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Abstract. The silicate weathering feedback is a key planetary thermostat regulating Earth's long-term climate, yet process-

based models of this mechanism suffer from biases. The widely-used weathering model, when driven by stream power erosion 10 

laws, systematically overestimates weathering fluxes in the tropics and predicts a global total flux nearly double the 

observation-based estimates. This study demonstrates that this discrepancy partially originates from a poorly constrained 

erosion submodule. To resolve this, we developed a new global erosion model using a Random Forest algorithm trained on 

~4,000 ¹⁰Be-derived, basin-averaged erosion rates. Our data-driven model explains 90% of the variance in the observational 

erosion data, far exceeding the performance of the traditional Stream Power Incision Model (SPIM) and other existing 15 

approaches. By integrating this newly developed erosion module into a commonly used framework, we created a revised 

silicate weathering model, named MErSiM v1.0 (Machine-learning derived Erosion and Silicate-weathering Model). This new 

model successfully eliminates the systematic tropical overestimation, and its predicted global total flux (~3.1 × 10¹² mol C 

yr⁻¹) is now in better agreement with observations. More fundamentally, MErSiM resolves a critical trade-off in the original 

framework, now able to simultaneously match both the global total flux and the watershed-scale spatial pattern of weathering. 20 

Sensitivity experiments reveal that while MErSiM's response to glacial-interglacial climate change is comparable to previous 

work, its feedback to intense warming (4×CO₂) is profoundly attenuated (a 42% increase vs. 149% in the original model). This 

dampened sensitivity stems from a structural shift to a more supply-limited weathering regime, a finding supported by a newly 

calibrated set of "sluggish" chemical kinetic parameters. This work delivers a comprehensively evaluated and observationally 

constrained model, which suggests that the silicate weathering feedback may be a weaker climate stabilizer under extreme 25 

greenhouse conditions than previously thought. 
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1 Introduction 

The chemical weathering of silicate minerals on the Earth's continents one of the primary sinks for atmospheric carbon dioxide 

(CO2) on geological timescales (Berner et al., 1983; Walker et al., 1981). This process acts as a planetary thermostat, 30 

modulating global climate by providing a negative feedback loop: warmer, wetter conditions tend to accelerate weathering 

rates, leading to increased CO2 consumption and subsequent cooling (Brantley et al., 2023; Raymo and Ruddiman, 1993). 

Understanding the controls on silicate weathering is therefore fundamental to resolving the causes of past climate evolution, 

such as the long-term cooling trend throughout the Cenozoic, and to assessing the stability of the Earth system in the face of 

perturbations (Kump et al., 2000; Maher and Chamberlain, 2014). 35 

Numerical modeling provides an indispensable tool for quantifying weathering fluxes, especially for deep-time scenarios 

where direct measurements are challenging. Early models, from zero-dimensional frameworks like GEOCARB (Berner, 1991), 

to subsequent two-dimensional models such as the Gibbs and Kump Weathering Model (GKWM) (Bluth and Kump, 1994), 

the Global Erosion Model for CO2 fluxes (GEM-CO2) (Amiotte Suchet et al., 2003) and a model by Hartmann (Hartmann et 

al., 2009; Hartmann and Moosdorf, 2012) identified lithology and runoff as dominant controls on weathering. However, 40 

compilations of modern river basin data revealed that the spatial variability of weathering required a combined explanation of 

runoff, temperature, and crucially, physical erosion rates (Gaillardet et al., 1999). 

A major conceptual breakthrough came from West et al. (2005), who formalized the dual-control framework of weathering 

regimes. In transport- or supply-limited settings, typically flat, low-relief terrains, the rate of chemical transformation is 

constrained by the slow physical supply of fresh minerals to the weathering front, a process governed by the erosion rate (Fig. 45 

1a). Conversely, in kinetic-limited settings, such as steep, rapidly eroding mountains, fresh material is abundant, and the 

weathering rate is instead limited by the intrinsic speed of chemical reactions, which are sensitive to factors like temperature 

and water availability (West et al., 2005) (Fig. 1b). This led to the development of the one-dimensional dynamic weathering 

model by Gabet and Mudd (2009) (hereafter GM09), a process-based model for global silicate weathering. The model's core 

strength lies in its conceptual framework that the weathering rate (W) is co-limited by two distinct regimes (Fig. 1c). The 50 

GM09 model has thus become a popular tool, notably being integrated into larger Earth System Models like GEOCLIM to 

explore long-term climate-tectonic interactions (Godderis et al., 2017; Park et al., 2020). 
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Despite its conceptual strengths, evaluations of the GM09 model against modern observational data have revealed some 

weakness. The calibrated model presented by Park et al. (2020) (hereafter Park20) yields a present-day global silicate 

weathering flux of ~4.5 × 1012 mol C yr-1. This value nearly doubles the modern flux of ~2.5 × 1012 mol C yr-1 estimated from 55 

river chemistry compilations (Gaillardet et al., 1999) and also exceeds revised estimates of the modern global volcanic CO2 

outgassing rate (~2–3.3 × 1012 mol C yr-1) (Müller et al., 2022). Such an imbalance is large enough to plunge the planet 

into an extreme icehouse state within a few million years (Berner and Caldeira, 1997). 

Critically, this discrepancy is not randomly distributed over watersheds. It stems from a systematic overestimation of 

weathering fluxes specifically in tropical regions, a bias also supported by osmium isotope data (Rugenstein et al., 2021). It 60 

has been previously shown that this issue of systematic overestimation can be largely mitigated by recalibrating model 

parameters using alternative goodness-of-fit metrics (e.g., a combination of 𝑅! and 𝑅"#$! ) (Zuo et al., 2024) but the model's 

performance at the watershed scale, measured by the correlation between simulated and observed fluxes, remains low. Zuo et 

al. (2024) further hypothesized that the regional discrepancy originated not from the chemical kinetics component of the model, 

but from the calculation of surface erosion (E). The predominant importance of erosion on the silicate weathering has also 65 

been supported by geochemical evidence (Hilton and West, 2020; Wan et al., 2012). The original GM09 model, and many of 

its applications, utilize a simplified Stream Power Incision Model (SPIM) to estimate erosion, which may not adequately 

capture the complex reality of Earth's surface processes. Zuo et al. (2024) noticed that the overestimation in the tropics 

coincided with the widespread distribution of highly-weathered, erosion-resistant leached soil. By implementing an "patch"—

reducing erosion rates by an order of magnitude in areas with high Leaf Area Index (LAI), an approximate proxy for leached 70 

soil distribution—they successfully ameliorated both the systematic overestimation and the watershed-scale biases. However, 

the way in which erosion rate is reduced in the "patching" method is subjective and non-mechanistic, lacking a direct constraint 

from erosion observations and not generalizable. A more universally applicable and observationally-constrained erosion model 

is required. 

Modeling erosion at the global scale is challenging because it is a complex process governed by a non-linear interplay of 75 

multiple factors, including topography, climate, vegetation, and lithology. Previous models, like SPIM or simple slope-based 

functions, often capture only one aspect of this complexity and exhibit limited explanatory power. To overcome these 
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limitations, Zhao et al. (2026) turned to a data-driven approach using machine learning. Machine learning algorithms, 

particularly Random Forest, are exceptionally skilled at learning complex, high-dimensional, and non-linear relationships from 

data without pre-supposing a fixed functional form. The model of Zhao et al. (2026) performed well on the modern Earth when 80 

trained with high-spatial-resolution (~1 km) data, superior to other traditional models (see their Fig. 5), and the resulting 

nonlinear relationships between erosion and various factors from the model were physically reasonable.  

The primary goal of this paper is to develop, describe, and evaluate an improved global silicate weathering model. To achieve 

this, we pursue the following specific objectives: (1) To develop a new global erosion model using machine learning, with the 

primary difference from that in Zhao et al. (2026) being much lower spatial resolution is adopted here so that the model will 85 

be applicable to studying the deep-time Earth (for example the uplift-weathering hypothesis of late Cenozoic cooling). (2) To 

integrate this new data-driven erosion module into the GM09 weathering model framework, replacing the original, physically-

simplified submodule. (3) To rigorously evaluate the performance of the integrated model against modern observation-based 

weathering fluxes at both global and watershed scales, demonstrating its ability to resolve the long-standing issue of tropical 

overestimation. 90 

This paper is structured as follows: Section 2 details the GM09 model, the datasets, and the methodology used to develop and 

couple the new erosion model. Section 3 presents the results, focusing first on the performance of the new erosion model itself 

and then on the improved performance of the coupled weathering model. Section 3 also discusses the physical interpretations 

of our findings and their broader implications for understanding the global carbon cycle and paleoclimate. Finally, Section 4 

summarizes our main conclusions. 95 

2 Model and Data 

2.1 The Reference Silicate Weathering Model (GM09-SPIM) 

Our work improves upon the global silicate weathering model as implemented by Park et al. (2020). This implementation is a 

transient, time-varying version of the regolith model framework established by GM09. It simulates a chemically weathered 

profile, or regolith, that forms on top of unweathered bedrock (see Fig. 1). The model tracks the evolution of the regolith 100 

through a set of three coupled differential equations. 
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2.1.1 The Transient Model Formulation 

The core of the GM09 model describes the change in regolith thickness (ℎ, in meters) as a balance between the regolith 

production rate from bedrock (𝑃%, in m/yr) and the physical erosion rate at the surface (𝐸, in m/yr): 

𝑑ℎ
𝑑𝑡 = 	𝑃% − 𝐸	

(1) 105 

Simultaneously, the model tracks the evolution of the fractional abundance of weatherable primary minerals (𝑥, unitless) within 

the regolith. This concentration changes as a function of time (𝑡, yr) and depth (𝑧, m) due to both upward advection with the 

regolith column and chemical dissolution: 

𝜕𝑥
𝜕𝑡 = 	−𝑃% 	0

𝜕𝑥
𝜕𝑧1 − 	𝐾𝜏

& 	𝑥 (2) 

where 𝜏 is the time a given rock particle has spent within the regolith, and 𝐾𝜏& represents the dissolution rate constant, which 110 

depends on the local climate, exposure time (𝜏), and an empirical exponent (𝜎). The evolution of exposure time 𝜏 itself is 

tracked as: 

𝜕𝜏
𝜕𝑡 = 	−𝑃% 	0

𝜕𝜏
𝜕𝑧1 + 	1

(3) 

The net weathering rate for the entire regolith column (𝑊, in m/yr) is the integral of the chemical dissolution term over the 

full regolith thickness: 115 

𝑊	 =	9 𝐾𝜏& 	𝑥	𝑑𝑧	
'

(
(4) 

where z = 0 is at the base of regolith or the surface of bedrock. 

2.1.2 Parameterization of Model Components 

The key rates in the model (𝑃%, 𝐸, and 𝐾) are parameterized as functions of environmental conditions. The production rate (𝑃%) 

is modeled as the product of an "optimal" production rate 𝑃(	  and a soil-production function 𝑓(ℎ)  that describes how 120 

production decreases with increasing regolith thickness: 

𝑃% =	𝑃(	𝑓(ℎ) (5) 
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where the optimal rate 𝑃( (which occurs on bare bedrock) is dependent on runoff (𝑞; unit: m/yr) and temperature (𝑇; unit: K), 

following an Arrhenius relationship: 

𝑃( =	𝑘%)	𝑞	𝑒
*+,!- .	+

0
1"
201.3 (6) 125 

The soil-production function 𝑓(ℎ) takes an exponential form, where 𝑑( is a reference regolith thickness (m): 

𝑓(ℎ) = 	𝑒2
'
4" (7) 

In the original GM09 model, the physical erosion rate is parameterized using the Stream Power Incision Model (SPIM): 

𝐸	 = 	𝑘5𝑞6𝑆7 (8) 

where 𝑘5 is a proportionality constant, 𝑆 is the local slope (m/m), and 𝑚 and 𝑛 are exponents (typically 0.5 and 1). This SPIM 130 

formulation (Eq. 8) is the specific component that our new data-driven model replaces, as it is the primary source of the model's 

systematic biases. 

The dependence of the chemical dissolution rate constant on climate is captured by an empirical function that includes the 

effects of both runoff and temperature: 

𝐾	 = 	𝑘4(1	 −	𝑒28#	9)	𝑒
*+,!- .	+

0
1"
201.3 (9) 135 

where 𝑘4 and 𝑘: are empirical proportionality constants. 

2.1.3 The Steady-State Solution 

While GM09 is a transient model, for long-term geological applications it is typically run to a steady-state solution where the 

regolith thickness is constant (𝑑ℎ/𝑑𝑡	 = 	0). This implies that the regolith production rate equals the erosion rate (𝑃% = 𝐸). 

Under this assumption, the complex set of differential equations can be solved analytically. The weathering flux 𝑊 simplifies 140 

to an expression: 

𝑊	 = 𝐸 J𝑥|;<( − 𝑥|;<(𝑒
28$=0	2	5%&#	(>	5

)*+!, -	. /0"
%/012

&?0 +',.
34/

L	 (10) 

This steady-state solution (Eq. 10) is central to our study. It explicitly demonstrates that the total weathering flux is the direct 

product of the physical erosion rate (𝐸) and the total fraction of material that is chemically weathered. This highlights the 
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paramount importance of accurately estimating 𝐸 . An incorrect 𝐸  will propagate directly into an incorrect 𝑊 , which is 145 

precisely the problem we aim to solve. 

2.1.4 Data for the Weathering Model 

According to Equation (10), apart from the erosion module, weathering flux is also dependent on temperature and runoff. 

Mean annual temperature (𝑇; K) is derived from CRU TS version 4.03 (Harris et al., 2014), while runoff (𝑅; m/yr) is obtained 

from the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.0 employed in Park et al. (2020). Zuo et al. (2024) 150 

demonstrated that these datasets provide robust performance when applied to silicate weathering models. Note that 𝑅 is exactly 

the same as RUNOFF in the erosion module developed by Zhao et al. (2026), while 𝑇 is the same as MAT in the erosion 

module but transformed to unit of kelvin. 

Moreover, The Ca and Mg cation concentrations (𝑥) depend on the type of rocks. Lithology is from the Global Lithologic Map 

(GLiM) (Hartmann and Moosdorf, 2012), which provides 16 categorical rock types. We classified the rocks into six groups, 155 

following the approach of Park et al. (2020) and Zuo et al. (2024) (see Table S2). The Ca and Mg cation concentrations for 

each rock type can be obtained from the EarthChem database (http://portal.earthchem.org/, last accessed 23 May 2024). 

Sedimentary and metamorphic rocks, however, exhibit properties that strongly depend on their protoliths, introducing 

significant uncertainty into the estimation of silicate weathering fluxes. To address this, Park20 treated the cation 

concentrations of these two rock categories as adjustable parameters in their model, and the same strategy is applied in this 160 

study. 

2.2 Development of the New Data-Driven Erosion Model 

To address the limitations of the physically simplified SPIM model (Eq. 8), we developed a new global erosion model using a 

data-driven, machine learning approach as in Zhao et al. (2026). A key difference between the model here and that in Zhao et 

al. (2026) is the spatial resolution; the latter was trained with data of resolution ~1 km and can output erosion rate at the same 165 

resolution, while the former is aiming at a resolution of 0.5°×0.5°. The decrease in resolution is based on the consideration 

that any model intended for paleo-applications must perform reliably with lower-resolution inputs, and the silicate weathering 

model described above is widely used in deep-time climate evolution (Mills et al., 2021; Park et al., 2020). For example, the 
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paleo-digital elevation map (paleo-DEM) normally has a resolution of 0.5°×0.5° or 1°×1° (Scotese, 2021), and the paleo 

climate data has a resolution of 1°×1° (Li et al., 2022) or lower (Donnadieu et al., 2006; Valdes et al., 2021). Another important 170 

difference is that less predictors were used here than in Zhao et al. (2026), as will be described in detail in the subsection 2.2.2. 

It is unclear whether the model trained with high-resolution data in Zhao et al. (2026) can be fed with low-resolution data (for 

predictor variables; see below) and output reasonably good low-resolution erosion rate (target variable; also see below). To 

ensure the consistency between model fitting process and erosion rate predictions, as outlined by Larsen et al. (Larsen et al., 

2014) and Willenbring et al. (Willenbring et al., 2014), we use data of 0.5°×0.5° resolution to calculate the basin average 175 

environmental predictor values, and use the exactly same map to provide a global prediction. Although basin-average 

topography is strongly controlled by the spatial resolution (Larsen et al., 2014), tests in latter sections reveal that MErSiM 

based on a coarse-resolution DEM yielded comparable performance in predicting global pattern of erosion rate to that based 

on high-resolution DEM.  

2.2.1 Target Variable: Basin-Averaged Denudation Rates 180 

Our observational "ground truth" for erosion is derived from the OCTOPUS database (Codilean et al., 2018), which compiles 

¹⁰Be and other cosmogenic radionuclide (CRN) measurements from fluvial sediments (see Fig. 2 for data distribution and 

Supplemental material Section 1.1 for technical details). We utilized the global dataset of  ~4,100 basin-wide denudation rates 

(variable name is EBE_MMKYR, in mm/kyr) calculated from ¹⁰Be data using the CAIRN program (Mudd et al., 2016), 

assuming a standard rock density of 2650 kg/m3. 185 

We used the base-10 logarithm of the denudation rate as the target variable for machine learning. This transformation serves 

three purposes. First, it converts the highly right-skewed distribution of denudation rates into a more normal distribution, which 

is better suited for most regression algorithms (see Fig. S1). Second, it minimizes the influence of extreme outliers, enhancing 

model robustness.  

2.2.2 Predictor Variables 190 

The selection of predictor variables/features was guided by established geomorphic principles (Fig. 3). Because the OCTOPUS 

denudation rates are basin-averaged, all predictor variables were processed to represent basin-wide mean values. The sources, 
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coverage extent and time window of these variables finally selected are provided in Table S1 and their spatial distribution are 

shown in Fig. S2.   

Basin-mean slope (SLOPE; m/km) and elevation (ELEV; m) are calculated from the 0.5° × 0.5° topography map from Park20 195 

directly, whose topography was from the Shuttle Radar Topography Mission (Farr et al., 2007). When the global erosion rates 

are calculated on grids, we also take the slope and elevation data from Park20 directly. This data is used so that the silicate 

weathering fluxes calculated can be compared to those in Park20. 

Present-day mean annual temperature (MAT; ℃) is from CRU TS v.4.03 (Harris et al., 2014) and runoff (RUNOFF; m/yr) is 

from the "Yves" dataset from Geophysical Fluid Dynamics Laboratory (GFDL) CM2.0 as used in Park et al. (2020), which 200 

were shown by Zuo et al. (2024) to yield strong performance in weathering models. Precipitation of the wettest month (PWET; 

mm) is from WorldClim 2 (Fick and Hijmans, 2017), and is proved to be one of the most important climatic variables that 

determines the erosion rate in the detachment-limited regime (Zhao et al., 2026). Leaf Area Index (LAI, unitless) is from 

NCAR, derived from integrated land observations (Lawrence and Chase, 2007). Lithology (ROCK, unitless) is from the Global 

Lithologic Map (GLiM) (Hartmann and Moosdorf, 2012), which provides 16 categorical rock types (see Table S2).  205 

To obtain basin averages from the gridded climate, vegetation, and lithology data, we performed a spatial intersection using 

QGIS (a geographic information system software) so that each basin may be composed of partial grid cells. The value 

for each basin was calculated via area-weighted averaging for continuous variables (temperature, precipitation, runoff, LAI). 

For the categorical lithology variable, ROCK, we assigned a dominant rock type to a basin only if a single type covered >70% 

of its area; basins with more mixed lithologies were excluded to reduce ambiguity. After this filtering, our final dataset for 210 

training comprised 3,721 valid samples, each with seven predictor variables: SLOPE, ELEV, MAT, PWET, RUNOFF, LAI, 

and ROCK. 

We also tested the inclusion of peak ground acceleration (PGA; m/s2), which is an indicator of local tectonic activities. 

However, as it provided only a marginal improvement in model performance (ΔR² ≈ 0.017) and is difficult to reconstruct for 

geological history, it is excluded from the final model. Mean Diurnal Range (MDR; °C) is also excluded in this model because 215 

of the limited reconstruction ability in paleoclimate. Hence, another difference between the model here and that in Zhao et al. 
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(2026) is that less predictors are used herein. Vegetation is represented using LAI rather than Normalized Difference 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), because it is a more common output from earth system 

models. We also tested the effect of other climatic variables that were used in the model of Zhao et al. (2026), such as mean 

annual precipitation (MAP; mm/yr), seasonality of temperature (TSEASON; °C; the standard deviation of monthly 220 

temperature) and precipitation (PSEASON; defined as the ratio of the standard deviation of monthly mean to the annual mean 

precipitation rate, in unit %), temperature of the coldest month (TMIN; °C), all collected from WorldCLim 2 (Fick and 

Hijmans, 2017). However, adding these variables did not improve but deteriorate the performance on the calculation of both 

erosion rates and weathering flux when using 0.5°×0.5° data, especially the latter (Table 1), and thus not considered in this 

study. 225 

2.2.3 Machine Learning Algorithm Selection and Training 

We compared several supervised regression algorithms, including linear models, decision trees, gradient boosting, and Random 

Forest. While decision trees offer excellent interpretability, Random Forest consistently yielded the highest predictive accuracy 

(see Supplemental material section 1.2 and Fig. S3 for details). The Random Forest (RF) algorithm (Breiman, 2001) is an 

ensemble model that builds a multitude of decision trees and aggregates their predictions. It is particularly well-suited for 230 

environmental data due to its ability to handle complex non-linearities and its robustness to multicollinearity (e.g., the 

correlation between latitude, elevation, and temperature). 

The dataset was randomly split into a training set (80%) and a testing set (20%). We performed a grid search with 10-fold 

cross-validation on the training set to identify the optimal combination of hyperparameters. The search grid included: ntree 

(number of trees): [300, 500]; mtry (number of variables to sample at each split): [2, 5]; nodesize (minimum samples in a 235 

terminal node): [1, 5]; maxdepth (maximum tree depth): [10, 30]. The optimal combination that minimized RMSE was found 

to be: ntree=500, mtry=2, nodesize=1, maxdepth=30. The final RF model was trained on the full training set using these 

parameters and evaluated on the unseen testing set. 

To understand the drivers learned by the model, the importance of each predictor or feature variable is ranked based on the 

TreeSHAP method. TreeSHAP is a variant for tree-based machine learning models of SHapley Additive exPlanations 240 

(SHAP; (Lundberg and Lee, 2017), which is based on coalitional game theory (Shapley, 1953). TreeSHAP scores 
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(positive/negative or null) of each feature are the changes in the expected model prediction due to that feature. Specifically, it 

is the average change in the model's output when this feature is varied over all possible values, while keeping all other features 

constant. 

2.3 Model Coupling and Evaluation Setup 245 

2.3.1 Integration of the Machine Learning-based Erosion Model into GM09 

The trained RF model was used to predict a global map of erosion rates (𝐸-@) at 0.5° × 0.5° resolution. This data-driven erosion 

map was then used as the direct input for the erosion rate 𝐸 in the GM09 weathering model framework. We refer to the original 

model using the SPIM erosion law as GM09-SPIM, and our improved version with the new erosion map as MErSiM. 

2.3.2 Evaluation Framework 250 

To provide a robust and fair comparison, both the GM09-SPIM and MErSiM models were run using identical boundary 

conditions, including the same GLiM lithology map and climate forcing fields. The model outputs, generated at a 0.5° × 0.5° 

resolution were evaluated against established observational datasets. 

Our primary validation dataset for silicate weathering is the widely-used compilation by Gaillardet et al. (1999). This dataset 

provides observation-based estimates of silicate-derived Ca²⁺ and Mg²⁺ fluxes for 52 of the world's largest river basins. These 255 

fluxes are inferred from river water chemistry using an inverse method to deconvolve sources (atmospheric, carbonate, silicate, 

anthropogenic), which is particularly effective for large, lithologically complex catchments.  

Zuo et al. (2024) noted a significant discrepancy in the Amazon basin between the weathering flux reported by Gaillardet et 

al. (1999) (~0.02 mol m⁻² yr⁻¹) and that from the HYBAM (Hydrogeochemistry of the Amazon Basin) observatory (~0.07 mol 

m⁻² yr⁻¹), which consists of 32 smaller, well-monitored sub-catchments (Moquet et al., 2011, 2016). Instructed by the result of 260 

Zuo et al. (2024), we validate MErSiM using a combined dataset where the Amazon basin data from Gaillardet is replaced by 

the HYBAM data. Following community practice (Park et al., 2020; Zuo et al., 2024), we focus our main analysis on the 81 

non-overlapping major basins from this compilation. 

We assessed the agreement between modeled and observed fluxes for each basin using the coefficient of determination (R²). 

Following Zuo et al. (2024), we consider both the standard 𝑅! (calculated on direct values) and the R² calculated on log₁₀-265 
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transformed values (𝑅"#$! ). The former is sensitive to biases in total flux, while the latter better reflects the model's ability to 

capture the correct order of magnitude across diverse basins. We also use 𝑅! + 𝑅"#$!  as the final evaluating metric as Zuo et 

al. (2024). Note that 𝑅! + 𝑅"#$!  was also maximized for GM09-SPIM by searching the model parameter space (see Table 2 for 

the parameters that are searched), in addition to the model parameters previously fitted by (Park et al., 2020). By using this 

comprehensive evaluation framework, which includes multiple observational benchmarks, we can rigorously quantify not only 270 

if our new model (MErSiM) is better, but specifically how and where it improves upon the reference model GM09-SPIM.  

To ensure that our calibrated parameter set represents a robust optimal solution rather than an arbitrary point in a poorly 

constrained parameter space, we performed a comprehensive sensitivity analysis. Fig. S4 visualizes slices of the high-

dimensional parameter space, illustrating how model performance (quantified by the 𝑅! + 𝑅"#$!   metric) varies with changes 

in key parameters. The results demonstrate that our optimization has converged on a well-defined and constrained solution. 275 

Across the plots for the primary kinetic parameters (𝜎, 𝑘: , 𝑘%), Fig. S4a-c), a distinct high-performance region (the bright 

yellow "sweet spot") emerges, centered around our selected optimal values (indicated by the red boxes). The plots for 

lithological parameters (Fig. S4d-e) reveal that while the model performance is highly sensitive to the choice of 𝑘4, it is 

relatively insensitive to a wide range of cation concentrations for both metamorphic and sedimentary rocks, as long as 𝑘4 is 

within its optimal range. 280 

2.4 Sensitivity of Global Weathering Rate to Climate Change 

The climate sensitivity of global silicate weathering was tested for both cooling and warming, as was done in Zuo et al. (2024). 

For cold climates, the Last Glacial Maximum (LGM) was selected, using datasets from Zhang et al. (2022). MAT (the same 

as 𝑇 in Equation. (9) and (10) for calculating weathering flux), RUNOFF (also q in Equation (9) and (10)), LAI, and PWET 

are averaged over year 3971–4000 of the model output. For warm climates, the abrupt 4×CO2 experiment conducted with 285 

CESM2 (Danabasoglu et al., 2020) was used, with data obtained from the CMIP6 archive (https://esgf-metagrid.cloud.dkrz.de/, 

last access: 10 September 2025). MAT, RUNOFF, LAI and PWET were also from the last 30 years of the simulation results. 

In both cases, lithology, slope, and elevation were kept the same as the present. 
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3 Results and Discussion 

This section presents the main findings of our study. We first evaluate the performance of the new data-driven erosion model 290 

against existing models, and then examine the global erosion patterns predicted by MErSiM and compare them to the SPIM 

employed in the original GM09. Next, we analyse the internal workings of the machine learning model to understand the 

physical relationships it has learned. Finally, and most importantly, we present the results of the silicate weathering model 

(MErSiM), demonstrating its ability to resolve the systematic biases present in the original GM09-SPIM framework. 

3.1 Performance of the New Data-Driven Erosion Model 295 

The foundational hypothesis of this study is that the inaccuracies in global silicate weathering models stem primarily from a 

poorly constrained erosion module. Therefore, the first critical test is to demonstrate that our new erosion model, developed 

using a Random Forest (RF) algorithm trained on the OCTOPUS 10Be database, provides a better representation of real-world 

denudation rates compared to existing approaches. 

Figure 4 presents a direct, quantitative comparison of the predictive power of three different erosion models. In each panel, 300 

the x-axis represents the "ground truth" basin-averaged denudation rates derived from the OCTOPUS database, while the y-

axis shows the corresponding rates predicted by a given model. All the feature data of river basins input into the three models 

are the same, only methods of calculating erosion rates are different. Fig. 4a displays the performance of our newly developed 

Random Forest model. The data points form a tight, well-defined cluster centered directly on the 1:1 line across the entire 

range of denudation rates, from less than 1 mm/kyr in stable, low-relief settings to over 1000 mm/kyr in rapidly eroding, 305 

tectonically active regions. The calculated 𝑅"#$!  value is 0.94, signifying that model can explain more than 90% of the variance 

in the global 10Be-derived denudation rate database. This high degree of accuracy and low level of bias demonstrates the 

exceptional capability of the RF algorithm to learn the complex, non-linear relationships governing erosion from the provided 

multi-variate environmental data.  

Note that Fig. 4a looks similar to Fig. 7b in Zhao et al. (2026) but there are two major differences between the model there and 310 

RF model here. The first difference is that the model here has 7 predictors, 7 less than the model in Zhao et al. (2026). The 

second difference is that the model here is trained and validated with feature variables calculated from coarse-resolution (0.5° 

× 0.5°) data, compared to their 1 km × 1 km resolution.  
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Crucially, the performance of MErSiM significantly surpasses that of existing models. The original Stream Power Incision 

Model (SPIM) used in Park20 (Equation (8) above with 𝑘5 = 0.0029110,𝑚 = 0.5, 𝑛 = 1) shows a weak correlation with 315 

observations, explaining only ~20% of the variance (𝑅"#$!  = 0.23, Fig. 4c). The data points are not only diffuse, but also have 

significant systematic bias; they overestimate the actual denudation rates at the lower end and underestimate at the higher end. 

The improved model by Zuo et al. (2024), which incorporates a dependency on Leaf Area Index (LAI), offers a modest 

improvement but still only achieves an 𝑅"#$!   of 0.38 (Fig. 4d). This result quantitatively confirms the central premise of our 

work: the simplified, physically-based SPIM, while conceptually useful, has its apparent weakness in predicting basin-scale 320 

denudation rates at the global scale. Its limited explanatory power could be the root cause of the problems in the silicate 

weathering model. 

3.2 Global Erosion Patterns and Comparison with SPIM 

Having established the statistical excellence of the RF erosion model, we next examine its spatial predictions on a global scale 

and compare them to the patterns generated by the SPIM and model revised by (Zuo et al., 2024). This comparison is crucial 325 

for understanding why MErSiM ultimately corrects the weathering fluxes, by diagnosing the specific geographic regions where 

the old and new models diverge most significantly. 

Fig. 5 presents three global maps at a 0.5° × 0.5° resolution. The spatial pattern predicted by our random forest model (𝐸-@; 

Fig. 5a) are geomorphologically intuitive and consistent with modern tectonic and climatic knowledge. The highest rates of 

erosion (in red, exceeding 200 mm/kyr) are sharply localized to the world's major active orogenic belts: the Andes in South 330 

America, the Himalayan-Tibetan Plateau complex in Asia, the Alps in Europe, and the North American Cordillera. Conversely, 

vast continental interiors and stable cratons, such as central Australia, Siberia, the Canadian Shield, and large parts of Africa, 

are correctly depicted with very low erosion rates (in blue). This map represents a new data-constrained view of the Earth's 

long-term erosional engine. 

Figure 5c shows the corresponding global erosion map calculated using the SPIM formulation (𝐸ABCD) as in Park20. While the 335 

SPIM also captures the high erosion rates in major mountain belts, a critical and fundamental difference is immediately 

apparent in the tropics. The SPIM predicts extremely high erosion rates across vast, low-lying areas of the humid tropics, most 

notably the Amazon Basin, the Congo Basin, and the archipelagos of Southeast Asia. These regions are depicted in shades of 
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red and orange, suggesting erosion rates comparable to those in mountainous regions. This artifact is a direct consequence of 

the SPIM's mathematical form (Eq. 8), where the erosion rate is a power-law function of runoff (𝑞). In these regions, extremely 340 

high annual runoff overwhelms the effect of the very low topographic slopes, leading to a probably physically unrealistic 

prediction of intense erosion. 

Fig. 5d crystallizes this divergence by showing the difference between the two models (RF minus SPIM). The map is 

overwhelmingly dominated by shades of blue and deep blue in tropical regions. This signifies that our RF model predicts 

substantially lower erosion rates—in many areas, more than 100 mm/kyr lower—than the SPIM throughout these regions. This 345 

is the geographic fingerprint of the correction MErSiM provides. It has learned from the 10Be data that high runoff in low-

slope environments does not necessarily translate to high erosion rates, a crucial real-world constraint that the simplified 

physics of the SPIM fails to capture. The systematic over-prediction of tropical erosion by the SPIM is the direct mechanism 

for the subsequent over-prediction of tropical silicate weathering, a problem MErSiM aims to solve.  

Beyond this primary correction in the tropics, the difference map (Fig. 5d) reveals another important, albeit more subtle, 350 

pattern. Patches of blue are also visible along the crests of the highest mountain ranges, such as the Himalayas and the Andes. 

This indicates that our RF model also predicts lower erosion rates than the SPIM in these extremely steep landscapes. This 

result is consistent with a well-documented phenomenon in geomorphology where, above a certain slope threshold (often cited 

around ~30°, calculated using 90 m DEM), erosion rates tend to plateau or even decrease (Ouimet et al., 2009). This is often 

attributed to a shift from transport-limited to detachment-limited denudation, where the rate of soil and regolith production 355 

cannot keep pace with the transport capacity, leading to extensive bare bedrock exposure which is harder to erode (Binnie et 

al., 2007; Ouimet et al., 2009). The SPIM, with its power-law dependence on slope, cannot capture this saturation effect. Our 

data-driven RF model, however, has learned this more complex, non-linear relationship from the 10Be observations, as shown 

in detail in Zhao et al. (2026), further enhancing its physical realism compared to the simplified model. This demonstrates that 

the improvements offered by MErSiM are not confined to the tropics but extend to capturing more nuanced geomorphic 360 

processes in the world's most dynamic landscapes. Another notable difference is an increase in erosion rate emerged from 

Random Forest model's predictions than SPIM in high-latitude cold regions (above 45°N) of Northern Hemisphere (Fig. 5d). 
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This is mainly due to the model's identification of intense frost-cracking that set the pace of landscape evolution in cold 

climates, which we will analyse in detail in the next section.  

Zuo et al. (2024) also used the SPIM model to calculate erosion rate but lowered its value by approximately an order of 365 

magnitude wherever the LAI is greater than 2 (Fig. 5b). This was done to reduce the discrepancy between the simulated and 

observed silicate weathering fluxes especially in tropical regions. Fig. 5f shows how much and where the erosion rate was 

changed relative to the SPIM model. It can be seen that the crude approach adopted by Zuo et al. (2024) lowers the erosion 

rates over south east Asia islands and Amazon basins, but gives a systematically larger prediction of erosion rates in the 

mountainous regions (Fig. 5f). This is mainly because they applied the scaling method to keep the global erosion flux constant 370 

at 20 Gt/yr, which is the same as SPIM. Reductions of erosion rates in tropical regions therefore demand an increase in other 

regions, where those eroded the strongest increase the most after scaling. However, as discussed above, the erosion rates in 

these steep regions have already been overestimated in SPIM model. This bias is even larger in Zuo et al.’s revised erosion 

model (Fig. 5e). 

3.3 Interpretation of the Machine Learning Model: Feature Importance and Dependencies 375 

3.3.1 Dominance of Topography and Climate 

A common criticism of machine learning models is that they can be "black boxes," providing accurate predictions without 

revealing the underlying physical mechanisms (Breiman, 2001). To address this and build confidence in MErSiM's physical 

realism, we employed SHAP (SHapley Additive exPlanations) analysis. SHAP is a state-of-the-art method that assigns each 

feature an importance value for every individual prediction, allowing us to move beyond general rankings and understand the 380 

nuanced, non-linear effects of each environmental driver. We also calculate the spearman correlation of erosion rates and each 

feature. Fig. 6 and Fig. 7 provides insights into which environmental factors the model found to be most important and the 

nature of their relationships with erosion.  

Fig. 6a displays the global feature importance, calculated as the mean absolute SHAP value across all training samples. 

SLOPE emerges as the unequivocally dominant predictor, with a mean SHAP value of 0.6, nearly double that of the next most 385 

important feature. This finding is geomorphologically reassuring, as it aligns with geomorphic research and first-principles 

understanding (Milliman and Syvitski, 1992; Portenga and Bierman, 2011; Riebe et al., 2001), and also consistent with 
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previous data-driven analysis (Portenga and Bierman, 2011). It confirms that our data-driven model has independently learned 

that topography is the master variable controlling the pace of erosion at a global scale. 

Following slope, a group of climatic variables—MAT (Mean Annual Temperature) and RUNOFF—exhibit significant and 390 

comparable importance (SHAP values of 0.39 and 0.34, respectively). This highlights that after the primary topographic driver, 

the model relies heavily on climatic conditions to refine its predictions. Note that the influence of RUNOFF is secondary after 

SLOPE and even MAT, a contrast to the SPIM, where runoff is a dominant, first-order driver. The RF model has learned that 

high runoff only leads to high erosion when other conditions, primarily steep slopes, are met (see below).  

LAI (Leaf Area Index) follows as a moderately important factor, underscoring the role of vegetation in modulating erosional 395 

processes. PWET (Precipitation of the Wettest Month) and ELEV (Elevation) show lower, yet still relevant, importance, while 

ROCK (Lithology) has the least impact, suggesting that at a global scale, broad rock types are less predictive than the dynamic 

interplay of topography and climate. 

This order of importance, where slope ranks the first with significantly higher SHAP value, then following climatic variables 

with similar importance, and rock type ranks the last, is well consistent with that in Zhao et al. (2026), even when they have 400 

14 predictor features included.  

The Spearman correlation plot (Fig. 6b) shows strong positive correlations between erosion rate and SLOPE, and moderate 

positive correlations with ELEV and RUNOFF, indicating that steeper, higher, and wetter environments generally erode faster. 

MAT displays a negative correlation with erosion rate.  

To move beyond general feature rankings and understand the nonlinear effects of each predictor, we utilize SHAP dependence 405 

plots (Fig. 7). Each point on a SHAP dependence plot represents a single sample (i.e., a river basin) from our dataset. The 

horizontal axis indicates the actual value of the feature for that sample, while the vertical axis shows its corresponding SHAP 

value. The SHAP value itself quantifies the magnitude and direction of a feature's contribution to a single prediction, relative 

to the baseline (mean) prediction across all samples. Its units are the same as the model's output—in our case, logarithmic 

erosion rate. Here, our baseline is 4.4 (equivalent to an erosion rate of ~78 mm/kyr). This is the model's best prediction without 410 

any specific information. If we provide the model with the specific features of predictors: for instance, one of river basins in 

Dadu, SLOPE = 13.6°, MAT = 6.7°C, RUNOFF = 0.75 m/yr, and so on. The model processes these inputs and yields a final 
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prediction, 6.1 (equivalent to ~438 mm/kyr). The SHAP values explain precisely how the model arrived at this prediction by 

decomposing the difference between the final prediction (6.1) and the baseline (4.4). Each feature is assigned a SHAP value 

representing its individual contribution: 415 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	 + 	𝛴(𝑆𝐻𝐴𝑃	𝑣𝑎𝑙𝑢𝑒𝑠	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 	= 	𝐹𝑖𝑛𝑎𝑙	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

In this case, 𝑆𝐻𝐴𝑃AEFB, = 0.91, 𝑆𝐻𝐴𝑃DG1 = 0.14, 𝑆𝐻𝐴𝑃-HIF@@ = 0.34, 𝑆𝐻𝐴𝑃EGC = 0.28, 𝑆𝐻𝐴𝑃BJ,1 = 0.03, 𝑆𝐻𝐴𝑃,E,K =

−0.01, 𝑆𝐻𝐴𝑃-FLM = 0.03, then: 

4.4	 +	(0.91 + 0.14 + 0.34 + 0.28 + 0.03 − 0.01) = 4.4 + 1.7 = 6.1 

The resulting distribution of points thus reveals the overall relationship—be it linear, non-linear, monotonic, or more 420 

complex—between a feature's magnitude and its impact on the model's output. 

The SHAP value of SLOPE (Fig. 7a) is negative for gentle slopes (< ~3°), indicating that flat landscapes actively suppress 

erosion predictions. Above this threshold, the SHAP value increases steeply and almost linearly up to about 10-15°, after which 

the effect begins to saturate. This saturation is physically realistic and consistent with a shift from transport-limited to 

detachment-limited regimes in the steepest landscapes, a nuance that simple power-law models like SPIM cannot capture 425 

(Binnie et al., 2007; Ouimet et al., 2009). 

For MAT (Fig. 7b), the model has learned a complex relationship. When MAT is below ~10°C, SHAP values are positive and 

peak at ~0°C (i.e., cold temperatures push erosion predictions higher and this effect is the strongest around 0°C). This is 

consistent with the "frost-cracking window" hypothesis, which posits that erosion is maximized not in the absolute coldest 

environments, but in those that experience frequent oscillations across the 0°C threshold (Anderson and Anderson, 2010; 430 

Delunel et al., 2010). These freeze-thaw cycles generate substantial mechanical stress within bedrock fractures, leading to 

efficient rock breakdown and the production of a large volume of transportable sediment, even in the absence of steep 

topographic gradients (Hales and Roering, 2007). Above ~10°C, warmer temperatures are associated with lower erosion 

predictions, and this lowering effect remains the strongest around 20-25°C. This negative trend in warmer climates likely 

captures multiple effects, including the stabilization of landscapes by tropical leached soil (deeply weathered, erosion-resistant 435 

regoliths) as noticed before by Zuo et al. (2024). 
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The effect of RUNOFF (Fig. 7c) is highly non-linear and exhibits a clear optimal peak. Erosion predictions increase with 

runoff up to about 1.7 m/yr, after which higher runoff values lead to a decrease in predicted erosion. It suggests the model has 

learned that moderate runoff in transport-capable landscapes is the most effective to activate hydrological erosion (Carretier 

et al., 2013; DiBiase and Whipple, 2011). However, the decrease of variability in discharge with the increase of runoff under 440 

wetter conditions (e.g., > 2 m/yr) would result in a suppressed net impact on erosion (DiBiase and Whipple, 2011; Lague, 

2014; Perron, 2017). The asymmetric hump-shaped relationship has also been reported and discussed in detail in the statistical 

analysis of Zhao et al. (2026). This data-driven insight directly refutes the monotonic, power-law assumption of the SPIM. 

The SHAP plot for LAI (Fig. 7d) reveals its dual role. At very low LAI values (< ~0.5), it has a slight positive effect, likely 

reflecting arid or semi-arid environments where sparse vegetation is insufficient to stabilize mobile sediment. As LAI increases 445 

from ~0.5 to ~2.5, it exerts a strong negative influence on erosion, capturing the well-established stabilizing effect of root 

systems and canopy cover (Mishra et al., 2019; Prosser et al., 1995). Interestingly, at very high LAI values (> 3), the negative 

impact lessens. This could reflect the fact that the most densely vegetated regions on Earth are often flat, stable cratons where 

erosion is already intrinsically low, so additional vegetation has a diminishing marginal effect (Heimsath et al., 1997). 

The SHAP dependence plot of the least three variables (PWET, ELEV and ROCK) show their less significant effects on 450 

erosion rates and more ambiguous trends (Fig. S5), so the analyses of their effects are only briefly described in the 

supplementary material. 

3.3.2 Dominant Environmental Factors Revealed by the Decision Tree 

A representative decision tree from the Random Forest ensemble (Fig. 8) offers a powerful visualization of the complex 

hierarchical relationships learned by the model. The tree structure reveals that the importance of different variables is 455 

conditional and depends on the specific environmental context. 

The very first split at the top of the tree is based on SLOPE, with a threshold of 2.5° (calculated from DEM with 0.5° × 0.5°). 

This immediately separates the world into low-relief and high-relief domains, indicating that the fundamental drivers of erosion 

differ profoundly between these two settings. 

In the flattest parts of the world (SLOPE < 2.5°), the model turns to MAT. This is also seen in the analysis of Zhao et al. (2026) 460 

in their model with more predictors. In these areas, the effect of river incision is weaker and the rate of erosion may be more 
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strongly influenced by the rate of chemical decomposition or by freeze-thaw cycle (Anderson and Anderson, 2010; Delunel et 

al., 2010; White and Blum, 1995).  

LAI became an important predictor as the slope steepened (2.5° ≤ SLOPE < 6.3°), and the data-driven model calculated an 

LAI threshold of 2. This value is exactly the same as the threshold used for the modification of the erosion model in Zuo et al 465 

(2024), where the value was obtained by human judgement. Vegetation can prevent erosion by increasing surface roughness, 

disrupting overland water flow, and stabilizing the soil through the root system (Mishra et al., 2019; Prosser et al., 1995). The 

overall weak negative correlation between LAI and erosion rates and the branches in the decision tree suggest that vegetation 

primarily serves to reduce erosion. 

In steep landscapes (SLOPE >= 6.3°), the model identifies RUNOFF as the next most important variable, with thresholds of 470 

0.27 m/yr (Fig. 8). This suggests that in very steep terrain, there is an abundant supply of material, and the rate of regolith 

detachment becomes limited by the availability of water to move it (DiBiase and Whipple, 2011; Snyder et al., 2003; Tucker, 

2004). 

3.4 Impact on the Silicate Weathering Model 

Zuo et al. (2024) highlighted a critical trade-off in the original GM09 model: it was impossible to find a single set of parameters 475 

that could simultaneously match the global total flux and the spatial distribution of weathering across watersheds. Fig. 9 

visualizes this problem and demonstrates how our new model resolves it. 

The Fig. plots the model performance (R2 values) as a function of the resulting global weathering flux for all possible parameter 

combinations (the parameters and their ranges are listed in Table 2). The vertical grey bar indicates the target range for the 

global flux based on observations. Fig. 9a, representing the original GM09-SPIM model, clearly illustrates the trade-off. To 480 

achieve the highest 𝑅"#$!  value (the peak of the yellow curve), which measures the fit to the spatial pattern, the model must 

produce a global total flux (the x-axis value corresponding to the peak) far to the right of the observed range, giving an 

overestimation. Conversely, if one forces the model to match the observed global flux (where the curves intersect the grey 

bar), then the 𝑅"#$!  value is low, indicating a poor fit to the spatial pattern. Optimizing the parameter set by using 𝑅! metric as 

a target is even worse (red dots and curve in Fig. 9a). Optimizing the parameter set by using the sum of 𝑅! and 𝑅"#$!  guarantees 485 

a reasonable global total flux (blue dots and curve in Fig. 9a) but gives an unsatisfying spatial pattern; the sum of 𝑅! and 𝑅"#$!  
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peaks at only 0.55. This shows that the model cannot be both "right in total" and "right in pattern", which is why Zuo et al. 

(2024) chose to adjust the erosion rate in a partially subjective way in addition. 

Fig. 9b, showing the performance of our MErSiM model, demonstrates a resolution of this issue. The peaks of all three metric 

curves (𝑅!, 𝑅"#$! , and 𝑅! + 𝑅"#$! ) are now located squarely within the grey observational band. Specifically, the highest value 490 

of 𝑅! + 𝑅"#$!  reaches 0.86. This signifies that the MErSiM model achieves its optimal performance—its best possible fit to the 

watershed-scale data—at a global flux value that is already consistent with observations. The fundamental conflict between 

matching the total and matching the pattern has been eliminated. This result indicates that our MErSiM is not just a better-

tuned model, but a more physically coherent representation of the global silicate weathering system. By providing an accurate, 

data-constrained erosion field, we allow the weathering model's chemical kinetics to operate within a realistic physical context, 495 

leading to a robust and reliable simulation framework. 

The basin-wise improvement of weathering fluxes by the MErSiM model relative to the GM09-SPIM model is demonstrated 

in Fig. 10, where the difference between the modelled and observational values for 81 major river basins (see subsection 2.3.2) 

are shown. The GM09-SPIM model shows large positive error within the tropical regions, especially over South America and 

Africa (Fig. 10a-b),  with errors often exceeding 0.7 x 1011 mol/yr. The total weathering flux predicted by this model is ~4.5 × 500 

10¹² mol C yr⁻¹, an ~80% overestimate compared to the observation-based estimate of ~2.5 ± 0.5 × 10¹² mol C yr⁻¹. In 

comparison, the tropical overestimate is much less severe in MErSiM model (Fig. 10c-d). The errors are also much more 

balanced globally, with a mix of small positive and negative errors distributed across different climatic zones, giving a total 

weathering flux more align with observations (~3.1 x 10¹² mol C yr⁻¹).  

3.5 Sensitivity of global silicate weathering to climate change 505 

To evaluate how our revisions to the erosion module affect the feedback strength of silicate weathering, we conducted a series 

of sensitivity experiments using standardized climate forcing scenarios: the Last Glacial Maximum (LGM), the Pre-Industrial 

(PI), and an abrupt 4×CO₂ experiment. As shown in Table 3, the global mean land surface temperature increases by 8.2 K from 

LGM to PI, and by a further 14.5 K from PI to the 4×CO₂ scenario. We forced both the original Park20 model and our revised 

model (hereafter MErSiM) with these climate fields to assess their responses. 510 
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3.5.1 Reduced Absolute Fluxes and Attenuated Warming Sensitivity 

Consistent with our modern-day simulations, the MErSiM model predicts significantly lower absolute global weathering fluxes 

across all climate cases compared to the Park20 model (Table 3). The PI flux in MErSiM is 3.11 × 10¹² mol yr⁻¹, approximately 

2/3 of the 4.54 × 10¹² mol yr⁻¹ predicted by the Park20 model, bringing the weathering fluxes approximately within the range 

of observation-based estimates (Gaillardet et al., 1999; Moon et al., 2014). 515 

More importantly, our revised model exhibits a markedly different sensitivity to climate change. From LGM to PI, the 

weathering flux in MErSiM increases by 0.99 × 10¹² mol yr⁻¹, a relative increase of 47%. This is comparable to the 46% 

increase predicted by the Park20 model, suggesting that both models capture a similar weathering response to glacial-

interglacial warming (Fig. 11a). However, the response to intense warming in the 4×CO₂ scenario diverges dramatically. While 

the Park20 model predicts a massive increase in weathering of 6.77 × 10¹² mol yr⁻¹ (a 149% increase from PI), our MErSiM 520 

model predicts a much weaker response of only 1.33 × 10¹² mol yr⁻¹ (a 42% increase, Fig. 11b). This profound attenuation of 

weathering sensitivity under warm, high-CO₂ conditions is a key finding of our study and points to a shift in the weathering 

regime captured by our improved erosion module. 

3.5.2 Interpretation to the Reduced Sensitivity 

The dampened response of MErSiM stems from a combination of a structural change in the model's physics and a 525 

corresponding shift in its calibrated chemical parameters. 

The primary reason for the reduced sensitivity is the replacement of the simplistic SPIM erosion law with our data-driven, 

machine learning-based module. The SPIM creates a strong, near-universal positive coupling between runoff and erosion. 

Consequently, in a 4×CO₂ world with enhanced runoff, the Park20 model simulates a widespread, dramatic increase in erosion, 

continuously supplying fresh material and allowing chemical weathering to accelerate freely with rising temperatures. 530 

Our ML-based erosion model, constrained by ¹⁰Be data, imposes a ceiling on erosion rates. It has learned that in many 

landscapes—particularly those with low-to-moderate slope that constitute the bulk of Earth's land area—erosion is strongly 

constrained by topography and vegetation, and does not accelerate dramatically with increased runoff alone (Fig. 7a,c). 

Moreover, erosion rates are overall negatively correlated with mean annual temperatures (Fig. 6b), especially in the flattest 

areas, where higher temperatures tend to make it more difficult for freeze-thaw cycles to occur and erosion rates to decrease 535 
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(see decision tree in Fig. 8). As a result, when faced with the strong warming and hydrological intensification of the 4×CO₂ 

scenario, the acceleration of erosion due to enhanced runoff is largely offset, or even reversed, by the overall suppression of 

erosion by elevated temperatures, notably in the higher latitudes beyond 50° (Fig. 11d). Weathering fluxes are limited by the 

supply of erosion, effectively decoupling weathering from the large increase in chemical weathering potential due to 

temperature increase. 540 

The second reason is a new kinetic pattern reflected by calibrated parameters. To match modern observational constraints 

within this erosion framework, MErSiM calibration converged on a set of chemical kinetic parameters that describe a far more 

"sluggish" weathering system than that of Park20 (Table 2). The most significant changes are (1) a 5-fold decrease in the base 

dissolution rate constant (𝑘4) (5e-4 vs. 1e-4), lowering the intrinsic speed of chemical reactions; (2) a 5-fold decrease in the 

runoff sensitivity parameter (𝑘:) (1.0 vs. 0.2), making chemical weathering less responsive to increases in water availability. 545 

(3) a qualitative shift in the weathering time-exponent (𝜎) from -0.4 to positive -0.1, implying a slower decay of reaction rates 

as minerals reside in the regolith.  

These parameters are not arbitrary. The model has discovered that to explain today's weathering fluxes in a world where erosion 

is not as dynamic as previously assumed, the chemical processes themselves must be inherently slower and less sensitive. This 

finding is supported by several lines of evidence and theoretical work. A long-standing challenge in geochemistry is the 550 

dramatic discrepancy, often spanning several orders of magnitude, between mineral dissolution rates measured in the 

laboratory and those observed in the field (White and Brantley, 2003). The 5-fold lower dissolution constant (𝑘4) value derived 

from our calibration reflects a large-scale effective rate compared to the rapid rates seen on fresh mineral surfaces under ideal 

laboratory conditions. This rate is naturally attenuated by processes such as the formation of passivating secondary mineral 

coatings, the reduction of reactive surface area over time, and the complexities of fluid flow paths within the regolith.  555 

This finding can also be explained by the hydrologic regulation framework of Maher & Chamberlain (2014), which posits that 

weathering fluxes are governed by the competition between fluid travel time (𝜏N) and the time required for reactions to 

approach equilibrium (𝜏59). Our results can be interpreted through the lens of their Damköhler number formulation. The high 

dissolution constant (𝑘4) in the Park20 model implies a very short intrinsic equilibrium time (𝜏59), suggesting a system that 

can rapidly approach its "thermodynamic limit." This allows weathering fluxes to scale aggressively with increased runoff, 560 
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particularly in high-relief areas. In contrast, the 5-fold lower 𝑘4  value and altered kinetic exponent (𝜎) derived from our 

calibration describe a system with a much longer intrinsic 𝜏59. According to Maher & Chamberlain (2014), weathering fluxes 

plateau and become limited when fluid travel times become short relative to the equilibrium time (𝜏N < 𝜏59). In a warmer world 

with a greatly intensified hydrologic cycle, runoff increases, leading to a global decrease in 𝜏N. For the Park20 model, with its 

inherently short 𝜏59, the system relatively remains in a state where 𝜏N > 𝜏59, and weathering fluxes continue to climb even with 565 

shorter time for chemical reaction. However, for our revised model, this widespread decrease in 𝜏N causes vast terrestrial areas 

to be pushed into the regime where equilibrium could not be fully established. In this state, the system becomes "chemostatic". 

Solute concentrations decrease as runoff increases, and the overall weathering flux saturates. The lower runoff sensitivity (𝑘: 

= 0.2) in our revised model is a direct macro-scale expression of this saturation effect. Our model has learned from the data 

that, on a global scale, many landscapes already operate closer to this chemostatic boundary than previously assumed. 570 

Consequently, under the intense hydrological forcing of a 4×CO₂ world, they cannot deliver a proportionally large increase in 

weathering flux. 

3.6 Scope of Applicability and Model Limitations 

MErSiM v1.0 is primarily designed for integration into Earth System Models (ESMs) and geochemical box models to simulate 

the long-term carbon cycle and climate evolution on geological timescales (105 to 107 years). The model is specifically 575 

optimized for deep-time paleo-applications where boundary conditions (e.g., paleogeography, lithology, and climate fields) 

are often constrained to coarse resolutions. By operating at a spatial resolution of 0.5°×0.5°, MErSiM strikes a balance between 

capturing regional heterogeneity in weathering fluxes—such as the high fluxes in orogenic belts —and maintaining 

computational efficiency for long-term simulations. The model is particularly suitable for investigating the silicate weathering 

feedback under extreme climate states, such as greenhouse worlds, where it resolves the biases of traditional power-law erosion 580 

models. 

Despite its improvements, the model has several limitations that users should consider. First, the erosion module is a data-

driven Random Forest model trained on modern basin-averaged 10Be denudation rates. While we identified physical drivers 

(slope, runoff, temperature) consistent with geomorphic principles, the application to deep-time scenarios assumes that the 

fundamental relationships governing erosion have remained consistent. Caution is advised when applying the model to eras 585 
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with fundamentally different surface conditions (e.g., pre-vegetation landscapes in the Precambrian), although the explicit 

inclusion of LAI as a predictor allows for some sensitivity testing. 

Second, the model is trained and validated at a basin-averaged scale using 0.5°×0.5° resolution inputs. It is not intended for 

local, hillslope-scale geomorphological studies or for capturing short-term transient erosion events (e.g., landslides or 

individual storms) that are smoothed out in long-term average denudation rates (Larsen and Montgomery, 2012). 590 

Third, while MErSiM incorporates the Global Lithologic Map (GLiM) categories (Hartmann and Moosdorf, 2012), the 

chemical weathering calculations for complex lithologies (sedimentary and metamorphic rocks) rely on calibrated bulk cation 

concentrations (Park et al., 2020). This approach neglects the specific mineralogical evolution within sedimentary basins over 

time, which introduces uncertainty when detailed lithological reconstructions are unavailable. 

Last but not least, the current version of MErSiM primarily operates under a steady-state assumption for regolith thickness 595 

(where production equals erosion) to derive weathering fluxes efficiently (Gabet and Mudd, 2009). While suitable for long-

term carbon cycle modelling, this assumption may limit its applicability in scenarios with extremely rapid tectonic uplift or 

climatic perturbations where the transient response of the regolith is the primary focus. 

4 Conclusions 

This study was motivated by a critical and systematic flaw in the state-of-the-art, process-based global silicate weathering 600 

model (GM09), which overestimates weathering fluxes in tropical regions and produces a global total flux nearly double the 

observation-based estimates. We have demonstrated that this discrepancy originates not in the model's chemical kinetics but 

in its physically oversimplified and poorly constrained erosion submodule. To resolve this, we developed a new global erosion 

model using a Random Forest algorithm trained on about 4,000 ¹⁰Be-derived denudation rates. This data-driven model 

represents a step-change in predictive power, explaining over 90% of the variance in the observational data and far exceeding 605 

the performance of the traditional Stream Power Incision Model (SPIM) and other existing approaches. By integrating this 

superior erosion module into the GM09 framework to create the MErSiM v1.0 model, we successfully resolved the primary 

issues plaguing the original version. The MErSiM model eliminates the systematic tropical overestimation, and its predicted 

global total silicate weathering flux (~3.1 x 10¹² mol C yr⁻¹) is now in agreement with observations. More fundamentally, this 

work corrects a structural flaw in the original model, which was unable to simultaneously match the global total flux and the 610 
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watershed-scale spatial pattern of weathering. Our improved model achieves its optimal performance at a global flux value 

consistent with observations, indicating it is not just better calibrated but is more physically coherent and robust. Ultimately, 

this work delivers a comprehensively evaluated, structurally improved, and observationally constrained model for global 

silicate weathering. It provides a more trustworthy tool for quantifying the climate sensitivity of the weathering, representing 

a critical step forward in our ability to simulate the deep-time co-evolution of the solid Earth, its climate, and the global carbon 615 

cycle. Specifically, the improved model reveals a profoundly attenuated weathering sensitivity under warm, high-CO₂ 

conditions. This dampened response, in stark contrast to the original GM09 model, stems from MErSiM's ability to capture 

the transition toward a more "chemostatic" weathering regime, where fluxes become decoupled from rising temperatures. 

 

 620 
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Figure 1: Conceptual diagram of the core of the GM09 model. 

 (a) Transport-limited regime, usually in flat regions, where the weathering rate is constraint by how fast fresh rock is exposed. 

(b) Kinetic-limited regime, mostly in steep mountainous regions, where the weathering rate is mostly constraint by how fast 

the chemical reaction could happen. (c) A schematic representation of GM09 in a single profile at steady state. Rock particles 625 

leave the unweathered bedrock at the production rate and pass vertically through the clastic rock at a height of h. In the steady 

state, the amount of rock production and physical erosion are equal. 
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Figure 2: The geographical extent and distribution of global Be isotope erosion rate dataset. 630 

 

 
Figure 3: Cartoon showing the environmental factors that influence denudation rates. 
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 635 
Figure 4: Scatter of predicted basin denudation rates by different methods vs. observations from OCTOPUS.  

The observed erosion rates are plotted against the model-predicted rates (y-axis) for (a) our Random Forest (RF) model, (b) 

the LAI-modified model from Zuo et al. (2024), (c) the original SPIM from Park et al. (2020). The diagonal line represents the 

1:1 relationship. Both axes are on a logarithmic scale to accommodate the multi-order-of-magnitude range of erosion rates 

observed globally. The coefficient of determination for the logarithmic values (𝑅"#$! ) is used as the primary metric of 640 

performance, indicating the proportion of variance in the observed data that is explained by the model. All the inputs of these 

models are from the same compilation of basin-average variable values. 
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Figure 5: Global erosion rate map calculated by different erosion models and their differences. 645 

 (a) Global erosion rate map with 0.5 degree by 0.5-degree resolution calculated from our random forest model (RF). (b) Global 

erosion rate map calculated from the LAI-modified erosion model by Zuo et al. (2024) (denoted as LAI). (c) Global erosion 

rate map calculated from the Stream Power Incision Law model (SPIM), with parameters from Park et al. (2020). Global 

erosion rate map Rates exceeding 200 mm/kyr are still depicted in dark red. (d) Difference between RF and SPIM-calculated 

erosion rates, with RF predicting significantly lower values in the tropics and the steepest mountainous regions. (d) Difference 650 

between RF and LAI-calculated erosion rates. (e) Difference between LAI and SPIM-calculated erosion rates. 
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Figure 6: Importance and correlation of predictor variables. 

 (a) Importance ranking of feature variables for predicting erosion rates shown by mean SHAP absolute value. (b) Spearman 655 

rank correlations of each variable against erosion rate. 
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Figure 7: SHAP dependence plots for the 4 main predictor variables used in the Random Forest erosion model. 

Each point represents a single river basin from the training dataset. The SHAP value quantifies the feature's contribution to the 

final prediction for that specific watershed in units of logarithmic erosion rate. Positive SHAP values indicate a contribution 660 

that increases the predicted erosion rate, while negative values indicate a contribution that decreases it. The red line is a LOESS 

smooth curve illustrating the average trend, with the shaded area representing the confidence interval. The plots reveal the 

complex, non-linear marginal effect of each variable on the model's predictions, such as (a) the saturating effect of high SLOPE, 

(c) the influence of MAT reflecting frost-cracking in cold regions, (c) the hump-shaped impact of RUNOFF, and (d) bimodal 

effect of vegetation LAI. 665 
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Figure 8: An example decision tree trained on training dataset (random 80% of the whole dataset).  

Branch lines show bifurcation thresholds; end nodes display logarithms of predicted denudation rates and proportions of all 

samples. 670 
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Figure 9: Result of parameter tests for GM09-SPIM and MErSiM. 

 (a) The 𝑅! (red), 𝑅"#$! (yellow), and 𝑅! + 𝑅"#$!  (blue) of all possible combinations of the parameters. Instead of showing all 

the dots, only the envelopes (one for each color) are shown for the sake of clearness; the envelopes are obtained by curve 

fitting (cubic spline interpolation), and the data points used to do the fitting are still shown in the figure. (b) is the same as 675 

panel (a), except that the erosion module is replaced by random forest results. The black vertical line and grey zone show the 

observed weathering flux and its uncertainty range. 
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Figure 10: The difference (model − observation) in silicate weathering fluxes for 81 large rivers. 

 (a) The distribution of model-obsevation difference of original GM09-SPIM model. (c) is the same as panel (a), except that 680 

the erosion module is replaced by random forest results. (b)/(d) The scatter plot of model-observation difference. 
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Figure 11: The difference of weathering and erosion for climate scenarios. 

 (a) Difference of MErSiM modelled PI weathering flux from LGM weathering flux (mol/yr). (b) Difference of MErSiM 685 

modelled abrupt 4xCO2 scenario weathering flux from PI weathering flux (mol/yr). (c) Difference of RF modelled PI erosion 

rate from LGM erosion rate (mm/kyr). (d) Difference of RF modelled abrupt 4xCO2 scenario erosion rate from PI erosion rate 

(mm/kyr) 
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Table. 1 Summary of experiment sets. R2 for erosion is calculated on the validation dataset (20% of the total dataset). 690 

R2 for weathering is the highest 𝑹𝟐 +𝑹𝒍𝒐𝒈𝟐  searched in the parameter space. 

The baseline erosion model includes six basic predictors, namely SLOPE, ELEVATION, MAT, LAI, RUNOFF and ROCK. 

The optimistic model is marked as bold black values (Pwet_only). 

Experiment PWET PSEASON TSEASON TMIN MAP 

Erosion 

validation 

maximum 

R2 

Weathering 

validation 

maximum 

R2 

Baseline × × × × × 0.81 0.75 

Pwet_only √ × × × × 0.85 0.86 

Pseason_only × √ × × × 0.83 0.70 

Tseason_only × × √ × × 0.83 0.67 

Tmin_only × × × √ × 0.82 0.75 

MAP_only × × × × √ 0.81 0.65 

Pwet_Pseason √ √ × × × 0.84 0.71 

Pwet_Tseason √ × √ × × 0.83 0.73 

Pwet_Tmin √ × × √ × 0.80 0.75 

All_added √ √ √ √ √ 0.87 0.68 

 

  695 
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Table. 2 Model parameters and their values to be searched. 

The values with (P) represent the optimal parameters selected by Park20. The values with (M) represent the optimal parameters 

selected by our MErSiM model. The values with (S) represent the optimal parameters refitted for GM09-SPIM using the new 

evaluation metric in the new parameter space. Although the range of the cation concentration of metamorphic rocks overlaps 

with the sedimentary rocks, it is constrained so that the former must be larger or equal than the latter during the search. 700 

𝒌𝒅 𝒌𝒘 𝝈 𝒌𝒓𝒑 Concentration (mol m-3) 

(unitless) (unitless) (unitless) (unitless) Metamorphic Sediment 

𝟓 × 𝟏𝟎2𝟔	 1 × 102X −0.5	 1.2 × 102X	 1500(M,S)	 500	

𝟏 × 𝟏𝟎2𝟓	 2 × 102X −0.4(P,S)	 2 × 102X	 2000	 1000	

𝟐 × 𝟏𝟎2𝟓	 5 × 102X −0.2	 3 × 102X	 2500(P)	 1500(M,S)	

𝟓 × 𝟏𝟎2𝟓	 1 × 102! −0.1(M)	 4 × 102X	 3000	 2000(P)	

𝟏 × 𝟏𝟎2𝟒(M)	 2 × 102! 0	 5 × 102X	 3500	 2500	

𝟐 × 𝟏𝟎2𝟒(P)	 5 × 102! 0.1	 6 × 102X	 4000	 3000	

𝟓 × 𝟏𝟎2𝟒	 1 × 1020 0.3	 7 × 102X	 	 	

𝟓 × 𝟏𝟎2𝟒(S)	 2 × 1020(M) 	 8 × 102X	   

𝟏 × 𝟏𝟎2𝟑	 5 × 1020 	 9 × 102X	   

𝟐 × 𝟏𝟎2𝟑	 1(P,S) 	 1 × 102!(P)	   

𝟓 × 𝟏𝟎2𝟑	  	 1.5 × 102!	   

𝟏 × 𝟏𝟎2𝟐	  	 5 × 102!(M,S)	   

 

Table. 3 Sensitivity of global silicate weathering to climate. 

Variable 
Climate case 

LGM PI Abrupt4 × CO2 PI-LGM 4 × CO2-PI 

Land surface temperature (K) 278.4 286.6 301.1 8.2 14.5 

Global Ca2+ + Mg2+ 

(×1012 mol yr−1) 

Park20 model 3.10 4.54 11.31 1.44 (46%) 6.77 (149%) 

Revised model 2.12 3.11 4.44 0.99 (47%) 1.33 (42%) 
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Code and Data availability 705 

The source code for MErSiM v1.0, including the R scripts for the erosion module and Python scripts for the weathering module, 

is available at https://doi.org/10.5281/zenodo.18015309 (Zhao, 2025). The repository includes a detailed User Manual 

describing the installation and execution steps. 

 

System Requirements 710 

The model consists of scripts written in R (v4.0+) and Python (v3.8+). It requires standard desktop hardware (minimum 8GB 

RAM recommended). Key dependencies include the randomForest and caret packages for R, and numpy, netCDF4, and pandas 

for Python. 

 

License 715 

The model code is distributed under the the Creative Commons Attribution license, allowing for reuse and modification with 

proper citation. All input datasets used in this study (including GLiM lithology, CRU climate data, and OCTOPUS cosmogenic 

nuclide data) are cited in the main text and are available from their respective original sources or included in the processed 

format within the Zenodo repository. 

 720 
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