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ABSTRACT 27 

Fast and timely estimation of changing air pollutant emissions is critical for 28 

understanding the complex sources of air pollution and supporting air quality 29 

improvement, while current regional emission inventory was commonly reported with 30 

time lag or coarse temporal resolution. Here we developed a near-real-time approach 31 

that calculates the daily emissions of anthropogenic air pollutants, and applied this 32 

approach for Jiangsu province, a typical developed region in eastern China. We 33 

estimated that the annual total anthropogenic emissions of SO2, NOX, primary fine 34 

particles (PM2.5), non-methane volatile organic compounds (NMVOCs), and NH3 35 

were 246, 727, 298, 1186, and 377 Gg, respectively, for Jiangsu in 2022. Compared to 36 

the national emission inventory, application of the provincial-level daily emission 37 

estimates provided better model performance of PM2.5 and ozone (O3) simulation for 38 

all the involved months. The NOX, SO2, PM2.5, and NMVOCs emissions in Jiangsu 39 

during April-May 2022 (the period of COVID-19 lockdown in Shanghai) were 40 

respectively 8%, 6%, 6%, and 10% smaller than those in the same period of 2023. 41 

Transportation and Industry respectively contributed 89% of NOX emission reduction 42 

and 93% NMVOCs reduction. Combining with machine learning algorithms, 43 

moreover, we revealed that the changing agricultural NH3 emissions dominated the 44 

variability of daily PM2.5 concentration, and that off-road transportation contributed 45 

substantially to variabilities of both PM2.5 and O3 levels. The study proved advantages 46 

of incorporation of near-real-time data and machine learning techniques on tracking 47 

the fast-changing emissions and detecting the sources of varying air quality. 48 

  49 
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1. Introduction 50 

Emissions of air pollutants from anthropogenic activity including traffic, industrial 51 

plants, and residential and commercial fuel consumption are the main cause of 52 

worsened air quality, especially in economically developed regions with dense 53 

populations (Sokhi et al., 2022; Zheng et al., 2018). Emission inventory, which 54 

contains complete information on magnitude, spatial pattern, and temporal change of 55 

air pollutant emissions by sector, is essential for identifying the sources of air 56 

pollution and effectiveness of emission controls on air quality through numerical 57 

modeling (Zhao et al., 2013; Zhang et al., 2019). Traditionally, “bottom-up” 58 

methodology (i.e., the emissions were calculated for the finest source categories and 59 

then aggregated to bigger categories) provides robust time series of emission 60 

estimates based on national statistics (An et al., 2021; Crippa et al., 2020; Kurokawa 61 

et al., 2020). However, these emission estimates were usually reported with a time lag 62 

of at least 3-5 years. The delay reflected the time needed to finalize accurate national 63 

statistics (e.g., official energy consumption by fuel type) and that needed to collect 64 

and process them for compiling emission inventories (Guevara et al., 2023). As a 65 

result, in addition to the inherent uncertainties in emission inventories, this delay can 66 

introduce extra uncertainty when these inventories are employed in air quality 67 

modeling, as they may miss current emission characteristics (Tong et al., 2012). Such 68 

limitation can be greatly exacerbated for periods with big and unexpected emission 69 

fluctuations, resulting from temporary actions for major events or public health 70 

incidents (Huang et al., 2021; Wang et al., 2025).  71 

To better track the changing emissions for specific events or incidents (e.g., 72 

COVID-19 pandemic), researchers have developed alternative methods to obtain the 73 

near-real-time emission estimates (Gaubert et al., 2021; Schneider et al., 2022). The 74 

objective of these efforts is to understand the driving factors of the changing 75 

emissions and their impact on air quality. Real-time activity information with high 76 

temporal resolution started to be incorporated in the emission estimation, such as the 77 
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electricity load and generation data by national transmission system operators, the 78 

real-time vehicle flows monitored from navigation applications, and the real-time ship 79 

navigational information from automatic identification system (AIS) (Liu et al., 2020a; 80 

Liu et al., 2020b; Zheng et al., 2021; Huang et al., 2021; Harkins et al., 2021; Guevara 81 

et al., 2021). Although limited availability and huge capacity of these data hinder their 82 

full use in emission inventory development, there is a big potential in expanding the 83 

data source to improve the capability of capturing the fast-changing emissions. 84 

Currently, studies have been conducted for carbon dioxides (CO2) emissions and 85 

near-real-time data platforms and products have been developed, particularly for 86 

well-identified stationary sources such as fossil fuel combustion plants (BEIS, 2022; 87 

CBS, 2024; CITEPA, 2024; Carbon Monitor, 2024). Comparatively, achieving 88 

near-real-time estimates is more challenging for air pollutants due to the large 89 

complexity and variability of their emission processes. A great variety of air pollutants 90 

come from a wide range of sources, containing fuel combustion, industrial processes, 91 

on-road and off-road traffic, solvent evaporation, and agricultural activities (Xu et al., 92 

2023; Zheng et al., 2020). The emissions can be greatly influenced by many factors 93 

and change a lot. Those factors include the human behavior patterns, operating 94 

conditions of plants, improved use of manufacturing and pollution control 95 

technologies, and/or meteorological conditions (Liu et al., 2024; Lei et al., 2023; 96 

Geng et al., 2024). Given the strong chemical reactivity and short atmospheric 97 

lifetime of many air pollutants, there exist complicated relationships between 98 

emissions and air quality, emphasizing the importance of tracking the fast-changing 99 

emissions (Liu et al., 2020; Zhao et al., 2020a). Therefore, efforts are still in great 100 

need to develop effective approach for estimating the near-real -time emissions. 101 

For the past years, China has substantially enhanced emission control for industrial 102 

(e.g., “ultra-low” emission retrofit for selected non-electrical industries) and 103 

residential sources (e.g., promotion of advanced stoves and clean coals during heating 104 

seasons). Those measures have clearly reduced emissions of many air pollutants, 105 

resulting in a 17.2 μg/m3 decline of fine particle (PM2.5) concentration between 2015 106 
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and 2020 over the country (Geng et al., 2024). In contrast, the emissions of NOX and 107 

PM2.5 from passenger transportation respectively grew by 178% and 152% from 2019 108 

to 2022 (Zhang et al., 2023), and the maximum daily 8h mean ozone (MDA8 O3) 109 

concentrations increased 5.8% from 2021 to 2022 for the country (MEE, 2023). The 110 

diverse changes in emissions and air quality highlight the necessity to quickly and 111 

accurately reveal the drivers of changes in air pollutant emissions and their impact on 112 

ambient air quality (Gu et al., 2023). This is particularly important for periods with 113 

severe air pollution episodes and unexpected incidents that substantially changed 114 

human activities like COVID-19 lockdown, as timely temporary actions to address 115 

pollution might be urgently required. 116 

Province serves as a crucial role in air quality management in China. Due to 117 

difference in economic and energy structure and atmospheric conditions, local 118 

governments often implement diverse strategies and actions to reduce regional air 119 

pollution. This results in large variability in both emission and air quality changes 120 

across different regions. (Liu et al., 2022; Wang et al., 2021). Studies relying on 121 

national emission data offer limited guidance in developing emission control 122 

measures and assessing their effectiveness in air quality improvement (An et al., 123 

2021). Jiangsu Province, located in the Yangtze River Delta (YRD) in eastern China, 124 

is one of most economically developed regions across the country (Supplementary 125 

Figure S1). It accounted for 10.2% of the gross domestic product (GDP) in mainland 126 

China (ranking the second place in the country), and 8.1%, 12.4% and 11.6% of coal 127 

consumption, cement and crude steel production in 2022, respectively (NBS, 2023). 128 

Following the implementation of air pollution prevention measures, the PM2.5 129 

pollution in Jiangsu has significantly decreased since 2015. However, the 130 

development of the petrochemical industry and transportation has led to rapid changes 131 

in emissions, making Jiangsu as the province with the highest and fastest growing O3 132 

concentration in YRD in recent years (Zhou et al., 2017; Wang et al., 2022). 133 

In this study, therefore, we selected Jiangsu as an example to demonstrate the 134 

development of near-real-time emission inventory and its application on rapid 135 
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assessment of air quality. Based on our previous work that incorporated the best 136 

available facility-level information to develop a comprehensive provincial emission 137 

inventory (Gu et al., 2023), here we constructed an approach driven by real-time 138 

activity data from multiple sources. The pollutants include SO2, NOX, primary PM2.5, 139 

NH3, and non-methane volatile organic compounds (NMVOCs). We then applied the 140 

method to obtain the near-real-time emission estimates for 2022-2023, and assessed 141 

the driving factors of the short-term emission change during the COVID-19 lockdown 142 

period. Finally, we used an Extreme Gradient Boosting (XGBoost) algorithm to 143 

explore the relationship between the variability of daily PM2.5 and O3 concentrations 144 

and their precursor emissions for 2022. The study provides insights for timely design 145 

and implementation of air pollution control actions, and can be used for reference for 146 

other developed and polluted regions in China and worldwide. 147 

2. Methodology and data 148 

2.1 Framework of near-real-time emission estimation 149 

Figure 1 shows the methodological framework. In our previous study (Gu et al., 2023), 150 

we collected, examined, and integrated most available information on emission 151 

sources to enhance the completeness and reliability of the provincial emission 152 

inventory. All the information, including raw material and energy consumption, 153 

product output, and manufacturing and emission control technologies, played an 154 

important role in the estimation of near real-time emissions. The specific methods by 155 

sector are described in Section 2.2. Furthermore, we improved the spatial distribution 156 

of air pollutant emissions. Point sources of power and industrial enterprises were 157 

allocated based on their precise latitudes and longitudes. We further utilized Point of 158 

Interest (POI) data from Gaode Map (https://lbs.amap.com/, last visited on October 159 

2025) to obtain the real-time changes on road and waterway networks, land use, and 160 

building footprints. The information is updated every 2-3 months. The use of POI data 161 

significantly reduced the error of spatial allocation of emissions that may result from 162 

the delayed and indirect information on the “surrogate” parameters (Wang et al., 163 
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2017).  164 

2.2 Near-real-time daily emission estimation by sector 165 

This section describes the methods for estimating near-real-time daily emissions for 166 

2022 and 2023. Six major sectors were included (Power, Industrial plant, Vehicles 167 

(On-road transportation), Off-road machinery, Residential, and Agriculture), covering 168 

most anthropogenic activities. Road and construction site dusts were not contained. 169 

Power plant Previously we developed a method of applying online measurement data 170 

from the continuous emission monitoring systems (CEMS, 171 

http://218.94.78.61:8080/newPub/web/home.htm, last visited on October 2025) for 172 

emission estimation at the unit/plant level (Zhang et al., 2019). With this basis, we 173 

have improved the emission estimation method to enable the stable and continuous 174 

acquisition of near-real-time emission data lagged by one month. For the small 175 

number of power-generating units without CEMS data, we assumed that their 176 

pollutant concentrations in the flue gas were at the average level of units with similar 177 

installed capacity (Tang et al., 2019). The emissions were calculated based on the 178 

mean hourly flue gas concentration of air pollutant obtained from CEMS and the 179 

theoretical flue gas volume of each unit/plant: 180 

          𝐸𝐸𝑖𝑖,𝑗𝑗,𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ × 𝐴𝐴𝐴𝐴𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ × 𝑉𝑉𝑗𝑗,𝑚𝑚
0 × 𝑃𝑃𝑖𝑖,𝑗𝑗,𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑               (1) 181 

𝐴𝐴𝐴𝐴𝑗𝑗 = 𝐹𝐹𝑚𝑚/ 𝑅𝑅𝑚𝑚                             (2) 182 

where E is the emission of air pollutant; i, j and m indicate the specific pollutant 183 

species, individual power plant or unit, and fuel type, respectively; C is the monthly 184 

average concentration in the flue gas; AL is the activity level (here monthly coal 185 

consumption); F is the monthly electricity generation for various fuels, as reported by 186 

NBS (2023); R is the fuel consumption rate for power generation, taken from Tong et 187 

al. (2021), V0 is the theoretical volume of flue gas produced per unit of fuel 188 

consumption (Zhao et al., 2010); P is the temporal profile of emissions (the daily to 189 

monthly emission ratio), based on the hourly pollutant concentrations and volume of 190 

flue gas for the month and specific day. 191 
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Industrial plant With its gradually expanding penetration, CEMS has become able to 192 

support near-real-time emission estimation for industrial plants (Tang et al., 2022; Bo 193 

et al., 2021). Given its varying coverage across sectors, we have developed a method 194 

that can stably estimate the near-real-time emissions at the plant level with a lag of 195 

one month. This method classifies industrial plants into three categories based on their 196 

CEMS coverage, as described below. 197 

(1) Industrial plants with CEMS information. The method is similar to power plants: 198 

          𝐸𝐸𝑖𝑖,𝑗𝑗,𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ × 𝐴𝐴𝐴𝐴𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ × 𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘
0 × 𝑃𝑃𝑖𝑖,𝑗𝑗,𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑             (3)                                           199 

where k denotes the industrial sector; AL is the activity level (here represents monthly 200 

product output) as reported by NBS (2023), and V0 is the theoretical volume of flue 201 

gas produced per unit of product output, which can be found in the technical 202 

specifications for the application of emission permits (MEE, 2021).  203 

(2) Industrial plants without CEMS while it was equipped at some plants within the 204 

same sector. Sector-level emission factors (emissions per unit of activity level, EF) 205 

were calculated using CEMS data from other plants. Monthly emissions were 206 

estimated based on the sector-level EF and monthly product output from official 207 

environmental statistics. The near-real-time daily emissions were then generated 208 

according to the temporal profile of emissions (P) obtained from CEMS installed in 209 

other available plants in the sector.  210 

               𝐸𝐸𝑖𝑖,𝑗𝑗,𝑑𝑑𝑑𝑑𝑑𝑑 =  𝐴𝐴𝐴𝐴𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ ×  𝐸𝐸𝐸𝐸𝑖𝑖,𝑘𝑘  × 𝑃𝑃𝑖𝑖,𝑗𝑗,𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑                  (4) 211 

                 𝐸𝐸𝐸𝐸𝑖𝑖,𝑘𝑘  = 𝐸𝐸𝑖𝑖,𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ / 𝐴𝐴𝐴𝐴𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ                        (5)  212 

where EFi,k is the sector-average emission factor for plants with CEMS for sector k, 213 

Ei,k and ALk are the total emissions from industrial plants with CEMS and their 214 

product output, respectively. 215 

(3) Industrial sectors without CEMS data. Emissions were principally calculated 216 

based on activity level and emission factor. The activity data were derived based on 217 

monthly official statistics reported by NBS (2023). In addition, we analyzed the 218 

historical emission source data to trace the evolution of manufacturing and emission 219 

control technologies for various sectors, and the emission factors could be calculated 220 
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for near-real-time emission estimations:  221 

                    𝐸𝐸𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐴𝐴𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ × 𝐸𝐸𝐹𝐹𝑖𝑖,𝑘𝑘  × 𝑃𝑃𝑖𝑖,𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑                    (6) 222 

where EF represents the emission factor based on the technological evolution of the 223 

plant, P is the temporal profile of emissions, based on the fraction of daily electricity 224 

load out of the monthly total for specific sector. 225 

Vehicles (On-road transportation) Daily vehicular emissions were estimated 226 

utilizing the International Vehicle Emissions model (IVE) combined with the Gaode 227 

live congestion index (Zhou et al., 2019; Kholod et al., 2016). The level of traffic 228 

congestion was indicated by the additional time incurred during a trip under congested 229 

conditions, expressed as a percentage relative to uncongested conditions (Huo et al., 230 

2022). The Gaode congestion index is available for over 350 cities in China, with a 231 

temporal resolution of 5 minutes (https://report.amap.com/index.do, last visited on 232 

October 2025). By integrating the congestion index with a Greenshield’s traffic 233 

density model (Yang et al., 2019), we estimated the traffic volume which serves as a 234 

temporal allocation factor to calculate the daily emissions. This approach assumes that 235 

vehicular activity data (e.g., mileage and fuel consumption) are accessible, albeit 236 

typically with a lag in reporting, as such information is usually provided on an annual 237 

basis. Consequently, the near-real-time emissions can be estimated based on the daily 238 

variations of congested index and EFs compared to the previous year (Eq. 7): 239 

           𝐸𝐸𝑖𝑖,𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑 =  
�𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1� × 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑,(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1)

2  ×𝐸𝐸𝐸𝐸𝑖𝑖,𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

�𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑,(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1)−1�× 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
2  ×𝐸𝐸𝐸𝐸𝑖𝑖,𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑,(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1)

               (7) 240 

where I is the Gaode traffic congestion index; and EF is the emission factor, 241 

calculated by the IVE model. The input parameters of IVE such as the vehicle 242 

population by type, registration dates, fuel types, and emission standards, can be 243 

obtained from the transportation management departments of individual cities. These 244 

historical data can be extrapolated to the present date utilizing the vehicle survival 245 

curve, thereby bridging any gaps in the current information (Sun et al., 2020). 246 

Off-road Transportation Off-road transportation was divided into five categories: 247 

construction machinery, agricultural machinery, marine, railway, and aviation. 248 

Emissions from construction machinery were estimated based on assumed daily 249 
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utilization rates derived from the operating rates of construction sites (Shen et al., 250 

2023; Huang et al., 2021). The daily usage of agricultural machinery was assumed to 251 

correlate with the application of nitrogen fertilizers from agricultural sources (see the 252 

description of agriculture as below). Emissions from railway, marine and aviation 253 

sources were estimated using data from passenger/cargo turnover, individual ports and 254 

commercial flights, respectively. These data were obtained from the China 255 

Entrepreneur Investment Club (CEIC) (https://www.ceicdata.com.cn, last visited on 256 

October 2025), Marine Traffic (http://www.marinetraffic.com, last visited on October 257 

2025) and Flightradar24 databases (http://www.flightradar24.com, last visited on 258 

October 2025) (Huo et al., 2022; Liu et al., 2020a). 259 

Residential sources We followed Shao et al. (2023) and developed a Bayesian 260 

hierarchical model to estimate daily heating energy consumption by fuel type, based 261 

on two primary factors influencing residential energy consumption: temperature and 262 

GDP. The daily temperature data were taken from ERA5 products provided by the 263 

European Centre for Medium-Range Weather Forecasts (ECMWF) 264 

(https://cds.climate.copernicus.eu, last visited on October 2025), while GDP from the 265 

national statistics published quarterly by the National Bureau of Statistics 266 

(http://www.stats.gov.cn/, last visited on October 2025). For the months without GDP 267 

data, we assumed a linear relationship between GDP and the nighttime light index (Xu 268 

et al., 2024), and applied the National Polar-orbiting Partnership Visible Infrared 269 

Imaging Radiometer Suite (NPP-VIIRS, https://www.earthdata.nasa.gov/, last visited 270 

on October 2025) provided by National Aeronautics and Space Administration 271 

(NASA) to extrapolate the GDP for those months. We applied the gridded population 272 

dataset (1km×1km) released by a database of the Chinese Academy of Sciences 273 

(https://www.resdc.cn/Default.aspx, last visited on October 2025) for 2020. To 274 

account for the effect of large-scale population migration, we integrated the 275 

Population Migration Index (PMI) developed by Baidu (https://qianxi.baidu.com/#/, 276 

last visited on October 2025). This index calculates the proportion of incoming 277 

migrants relative to the local population.  278 
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Agriculture NH3 emissions from fertilizer use can be largely influenced by 279 

meteorological conditions, soil environment, and farming practices. In our previous 280 

study, we quantified NH3 emissions using dynamic EFs associated with those factors 281 

(Zhao et al., 2020b). In this study, we expanded the methodology and estimated NH₃ 282 

emissions by using daily EFs. For livestock and poultry farming, we assumed that 283 

daily NH₃ emissions were associated with temperature, while those for human 284 

excretion associated with both temperature and PMI. 285 

2.3 Air quality modeling 286 

To evaluate the near-real-time emission estimate, we used the Community Multiscale 287 

Air Quality (CMAQ v5.1) model developed by US Environmental Protection Agency 288 

(https://www.epa.gov/cmaq, last visited on October 2025), to simulate the PM2.5 and 289 

O3 concentrations in Jiangsu. Four months (January, April, July, and October) in 2022 290 

were selected as the simulation periods, with a spin-up time of 7 days for each month 291 

to reduce the impact of the initial condition on the simulation. As shown in 292 

Supplementary Figure S1, three nested domains (D1, D2, and D3) were applied with 293 

the horizontal resolutions at 27, 9, and 3 km, respectively, and the most inner D3 294 

covered Jiangsu and parts of the YRD region including Shanghai, northern Zhejiang, 295 

and eastern Anhui. The Multi-resolution emission inventory of China (MEIC, http:// 296 

http://meicmodel.org.cn/, last visited on October 2025) was applied for D1, D2, and 297 

the regions out of Jiangsu in D3 (Zheng et al., 2018), and the provincial-level 298 

near-real-time emission estimate was applied for Jiangsu in D3. The Carbon Bond 299 

Mechanism (CB05) and AERO5 mechanisms were used for the gas-phase chemistry 300 

and aerosol module, respectively. 301 

The meteorological field for the CMAQ was obtained from the Weather Research and 302 

Forecasting model (WRF v3.4, https://www.mmm.ucar.edu/models/wrf, last visited on 303 

October 2025). Meteorological initial and boundary conditions were obtained from 304 

the National Centers for Environmental Prediction (NCEP, 305 

https://psl.noaa.gov/data/reanalysis/reanalysis.shtml, last visited on October 2025) 306 

datasets. Ground observations at 3-h intervals were downloaded from National 307 
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Climatic Data Center (NCDC, ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/, last 308 

visited on October 2025). Statistical indicators including bias, index of agreement 309 

(IOA), and root mean squared error (RMSE) were used to evaluate the WRF 310 

performance (Gu et al., 2023). The discrepancies between simulations and ground 311 

observations were within an acceptable range (Supplementary Table S1). 312 

We collected ground observation data of hourly PM2.5 and O3 concentrations at the 313 

110 state-operating air quality monitoring stations within Jiangsu 314 

(https://data.epmap.org/page/index, see the station locations in Figure S1, last visited 315 

on October 2025). Correlation coefficients (R), normalized mean bias (NMB) and 316 

normalized mean errors (NME) between observation and simulation for each month 317 

were calculated to evaluate the performance of CMAQ modeling. 318 

We further compared the modeling performance using provincial-level emission 319 

estimate in D3 with that using MEIC. MEIC was currently available only for 2020. To 320 

avoid the bias from the total emission level, we adjusted the total emissions of various 321 

species in 2020 MEIC to be consistent with our estimates, retaining the 322 

spatiotemporal and sector distribution of the emissions. 323 

2.4 Removing meteorological influence on PM2.5 and O3 concentrations 324 

To explore the influence of anthropogenic emission changes on the variability of 325 

PM2.5 and O3 levels in 2022, we removed the impact of varying meteorological 326 

conditions by employing a stepwise multiple linear regression (MLR) model (Li et al., 327 

2021). The surface daily concentrations of O3 and PM2.5 were taken from the Tracking 328 

Air Pollution in China (TAP, http://tapdata.org.cn/, last visited on October 2025) with 329 

a horizontal resolution of 1 km×1 km (Geng et al., 2021). We incorporated nine 330 

meteorological variables from the ERA5 database at a resolution of 0.25°×0.25°, 331 

considered as the potential covariates for O3 and PM2.5. They were 10-meter zonal and 332 

meridional wind speeds, temperature, boundary layer height, sea level pressure, cloud 333 

cover, precipitation, relative humidity, and dew point temperature. These variables 334 

were then scaled to a 3km×3km grid system by bilinear interpolation. To prevent 335 

overfitting, we conducted MLR with the three most influential meteorological 336 
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parameters to estimate the variability of daily PM2.5 and maximum daily 8-hour 337 

average (MDA8) O3 concentration for each grid cell. Anomaly (the difference 338 

between the raw data and the moving average of 30 days around) of air pollutant 339 

concentrations and meteorological factors were used in the model, to exclude the 340 

effect of monthly variability. Residuals that cannot be explained by the meteorological 341 

variables were assumed to be attributed to anthropogenic emission changes (Li et al., 342 

2020). The results could be interpreted as the sensitivity of air pollutant concentration 343 

to the daily emission anomalies from the annual average value. 344 

To evaluate the MLR performance, we collected daily PM2.5 and O3 concentrations at 345 

the above-mentioned 110 air quality monitoring stations in Jiangsu (Figure S1), and 346 

the R and NMB between observation and MLR were calculated. 347 

2.5 Examining the response of MDA8 O3 and PM2.5 concentration to changing 348 

daily emissions 349 

2.5.1 XGBoost model 350 

XGBoost model is an advanced and scalable machine learning framework based on 351 

gradient-boosted decision trees, widely recognized for its efficiency in handling 352 

structured data and modeling complex nonlinear relationships (Requia et al., 2020; 353 

Wang et al., 2023). XGBoost excels at processing high-dimensional spatiotemporal 354 

datasets, such as gridded emission inventories, by effectively capturing interactions 355 

among heterogeneous emission sources and temporal dependencies. Moreover, the 356 

inherent interpretability features facilitate seamless integration with explainable AI 357 

tools (e.g., SHapley Additive exPlanations (SHAP) to quantify the marginal 358 

contribution of each input feature to individual model predictions), enabling rigorous 359 

attribution analysis of air pollutant concentration variability (Zhao et al., 2025). The 360 

SHAP value is calculated with following equation: 361 

              𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑓𝑓�𝑋𝑋𝑖𝑖,1� + 𝑓𝑓�𝑋𝑋𝑖𝑖,2� + ⋯𝑓𝑓�𝑋𝑋𝑖𝑖,𝑛𝑛�                 (8) 362 

where 𝑦𝑦𝑖𝑖  is the predicted value of the model for the ith sample; 𝑓𝑓�𝑋𝑋𝑖𝑖,𝑛𝑛� is the 363 
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contribution of the nth eigenvalue in the ith sample to the final predicted value, with 364 

positive or negative representing that the eigenvalue makes the predicted value 365 

increase or decrease; and 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the baseline value of the predicted outputs for all 366 

types of predictions, representing the average prediction results for each category 367 

without the influence of any eigenvalue. 368 

2.5.2 Anthropogenic effects on PM2.5 and MDA8 O3 variability 369 

The XGBoost-SHAP modeling framework was implemented at the horizontal 370 

resolution of 3km×3km to capture the emission-concentration relationship. XGBoost 371 

regression models were independently trained for each grid cell. January and July 372 

were selected as typical months for ambient PM2.5 and O3, respectively. Daily time 373 

series of 20 pollutant-sector combinations (4 pollutant (SO2, NOX, NMVOCs, PM2.5) 374 

× 5 sectors (Power, Industry, On-road (Vehicles), Off-road, Residential) except for 375 

tiny On-road SO2, and agricultural NH3,) were set as predictors, and 376 

anthropogenic-driven variability of PM2.5 or O3 concentrations as target variables. 377 

Similarly, the emission inputs were treated as anomaly (the difference between the 378 

current day’s emissions and the moving average of 30 days around). A 10-fold 379 

cross-validation was applied (80% training and 20% testing), and the bias and 380 

correlation coefficient (R) were calculated to evaluate the model performance (Xiao et 381 

al., 2018). 382 

SHAP values were calculated for each emission feature using the tree explainer 383 

algorithm, quantifying contributions of pollutant-sector combinations to variability of 384 

daily anthropogenic-driven concentrations. Note that SHAP values represented the 385 

deviation of individual predictions from the baseline expectation. Positive values 386 

indicated emission features that elevated pollutant concentrations above the baseline, 387 

while negative values indicated features that reduced concentrations below the 388 

baseline. Aggregation of daily SHAP values for various pollutant-sector combinations 389 

produced the daily-level contribution of total anthropogenic emissions to the changing 390 

ambient concentration, and the daily-level contributions could then be aggregated to 391 
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the monthly level.  392 

3. Results and discussions 393 

3.1 Anthropogenic air pollutant emissions  394 

3.1.1 Total air pollutant emissions in 2022 395 

The total anthropogenic emissions of SO2, NOX, PM2.5, NMVOCs, and NH3 in 396 

Jiangsu for 2022 were estimated at 246, 727, 298, 1186, and 377 Gg (Supplementary 397 

Figure S2), which were respectively reduced by 17%, 33%, 18%, 7%, and 11% 398 

compared with those in 2019 (Gu et al., 2023). Our estimates indicated that the 399 

reduction rate of SO2 emissions was much lower between 2019 and 2022 than that at 400 

53% between 2015 and 2019. In particular, the emissions from the power sector were 401 

estimated to decline only 7% during 2019-2022. The result confirmed that the 402 

abatement of SO2 emissions have been clearly decelerated following the full 403 

implementation of ultra-low emission retrofits, suggesting that the potential of further 404 

reduction of SO2 emissions for power sectors has become more limited. More energy 405 

structure adjustment instead of end-of-pipe controls is needed for the sector. 406 

In contrast to SO2, the emissions of NOX and PM2.5 were estimated to decline faster 407 

during 2019-2022 than 2015-2019. Industrial sectors contributed largely to these 408 

reductions, with the emission declining 27% and 22% for NOX and PM2.5, 409 

respectively (Figure S2). These reductions reflected expansion of intensified pollution 410 

control policies from power to other sectors, particularly the ultra-low emission 411 

standards implemented for steel (2019) and cement industries (2020) 412 

(https://sthjt.jiangsu.gov.cn/, last visited on October 2025). By 2022, Jiangsu province 413 

had implemented ultra-low emission retrofits in over 80% of iron & steel enterprises 414 

and approximately 60% of cement clinker production lines (DEE, 2023). However, 415 

slower progress of emission controls in coking, glass, and chemical industries 416 

highlighted substantial emission reduction potential in these non-electrical industrial 417 

sectors. Meanwhile, the NOX emissions of transportation were estimated to decline by 418 
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41% from 2019 levels (53% for light-duty gasoline vehicles), driven mainly by the 419 

nationwide implementation of China VI vehicle emission standard and increasing 420 

penetration of renewable energy vehicles. 421 

NMVOCs, as critical precursors of both secondary PM2.5 and O3 formation, exhibited 422 

a slower decline in emissions and have emerged as the priority of emission controls in 423 

Jiangsu (Figure S2). Industrial activities dominate NMVOCs emissions in Jiangsu, 424 

contributing 68% of the provincial total emissions. It resulted from the heavy 425 

dependence of the province on chemical industries. For example, the province 426 

accounted for over 40% of national pesticide active ingredient and dye production. 427 

Notably, more than 60% of small-scale chemical enterprises persisted in utilizing 428 

solvent-based coatings, inks, and adhesives with high-VOCs content (Simayi et al., 429 

2022; Hu et al., 2024). Furthermore, recent expansions in solvent consumption and 430 

chemical output within large-scale enterprises along the Yangtze River have largely 431 

offset the emission reductions through improvement of manufacturing and pollution 432 

control technologies (Li et al., 2019). Consequently, intensified emission controls 433 

should be urgently required for targeting key industrial sectors and critical regions for 434 

NMVOCs reduction. Agricultural NH3 emissions in Jiangsu have experienced a 435 

decline of 14% during 2019-2022, primarily attributed to reduced nitrogen fertilizer 436 

usage. However, the absence of effective NH3 control measures prevented further 437 

substantial reduction of emissions for the sector (Zhou et al., 2023; Zhao et al., 2022). 438 

3.1.2 Daily emission variability for air pollutants in 2022 439 

Figure 2 show the daily variability of total and sectoral emissions of various pollutants 440 

(SO2, NOX, PM2.5, NMVOCs, and NH3) in 2022, respectively (the time series of 441 

emissions (NOX as an example) for all the involved source categories are provided in 442 

Supplementary Figure S3). The results revealed distinct seasonal emission patterns of 443 

air pollutants driven by anthropogenic activities and/or meteorological conditions.  444 

The emissions of SO2 and primary PM2.5 followed the seasonal patterns of fossil 445 

energy consumption (Yun et al., 2021), with clear peaks in winter (from December to 446 
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February) associated with the substantial coal combustion for residential heating and 447 

elevated industrial energy demand (Geng et al., 2021; Zhan et al., 2023). Regarding 448 

NOX, transportation has become the primary contributor to the emissions along with 449 

improved emission controls from the power and industrial sectors. Following the 450 

lifting of COVID-19 lockdown since June 2022, moreover, residents exhibited a 451 

strong desire to travel, which enhanced the emissions from transportation. Compared 452 

to the spring (from March to May), NOx emissions from transportation increased 12% 453 

during the summer (from June to August), consistent with the elevated population 454 

mobility (Supplementary Figure S4). Additionally, the NOX emission peak in March 455 

reflected the resumption of industrial production and construction activities after the 456 

Chinese New Year. The area of construction for residential and commercial buildings 457 

increased 56% from February to March, with these activities heavily dependent on 458 

diesel-powered machinery (Yang et al., 2015; Cliff et al., 2023). The NMVOCs 459 

emissions were the largest in summer. Enhanced volatilization of solvents and 460 

industrial chemicals by the warmer temperatures resulted in a 22% growth of summer 461 

emissions compared to spring. Similar to NOX, the NMVOCs emissions in March 462 

rebounded with a 17% growth compared to February, reflecting the resumption of 463 

coating, printing, and petrochemical industries. NH3 were closely associated with 464 

farming cycles, peaking during Spring sowing and Autumn harvesting periods. 465 

Notably, the province has made great efforts on reducing emissions during the period 466 

with heavy pollution weather (DEE, 2022). Compared to August 2022, mandatory 467 

restrictions on coal-fired boilers and industrial plants for September resulted in an 11% 468 

reduction of coal consumption for major industrial sectors, leading to a decline of 7%, 469 

10%, 15%, and 12% for anthropogenic emissions of SO2, NOX, PM2.5, and NMVOCs, 470 

respectively. This demonstrated the effectiveness of pollution control measures 471 

conducted by the government on counteracting pollution episodes around August and 472 

September, despite persistent meteorological challenges (Wang et al., 2023). However, 473 

subsequent emission rebounds in winter for SO2 (+24% compared with those in 474 

Autumn) and PM2.5 emissions (+19%) underscored the limitation of seasonal control 475 
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strategies for combustion-derived pollutants, emphasizing the imperative for clean 476 

energy promotion to achieve sustainable emission abatement. 477 

In April 2022, a great reduction in air pollutant emissions was estimated. Compared 478 

with March, the emissions of SO2, NOX, PM2.5, and NMVOCs decreased by 11%, 8%, 479 

6%, and 12% respectively. This abrupt decline was temporally associated with the 480 

COVID-19 induced lockdown implemented in Shanghai (March 28-June 1, 2022). 481 

The lockdown substantially disrupted industrial production, transportation activities, 482 

and daily routines in neighboring Jiangsu Province. The results showed that 483 

short-term public health incidents exerted profound impact on air pollutant emissions 484 

(Zhang et al., 2024; Ma et al., 2023).  485 

3.1.3 High-resolution maps of air pollutant emissions 486 

Based on the real-time geospatial information from the POI system (e.g., quarterly 487 

updated road networks, land use types, and monthly revised construction sites), we 488 

achieved the evolving spatial pattern of daily air pollutant emissions with a horizontal 489 

resolution of 3 km×3 km. Figure 3 presents the spatial distribution of daily average 490 

emissions of major sectors in Jiangsu Province for 2022. We selected NOX as an 491 

example to illustrate the sector heterogeneity. The NOX emissions from power, 492 

industrial, vehicle, off-road transportation and residential sources in Jiangsu were 493 

calculated at 144, 109, 247, 183 and 45 Gg respectively. Aviation emissions (less than 494 

1% of total NOX) were excluded due to their tiny contribution to the total emissions.  495 

The spatial pattern of emissions was closely associated with corresponding 496 

anthropogenic activities. Agricultural machinery emissions were predominantly 497 

located in northern agricultural zones and coastal areas, correlating with the 498 

spatiotemporal distribution of farming activities. In contrast, emissions from other 499 

sources were more concentrated in the southern cities, especially along the Yangtze 500 

River with the most abundant power and industrial plants. The NOX emissions from 501 

five cities in southern Jiangsu (Nanjing, Suzhou, Wuxi, Changzhou, Zhenjiang) 502 

accounted for 59% and 63% of provincial power and industrial emissions, 503 
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respectively. On-road transportation emissions demonstrated a strong dependence on 504 

the road network. Nanjing and Xuzhou, as critical national railway transportation hubs, 505 

contributed 24% and 13% of provincial NOX emissions from railways (Wang et al., 506 

2016). In addition, Suzhou contributed 29% of provincial marine emissions, attributed 507 

to its pivotal role in Yangtze River Delta inland waterway logistics (Shen et al., 2021). 508 

Unsurprisingly, the residential NOX emissions were closely correlated with the 509 

population density. 510 

3.1.4 Assessment of monthly variability 511 

Figure 4 compares the monthly distributions of SO2, NOX, and PM2.5 emissions 512 

estimated in this study with those in MEIC, as well as those of provincial averages of 513 

ambient concentrations of corresponding species obtained from the state-operating 514 

observation sites in Jiangsu. Due to the unavailability of MEIC for the year 2022, we 515 

used the result for 2020 instead. 516 

For SO2 (Figure 4a) and PM2.5 (Figure 4e), our analysis demonstrated a close 517 

agreement between monthly variation in emissions and that in observed concentration 518 

across Jiangsu Province. The near-real-time emission estimates effectively captured 519 

the short-term fluctuations, including the abrupt reduction in April associated with 520 

COVID-19 lockdown and the seasonal change from the temporary pollution control 521 

measures in autumn. These results partly justified the capability of the approach to 522 

track the effect of changing anthropogenic activities on air pollutant emissions. 523 

Meanwhile, we found contrary monthly distributions between NOX emissions and the 524 

observed concentration of NO2 (Figure 4c). The largest emissions were estimated in 525 

summer months but the lowest concentrations were observed for the same months 526 

across the year. This inconsistency likely resulted from following factors. Increased 527 

transportation activity during summer, particularly mobility rebound after lockdown, 528 

elevated NOx emissions, while NO2 was substantially consumed for O3 formation 529 

through photochemical reactions. In winter, there was more NO2 accumulation in the 530 

atmosphere with slower photochemical reactions and reduced boundary layer heights 531 
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(Ding et al., 2015; Wang et al., 2012). In addition, we found a similar correlation 532 

between PM2.5-NO2 in monthly trends, implying the importance of controlling NOX 533 

emissions in reducing PM2.5 pollution. 534 

Similar monthly distribution of emissions were found for the national (MEIC) and 535 

provincial emission estimates (this work), implying regular patterns of monthly 536 

anthropogenic activities could be captured by both inventories. Nevertheless, 537 

disparities existed in the overall emission totals and sector distributions between the 538 

two inventories. For instance, the contributions of industry to provincial emissions of 539 

SO2 and NOX were estimated at 45% and 15% in this work, greatly different from the 540 

MEIC estimation at 72% and 41%, respectively. These discrepancies might be 541 

attributed to that the national inventory (MEIC) for 2020 has not yet fully included the 542 

information of emission control technology upgrades (e.g., ultra-low emission 543 

retrofits) in the industrial sector. Taking the sintering process in the steel industry as 544 

an example, our facility-level estimations indicated that the average emission factors 545 

for SO2, NOX, and PM2.5 were 0.143 kg/t, 0.228 kg/t, and 0.037 kg/t, respectively, 546 

much lower than the recommended values of 1.34 kg/t, 0.55 kg/t, and 2.52 kg/t from 547 

the guidelines for development of national emission inventory (He et al., 2018). 548 

Substantial discrepancies were revealed for off-road transportation of SO2 emissions. 549 

The provincial SO2 emission estimate from marine (12,877 metric tons) were almost 550 

three times of that by MEIC (4,690 metric tons). As a major freight hub in the eastern 551 

coastal region of the country, Jiangsu Province played a pivotal role in marine 552 

transportation, and approximately 60% of vessels utilized heavy oil with high-sulfur 553 

content as fuel (Dong et al., 2025). Application of national average EFs for the sector 554 

might lead to underestimation in emissions. Furthermore, the national inventory 555 

ignored the emissions from passing vessels at ports. Inclusion of such vessels would 556 

increase the SO2 emissions in the Yangtze River Delta region by a factor of 2.3 557 

(Zhang et al., 2017). As power and industrial sectors have gradually completed 558 

ultra-low emission retrofits, marine emissions with less stringent controls may 559 

become more important in the future, requiring greater efforts on fuel quality 560 
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improvement and stricter emission controls. 561 

3.2 Impacts of short-term lockdown on changes in emissions  562 

From March 28 to June 1 in 2022, Shanghai, the largest megacity in YRD and the 563 

national center of economy, finance, manufacturing, and maritime trade in China, 564 

implemented stringent COVID-19 lockdown measures that suspended intercity 565 

mobility and industrial production and kept only essential logistics. This 566 

unprecedented lockdown not only disrupted social and economic activities of 567 

Shanghai, but also brought substantial effects for neighboring regions. Jiangsu 568 

Province, a highly industrialized region adjacent to Shanghai, experienced severe 569 

disruptions across service sectors, manufacturing supply chains, and maritime 570 

logistics, resulting in substantial declines in energy consumption, industrial output, 571 

and transportation activities. To further quantify the lockdown effect on air pollutant 572 

emissions, we conducted a comparative analysis between two periods: the 573 

lockdown-affected period (April-May 2022) and the post-pandemic period, the same 574 

months one year later (April-May 2023). 575 

The first column of Figure 5 (a1, b1, c1, d1) illustrates the variability in daily 576 

emissions of NOX, SO2, PM2.5, and NMVOCs in Jiangsu during April-May 2022 577 

(lockdown period) versus 2023 (recovery period), as well as the difference between 578 

the two periods. The emission differences (calculated as the relative change compared 579 

to the 2023 level) reached 8%, 6%, 6%, and 10% for these air pollutants, respectively. 580 

The most substantial decline in pollutant emissions occurred in April 2022, with a 581 

gradually diminishing difference in May. However, the emissions by the end of May 582 

2022 did not reach the level of recovery period in May 2023, reflecting the effect of 583 

temporary measures on reducing economic activities even after the lifting of the 584 

lockdown. The full economy recovery was delayed until 2023 when pandemic 585 

restrictions were completed lifted (Li et al., 2023). 586 

The second and third columns of Figure 5 (a2-d2 and a3-d3) illustrate the 587 

contributions of various pollution source categories to the differences in emissions 588 
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between April-May of 2022 and 2023. Agricultural production remained basically 589 

unaffected by the pandemic, thus the emission changes from agricultural machinery 590 

were not included. The total reduction in NOX emissions was 9,970 metric tons, 591 

predominantly attributed to transportation sources. The sector contributed to over 70% 592 

of the emission reduction, including on-road transportation (15%), construction 593 

machinery (27%), marine (19%), railway (5%), and aviation (4%). This result is 594 

consistent with the findings on the effect of the 2020 COVID-19 lockdown (Lv et al., 595 

2020; Zhao et al., 2020a). However, there was a slight rebound in motor vehicle 596 

emissions in May, which could be associated with basic everyday living and working 597 

needs. Notably, construction machinery and marine were more affected by the 598 

lockdown, attributable to construction material shortages (39% fewer of constructing 599 

and building activities) and disrupted inland waterway logistics (20% less of port 600 

throughput). Compared with transportation, the reduction of NOx emissions from the 601 

power (1,955 metric tons) and the industrial sector (1,202 metric tons) were smaller. 602 

The decline in industrial electricity demand reduced the fossil fuel consumption and 603 

thereby the NOx emissions from the power sector. During industrial shutdowns and 604 

production restrictions caused by the epidemic, frequent start-ups and shutdowns of 605 

production and pollution control equipment resulted in a clear decline in NOX 606 

removal efficiency compared with normal operation condition of selective catalytic 607 

reduction (SCR) systems. Previous measurements found that the average NOX 608 

removal efficiency of coal-fired units in iron & steel production enterprises decreased 609 

from 78% to 61% (Shao et al., 2023), which to some extent offset the emission 610 

reduction effect of industrial sources due to production restrictions.  611 

SO2 emission reductions predominantly originated from power (521 metric tons, 21%) 612 

and industrial sectors (1,710 metric tons, 68%). For PM2.5, transportation contributed 613 

56% to the total reduction of 3,583 metric tons, with the contributions from on-road 614 

transportation, construction machinery, marine, railway, and aviation accounting for 615 

8%, 18%, 14%, 9%, and 7%, respectively. The emission reductions of NMVOCs were 616 

estimated at 20,170 metric tons. The contribution of industrial sources reached 93%, 617 
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largely due to a 64% decline in crude oil processing in Jiangsu Province compared to 618 

2023, as well as the substantial declines in the production of chemical products (e.g., 619 

27% less in chemicals fibers and 65% less in ethylene manufacturing, NBS, 2023). 620 

The results emphasized the lockdown impact on petrochemical industries reliant on 621 

cross-regional material flows. In contrast, the emissions from residential sector were 622 

larger for the lockdown period, with its coal consumption 7% more than that in 623 

recovery period one year later, likely driven by the enhanced heating/cooking 624 

demands during mobility restrictions.  625 

In a summary, the results revealed complicated and diverse interventions of public 626 

health incidents on energy use and activities for different sectors. The near-real-time 627 

techniques developed in this work proved capable to capture the fast response of air 628 

pollutant emissions to the short-term measures conducted during unexpected incidents, 629 

and to clear identify the driving sectors of emission changes compared to the normal 630 

conditions. 631 

3.3 Evaluation of the near-real-time emission estimates with air 632 

quality simulation 633 

The near-real-time estimates of provincial emissions were evaluated with air quality 634 

simulation with CMAQ. To assess model performance, the observed concentrations of 635 

hourly SO2, NO2, PM2.5, and MDA8 O3 were compared with the simulations based on 636 

the provincial-level near-real-time emission estimates and MEIC for the selected four 637 

months of 2022, as summarized in Supplementary Table S2. Overall, the simulation 638 

with the provincial emission estimates shows acceptable agreement with the 639 

observations, with the annual means of NMB and NME ranging -37.1% – 24.1% and 640 

33.7% –53.5% for SO2, -20.2% – 27.0% and 15.9% – 36.2% for NO2, -18.6% – 10.8% 641 

and 37.5% –62.5% for PM2.5, and -41.2% – -23.1% and 32.7% – 49.3% for O3. The 642 

analogous numbers for MEIC were -33.4% – 25.5% and 40.9% –51.8% for SO2, -19.9% 643 

– 35.6% and 22.3% – 55.1% for NO2, -8.6% – 25.2% and 37.5% – 52.5% for PM2.5, 644 

and -39.9% – -28.1% and 44.3% – 54.5% for O3, respectively. Most of the NMB and 645 
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NME were within the recommended criteria (-30%≤NMB≤30% and NME≤50%, 646 

Emery et al., 2017). Better performance was achieved using the provincial emission 647 

estimates developed in this work, implying the benefit of applying the refined 648 

emission data on high-resolution air quality simulation. 649 

Figures 6 and 7 compares the simulated daily PM2.5 and O3 concentrations based on 650 

the provincial (this work) and national emission estimates (MEIC) against 651 

observations (results for SO2 and NO2 are shown in Supplementary Figures S5 and S6, 652 

while spatial distributions for all the four pollutants are provided in Supplementary 653 

Figures S7-S10). Compared to MEIC, the provincial-scale emission estimates 654 

demonstrated better model performance in capturing the daily variability of pollutant 655 

concentrations. The greater correlation coefficients (R) between simulated and 656 

observed concentrations based on the near-real-time estimates indicated a remarkable 657 

improvement for all the involved air pollutants (Table S2). 658 

For PM2.5, the improvement in model performance based on the provincial emission 659 

estimates was particularly prominent concerning the impact of the COVID-19 660 

lockdown measures in April. As shown in Figure 6, the near-real-time approach more 661 

accurately captured the decline in PM2.5 level from reduced emissions. As a 662 

comparison, notable overestimation of PM2.5 concentration occurred for simulation 663 

with MEIC. As a national emission inventory, MEIC commonly applied the temporal 664 

profiles of activity data for various sectors for the whole country, thus could 665 

insufficiently track the effect of temporary and unexpected events on emissions, such 666 

as the city lockdown. For O3, despite of the underestimation for both emission 667 

inventories, application of the near-real-time provincial estimates not only reduced the 668 

underestimation compared to MEIC but also better captured the variability of O3 669 

concentration driven by short-term emission fluctuations. These results collectively 670 

demonstrated the improvement in model performance and advantage of near-real-time 671 

emission estimates to support high-resolution air quality simulation. 672 

 673 
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3.4 Impact of daily emission change on the variability of PM2.5 and O3 674 

concentrations  675 

3.4.1 Anthropogenic-driven contributions to variability of PM2.5 and MDA8 O3 676 

concentrations 677 

Figure 8 presents the contributions of the changing daily emissions to the monthly 678 

variability of PM2.5 and MDA8 O3 concentrations based on the MLR model. The 679 

model performance was assessed with observed PM2.5 and O3 concentrations 680 

(Supplementary Figure S11). The simulated concentrations were strongly correlated 681 

with observational data, with the correlation coefficient (R) of 0.79 for PM2.5 and 0.88 682 

for MDA8 O3. The validation indicated satisfying performance of MLR in capturing 683 

provincial air quality variability. 684 

The anthropogenic-driven variability of PM2.5 concentration was basically consistent 685 

with the temporal variation of estimated emissions. As shown in Figure 8a, the 686 

abundant emissions in January resulted in a prominent enhancement of 12.7 μg/m3 for 687 

PM2.5 concentration, followed by December (1.8 μg/m3) and June (1.6 μg/m3). In 688 

particular, the enhancement of June was driven largely by the post-pandemic 689 

economic recovery, as discussed in in Section 3.2. For most warm months (April to 690 

October, except June), negative impacts of anthropogenic activities on PM2.5 level 691 

were found, ranging 1.1 – 4.2 μg/m3
. Clear decline of PM2.5 due to emission change 692 

was also found in February (5.5 μg/m3), resulting probably from the greatly reduced 693 

human activities (industry and transportation) during the Chinese New Year holiday. 694 

The PM2.5 growth occurred during winter heating period highlighted the necessity of 695 

accelerating transition of clean household energy and improving management of 696 

industrial production after the short-term lockdowns.  697 

The variation of anthropogenic emissions was found to elevate O3 concentrations in 698 

most months of the year, particularly for warm seasons (Figure 8b). The 699 

enhancements during March-August ranged 0.8 – 3.8 μg/m3, suggesting the important 700 

role of human activities in aggravating O3 pollution. High temperature in summer 701 
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promoted the emissions of temperature-dependent O3 precursors, particularly 702 

NMVOCs from various sources (Figure 2d). In addition, the NOX emissions from 703 

certain were elevated in warm seasons, e.g., those from off-road machinery in the 704 

summer harvest season (Figure 2a). The growing abundance of precursors, together 705 

with high temperature, enhanced the photochemical production rate of O3. 706 

However, the anthropogenic emissions during winter demonstrated a net negative 707 

contribution to surface O3 concentrations (e.g., -6.2 and -2.4 μg/m3 for November and 708 

December, respectively), indicating a shift in the chemical regime of O3 formation. 709 

This phenomenon primarily resulted from enhanced NOx titration amplified by 710 

elevated NOx level. Simultaneously, reduced NMVOCs emissions and diminished 711 

photochemical activity restricted the efficiency of radical-driven O3 production. The 712 

resulting O3-depleting reactions overwhelmed potential formation mechanisms, 713 

leading to the estimated negative contribution from anthropogenic emissions. This 714 

pattern contrasted sharply with the net positive effect of anthropogenic activities in 715 

summer months, and underscored the complex season-dependent response of O3 level 716 

to the changing precursor emissions. 717 

3.4.2 Impact of fluctuations in anthropogenic emissions by precursor and sector 718 

on PM2.5 and MDA8 O3 concentrations 719 

The impacts of anthropogenic emission fluctuations on variability of PM2.5 and O3 720 

concentrations were quantified by precursor and sector, with a machine learning 721 

framework integrating XGBoost and SHAP analysis. Derived from the 10-fold cross 722 

validation, the correlation coefficient (R) between machine learning prediction and 723 

observation reached 0.78 and 0.81 for daily PM2.5 and MDA8 O3, respectively, 724 

suggested satisfying capability of the machine learning framework in predicting the 725 

anthropogenic-driven variability of PM2.5 and O3 concentrations (Supplementary 726 

Figure S12).  727 

Figure 9a and 9b illustrates the contributions of changing emissions from different 728 

pollutant-sector combinations to the variability of PM2.5 concentration in January and 729 
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that of MDA8 O3 in July, respectively. The temporal variability of PM2.5 level 730 

attributable to anthropogenic emission changes was in general consistent with that of 731 

observed surface PM2.5 concentration (Figure 9a). For O3, there existed some 732 

discrepancy between the temporal distribution of anthropogenic-driven variability and 733 

observed concentration in summer. This discrepancy may be attributed to the 734 

substantial impacts of meteorological conditions and biogenic VOCs emissions on O3 735 

formation (Gu et al., 2023).  736 

Among all the pollutant-sector combinations, fluctuations in agricultural NH3 737 

emissions accounted for 67.3% of the variability of PM2.5 concentrations in January, 738 

followed by off-road NOX (12.9%) and residential PM2.5 emissions (4.9%). The 739 

contribution of NH3 emission variation significantly exceeded those of NOX (17.7%), 740 

PM2.5 (10.8%), and SO2 (4.2%), suggesting that Jiangsu may be transitioning to an 741 

NH3-rich regime following substantial reductions in SO2 and NOX emissions (Zhao et 742 

al., 2020b). Therefore, agricultural NH3 control has become the priority of the strategy 743 

design for PM2.5 pollution alleviations, compared to traditional NOX abatement. The 744 

fluctuations in VOC-Industry contributed to 48.5% of the variability of MDA8 O3 745 

concentrations in July, followed by off-road VOCs (9.7%) and NOX emissions (8.9%). 746 

In total, the NMVOCs accounted for 69.7% of the anthropogenic-driven variability of 747 

O3 concentration, exceeding the contributions from NOX (14.5%), PM2.5 (11.0%), and 748 

SO2 (4.9%). The positive contribution of NOX to MDA8 O₃ indicated that the O3 749 

formation mechanism in Jiangsu may be shifting from a VOCs-limited regime 750 

towards a transitional or NOX-limited regime. Regarding the sector contributions with 751 

various species aggregated, the agricultural emission fluctuations contributed most to 752 

anthropogenic-driven variability of PM2.5 concentration (67.3%, Figure 9c), while 753 

industrial activities contributed most to that of O3 concentration (54.8%, Figure 9d). 754 

Notably, off-road transportation emerged as an important contributor to both 755 

pollutants (15.6% for PM2.5 and 24.4% for O3), providing clear evidence for policy 756 

making of coordinating control of PM2.5 and O3 pollution. 757 
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4. Conclusion remarks 758 

In this study, we incorporated near-real-time activity data from multiple sources and 759 

developed a method for continuously estimating the regional daily air pollutant 760 

emissions of anthropogenic origin. We then applied this method to estimate the 761 

spatiotemporal evolution of emissions in Jiangsu Province, a typical developed area in 762 

eastern China, with a particular focus on the period during the COVID-19 lockdown 763 

in 2022 and the corresponding phase after the lifting of restrictions in 2023. Finally, 764 

we constructed a rapid assessment approach that utilized machine learning algorithms 765 

to quantify the impact of fast changing emissions on variability of daily air quality. 766 

Our research indicated that emission controls have played a crucial role in abatement 767 

of air pollutant emissions. The provincial emissions of SO2, NOX, PM2.5, NMVOCs, 768 

and NH3 decreased 17%, 33%, 18%, 7%, and 11%, respectively, from 2019 to 2022. 769 

Implementation of ultra-low emission retrofits for industrial sectors has proven 770 

effective in reducing primary PM2.5 and NOX emissions. However, there is an urgent 771 

need to enhance NMVOCs emission control in key industrial sectors and areas. We 772 

identified distinct temporal variabilities of emissions for various air pollutants. The 773 

emissions of SO2 and PM2.5 were influenced greatly by fossil fuel consumption 774 

pattern, while NOX emissions were increasingly dominated by that of transportation. 775 

The NMVOCs emissions peaked in the summer and declined in winter, followed by a 776 

rebound in emissions after the Chinese New Year. Our comparative analysis indicated 777 

that the emissions of NOX, SO2, PM2.5, and NMVOCs in Jiangsu during the 778 

COVID-19 lockdown of Shanghai in April-May 2022 were respectively 8%, 6%, 6%, 779 

and 10% smaller than those in the same months of 2023. Transportation was identified 780 

as the primary contributors to the reductions in NOX and PM2.5 emissions, while 781 

industry accounted for 93% of the reduction in NMVOCs, closely associated with the 782 

disrupted cross-regional product supply chains. Indicated by the contributions of 783 

changing emissions from pollutant-sector combinations to the variability of PM2.5 and 784 

O3 levels, reducing agricultural NH3 emissions should be critical for PM2.5 pollution 785 

alleviation, and off-road transportation has become a priority target for coordinating 786 

https://doi.org/10.5194/egusphere-2025-5605
Preprint. Discussion started: 19 January 2026
c© Author(s) 2026. CC BY 4.0 License.



29 
 

control of both PM2.5 and O3 pollution. The outcomes demonstrated the importance of 787 

near-real-time techniques on tracking the fast-changing air pollutant emissions, 788 

identifying the driving factors of air pollution variability, and supporting the policy 789 

making of air quality management. 790 

The limitations of this work existed mainly in the near-real-time information of 791 

multiple sources and the rapid assessment of air quality variability. For instance, 792 

CEMS covered only relatively big point sources, thus we had to assume that the small 793 

and fugitive sources followed similar variability of emissions with point sources. As 794 

CEMS only covers SO2, PM2.5, and NOX, the use of electricity consumption data for 795 

NMVOCs may introduce substantial uncertainty. Future improvement in online 796 

monitoring of NMVOCs will enhance the estimation of temporal variation of 797 

emissions. Moreover, the machine learning process ignored the contributions from 798 

regional transport, which could result in some bias in analyzing the impacts of 799 

anthropogenic emissions on air quality. However, in contrast to time-consuming 800 

numerical modeling, machine learning offered a rapid and reliable assessment of the 801 

impact of daily emission changes on air quality, which exactly addressed the 802 

requirement of air quality management, and was recommended in future policy 803 

making of air pollution controls. 804 
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Figure captions 1195 

Figure 1 The research framework of near-real-time emission estimation and 1196 

application in this work. 1197 

Figure 2 Daily emission estimates of anthropogenic air pollutants by sector for 1198 

Jiangsu Province in 2022. (a) NOX; (b) SO2; (c) PM2.5; (d) NMVOCs; (e) NH3. 1199 

Figure 3 Spatial distribution of anthropogenic NOX emissions for Jiangsu Province in 1200 

2022 with a horizontal resolution of 3×3 km. (a) Total emissions; (b) Power; (c) 1201 

Industry; (d) Vehicle; (e) Off-road transportation; (f) Residential. The map data 1202 

provided by Resource and Environment Data Cloud Platform are freely available for 1203 

academic use (http://www.resdc.cn/data.aspx?DATAID=201), © Institute of 1204 

Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences. 1205 

Figure 4 The monthly air pollutant emissions for Jiangsu Province in 2022 estimated 1206 

in this study (a, c, and e) and in national emission inventory (MEIC; b, d, and f). The 1207 

emissions of SO2 (a and b), NOX (c and d) and primary PM2.5 (e and f) are contained. 1208 

The red lines with triangles represent the observed monthly surface concentrations of 1209 

corresponding air pollutants. 1210 

Figure 5 The differences between the emissions of NOX (a), SO2 (b), PM2.5 (c) and 1211 

NMVOCs (d) in April-May for 2022 and 2023 in Jiangsu Province. The first column 1212 

illustrates the daily total emissions and the differences for the period of the two years. 1213 

The second column illustrates the contributions of various source categories to the 1214 

differences in daily total emissions, and the third column aggregates them for the 1215 

whole period. 1216 

Figure 6 The comparison between the observed daily PM2.5 concentrations and those 1217 

simulated with different emission inventories (this work and MEIC) for January, April, 1218 

July and October 2022 for Jiangsu Province. 1219 

Figure 7 The comparison between the observed daily O3 concentrations and those 1220 

simulated with different emission inventories (this work and MEIC) for January, April, 1221 
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July and October 2022 for Jiangsu Province. 1222 

Figure 8 The monthly anomaly in PM2.5 (a) and MDA8 O3 concentrations (b) driven 1223 

by the changing daily emissions for Jiangsu Province in 2022, based on the MLR 1224 

model. 1225 

Figure 9 Anthropogenic pollutant and sector drivers of PM2.5 and MDA8 O3 1226 

variability. (a) and (b) illustrate the contributions of pollutant-sector combinations to 1227 

the variability of PM2.5 in January and that of O3 in July, derived from SHAP analysis. 1228 

The black dashed lines represent the observed daily ground-level concentrations of 1229 

PM2.5 and MDA8 O3. (c) and (d) provided the contributions of the changing emissions 1230 

from different sectors, with those of various precursor species aggregated. 1231 
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Figure 1 The research framework of near-real-time emission estimation and 1233 

application in this work. 1234 
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Figure 2 Daily emission estimates of anthropogenic air pollutants by sector for 

Jiangsu Province in 2022. (a) NOX; (b) SO2; (c) PM2.5; (d) NMVOCs; (e) NH3. 
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Figure 3 Spatial distribution of anthropogenic NOX emissions for Jiangsu Province in 

2022 with a horizontal resolution of 3×3 km. (a) Total emissions; (b) Power; (c) 

Industry; (d) Vehicle; (e) Off-road transportation; (f) Residential. The map data 

provided by Resource and Environment Data Cloud Platform are freely available for 

academic use (http://www.resdc.cn/data.aspx?DATAID=201), © Institute of 

Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences. 
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Figure 4 The monthly air pollutant emissions for Jiangsu Province in 2022 estimated 

in this study (a, c, and e) and in national emission inventory (MEIC; b, d, and f). The 

emissions of SO2 (a and b), NOX (c and d) and primary PM2.5 (e and f) are contained. 

The red lines with triangles represent the observed monthly surface concentrations of 

corresponding air pollutants. 
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Figure 5 The differences between the emissions of NOX (a), SO2 (b), PM2.5 (c) and 

NMVOCs (d) in April-May for 2022 and 2023 in Jiangsu Province. The first column 

illustrates the daily total emissions and the differences for the period of the two years. 

The second column illustrates the contributions of various source categories to the 

differences in daily total emissions, and the third column aggregates them for the 

whole period. 
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Figure 6 The comparison between the observed daily PM2.5 concentrations and those 

simulated with different emission inventories (this work and MEIC) for January, April, 

July and October 2022 for Jiangsu Province. 
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Figure 7 The comparison between the observed daily O3 concentrations and those 

simulated with different emission inventories (this work and MEIC) for January, April, 

July and October 2022 for Jiangsu Province. 
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Figure 8 The monthly anomaly in PM2.5 (a) and MDA8 O3 concentrations (b) driven 

by the changing daily emissions for Jiangsu Province in 2022, based on the MLR 

model. 
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Figure 9 Anthropogenic pollutant and sector drivers of PM2.5 and MDA8 O3 

variability. (a) and (b) illustrate the contributions of pollutant-sector combinations to 

the variability of PM2.5 in January and that of O3 in July, derived from SHAP analysis. 

The black dashed lines represent the observed daily ground-level concentrations of 

PM2.5 and MDA8 O3. (c) and (d) provided the contributions of the changing emissions 

from different sectors, with those of various precursor species aggregated. 
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