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Abstract. Wind-driven redistribution of snow and resulting heterogeneous snow accumulation poses a major uncertainty in
mountain hydrology and distributed glacier mass balance models as it is often neglected. High-quality information on the fine-
scale wind structure is crucial to predict snow redistribution, but past approaches either relied on highly simplified assumptions
or on computationally expensive numerical simulations, inhibiting the application for long-term studies.

To bridge this gap, we introduce SNOWSstorm — the snow drift sublimation and transport model. It is designed as a deep-
learning based emulator model, that is trained on data from high-resolution (Az =50 m) numerical simulations in semi-
idealized conditions, to be applicable over a wide range of atmospheric conditions and for a wide range of mountain regions.
The model can be driven with input of standard atmospheric variables from coarse- to meso-scale numerical models and
predicts near-surface wind fields, and rates of wind-driven snow mass change, drifting snow sublimation and snow transport.
Validation experiments show that the model reproduces major terrain-induced flow features as well as patterns of snow redistri-
bution. In a first real-world application study in the European Alps, SNOWSstorm predicts wind fields and drifting snow patterns
comparable to nested numerical large-eddy simulations, though at more than five orders of magnitude less computational ex-
pense. The model thus shows the potential to be used in future studies on multi-seasonal influence of snow redistribution on

glacier mass balance in various climatic settings.

1 Introduction

Snow accumulation in mountain environments can strongly differ over short distances. This heterogeneous snow accumulation
can play an essential role in mountain hydrology, glacier mass balance or avalanche risk. Therefore, a representation of this
variability is crucial for reliable glacier projections, run-off forecasts, weather predictions and avalanche risk assessments. The
underlying processes leading to the variability in snow accumulation are classically divided into pre- and post-depositional
processes (Mott et al., 2018). Pre-depositional processes include orographic precipitation enhancement, cloud-microphysical
and thermodynamic interactions of snow particles with the surrounding atmosphere, as well as interaction with near-surface
flow features leading to preferential deposition of snowfall (e.g. Zingl, 2007; Houze, 2012; Mott et al., 2014; Vionnet et al.,

2017; Gerber et al., 2019). Post-depositional redistribution mainly takes place due to avalanches and drifting and blowing snow.
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This encompasses snow being eroded from the ground given strong enough wind shear, potentially getting mixed over deep
layers, transported by the wind and deposited at sheltered locations (Mott et al., 2018).

These processes span a wide range of spatial scales. Erosional and depositional snow bedforms have scales of centimeters
to several meters (Filhol and Sturm, 2015), and drifting snow leads to heterogeneities in snow height distribution at the scale
of meters (Mott et al., 2011; Voordendag et al., 2024), while suspended snow may be transported over distances of hundreds
of meters. Therefore even simulations at resolutions of five meters may not represent processes at all relevant scales (Mott and
Lehning, 2010). However, major slope-scale patterns of redistribution can be captured with resolutions on the order of tens of
meters (Mott and Lehning, 2010; Voordendag et al., 2024). Additionally to the mere mass redistribution effect of drifting and
blowing snow, sublimation from airborne snow particles and the resulting cooling and moistening effect on the surrounding
atmosphere (Groot Zwaaftink et al., 2011; Lundquist et al., 2024; Reynolds et al., 2024; Saigger et al., 2024; Sigmund et al.,
2025) can have substantial influence. Apart from that, alternation of the snow surface structure due to drifting snow (Filhol
and Sturm, 2015) has been shown to influence near-surface patterns of air flow and turbulent exchange, as well as subsequent
snow redistribution patterns (Mott et al., 2010; Vionnet et al., 2013; Amory et al., 2017). In the past, modeling approaches to
represent drifting snow have been implemented with various degrees of complexity, spanning from empirical, diagnostic and
one-dimensional approaches (e.g., Liston and Sturm, 1998; Déry and Yau, 1999; Winstral and Marks, 2002; Warscher et al.,
2013) to drifting snow modules integrated into numerical atmospheric models (e.g., Sauter et al., 2013; Vionnet et al., 2014;
Sharma et al., 2023; Saigger et al., 2024)

In glaciological contexts, redistribution of snow by wind and avalanches has long been recognized as an important contributor
to glacier mass balance (Cuffey and Paterson, 2010; Sauter et al., 2025). For example, Terleth et al. (2023) found that drifting
snow contributes 18.7% to the winter mass balance of Storglacidren, Sweden. Temme et al. (2023) could improve their surface
mass balance simulations in Cordillera Darwin, Chile, when including a simple redistribution scheme. On the other hand,
drifting snow sublimation has been shown to be the dominant ablation term for glaciers in Pascua Lama, Dry Andes of Chile
(Gascoin et al., 2013). Locally, surface albedo and thus energy balance is highly influenced by the presence of snow on the
surface (Cuffey and Paterson, 2010) and therefore can be changed by exposing or covering bare ice due to redistributed snow.
Despite this importance, most recent studies with distributed energy and mass balance models neglect redistribution of snow
(e.g., Mortezapour et al., 2020; Blau et al., 2021; Abrahim et al., 2023; Khadka et al., 2024; Noé¢l et al., 2025; Oulkar et al.,
2025). However, even when including drifting snow in mass balance calculations, lacking detail in the wind field can still cause
large differences between measured and modeled snow accumulation (Lambrecht and Mayer, 2024; Temme et al., 2025).

The availability of high-resolution wind fields poses a major challenge in modeling wind-driven redistribution and snow
fall heterogeneity in mountain environments. Nested large-eddy simulations (LES) were proven to successfully represent wind
systems in complex terrain (e.g., Umek et al., 2021; Goger et al., 2022) and to capture the interaction with snow redistribution
and precipitation mechanisms (Vionnet et al., 2017; Gerber et al., 2018, 2019; Voordendag et al., 2024). However, due to the
high computational demands this approach could only be applied to short case studies over small domain sizes. To circumvent
this problem for longer analysis time frames, a number of approaches were introduced to predict high-resolution wind fields at

low computational cost. These include e.g. extrapolation of observed wind based on topographic descriptors (Liston and Elder,
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2006; Strasser et al., 2008; Schirmer et al., 2011) or wind library approaches with pre-computed wind fields from diagnostic
downscaling tools like WindNinja (Wagenbrenner et al., 2016; Vionnet et al., 2021; Marsh et al., 2023) or numerical models
under idealized atmospheric conditions (Dadic et al., 2010; Helbig et al., 2017, 2024). Reynolds et al. (2023) introduced
HICAR as the high-resolution version of the Intermediate Complexity Atmospheric Research model (ICAR, Gutmann et al.,
2016; Horak et al., 2021) building on linear mountain wave theory that achieves a speedup factor of 594 compared to numerical
simulations with the Weather Research and Forecasting Model (WRF).

In recent years, machine learning (ML) methods have gotten large attention in the atmospheric sciences and specifically for
downscaling tasks (Molina et al., 2023) due to their computational efficiency. For wind fields in mountain regions at meso-
scale resolution such models have been introduced trained on operational numerical weather predictions (Miralles et al., 2022;
Dupuy et al., 2023; Sekiyama et al., 2023). Dujardin and Lehning (2022) and Le Toumelin et al. (2023) developed ML-based
downscaling models for near-surface wind in complex terrain at very high spatial resolution of 50 and 30 m, respectively.
For this, Dujardin and Lehning (2022) trained their model on data from weather stations and high-resolution digital elevation
models in Switzerland. The model of Le Toumelin et al. (2023) used the data set of idealized numerical simulations of Helbig
et al. (2017) as training data. Despite the successful implementation, this model has the shortcomings of assuming a neutral
stratification of the atmosphere, neglecting turbulent motions and assuming a linear dependence in the wind velocity.

Building on these recent developments, we present in this work a new downscaling model, that is tailored towards assessing
near-surface winds and redistribution of snow in mountain environments and that addresses the shortcomings of earlier models.

With our model, the snow drift sublimation and transport model (SNOWstorm), we specifically aim for these characteristics:

parallel prediction of near-surface winds, snow mass change rate on the ground, sublimation from airborne snow particles

and snow transport rate,
— large speed up rate compared to conventional numerical simulations of several orders of magnitude,

— direct applicability of the model over a wide range of regions world wide given only high-resolution terrain information

and standard atmospheric input variables at large- to meso-scale resolution,
— representation of non-linear responses to changes in the atmospheric background conditions,
— representation of turbulent motions in the atmosphere,
— representation of interactions between drifting snow and the background atmosphere.

With these requirements in mind, we build a ML-based emulator model that is trained on a set of semi-idealized numerical
simulations in LES setup which are representative for winter-time flow conditions in mountain environments. The paper is
structured as follows: Section 2 introduces the training data set as well as the design and training of the ML model. Additionally,
the approach to couple the trained model to coarse-scale atmospheric input is introduced here. The model is validated in Sect. 3.
As a brief proof of concept we present in Sect. 4 a first real-world application of SNOWSstorm in the European Alps revisiting

the case study of Voordendag et al. (2024).
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Figure 1. Overview map of regions used for the statistics in Sect. 2.1.1. Depicted are the terrain height as greyscale shading of DEM tiles

cut to relevant topography.

2 Data and Methods
2.1 Training Data

The main goal of this work is to build a model that is applicable for a wide range of atmospheric conditions and over a
wide range of regions. With this in mind the training data set comprises numerical simulations in a semi-idealized fashion
with synthetic topographies and atmospheric conditions representative for a large number of glaciated mountain regions world
wide, focusing on mid to high latitudes. The underlying idea is to capture the harmonics in the atmosphere-terrain interaction
for terrain-induced flows with large-scale forcing. As described below in more detail, the synthetic topographies are therefore
designed to reflect the range of spectral characteristics of real terrain. In the same way, the atmospheric conditions represent
the range of harmonic properties found throughout winter-time mountain regions in mid- to high latitudes. The numerical
simulations are run at very high resolutions (Ax = 50 m) in LES setup to explicitly resolve large turbulent motions and to
capture relevant snow redistribution at slope scales. These numerical simulations are subsequently used as ground truth to
train the ML model. The finished ML model can then be driven with input from large- to meso-scale atmospheric models and

realistic topography.
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2.1.1 Synthetic Terrain Generation

Work by Helbig and Lowe (2012) showed that essential characteristics of real terrain can be represented by artificial topogra-
phies such as Gaussian Random Fields. Atmospheric simulations run on such topographies can inform downscaling tools for,
e.g., wind (Helbig et al., 2017; Le Toumelin et al., 2023). Our approach builds on this idea, but concentrates on the spectral
characteristics of terrain as already been used in modeling approaches building on linear mountain wave theory (Smith and
Barstad, 2004; Sauter, 2020). For this, we first analyze spectral slope characteristics of real terrain and subsequently use these
characteristics to build a set of new, synthetic topographies.

We start by analyzing terrain for spectral slope characteristics following the same method as introduced by Young and
Pielke (1983) with 2D-applications by Steyn and Ayotte (1985) and Salvador et al. (1999). First, 30 m resolution digital
elevation models (DEMs) of the Copernicus DEM GLO-30 (European Space Agency, 2019) of the regions shown in Fig. 1 are
resampled to 50 m horizontal resolution and cut to tiles of 256x256 points in order to fit the requirements of the later model.
To avoid large spectral amplitudes at wavenumber 0O, the deviation from a linearly fitted plane is calculated. Additionally, a
cosine filter is applied on the outermost 10 grid points at each border to taper out the terrain in order to avoid discontinuities
at the tile edges. On these filtered and de-trended DEMs a 2D Fast Fourier Transform (FFT) is applied (Cooley and Tukey,
1965). We take the module of the complex values and normalize by the domain size in order to get the amplitude spectrum A.

Subsequently, the decay of spectral amplitude with increasing wavenumber & is described by the function
A=akb. (1)

Here, stronger negative values of b indicate less spectral amplitude contained in smaller wave lengths and thus more smooth
terrain. This procedure is applied to regions shown in Fig. 1, including mountain regions in North and South America, Scandi-
navia, the Alps, New Zealand, and the Antarctic Peninsula, as these are also regions for potential later applications of SNOW-
storm. Figure 2 shows the distribution of spectral slopes for the analyzed mountain regions, with values resembling earlier
studies (Young and Pielke, 1983; Steyn and Ayotte, 1985; Salvador et al., 1999). Statistics for the individual mountain ranges
are very similar (not shown).

Our method to create new, synthetic topographies ("Fourier Land") builds on replicating the spectral slope characteristics
described above. It is similar to the approach shown in Jacobs et al. (2017) for artificial surfaces in material sciences and
methods used to create landscapes and water surfaces in movies and computer games. On a matrix of white noise a 2D FFT
is applied, the amplitude is scaled following Eq. 1. After that an inverse FFT is applied to create the topography. In total a
set of 72 topographies was created with values for a and b randomly drawn from values in the range of the ones observed in
real terrain (Fig. 2). A small subset of example topographies with different spectral slope settings is shown in Fig. S1. These
synthetic topographies are later used as terrain input for the numerical simulations. In order to avoid steep slope angles (< 40°)
that would cause issues with numerical stability in the simulations, we omit the smallest negative values of b > —1.7 and very
high values of a > 18. Very low values of a < 13 are also neglected, as these stem from tiles with almost flat topography.

With this in mind, our topographies are slightly smoother than real topography and do not represent the extreme values in the
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Figure 2. Distribution of factors a and b from Eq. 1 for topography tiles from selected regions ("all regions", see Fig. 1) and synthetic
topographies ("Fourier Land"). Depicted are median (large dot), 10th and 90th percentile (range of colored bar) and minimum and maximum

value (small dot) of the distribution.

variability of slope angles as well as of other commonly used terrain descriptors like topographic position index (TPI, Weiss,

2001), maximum upwind slope angle (Winstral et al., 2002) or the terrain curvature (not shown).
2.1.2 Numerical model

In order to create the training data set, simulations with the Weather Research and Forecasting (WRF) model (Skamarock et al.,
2019) are conducted. We use the Advanced Research WRF version 4.3.1 with the coupled snow drift module of Saigger et al.
(2024) and online LES diagnostics WRFlux, version 1.3.2 of Gobel et al. (2022). Each model domain consists of 256x256 grid
points with a horizontal grid spacing of Az = 50 m and 81 terrain-following vertical levels. The lowest mass point is located at
approximately 10 m above the ground, the model top is set to 12000 m with Rayleigh damping activated for the upper 5000 m.

With the ideal-case setup of our simulations, only a reduced number of physical parameterizations is used. No parameter-
izations for radiative transfer or microphysics are employed. We use the Revised MMS5 surface layer scheme (Jiménez and
Dudhia, 2012) and the scale-adaptive sub-grid scale turbulent closure scheme (SMS-3DTKE) of Zhang et al. (2018) (km_opt
= 5) blending between LES with the turbulence closure of Deardorff (1980) and the PBL-scheme of Nakanishi and Niino
(2006) at the meso-scale limit. No land-surface parameterization is employed which also means that no explicit treatment of
snow processes on the ground is in place. Instead we define a "passive" snow layer with prescribed thickness and density
that only experiences wind-driven erosion or deposition. All simulations employ the drifting snow scheme of Saigger et al.
(2024), in which snow erosion depends on snow density and surface shear stress. Airborne snow is transported by the resolved
three-dimensional wind and parameterized turbulent mixing with a super-imposed particle subsidence. In our simulations,
sublimation from drifting snow particles and its cooling and moistening effect on the ambient atmosphere is represented; the

surface particle radius is set to 2 - 10~% m.
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Table 1. Range of atmospheric input variables to drive the numerical simulations

variable min. value  max. value
wind speed (m s~ 1) 0 30

wind direction (deg) 0 359
Brunt-Viisild Frequency (s~ %) 0 0.019
ground-level pressure (hPa) 600 1000
ground-level temperature (K) 245 285
ground-level relative humidity (%) | 40 99
roughness length (m) 0.0001 0.002
snow/ice density (kg m™?) 50 915

In total we run 720 individual simulations. For each simulation the terrain height is defined by one of the artificial to-
pographies described above, which means that ten simulations with different atmospheric conditions are conducted on each
topography. All simulations are initialized with horizontally homogeneous profiles of potential temperature, specific humid-
ity and the meridional and zonal wind component. These profiles are calculated from values of wind speed and direction,
static stability, expressed as Brunt-Viisilld Frequency, and ground-level pressure, temperature and relative humidity. Values
for pressure, temperature and humidity are taken randomly from within the ranges described in Tab. 1, reflecting the variability
over winter-time mountain environments. For each simulation a unique combination of wind speed and stability, ranging from
neutral to isothermal conditions, is drawn, while the wind direction is shifted by one degree with each simulation. Note that
initial profiles of wind speed, direction, stability, and relative humidity are vertically constant, neglecting e.g. conditions with
vertical wind shear or variations in stability. In order to ensure that snow is continuously present on the ground for the entire
simulation period, it is initialized with a thickness of 1 m. Snow density is drawn randomly from the range of plausible values
(very low-density snow to ice density) with the distribution skewed towards fresh-snow densities. The roughness length is set
constant over each domain with values representing snow-covered surfaces (Tab. 1, Fitzpatrick et al., 2019).

We run the simulations with a time step of 0.5 s until the near-surface turbulent fluxes have stabilized. We then use the
stabilized, quasi-steady state fields as training data for the machine learning model. Our synthetic topographies are periodic
by design, which allows us to employ periodic boundary conditions. These lead to a quick convergence of the turbulent fluxes
throughout the entire domain without the need of buffer zones or perturbations at the domain boundaries (e.g., Krieger et al.,
2025). Visual inspection showed that turbulent fluxes stabilized within the first three to four hours of model run time, in line
with earlier ideal-case atmospheric simulations (e.g., Kirshbaum and Durran, 2004). Thus, all simulations were run for six
hours with the first four hours disregarded as spin-up and the averaged and accumulated fields of the last two hours used for

later training.
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2.2 SNOWstorm
2.2.1 Basic design and data handling

In the past, convolutional neural networks (CNNs) have proven to successfully identify spatial structures especially in gridded
data (LeCun et al., 2015). Building on that, we use the U-Net (Ronneberger et al., 2015) as the basic architecture in our study.
U-Nets are fully convolutional networks that were first introduced for image segmentation, but have also been successfully
applied for model emulating tasks in atmospheric sciences (e.g., Dupuy et al., 2023; Hohlein et al., 2020; Le Toumelin et al.,
2023; van der Meer et al., 2023). Typically, U-Nets consist of an encoder path and a decoder path. In the encoder path, blocks
of convolutional layers (in our case 3x3 convolution kernels with stride of 1 and circular padding, Fig. 3) and non-linear
activation functions (in our case leakyReLU), followed by pooling layers (in our case 2x2 Max Pooling with stride of 2) are
used to encode spatial patterns with increasing levels of abstraction and decrease the spatial resolution of the data. After each
pooling layer, the number of feature maps is increased to compensate for the loss in spatial information. In the decoder path,
blocks of up-sampling operations, followed by convolutional layers and non-linear activation functions are used to reconstruct
high-resolution relationships. Additionally, skip connections are employed, where information is directly passed from the
encoder path to the decoder path in order to preserve high-resolution spatial information. In total, our U-Nets consist of each
four encoder and decoder blocks and a bottleneck of dimensions 16x16x512 (Fig. 3).

We train a separate U-Net for each of our four predictants (near-surface winds (NSW), snow mass change rate (DSM),
vertically integrated sublimation rate (SUBL_VI), vertically integrated snow transport rate (SNOW_VI, vertically integrated
product of snow particle mass concentration and wind vector). We use the high-resolution field of terrain height as predictor
and the low-resolution atmospheric fields and surface values (snow density psyow, roughness length p, offset elevation zg) that
the WRF simulations were driven by (Fig. 3). The atmospheric fields include above-crest height values of wind components
(u, v), static stability expressed as Brunt-Viisilld Frequency (/V), and surface-level values of air pressure (p), temperature
(T), and relative humidity (rH). In addition to the terrain height we provide extra terrain information as a predictor similar to
previous work (Dujardin and Lehning, 2022; Dupuy et al., 2023). Here we provide cos,_, the cosine of the difference angle
between the ambient wind direction and the local slope aspect angle to indicate slopes exposed and sheltered from the ambient
wind. Apart from that, the predictions of NSW are given as an additional predictor to the other U-Nets. This stacking of the
ML-models drastically improved the learning process in the snow-related models.

We perform a z-score normalization on all input and output fields. In order to deal with the skewness in the distributions
additional log-transformations were applied for DSM and SUBL_VI as well as a square-root transformation on the terrain
height and for SNOW_VI.

2.2.2 Training

The most important hyperparameters for the model training are summarized in Table S1. For all but SNOW_VI the mean

squared error (MSE) was used as the loss function. Here, the mean absolute error (MAE) proved more successful. During
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Figure 3. Schematic depiction of the U-Net architecture used for individual SNOWstorm model components. Green blocks and numbers
indicate dimensions of feature maps, arrows show the individual operations. Squares on the left and right side symbolize the different input
and output fields of the model (only one of the output fields for each U-Net, near-surface wind (red square) used as additional input in
U-Nets for DSM, SUBL_VI, and SNOW_VI). The output for NSW and SNOW_VI has dimensions 2x256x256 as the components in x and

y direction are predicted separately.

model development we tested to include penalty terms in the loss function to ensure mass conservation between DSM and
SUBL_VI. However, dividing into separate U-Nets for DSM and SUBL_VI and using the MSE provided better results.

We split the data set in test (1/8, 90 samples: all respective simulations over 9 randomly drawn topographies), validation
(1/8) and training (6/8). With the periodic nature of our data, we are able to employ data augmentation by shifting the fields
in x or y direction by a random distance (Goodfellow et al., 2016), which much improved model robustness. Other commonly
used data augmentation techniques like rotating, flipping, linear rescaling or splitting of the data were deemed impractical for
our applications. Thus, in each training epoch, the training set is once presented in unchanged form and once with each sample
shifted by a random distance. The individual models are trained until convergence is reached and no indications of overfitting

are present (Goodfellow et al., 2016) (Fig. S2).
2.3 Coupling with real-world atmospheric input

We provide a coupling module to run SNOWSstorm with real-world atmospheric input. This extracts relevant fields from the

atmospheric input data sets and brings them into a form usable for SNOWstorm. Here we provide routines for coupling to data
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from ERAS5 and WREF, however, driving SNOWstorm with other datasets of, e.g., regional reanalyses is theoretically possible.
A DEM has to be provided at a spatial resolution of 50 m. All subsequent steps are performed on the spatial grid of this DEM.
To be consistent with the training data, the elevation of the lowest point in the domain is subtracted from the DEM and a
square-root filter is applied, the offset elevation (zy) is given to SNOWstorm as an additional input field. Above-crestheight
wind and stability are extracted and calculated at defined pressure levels (default: 600 hPa for wind and layer between 600 and
500 hPa for stability.) All ground-level input fields (pressure, temperature, relative humidity) are extracted at the ground level
of the input atmospheric data set. Subsequently, pressure is reduced from the elevation of the input data set terrain to the offset
elevation z using the hydrostatic equation. Temperature is reduced with a moist-adiabatic lapse rate of T',,, = 0.0065 K m~!,
while relative humidity stays unchanged. All extracted and calculated fields are then interpolated to the grid of the fine-scale
DEM. In the current version of SNOWstorm, snow density and aerodynamic roughness length have to be provided and are then
constant throughout the domain. The SNOWSstorm-predicted fine-scale near-surface wind field is provided as additional input
for the predictions of DSM, SUBL_VI and SNOW_VI. Before the call of SNOWstorm, all input fields are normalized with the
normalization factors derived during training; output fields are back-transformed accordingly.

In the example case of Sect. 4 we use this coupling strategy with specifications for individual experiments as described in
Sect. 4.2.

3 Validation of SNOWstorm
3.1 Cross validation

To provide an overview on the performance of SNOWstorm, we show examples of SNOWSstorm predictions for select cases
in the test data set, unseen during training and results from cross validation experiments. We run a six-fold cross validation
for all individual ML-models. Here we compute the error between the SNOWSstorm-predicted fields and the corresponding
WREF fields at grid-cell scale. Additionally, we divide the errors into classes of wind speed based on the WRF-predicted wind
speed. Overall mean absolute errors in wind speed are around 0.8 m s~!, with a bias of -0.12 m s~! and a Pearson correlation
coefficient of 0.94 (Fig 4 a — c). The spread over the individual cross validation experiments is low with the MAE between 0.75
and 0.87 m s !, the bias between -0.06 and -0.22 m s~ !, and correlation coefficient between 0.92 and 0.95. With increasing
wind speed also the mean error increases up to about 1.5 m s~ for grid cells with wind speed higher than 10 m s~!. For the
slowest velocity class below 1 m s~! SNOWSstorm overestimates the wind speed by 0.16 m s~!, while for all other velocity
classes we observe a negative bias. This indicates that the wind fields predicted by SNOWstorm are slightly too smooth and
the full range of velocity can not be represented. Pattern correlation for the individual velocity classes decreases to values
around 0.7 and to 0.35 for grid cells with WRF wind speeds below 1 m s~! (Fig. 4 ¢). Compared to the high correlation over
the entire velocity range this indicates that the overall velocity distribution is captured, while local details in the wind field
might be missing. As will be seen in the example cases below, SNOWstorm especially struggles to capture the flow structure in

weak-wind wake regions which is reflected in the low correlation in the lowest velocity class. With increasing wind speeds the
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spread between the individual experiments increases in all error measures. This might point to a comparatively small sample
size and a dependence of the performance on only a few cases.

The errors in these experiments fall in line with errors reported in comparable studies. Le Toumelin et al. (2023) report for
their ML model (trained on simulated data over synthetic topographies) an MAE of 0.16 m s~ !, a bias below 0.0l ms~!, and a
correlation coefficient of 0.96 in their cross validation experiments. Dujardin and Lehning (2022) find for their model (trained
on weather station data and high-resolution terrain descriptors) a MAE of 1 to 1.5 m s~—! with a negative bias between -0.16
and -0.04 m s~! depending on surrounding terrain characteristics. Correlation coefficients here range between 0.42 and 0.66.
Errors in the model of Dupuy et al. (2023) with a target resolution of 1 km are in a comparable range with a MAE of about
0.7 m s~! and a bias of -0.01 m s~*. While being in a similar range all these comparisons have to be made with caution, given
the different target resolutions, and different nature and degree of complexity in the respective training data.

Errors for the predicted rates of snow mass change, sublimation, and snow transport show a very similar behavior as the
errors of the wind field. Overall MAE for DSM is at 0.2 kg m~2 h™~! increasing from about 0.11 kg m~2 h~! in the lowest
velocity class to about 0.5 kg m~2 h~" for grid cells with highest wind speeds (Fig. 4 d). MAE for the sublimation rate are in a
similar range with 0.16 kg m~2 h~! for all grid cells and increasing from 0.12 to 0.28 kg m~2 h~! in the highest velocity class.
Similarly, MAE for SNOW_VI increases from 0.06 to 2.59 kg m~* s~ in the highest velocity class with 0.73 kg m~! s~1
overall. Similar to the wind velocity, DSM, SUBL_VI, and SNOW_VI are slightly overestimated in the low velocity classes and
underestimated for cells with increasing wind speed. The overall bias is close to zero (DSM: -10—3 kg m~2h~!, SUBL_VI:
-107* kg m~—2h™', SNOW_VI: 0.17 kg m~! s~1). Correlation is generally lower compared to the predictions of wind speed

and with a large spread over the experiments again possible problems with too small sample sizes (Fig. 4 {, i, 1).
3.2 Performance on example data sets

The following three example cases are selected to represent different atmospheric conditions that SNOWstrom is trained for
and showcase the performance on different flow patterns. Two cases have relatively high wind speeds and thus considerable
amounts of snow redistribution (case A: Fig. 5, case B: Fig. 6), while the third one only experiences very low wind speeds and
consequently no drifting snow is present (case C: Fig. S3). With the ambient relative humidity well below saturation (70%) in
case A, sublimation from drifting snow particles plays a crucial role here, while high relative humidity in case B suppresses
sublimation.

The wind fields predicted by SNOWSstorm in general agree with the WRF-simulated flow fields. SNOWstorm captures the
overall wind direction and speed as well as terrain-induced flow features such as acceleration at ridges, and deflection and
channeling around summits, and through gaps and valleys (Figs. 5, 6, S3, b—c). While capturing the general patterns in regions
of lee-side flow separation (case A and C), SNOWSstorm can not fully reproduce the associated sharp gradients in wind velocity
as well as flow patterns in the weak-wind wake regions.

Similar to the wind fields, patterns in snow erosion and deposition generally agree with the WRF simulations. The placement
of zones of erosion and deposition as well as the overall amounts in these zones fit well in cases A and B (Fig. 5, 6 d—e).

However, the maximum amounts of snow deposition (e.g., in the lee of the northern hill in case A, secondary patches in case B)
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Figure 4. Grid-cell wise mean absolute error (MAE), bias, and squared Pearson correlation coefficient (r?) for cross validation experiments.
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are underestimated by SNOWSstorm. In the weak-wind case C, SNOWstorm successfully predicts very low snow mass change
rates below our threshold of depiction in the figure (Fig. S3 d—e). However, due to its design, SNOWstorm does not recognize
zero as a special value, and thus, will not necessarily predict values of exactly zero but small values close to zero in situations
where no snow redistribution should occur. Over long integration time scales these small errors might become significant, so
future users should consider applying zero filters for very small values. This is also true for situations of no relevant drifting
snow sublimation (case B, C, Figs. 6, S3 f—g): SNOWSstorm successfully predicts values very close to zero, though not exactly
zero. In the case A with sublimation playing an important role, SNOWSstorm manages to predict the basic placement and
amount of drifting snow sublimation (Fig. 5 f—g). Predictions of the snow transport rate are in line with the results of the other
model components: the overall shape and amounts are captured by SNOWSstorm, while the zones of maximum snow transport
are slightly underestimated and slightly misplaced.

In summary, wind fields predicted by SNOWstorm generally agree with the LES ground truth, except for highly turbulent
flow features such as lee-side flow separations and in wake regions. Predictions of snow redistribution and sublimation as well

fit to the WRF simulations. Mismatches in the simulated flow field can influence predictions of snow-related fields.

4 Case study: application of SNOWstorm
4.1 Case study overview

To provide a short outlook on potential applications of SNOWSstorm, we revisit the case study of 8 February 2021 on Hin-
tereisferner, a glacier in the Austrian Alps, studied in detail by Voordendag et al. (2024). Figure. 7 provides an overview for
the region and available weather stations. The event was characterized by a cold front passage during the night with fresh
snowfall and a subsequent increase and shift in wind, leading to large amounts of snow redistribution in the second half of the
day. The amounts of snowfall and redistribution were observed by three terrestrial laser scans. Additionally, nested large-eddy
simulations at Az = 48 m in WRF (HEF-LES) with the coupled snow drift scheme of Saigger et al. (2024) were performed.
Validation of wind speeds and direction against three automated weather stations (Fig. 7 for location) showed a remarkable
accuracy of the simulated flow field. Comparison to the observed snow height change revealed that the overall amounts and
slope-scale patterns of snow redistribution are captured well in the LES, while smaller-scale patterns are not represented. For

more details in the methods and results we refer to the original publication of Voordendag et al. (2024).
4.2 Experiment setup

To better understand the behavior of SNOWstorm in real-world applications, experiments with different coupling strategies as
described below and summarized in Table 2 are run and validated against the results of the HEF-LES as well as against the
observations from the weather stations. The coupling to the atmospheric input is done following the procedure described in
Sect. 2.3. To understand the influence of meso-scale atmospheric information we perform experiments driving SNOWstorm

with input taken from ERAS and the two outer domains of the WRF simulations of Voordendag et al. (2024) DO1 (Az = 6 km)

13
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Figure 5. Example case A of SNOWSstorm predictions (lower row) and WRF ground truth (middle row). Depicted are model terrain height
(a), 10 m flow field (b—c), snow mass change rate (d—e), drifting snow sublimation rate (f—g) and integrated snow transport rate (h—i, arrows
and colors). Model terrain height is additionally indicated by black contour lines with an interval of 100 m. Background conditions for each

case are specified in the upper row. The case is part of the test data set, unseen during training.
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Figure 7. Overview map of Hintereisferner. Depicted are terrain height as contour colors and black contour lines (line spacing 100 m), the
outlines of Hintereisferner glacier as tick black lines, and the location of weather stations as colored dots (Im Hinteren Eis (IHE), Station
Hintereis (STH), temporary station on the glacier (AWS28)). Important landmarks are indicated by their abbreviations (Weilkugel (WK),
Rofenberg (ROB), Langtauferer Ferner glacier (LTF), Langtauferer Spitze (LTS)).

and D02 (Az = 1.2 km). Additionally, we run experiments with the smoothed digital elevation model used in the HEF-LES
and with the un-smoothed DEM of GLO-30, resampled to Az = 50 m (see Tab. 2 for overview of experiment settings).

For the experiments we do not couple SNOWstorm to any snow model but prescribe a snow density (200 kg m~!) and
roughness length (0.1 mm) consistent with the ones in the HEF-LES. Given the short duration of the case study, we consider

this reasonable. However, for future long-term investigations, coupling to a snow model will be necessary.
4.3 Case study results

We will first focus on the second half of the day (after 14 UTC), the phase with highest wind speeds and snow redistribution
taking place. Here, SNOWSstorm driven with input from the two meso-scale domains (S_WDI1_W and S_WD2_W, Tab. 2)
predicts flow fields that are in agreement with the HEF-LES (Fig. 8 b—d, Fig. 9). While slightly smoother, terrain effects like
flow acceleration and deflection around ridges and mountain tops, as well as leeside effects are represented by SNOWstorm.

Predicted wind velocities at the three observation sites (Station Hintereis (STH), Im Hinteren Eis (IHE), temporary station on
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the glacier (AWS28), see Fig. 7 for locations) generally fit well to the measurements with absolute errors on the order of 1 —
330 4 ms~! (Tab. 3). Errors at IHE and AWS28 mainly stem from an overall overestimation of wind speed by SNOWstorm.

The channeling effect inside the valley is less pronounced in SNOWstorm, leading to a too strong westerly component
and an offset in wind direction here. While SNOWSstorm predictions in S_WD1_W and S_WD2_W show similar results, the
experiments with ERAS input (S_ERA_W) capture the overall flow structure, though with generally too weak winds (Fig. 8
a, Fig. 9, Tab. 3). This indicates that the meso-scale flow accelerations, that is lacking in ERAS, is necessary for SNOWstorm

335 to capture strength of the local flow field. Apparently, the meso-scale flow structure is already represented enough in the WRF
DO01, and no additional information is provided by the finer input data. Nevertheless, at specific locations (IHE and AWS28)
S_ERA_W outperforms the experiments with meso-scale input (Tab. 3). The experiments with SNOWSstorm driven on the un-
smoothed GLO-30 topography show similar structures (Fig. S3), which is remarkable, as the steepest slope angles here exceed
all slope angles seen during training. With the finer structure in this topography also finer features in the wind field, e.g., around

340 secondary ridge lines can be simulated.

In the first half of the day, SNOWSstorm fails to capture the weak northerly flow caused by shallow cold-air inflow and
overspill after the frontal passage. During the transition phase around 12 UTC SNOWstorm predicts the increase in wind speed
about three hours too early (Fig. 9) which consequently causes a too early onset of snow redistribution and increased errors
when considering the full day (Tab. 3). Both effects are explainable as SNOWSstorm has the assumption that the local wind

345 field adapts instantaneously to changes in the large-scale forcing and effects of shallow cold air advection and cold air pools
have not been seen in training.

Consistent with the wind predictions, accumulated snow mass changes simulated by SNOWstorm (S_WD1_W and S_WD2_W)
generally agree well with the ones in the HEF-LES (Fig. 8 f~h). Maximum snow erosion is predicted at the summit region of
WeiBkugel, and at the ridges north-west and south-east of Hintereisferner. Regions of maximum erosion are slightly more local-

350 ized with slightly higher amounts in the HEF-LES. Apart from that, erosion zones are shifted from the ridge more towards the
lee-side slopes at several places (Langtauferer Spitze, Rofenberg, see Fig. 7 for location). Due to the high overall wind speeds
only very few regions of snow deposition are simulated in the HEF-LES as well as by SNOWstorm. These include especially
the upper part of Langtauferer Ferner and the area around AWS28 at several instances in time in phases of stronger lee-side
deceleration. The deposition zone in the lee of Rofenberg simulated in HEF-LES is not captured by SNOWstorm due to the

355 high wind velocities here. Consistent with the too low wind velocities, SNOWstorm simulates a much smaller change in snow
mass in the experiment S_ERA_W (Fig. 8 e). As already seen for the wind field, the experiments with GLO-30 topography
show similar results, though with smaller-scale features captured by the more detailed input topography (Fig. S3). Sublimation
from drifting snow particles plays a negligible role in both modeling approaches (Fig. S4). Similar to the other variables, the
overall amounts and the placement of sublimation zones predicted by SNOWSstorm generally agree with the ones simulated in

360 HEF-LES.

In summary, SNOWSstorm manages to capture the general shape and strength of the flow field as well as the overall amounts
and location of snow redistribution during this case study. Local details in the flow field and transition periods in the large-

scale forcing remain challenging for SNOWSstorm. The large advantage of the ML model, however, lies in its computational
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Table 2. Summary of input data for the different real-case experiments presented. Each experiment abbreviation consists of the model used
(SNOWstorm: S), the atmospheric input data (ERAS: ERA, WRF DO1: WD1, WRF D02: WD2) and the topographic input data (GLO-30:
G, smoothed HEF-LES topography: W)

‘ S ERA W S ERA G S WDI.W S WDI.G S WD2W S WD2G
atmospheric input | ERA S ERA 5 WRF D01 WRF D01 WRF D02 WRF D02
topographic input | HEF-LES GLO-30 HEF-LES GLO-30 HEF-LES GLO-30

Table 3. Error statistics with MAE and bias of SNOWstorm predictions (first value: S_ERA_W, second value: S_WD1_W, third value:
S_WD2_W) validated against observations at Station Hintereis (STH), Im Hinteren Eis (IHE) and station on the glacier (AWS28) and
point-wise against HEF-LES for the phase of strongest winds (after 14 UTC) and the full day.

STH IHE AWS28 HEF-LES

after 14 UTC  MAE wind speed (ms™*) | 3.11/1.56/1.96 3.80/3.52/443 246/3.77/3.40 4.35/3.81/3.92
bias wind speed (m s™') -2.39/032/-0.84 -1.17/3.04/4.43 -2.28/3.77/3.40 -3.53/-0.09/-0.03

full day MAE wind speed (m s™') | 6.00/3.10/3.10 2.55/4.02/393 1.69/4.09/3.71  5.71/3.78/3.61
bias wind speed (m s~ 1) -6.00/2.52/1.80 -1.17/3.80/3.89 -1.37/4.09/3.71 -5.08/-0.42/0.06

efficiency: the computations for the nested LES of Voordendag et al. (2024) required about 10* core hours. In contrast, the
predictions with SNOWSstorm can be run on a single CPU in 4 s for the entire day with ERA-5 input and 0.1 and 0.3 h,
respectively, with WRF input due to the longer processing time during input data preparation. This means a speedup factor on

the order of 10° to 107 and reasonable computational demands for simulations over entire accumulation seasons.

5 Conclusions and Outlook

In this work we introduced SNOWSstorm as a new, deep-learning based emulator model for near-surface winds and snow
redistribution in mountainous terrain at high spatial resolutions (Az = 50 m). The model has a U-Net architecture and is trained
on output of semi-idealized numerical simulations with synthetic topographies and atmospheric conditions representative for a
wide range of regions world wide.

We performed validation experiments and applied the model on a short case study in the European Alps comparing to

observations and nested Large-Eddy simulations (LES). Key findings from the validation experiments are:

— SNOWSstorm in general successfully predicts the overall spatial distribution and strength of the flow field with terrain-
induced flow modifications. Position and amounts of zones of snow erosion, deposition, sublimation, and snow transport

agree with the ground truth.

— Highly turbulent flow features and sharp gradients pose a challenge to the ML-model. Mispredictions in the wind field

can further influence snow-related predictions.
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19



380

385

390

395

400

405

410

https://doi.org/10.5194/egusphere-2025-5608
Preprint. Discussion started: 16 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

— Errors of SNOWSstorm are comparable to other similar models with an MAE in near-surface wind speeds of about

0.8 m s~! and bias of -0.12 m s~ *. Errors slightly increase for situations with higher background wind speeds.
Key findings form the application case study are:

— SNOWSstorm generally succeeds to capture the overall flow structure and redistribution patterns by the LES both with

the smoothed topography from the LES and an un-smoothed high-resolution DEM.

— Wind velocities and flow features like deflection and acceleration around ridges are predicted well by SNOWSstorm,

however, the channeling effect inside the valleys is less pronounced leading to biases in wind direction in the ML-model.

— Validated against automatic weather stations, errors in the wind speed are slightly higher than in the crossvalidation

experiments with MAEs between about 1.5 and 4 m s~ 1.

— Overall amounts of snow mass change as well as the placement of zones of erosion and deposition agree between

SNOWSstorm and the LES.

— Due to lack of information on the meso-scale flow structure, SNOWSstorm driven with input from ERAS predicts much
lower wind speeds and redistribution amounts. Both experiments with meso-scale input (Az = 6 km and Az =1.2 km)
show similar results. This indicates that in this case all necessary information is already contained at the coarser 6 km

resolution.

— One limitation of the model are localized effects of shallow cold-air advection and delayed local responses during
transition phases in the large-scale forcing which not captured well by SNOWstorm as such effects have not been seen
during training.

With the very large computational speedup of more than five orders of magnitude compared to physics-based LES at Az =
50 m, the model has large potential to be used in (multi-) seasonal assessments of snow redistribution. For this, next steps will
involve coupling SNOWstorm to glacier mass balance models like, e.g. COSIPY (Sauter et al., 2020) and extending the model
for larger areas. Given the world-wide availability of high-resolution DEMs (e.g., European Space Agency, 2019) and the
dependence on only a few standard atmospheric variables at meso-scale resolutions, recently published regional downscaling
datasets in e.g. Europe (Copernicus Climate Change Service, 2022), the Alps (MeteoSwiss, 2025), South America (Dominguez
et al., 2024), New Zealand (Kropac et al., 2024) or in arctic regions (Turton et al., 2020; Copernicus Climate Change Service,
2021) can provide possible input data sets for SNOWSstorm applications. Apart from that, our results show the potential of
generalization of emulator models trained under semi-idealized conditions given a carefully created training data set. Similar
approaches could be possible e.g. for thermally driven flows or turbulent exchange of energy, mass and momentum in complex

terrain.

Code and data availability. The current version of SNOWstorm is Saigger (2025), available at https://zenodo.org/records/17580745. The
exact version of the model (v1.0) used to produce the results in this paper is archived on Zenodo under DOI 10.5281/zenodo.17580746.
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The subset of the simulations used for the model training is available at Saigger (2025). The WRF snow drift module is available at Saigger
(2024). Simulation output of the HEF-LES is available at Goger (2026). The output of the meso-scale WRF simulations used to drive the
HEF-LES and SNOWstorm is available at Saigger et al. (2026). Meteorological data used in this study is available at ACINN (2025).
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