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Abstract. The early Paleoproterozoic era (2.45-2.20 Ga), known as the Tectono-Magmatic Lull (TML), is characterized by a
decline in global magmatic activity. This study first identifies ca. 2.45 Ga trondhjemitic gneiss (2446 + 15 Ma) in Eastern
Hebei of the Eastern Block, North China Craton. These rocks exhibit adakitic geochemical characteristics, marked by high
Si0,, Al>Os, and Sr contents, with low MgO, Y, and Yb contents. Their low MgO, Cr, and Ni contents, along with slightly
high zircon §'0 (5.96-6.53 %o) and positive enr(f) (3.3-4.9) values, indicate that they originated from partial melting of a
juvenile thickened lower crust. All samples show low concentrations of Y, Yb, Ti, Nb, and Ta, coupled with their high (La/Yb)n
and Nb/Ta ratios, suggesting that they formed at a high-pressure condition, with garnet and rutile as residues. In combination
with our new data and published zircon U-Pb ages in the region, we have identified multiple stages of magmatism (3.84-3.64
Ga, 3.53-3.22 Ga, 3.12-2.80 Ga, and 2.61-2.45 Ga) and metamorphism (3.50-3.23 Ga, 3.18-2.80 Ga, ~2.50 Ga, ~2.45 Ga,
~1.82 Ga) in Eastern Hebei. Based on a compilation of these magmatic zircon U-Pb ages and Hf isotope data, Eoarchean to
early Paleoproterozoic crustal evolution processes in Eastern Hebei is established. The Eoarchean is dominated by Hadean
crustal reworking, and the Paleoarchean is primarily characterized by crustal reworking with a minor contribution of crustal
growth. Both crustal growth and reworking occurred during Mesoarchean time, with the proportion of crustal growth
increasing from the Paleoarchean to the Mesoarchean. The late Neoarchean represents a major period of crustal growth with
minor crustal reworking. The ca. 2.45 Ga trondhjemitic gneiss discovered in this study was probably a continuation of the late

Neoarchean magmatism and the crustal growth persisted into this period.



25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

https://doi.org/10.5194/egusphere-2025-5595
Preprint. Discussion started: 23 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

1 Introduction

The early Paleoproterozoic era is a special period in Earth’s history, during which a variety of fundamental paleoclimatic
and tectono-magmatic changes occurred (Condie et al., 2009; Lyons et al., 2014; Zhai and Peng, 2020). On one hand, extensive
paleoclimatic changes occurred in the early Paleoproterozoic, including a dramatic transition of atmosphere from oxygen-free
to hypoxia-oxygenated (i.e., Great Oxidation Event), loss of mass-independent sulfur isotope fractionation, formation of
largescale banded iron ore, significantly positive carbon isotope excursion, and development of widespread glaciations (i.e.,
Huronian glaciation) (Young, 2013; Eriksson and Condie, 2014; Partin et al., 2014; Condie et al., 2022). On the other hand,
the global magmatic activity decreased dramatically between 2.45 and 2.2 Ga, as evidenced by a noticeable dip in light of
global igneous and detrital zircon ages (Condie et al., 2009), with sporadic records of greenstone belt, tonalite-trondhjemite-
granodiorite (TTG) suite, and large igneous provinces (LIPs) worldwide (Spencer et al., 2018; Wang et al., 2021; Yang et al.,
2024). This interval of significantly reduced magmatic activity was named the “Tectono-Magmatic Lull (TML)” (Partin et al.,
2014; Teixeira et al., 2015; Spencer et al., 2018). Some scholars proposed that the TML was related to the global plate tectonic
shutdown and continental crust growth was stagnated during the TML (O’Neill et al., 2007; Condie et al., 2009; Spencer et al.,
2018).

However, some recent studies have revealed that the TML might not have been completely quiet, as many early
Paleoproterozoic magmatic activities have been reported in different cratons (Partin et al., 2014). For example, the early
Paleoproterozoic mafic dike swarms are well-documented globally, including the ~2.34 Ga diabase dike swarms in the
Karelian Craton (Stepanova et al., 2015), the ~2.36 Ga Bangalore gabbro-diabase dike swarms in the Dharwar Craton (Halls
et al., 2007; Kumar et al., 2012; Soderlund et al., 2019; Ramesh et al., 2020), the ~2.42 Ga Widgiemooltha-Binneringie dike
swarms in the Yilgarn Craton (French et al., 2002; Wingate, 2017; Siégel et al., 2024, and the 2.42-2.37 Ga Scourie dike
swarms in the North Atlantic Craton (Davies and Heaman., 2014; Zakharov et al., 2019). In addition, the 2.43-2.20 Ga silicic
magmatic rocks, including TTG suites and calc-alkaline granitoids, have been reported in the Arrowsmith Orogenic Belt of
the Rae Craton (Hartlaub, et al., 2007; Neil et al., 2025), the Minerio Orogenic Belt of the San Francisco Craton (Teixeira et
al., 2015; Alkmim et al., 2017), and the Trans-North China Orogen (TNCO) of the North China Craton (NCC) (Diwu et al.,
2014; Zhou et al., 2021, 2024; Zhou and Zhai., 2022; Wang and Long, 2024). Accordingly, some scholars have suggested that
plate tectonics and crustal growth persisted throughout the TML and attributed the lack of the early Paleoproterozoic magmatic
records to preservation bias (Partin et al., 2014; Pehrsson et al., 2014; Yang and Santosh, 2015).

As one of the globally typical area for the early Paleoproterozoic magmatism, several magmatic activities during the TML
have been discovered in the TNCO, Kondalite Belt, and Jiao-Liao-Ji Belt of the NCC, with various rock types of gabbro,
diorite, TTG gneiss, and granitoid gneiss (Diwu et al., 2014; Du et al., 2016; Duan et al., 2021; Zhou et al., 2021, 2024; Wang
etal., 2021; Zheng et al., 2022; Zhou and Zhai, 2022; Wang and Long, 2024). However, few early Paleoproterozoic magmatic
records were found in the Western and Eastern blocks of the NCC. In this study, we firstly identify the 2.45 Ga trondjemitic

gneiss in Eastern Hebei and conduct an integrated study of petrology, whole-rock geochemistry, and zircon U-Pb dating and
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Hf-O isotope compositions. These new data, along with previously published data in Eastern Hebei, allow us to establish the
geochronological framework of the Precambrian basement in this region, which provides insights into the Archaean to early

Paleoproterozoic crustal evolution history.

2 Geological setting and samples

As the largest and oldest craton in China, the NCC is tectonically bounded by the Central Asian Orogenic Belt to the
north, the Qinling-Dabie Orogenic Belt to the south, and the Qilian Orogenic Belt to the west (Fig. 1, Zhao et al., 2005). It
consists mainly of Archean-Paleoproterozoic basement and unmetamorphosed Paleoproterozoic-Mesozoic sedimentary cover
(Zhao et al., 2005; Geng et al., 2012; Zhao and Zhai, 2013). The basement of the NCC is subdivided into the Eastern Block
and the Western Block, which were amalgamated in the Paleoproterozoic (ca. 1.85 Ga) along the TNCO (Zhao et al., 2005).
The Western Block was amalgamated by the Yinshan and Ordos blocks along the Khondalite Belt at ~1.95 Ga, while the
Eastern Block was formed at ~1.90 Ga by collision of the Longgang and Langrim blocks along the Jiao-Liao-Ji Belt (Zhao et
al., 2005).
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Figure 1: Simplified geological map of the North China Craton showing its major tectonic units and the distribution of Precambrian
basement (modified after Zhao et al., 2005). Abbreviations of terranes: AL-Alxa, GY—-Guyang, WD—Wulashan-Daqingshan, QL—-
Qilian, HL-Helanshan, NH-Northern Hebei, XH-Xuanhua, HA-Huai’an, HS—Hengshan, WT—Wutai, FP-Fuping, ZH-Zanhuang,
ZT-Zhongtiao, TH-Taihua, DF—Dengfeng, WL—Western Liaoning, NL-Northern Liaoning, SJ-Southern Jilin, EH-Eastern Hebei,
WS—Western Shandong, WH-Wuhe, ES—Eastern Shandong, and SL— South Liaoning.
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Located in the western margin of the Eastern Block, Eastern Hebei is a classic region where the Archean basement is
widely exposed (Zhao et al., 2005; Geng et al., 2006). A variety of rock types have been recognized in this area, including
TTG gneisses, dioritic gneisses, charnockites, potassic granites, supracrustal rocks, and small amounts of metabasic dykes
(Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2015, 2019; Duan et al., 2017, 2022; Fu et al., 2016, 2017; Li et al.,
2024). The supracrustal rocks show typical features of the Archean greenschist belt, and consist of metasedimentary and
metabasic rocks with a few Banded Iron Formations and ultramafic interlayers (Geng et al., 2006; Polat et al., 2006; Guo et
al., 2013, 2014, 2015, 2017; Wang et al., 2019a; Li et al., 2024). The Archean rock types in Eastern Hebei show spatial
variations and are divided into five litho-tectonic units: (I) the Saheqiao linear-structural belt, (II) the Taipingzhai ovate-
structural domain, (III) the Qian’an gneiss dome, (IV) the Lulong-Shuangshanzi supracrustal rock belt, and (V) the Anziling
gneiss dome (Fig. 2, Wei, 2018). In addition, the Archean rocks in Eastern Hebei experienced intensive metamorphism and
deformation. They are characterized by Archean unique dome-and-keel structures, with the supracrustal rocks (the Lulong-
Shuangshanzi supracrustal belt) occurring as keels in the TTG gneiss domes (the Anziling gneiss dome) (Liu and Wei, 2018;
Zhao etal., 2021). The degrees of metamorphism of these rocks also show spatial variations. The rocks in the western segment
experienced upper amphibolite- to granulite-facies metamorphism, whereas the eastern rocks underwent greenschist- to
amphibolite-facies metamorphism (Yang and Wei, 2017a, b; Liu and Wei, 2018; Duan et al., 2019; Liu et al., 2020, 2022).

Most of the TTG and granitoid gneisses in Eastern Hebei show magmatic crystallization ages of 2.58-2.49 Ga and
metamorphic ages of 2.53-2.31 Ga (Geng et al., 2006; Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2016; Fu et al.,
2016; Yao et al., 2017; Li et al., 2019; Duan et al., 2022; Zhao et al., 2025a). In addition, some Eoarchean to Mesoarchean
granitoids (3.80-2.90 Ga) have been identified in the Huangbaiyu, Labashan, Caochang, and Caozhuang areas of Eastern
Hebei (Nutman et al., 2011; Sun et al., 2016; Fu et al., 2019; Liou et al., 2019; Liou and Guo, 2019a; Wan et al, 2021, 2023;
Dong et al., 2024, 2025; Zhao et al., 2025b). The supracrustal rocks have primary protolith deposition and magmatic ages of
2.61-2.50 Ga (Zhang et al., 2012; Guo et al., 2013, 2014; 2015, 2017; Fu et al., 2016; Duan et al., 2017; Lu et al., 2017; Liu
and Wei, 2020; Duan et al., 2022). Notably, the Palaeoarchaecan (3.45 Ga) and Mesoarchean (3.1-2.9 Ga) ultramafic-mafic
rocks were also reported in Labashan, Longwan, and Caochang areas of Eastern Hebei (Liou et al., 2019; Wang et al., 2019a;
Dong et al., 2025). The supracrustal rocks yield two groups of metamorphic ages at 2.53-2.47 Ga and 1.97-1.80 Ga (Duan et
al., 2017, 2022; Yang and Wei, 2017a, b; Lu and Wei, 2020).



102

103
104

105
106
107
108
109

https://doi.org/10.5194/egusphere-2025-5595
Preprint. Discussion started: 23 January 2026
(© Author(s) 2026. CC BY 4.0 License.
(@O

BY

EGUsphere®

Preprint repository

3.84-3.64Ga @
3.52-322Ga @ ¢

I-Sahegiao linear-structural belt
II-Taipingzhai ovate-structural domain

3.12-2.80Ga ® ¢

|

IITI-Qian’an gneiss dome

V-Anlingzi gneiss dome

40°30'N
0 20

IV-Lulong-Shuangshanzi supracrustal rock belt

2.61-2.49Ga O ©
Felsicrocks O
Maficrocks <

40 km

O
Malanyu

Q.Zi'x

o
Zunhua

- TTG gneiss
TTG gneiss

/Metamorphic diorite

- Ultramafic rocks

Supracrustal rocks of
granulite facies

Supracrustal rocks of
amphibolite facies

[:l Sedimentary cover
1

X7,
o

TTG gneiss x| TTGgneiss
/Charnockite /Potassic granite

+++++ Paleozoic-Mesozoic granite

Metabasic dykes

Supracrustal rocks of
amphibolite-granulite facies

Supracrustal rocks of
greenschist-amphibolite facies

1 1

Shuichang

O \;@:\QP@' N
Santunylng \\ (NY

JY

/é 1 >

‘3} Caozhuang

+

T,

11

Qian'an

[ JoX £ 294

O O
20 Qinglong
: O

+'+
++++++

Shuangshan2|

* o

Vv v /

/ \0| I
® [ + 2855 15 % 22HC25r3 <1 \‘ fl\‘\ J) \\\ / /‘;?
‘l )(/ N oTalplnghza| v /
/ " 2 /. ) llél ’\ \ V v
P O Iy

Vv/

++

117°30'E

118°E 118°30'E

119%E

Figure 2: Simplified geological map of Eastern Hebei showing sampling locations (modified after Jing et al., 2025). The data of the
felsic and mafic rocks are shown in Supplementary Table S1.

The 2.45 Ga trondhjemitic gneiss in this study was discovered on the road to Qiuhuayu Village (GPS: N 40°15'38.47", E
118°07'25.84"). In the field, these rocks are grayish-white and display gneissic structures (Fig. 3a, b). They are medium- to
coarse-grained and composed primarily of plagioclase (45-55 %) and quartz (40-45 %), with minor alkali-feldspar,
clinopyroxene, and accessory minerals such as magnetite (<5 %) (Fig. 3c, d). Quartz occurs as small grains that fill the

interstitial spaces between larger plagioclase crystals (Fig. 3c, d).
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Figure 3: Representative field photographs and microphotographs of the 2.45 Ga trondhjemitic geniss in Eastern Hebei. Mineral
abbreviations: Qtz—quartz, Pl-plagioclase, and Cpx—clinopyroxene.

3 Analytical methods
3.1 Zircon U-Pb dating

Zircons U-Pb dating used instruments of Agilent 7700x quadrupole inductively coupled plasma mass spectrometry system
(ICP-MS) equipped with a 193 nm ArF excimer laser ablation system (LA) at FocuMS Technology Co., Ltd., Nanjing, China.
The operating conditions include an analysis spot diameter of 33 um, a repetition rate of 6 Hz, and an energy density of 4.5

J/em?. Zircon standard 91500 (Wiedenbeck et al., 1995) was used to calibrate U-Pb isotopic ratios, and two zircon standards

6
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(GJ-1 and TANZ) were analyzed after every eight sample spots. The analysed zircons 91500, GJ-1, and TANZ yielded
weighted mean 2°Pb/>*¥U ages of 1062.4 + 1.2 Ma, 603.8 + 2.1 Ma, and 565.7 + 1.8 Ma, respectively, which agree well with
their recommended ages (Slama et al., 2008; Wiedenbeck et al., 1995). Raw data was processed by using ICPMSDataCal (Liu
et al., 2010). Age calculation and plotting were conducted by applying Isoplot (ver. 4.00; Ludwig, 2003).

3.2 Whole-rock major and trace elemental analyses

Whole-rock major and trace elemental analyses were conducted at FocuMS Technology Co., Ltd., Nanjing, China. Major
elements were analyzed using an Agilent 5110 inductively coupled plasma-optical emission spectroscopy (ICP-OES; Penang,
Malaysia), while trace elements were analyzed using an Agilent 7700x quadrupole ICP-MS (Tokyo, Japan). The analytical

accuracy is generally <5 % for major elements and < 10 % for most trace elements.

3.3 Zircon Lu-Hf isotopic analyses

In-situ zircon Lu-Hf isotope analysis was conducted using a Nu Plasma II multiple collector (MC) ICP-MS equipped
with a RESOlution-LR 193 nm ArF excimer laser at FocuMS Technology Co., Ltd., Nanjing, China. Analyses were performed
with a laser beam diameter of 50 pum, a repetition rate of 9 Hz, and an ablation time of 40 s. Three of six standard zircons
(TANZ, 91500, GJ-1, Plesovice, Mud Tank, and Penglai) were analyzed after every fifteen samples to monitor the instrument’s
reliability and stability. The measured '7*Hf/!""Hf ratios of TANZ (0.281819 = 0.000003), 91500 (0.282308 + 0.000003), GJ-
1 (0.282004 £ 0.000007), Plesovice (0.282489 + 0.000004), Mud Tank (0.282510 £+ 0.000007), and Penglai (0.282906 =+
0.000006) were consistent with the recommended values within the error range (TANZ = 0.281821 £ 0.000042, Hu et al.,
2021, 91500 = 0.282309 £+ 0.000004, Yuan et al., 2008; GJ-1=10.282013 £ 0.000009, Yuan et al., 2008; PleSovice = 0.282482
+0.000013, Slamaet al., 2008; Mud Tank = 0.282513 £ 0.000006, Yuan ct al., 2008; Penglai =0.282906 + 0.000010, Li ct al.,
2010). Zircon eur(f) values were calculated based on present-day chondritic ratios ("7°Hf/!77Hf = 0.282785, "°Lu/!""Hf = 0.0336;
Bouvier et al., 2008) and '7Lu decay constant (A\7Lu = 1.867 x 107!'!; Séderlund et al., 2004). For calculating two-stage Hf
model ages (Tomz), a '"°Lu/!"’Hf ratio for average continental crust is 0.015 (Griffin et al., 2002), with respect to depleted

mantle with a present-day '"*Hf/!7"Hf ratio of 0.28325 and a '"®Lu/!""Hf ratio of 0.0384 (Griffin et al., 2000).

3.4 Zircon O isotopic analyses

In situ zircon oxygen isotopes were analyzed using the CAMECA IMS-1300HR3 ion microprobe in the multi-collection
mode at the State Key Laboratory of Critical Earth Material Cycling and Mineral Deposits, Nanjing University. The '3Cs*
primary ion beam was accelerated at 12kV, with an intensity of ~2.6 nA and an analytical spot of 20 um. Oxygen isotopes
were measured in multi-collector mode using two off-axis Faraday cups. The measured oxygen isotopic data was normalized
to Vienna Standard Mean Ocean Water compositions (VSMOW, '80/'°0 = 0.0020052; Rehman et al., 2018) and corrected for

instrumental mass fractionation (IMF) using the Penglai zircon standard (8'®0vsmow = 5.3120.1 %o, Li et al., 2010). The Qinghu
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149  zircon was used as a secondary zircon standard, and two measurements yielded a weighted mean value of 5.47 + 0.04 %o (n =

150  2), consistent with the recommended value of 5.4 = 0.2 %o (Li et al., 2013).

151 4 Analytical results
152 4.1 Zircon U-Pb ages

153 Zircon grains from sample 22ZH23-1 are subhedral to euhedral, with a length of 100 to 300 um and aspect ratios of 1:1
154  to 3:1 (Fig. 4a). Most of the zircon grains show clear oscillatory zoning in cathodoluminescence (CL) images and possess high
155 Th/U ratios, along with their steep chondrite-normalized REE patterns, indicating a magmatic origin (Fig. 4b). In addition,
156 some zircon grains are featured by core-rim textures, with oscillatory magmatic cores and bright structureless metamorphic

157 rims. Nonetheless, the rims are too narrow to be analyzed.
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161  trondhjemitic geniss.
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A total of 30 analyses were conducted on zircon cores of sample 22ZH23-1, and two analyses were excluded from
calculation due to their high discordance (> 5 %). Detailed LA-ICP-MS zircon U-Pb dating results and rare earth element
(REE) concentrations are presented in Supplementary Tables S2 and S3, respectively. The remaining 28 analyses yield
apparent 20’Pb/?%Pb ages ranging from 2569 to 2389 Ma and contain two age populations (Fig. 4a). (1) 23 analyses define a
207pb/29%Ph weighted mean age of 2446 + 15 Ma (mean square of weighted deviates, MSWD = 0.5), which is interpreted as the
crystallization age of the protolith of this sample (Fig. 4c). (2) 5 analyses give an older 22’Pb/?*Pb weighted mean age of 2549
+ 29 Ma (MSWD = 0.3), which may represent the crystallization age of inherited zircons (Fig. 4d). These zircon grains were

either reintroduced into late-phased magmatic sources or entrained during magma transport.

4.2 Whole-rock major and trace element compositions

Four samples were selected for whole-rock major and trace element composition analyses, and the results are shown in
Supplementary Table S4. All samples have high concentrations of SiO; (66.99-69.89 wt.%) and Al,O3 (16.64—18.30 wt.%).
They are enriched in Na,O (6.27-6.84 wt.%) but depleted in K2O (0.45-0.91 wt.%) contents, leading to high Na,O/K-O ratios
of 6.96-15.21. These samples show low concentrations of Fe2O3" (1.53-1.76 wt.%) and MgO (0.44-0.58 wt.%), with Mg”
values of 36-42. All samples plot within the granodiorite field in the total alkali-silica (TAS) diagram (Fig. 5a) and belong to
the low-K tholeiitic series in the K,O vs. SiO; diagram (Fig. 5b). They yield A/CNK [molar ratio of Al,O3/(CaO +Na,O+K,0)]
ratios of 0.98-1.01, indicating metaluminous to weakly peraluminous characteristics (Fig. 5c). Further classification on the

anorthite-albite-orthoclase (An-Ab-Or) diagram reveals that they belong to trondhjemite (Fig. 5d).
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Figure 5: Geochemical classification of the trondhjemitic geniss samples. (a) Total alkali vs silica (TAS) diagram (after Middlemost,
1994); (b) K20 vs. SiO: diagram (after Peccerillo and Taylor, 1976); (¢) A/NK [ALO3/ (Naz:0 + K20)] vs. A/CNK [ALOs/ (CaO +
Nax0O + K:20)] (after Maniar and Piccoli, 1989). (d) Feldspar An-Ab-Or classification diagram (after Barker, 1979). The data of the
2.55 Ga TTG gneiss are from Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2016; Fu et al., 2016; Li et al., 2019; Jing et al.,

2025; Zhao et al., 2025a.

These samples contain total rare earth element (REE) contents ranging from 19.3 to 27.5 ppm. They are characterized by

enrichments in light rare earth elements (LREEs) but depletions of heavy rare earth elements (HREEs), with (La/Yb) ratios

0f 28.3-38.9 (Fig. 6a). In addition, they exhibit significantly positive Eu anomalies (6Eu = 1.73—2.34) and slight Ce anomalies
(6Ce =0.93-1.01) (Fig. 6a). All samples have high concentrations of Sr (637—-1248), coupled with low Y (1.06—1.48 ppm) and

Yb (0.11-0.16 ppm) contents, as well as high Sr/Y (437-939 ppm) ratios, showing similar geochemical affinity to adakite
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(Drummond and Defant, 1990). In the primitive mantle-normalized trace element pattern diagram, these samples are relatively
enriched in large-ion lithophile elements (LILEs; e.g., Rb and Ba), but are relatively depleted in high field strength elements
(HFSEs; e.g., Nb, Ta, and Ti) (Fig. 6b).
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Figure 6: Chondrite-normalized REE patterns and primitive mantle-normalized trace elements spider diagrams for the
trondhjemitic geniss samples (normalization values are from Sun and McDonough, 1989).

4.1 Zircon Hf-O isotopes

In situ zircon Hf-O isotope analyses results of sample 22ZH23-1 are presented in Supplementary Table S5. A total of 15
Lu-Hf isotope analyses show '"*Hf/!”7Hf and '7®Lu/!""Hf ratios of 0.281338-0.281379 and 0.000444-0.001004, respectively.
They have concentrated eu(f) values of +3.3 to +4.9, with corresponding Tpm2 ages varying from 2671 to 2769 Ma (Fig. 7a).
Fifteen O isotopic analyses from this sample yield 5!%0 values of 5.96-6.53 %o, which are higher than the range of mantle

zircon (5.3%o £ 0.6%o, 20; Valley, 2003) (Fig. 7b).
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Figure 7: (a) Zircon eni(?) vs. U-Pb age and (b) zircon $'30 vs. U-Pb age diagrams of the trondhjemitic geniss samples. The data of
the 2.55 Ga TTG gneiss are from Yang et al., 2008; Bai et al., 2014, 2016, 2019; Fu et al., 2016, 2019; Jing et al., 2025; Zhao et al.,
2025a.
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5 Discussion
5.1 Precambrian geochronological framework of Eastern Hebei

The geochronological framework in the region can be established by zircon U-Pb geochronological data from magmatic
and metamorphic events. In this study, zircon U-Pb ages from the Qiuhuayu trondhjemitic gneiss yields two age populations
with weighted mean ages of 2549 + 29 Ma and 2446 + 15 Ma, respectively. The older age is regarded as the crystallization
age of inherited zircons, while the younger age represents the crystallization age of the protolith of this sample. This ca. 2.45
Ga trondhjemitic gneiss represents the first identification of early Paleoproterozoic (~2.45 Ga) magmatism in Eastern Hebei.
In addition, a large number of late Neoarchean rocks (Geng et al., 2006; Yang et al., 2008; Zhang et al., 2012; Guo et al., 2013,
2014; 2015, 2017; Bai et al., 2014, 2016; Fu et al., 2016; Yao et al., 2017; Li et al., 2019; Wang et al., 2019 a, b, c; Duan et
al., 2022) and sporadic Eoarchean to Mesoarchean rocks (Nutman et al., 2011; Sun et al., 2016; Liou et al., 2019; Wan et al,
2021,2023; Dongetal.,2024,2025; Zhao et al., 2025b) have also been reported in Eastern Hebei. We summarize the published
zircon U-Pb age data from the magmatic rocks in Eastern Hebei. Ages with a concordance of < 95 % are excluded, and the
remaining 2002 magmatic and 980 metamorphic zircon ages are used to establish the Precambrian geochronological
framework of Eastern Hebei (Supplementary Table S1; Yang et al., 2008; Li et al., 2010, 2019; Nutman et al., 2011; Lv et al.,
2012; Zhang et al., 2012; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Duan et al.,
2015,2022; Fuetal., 2016, 2017, 2019, 2021; Sun et al., 2016; Liou et al., 2019; Liou and Guo, 2019a; Lu et al., 2020; Wang
etal., 2019 a, b, c; Wuetal., 2022; Dong et al., 2024, 2025; Zhao et al., 2025a, b). In combination with our new and collected
age data, we identify four episodes of magmatic activities in Eastern Hebei: the Eoarchean (3.84-3.64 Ga), Paleoarchean
(3.53-3.22 Ga), Mesoarchean (3.12-2.80 Ga), and late Neoarchean to early Paleoproterozoic (2.61-2.45 Ga) (Fig. 8a).

The Eoarchean (3.84-3.64 Ga) rocks in Eastern Hebei are primarily exposed in the Labashan area. The ~3.8 Ga
granodioritic rock was first reported by Wan et al. (2021). Recently, the 3.84-3.75 Ga trondhjemitic gneiss, 3.79-3.77 Ga
granodioritic gneiss, ~3.78 Ga quartz monzonite gneiss, and 3.79-3.64 Ga potassic granite gneiss have also been identified in
the area (Dong et al., 2024). These rocks are in tectonic contact with the 3.4-3.1 Ga supracrustal rocks of the Labahsan
Sequence, and both types of rock are hosted as enclaves in the 2.5 Ga potassic granite (Dong et al., 2024).

The Paleoarchean (3.53-3.22 Ga) rocks are mainly distributed in the Labashan, Longwan, and Huangbaiyu areas. The
~3.53 Ga trondhjemitic gneiss was discovered in the same location as the 3.8-3.6 Ga granitoid gneiss in the Labashan area
(Zhao etal., 2025). The 3.51-3.38 Ga tonalitic, trondhjemitic, monzogranitic, and syenogranitic gneiss, with some meta-gabbro
have also been reported in the Labashan area (Dong et al., 2025). The 3.45 Ga ultramafic-mafic suite was reported in the
Longwan area and regarded as remnants of an enriched mantle plume (Wang et al., 2019a). The amphibolite and
clinopyroxene-bearing hornblendite in the Huangbaiyu area yield Sm-Nd isochron ages of ~3.5 Ga (Huang et al., 1986; Jahn
et al., 1987; Cui et al., 2018). However, these ages were challenged because some amphibolites occur as dykes intruding the
ca. 2950 Ma rock (Nutman et al., 2011). In addition, the tonalitic gneiss with ages of 3.23—3.22 Ga have been identified in the
Huangbaiyu area (Nutman et al., 2011).
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Figure 8: Histogram and kernel density estimation (KDE, Vermeesch, 2012) plots of the magmatic and metamorphic zircon ages
from the Archean magmatic rocks in Eastern Hebei (Data from Yang et al., 2008; Li et al., 2010, 2019; Lv et al., 2012; Zhang et al.,
2012; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Duan et al., 2015, 2022; Fu et al., 2016,
2017,2019, 2021; Liou et al., 2019; Liou and Guo, 2019a; Lu et al., 2020; Wang et al., 2019 a, b, ¢; Wu et al., 2022; Dong et al., 2024,
2025; Zhao et al., 2025a, b).
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The Mesoarchean (3.12—2.80 Ga) rocks are exposed in the Huangbaiyu, Labashan, and Caochang areas. Sun et al. (2016)
reported ca. 3.1 Ga gneissic monzogranite and 3.0 Ga biotite plagioclase gneiss in the north of the Huangbaiyu area. Recent
studies have revealed 3.12-2.96 Ga trondhjemitic gneiss, syenogranitic gneiss, and meta-gabbro in the Labashan area (Dong
et al., 2025). The 2.90-2.80 Ga trondhjemitic, tonalitic, and dioritic gneiss have also been recognized in the Caochang area
(Fuetal., 2019; Liou et al., 2019).

The late Neoarchean (2.61-2.49 Ga) rocks are widely distributed in Eastern Hebei and constitute the major part of the
Precambrian basement in this area. It is composed mainly of TTG gneiss, dioritic gneiss, charnockite, potassic granite, and
supracrustal rocks (Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2015, 2019; Duan et al., 2017, 2022; Fu et al.,
2016, 2017; Li et al., 2024). These rocks show similar protolith magmatic ages of 2.61-2.49 Ga with a peak at ~2.52 Ga (Fig.
8a, Geng et al., 2006; Yang et al., 2008; Zhang et al., 2012; Guo et al., 2013, 2015, 2017; Bai et al., 2014, 2016, 2019; Fu et
al., 2016; Yao et al., 2017; Lietal., 2019, 2024; Wang et al., 2019b, ¢; Duan et al., 2022). The ~2.45 Ga trondhjemitic gneiss
discovered in this study provides the first evidence for the early Paleoproterozoic magmatic activity in Eastern Hebei,
suggesting that the late Neoarchean magmatism persisted into the early Paleoproterozoic (~2.45 Ga).It is noteworthy that the
basement of Eastern Hebei experienced intensive metamorphism, as evidenced by a large number of metamorphic zircons
from the Archean rocks in Eastern Hebei (Yang et al., 2008; Lv et al., 2012; Zhang et al., 2012; Guo et al., 2013, 2014, 2015,
2017; Bai et al., 2014, 2015, 2016, 2019; Duan et al., 2015, 2019; Fu et al., 2016, 2017, 2021; Li et al., 2019, 2024; Wang et
al., 2019b, c; Lu et al., 2020). Based on a compilation of metamorphic zircon ages, five episodes of metamorphism are
recognized, including the Paleoarchean (3.50-3.20 Ga), Mesoarchean (3.18-2.80 Ga), late Neoarchean (peat at ~2.50 Ga),
early Paleoproterozoic (peat at ~2.45 Ga), and late Paleoproterozoic (~1.82 Ga) (Fig. 8b). The Paleoarchean and Mesoarchean
metamorphism was primarily reported in the Labashan and Huangbaiyu areas (Wan et al., 2021; Dong et al., 2024, 2025; Zhao
et al., 2025b). The late Neoarchean metamorphism is widespread and represents a major metamorphic event in Eastern Hebei
(Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Duan et al., 2015, 2019; Fu et al., 2016, 2017, 2021;
Yang et al., 2017a, b; Lu et al., 2020). The coexistence of ~2.45 Ga magmatism and peak metamorphism indicates the
development of an early Paleoproterozoic tectonothermal event in Eastern Hebei (Bai et al., 2014, 2015, 2016, 2019; Wang et
al., 2019b, c; Lu et al., 2020). Additionally, the late Paleoproterozoic (~1.81 Ga) metamorphism is locally recognized in the
Saheqiao linear structural belt of Eastern Hebei and dominated by high-pressure granulite-facies metamorphism (Duan et al.,
2015, 2019; Yang et al., 2017a, b).

In summary, four episodes of magmatic activities (3.84-3.64 Ga, 3.53-3.22 Ga, 3.12-2.80 Ga, and 2.61-2.45 Ga) and
five episodes of metamorphism (3.50-3.23 Ga, 3.18-2.80 Ga, ~2.50 Ga, ~2.45 Ga, ~1.82 Ga) are identified in Eastern Hebei.

5.2 Petrogenesis of ~2.45 Ga trondhjemitic gneiss

For the TTG gneiss, it is essential to evaluate the impact of alteration and metamorphism on whole-rock geochemical

composition. All samples show low loss on ignition (LOI = 0.40—0.73 wt.%) and negligible Ce anomalies (6Ce = 0.93—1.01),
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suggesting that their geochemical characteristics were not significantly changed by late metamorphism (Polat and Hofmann,
2003). Therefore, these geochemical data can be effectively used for petrogenetic interpretation.

Previous studies proposed that TTG rocks were derived from partial melting of hydrous basaltic rocks (Rapp and Watson,
1995; Rapp et al., 1999; Moyen, 2011; Moyen and Martin, 2012; Palin et al., 2016). However, some recent studies have
emphasized the important role of amphibole and plagioclase fractional crystallization in the formation of TTG rocks (Liou and
Guo, 2019b, 2022; Laurent et al., 2020). The highly and moderately incompatible elements exhibit different behaviors during
partial melting and fractional crystallization processes, which can be used to distinguish these two processes (Schiano et al.,
2010). In the La/Hf vs. La and Rb/Sr vs. Rb diagrams, the studied samples are distributed along the partial melting trends
(Schiano et al., 2010, Fig. 9). Considering with the lack of coeval mafic rocks and cumulates in Eastern Hebei, we propose
that the formation of the 2.45 Ga trondhjemitic gneiss was primarily controlled by the partial melting process (Martin et al.,

2005; Macpherson et al., 2006).
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Figure 9: (a) La/Hf vs. La and (b) Rb/Sr vs. Rb diagrams. The inset is a schematic CH/CM vs. CH plot, with superscripts H and M
representing highly and moderately incompatible elements, respectively (after Schiano et al., 2010).

In this study, all samples show high Sr (637—1248 ppm) contents and St/Y (437-939 ppm) ratios, with low Y (1.06—1.48
ppm) and Yb (0.11-0.16 ppm) contents, akin to adakite (Drummond and Defant, 1990). They have high SiO» content (66.99—
69.89 wt.%), low MgO (0.44-0.58 wt.%) and Fe,Os" (1.53-1.76 wt.%) contents, and Mg" values (36-42), consistent with
experimental partial melts from metabasaltic rocks, and belong to high-silica adakite (Fig. 10a, Rapp et al., 1999). In addition,
these samples exhibit very low concentrations of Ni (2.82-5.13 ppm) and Cr (4.80-9.49 ppm), indicating that they originated
from partial melting of a thickened lower crust (Fig. 10b, c; Rapp and Watson, 1995; Chung et al., 2003). In the
ALO3/(FeO™+MgO0)-(3Ca0)-(5K20/Na;0) ternary diagram, all samples plot within the field of melts derived from low-K
mafic rocks, implying the primary source of low-K mafic crust (Fig. 10d, Laurent et al., 2014). The trondhjemitic gneiss

samples show positive zircon eud(¢) values (+3.3 to +4.9), further indicating a juvenile crust, which is also supported by their
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higher zircon 8'0 values of 5.96-6.53 %o than mantle zircon (8'®Omante = 5.3 £ 0.6 %o, Valley, 2003). Notably, a large number
of the late Neoarchean (~2.55 Ga) TTG gneiss have been also reported in Eastern Hebei. Some of these rocks show comparable
whole-rock geochemical and zircon Hf-O isotopic characteristics to the ~2.45 Ga TTG gneiss, characterized by high SiO»,
Al O3, and Sr contents, low MgO, Y, Yb, Cr, and Ni contents, with positive zircon eur(f) values and higher zircon §'®0 values
than mantle zircon, supporting a magma source of the juvenile, low-K thickened lower crust (Figs. 5-7, 9-10: Rapp and

Watson.1995; Rapp et al., 1999; Chung et al., 2003, Laurent et al., 2014).
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Figure 10: (a-c) Diagrams of MgO, Cr, and Ni versus SiO: (after Rapp and Watson, 1995; Rapp et al., 1999; Chung et al., 2003); (d)
ALO3/(FeO™+Mg0)-3*Ca0-5%(K20/Na20) ternary diagram (after Laurent et al., 2014).

The 2.45 Ga trondhjemitic gneiss samples in this study are characterized by high Sr content, low Y, Yb, Nb, and Ta
contents, as well as high Sr/Y, Nb/Ta, and (La/Yb)x ratios, implying that they formed under the high-pressure conditions, with
garnet and rutile as the predominant residual phases (Fig. 1 1a, Martin et al., 1986; Defant and Drummond, 1990, Moyen, 2011;
Qian and Hermann, 2013). Previous studies have revealed that garnet is compatible with HREEs (e.g., Yb) and Y (Rollinson,
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1993; Taylor et al., 2015). Thus, the low Y and Yb contents, as well as high (La/Yb) ratios of the studied samples, suggesting

that garnet is the main residual mineral in the magma source. In addition, these samples show low concentrations of Ti, Nb,

and Ta, coupled with their high Nb/Ta and low Nb/La ratios (Fig. 11b), indicating that the rutile was also residual, because

rutile can control the contents of Ti, Nb, and Ta in the melt and increase the Nb/Ta ratios (Schmidt et al., 2004; Klemme et al.,

2005; Xiong et al., 2006; John et al., 2011). Based on the high compatibility of Sr and Eu in plagioclase (Bédard, 2006), the

high Sr content and significantly positive Eu anomalies of the 2.45 Ga trondhjemitic gneiss samples contradict residual

plagioclase. Notably, our samples show extremely high Sr/Y values (637—1248), combined with their flat patterns of MREEs

and HREEs, low (Gd/Yb)x values, and positive Eu anomalies (Fig. 6a), supporting that they have undergone amphibole

fractional crystallization during the magma evolution (Tiepolo et al., 2007). The fractional crystallization of amphibole can

also be revealed by the positive linear correlations in the Dy vs. Er (Fig. 11¢, Drummond et al., 1996) and Ni vs. Cr diagrams

(Fig. 11d, Rollinson, 1993).
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In summary, the protolith of the 2.45 Ga trondhjemitic gneiss in Eastern Hebei was probably derived from partial melting
of a juvenile, low-K thickened lower crust, with garnet and rutile as residues. They have undergone amphibole fractional

crystallization during magma evolution.

5.3 Eoarchean to early Paleoproterozoic crustal evolution in Eastern Hebei

The growth and reworking of continental crust have been a topic of continued interest in Earth sciences (Belousova et al.,
2010; Hawkesworth et al., 2010; Cawood et al., 2013; Spencer et al., 2017; Diwu et al., 2018, 2021, 2024). Continental crustal
growth refers to the transfer of mantle-derived melts to the crust, leading to an increase in the total volume of newly generated
(juvenile) crust (Belousova et al., 2010; Kemp and Hawkesworth, 2014; Dhuime et al., 2018; Diwu et al., 2024). In contrast,
crustal reworking involves the recycling of pre-existing crust by magmatism, metamorphism, and sedimentation within the
continental crust, with no change in the volume of the crust (Hawkesworth et al., 2010; Dhuime et al., 2018; Zhu et al., 2021).
To constrain the timing of growth and reworking of continental crust, we have compiled 2002 published magmatic zircon U-
Pb ages from Eastern Hebei, among which 1428 age data were coupled with Hf isotope data (Fig. 12, Yang et al., 2008; Li et
al., 2010, 2019; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Fu et al., 2016, 2017,

2019, 2021; Liou et al., 2019; Liou and Guo, 2019a; Wang et al., 2019 a; Dong et al., 2024, 2025; Zhao et al., 2025a, b).
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Figure 12: Magmatic zircon eus(?) vs. U-Pb age of the magmatic rocks in Eastern Hebei (Data from Yang et al., 2008; Li et al., 2010,
2019; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Fu et al., 2016, 2017, 2019, 2021; Liou et
al., 2019; Liou and Guo, 2019a; Wang et al., 2019 a; Dong et al., 2024, 2025; Zhao et al., 2025a, b). Bars in yellow, bule, green, red,
and purple represent 3.86-3.64 Ga, 3.53-3.22 Ga, 3.12-2.80 Ga, 2.61-2.49 Ga, and 2.45 Ga.
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Except for a single zircon with enf(f) of 0.35, other 3.84-3.64 Ga magmatic zircons show negative eug(¢) values (-7.06 to
-0.29) and Tpwm: ages of 4.4—4.0 Ga (mainly 4.2—4.1 Ga), indicating that the Eoarchean rocks originated from the anatexis of
older basaltic sources (Dong et al., 2024). However, no rocks older than 3.8 Ga were discovered in Eastern Hebei. In fact, the
rocks with zircon Tpwm2 ages >4.0 Ga have also been reported in the Jack Hills, Acasta Gneiss complex, Qinling Orogenic Belt,
Singhbhum Craton, and Kaapvaal Craton (Diwu et al., 2013; Kroner et al., 2014; Chaudhuri et al., 2018; Cavosie et al., 2019;
Reimink et al., 2019), and were explained by partial melting of global mafic ultramafic crust from a magma ocean in early
Earth (Kemp et al., 2010; Cawood et al., 2022; Wan et al., 2023). Thus, we propose that Eastern Hebei is dominated by Hadean
crustal reworking in the Eoarchean.

The Paleoarchean (3.53-3.22 Ga) rocks contain various rock types of potassic granite, TTG gneiss, meta-gabbro, and
meta-websterite. Nearly all potassic granites exhibit significantly negative zircon eug(¢f) values of -10.55 to -0.18, with
corresponding Tpwmz ages of 4.37-3.78 Ga, indicating that they were derived from partial melting of ancient crust (Hadean to
early Eoarchean). Magmatic zircons from the TTG gneiss have a wide range of enr(¢) values (-10.61 to 3.6, Dong et al., 2025;
Zhao et al., 2025b), with majority (~80 %) of them yielding negative eng(¢) values (-10.61 to -0.2) and Tpwm2 ages of 4.50-3.80
Ga, suggesting that they originated from recycling of Eoarchean TTG rocks and Hadean mafic crust. The remaining magmatic
zircons of the TTG gneiss show positive eud(f) values of 3.6-0, implying a juvenile crust contribution. The 3.45 Ga meta-
gabbro, with zircon eudf) of -0.28 to 2.56, was considered as a product of depleted mantle influenced by ancient crustal
materials (Dong et al., 2025). The 3.45 Ga meta-websterite shows zircon enq(¢) of 5.6—-0.2 and was regarded as remnants of an
enriched mantle plume (Wang et al., 2019a). The occurrence of these 3.45 Ga Ga mantle-derived rocks indicates the generation
of juvenile crust. Collectively, we suggest that Eastern Hebei is primarily characterized by crustal reworking with a minor
contribution of crustal growth in the Paleoarchean.

The 3.07 Ga trondhjemitic gneiss in the Labashan area shows obviously negative zircon eng(#) values of -17.99 to -12.50,
with corresponding Tpm2 ages of 4.55-4.21 Ga, suggesting that they originated from partial melting of Hadean mafic crust
(Dong et al., 2025). In addition, the coeval mantle-derived meta-gabbro (3.12—3.09 Ga) has been recently reported in the same
region, indicating the formation of juvenile crust (Dong et al., 2025). The ~2.9 Ga trondhjemitic gneiss in the Caozhuang area
has negative zircon euq(¢) values (-9.7 to -4.2) and Tpm2 ages of 3.89-3.61 Ga, indicating partial melting of the Eoarchean rocks
(Fuetal., 2019). The 2.9-2.80 Ga dioritic gneiss and felsic orthogneiss in the Caochang area are characterized by a wide range
of zircon eu(f) values (-7.4 to 2.5), regarded as the result of mixing of mafic magma derived from a depleted mantle source
and felsic magma from ancient crustal materials (Liou et al., 2019; Liou and Guo, 2019a). Therefore, we propose that both
crustal growth and reworking occurred in the Mesoarchean (3.12-2.80 Ga) in Eastern Hebei. Notably, the proportion of the
positive zircon euf(f) values increased from 21% in the Paleoarchean to 43% in the Mesoarchean, attributable to enhanced
crustal growth during this period (Fig. 12).

The late Neoarchean rocks (2.61-2.49 Ga) account for over 80 % of the Archean basement in Eastern Hebei (Yang et al.,
2008; Nutman et al., 2011; Bai et al., 2014, 2015, 2019; Duan et al., 2017, 2022; Fu et al., 2016, 2017; Yao et al., 2017; Li et

al.,2019,2024; Wang et al., 2019b, ¢). Whether late Neoarchean magmatism represents significant crustal growth or reworking
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has long been controversial. Some researchers proposed that the late Neoarchean may represent a period of the 2.8-2.7 Ga
crust reworking because the whole-rock Sm-Nd and zircon Lu-Hf model ages of the late Neoarchean magmatic zircons show
a prominent age cluster centered on 2.8-2.7 Ga (Wu et al., 2005; Geng et al., 2012; Wan et al., 2022, 2024). However, the
model age is a derivative parameter calculated based on several inherent assumptions (Hawkesworth et al., 2010; Fisher et al.,
2014; Vervoort and Kemp, 2016; Diwu et al., 2024). The parameter variations tend to inevitably affect the model ages and
propagate uncertainties more than 200—-300 Ma (Kemp and Hawkesworth, 2014; Diwu et al., 2024). Thus, some scholars
argued that the model ages should be used with caution when interpreting the generation of new crust (Diwu et al., 2012, 2024;
Vervoort and Kemp, 2016). As shown in Fig. 12, the majority of the late Neoarchean magmatic rocks in Eastern Hebei have
positive zircon eug(f) values. Some of them are close to those of the contemporaneous depleted mantle (Fig. 7a), with their Hf
model ages close to the corresponding U-Pb ages, supporting an origin from the juvenile crust. In addition, the late Neoarchean
greenstone belts are widespread in Eastern Hebei, characterized by metamorphosed volcanic-sedimentary sequences, with the
volume ratio of volcanics to sediments being ~3:1, and about 50 % of the volcanics are mafic (Shen et al., 1994; Guo et al.,
2013, 2014, 2015, 2017; Fu et al., 2021). The meta-mafic rocks have MORB- or arc-like geochemical affinities involving a
primary mantle source with minor continental crust contamination, indicating the growth of late Neoarchean juvenile crust in
Eastern Hebei (Guo et al., 2013,2014, 2015, 2017). Therefore, the late Neoarchean represents a major period of crustal growth
in Eastern Hebei. Nevertheless, crustal reworking in the late Neoarchean cannot be completely ruled out, as part of the
magmatic rocks have negative euq(¢) values and older Hf model ages, implying the partial melting of pre-existing crust (Fig.
8a). In addition, the K-rich granitoid rocks have been reported in Eastern Hebei, and were resulted from partial melting of the
regionally widespread dioritic, granodioritic, monzonitic, and quartz monzonitic gneiss (Fu et al., 2017, 2019). Collectively,
we propose that the late Neoarchean (2.61-2.49 Ga) is a major period of crustal growth in Eastern Hebei with a small portion
of crustal reworking occurring.

This study first identified the 2.45 Ga trondjemitic gneiss in Eastern Hebei, which provides evidence for the magmatism
during the TML in the Eastern Block, NCC. These rocks have concentrated, positive eud?) valuesfrom +3.3 to +4.9, with
corresponding Tpwmz ages varying from 2769 to 2671 Ma, suggesting the 2.45 Ga crustal growth in Eastern Hebei. Therefore,
we propose that the early Paleoproterozoic era in the NCC was not a period of magmatic quiescence, and the plate tectonics
and crustal growth remained active during this period. Notably, the 2.45 Ga trondjemitic gneiss shows similar whole-rock
geochemical and zircon Hf-O isotopic characteristics to some 2.55 Ga TTG gneiss in Eastern Hebei (Figs. 4-7). Consequently,
we suggest that the 2.45 Ga trondjemitic gneiss was probably a continuation of the late Neoarchean magmatism. In addition
to the magmatic activity, some paleoclimatic changes also extensively occurred in the early Paleoproterozoic era. However,
the relationship between magmatic activity and paleoclimatic upheavals needs further studies.

To sum up, we conclude that Eastern Hebei possesses a complex crustal evolution history from the Eoarchean to the early
Paleoproterozoic. The Eoarchean (3.84-3.64 Ga) is characterized by Hadean crustal reworking. Both crustal growth and
reworking occurred in the Paleoarchean (3.53-3.22 Ga), Mesoarchean (3.12-2.80 Ga), and late Neoarchean (2.61-2.49 Ga).

Notably, the proportion of crustal growth increased from the Paleoarchean to the late Neoarchean, among which the late

20



414
415

416

417
418
419
420
421
422
423
424
425

426

427

428

429
430
431
432

433

434

435

436
437
438

https://doi.org/10.5194/egusphere-2025-5595
Preprint. Discussion started: 23 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Neoarchean represents a major period of crustal growth. The newly recognized ca. 2.45 Ga trondhjemitic gneiss was probably

a continuation of the late Neoarchean magmatism, and the crustal growth persisted into this period.

6 Conclusions

(1) The 2.45 Ga trondhjemitic gneiss was discovered in Eastern Hebei, providing unambiguous evidence for an early
Paleoproterozoic tectonothermal event in the Eastern Block, NCC.

(3) The protolith of the 2.45 Ga trondhjemitic gneiss was derived from partial melting of a juvenile, low-K thickened
lower crust, with garnet and rutile as residues.

(2) Multiple stages of magmatism (3.84-3.64 Ga, 3.53-3.22 Ga, 3.12-2.80 Ga, and 2.61-2.45 Ga) and metamorphism
(3.50-3.23 Ga, 3.18-2.80 Ga, ~2.50 Ga, ~2.45 Ga, ~1.82 Ga) are identified in Eastern Hebei.

(4) From the Eoarchean to the late Neoarchean, the crustal evolution of Eastern Hebei shifted from extensive reworking
of ancient crust to a significant increase in crustal growth. The ca. 2.45 Ga trondhjemitic gneiss was probably a continuation

of the late Neoarchean magmatism, and the crustal growth persisted into this period.
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