu/

Constructed features

2.2.2 Model description and training

Using the explanatory variables described above, we developed an extremely randomized tree (ExtraTrees) model to estimate full-

coverage daily XCO; across China from 2000 to 2020. The ExtraTrees algorithm constructs multiple randomized decision trees

145  and aggregates their outputs to enhance predictive accuracy and robustness. The model was trained on the residuals between OCO-

2 and CT XCO:; as the dependent variable, using samples from 2015 to 2020. To optimize the model’s spatiotemporal predictive

performance, we used a two-step hyperparameter tuning approach: Bayesian optimization to identify an optimal parameter range,

followed by fine-tuning using grid search. The final set of hyperparameters was determined as follows: n_estimators=300,

min_samples_split=5, min_samples_leaf=5, max_features=0.7, and max_depth=31. The trained model was then used to generate

150 daily XCO; predictions for each grid cell at a 0.01° spatial resolution for the entire study period (2000-2020), assuming that the
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relationship between XCO; and the predictors during 2015-2020 remained consistent throughout the study period (Maetal., 2022).
To interpret the model, we applied SHAP to reveal the localized contributions of individual predictors to the model’s output.

2.3 Model validation
2.3.1 Cross-validation methods of overall modeling performance

155 Based on the 2015-2020 sample dataset, we assessed the predictive performance of the ExtraTrees model using 10-fold cross-
validation (CV) across three distinct strategies: sample-based, grid cell-based, and day-based, to evaluate its overall, spatial, and
temporal predictive capabilities, respectively. In the sample-based approach, all observations were randomly divided into 10
approximately equal-sized groups. For the grid cell-based CV, the observed grid cells were randomly partitioned into 10 equally
sized groups. Similarly, in the day-based CV, the days spanning the entire time period were randomly divided into 10 equal groups.

160  During each of the 10 iterations, nine groups were used as training data to build the model, while the remaining group was used

for prediction.

Given the absence of OCO-2 XCO, observations before 2015, direct evaluation of the estimates for those years posed a challenge.
To address this, we implemented the leave-one-year-out CV method to simulate a hindcast scenario for evaluating the model’s
165 performance. This approach involved withholding data from one entire year during each round of model training, mimicking a
situation where XCO, observations for that year were unavailable. The model was then tested on the withheld year, allowing us to
assess its predictive accuracy for pre-2015 estimates. This state-of-the-art evaluation method is widely recognized and has been
successfully applied in previous atmospheric modeling studies, such as PM2.5 hindcasting for years without ground-level
measurements (He et al., 2023c; He et al., 2023d; Ma et al., 2022). These complementary validation strategies provided a thorough
170 assessment of the model’s predictive accuracy across different dimensions of the estimates. Finally, we assessed the model’s
performance by comparing its estimates with the original OCO-2 retrievals across the ten validation rounds, using R?, root mean

square error (RMSE), and mean absolute error (MAE) as evaluation metrics.

2.3.2 Independent evaluation methods

We also conducted an independent validation using observations from three ground-based carbon monitoring sites to evaluate the

175 reliability of the model estimates. Two sites, Hefei (HF) and Xianghe (XH), are part of the Total Carbon Column Observing
Network (TCCON), which uses Fourier Transform Spectrometers to measure total column CO; since 2015. Following established
protocols (TCCON, 2022), TCCON data were filtered to retain high-quality observations, selecting those with a fractional variation
in the solar intensity parameter below 5%. The two sites were used to assess the spatial robustness of the high-resolution estimates.
The third site, Mt. Waliguan (WLG), is part of the World Data Centre for Greenhouse Gases (WDCGG) under the World

180 Meteorological Organization. Although the WDCGG data from Mt. Waliguan reflect near-surface CO. concentrations rather than
satellite-derived columnar XCO values, they were included to evaluate the hindcast estimates for years prior to 2015, focusing on
trends in long-term atmospheric CO; variations. The model’s XCO: estimates were compared against ground-based observations
at individual grid cells, as well as within larger spatial windows of 1 x 1, 10 x 10, and 100 x 100 grids surrounding each site. To
ensure temporal alignment, ground-based observations were averaged over the time window corresponding to satellite overpass

185 times (10:30-16:30) for the HF and XH stations, while for the WLG station, they were averaged over full natural days. Detailed
information about the three ground-based CO, monitoring sites is provided in Table S3.
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2.4 Statistical analysis
2.4.1 Long-term trend

We applied least squares regression (Weatherhead et al., 1998), a widely used method for long-term trend analysis (Hsu et al.,
190 2012; Ma et al., 2016), at the pixel level to assess the long-term XCO- trend and its spatial variability. The pixel-based slope was
derived from the monthly mean XCO. anomaly time series for each pixel, where anomalies were computed by subtracting the
corresponding month’s average XCO over the entire study period. Given the overall rise in XCO; levels from 2000 to 2020, the
coefficient of variation, a normalized measure of dispersion defined as the standard deviation divided by the mean, was calculated

from the spatial distribution of annual mean XCO; values. This approach allows us to track changes in spatial variability over time.

195 2.4.2 Detecting XCO2 enhancement

We analyzed the spatiotemporal variations in carbon emissions at pixel level using the widely used XCO, enhancement method,
which measures deviation relative to a background value (Hakkarainen et al., 2016; Sheng et al., 2021), based on our gap-free
XCO; estimates. The daily background value was determined as the median XCO, over mountainous areas near the target region
(elevation >1000 m), which are minimally influenced by human emissions due to their lower population density and reduced
200 industrial and traffic activity compared to adjacent urban areas. For example, in the case of Wuhan, the daily XCO; enhancement
for each pixel was calculated by subtracting the background value—defined as the median XCO, over mountainous areas in
western Hubei—from the corresponding XCO, estimate, as expressed in Eq. (1). The resulting XCO, enhancements were
deseasonalized and detrended, where positive values indicate carbon sources, while negative values represent carbon sinks. To
assess the impact of the COVID-19 lockdown in Wuhan, we examined XCO; enhancement patterns before, during, and after the
205 lockdown period, analyzing how Wuhan’s XCO> enhancements changed across these phases. Additionally, we applied the same
approach to the corresponding period in 2019 as a reference for comparison. The XCO- daily median time series over the lockdown

period in 2020 and the corresponding period in 2019 is shown in Fig. S2.
AXCO, (i, ], t) = XCO, (i, j, t) — XCO%E (t) 1)
where AXCO: (i, j, t) and XCOx (i, j, t) are the XCO, enhancement and value at pixel coordinate (i, j) on day t. XCOzbg(t) is the
210 daily background XCO; value on day t. This enhancement method was extended to two major urban agglomerations in China
known for elevated XCO, levels: the Beijing-Tianjin-Hebei (BTH) region and the Yangtze River Delta (YRD) region. The
mountainous areas with elevations above 1000 m used to derive background values were located in western BTH for the BTH

region, and in northern Zhejiang and eastern Anhui, adjacent to the YRD, for the YRD region. The corresponding daily background

values are presented in Fig. S3.

215 3. Results and Discussion
3.1 Evaluation results of model performance
3.1.1 Overall modeling performance

Figure 1(a)—(c) shows the results of the overall, spatial, and temporal CV methods applied to the ExtraTrees model, demonstrating
strong performance in estimating daily XCO; at a 1-km resolution. The R? and RMSE values for sample- and grid cell-based CV
220 are both 0.97 and 0.82 ppm, respectively, while the corresponding values for day-based CV are 0.94 and 1.27 ppm. The similarity
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in model performance between sample-based and grid cell-based CV can be attributed to the sparse and evenly distributed nature
of OCO-2 XCO; observations. Across the entire 2015-2020 training dataset, each grid cell contains approximately 1.7 OCO-2
XCO:; observations on average, with exceeding 65% of grid cells containing only one observation. This distribution results in the

training and validation sets for sample-based CV closely resembling those for grid cell-based CV. Regionally, the model

demonstrates better predictive performance in North China compared to other regions, as evidenced by higher R? values (0.95—
0.99 vs. 0.91-0.98) and lower RMSE values (0.61-1.12 ppm vs. 0.70-1.63 ppm) across the three types of validation results (Table

S4). Figure 1(h) presents a histogram of prediction errors across different intervals, showing that the bias between OCO-2

observations and model estimates follows a distribution that is approximately normal across XCO; intervals.
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Figure 1. Performance of the long-term XCO; hindcast machine-learning model based on CV results and ground-based independent
validation. Scatterplots (a)-(d) show (a) sample-based, (b) grid cell-based, and (c) day-based 10-fold CV results, as well as (d) leave-one-
year-out CV results derived from the 2015-2020 sample dataset. Independent validation is presented as scatterplots of model-predicted
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XCO:2 versus TCCON observations at the (e) Hefei and (f) Xianghe sites, using a 1 km x 1 km spatial window for 2015-2020. In panels
(a)—(f), point colors indicate data density, with colorbars at the upper and middle right for (a)—(d) and the middle right for (e)—(f). Panel

235 (g) compares time series of model-predicted and Mt. Waliguan-observed XCO2 from 2000 to 2020. Panel (h) shows the distribution of
biases between observed and predicted XCOz2 across different intervals.

3.1.2 Validation of pre-2015 estimates

We employed a robust cross-validation approach, the leave-one-year-out CV, to evaluate the model’s predictive capability for
years without OCO-2 observations. As shown in Fig. 1(d), the hindcast modeling framework effectively predicts long-term XCO
240  values with low uncertainty at the daily level, achieving a validation R? of 0.94 and an RMSE of 1.29 ppm. These results are
comparable to the accuracy metrics obtained from the day-based CV (Fig. 1(c)), indicating minimal overfitting in the hindcast

XCO; estimates for years prior to 2015.

We also conducted an independent validation using ground-based observations to assess the reliability of the long-term, high-

245 resolution XCO, estimates, particularly for years prior to 2015 when OCO-2 XCO; observations were unavailable. The estimated
XCO; values were well correlated with observations from the two TCCON sites, achieving R? values of 0.92 and 0.82 and RMSE
values of 1.22 and 1.69 at 1x1 spatial matching window, respectively (Fig. le-f, see Table S5 for validation results at 10x10 and
100x100 windows). These results highlight the strong spatial predictive capability of our machine-learning model. At the Mt.
Waliguan site, the observed CO, concentrations were systematically higher than our estimated XCO; values, accompanied by a

250  relatively large RMSE of 2.90 ppm. This discrepancy arises because Mt. Waliguan measures near-surface CO, concentrations,
whereas both satellite and TCCON sites observe total column CO.. Therefore, we do not use the RMSE from Mt. Waliguan as an
indicator of model accuracy. Nevertheless, the estimated XCO; values for 2000-2020 closely reproduced the day-to-day and
interannual variations observed at WLG, with an Rz of 0.97 (Fig. 1g), indicating that our model effectively captures the temporal
dynamics of long-term XCO; trends.

255 3.1.3 SHAP importance

We quantified the global and local contributions of input predictors in the high-resolution XCO, modeling using average and local
SHAP values (Fig.2). The analysis focused on the 2015-2020 samples across three major urban agglomerations—BTH, YRD, and
Pearl River Delta (PRD). The overall contribution of each predictor was assessed using the mean absolute SHAP values, which
capture the magnitude of influence regardless of direction. Among all predictors, the satellite-derived variable, MAIAC AOD, was

260 a key driver in the prediction of high-resolution daily XCO, estimates with the highest average contribution in BTH and ranked
among the top four in both YRD and PRD. Although CO: itself is not an aerosol component, AOD serves as an indirect indicator
of fossil-fuel combustion intensity and atmospheric mixing conditions that influence both particulate and gaseous pollutant
accumulation. Regions and periods with elevated AOD typically correspond to strong anthropogenic activity, shallow planetary
boundary layers, and enhanced co-emission of carbonaceous species, all of which contribute to localized increases in column COs.

265 Including AOD as a predictor thus provides physically interpretable information on emission strength and vertical mixing that
complements other meteorological and chemical variables in the model. Therefore, the strong contribution of high-resolution
MAIAC AOD, both spatially and temporally, reinforces the reliability of our daily XCO; estimates in densely populated regions
by improving the representation of fine-scale gradients, particularly in areas lacking direct observations.
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Figure 2. of each predictor on XCOz levels quantified using the SHAP method over the BTH (left panel), YRD (middle panel), and PRD
(right panel) regions: (a) average contribution based on mean absolute SHAP values averaged across grid cell-day samples, with colors
indicating predictor categories; (b) distribution of SHAP values for each predictor, with color indicating normalized predictor values.

3.2 Comparisons with other XCO: datasets and advantages
3.2.1 Improved estimation accuracy

Several previous studies have also derived gap-free XCO; datasets using machine learning techniques applied to multiple data
sources and validated them against ground-based observations. However, their daily estimates generally demonstrated inferior
performance compared to ours, with R? [RMSE] values of 0.59-0.91 [1.28-2.82 ppm] at the two TCCON sites and R? of 0.67 at
the WLG site, as shown in Table 2. We also compared the agreements between our estimated XCO- dataset and global greenhouse
gas reanalysis products from CAMS and CT. At the daily level, CAMS and CT XCO, showed lower consistency with ground-
based observations, exhibiting larger biases in both magnitude (RMSE=1.43 — 5.24 ppm) and trends (R?=0.33 - 0.95) relative to
our dataset (R?=0.82 - 0.97 and RMSE=1.22 — 2.90 ppm; Fig. 1le—f and Table S5). Additionally, we compared our accuracy against
another long-term XCO; dataset derived from the GOSAT instrument using spatiotemporal Kriging interpolation (Chen et al.,
2024b), a widely used approach for generating gap-free XCO; data in earlier studies (Bhattacharjee and Chen, 2020; Chen et al.,
2024b). The interpolated XCO; estimates demonstrated a significantly lower agreement with ground-based measurements than our
machine-learning approach, with R? values of 0.84, 0.77, and 0.92 for the HF, XH, and WLG stations, respectively. Therefore,
with R? [RMSE] values of 0.82-0.92 [1.22-1.69 ppm] for the TCCON sites and 0.97 [2.90 ppm] for WLG, our long-term XCO;
estimates achieved better estimation accuracy.

Table 2. Comparison of XCO: data quality between this study and other datasets.

Datasets Resolution Period XH HF WLG

10
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Spatial ~ Temporal R? RMSE R? RMSE R? RMSE
(ppm) (ppm) (ppm)

Zhang et al., 2022 0.25° 1-month 2003-2019 - - - 1.18 - -
Lietal., 2023 0.1° 1-day 2015-2020 0.86 1.71 0.86 171 - -
Wang et al., 2023 0.25° 1-day 2010-2020 0.73 1.96 0.91 1.28 - -
Lietal., 2022 0.01° 8-day 2015 - - 0.59 2.82 - -
He et al., 2022 0.1° 1-day 2015-2018 - - 0.76 - 0.67 -
Wau et al., 2024 1km 1-day 2015-2020 0.82 1.56 0.88 1.41 - -
He et al., 2024 0.25° 1-month 2014-2022 - 1.29 - 0.93 - -
Cui et al., 2024 0.1° 1-day 2015 - - - 1.36 - -
CAMS (Inness,  0.75° 1-day 2003-2020 0.33 3.28 0.85 2.10 0.95 2.77
2019)
CT (Andrew et al.,, 3°x2° 1-day 2000-2020 0.56 2.59 0.90 1.43 0.87 5.24
2023)
GOSAT (Chen et 0.1° 3-day 2010-2019 0.77 2.03 0.84 1.50 0.92 2.90
al., 2024b)
This study 0.01° 1-day 2000-2020 0.82 1.69 0.92 1.22 0.97 2.90

3.2.2 Enhanced spatiotemporal resolution and coverage

Our modeling output represents the first full-coverage, high spatiotemporal resolution (daily, 1-km) atmospheric CO; dataset across
China, spanning the longest period to date—from 2000 to 2020. In contrast, previous machine-learning studies have produced

295 daily, 1-km XCO, estimates, but their temporal coverage has generally been limited to post-2015 data. This shorter time span
constrains the ability to analyze long-term atmospheric CO; trends, which are essential for understanding climate change—a
fundamentally long-term process.

Figure 3 compares the spatial patterns revealed by our dataset with other widely-used long-term XCO, datasets. At the national
300  scale and over the long term, our high-resolution estimates (Fig. 3a) exhibit spatial patterns broadly consistent with CT’s coarse-
resolution data (Fig. 3b), achieving an average correlation coefficient r of 0.89 (Table S6) over the study period. However, CT’s
estimates appear notably smoother at both daily and yearly scales, primarily due to their coarser resolution (2° x 3°) nature. By
incorporating CT’s coarse-resolution data along with other predictors into our fusion modeling process, our outputs capture intra-
urban variations with greater accuracy, particularly in eastern China—a region characterized by complex topography, diverse
305 natural landscapes, and intensive human activity (Table 2 and S4). We also compared our dataset with the CAMS global greenhouse
gas reanalysis product (Fig. 3c). Similar to CT, the daily XCO; data from CAMS share an average correlation of 0.69 with ours
but, with a coarser spatial resolution (0.75° x 0.75°), fail to effectively capture intra-city variations. Additionally, our estimates
exhibit greater spatial contrast compared to the GOSAT-based interpolated XCO, data (Chen et al., 2024b) (Fig. 3d), while still

maintaining moderate correlations, with an average r of 0.56. These of accuracy and spatiotemporal patterns underscore the unique

11



https://doi.org/10.5194/egusphere-2025-5647

Preprint. Discussion started: 17 February 2026 EG U h .
© Author(s) 2026. CC BY 4.0 License. spnere
(@O

BY

Preprint repository

310  advantages of our long-term, high-resolution XCO; dataset in capturing day-to-day variations and uncovering detailed spatial

gradients in atmospheric CO>—features often missed by coarse-resolution datasets.

2018 July 2018 1st July 2018

(a) Our predictions

(b)CT

(c) CAMS

(d) GOSAT interpolations

XCO; (ppm) XCO; (ppm) XCO, (ppm)

E

386 390 394 382 389 396 388 393 398

Figure 3. Spatial distribution of XCO2 values at multiple spatial scales: (a) our predictions (0.01° x0.01°), (b) CT product (2° x 3°), (c)
CAMS product (0.75° x 0.75°), and GOSAT interpolations for a single day (1 July 2018; right column), along with the corresponding
315 monthly (July 2018; middle column) and the annual mean for 2018 (left column).
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3.3 Spatiotemporal patterns of atmospheric CO2 in China
3.3.1 Overall spatial pattern and long-term trends

Our modeling outputs effectively capture the long-term, high-resolution spatial patterns of atmospheric CO; across China from
320 2000 to 2020. Utilizing this dataset, this section focuses on a spatiotemporal analysis to uncover the levels of atmospheric CO, and
variations in hotspot locations over time. On average, the countrywide atmospheric CO- level over the past two decades was 390.22
ppm. As shown in Fig. 4a, the highest levels (>391.50 ppm) were concentrated in Shandong and Henan provinces, and gradually
decreased across the broader North China Plain (NCP), with XCO, ranging between 391.30 ppm and 391.50 ppm. Further
reductions in XCO; levels were observed moving south, west, and northeast. Overall, eastern China (>390.50 ppm) exhibited
325 higher concentrations compared to the western and northeastern regions, where multiyear mean values were below 390.50 ppm.

Within eastern China, the southeastern areas showed relatively lower concentrations, with multiyear mean values below 391 ppm.

(d) XCO, in 2015

(a) XCO, in 2000

(c) XCO, in 2000-2020

XCO, (ppm)for (a) & (b) XCO, (ppm)for (d) & (€)
| oaa— | | — ]
390 405 420

(€) XCO, in 2020

360 380 400

XCO, (ppm)

[ aaa—
387 389 391 393

(g) 2001-2010 trend (h) 2011-2020 trend

Trend (ppmlyr) for (f) & (g) Trend (ppmlyr) for (h) & (i)
| E— |
1.8 2.1 2.4 2.2 2.4 2.6

Figure 4. Spatial distributions of atmospheric CO2 concentrations and their long-term trends across China from 2000 to 2020. The upper
panel shows spatial distributions of annual mean XCO:2 for (a) 2000, (b) 2010, (d) 2015, and (e) 2020, as well as (c) the multi-year mean

330 for 2000-2020. The lower panel shows the spatial distributions of statistically significant linear trends (p<0.05) for the periods (f) 2000-
2020, (g) 2001-2020, (h) 2011-2020, (i) 2016-2020.

National atmospheric CO, levels steadily increased from 369.34 ppm in 2000 to 413.12 ppm in 2020, accompanied by growing
spatial heterogeneity, as revealed by our pixel-based long-term linear trend analysis (Fig. 4 (f)-(i) and Fig. S4). In 2000, XCO,

335 exhibited minimal spatial variation, with a coefficient of variation of just 0.00086 (Fig. S4) and an east—west regional difference
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of less than 1 ppm. Over the subsequent two decades, however, the east—west difference widened to approximately 3 ppm, and the
coefficient of variation rose to 0.00213, driven by spatially heterogeneous increases in CO, concentrations. The most pronounced
increases were clustered in the NCP region, with slopes exceeding 2.25 ppm/yr (p < 0.05), followed by other parts of eastern China,
which showed slightly smaller increases (slopes > 2.20 ppm/yr, p < 0.05). In contrast, western and northeastern China exhibited
340 relatively smaller trends (slopes < 2.18 ppm/yr, p < 0.05). To further explore how trends evolved over time, we divided the study
period into two decades: 2001-2010 and 2011-2020. Nationally, the average increasing trend was steeper in the second decade
(2.42 ppm/yr) compared to the first (2.01 ppm/yr). However, the spatial distribution of hotspots also shifted. During 20012010,
the highest increasing trends (slopes > 2.06 ppm/yr, p < 0.05) were concentrated in eastern China, particularly in the NCP, where
slopes exceeded 2.12 ppm/yr (p < 0.05). In contrast, most western areas exhibited trends below 1.98 ppm/yr (p < 0.05). In the
345 second decade (2011-2020), although the overall trend strengthened, the NCP showed comparatively smaller increases (slopes of
2.38-2.42 ppmlyr, p < 0.05) relative to other regions. Meanwhile, southern China emerged as a hotspot, with trends ranging from
2.44 to 2.48 ppm/yr (p < 0.05). Focusing on the most recent five years, the largest increasing trends were observed primarily in
central and eastern provinces, such as Hubei, Hunan, Jiangxi, and Anhui. This highlights the spatiotemporal dynamic nature of

long-term trends in atmospheric CO; levels across China over the past two decades.
350

The national average atmospheric CO> concentrations over the past two decades were 392.27, 388.68, 388.85, and 390.06 ppm in
spring, summer, autumn, and winter, respectively (Fig. S5 (a)-(d)). A distinct seasonal pattern emerged, with higher XCO; levels
in spring compared to summer and autumn across most regions of China. In spring, regions such as Northeast, East, and Central
China exhibited seasonal average XCO; concentrations exceeding 392 ppm, while in summer and autumn, XCO; levels were below

355 391 ppm across the majority of the country. This observed seasonal variation aligns with the findings of previous studies (He et
al., 2022b; He et al., 2023b; Zhang and Liu, 2023). The linear trends of XCO, for the four seasons from 2000 to 2020 showed
similar spatial patterns, with higher increasing trends concentrated in eastern China (Fig. S5 (e)-(h)). Notably, the trends were
particularly pronounced in the NCP and central China during winter, where most areas exhibited slopes exceeding 2.70 ppm/yr
(Fig. S5 (h)).

360 3.3.2 Short-term variability in carbon emission Carbon emission in COVID-19 lockdown

Our daily XCO, estimates effectively capture day-to-day variations in atmospheric CO>, enabling more precise quantification of
carbon emission changes during short-term, high-impact events at fine spatial scales. This capability is critical for carbon
management and for mitigating the adverse effects of acute emission fluctuations. To illustrate this, we analyzed carbon emission
changes associated with the COVID-19 lockdown in Wuhan by comparing XCO, enhancements before, during, and after the
365 lockdown period (Fig.5 and Fig. S6). Across all areas of Wuhan and throughout the study period, Wuhan remained a carbon source
relative to the background areas, as indicated by consistently positive enhancement values. However, during the lockdown period
in 2020, the average XCO; enhancement decreased significantly by 43.86% compared to the corresponding period in 2019. In
contrast, the post-lockdown period showed similar enhancement levels between the two years, with an average of 0.24 ppm in
2019 vs. 0.23 ppm in 2020. We also observed a substantial ~29.55% decrease in XCO, enhancement during the pre-lockdown
370 period, which can be attributed to the earlier timing of the Chinese Lunar New Year holiday in 2020 (January 24—-30) compared to
2019 (February 4-10). During the holiday, most industrial operations were suspended or significantly reduced, while daily
commuting and freight transport declined sharply, leading to a notable reduction in human-induced carbon emissions. However,
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during the first 10 days of both years, the average enhancements remained comparable, with a slight increase in 2020 (1.80 ppm
in 2019 vs. 1.84 ppm in 2020), indicating that carbon emissions in the pre-COVID period of 2020 were similar to those in 2019.
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Figure 5. Spatiotemporal distribution of XCO2 enhancement in selected regions: (a) Spatial distribution of percentage changes in XCO2
enhancement during the Wuhan lockdown in 2020 relative to the same period in 2019. (b) Comparison of XCO2 enhancement before
(January 1-22), during (January 23-April 7), and after (April 8-May 31) the lockdown in 2020, relative to corresponding periods in
2019. Spatial distributions of multiyear mean XCO:2 enhancement in the (c) BTH and (d) YRD regions over 2000-2020; the inset bar
plots present the multiyear, city-level mean XCO2 enhancement for each region, ranked from lowest to highest. (€) Annual mean time
series of XCOz enhancement for the BTH (black dotted line) and YRD (blue diamond line) regions.

As shown in Fig. 5d, a striking difference emerged in the spatial patterns of XCO; enhancements between the two years. During
the lockdown period in 2020, XCO, enhancements dropped by over 50% in downtown (central) Wuhan, while reductions were
comparatively smaller (40-48%) in suburban areas. The northern suburban regions exhibited the least decline, with most reductions
falling below 45%. These spatial differences in XCO, enhancements offer valuable insights into urban carbon dynamics and
underscore the utility of high-resolution XCO; data in understanding anthropogenic emission patterns and informing targeted

emission control strategies.

3.3.3 Hotspots of inter- and intra-city carbon enhancement over time

Based on the enhancement analysis using long-term, high-resolution XCO, estimates, we examined detailed patterns of carbon
emission hotspots across two major urban agglomerations in China (Fig. 5 and S7), both located in the NCP—a region previously
identified as exhibiting elevated XCO: in the spatiotemporal analysis. Corresponding to the overall XCO variation, the day-to-
day evolution of the median background XCO; shows a clear long-term increasing trend with pronounced seasonality, averaging
390.27 + 13.46 ppm for the BTH region and 391.24 + 13.64 ppm for the YRD region (Fig. S3). Both the BTH and YRD regions
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exhibited clear seasonal patterns in XCO, enhancements over the past two decades, with consistently higher values in winter and

lower values in summer (Fig. S8).

In the BTH region, the long-term average XCO, enhancement displays a clear spatial gradient, decreasing from higher positive
400  values (~1.50 ppm) in the southeast to near-zero or slightly negative values (~—0.55 ppm) in the northwest. At the city level, most
areas exhibit a similar temporal pattern: a steady increase from 2000 to 2007, followed by a sharp drop in 2008, a rise again through
2012, a decline until 2018, and a rebound in the final two years of the study period. The highest long-term enhancements are
observed in Cangzhou (1.20 ppm), a southeastern city bordering Shandong Province, and Handan (1.17 ppm), located in southern
Hebei—both adjacent to regions identified as XCO> hotspots over the past two decades (Fig. 4). However, the city with the highest
405 annual enhancement varied over time: Shijiazhuang led in the early 2000s, followed by Handan, and then Cangzhou from 2006
onward. In contrast, the lowest enhancements were consistently observed in the northern cities of Zhangjiakou (0.14 ppm) and
Chengde (0.18 ppm), which are characterized by higher elevations and lower anthropogenic emissions. In addition to inter-city
differences, we also observed substantial intra-city variation. For example, southeastern Cangzhou, bordering the high-emission
Shandong Province, showed consistently higher XCO> enhancements than its northwestern part. Similarly, western Handan, near
410  the border with Shanxi Province—a region with intensive coal-related activity—exhibited larger enhancements than the eastern

part of the city.

In the YRD region, XCO, enhancements transitioned from near-zero or slightly negative values in the early 2000s (e.g., —0.05 ppm
in 2000 and —0.08 ppm in 2002) to persistently positive values beginning around 2006. The enhancement peaked in 2012 at 0.34
415 ppm, followed by moderate fluctuations and a general decline after 2013. In 2020, during the COVID-19 pandemic, the average
enhancement dropped to 0.046 ppm—the lowest since 2005—indicating a notable reduction. At the city level, long-term
enhancement values reveal clear spatial contrasts, with the highest and lowest values generally concentrated in northern and
southern Zhejiang, respectively. Ningbo and Shaoxing (both ~0.23 ppm) emerged as persistent enhancement hotspots with the
highest long-term averages. In contrast, Lishui (~0.00 ppm) and Wenzhou (-0.07 ppm), both located in southern Zhejiang, recorded
420 near-zero or slightly negative values. Cities in Jiangsu broadly exhibited positive enhancements, with Xuzhou (0.22 ppm)—a
northern city bordering Shandong— ranking first within Jiangsu and fourth across the entire YRD region. Meanwhile, eastern
coastal cities such as Yancheng (0.03 ppm) and Nantong (0.075 ppm) showed relatively low enhancement values. Similar to the
BTH region, significant intra-urban variations were also observed across the YRD. Typically, lower enhancements appeared on
the coastal side of Yancheng and Nantong, while the southern parts of Quzhou, Jinhua, and Taizhou—which are adjacent to cities
425 with lower overall enhancements—exhibited lower values than their northern counterparts that border higher-emission areas. In
Shanghai, the southwestern districts, known for more intensive industrial activity, showed relatively higher enhancements
compared to the Pudong New Area, which is characterized more by commercial, residential, and administrative development than

by heavy industry.

4. Discussion

430  Our XCO; fusion modeling framework produced daily 1-km resolution estimates across China for 2000-2020, achieving strong
predictive performance (R2 = 0.94-0.97; RMSE = 0.82-1.29 ppm) across four cross-validation schemes. These results surpass

existing models—including our previous versions—in terms of accuracy, spatiotemporal resolution, and historical coverage (see
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Section 3.2). First, a key innovation of this work is the adoption of the PM. hindcast modeling framework, which enabled us to
extend high-resolution XCO; estimates to the pre-OCO-2 period. While previous global studies, such as Wang et al. (2025),
435  generated long-term global XCO, reconstructions by harmonizing multiple coarse-footprint satellite products, our approach
anchors the estimation directly to OCO-2 XCO; retrievals. The learned relationships between OCO-2 XCO- and its predictors are
then applied to earlier years (2000-2014), allowing the model to extend both the spatial coverage and temporal span of the OCO-
2 record. This represents the first effort to adapt the PM2s hindcast paradigm to national-scale XCO; estimation in China, where
data-availability challenges are analogous—PMg s observations began only after 2013, and OCO-2 data are available from 2015

440 onward, despite the strong demand for long-term, high-resolution CO; fields in climate and environmental studies.

Second, our model improves long-term robustness through a residual-learning strategy that uses the difference between OCO-2
and CT XCO; as the dependent variable. This design allows the network to learn fine-scale, process-based deviations from large-
scale transport simulations rather than reproducing OCO-2 concentrations directly. Comparative experiments (Table S7)
445 demonstrate that although models trained directly on OCO-2 XCO; can achieve similar accuracy during the observed period (R? =
0.98, RMSE = 0.75 ppm), they exhibit substantially higher uncertainty when extrapolated to unmonitored years (R2 = 0.89, RMSE
=1.87 ppm). In contrast, the residual-based model yields more stable hindcast performance, confirming that CT XCO, provides a
physically consistent baseline for capturing long-term variability. When CT XCO;, was replaced with other carbon-related
predictors, model performance deteriorated notably (temporal and leave-one-year-out R2 = 0.24-0.53; RMSE = 3.04-4.52 ppm).
450
Finally, the framework integrates a comprehensive suite of physically interpretable predictors—including MAIAC AOD, NO-,
PAN, meteorological variables, and land-use indicators—that represent key physical and chemical processes influencing column
CO- concentrations, such as co-emitted combustion tracers, biospheric uptake, and atmospheric transport. In particular, the
satellite-derived MAIAC AOD emerged as a dominant driver of high-resolution daily XCO; variability, showing high average
455 contributions across the three densely populated urban regions (BTH, YRD, and PRD; Fig. 2). These physically meaningful inputs,
combined with the residual-learning design, make the framework data-driven yet physically informed, ensuring consistent
performance across both space and time (Fig. 3). Rigorous validation—through leave-one-year-out cross-validation (Fig. 1d),
independent comparison with ground-based measurements (Fig. 1e—g), and benchmarking against other long-term datasets (Table
S6)—further supports the reliability and physical plausibility of our estimates, including those for the pre-2015 period lacking

460 direct satellite retrievals.

Benefiting from our long-term, high-resolution modeling framework, we investigated the spatial and temporal trends in
atmospheric CO; levels across China at multiple spatiotemporal scales. Nationally, a distinct east-west gradient was observed in
XCO; levels, with eastern China, particularly the NCP, exhibiting significantly higher concentrations than the west (Fig. 4), where
465 most areas are characterized by mountainous terrain, deserts, and relatively low human activity (Fig. S8), consistent with previous
studies(Lu et al., 2025). While a nationwide increasing trend in XCO; was evident over the past two decades, the NCP region

experienced steeper increases, highlighting a persistent and concentrated emission hotspot that warrants policy attention.

Zoomed-in enhancement analyses for the BTH and YRD regions—two major urban clusters within the elevated-carbon NCP—
470  revealed persistent carbon emission hotspots at the city level (Fig. 5). In BTH, Cangzhou and Handan showed the highest long-

term enhancement values. These cities are located near provincial borders (e.g., Shandong and Shanxi) and are known for intensive
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industrial activities, including steel production, heavy manufacturing, and coal consumption (Boxer, 2025; Deng and Dong, 2016) .
In the YRD region, Zhoushan—an island city—recorded the highest long-term XCO, enhancement. As part of the Ningbo-
Zhoushan Port, one of the busiest ports in the world, Zhoushan exhibited XCO> levels comparable to those of major cities like
475 Ningbo and Jiaxing (Table S8), likely due to its intensive port and shipping activities (Liu et al., 2025). However, the exceptionally
high enhancement values may be partially attributable to modeling uncertainties. These uncertainties are likely associated with the
coastal and island geographic setting, where challenges such as mixed land—ocean surfaces, lower observation density, and
geolocation errors can affect the accuracy of high-resolution model outputs. In contrast, Ningbo and Shaoxing stood out as
consistent enhancement hotspots, which can be attributed to their roles as dense industrial and port cities within the Hangzhou Bay
480 economic zone, characterized by high energy consumption and significant transportation-related emissions. In contrast, cities such
as Zhangjiakou and Chengde in BTH and Lishui and Wenzhou in YRD exhibited the lowest long-term enhancement values. These
areas are relatively less industrialized, more mountainous, and benefit from greater vegetation cover and lower population density,
contributing to their lower emissions and possible localized CO- uptake. Thanks to the spatial detail provided by our 1-km modeling,
we also identified intra-city variations. In both BTH and YRD, lower enhancements were generally found along coastal areas and
485 in city zones bordering regions with lower emissions, while higher values were concentrated in industrial belts and inland districts

with intensive energy use and limited ventilation.

Temporally, enhancement trends in both regions (Fig. 5 and S7) generally increased during the first decade and peaked around
2012, followed by a noticeable decline after 2013, aligning with the implementation of China’s major air quality initiatives,
490  particularly the Air Pollution Prevention and Control Action Plan launched in 2013 (Shi et al., 2022). Notably, BTH experienced
a sharp drop in enhancements in 2008, coinciding with the Beijing Olympics, when strict temporary measures were implemented
to reduce industrial output and improve air quality in the capital and surrounding areas (Okuda et al., 2011). The effectiveness of
these policies is reflected in the sustained downward trend in enhancements after 2013, supported by large-scale shifts toward
cleaner energy, industrial upgrades, and tighter emission controls. However, our results also indicate a rebound in XCO;
495 enhancements after 2018, particularly in the BTH region, potentially signaling a resurgence in economic activity and emissions.
Although BTH's overall enhancement in 2020 declined relative to 2019 due to the COVID-19 pandemic, the drop was less
pronounced than expected and remained higher than in previous years. Based on the 2012—-2018 trend, a greater reduction would
have been anticipated—suggesting that the lockdown may not have had a lasting suppressive effect on emissions, or that a rapid
post-lockdown recovery offset short-term gains. These findings underscore the need for more stringent and sustained carbon
500 control policies to prevent temporary improvements from reversing in the absence of long-term structural changes—particularly

in light of China’s carbon neutrality goals.

The COVID-19 lockdown in Wuhan further supports our findings, showing a variation pattern consistent with previous Wuhan-
specific (Zhang et al., 2023; Cole et al., 2020) that reported abrupt, large decreases (40-60%)) in fossil fuel activity and combustion
505  tracers during the strictest lockdown period. This agreement underscores the capacity of our high-resolution estimates and the
enhancement-based approach to capture short-term emission dynamics (Fig. 4; S7). We also observed markedly larger carbon
emission reductions in downtown Wuhan than in suburban areas, likely reflecting stricter mobility restrictions and enforcement in
the city center, where commercial, service, and transportation activities declined most sharply. Suburban zones likely maintained
higher emissions from industry and residential energy use, which were less affected or resumed earlier during reopening. Thus,

510 this case highlights the importance of considering intra-urban emission heterogeneity when designing emission control strategies.
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The more substantial reductions in city centers suggest that targeted policies addressing suburban industrial and residential
emissions are essential for achieving comprehensive and sustained emission reductions, especially under future low-carbon

development goals and emergency response scenarios.

515 5. Conclusions

In this study, we developed a long-term XCO- hindcast modeling framework that generates daily, 1-km atmospheric CO; estimates
across China for 2000-2020, extending coverage by 15 years prior to the availability of high-resolution OCO-2 observations. The
framework adapts the well-established PM. s hindcast approach to carbon modeling by training an Extremely Randomized Trees
model on the residuals between OCO-2 and CT XCO.. By integrating a comprehensive suite of physically interpretable, long-term

520 predictors, including MAIAC AOD, NO-, PAN, meteorological variables, and land-use indicators, the model provides physically
informed, data-driven reconstructions of atmospheric CO, with minimized bias and strong temporal continuity. The resulting high-
fidelity, fine-scale dataset enables detailed analyses of atmospheric carbon dynamics, intra- and inter-urban emission hotspots, and
long-term regional trends relevant to carbon-neutrality and climate-mitigation strategies. The key findings are summarized as
follows:

525 (1) We successfully extended daily, high-resolution XCO, data to a continuous 21-year period (2000-2020), by training a machine-
learning model on 2015-2020 samples and applying it hindcast XCO. predictions for earlier years. Comparative analyses confirmed
that the inclusion of CT data and residual modeling significantly improved the model’s robustness, especially for years without
satellite observations. SHAP importance analysis indicates that daily, high-resolution MAIAC AOD is a major contributor to
modeling XCO- over the densely populated regions of BTH, YRD, and PRD, further supporting the representation of high-

530  resolution variations in our XCO; estimates, particularly in unmonitored areas with intense human activity.

(2) The NCP emerged as the most persistent long-term XCO> hotspot, with Shandong and Henan provinces exhibiting the highest
concentrations. While XCO levels rose nationwide throughout the study period, regional trends shifted over time—uwith the NCP
region showing steeper increases during the first decade (2000-2010), and southern China exhibiting faster growth in the second
decade (2011-2020), suggesting evolving spatial heterogeneity in emissions.

535 (3) Enhancement analyses in the BTH and YRD regions, using adjacent mountainous areas as background, revealed distinct
emission hotspots in southeastern BTH and northern Zhejiang and southern Jiangsu. Notably, intra-city variation was evident, with
lower enhancements near coastal or lower-emission neighboring cities, and higher values in industrial inland areas. Following
declines from 2012 to 2018, enhancements rebounded in recent years across both megaregions, raising concerns about a potential
resurgence in emissions despite past control efforts.

540 (4) The case study of Wuhan during the COVID-19 lockdown further demonstrated the model’s capacity to capture short-term
emission dynamics. XCO- enhancements declined citywide, with sharper reductions in downtown areas compared to suburban
zones. This underscores the value of high-resolution XCO; data for evaluating policy impacts and designing targeted mitigation
strategies.

Although this study focuses on China, the framework is readily transferable to other regions or global applications, given its

545 reliance on publicly available predictors and a robust, generalizable methodology. The proposed XCO- hindcast framework and
dataset thereby offer a valuable resource for advancing carbon-cycle research, evaluating mitigation outcomes, and supporting

data-driven climate policy across multiple spatial and temporal scales.
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Supplement

Eight tables, and eight figures provide additional information regarding model development and evaluation results of XCO- high-

550 resolution modeling.
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