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Abstract. The early Paleoproterozoic era (2.45–2.20 Ga), known as the Tectono-Magmatic Lull (TML), is characterized by a 9 

decline in global magmatic activity. This study first identifies ca. 2.45 Ga trondhjemitic gneiss (2446 ± 15 Ma) in Eastern 10 

Hebei of the Eastern Block, North China Craton. These rocks exhibit adakitic geochemical characteristics, marked by high 11 

SiO2, Al2O3, and Sr contents, with low MgO, Y, and Yb contents. Their low MgO, Cr, and Ni contents, along with slightly 12 

high zircon δ18O (5.96–6.53 ‰) and positive εHf(t) (3.3–4.9) values, indicate that they originated from partial melting of a 13 

juvenile thickened lower crust. All samples show low concentrations of Y, Yb, Ti, Nb, and Ta, coupled with their high (La/Yb)N 14 

and Nb/Ta ratios, suggesting that they formed at a high-pressure condition, with garnet and rutile as residues. In combination 15 

with our new data and published zircon U-Pb ages in the region, we have identified multiple stages of magmatism (3.84–3.64 16 

Ga, 3.53–3.22 Ga, 3.12–2.80 Ga, and 2.61–2.45 Ga) and metamorphism (3.50–3.23 Ga, 3.18–2.80 Ga, ~2.50 Ga, ~2.45 Ga, 17 

~1.82 Ga) in Eastern Hebei. Based on a compilation of these magmatic zircon U-Pb ages and Hf isotope data, Eoarchean to 18 

early Paleoproterozoic crustal evolution processes in Eastern Hebei is established. The Eoarchean is dominated by Hadean 19 

crustal reworking, and the Paleoarchean is primarily characterized by crustal reworking with a minor contribution of crustal 20 

growth. Both crustal growth and reworking occurred during Mesoarchean time, with the proportion of crustal growth 21 

increasing from the Paleoarchean to the Mesoarchean. The late Neoarchean represents a major period of crustal growth with 22 

minor crustal reworking. The ca. 2.45 Ga trondhjemitic gneiss discovered in this study was probably a continuation of the late 23 

Neoarchean magmatism and the crustal growth persisted into this period.  24 
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1 Introduction 25 

The early Paleoproterozoic era is a special period in Earth’s history, during which a variety of fundamental paleoclimatic 26 

and tectono-magmatic changes occurred (Condie et al., 2009; Lyons et al., 2014; Zhai and Peng, 2020). On one hand, extensive 27 

paleoclimatic changes occurred in the early Paleoproterozoic, including a dramatic transition of atmosphere from oxygen-free 28 

to hypoxia-oxygenated (i.e., Great Oxidation Event), loss of mass-independent sulfur isotope fractionation, formation of 29 

largescale banded iron ore, significantly positive carbon isotope excursion, and development of widespread glaciations (i.e., 30 

Huronian glaciation) (Young, 2013; Eriksson and Condie, 2014; Partin et al., 2014; Condie et al., 2022). On the other hand, 31 

the global magmatic activity decreased dramatically between 2.45 and 2.2 Ga, as evidenced by a noticeable dip in light of 32 

global igneous and detrital zircon ages (Condie et al., 2009), with sporadic records of greenstone belt, tonalite-trondhjemite-33 

granodiorite (TTG) suite, and large igneous provinces (LIPs) worldwide (Spencer et al., 2018; Wang et al., 2021; Yang et al., 34 

2024). This interval of significantly reduced magmatic activity was named the “Tectono-Magmatic Lull (TML)” (Partin et al., 35 

2014; Teixeira et al., 2015; Spencer et al., 2018). Some scholars proposed that the TML was related to the global plate tectonic 36 

shutdown and continental crust growth was stagnated during the TML (O’Neill et al., 2007; Condie et al., 2009; Spencer et al., 37 

2018). 38 

However, some recent studies have revealed that the TML might not have been completely quiet, as many early 39 

Paleoproterozoic magmatic activities have been reported in different cratons (Partin et al., 2014). For example, the early 40 

Paleoproterozoic mafic dike swarms are well-documented globally, including the ~2.34 Ga diabase dike swarms in the 41 

Karelian Craton (Stepanova et al., 2015),  the ~2.36 Ga Bangalore gabbro-diabase dike swarms in the Dharwar Craton (Halls 42 

et al., 2007; Kumar et al., 2012; Söderlund et al., 2019; Ramesh et al., 2020), the ~2.42 Ga Widgiemooltha-Binneringie dike 43 

swarms in the Yilgarn Craton (French et al., 2002; Wingate, 2017; Siégel et al., 2024, and the 2.42–2.37 Ga Scourie dike 44 

swarms in the North Atlantic Craton (Davies and Heaman., 2014; Zakharov et al., 2019). In addition, the 2.43–2.20 Ga silicic 45 

magmatic rocks, including TTG suites and calc-alkaline granitoids, have been reported in the Arrowsmith Orogenic Belt of 46 

the Rae Craton (Hartlaub, et al., 2007; Neil et al., 2025), the Minerio Orogenic Belt of the San Francisco Craton (Teixeira et 47 

al., 2015; Alkmim et al., 2017), and the Trans-North China Orogen (TNCO) of the North China Craton (NCC) (Diwu et al., 48 

2014; Zhou et al., 2021, 2024; Zhou and Zhai., 2022; Wang and Long, 2024). Accordingly, some scholars have suggested that 49 

plate tectonics and crustal growth persisted throughout the TML and attributed the lack of the early Paleoproterozoic magmatic 50 

records to preservation bias (Partin et al., 2014; Pehrsson et al., 2014; Yang and Santosh, 2015). 51 

As one of the globally typical area for the early Paleoproterozoic magmatism, several magmatic activities during the TML 52 

have been discovered in the TNCO, Kondalite Belt, and Jiao-Liao-Ji Belt of the NCC, with various rock types of gabbro, 53 

diorite, TTG gneiss, and granitoid gneiss (Diwu et al., 2014; Du et al., 2016; Duan et al., 2021; Zhou et al., 2021, 2024; Wang 54 

et al., 2021; Zheng et al., 2022; Zhou and Zhai, 2022; Wang and Long, 2024). However, few early Paleoproterozoic magmatic 55 

records were found in the Western and Eastern blocks of the NCC. In this study, we firstly identify the 2.45 Ga trondjemitic 56 

gneiss in Eastern Hebei and conduct an integrated study of petrology, whole-rock geochemistry, and zircon U-Pb dating and 57 
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Hf-O isotope compositions. These new data, along with previously published data in Eastern Hebei, allow us to establish the 58 

geochronological framework of the Precambrian basement in this region, which provides insights into the Archaean to early 59 

Paleoproterozoic crustal evolution history. 60 

2 Geological setting and samples 61 

As the largest and oldest craton in China, the NCC is tectonically bounded by the Central Asian Orogenic Belt to the 62 

north, the Qinling-Dabie Orogenic Belt to the south, and the Qilian Orogenic Belt to the west (Fig. 1, Zhao et al., 2005). It 63 

consists mainly of Archean-Paleoproterozoic basement and unmetamorphosed Paleoproterozoic-Mesozoic sedimentary cover 64 

(Zhao et al., 2005; Geng et al., 2012; Zhao and Zhai, 2013). The basement of the NCC is subdivided into the Eastern Block 65 

and the Western Block, which were amalgamated in the Paleoproterozoic (ca. 1.85 Ga) along the TNCO (Zhao et al., 2005). 66 

The Western Block was amalgamated by the Yinshan and Ordos blocks along the Khondalite Belt at ∼1.95 Ga, while the 67 

Eastern Block was formed at ∼1.90 Ga by collision of the Longgang and Langrim blocks along the Jiao-Liao-Ji Belt (Zhao et 68 

al., 2005). 69 

 70 

Figure 1: Simplified geological map of the North China Craton showing its major tectonic units and the distribution of Precambrian 71 
basement (modified after Zhao et al., 2005). Abbreviations of terranes: AL–Alxa, GY–Guyang, WD–Wulashan-Daqingshan, QL–72 
Qilian, HL–Helanshan, NH–Northern Hebei, XH–Xuanhua, HA–Huai’an, HS–Hengshan, WT–Wutai, FP–Fuping, ZH–Zanhuang, 73 
ZT–Zhongtiao, TH–Taihua, DF–Dengfeng, WL–Western Liaoning, NL–Northern Liaoning, SJ–Southern Jilin, EH–Eastern Hebei, 74 
WS–Western Shandong, WH–Wuhe, ES–Eastern Shandong, and SL– South Liaoning. 75 
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Located in the western margin of the Eastern Block, Eastern Hebei is a classic region where the Archean basement is 76 

widely exposed (Zhao et al., 2005; Geng et al., 2006). A variety of rock types have been recognized in this area, including 77 

TTG gneisses, dioritic gneisses, charnockites, potassic granites, supracrustal rocks, and small amounts of metabasic dykes 78 

(Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2015, 2019; Duan et al., 2017, 2022; Fu et al., 2016, 2017; Li et al., 79 

2024). The supracrustal rocks show typical features of the Archean greenschist belt, and consist of metasedimentary and 80 

metabasic rocks with a few Banded Iron Formations and ultramafic interlayers (Geng et al., 2006; Polat et al., 2006; Guo et 81 

al., 2013, 2014, 2015, 2017; Wang et al., 2019a; Li et al., 2024). The Archean rock types in Eastern Hebei show spatial 82 

variations and are divided into five litho-tectonic units: (I) the Saheqiao linear-structural belt, (II) the Taipingzhai ovate-83 

structural domain, (III) the Qian’an gneiss dome, (IV) the Lulong-Shuangshanzi supracrustal rock belt, and (V) the Anziling 84 

gneiss dome (Fig. 2, Wei, 2018). In addition, the Archean rocks in Eastern Hebei experienced intensive metamorphism and 85 

deformation. They are characterized by Archean unique dome-and-keel structures, with the supracrustal rocks (the Lulong-86 

Shuangshanzi supracrustal belt) occurring as keels in the TTG gneiss domes (the Anziling gneiss dome) (Liu and Wei, 2018; 87 

Zhao et al., 2021). The degrees of metamorphism of these rocks also show spatial variations. The rocks in the western segment 88 

experienced upper amphibolite- to granulite-facies metamorphism, whereas the eastern rocks underwent greenschist- to 89 

amphibolite-facies metamorphism (Yang and Wei, 2017a, b; Liu and Wei, 2018; Duan et al., 2019; Liu et al., 2020, 2022). 90 

Most of the TTG and granitoid gneisses in Eastern Hebei show magmatic crystallization ages of 2.58–2.49 Ga and 91 

metamorphic ages of 2.53–2.31 Ga (Geng et al., 2006; Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2016; Fu et al., 92 

2016; Yao et al., 2017; Li et al., 2019; Duan et al., 2022; Zhao et al., 2025a). In addition, some Eoarchean to Mesoarchean 93 

granitoids (3.80–2.90 Ga) have been identified in the Huangbaiyu, Labashan, Caochang, and Caozhuang areas of Eastern 94 

Hebei (Nutman et al., 2011; Sun et al., 2016; Fu et al., 2019; Liou et al., 2019; Liou and Guo, 2019a; Wan et al, 2021, 2023; 95 

Dong et al., 2024, 2025; Zhao et al., 2025b). The supracrustal rocks have primary protolith deposition and magmatic ages of 96 

2.61–2.50 Ga (Zhang et al., 2012; Guo et al., 2013, 2014; 2015, 2017; Fu et al., 2016; Duan et al., 2017; Lu et al., 2017; Liu 97 

and Wei, 2020; Duan et al., 2022). Notably, the Palaeoarchaean (3.45 Ga) and Mesoarchean (3.1–2.9 Ga) ultramafic-mafic 98 

rocks were also reported in Labashan, Longwan, and Caochang areas of Eastern Hebei (Liou et al., 2019; Wang et al., 2019a; 99 

Dong et al., 2025). The supracrustal rocks yield two groups of metamorphic ages at 2.53–2.47 Ga and 1.97–1.80 Ga (Duan et 100 

al., 2017, 2022; Yang and Wei, 2017a, b; Lu and Wei, 2020). 101 
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 102 

Figure 2: Simplified geological map of Eastern Hebei showing sampling locations (modified after Jing et al., 2025). The data of the 103 
felsic and mafic rocks are shown in Supplementary Table S1. 104 

The 2.45 Ga trondhjemitic gneiss in this study was discovered on the road to Qiuhuayu Village (GPS: N 40°15′38.47″, E 105 

118°07′25.84″). In the field, these rocks are grayish-white and display gneissic structures (Fig. 3a, b). They are medium- to 106 

coarse-grained and composed primarily of plagioclase (45–55 %) and quartz (40–45 %), with minor alkali-feldspar, 107 

clinopyroxene, and accessory minerals such as magnetite (<5 %) (Fig. 3c, d). Quartz occurs as small grains that fill the 108 

interstitial spaces between larger plagioclase crystals (Fig. 3c, d). 109 
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 110 

Figure 3: Representative field photographs and microphotographs of the 2.45 Ga trondhjemitic geniss in Eastern Hebei. Mineral 111 
abbreviations: Qtz–quartz, Pl–plagioclase, and Cpx–clinopyroxene. 112 

3 Analytical methods 113 

3.1 Zircon U-Pb dating 114 

Zircons U-Pb dating used instruments of Agilent 7700x quadrupole inductively coupled plasma mass spectrometry system 115 

(ICP-MS) equipped with a 193 nm ArF excimer laser ablation system (LA) at FocuMS Technology Co., Ltd., Nanjing, China. 116 

The operating conditions include an analysis spot diameter of 33 μm, a repetition rate of 6 Hz, and an energy density of 4.5 117 

J/cm2. Zircon standard 91500 (Wiedenbeck et al., 1995) was used to calibrate U-Pb isotopic ratios, and two zircon standards 118 
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(GJ-1 and TANZ) were analyzed after every eight sample spots. The analysed zircons 91500, GJ-1, and TANZ yielded 119 

weighted mean 206Pb/238U ages of 1062.4 ± 1.2 Ma, 603.8 ± 2.1 Ma, and 565.7 ± 1.8 Ma, respectively, which agree well with 120 

their recommended ages (Sláma et al., 2008; Wiedenbeck et al., 1995). Raw data was processed by using ICPMSDataCal (Liu 121 

et al., 2010). Age calculation and plotting were conducted by applying Isoplot (ver. 4.00; Ludwig, 2003). 122 

3.2 Whole-rock major and trace elemental analyses 123 

Whole-rock major and trace elemental analyses were conducted at FocuMS Technology Co., Ltd., Nanjing, China. Major 124 

elements were analyzed using an Agilent 5110 inductively coupled plasma-optical emission spectroscopy (ICP-OES; Penang, 125 

Malaysia), while trace elements were analyzed using an Agilent 7700x quadrupole ICP-MS (Tokyo, Japan). The analytical 126 

accuracy is generally < 5 % for major elements and < 10 % for most trace elements. 127 

3.3 Zircon Lu-Hf isotopic analyses 128 

In-situ zircon Lu-Hf isotope analysis was conducted using a Nu Plasma II multiple collector (MC) ICP-MS equipped 129 

with a RESOlution-LR 193 nm ArF excimer laser at FocuMS Technology Co., Ltd., Nanjing, China. Analyses were performed 130 

with a laser beam diameter of 50 μm, a repetition rate of 9 Hz, and an ablation time of 40 s. Three of six standard zircons 131 

(TANZ, 91500, GJ-1, Plešovice, Mud Tank, and Penglai) were analyzed after every fifteen samples to monitor the instrument’s 132 

reliability and stability. The measured 176Hf/177Hf ratios of TANZ (0.281819 ± 0.000003), 91500 (0.282308 ± 0.000003), GJ-133 

1 (0.282004 ± 0.000007), Plešovice (0.282489 ± 0.000004), Mud Tank (0.282510 ± 0.000007), and Penglai (0.282906 ± 134 

0.000006) were consistent with the recommended values within the error range (TANZ = 0.281821 ± 0.000042, Hu et al., 135 

2021, 91500 = 0.282309 ± 0.000004, Yuan et al., 2008; GJ-1 = 0.282013 ± 0.000009, Yuan et al., 2008; Plešovice = 0.282482 136 

± 0.000013, Slámaet al., 2008; Mud Tank = 0.282513 ± 0.000006, Yuan et al., 2008; Penglai =0.282906 ± 0.000010, Li et al., 137 

2010). Zircon εHf(t) values were calculated based on present-day chondritic ratios (176Hf/177Hf = 0.282785, 176Lu/177Hf = 0.0336; 138 

Bouvier et al., 2008) and 176Lu decay constant (λ176Lu = 1.867 × 10−11; Söderlund et al., 2004). For calculating two-stage Hf 139 

model ages (TDM2), a 176Lu/177Hf ratio for average continental crust is 0.015 (Griffin et al., 2002), with respect to depleted 140 

mantle with a present-day 176Hf/177Hf ratio of 0.28325 and a 176Lu/177Hf ratio of 0.0384 (Griffin et al., 2000). 141 

3.4 Zircon O isotopic analyses 142 

In situ zircon oxygen isotopes were analyzed using the CAMECA IMS-1300HR3 ion microprobe in the multi-collection 143 

mode at the State Key Laboratory of Critical Earth Material Cycling and Mineral Deposits, Nanjing University. The 133Cs+ 144 

primary ion beam was accelerated at 12kV, with an intensity of ~2.6 nA and an analytical spot of 20 μm. Oxygen isotopes 145 

were measured in multi-collector mode using two off-axis Faraday cups. The measured oxygen isotopic data was normalized 146 

to Vienna Standard Mean Ocean Water compositions (VSMOW, 18O/16O = 0.0020052; Rehman et al., 2018) and corrected for 147 

instrumental mass fractionation (IMF) using the Penglai zircon standard (δ18OVSMOW = 5.31±0.1 ‰, Li et al., 2010). The Qinghu 148 
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zircon was used as a secondary zircon standard, and two measurements yielded a weighted mean value of 5.47 ± 0.04 ‰ (n = 149 

2), consistent with the recommended value of 5.4 ± 0.2 ‰ (Li et al., 2013). 150 

4 Analytical results 151 

4.1 Zircon U-Pb ages 152 

Zircon grains from sample 22ZH23-1 are subhedral to euhedral, with a length of 100 to 300 μm and aspect ratios of 1:1 153 

to 3:1 (Fig. 4a). Most of the zircon grains show clear oscillatory zoning in cathodoluminescence (CL) images and possess high 154 

Th/U ratios, along with their steep chondrite-normalized REE patterns, indicating a magmatic origin (Fig. 4b). In addition, 155 

some zircon grains are featured by core-rim textures, with oscillatory magmatic cores and bright structureless metamorphic 156 

rims. Nonetheless, the rims are too narrow to be analyzed. 157 

 158 

Figure 4: Zircon U-Pb concordia diagram and representative zircon cathodoluminescence images (a), chondrite-normalized zircon 159 
REE patterns (b), weighted mean age of the magmatic zircons (c), and weighted mean age of the inherited zircons (d) of the 160 
trondhjemitic geniss. 161 
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A total of 30 analyses were conducted on zircon cores of sample 22ZH23-1, and two analyses were excluded from 162 

calculation due to their high discordance (> 5 %). Detailed LA-ICP-MS zircon U-Pb dating results and rare earth element 163 

(REE) concentrations are presented in Supplementary Tables S2 and S3, respectively. The remaining 28 analyses yield 164 

apparent 207Pb/206Pb ages ranging from 2569 to 2389 Ma and contain two age populations (Fig. 4a). (1) 23 analyses define a 165 

207Pb/206Pb weighted mean age of 2446 ± 15 Ma (mean square of weighted deviates, MSWD = 0.5), which is interpreted as the 166 

crystallization age of the protolith of this sample (Fig. 4c). (2) 5 analyses give an older 207Pb/206Pb weighted mean age of 2549 167 

± 29 Ma (MSWD = 0.3), which may represent the crystallization age of inherited zircons (Fig. 4d). These zircon grains were 168 

either reintroduced into late-phased magmatic sources or entrained during magma transport. 169 

4.2 Whole-rock major and trace element compositions 170 

Four samples were selected for whole-rock major and trace element composition analyses, and the results are shown in 171 

Supplementary Table S4. All samples have high concentrations of SiO2 (66.99–69.89 wt.%) and Al2O3 (16.64–18.30 wt.%). 172 

They are enriched in Na2O (6.27–6.84 wt.%) but depleted in K2O (0.45–0.91 wt.%) contents, leading to high Na2O/K2O ratios 173 

of 6.96–15.21. These samples show low concentrations of Fe2O3
T (1.53–1.76 wt.%) and MgO (0.44–0.58 wt.%), with Mg# 174 

values of 36–42. All samples plot within the granodiorite field in the total alkali-silica (TAS) diagram (Fig. 5a) and belong to 175 

the low-K tholeiitic series in the K2O vs. SiO2 diagram (Fig. 5b).  They yield A/CNK [molar ratio of Al2O3/(CaO +Na2O+K2O)] 176 

ratios of 0.98–1.01, indicating metaluminous to weakly peraluminous characteristics (Fig. 5c). Further classification on the 177 

anorthite-albite-orthoclase (An-Ab-Or) diagram reveals that they belong to trondhjemite (Fig. 5d). 178 
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 179 

Figure 5: Geochemical classification of the trondhjemitic geniss samples. (a) Total alkali vs silica (TAS) diagram (after Middlemost, 180 
1994); (b) K2O vs. SiO2 diagram (after Peccerillo and Taylor, 1976); (c) A/NK [Al2O3/ (Na2O + K2O)] vs. A/CNK [Al2O3/ (CaO + 181 
Na2O + K2O)] (after Maniar and Piccoli, 1989). (d) Feldspar An-Ab-Or classification diagram (after Barker, 1979). The data of the 182 
2.55 Ga TTG gneiss are from Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2016; Fu et al., 2016; Li et al., 2019; Jing et al., 183 
2025; Zhao et al., 2025a. 184 

These samples contain total rare earth element (REE) contents ranging from 19.3 to 27.5 ppm. They are characterized by 185 

enrichments in light rare earth elements (LREEs) but depletions of heavy rare earth elements (HREEs), with (La/Yb)N ratios 186 

of 28.3–38.9 (Fig. 6a). In addition, they exhibit significantly positive Eu anomalies (δEu = 1.73–2.34) and slight Ce anomalies 187 

(δCe = 0.93–1.01) (Fig. 6a). All samples have high concentrations of Sr (637–1248), coupled with low Y (1.06–1.48 ppm) and 188 

Yb (0.11–0.16 ppm) contents, as well as high Sr/Y (437–939 ppm) ratios, showing similar geochemical affinity to adakite 189 
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(Drummond and Defant, 1990). In the primitive mantle-normalized trace element pattern diagram, these samples are relatively 190 

enriched in large-ion lithophile elements (LILEs; e.g., Rb and Ba), but are relatively depleted in high field strength elements 191 

(HFSEs; e.g., Nb, Ta, and Ti) (Fig. 6b). 192 

 193 

Figure 6: Chondrite-normalized REE patterns and primitive mantle-normalized trace elements spider diagrams for the 194 
trondhjemitic geniss samples (normalization values are from Sun and McDonough, 1989). 195 

4.1 Zircon Hf-O isotopes 196 

In situ zircon Hf-O isotope analyses results of sample 22ZH23-1 are presented in Supplementary Table S5. A total of 15 197 

Lu-Hf isotope analyses show 176Hf/177Hf and 176Lu/177Hf ratios of 0.281338–0.281379 and 0.000444–0.001004, respectively. 198 

They have concentrated εHf(t) values of +3.3 to +4.9, with corresponding TDM2 ages varying from 2671 to 2769 Ma (Fig. 7a). 199 

Fifteen O isotopic analyses from this sample yield δ18O values of 5.96–6.53 ‰, which are higher than the range of mantle 200 

zircon (5.3‰ ± 0.6‰, 2σ; Valley, 2003) (Fig. 7b). 201 

 202 

Figure 7: (a) Zircon εHf(t) vs. U-Pb age and (b) zircon δ18O vs. U-Pb age diagrams of the trondhjemitic geniss samples. The data of 203 
the 2.55 Ga TTG gneiss are from Yang et al., 2008; Bai et al., 2014, 2016, 2019; Fu et al., 2016, 2019; Jing et al., 2025; Zhao et al., 204 
2025a. 205 
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5 Discussion 206 

5.1 Precambrian geochronological framework of Eastern Hebei 207 

The geochronological framework in the region can be established by zircon U-Pb geochronological data from magmatic 208 

and metamorphic events. In this study, zircon U-Pb ages from the Qiuhuayu trondhjemitic gneiss yields two age populations 209 

with weighted mean ages of 2549 ± 29 Ma and 2446 ± 15 Ma, respectively. The older age is regarded as the crystallization 210 

age of inherited zircons, while the younger age represents the crystallization age of the protolith of this sample. This ca. 2.45 211 

Ga trondhjemitic gneiss represents the first identification of early Paleoproterozoic (~2.45 Ga) magmatism in Eastern Hebei. 212 

In addition, a large number of late Neoarchean rocks (Geng et al., 2006; Yang et al., 2008; Zhang et al., 2012; Guo et al., 2013, 213 

2014; 2015, 2017; Bai et al., 2014, 2016; Fu et al., 2016; Yao et al., 2017; Li et al., 2019; Wang et al., 2019 a, b, c; Duan et 214 

al., 2022) and sporadic Eoarchean to Mesoarchean rocks (Nutman et al., 2011; Sun et al., 2016; Liou et al., 2019; Wan et al, 215 

2021, 2023; Dong et al., 2024, 2025; Zhao et al., 2025b) have also been reported in Eastern Hebei. We summarize the published 216 

zircon U-Pb age data from the magmatic rocks in Eastern Hebei. Ages with a concordance of < 95 % are excluded, and the 217 

remaining 2002 magmatic and 980 metamorphic zircon ages are used to establish the Precambrian geochronological 218 

framework of Eastern Hebei (Supplementary Table S1; Yang et al., 2008; Li et al., 2010, 2019; Nutman et al., 2011; Lv et al., 219 

2012; Zhang et al., 2012; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Duan et al., 220 

2015, 2022; Fu et al., 2016, 2017, 2019, 2021; Sun et al., 2016; Liou et al., 2019; Liou and Guo, 2019a; Lu et al., 2020; Wang 221 

et al., 2019 a, b, c; Wu et al., 2022; Dong et al., 2024, 2025; Zhao et al., 2025a, b). In combination with our new and collected 222 

age data, we identify four episodes of magmatic activities in Eastern Hebei: the Eoarchean (3.84–3.64 Ga), Paleoarchean 223 

(3.53–3.22 Ga), Mesoarchean (3.12–2.80 Ga), and late Neoarchean to early Paleoproterozoic (2.61–2.45 Ga) (Fig. 8a).  224 

The Eoarchean (3.84–3.64 Ga) rocks in Eastern Hebei are primarily exposed in the Labashan area. The ~3.8 Ga 225 

granodioritic rock was first reported by Wan et al. (2021). Recently, the 3.84–3.75 Ga trondhjemitic gneiss, 3.79–3.77 Ga 226 

granodioritic gneiss, ~3.78 Ga quartz monzonite gneiss, and 3.79–3.64 Ga potassic granite gneiss have also been identified in 227 

the area (Dong et al., 2024). These rocks are in tectonic contact with the 3.4–3.1 Ga supracrustal rocks of the Labahsan 228 

Sequence, and both types of rock are hosted as enclaves in the 2.5 Ga potassic granite (Dong et al., 2024). 229 

The Paleoarchean (3.53–3.22 Ga) rocks are mainly distributed in the Labashan, Longwan, and Huangbaiyu areas. The 230 

~3.53 Ga trondhjemitic gneiss was discovered in the same location as the 3.8–3.6 Ga granitoid gneiss in the Labashan area 231 

(Zhao et al., 2025). The 3.51–3.38 Ga tonalitic, trondhjemitic, monzogranitic, and syenogranitic gneiss, with some meta-gabbro 232 

have also been reported in the Labashan area (Dong et al., 2025). The 3.45 Ga ultramafic-mafic suite was reported in the 233 

Longwan area and regarded as remnants of an enriched mantle plume (Wang et al., 2019a). The amphibolite and 234 

clinopyroxene-bearing hornblendite in the Huangbaiyu area yield Sm-Nd isochron ages of ~3.5 Ga (Huang et al., 1986; Jahn 235 

et al., 1987; Cui et al., 2018). However, these ages were challenged because some amphibolites occur as dykes intruding the 236 

ca. 2950 Ma rock (Nutman et al., 2011). In addition, the tonalitic gneiss with ages of 3.23–3.22 Ga have been identified in the 237 

Huangbaiyu area (Nutman et al., 2011). 238 

https://doi.org/10.5194/egusphere-2025-5595
Preprint. Discussion started: 23 January 2026
c© Author(s) 2026. CC BY 4.0 License.



13 

 

 239 

Figure 8: Histogram and kernel density estimation (KDE, Vermeesch, 2012) plots of the magmatic and metamorphic zircon ages 240 
from the Archean magmatic rocks in Eastern Hebei (Data from Yang et al., 2008; Li et al., 2010, 2019; Lv et al., 2012; Zhang et al., 241 
2012; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Duan et al., 2015, 2022; Fu et al., 2016, 242 
2017, 2019, 2021; Liou et al., 2019; Liou and Guo, 2019a; Lu et al., 2020; Wang et al., 2019 a, b, c; Wu et al., 2022; Dong et al., 2024, 243 
2025; Zhao et al., 2025a, b). 244 
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The Mesoarchean (3.12–2.80 Ga) rocks are exposed in the Huangbaiyu, Labashan, and Caochang areas. Sun et al. (2016) 245 

reported ca. 3.1 Ga gneissic monzogranite and 3.0 Ga biotite plagioclase gneiss in the north of the Huangbaiyu area. Recent 246 

studies have revealed 3.12–2.96 Ga trondhjemitic gneiss, syenogranitic gneiss, and meta-gabbro in the Labashan area (Dong 247 

et al., 2025). The 2.90–2.80 Ga trondhjemitic, tonalitic, and dioritic gneiss have also been recognized in the Caochang area 248 

(Fu et al., 2019; Liou et al., 2019). 249 

The late Neoarchean (2.61–2.49 Ga) rocks are widely distributed in Eastern Hebei and constitute the major part of the 250 

Precambrian basement in this area. It is composed mainly of TTG gneiss, dioritic gneiss, charnockite, potassic granite, and 251 

supracrustal rocks (Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2015, 2019; Duan et al., 2017, 2022; Fu et al., 252 

2016, 2017; Li et al., 2024). These rocks show similar protolith magmatic ages of 2.61–2.49 Ga with a peak at ~2.52 Ga (Fig. 253 

8a, Geng et al., 2006; Yang et al., 2008; Zhang et al., 2012; Guo et al., 2013, 2015, 2017; Bai et al., 2014, 2016, 2019; Fu et 254 

al., 2016; Yao et al., 2017; Li et al., 2019, 2024; Wang et al., 2019b, c; Duan et al., 2022). The ~2.45 Ga trondhjemitic gneiss 255 

discovered in this study provides the first evidence for the early Paleoproterozoic magmatic activity in Eastern Hebei, 256 

suggesting that the late Neoarchean magmatism persisted into the early Paleoproterozoic (~2.45 Ga).It is noteworthy that the 257 

basement of Eastern Hebei experienced intensive metamorphism, as evidenced by a large number of metamorphic zircons 258 

from the Archean rocks in Eastern Hebei (Yang et al., 2008; Lv et al., 2012; Zhang et al., 2012; Guo et al., 2013, 2014, 2015, 259 

2017; Bai et al., 2014, 2015, 2016, 2019; Duan et al., 2015, 2019; Fu et al., 2016, 2017, 2021; Li et al., 2019, 2024; Wang et 260 

al., 2019b, c; Lu et al., 2020). Based on a compilation of metamorphic zircon ages, five episodes of metamorphism are 261 

recognized, including the Paleoarchean (3.50–3.20 Ga), Mesoarchean (3.18–2.80 Ga), late Neoarchean (peat at ~2.50 Ga), 262 

early Paleoproterozoic (peat at ~2.45 Ga), and late Paleoproterozoic (~1.82 Ga) (Fig. 8b). The Paleoarchean and Mesoarchean 263 

metamorphism was primarily reported in the Labashan and Huangbaiyu areas (Wan et al., 2021; Dong et al., 2024, 2025; Zhao 264 

et al., 2025b). The late Neoarchean metamorphism is widespread and represents a major metamorphic event in Eastern Hebei 265 

(Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Duan et al., 2015, 2019; Fu et al., 2016, 2017, 2021;  266 

Yang et al., 2017a, b; Lu et al., 2020). The coexistence of ~2.45 Ga magmatism and peak metamorphism indicates the 267 

development of an early Paleoproterozoic tectonothermal event in Eastern Hebei (Bai et al., 2014, 2015, 2016, 2019; Wang et 268 

al., 2019b, c; Lu et al., 2020). Additionally, the late Paleoproterozoic (~1.81 Ga) metamorphism is locally recognized in the 269 

Saheqiao linear structural belt of Eastern Hebei and dominated by high-pressure granulite-facies metamorphism (Duan et al., 270 

2015, 2019; Yang et al., 2017a, b).  271 

In summary, four episodes of magmatic activities (3.84–3.64 Ga, 3.53–3.22 Ga, 3.12–2.80 Ga, and 2.61–2.45 Ga) and 272 

five episodes of metamorphism (3.50–3.23 Ga, 3.18–2.80 Ga, ~2.50 Ga, ~2.45 Ga, ~1.82 Ga) are identified in Eastern Hebei. 273 

5.2 Petrogenesis of ~2.45 Ga trondhjemitic gneiss 274 

For the TTG gneiss, it is essential to evaluate the impact of alteration and metamorphism on whole-rock geochemical 275 

composition. All samples show low loss on ignition (LOI = 0.40–0.73 wt.%) and negligible Ce anomalies (δCe = 0.93–1.01), 276 
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suggesting that their geochemical characteristics were not significantly changed by late metamorphism (Polat and Hofmann, 277 

2003). Therefore, these geochemical data can be effectively used for petrogenetic interpretation. 278 

Previous studies proposed that TTG rocks were derived from partial melting of hydrous basaltic rocks (Rapp and Watson, 279 

1995; Rapp et al., 1999; Moyen, 2011; Moyen and Martin, 2012; Palin et al., 2016). However, some recent studies have 280 

emphasized the important role of amphibole and plagioclase fractional crystallization in the formation of TTG rocks (Liou and 281 

Guo, 2019b, 2022; Laurent et al., 2020). The highly and moderately incompatible elements exhibit different behaviors during 282 

partial melting and fractional crystallization processes, which can be used to distinguish these two processes (Schiano et al., 283 

2010). In the La/Hf vs. La and Rb/Sr vs. Rb diagrams, the studied samples are distributed along the partial melting trends 284 

(Schiano et al., 2010, Fig. 9). Considering with the lack of coeval mafic rocks and cumulates in Eastern Hebei, we propose 285 

that the formation of the 2.45 Ga trondhjemitic gneiss was primarily controlled by the partial melting process (Martin et al., 286 

2005; Macpherson et al., 2006). 287 

 288 

Figure 9: (a) La/Hf vs. La and (b) Rb/Sr vs. Rb diagrams. The inset is a schematic CH/CM vs. CH plot, with superscripts H and M 289 
representing highly and moderately incompatible elements, respectively (after Schiano et al., 2010). 290 

In this study, all samples show high Sr (637–1248 ppm) contents and Sr/Y (437–939 ppm) ratios, with low Y (1.06–1.48 291 

ppm) and Yb (0.11–0.16 ppm) contents, akin to adakite (Drummond and Defant, 1990). They have high SiO2 content (66.99–292 

69.89 wt.%), low MgO (0.44–0.58 wt.%) and Fe2O3
T (1.53–1.76 wt.%) contents, and Mg# values (36–42), consistent with 293 

experimental partial melts from metabasaltic rocks, and belong to high-silica adakite (Fig. 10a, Rapp et al., 1999). In addition, 294 

these samples exhibit very low concentrations of Ni (2.82–5.13 ppm) and Cr (4.80–9.49 ppm), indicating that they originated 295 

from partial melting of a thickened lower crust (Fig. 10b, c; Rapp and Watson, 1995; Chung et al., 2003). In the 296 

Al2O3/(FeOT+MgO)-(3CaO)-(5K2O/Na2O) ternary diagram, all samples plot within the field of melts derived from low-K 297 

mafic rocks, implying the primary source of low-K mafic crust (Fig. 10d, Laurent et al., 2014). The trondhjemitic gneiss 298 

samples show positive zircon εHf(t) values (+3.3 to +4.9), further indicating a juvenile crust, which is also supported by their 299 

https://doi.org/10.5194/egusphere-2025-5595
Preprint. Discussion started: 23 January 2026
c© Author(s) 2026. CC BY 4.0 License.



16 

 

higher zircon δ18O values of 5.96–6.53 ‰ than mantle zircon (δ18OMantle = 5.3 ± 0.6 ‰, Valley, 2003). Notably, a large number 300 

of the late Neoarchean (~2.55 Ga) TTG gneiss have been also reported in Eastern Hebei. Some of these rocks show comparable 301 

whole-rock geochemical and zircon Hf-O isotopic characteristics to the ~2.45 Ga TTG gneiss, characterized by high SiO2, 302 

Al2O3, and Sr contents, low MgO, Y, Yb, Cr, and Ni contents, with positive zircon εHf(t) values and higher zircon δ18O values 303 

than mantle zircon, supporting a magma source of the juvenile, low-K thickened lower crust (Figs. 5-7, 9-10: Rapp and 304 

Watson.1995; Rapp et al., 1999; Chung et al., 2003, Laurent et al., 2014). 305 

 306 

Figure 10: (a-c) Diagrams of MgO, Cr, and Ni versus SiO2 (after Rapp and Watson, 1995; Rapp et al., 1999; Chung et al., 2003); (d) 307 
Al2O3/(FeOT+MgO)–3*CaO–5*(K2O/Na2O) ternary diagram (after Laurent et al., 2014). 308 

The 2.45 Ga trondhjemitic gneiss samples in this study are characterized by high Sr content, low Y, Yb, Nb, and Ta 309 

contents, as well as high Sr/Y, Nb/Ta, and (La/Yb)N ratios, implying that they formed under the high-pressure conditions, with 310 

garnet and rutile as the predominant residual phases (Fig. 11a, Martin et al., 1986; Defant and Drummond, 1990, Moyen, 2011; 311 

Qian and Hermann, 2013). Previous studies have revealed that garnet is compatible with HREEs (e.g., Yb) and Y (Rollinson, 312 
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1993; Taylor et al., 2015). Thus, the low Y and Yb contents, as well as high (La/Yb)N ratios of the studied samples, suggesting 313 

that garnet is the main residual mineral in the magma source. In addition, these samples show low concentrations of Ti, Nb, 314 

and Ta, coupled with their high Nb/Ta and low Nb/La ratios (Fig. 11b), indicating that the rutile was also residual, because 315 

rutile can control the contents of Ti, Nb, and Ta in the melt and increase the Nb/Ta ratios (Schmidt et al., 2004; Klemme et al., 316 

2005; Xiong et al., 2006; John et al., 2011). Based on the high compatibility of Sr and Eu in plagioclase (Bédard, 2006), the 317 

high Sr content and significantly positive Eu anomalies of the 2.45 Ga trondhjemitic gneiss samples contradict residual 318 

plagioclase. Notably, our samples show extremely high Sr/Y values (637–1248), combined with their flat patterns of MREEs 319 

and HREEs, low (Gd/Yb)N values, and positive Eu anomalies (Fig. 6a), supporting that they have undergone amphibole 320 

fractional crystallization during the magma evolution (Tiepolo et al., 2007). The fractional crystallization of amphibole can 321 

also be revealed by the positive linear correlations in the Dy vs. Er (Fig. 11c, Drummond et al., 1996) and Ni vs. Cr diagrams 322 

(Fig. 11d, Rollinson, 1993). 323 

 324 

Figure 11: (a) (La/Yb)N vs. YbN diagram (after Martin, 1986); (b) Nb/Ta vs. Nb/La diagram (after Schmidt et al., 2004); (c) Dy vs. 325 
Er diagram (after Drummond et al., 1996); (d) Ni vs. Cr diagram (after Rollinson, 1993). 326 
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In summary, the protolith of the 2.45 Ga trondhjemitic gneiss in Eastern Hebei was probably derived from partial melting 327 

of a juvenile, low-K thickened lower crust, with garnet and rutile as residues. They have undergone amphibole fractional 328 

crystallization during magma evolution. 329 

5.3 Eoarchean to early Paleoproterozoic crustal evolution in Eastern Hebei 330 

The growth and reworking of continental crust have been a topic of continued interest in Earth sciences (Belousova et al., 331 

2010; Hawkesworth et al., 2010; Cawood et al., 2013; Spencer et al., 2017; Diwu et al., 2018, 2021, 2024). Continental crustal 332 

growth refers to the transfer of mantle-derived melts to the crust, leading to an increase in the total volume of newly generated 333 

(juvenile) crust (Belousova et al., 2010; Kemp and Hawkesworth, 2014; Dhuime et al., 2018; Diwu et al., 2024). In contrast, 334 

crustal reworking involves the recycling of pre-existing crust by magmatism, metamorphism, and sedimentation within the 335 

continental crust, with no change in the volume of the crust (Hawkesworth et al., 2010; Dhuime et al., 2018; Zhu et al., 2021). 336 

To constrain the timing of growth and reworking of continental crust, we have compiled 2002 published magmatic zircon U-337 

Pb ages from Eastern Hebei, among which 1428 age data were coupled with Hf isotope data (Fig. 12, Yang et al., 2008; Li et 338 

al., 2010, 2019; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Fu et al., 2016, 2017, 339 

2019, 2021; Liou et al., 2019; Liou and Guo, 2019a; Wang et al., 2019 a; Dong et al., 2024, 2025; Zhao et al., 2025a, b). 340 

 341 

Figure 12: Magmatic zircon εHf(t) vs. U-Pb age of the magmatic rocks in Eastern Hebei (Data from Yang et al., 2008; Li et al., 2010, 342 
2019; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Fu et al., 2016, 2017, 2019, 2021; Liou et 343 
al., 2019; Liou and Guo, 2019a; Wang et al., 2019 a; Dong et al., 2024, 2025; Zhao et al., 2025a, b). Bars in yellow, bule, green, red, 344 
and purple represent 3.86–3.64 Ga, 3.53–3.22 Ga, 3.12–2.80 Ga, 2.61–2.49 Ga, and 2.45 Ga. 345 
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Except for a single zircon with εHf(t) of 0.35, other 3.84–3.64 Ga magmatic zircons show negative εHf(t) values (-7.06 to 346 

-0.29) and TDM2 ages of 4.4–4.0 Ga (mainly 4.2–4.1 Ga), indicating that the Eoarchean rocks originated from the anatexis of 347 

older basaltic sources (Dong et al., 2024). However, no rocks older than 3.8 Ga were discovered in Eastern Hebei. In fact, the 348 

rocks with zircon TDM2 ages >4.0 Ga have also been reported in the Jack Hills, Acasta Gneiss complex, Qinling Orogenic Belt, 349 

Singhbhum Craton, and Kaapvaal Craton (Diwu et al., 2013; Kröner et al., 2014; Chaudhuri et al., 2018; Cavosie et al., 2019; 350 

Reimink et al., 2019), and were explained by partial melting of global mafic ultramafic crust from a magma ocean in early 351 

Earth (Kemp et al., 2010; Cawood et al., 2022; Wan et al., 2023). Thus, we propose that Eastern Hebei is dominated by Hadean 352 

crustal reworking in the Eoarchean. 353 

The Paleoarchean (3.53–3.22 Ga) rocks contain various rock types of potassic granite, TTG gneiss, meta-gabbro, and 354 

meta-websterite. Nearly all potassic granites exhibit significantly negative zircon εHf(t) values of -10.55 to -0.18, with 355 

corresponding TDM2 ages of 4.37–3.78 Ga, indicating that they were derived from partial melting of ancient crust (Hadean to 356 

early Eoarchean). Magmatic zircons from the TTG gneiss have a wide range of εHf(t) values (-10.61 to 3.6, Dong et al., 2025; 357 

Zhao et al., 2025b), with majority (~80 %) of them yielding negative εHf(t) values (-10.61 to -0.2) and TDM2 ages of 4.50–3.80 358 

Ga, suggesting that they originated from recycling of Eoarchean TTG rocks and Hadean mafic crust. The remaining magmatic 359 

zircons of the TTG gneiss show positive εHf(t) values of 3.6–0, implying a juvenile crust contribution. The 3.45 Ga meta-360 

gabbro, with zircon εHf(t) of -0.28 to 2.56, was considered as a product of depleted mantle influenced by ancient crustal 361 

materials (Dong et al., 2025). The 3.45 Ga meta-websterite shows zircon εHf(t) of 5.6–0.2 and was regarded as remnants of an 362 

enriched mantle plume (Wang et al., 2019a). The occurrence of these 3.45 Ga Ga mantle-derived rocks indicates the generation 363 

of juvenile crust. Collectively, we suggest that Eastern Hebei is primarily characterized by crustal reworking with a minor 364 

contribution of crustal growth in the Paleoarchean. 365 

The 3.07 Ga trondhjemitic gneiss in the Labashan area shows obviously negative zircon εHf(t) values of -17.99 to -12.50, 366 

with corresponding TDM2 ages of 4.55–4.21 Ga, suggesting that they originated from partial melting of Hadean mafic crust 367 

(Dong et al., 2025). In addition, the coeval mantle-derived meta-gabbro (3.12–3.09 Ga) has been recently reported in the same 368 

region, indicating the formation of juvenile crust (Dong et al., 2025). The ~2.9 Ga trondhjemitic gneiss in the Caozhuang area 369 

has negative zircon εHf(t) values (-9.7 to -4.2) and TDM2 ages of 3.89–3.61 Ga, indicating partial melting of the Eoarchean rocks 370 

(Fu et al., 2019). The 2.9–2.80 Ga dioritic gneiss and felsic orthogneiss in the Caochang area are characterized by a wide range 371 

of zircon εHf(t) values (-7.4 to 2.5), regarded as the result of mixing of mafic magma derived from a depleted mantle source 372 

and felsic magma from ancient crustal materials (Liou et al., 2019; Liou and Guo, 2019a). Therefore, we propose that both 373 

crustal growth and reworking occurred in the Mesoarchean (3.12–2.80 Ga) in Eastern Hebei. Notably, the proportion of the 374 

positive zircon εHf(t) values increased from 21% in the Paleoarchean to 43% in the Mesoarchean, attributable to enhanced 375 

crustal growth during this period (Fig. 12). 376 

The late Neoarchean rocks (2.61–2.49 Ga) account for over 80 % of the Archean basement in Eastern Hebei (Yang et al., 377 

2008; Nutman et al., 2011; Bai et al., 2014, 2015, 2019; Duan et al., 2017, 2022; Fu et al., 2016, 2017; Yao et al., 2017; Li et 378 

al., 2019, 2024; Wang et al., 2019b, c). Whether late Neoarchean magmatism represents significant crustal growth or reworking 379 
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has long been controversial. Some researchers proposed that the late Neoarchean may represent a period of  the 2.8–2.7 Ga 380 

crust reworking because the whole-rock Sm-Nd and zircon Lu-Hf model ages of the late Neoarchean magmatic zircons show 381 

a prominent age cluster centered on 2.8–2.7 Ga (Wu et al., 2005; Geng et al., 2012; Wan et al., 2022, 2024). However, the 382 

model age is a derivative parameter calculated based on several inherent assumptions (Hawkesworth et al., 2010; Fisher et al., 383 

2014; Vervoort and Kemp, 2016; Diwu et al., 2024). The parameter variations tend to inevitably affect the model ages and 384 

propagate uncertainties more than 200–300 Ma (Kemp and Hawkesworth, 2014; Diwu et al., 2024). Thus, some scholars 385 

argued that the model ages should be used with caution when interpreting the generation of new crust (Diwu et al., 2012, 2024; 386 

Vervoort and Kemp, 2016). As shown in Fig. 12, the majority of the late Neoarchean magmatic rocks in Eastern Hebei have 387 

positive zircon εHf(t) values. Some of them are close to those of the contemporaneous depleted mantle (Fig. 7a), with their Hf 388 

model ages close to the corresponding U-Pb ages, supporting an origin from the juvenile crust. In addition, the late Neoarchean 389 

greenstone belts are widespread in Eastern Hebei, characterized by metamorphosed volcanic-sedimentary sequences, with the 390 

volume ratio of volcanics to sediments being ~3:1, and about 50 % of the volcanics are mafic (Shen et al., 1994; Guo et al., 391 

2013, 2014, 2015, 2017; Fu et al., 2021). The meta-mafic rocks have MORB- or arc-like geochemical affinities involving a 392 

primary mantle source with minor continental crust contamination, indicating the growth of late Neoarchean juvenile crust in 393 

Eastern Hebei (Guo et al., 2013, 2014, 2015, 2017). Therefore, the late Neoarchean represents a major period of crustal growth 394 

in Eastern Hebei. Nevertheless, crustal reworking in the late Neoarchean cannot be completely ruled out, as part of the 395 

magmatic rocks have negative εHf(t) values and older Hf model ages, implying the partial melting of pre-existing crust (Fig. 396 

8a). In addition, the K-rich granitoid rocks have been reported in Eastern Hebei, and were resulted from partial melting of the 397 

regionally widespread dioritic, granodioritic, monzonitic, and quartz monzonitic gneiss (Fu et al., 2017, 2019). Collectively, 398 

we propose that the late Neoarchean (2.61–2.49 Ga) is a major period of crustal growth in Eastern Hebei with a small portion 399 

of crustal reworking occurring. 400 

This study first identified the 2.45 Ga trondjemitic gneiss in Eastern Hebei, which provides evidence for the magmatism 401 

during the TML in the Eastern Block, NCC. These rocks have concentrated, positive εHf(t) valuesfrom +3.3 to +4.9, with 402 

corresponding TDM2 ages varying from 2769 to 2671 Ma, suggesting the 2.45 Ga crustal growth in Eastern Hebei. Therefore, 403 

we propose that the early Paleoproterozoic era in the NCC was not a period of magmatic quiescence, and the plate tectonics 404 

and crustal growth remained active during this period. Notably, the 2.45 Ga trondjemitic gneiss shows similar whole-rock 405 

geochemical and zircon Hf-O isotopic characteristics to some 2.55 Ga TTG gneiss in Eastern Hebei (Figs. 4-7). Consequently, 406 

we suggest that the 2.45 Ga trondjemitic gneiss was probably a continuation of the late Neoarchean magmatism. In addition 407 

to the magmatic activity, some paleoclimatic changes also extensively occurred in the early Paleoproterozoic era. However, 408 

the relationship between magmatic activity and paleoclimatic upheavals needs further studies. 409 

To sum up, we conclude that Eastern Hebei possesses a complex crustal evolution history from the Eoarchean to the early 410 

Paleoproterozoic. The Eoarchean (3.84–3.64 Ga) is characterized by Hadean crustal reworking. Both crustal growth and 411 

reworking occurred in the Paleoarchean (3.53–3.22 Ga), Mesoarchean (3.12–2.80 Ga), and late Neoarchean (2.61–2.49 Ga). 412 

Notably, the proportion of crustal growth increased from the Paleoarchean to the late Neoarchean, among which the late 413 
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Neoarchean represents a major period of crustal growth. The newly recognized ca. 2.45 Ga trondhjemitic gneiss was probably 414 

a continuation of the late Neoarchean magmatism, and the crustal growth persisted into this period. 415 

6 Conclusions 416 

(1) The 2.45 Ga trondhjemitic gneiss was discovered in Eastern Hebei, providing unambiguous evidence for an early 417 

Paleoproterozoic tectonothermal event in the Eastern Block, NCC. 418 

(3) The protolith of the 2.45 Ga trondhjemitic gneiss was derived from partial melting of a juvenile, low-K thickened 419 

lower crust, with garnet and rutile as residues. 420 

(2) Multiple stages of magmatism (3.84–3.64 Ga, 3.53–3.22 Ga, 3.12–2.80 Ga, and 2.61–2.45 Ga) and metamorphism 421 

(3.50–3.23 Ga, 3.18–2.80 Ga, ~2.50 Ga, ~2.45 Ga, ~1.82 Ga) are identified in Eastern Hebei. 422 

(4) From the Eoarchean to the late Neoarchean, the crustal evolution of Eastern Hebei shifted from extensive reworking 423 

of ancient crust to a significant increase in crustal growth. The ca. 2.45 Ga trondhjemitic gneiss was probably a continuation 424 

of the late Neoarchean magmatism, and the crustal growth persisted into this period. 425 
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