

1 **Discovery of 2.45 Ga trondhjemite gneiss in Eastern Hebei, North 2 China Craton: A constraint on Precambrian crustal evolution**

3 Jiahao Jing¹, Qian Liu¹, Yigui Han¹, Jinlong Yao¹, Donghai Zhang¹, Chenyang Sun¹, Jiakang Zheng¹,
4 Guochun Zhao^{2,1}

5 ¹State Key Laboratory of Continental Evolution and Early Life, NWU-HKU Joint Center of Earth and Planetary Sciences,
6 Department of Geology, Northwest University, Xi'an 710069,

7 ²Department of Earth and Planetary Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China

8 *Correspondence to:* Qian Liu (liuqian@nwu.edu.cn)

9 **Abstract.** The early Paleoproterozoic era (2.45–2.20 Ga), known as the Tectono-Magmatic Lull (TML), is characterized by a
10 decline in global magmatic activity. This study first identifies ca. 2.45 Ga trondhjemite gneiss (2446 ± 15 Ma) in Eastern
11 Hebei of the Eastern Block, North China Craton. These rocks exhibit adakitic geochemical characteristics, marked by high
12 SiO₂, Al₂O₃, and Sr contents, with low MgO, Y, and Yb contents. Their low MgO, Cr, and Ni contents, along with slightly
13 high zircon $\delta^{18}\text{O}$ (5.96–6.53 ‰) and positive $\varepsilon_{\text{Hf}}(t)$ (3.3–4.9) values, indicate that they originated from partial melting of a
14 juvenile thickened lower crust. All samples show low concentrations of Y, Yb, Ti, Nb, and Ta, coupled with their high (La/Yb)_N
15 and Nb/Ta ratios, suggesting that they formed at a high-pressure condition, with garnet and rutile as residues. In combination
16 with our new data and published zircon U-Pb ages in the region, we have identified multiple stages of magmatism (3.84–3.64
17 Ga, 3.53–3.22 Ga, 3.12–2.80 Ga, and 2.61–2.45 Ga) and metamorphism (3.50–3.23 Ga, 3.18–2.80 Ga, ~2.50 Ga, ~2.45 Ga,
18 ~1.82 Ga) in Eastern Hebei. Based on a compilation of these magmatic zircon U-Pb ages and Hf isotope data, Eoarchean to
19 early Paleoproterozoic crustal evolution processes in Eastern Hebei is established. The Eoarchean is dominated by Hadean
20 crustal reworking, and the Paleoarchean is primarily characterized by crustal reworking with a minor contribution of crustal
21 growth. Both crustal growth and reworking occurred during Mesoarchean time, with the proportion of crustal growth
22 increasing from the Paleoarchean to the Mesoarchean. The late Neoarchean represents a major period of crustal growth with
23 minor crustal reworking. The ca. 2.45 Ga trondhjemite gneiss discovered in this study was probably a continuation of the late
24 Neoarchean magmatism and the crustal growth persisted into this period.

25 1 Introduction

26 The early Paleoproterozoic era is a special period in Earth's history, during which a variety of fundamental paleoclimatic
27 and tectono-magmatic changes occurred (Condie et al., 2009; Lyons et al., 2014; Zhai and Peng, 2020). On one hand, extensive
28 paleoclimatic changes occurred in the early Paleoproterozoic, including a dramatic transition of atmosphere from oxygen-free
29 to hypoxia-oxygenated (i.e., Great Oxidation Event), loss of mass-independent sulfur isotope fractionation, formation of
30 largescale banded iron ore, significantly positive carbon isotope excursion, and development of widespread glaciations (i.e.,
31 Huronian glaciation) (Young, 2013; Eriksson and Condie, 2014; Partin et al., 2014; Condie et al., 2022). On the other hand,
32 the global magmatic activity decreased dramatically between 2.45 and 2.2 Ga, as evidenced by a noticeable dip in light of
33 global igneous and detrital zircon ages (Condie et al., 2009), with sporadic records of greenstone belt, tonalite-trondhjemite-
34 granodiorite (TTG) suite, and large igneous provinces (LIPs) worldwide (Spencer et al., 2018; Wang et al., 2021; Yang et al.,
35 2024). This interval of significantly reduced magmatic activity was named the "Tectono-Magmatic Lull (TML)" (Partin et al.,
36 2014; Teixeira et al., 2015; Spencer et al., 2018). Some scholars proposed that the TML was related to the global plate tectonic
37 shutdown and continental crust growth was stagnated during the TML (O'Neill et al., 2007; Condie et al., 2009; Spencer et al.,
38 2018).

39 However, some recent studies have revealed that the TML might not have been completely quiet, as many early
40 Paleoproterozoic magmatic activities have been reported in different cratons (Partin et al., 2014). For example, the early
41 Paleoproterozoic mafic dike swarms are well-documented globally, including the ~2.34 Ga diabase dike swarms in the
42 Karelian Craton (Stepanova et al., 2015), the ~2.36 Ga Bangalore gabbro-diabase dike swarms in the Dharwar Craton (Halls
43 et al., 2007; Kumar et al., 2012; Söderlund et al., 2019; Ramesh et al., 2020), the ~2.42 Ga Widgiemooltha-Binneringie dike
44 swarms in the Yilgarn Craton (French et al., 2002; Wingate, 2017; Siégel et al., 2024), and the 2.42–2.37 Ga Scourie dike
45 swarms in the North Atlantic Craton (Davies and Heaman., 2014; Zakharov et al., 2019). In addition, the 2.43–2.20 Ga silicic
46 magmatic rocks, including TTG suites and calc-alkaline granitoids, have been reported in the Arrowsmith Orogenic Belt of
47 the Rae Craton (Hartlaub, et al., 2007; Neil et al., 2025), the Minerio Orogenic Belt of the San Francisco Craton (Teixeira et
48 al., 2015; Alkmim et al., 2017), and the Trans-North China Orogen (TNCO) of the North China Craton (NCC) (Diwu et al.,
49 2014; Zhou et al., 2021, 2024; Zhou and Zhai., 2022; Wang and Long, 2024). Accordingly, some scholars have suggested that
50 plate tectonics and crustal growth persisted throughout the TML and attributed the lack of the early Paleoproterozoic magmatic
51 records to preservation bias (Partin et al., 2014; Pehrsson et al., 2014; Yang and Santosh, 2015).

52 As one of the globally typical area for the early Paleoproterozoic magmatism, several magmatic activities during the TML
53 have been discovered in the TNCO, Kondalite Belt, and Jiao-Liao-Ji Belt of the NCC, with various rock types of gabbro,
54 diorite, TTG gneiss, and granitoid gneiss (Diwu et al., 2014; Du et al., 2016; Duan et al., 2021; Zhou et al., 2021, 2024; Wang
55 et al., 2021; Zheng et al., 2022; Zhou and Zhai, 2022; Wang and Long, 2024). However, few early Paleoproterozoic magmatic
56 records were found in the Western and Eastern blocks of the NCC. In this study, we firstly identify the 2.45 Ga trondjemetic
57 gneiss in Eastern Hebei and conduct an integrated study of petrology, whole-rock geochemistry, and zircon U-Pb dating and

58 Hf-O isotope compositions. These new data, along with previously published data in Eastern Hebei, allow us to establish the
59 geochronological framework of the Precambrian basement in this region, which provides insights into the Archaean to early
60 Paleoproterozoic crustal evolution history.

61 2 Geological setting and samples

As the largest and oldest craton in China, the NCC is tectonically bounded by the Central Asian Orogenic Belt to the north, the Qinling-Dabie Orogenic Belt to the south, and the Qilian Orogenic Belt to the west (Fig. 1, Zhao et al., 2005). It consists mainly of Archean-Paleoproterozoic basement and unmetamorphosed Paleoproterozoic-Mesozoic sedimentary cover (Zhao et al., 2005; Geng et al., 2012; Zhao and Zhai, 2013). The basement of the NCC is subdivided into the Eastern Block and the Western Block, which were amalgamated in the Paleoproterozoic (ca. 1.85 Ga) along the TNCO (Zhao et al., 2005). The Western Block was amalgamated by the Yinshan and Ordos blocks along the Khondalite Belt at ~1.95 Ga, while the Eastern Block was formed at ~1.90 Ga by collision of the Longgang and Langrim blocks along the Jiao-Liao-Ji Belt (Zhao et al., 2005).

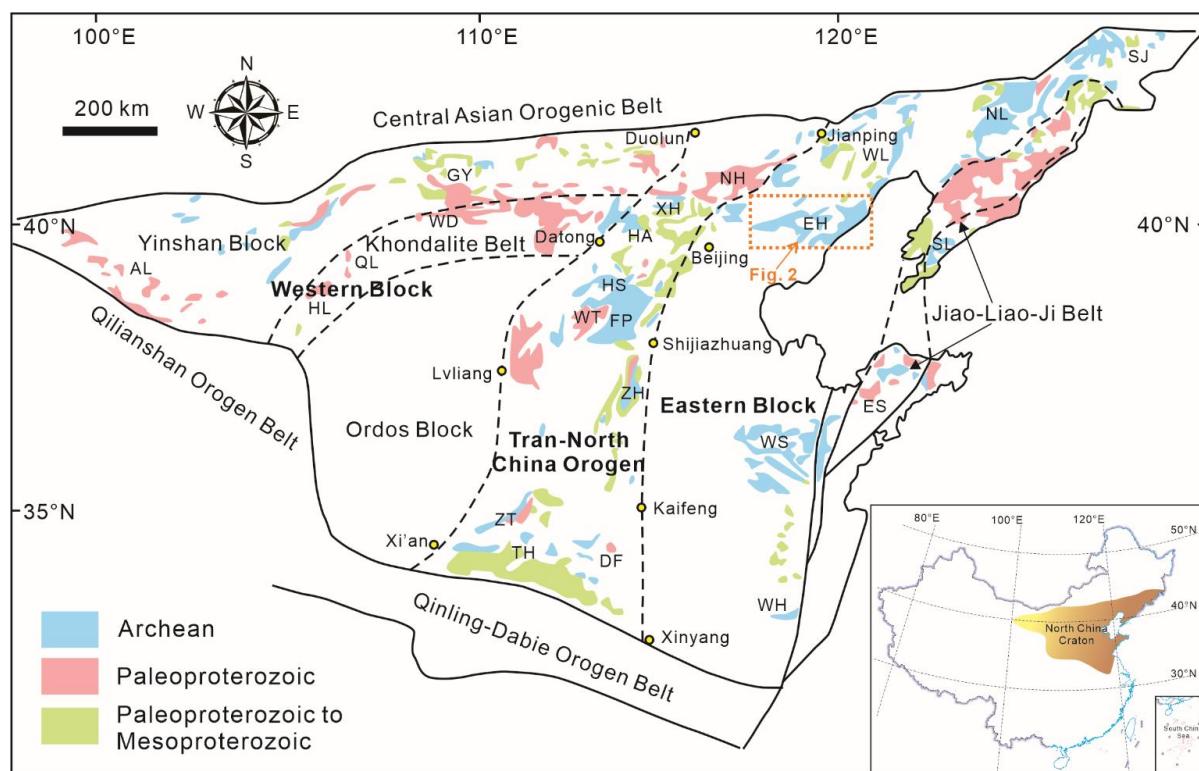
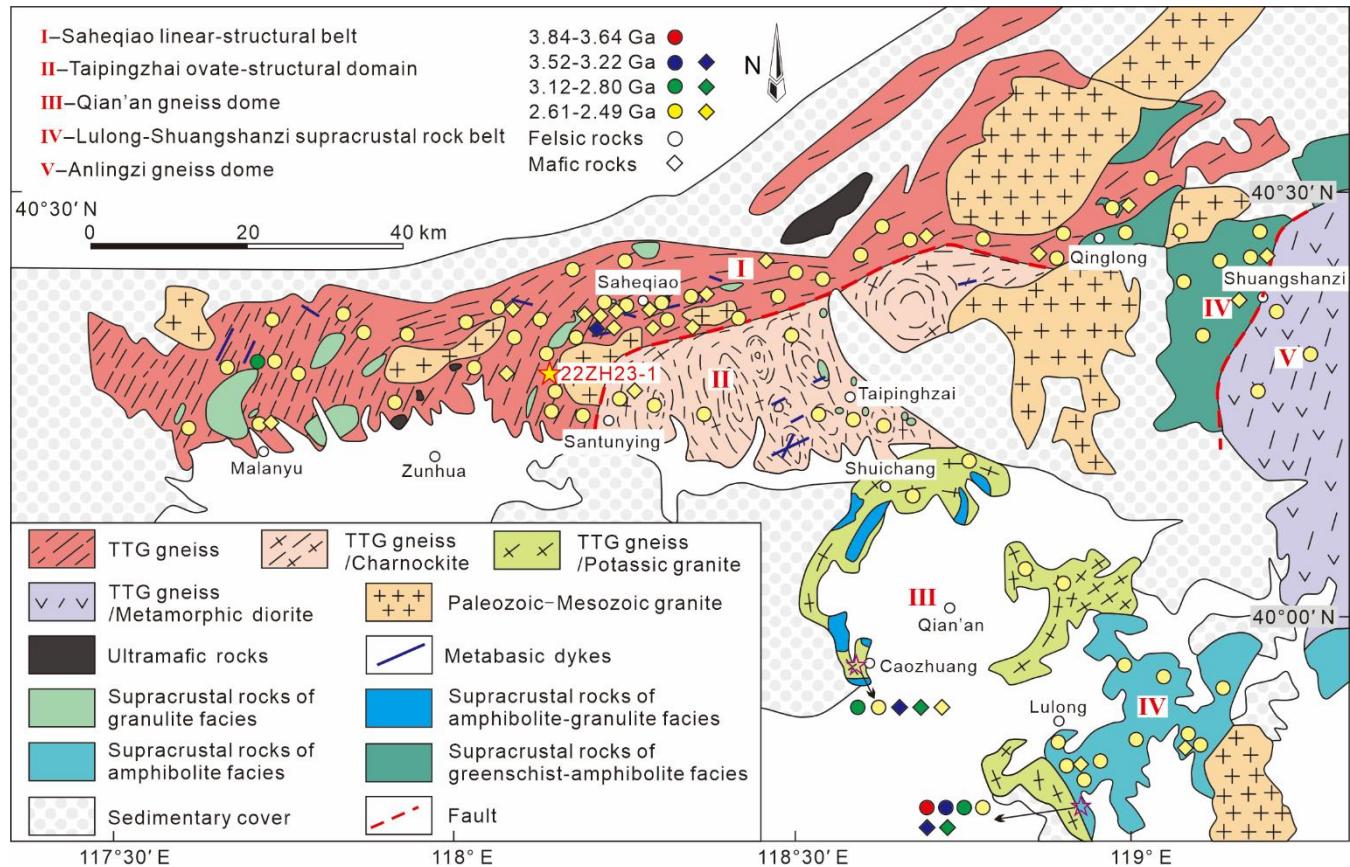
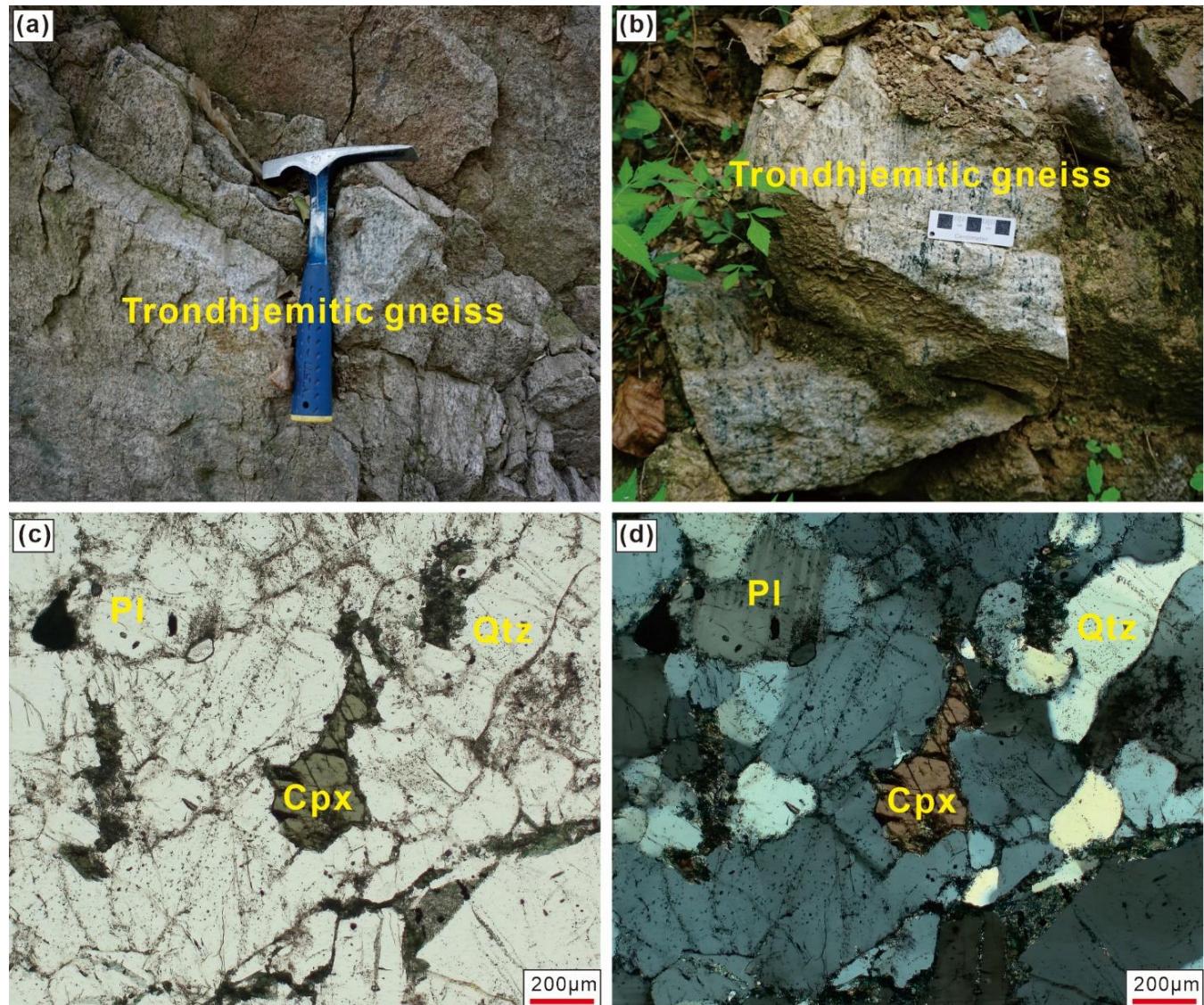



Figure 1: Simplified geological map of the North China Craton showing its major tectonic units and the distribution of Precambrian basement (modified after [Zhao et al., 2005](#)). Abbreviations of terranes: AL—Alxa, GY—Guyang, WD—Wulashan-Daqlingshan, QL—Qilian, HL—Helanshan, NH—Northern Hebei, XH—Xuanhua, HA—Huai'an, HS—Hengshan, WT—Wutai, FP—Fuping, ZH—Zanhuan, ZT—Zhongfiao, TH—Taihua, DF—Dengfeng, WL—Western Liaoning, NL—Northern Liaoning, SJ—Southern Jilin, EH—Eastern Hebei, WS—Western Shandong, WH—Wuhe, ES—Eastern Shandong, and SL—South Liaoning.


76 Located in the western margin of the Eastern Block, Eastern Hebei is a classic region where the Archean basement is
77 widely exposed (Zhao et al., 2005; Geng et al., 2006). A variety of rock types have been recognized in this area, including
78 TTG gneisses, dioritic gneisses, charnockites, potassic granites, supracrustal rocks, and small amounts of metabasic dykes
79 (Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2015, 2019; Duan et al., 2017, 2022; Fu et al., 2016, 2017; Li et al.,
80 2024). The supracrustal rocks show typical features of the Archean greenschist belt, and consist of metasedimentary and
81 metabasic rocks with a few Banded Iron Formations and ultramafic interlayers (Geng et al., 2006; Polat et al., 2006; Guo et
82 al., 2013, 2014, 2015, 2017; Wang et al., 2019a; Li et al., 2024). The Archean rock types in Eastern Hebei show spatial
83 variations and are divided into five litho-tectonic units: (I) the Saheqiao linear-structural belt, (II) the Taipingzhai ovate-
84 structural domain, (III) the Qian'an gneiss dome, (IV) the Lulong-Shuangshanzi supracrustal rock belt, and (V) the Anziling
85 gneiss dome (Fig. 2, Wei, 2018). In addition, the Archean rocks in Eastern Hebei experienced intensive metamorphism and
86 deformation. They are characterized by Archean unique dome-and-keel structures, with the supracrustal rocks (the Lulong-
87 Shuangshanzi supracrustal belt) occurring as keels in the TTG gneiss domes (the Anziling gneiss dome) (Liu and Wei, 2018;
88 Zhao et al., 2021). The degrees of metamorphism of these rocks also show spatial variations. The rocks in the western segment
89 experienced upper amphibolite- to granulite-facies metamorphism, whereas the eastern rocks underwent greenschist- to
90 amphibolite-facies metamorphism (Yang and Wei, 2017a, b; Liu and Wei, 2018; Duan et al., 2019; Liu et al., 2020, 2022).

91 Most of the TTG and granitoid gneisses in Eastern Hebei show magmatic crystallization ages of 2.58–2.49 Ga and
92 metamorphic ages of 2.53–2.31 Ga (Geng et al., 2006; Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2016; Fu et al.,
93 2016; Yao et al., 2017; Li et al., 2019; Duan et al., 2022; Zhao et al., 2025a). In addition, some Eoarchean to Mesoarchean
94 granitoids (3.80–2.90 Ga) have been identified in the Huangbaiyu, Labashan, Caochang, and Caozhuang areas of Eastern
95 Hebei (Nutman et al., 2011; Sun et al., 2016; Fu et al., 2019; Liou et al., 2019; Liou and Guo, 2019a; Wan et al., 2021, 2023;
96 Dong et al., 2024, 2025; Zhao et al., 2025b). The supracrustal rocks have primary protolith deposition and magmatic ages of
97 2.61–2.50 Ga (Zhang et al., 2012; Guo et al., 2013, 2014; 2015, 2017; Fu et al., 2016; Duan et al., 2017; Lu et al., 2017; Liu
98 and Wei, 2020; Duan et al., 2022). Notably, the Palaeoarchean (3.45 Ga) and Mesoarchean (3.1–2.9 Ga) ultramafic-mafic
99 rocks were also reported in Labashan, Longwan, and Caochang areas of Eastern Hebei (Liou et al., 2019; Wang et al., 2019a;
100 Dong et al., 2025). The supracrustal rocks yield two groups of metamorphic ages at 2.53–2.47 Ga and 1.97–1.80 Ga (Duan et
101 al., 2017, 2022; Yang and Wei, 2017a, b; Lu and Wei, 2020).

102
 103 **Figure 2: Simplified geological map of Eastern Hebei showing sampling locations (modified after Jing et al., 2025).** The data of the
 104 felsic and mafic rocks are shown in [Supplementary Table S1](#).

105 The 2.45 Ga trondhjemite gneiss in this study was discovered on the road to Qiuhyayu Village (GPS: N 40°15'38.47", E
 106 118°07'25.84"). In the field, these rocks are grayish-white and display gneissic structures (Fig. 3a, b). They are medium- to
 107 coarse-grained and composed primarily of plagioclase (45–55 %) and quartz (40–45 %), with minor alkali-feldspar,
 108 clinopyroxene, and accessory minerals such as magnetite (<5 %) (Fig. 3c, d). Quartz occurs as small grains that fill the
 109 interstitial spaces between larger plagioclase crystals (Fig. 3c, d).

110
111 **Figure 3: Representative field photographs and microphotographs of the 2.45 Ga trondhjemite gneiss in Eastern Hebei. Mineral**
112 **abbreviations: Qtz-quartz, PI-plagioclase, and Cpx-clinopyroxene.**

113 **3 Analytical methods**

114 **3.1 Zircon U-Pb dating**

115 Zircons U-Pb dating used instruments of Agilent 7700x quadrupole inductively coupled plasma mass spectrometry system
116 (ICP-MS) equipped with a 193 nm ArF excimer laser ablation system (LA) at FocuMS Technology Co., Ltd., Nanjing, China.
117 The operating conditions include an analysis spot diameter of 33 μm , a repetition rate of 6 Hz, and an energy density of 4.5
118 J/cm 2 . Zircon standard 91500 (Wiedenbeck et al., 1995) was used to calibrate U-Pb isotopic ratios, and two zircon standards

119 (GJ-1 and TANZ) were analyzed after every eight sample spots. The analysed zircons 91500, GJ-1, and TANZ yielded
120 weighted mean $^{206}\text{Pb}/^{238}\text{U}$ ages of 1062.4 ± 1.2 Ma, 603.8 ± 2.1 Ma, and 565.7 ± 1.8 Ma, respectively, which agree well with
121 their recommended ages (Sláma et al., 2008; Wiedenbeck et al., 1995). Raw data was processed by using ICPMSDataCal (Liu
122 et al., 2010). Age calculation and plotting were conducted by applying Isoplot (ver. 4.00; Ludwig, 2003).

123 3.2 Whole-rock major and trace elemental analyses

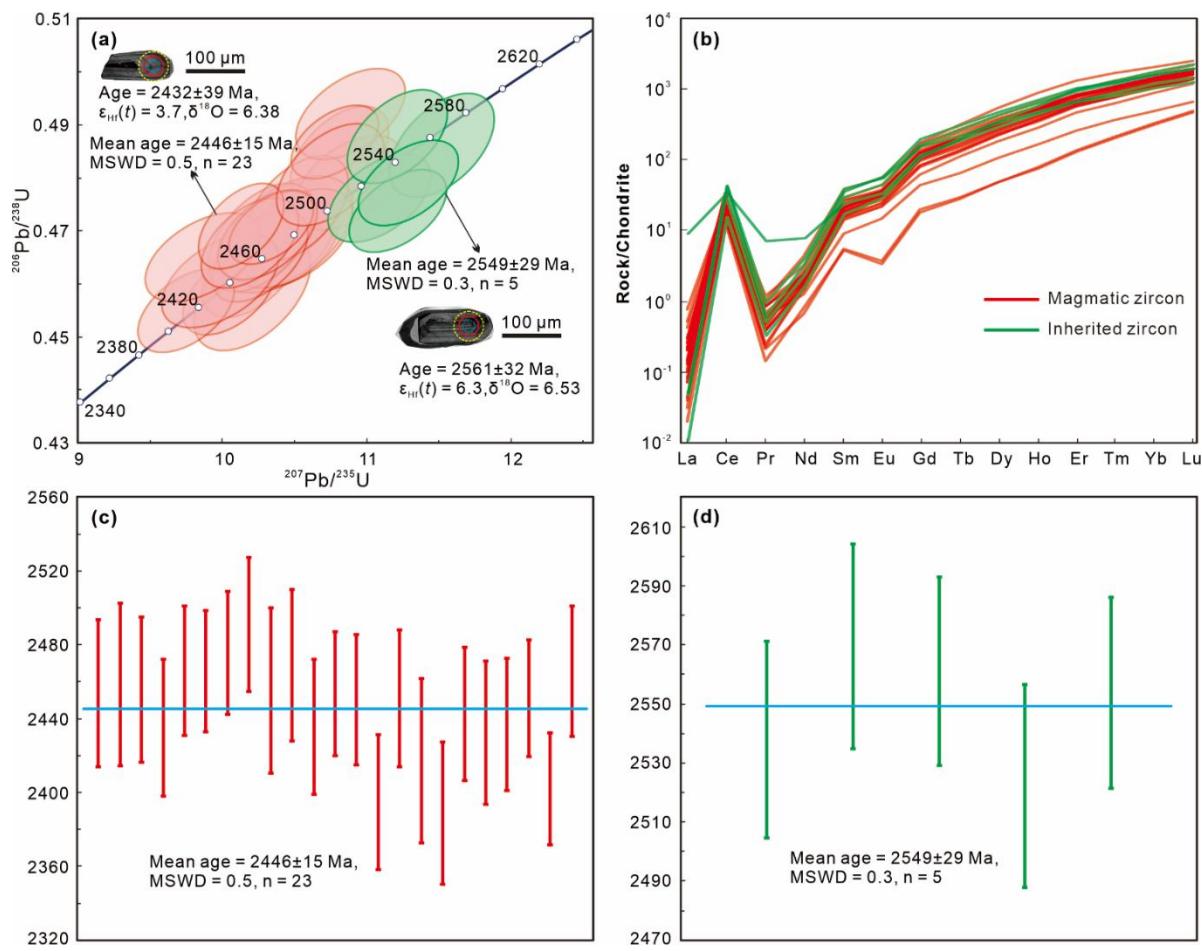
124 Whole-rock major and trace elemental analyses were conducted at FocuMS Technology Co., Ltd., Nanjing, China. Major
125 elements were analyzed using an Agilent 5110 inductively coupled plasma-optical emission spectroscopy (ICP-OES; Penang,
126 Malaysia), while trace elements were analyzed using an Agilent 7700x quadrupole ICP-MS (Tokyo, Japan). The analytical
127 accuracy is generally < 5 % for major elements and < 10 % for most trace elements.

128 3.3 Zircon Lu-Hf isotopic analyses

129 *In-situ* zircon Lu-Hf isotope analysis was conducted using a *Nu Plasma II* multiple collector (MC) ICP-MS equipped
130 with a RESOlution-LR 193 nm ArF excimer laser at FocuMS Technology Co., Ltd., Nanjing, China. Analyses were performed
131 with a laser beam diameter of 50 μm , a repetition rate of 9 Hz, and an ablation time of 40 s. Three of six standard zircons
132 (TANZ, 91500, GJ-1, Plešovice, Mud Tank, and Penglai) were analyzed after every fifteen samples to monitor the instrument's
133 reliability and stability. The measured $^{176}\text{Hf}/^{177}\text{Hf}$ ratios of TANZ (0.281819 ± 0.000003), 91500 (0.282308 ± 0.000003), GJ-
134 1 (0.282004 ± 0.000007), Plešovice (0.282489 ± 0.000004), Mud Tank (0.282510 ± 0.000007), and Penglai ($0.282906 \pm$
135 0.000006) were consistent with the recommended values within the error range (TANZ = 0.281821 ± 0.000042 , Hu et al.,
136 2021, 91500 = 0.282309 ± 0.000004 , Yuan et al., 2008; GJ-1 = 0.282013 ± 0.000009 , Yuan et al., 2008; Plešovice = 0.282482
137 ± 0.000013 , Sláma et al., 2008; Mud Tank = 0.282513 ± 0.000006 , Yuan et al., 2008; Penglai = 0.282906 ± 0.000010 , Li et al.,
138 2010). Zircon $\varepsilon_{\text{Hf}}(t)$ values were calculated based on present-day chondritic ratios ($^{176}\text{Hf}/^{177}\text{Hf} = 0.282785$, $^{176}\text{Lu}/^{177}\text{Hf} = 0.0336$;
139 Bouvier et al., 2008) and ^{176}Lu decay constant ($\lambda^{176}\text{Lu} = 1.867 \times 10^{-11}$; Söderlund et al., 2004). For calculating two-stage Hf
140 model ages (T_{DM2}), a $^{176}\text{Lu}/^{177}\text{Hf}$ ratio for average continental crust is 0.015 (Griffin et al., 2002), with respect to depleted
141 mantle with a present-day $^{176}\text{Hf}/^{177}\text{Hf}$ ratio of 0.28325 and a $^{176}\text{Lu}/^{177}\text{Hf}$ ratio of 0.0384 (Griffin et al., 2000).

142 3.4 Zircon O isotopic analyses

143 *In situ* zircon oxygen isotopes were analyzed using the CAMECA IMS-1300HR3 ion microprobe in the multi-collection
144 mode at the State Key Laboratory of Critical Earth Material Cycling and Mineral Deposits, Nanjing University. The $^{133}\text{Cs}^+$
145 primary ion beam was accelerated at 12kV, with an intensity of ~ 2.6 nA and an analytical spot of 20 μm . Oxygen isotopes
146 were measured in multi-collector mode using two off-axis Faraday cups. The measured oxygen isotopic data was normalized
147 to Vienna Standard Mean Ocean Water compositions (VSMOW, $^{18}\text{O}/^{16}\text{O} = 0.0020052$; Rehman et al., 2018) and corrected for
148 instrumental mass fractionation (IMF) using the Penglai zircon standard ($\delta^{18}\text{O}_{\text{VSMOW}} = 5.31 \pm 0.1$ ‰, Li et al., 2010). The Qinghu

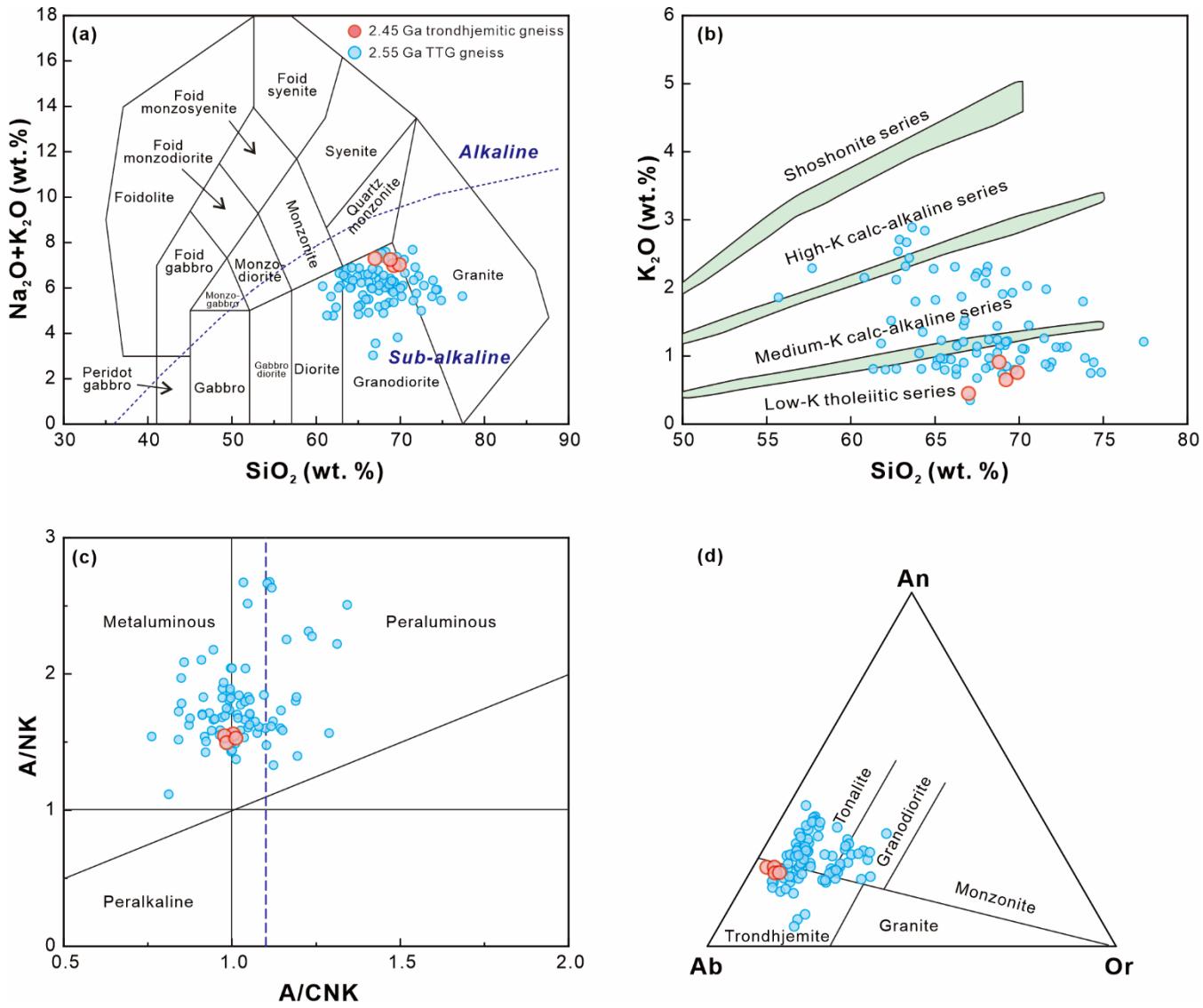


149 zircon was used as a secondary zircon standard, and two measurements yielded a weighted mean value of $5.47 \pm 0.04 \text{‰}$ ($n = 2$), consistent with the recommended value of $5.4 \pm 0.2 \text{‰}$ (Li et al., 2013).

151 **4 Analytical results**

152 **4.1 Zircon U-Pb ages**

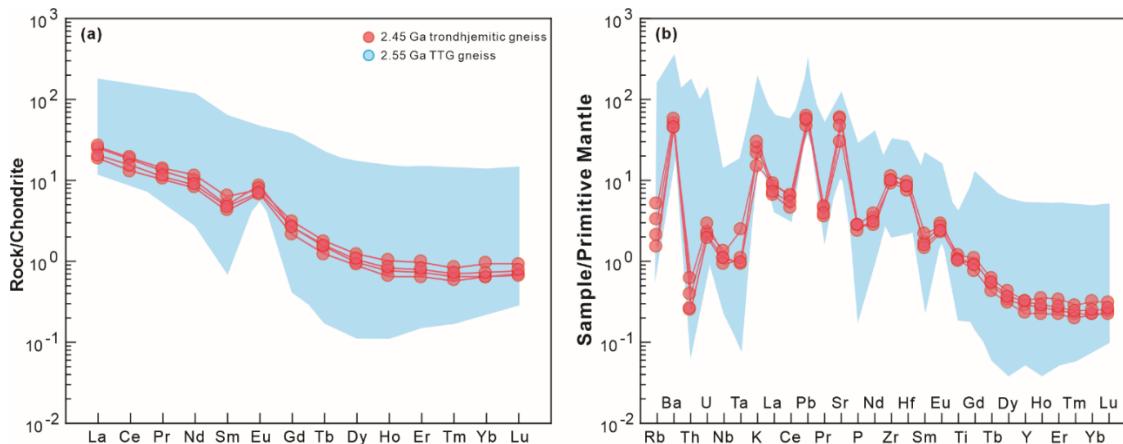
153 Zircon grains from sample 22ZH23-1 are subhedral to euhedral, with a length of 100 to 300 μm and aspect ratios of 1:1
 154 to 3:1 (Fig. 4a). Most of the zircon grains show clear oscillatory zoning in cathodoluminescence (CL) images and possess high
 155 Th/U ratios, along with their steep chondrite-normalized REE patterns, indicating a magmatic origin (Fig. 4b). In addition,
 156 some zircon grains are featured by core-rim textures, with oscillatory magmatic cores and bright structureless metamorphic
 157 rims. Nonetheless, the rims are too narrow to be analyzed.


158
 159 **Figure 4: Zircon U-Pb concordia diagram and representative zircon cathodoluminescence images (a), chondrite-normalized zircon
 160 REE patterns (b), weighted mean age of the magmatic zircons (c), and weighted mean age of the inherited zircons (d) of the
 161 trondhjemite geniss.**

162 A total of 30 analyses were conducted on zircon cores of sample 22ZH23-1, and two analyses were excluded from
163 calculation due to their high discordance ($> 5\%$). Detailed LA-ICP-MS zircon U-Pb dating results and rare earth element
164 (REE) concentrations are presented in [Supplementary Tables S2 and S3](#), respectively. The remaining 28 analyses yield
165 apparent $^{207}\text{Pb}/^{206}\text{Pb}$ ages ranging from 2569 to 2389 Ma and contain two age populations ([Fig. 4a](#)). (1) 23 analyses define a
166 $^{207}\text{Pb}/^{206}\text{Pb}$ weighted mean age of 2446 ± 15 Ma (mean square of weighted deviates, MSWD = 0.5), which is interpreted as the
167 crystallization age of the protolith of this sample ([Fig. 4c](#)). (2) 5 analyses give an older $^{207}\text{Pb}/^{206}\text{Pb}$ weighted mean age of 2549 ± 29 Ma (MSWD = 0.3), which may represent the crystallization age of inherited zircons ([Fig. 4d](#)). These zircon grains were
168 either reintroduced into late-phased magmatic sources or entrained during magma transport.
169

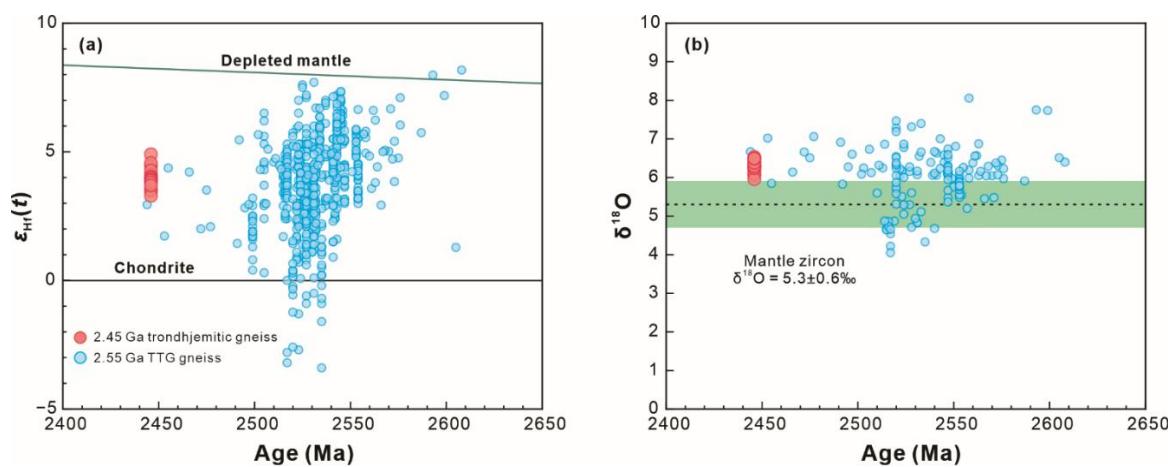
170 **4.2 Whole-rock major and trace element compositions**

171 Four samples were selected for whole-rock major and trace element composition analyses, and the results are shown in
172 [Supplementary Table S4](#). All samples have high concentrations of SiO_2 (66.99–69.89 wt.%) and Al_2O_3 (16.64–18.30 wt.%).
173 They are enriched in Na_2O (6.27–6.84 wt.%) but depleted in K_2O (0.45–0.91 wt.%) contents, leading to high $\text{Na}_2\text{O}/\text{K}_2\text{O}$ ratios
174 of 6.96–15.21. These samples show low concentrations of Fe_2O_3^T (1.53–1.76 wt.%) and MgO (0.44–0.58 wt.%), with $\text{Mg}^{\#}$
175 values of 36–42. All samples plot within the granodiorite field in the total alkali-silica (TAS) diagram ([Fig. 5a](#)) and belong to
176 the low-K tholeiitic series in the K_2O vs. SiO_2 diagram ([Fig. 5b](#)). They yield A/CNK [molar ratio of $\text{Al}_2\text{O}_3/(\text{CaO} + \text{Na}_2\text{O} + \text{K}_2\text{O})$]
177 ratios of 0.98–1.01, indicating metaluminous to weakly peraluminous characteristics ([Fig. 5c](#)). Further classification on the
178 anorthite-albite-orthoclase (An-Ab-Or) diagram reveals that they belong to trondhjemite ([Fig. 5d](#)).


179

180 **Figure 5: Geochemical classification of the trondhjemitic gneiss samples.** (a) Total alkali vs silica (TAS) diagram (after Middlemost, 181 1994); (b) K₂O vs. SiO₂ diagram (after Peccerillo and Taylor, 1976); (c) A/NK [Al₂O₃ / (Na₂O + K₂O)] vs. A/CNK [Al₂O₃ / (CaO + 182 Na₂O + K₂O)] (after Maniar and Piccoli, 1989). (d) Feldspar An-Ab-Or classification diagram (after Barker, 1979). The data of the 183 2.55 Ga TTG gneiss are from Yang et al., 2008; Nutman et al., 2011; Bai et al., 2014, 2016; Fu et al., 2016; Li et al., 2019; Jing et al., 184 2025; Zhao et al., 2025a.

185 These samples contain total rare earth element (REE) contents ranging from 19.3 to 27.5 ppm. They are characterized by 186 enrichments in light rare earth elements (LREEs) but depletions of heavy rare earth elements (HREEs), with (La/Yb)_N ratios 187 of 28.3–38.9 (Fig. 6a). In addition, they exhibit significantly positive Eu anomalies ($\delta\text{Eu} = 1.73\text{--}2.34$) and slight Ce anomalies 188 ($\delta\text{Ce} = 0.93\text{--}1.01$) (Fig. 6a). All samples have high concentrations of Sr (637–1248), coupled with low Y (1.06–1.48 ppm) and 189 Yb (0.11–0.16 ppm) contents, as well as high Sr/Y (437–939 ppm) ratios, showing similar geochemical affinity to adakite

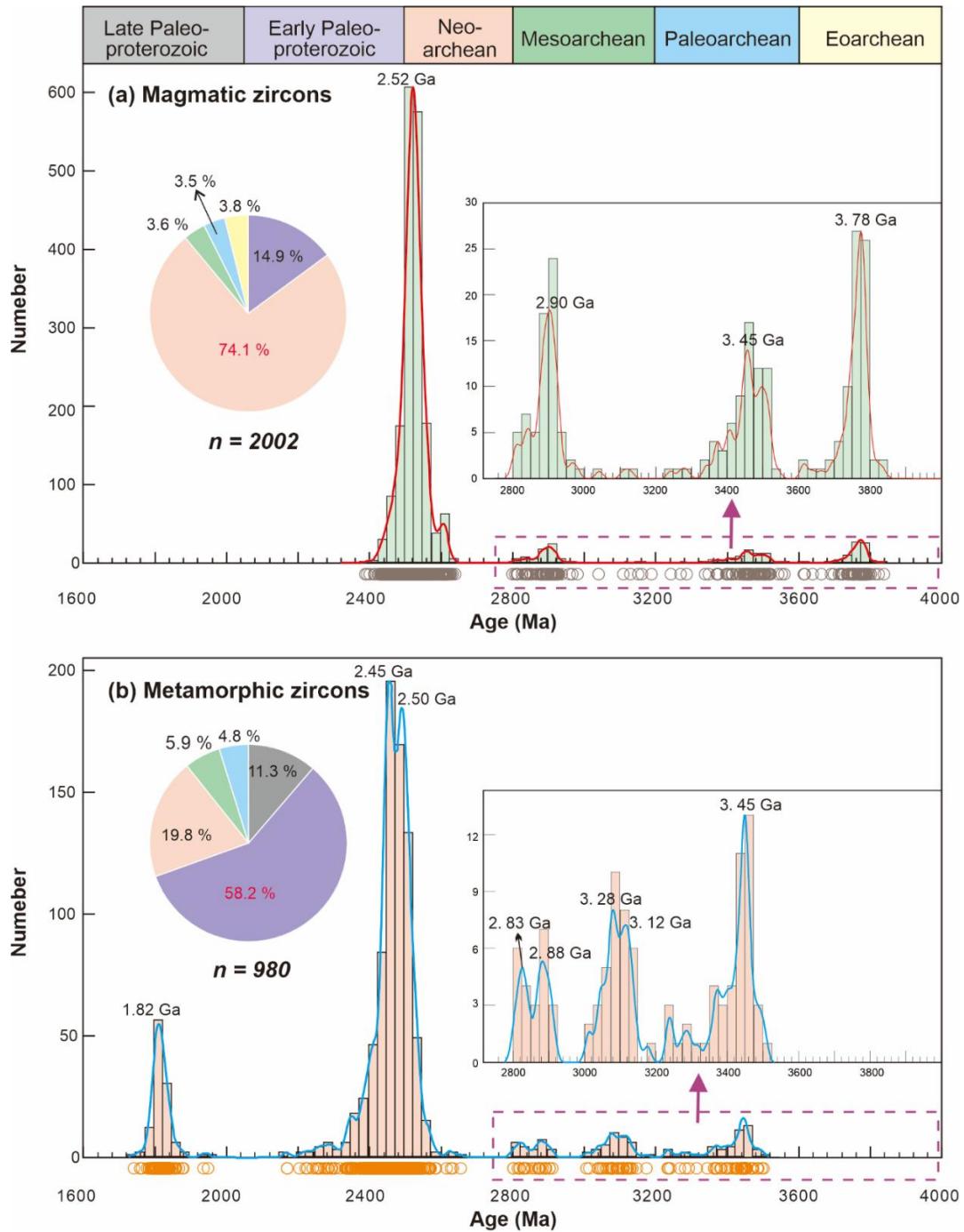

190 (Drummond and Defant, 1990). In the primitive mantle-normalized trace element pattern diagram, these samples are relatively
 191 enriched in large-ion lithophile elements (LILEs; e.g., Rb and Ba), but are relatively depleted in high field strength elements
 192 (HFSEs; e.g., Nb, Ta, and Ti) (Fig. 6b).

193
 194 **Figure 6: Chondrite-normalized REE patterns and primitive mantle-normalized trace elements spider diagrams for the**
 195 **trondhjemite gneiss samples (normalization values are from Sun and McDonough, 1989).**

196 4.1 Zircon Hf-O isotopes

197 *In situ* zircon Hf-O isotope analyses results of sample 22ZH23-1 are presented in Supplementary Table S5. A total of 15
 198 Lu-Hf isotope analyses show $^{176}\text{Hf}/^{177}\text{Hf}$ and $^{176}\text{Lu}/^{177}\text{Hf}$ ratios of 0.281338–0.281379 and 0.000444–0.001004, respectively.
 199 They have concentrated $\varepsilon_{\text{Hf}}(t)$ values of +3.3 to +4.9, with corresponding T_{DM2} ages varying from 2671 to 2769 Ma (Fig. 7a).
 200 Fifteen O isotopic analyses from this sample yield $\delta^{18}\text{O}$ values of 5.96–6.53 ‰, which are higher than the range of mantle
 201 zircon ($5.3\pm0.6\text{‰}$, 2σ ; Valley, 2003) (Fig. 7b).

202
 203 **Figure 7: (a) Zircon $\varepsilon_{\text{Hf}}(t)$ vs. U-Pb age and (b) zircon $\delta^{18}\text{O}$ vs. U-Pb age diagrams of the trondhjemite gneiss samples. The data of**
 204 **the 2.55 Ga TTG gneiss are from Yang et al., 2008; Bai et al., 2014, 2016, 2019; Fu et al., 2016, 2019; Jing et al., 2025; Zhao et al.,**
 205 **2025a.**


206 5 Discussion

207 5.1 Precambrian geochronological framework of Eastern Hebei

208 The geochronological framework in the region can be established by zircon U-Pb geochronological data from magmatic
209 and metamorphic events. In this study, zircon U-Pb ages from the Qiuahuayu trondhjemite gneiss yields two age populations
210 with weighted mean ages of 2549 ± 29 Ma and 2446 ± 15 Ma, respectively. The older age is regarded as the crystallization
211 age of inherited zircons, while the younger age represents the crystallization age of the protolith of this sample. This ca. 2.45
212 Ga trondhjemite gneiss represents the first identification of early Paleoproterozoic (~2.45 Ga) magmatism in Eastern Hebei.
213 In addition, a large number of late Neoarchean rocks (Geng et al., 2006; Yang et al., 2008; Zhang et al., 2012; Guo et al., 2013,
214 2014; 2015, 2017; Bai et al., 2014, 2016; Fu et al., 2016; Yao et al., 2017; Li et al., 2019; Wang et al., 2019 a, b, c; Duan et
215 al., 2022) and sporadic Eoarchean to Mesoarchean rocks (Nutman et al., 2011; Sun et al., 2016; Liou et al., 2019; Wan et al.,
216 2021, 2023; Dong et al., 2024, 2025; Zhao et al., 2025b) have also been reported in Eastern Hebei. We summarize the published
217 zircon U-Pb age data from the magmatic rocks in Eastern Hebei. Ages with a concordance of < 95 % are excluded, and the
218 remaining 2002 magmatic and 980 metamorphic zircon ages are used to establish the Precambrian geochronological
219 framework of Eastern Hebei (Supplementary Table S1; Yang et al., 2008; Li et al., 2010, 2019; Nutman et al., 2011; Lv et al.,
220 2012; Zhang et al., 2012; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Duan et al.,
221 2015, 2022; Fu et al., 2016, 2017, 2019, 2021; Sun et al., 2016; Liou et al., 2019; Liou and Guo, 2019a; Lu et al., 2020; Wang
222 et al., 2019 a, b, c; Wu et al., 2022; Dong et al., 2024, 2025; Zhao et al., 2025a, b). In combination with our new and collected
223 age data, we identify four episodes of magmatic activities in Eastern Hebei: the Eoarchean (3.84–3.64 Ga), Paleoarchean
224 (3.53–3.22 Ga), Mesoarchean (3.12–2.80 Ga), and late Neoarchean to early Paleoproterozoic (2.61–2.45 Ga) (Fig. 8a).

225 The Eoarchean (3.84–3.64 Ga) rocks in Eastern Hebei are primarily exposed in the Labashan area. The ~3.8 Ga
226 granodioritic rock was first reported by Wan et al. (2021). Recently, the 3.84–3.75 Ga trondhjemite gneiss, 3.79–3.77 Ga
227 granodioritic gneiss, ~3.78 Ga quartz monzonite gneiss, and 3.79–3.64 Ga potassic granite gneiss have also been identified in
228 the area (Dong et al., 2024). These rocks are in tectonic contact with the 3.4–3.1 Ga supracrustal rocks of the Labashan
229 Sequence, and both types of rock are hosted as enclaves in the 2.5 Ga potassic granite (Dong et al., 2024).

230 The Paleoarchean (3.53–3.22 Ga) rocks are mainly distributed in the Labashan, Longwan, and Huangbaiyu areas. The
231 ~3.53 Ga trondhjemite gneiss was discovered in the same location as the 3.8–3.6 Ga granitoid gneiss in the Labashan area
232 (Zhao et al., 2025). The 3.51–3.38 Ga tonalitic, trondhjemite, monzogranitic, and syenogranitic gneiss, with some meta-gabbro
233 have also been reported in the Labashan area (Dong et al., 2025). The 3.45 Ga ultramafic-mafic suite was reported in the
234 Longwan area and regarded as remnants of an enriched mantle plume (Wang et al., 2019a). The amphibolite and
235 clinopyroxene-bearing hornblendite in the Huangbaiyu area yield Sm-Nd isochron ages of ~3.5 Ga (Huang et al., 1986; Jahn
236 et al., 1987; Cui et al., 2018). However, these ages were challenged because some amphibolites occur as dykes intruding the
237 ca. 2950 Ma rock (Nutman et al., 2011). In addition, the tonalitic gneiss with ages of 3.23–3.22 Ga have been identified in the
238 Huangbaiyu area (Nutman et al., 2011).

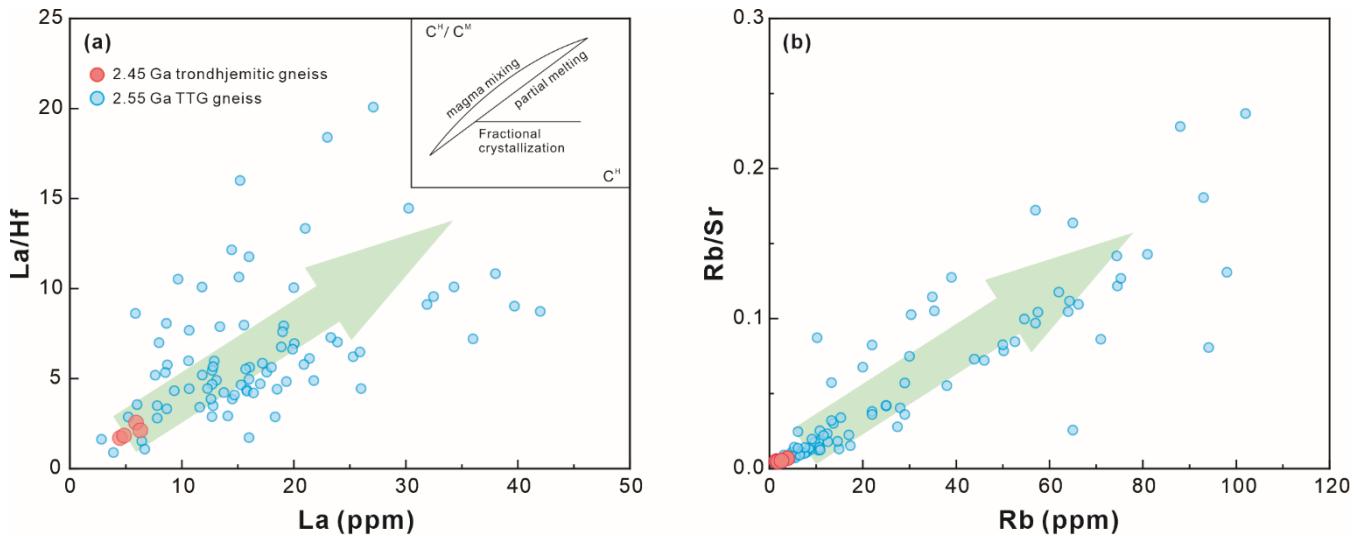
239

240 **Figure 8: Histogram and kernel density estimation (KDE, Vermeesch, 2012) plots of the magmatic and metamorphic zircon ages**
 241 **from the Archean magmatic rocks in Eastern Hebei (Data from Yang et al., 2008; Li et al., 2010, 2019; Lv et al., 2012; Zhang et al.,**
 242 **2012; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Duan et al., 2015, 2022; Fu et al., 2016,**
 243 **2017, 2019, 2021; Liou et al., 2019; Liou and Guo, 2019a; Lu et al., 2020; Wang et al., 2019 a, b, c; Wu et al., 2022; Dong et al., 2024,**
 244 **2025; Zhao et al., 2025a, b).**

245 The Mesoarchean (3.12–2.80 Ga) rocks are exposed in the Huangbaiyu, Labashan, and Caochang areas. [Sun et al. \(2016\)](#)
246 reported ca. 3.1 Ga gneissic monzogranite and 3.0 Ga biotite plagioclase gneiss in the north of the Huangbaiyu area. Recent
247 studies have revealed 3.12–2.96 Ga trondhjemite gneiss, syenogranitic gneiss, and meta-gabbro in the Labashan area ([Dong](#)
248 [et al., 2025](#)). The 2.90–2.80 Ga trondhjemite, tonalitic, and dioritic gneiss have also been recognized in the Caochang area
249 ([Fu et al., 2019](#); [Liou et al., 2019](#)).

250 The late Neoarchean (2.61–2.49 Ga) rocks are widely distributed in Eastern Hebei and constitute the major part of the
251 Precambrian basement in this area. It is composed mainly of TTG gneiss, dioritic gneiss, charnockite, potassic granite, and
252 supracrustal rocks ([Yang et al., 2008](#); [Nutman et al., 2011](#); [Bai et al., 2014, 2015, 2019](#); [Duan et al., 2017, 2022](#); [Fu et al.,](#)
253 [2016, 2017](#); [Li et al., 2024](#)). These rocks show similar protolith magmatic ages of 2.61–2.49 Ga with a peak at ~2.52 Ga ([Fig.](#)
254 [8a](#), [Geng et al., 2006](#); [Yang et al., 2008](#); [Zhang et al., 2012](#); [Guo et al., 2013, 2015, 2017](#); [Bai et al., 2014, 2016, 2019](#); [Fu et](#)
255 [al., 2016](#); [Yao et al., 2017](#); [Li et al., 2019, 2024](#); [Wang et al., 2019b, c](#); [Duan et al., 2022](#)). The ~2.45 Ga trondhjemite gneiss
256 discovered in this study provides the first evidence for the early Paleoproterozoic magmatic activity in Eastern Hebei,
257 suggesting that the late Neoarchean magmatism persisted into the early Paleoproterozoic (~2.45 Ga). It is noteworthy that the
258 basement of Eastern Hebei experienced intensive metamorphism, as evidenced by a large number of metamorphic zircons
259 from the Archean rocks in Eastern Hebei ([Yang et al., 2008](#); [Lv et al., 2012](#); [Zhang et al., 2012](#); [Guo et al., 2013, 2014, 2015,](#)
260 [2017](#); [Bai et al., 2014, 2015, 2016, 2019](#); [Duan et al., 2015, 2019](#); [Fu et al., 2016, 2017, 2021](#); [Li et al., 2019, 2024](#); [Wang et](#)
261 [al., 2019b, c](#); [Lu et al., 2020](#)). Based on a compilation of metamorphic zircon ages, five episodes of metamorphism are
262 recognized, including the Paleoarchean (3.50–3.20 Ga), Mesoarchean (3.18–2.80 Ga), late Neoarchean (peak at ~2.50 Ga),
263 early Paleoproterozoic (peak at ~2.45 Ga), and late Paleoproterozoic (~1.82 Ga) ([Fig. 8b](#)). The Paleoarchean and Mesoarchean
264 metamorphism was primarily reported in the Labashan and Huangbaiyu areas ([Wan et al., 2021](#); [Dong et al., 2024, 2025](#); [Zhao](#)
265 [et al., 2025b](#)). The late Neoarchean metamorphism is widespread and represents a major metamorphic event in Eastern Hebei
266 ([Guo et al., 2013, 2014, 2015, 2017](#); [Bai et al., 2014, 2015, 2016, 2019](#); [Duan et al., 2015, 2019](#); [Fu et al., 2016, 2017, 2021](#);
267 [Yang et al., 2017a, b](#); [Lu et al., 2020](#)). The coexistence of ~2.45 Ga magmatism and peak metamorphism indicates the
268 development of an early Paleoproterozoic tectonothermal event in Eastern Hebei ([Bai et al., 2014, 2015, 2016, 2019](#); [Wang et](#)
269 [al., 2019b, c](#); [Lu et al., 2020](#)). Additionally, the late Paleoproterozoic (~1.81 Ga) metamorphism is locally recognized in the
270 Saheqiao linear structural belt of Eastern Hebei and dominated by high-pressure granulite-facies metamorphism ([Duan et al.,](#)
271 [2015, 2019](#); [Yang et al., 2017a, b](#)).

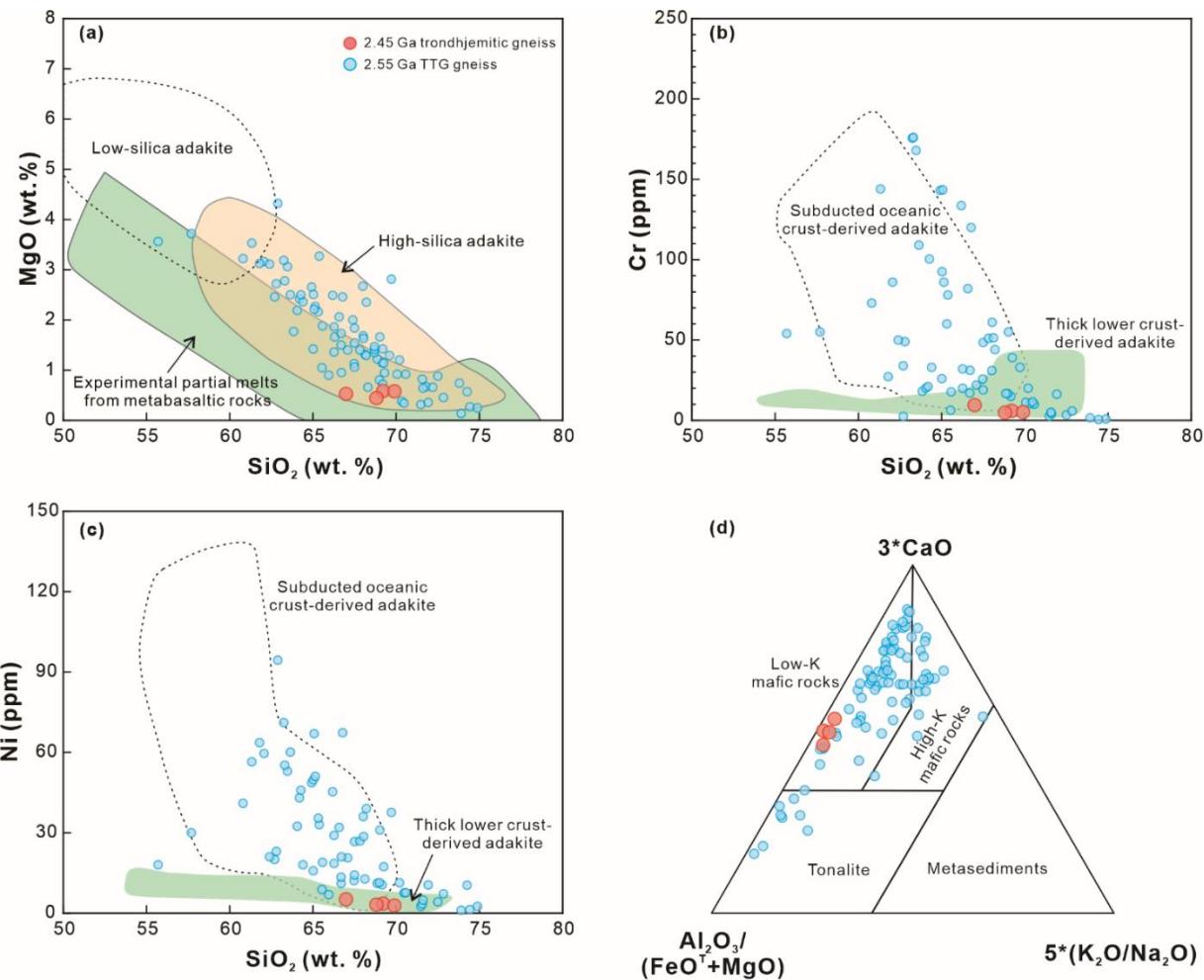
272 In summary, four episodes of magmatic activities (3.84–3.64 Ga, 3.53–3.22 Ga, 3.12–2.80 Ga, and 2.61–2.45 Ga) and
273 five episodes of metamorphism (3.50–3.23 Ga, 3.18–2.80 Ga, ~2.50 Ga, ~2.45 Ga, ~1.82 Ga) are identified in Eastern Hebei.


274 5.2 Petrogenesis of ~2.45 Ga trondhjemite gneiss

275 For the TTG gneiss, it is essential to evaluate the impact of alteration and metamorphism on whole-rock geochemical
276 composition. All samples show low loss on ignition (LOI = 0.40–0.73 wt.%) and negligible Ce anomalies ($\delta\text{Ce} = 0.93\text{--}1.01$),

277 suggesting that their geochemical characteristics were not significantly changed by late metamorphism (Polat and Hofmann,
 278 2003). Therefore, these geochemical data can be effectively used for petrogenetic interpretation.

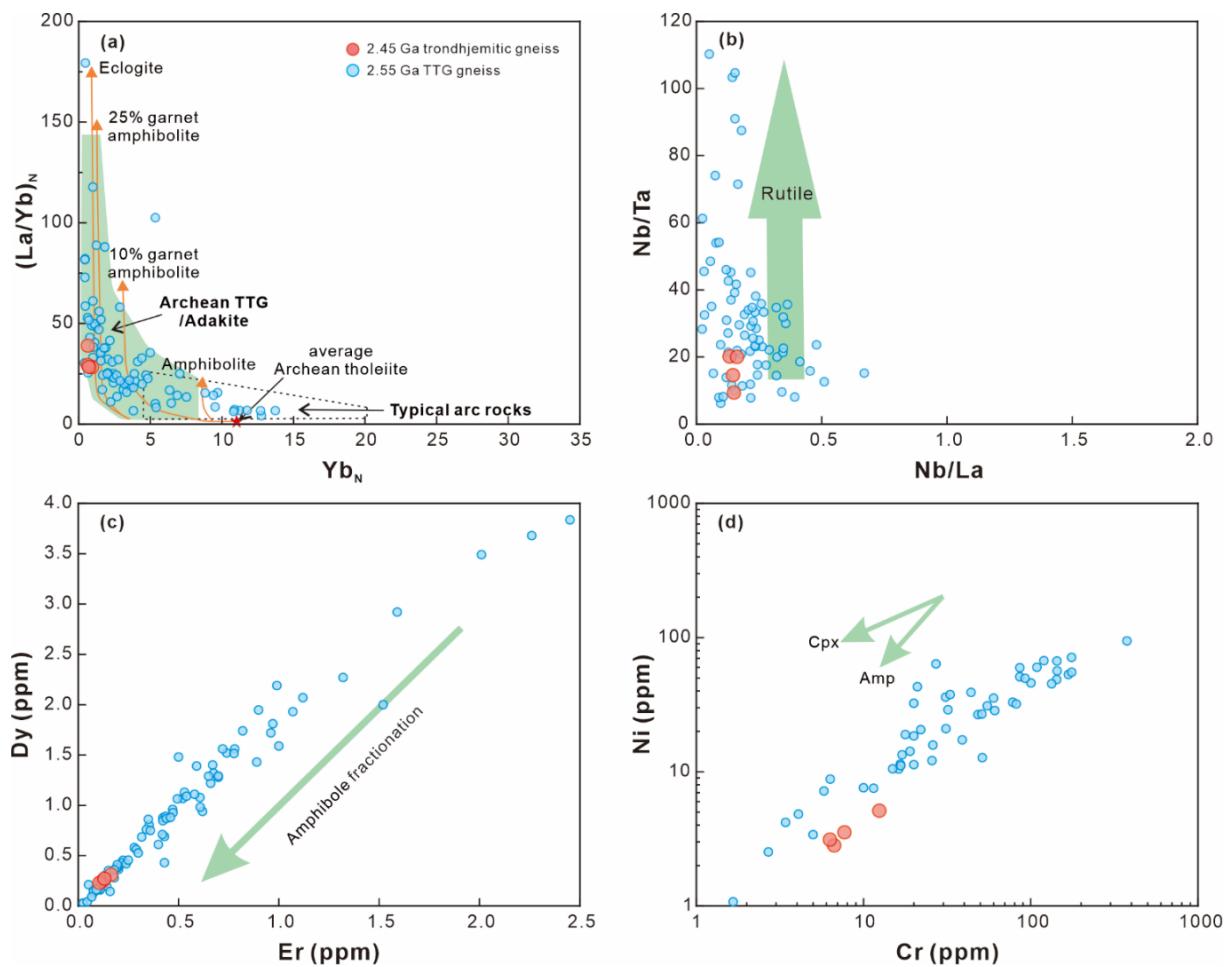
279 Previous studies proposed that TTG rocks were derived from partial melting of hydrous basaltic rocks (Rapp and Watson,
 280 1995; Rapp et al., 1999; Moyen, 2011; Moyen and Martin, 2012; Palin et al., 2016). However, some recent studies have
 281 emphasized the important role of amphibole and plagioclase fractional crystallization in the formation of TTG rocks (Liou and
 282 Guo, 2019b, 2022; Laurent et al., 2020). The highly and moderately incompatible elements exhibit different behaviors during
 283 partial melting and fractional crystallization processes, which can be used to distinguish these two processes (Schiano et al.,
 284 2010). In the La/Hf vs. La and Rb/Sr vs. Rb diagrams, the studied samples are distributed along the partial melting trends
 285 (Schiano et al., 2010, Fig. 9). Considering with the lack of coeval mafic rocks and cumulates in Eastern Hebei, we propose
 286 that the formation of the 2.45 Ga trondhjemite gneiss was primarily controlled by the partial melting process (Martin et al.,
 287 2005; Macpherson et al., 2006).



288
 289 **Figure 9: (a) La/Hf vs. La and (b) Rb/Sr vs. Rb diagrams. The inset is a schematic C^H/C^M vs. C^H plot, with superscripts H and M
 290 representing highly and moderately incompatible elements, respectively (after Schiano et al., 2010).**

291 In this study, all samples show high Sr (637–1248 ppm) contents and Sr/Y (437–939 ppm) ratios, with low Y (1.06–1.48
 292 ppm) and Yb (0.11–0.16 ppm) contents, akin to adakite (Drummond and Defant, 1990). They have high SiO₂ content (66.99–
 293 69.89 wt.%), low MgO (0.44–0.58 wt.%) and Fe₂O₃^T (1.53–1.76 wt.%) contents, and Mg[#] values (36–42), consistent with
 294 experimental partial melts from metabasaltic rocks, and belong to high-silica adakite (Fig. 10a, Rapp et al., 1999). In addition,
 295 these samples exhibit very low concentrations of Ni (2.82–5.13 ppm) and Cr (4.80–9.49 ppm), indicating that they originated
 296 from partial melting of a thickened lower crust (Fig. 10b, c; Rapp and Watson, 1995; Chung et al., 2003). In the
 297 Al₂O₃/(FeO^T+MgO)-(3CaO)-(5K₂O/Na₂O) ternary diagram, all samples plot within the field of melts derived from low-K
 298 mafic rocks, implying the primary source of low-K mafic crust (Fig. 10d, Laurent et al., 2014). The trondhjemite gneiss
 299 samples show positive zircon $\varepsilon_{\text{Hf}}(t)$ values (+3.3 to +4.9), further indicating a juvenile crust, which is also supported by their

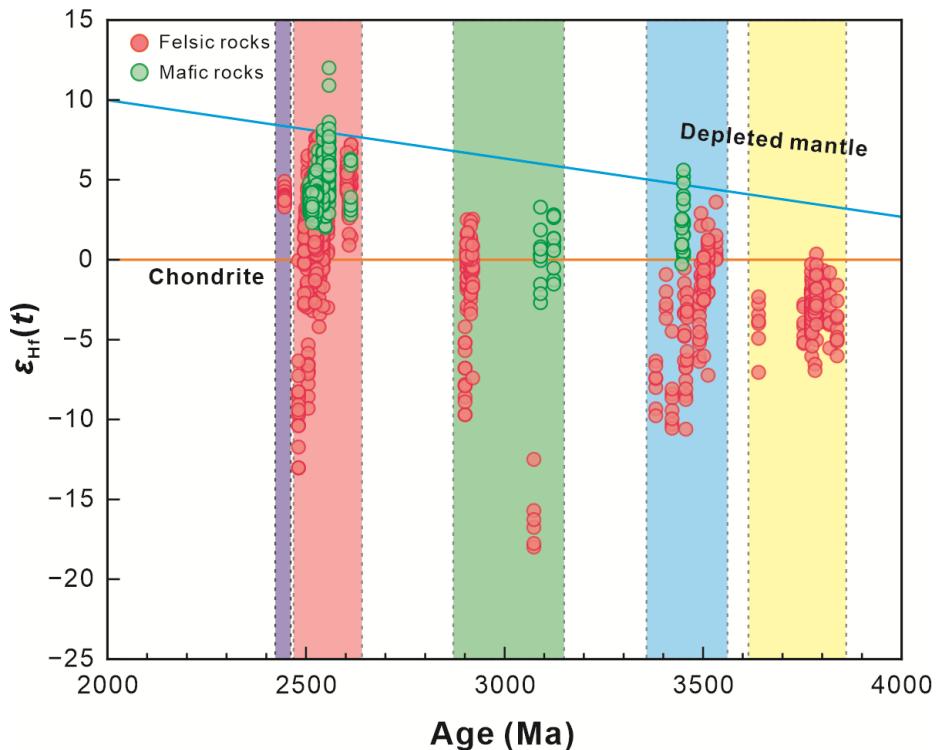
300 higher zircon $\delta^{18}\text{O}$ values of 5.96–6.53 ‰ than mantle zircon ($\delta^{18}\text{O}_{\text{Mantle}} = 5.3 \pm 0.6 \text{ ‰}$, Valley, 2003). Notably, a large number
 301 of the late Neoarchean (~2.55 Ga) TTG gneiss have been also reported in Eastern Hebei. Some of these rocks show comparable
 302 whole-rock geochemical and zircon Hf-O isotopic characteristics to the ~2.45 Ga TTG gneiss, characterized by high SiO_2 ,
 303 Al_2O_3 , and Sr contents, low MgO , Y , Yb , Cr , and Ni contents, with positive zircon $\varepsilon_{\text{Hf}}(t)$ values and higher zircon $\delta^{18}\text{O}$ values
 304 than mantle zircon, supporting a magma source of the juvenile, low-K thickened lower crust (Figs. 5–7, 9–10: Rapp and
 305 Watson, 1995; Rapp et al., 1999; Chung et al., 2003, Laurent et al., 2014).



306
 307 **Figure 10:** (a-c) Diagrams of MgO , Cr , and Ni versus SiO_2 (after Rapp and Watson, 1995; Rapp et al., 1999; Chung et al., 2003); (d)
 308 $\text{Al}_2\text{O}_3/(\text{FeO}^{\text{T}}+\text{MgO})-3^*\text{CaO}-5^*(\text{K}_2\text{O}/\text{Na}_2\text{O})$ ternary diagram (after Laurent et al., 2014).

309 The 2.45 Ga trondhjemite gneiss samples in this study are characterized by high Sr content, low Y , Yb , Nb , and Ta
 310 contents, as well as high Sr/Y , Nb/Ta , and $(\text{La}/\text{Yb})_{\text{N}}$ ratios, implying that they formed under the high-pressure conditions, with
 311 garnet and rutile as the predominant residual phases (Fig. 11a, Martin et al., 1986; Defant and Drummond, 1990, Moyen, 2011;
 312 Qian and Hermann, 2013). Previous studies have revealed that garnet is compatible with HREEs (e.g., Yb) and Y (Rollinson,

313 1993; Taylor et al., 2015). Thus, the low Y and Yb contents, as well as high $(\text{La/Yb})_N$ ratios of the studied samples, suggesting
 314 that garnet is the main residual mineral in the magma source. In addition, these samples show low concentrations of Ti, Nb,
 315 and Ta, coupled with their high Nb/Ta and low Nb/La ratios (Fig. 11b), indicating that the rutile was also residual, because
 316 rutile can control the contents of Ti, Nb, and Ta in the melt and increase the Nb/Ta ratios (Schmidt et al., 2004; Klemme et al.,
 317 2005; Xiong et al., 2006; John et al., 2011). Based on the high compatibility of Sr and Eu in plagioclase (Bédard, 2006), the
 318 high Sr content and significantly positive Eu anomalies of the 2.45 Ga trondhjemite gneiss samples contradict residual
 319 plagioclase. Notably, our samples show extremely high Sr/Y values (637–1248), combined with their flat patterns of MREEs
 320 and HREEs, low $(\text{Gd/Yb})_N$ values, and positive Eu anomalies (Fig. 6a), supporting that they have undergone amphibole
 321 fractional crystallization during the magma evolution (Tiepolo et al., 2007). The fractional crystallization of amphibole can
 322 also be revealed by the positive linear correlations in the Dy vs. Er (Fig. 11c, Drummond et al., 1996) and Ni vs. Cr diagrams
 323 (Fig. 11d, Rollinson, 1993).


324
 325 **Figure 11:** (a) $(\text{La/Yb})_N$ vs. Yb_N diagram (after Martin, 1986); (b) Nb/Ta vs. Nb/La diagram (after Schmidt et al., 2004); (c) Dy vs.
 326 Er diagram (after Drummond et al., 1996); (d) Ni vs. Cr diagram (after Rollinson, 1993).

327 In summary, the protolith of the 2.45 Ga trondhjemite gneiss in Eastern Hebei was probably derived from partial melting
328 of a juvenile, low-K thickened lower crust, with garnet and rutile as residues. They have undergone amphibole fractional
329 crystallization during magma evolution.

330 5.3 Eoarchean to early Paleoproterozoic crustal evolution in Eastern Hebei

331 The growth and reworking of continental crust have been a topic of continued interest in Earth sciences (Belousova et al.,
332 2010; Hawkesworth et al., 2010; Cawood et al., 2013; Spencer et al., 2017; Diwu et al., 2018, 2021, 2024). Continental crustal
333 growth refers to the transfer of mantle-derived melts to the crust, leading to an increase in the total volume of newly generated
334 (juvenile) crust (Belousova et al., 2010; Kemp and Hawkesworth, 2014; Dhuime et al., 2018; Diwu et al., 2024). In contrast,
335 crustal reworking involves the recycling of pre-existing crust by magmatism, metamorphism, and sedimentation within the
336 continental crust, with no change in the volume of the crust (Hawkesworth et al., 2010; Dhuime et al., 2018; Zhu et al., 2021).
337 To constrain the timing of growth and reworking of continental crust, we have compiled 2002 published magmatic zircon U-
338 Pb ages from Eastern Hebei, among which 1428 age data were coupled with Hf isotope data (Fig. 12, Yang et al., 2008; Li et
339 al., 2010, 2019; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Fu et al., 2016, 2017,
340 2019, 2021; Liou et al., 2019; Liou and Guo, 2019a; Wang et al., 2019 a; Dong et al., 2024, 2025; Zhao et al., 2025a, b).

341
342 **Figure 12: Magmatic zircon $\epsilon_{\text{Hf}}(t)$ vs. U-Pb age of the magmatic rocks in Eastern Hebei (Data from Yang et al., 2008; Li et al., 2010,
343 2019; Guo et al., 2013, 2014, 2015, 2017; Bai et al., 2014, 2015, 2016, 2019; Han et al., 2014; Fu et al., 2016, 2017, 2019, 2021; Liou et
344 al., 2019; Liou and Guo, 2019a; Wang et al., 2019 a; Dong et al., 2024, 2025; Zhao et al., 2025a, b). Bars in yellow, blue, green, red,
345 and purple represent 3.86–3.64 Ga, 3.53–3.22 Ga, 3.12–2.80 Ga, 2.61–2.49 Ga, and 2.45 Ga.**

346 Except for a single zircon with $\varepsilon_{\text{Hf}}(t)$ of 0.35, other 3.84–3.64 Ga magmatic zircons show negative $\varepsilon_{\text{Hf}}(t)$ values (-7.06 to
347 -0.29) and T_{DM2} ages of 4.4–4.0 Ga (mainly 4.2–4.1 Ga), indicating that the Eoarchean rocks originated from the anatexis of
348 older basaltic sources (Dong et al., 2024). However, no rocks older than 3.8 Ga were discovered in Eastern Hebei. In fact, the
349 rocks with zircon T_{DM2} ages >4.0 Ga have also been reported in the Jack Hills, Acasta Gneiss complex, Qinling Orogenic Belt,
350 Singhbhum Craton, and Kaapvaal Craton (Diwu et al., 2013; Kröner et al., 2014; Chaudhuri et al., 2018; Cavosie et al., 2019;
351 Reimink et al., 2019), and were explained by partial melting of global mafic ultramafic crust from a magma ocean in early
352 Earth (Kemp et al., 2010; Cawood et al., 2022; Wan et al., 2023). Thus, we propose that Eastern Hebei is dominated by Hadean
353 crustal reworking in the Eoarchean.

354 The Paleoarchean (3.53–3.22 Ga) rocks contain various rock types of potassic granite, TTG gneiss, meta-gabbro, and
355 meta-websterite. Nearly all potassic granites exhibit significantly negative zircon $\varepsilon_{\text{Hf}}(t)$ values of -10.55 to -0.18, with
356 corresponding T_{DM2} ages of 4.37–3.78 Ga, indicating that they were derived from partial melting of ancient crust (Hadean to
357 early Eoarchean). Magmatic zircons from the TTG gneiss have a wide range of $\varepsilon_{\text{Hf}}(t)$ values (-10.61 to 3.6, Dong et al., 2025;
358 Zhao et al., 2025b), with majority (~80 %) of them yielding negative $\varepsilon_{\text{Hf}}(t)$ values (-10.61 to -0.2) and T_{DM2} ages of 4.50–3.80
359 Ga, suggesting that they originated from recycling of Eoarchean TTG rocks and Hadean mafic crust. The remaining magmatic
360 zircons of the TTG gneiss show positive $\varepsilon_{\text{Hf}}(t)$ values of 3.6–0, implying a juvenile crust contribution. The 3.45 Ga meta-
361 gabbro, with zircon $\varepsilon_{\text{Hf}}(t)$ of -0.28 to 2.56, was considered as a product of depleted mantle influenced by ancient crustal
362 materials (Dong et al., 2025). The 3.45 Ga meta-websterite shows zircon $\varepsilon_{\text{Hf}}(t)$ of 5.6–0.2 and was regarded as remnants of an
363 enriched mantle plume (Wang et al., 2019a). The occurrence of these 3.45 Ga mantle-derived rocks indicates the generation
364 of juvenile crust. Collectively, we suggest that Eastern Hebei is primarily characterized by crustal reworking with a minor
365 contribution of crustal growth in the Paleoarchean.

366 The 3.07 Ga trondhjemite gneiss in the Labashan area shows obviously negative zircon $\varepsilon_{\text{Hf}}(t)$ values of -17.99 to -12.50,
367 with corresponding T_{DM2} ages of 4.55–4.21 Ga, suggesting that they originated from partial melting of Hadean mafic crust
368 (Dong et al., 2025). In addition, the coeval mantle-derived meta-gabbro (3.12–3.09 Ga) has been recently reported in the same
369 region, indicating the formation of juvenile crust (Dong et al., 2025). The ~2.9 Ga trondhjemite gneiss in the Caozhuang area
370 has negative zircon $\varepsilon_{\text{Hf}}(t)$ values (-9.7 to -4.2) and T_{DM2} ages of 3.89–3.61 Ga, indicating partial melting of the Eoarchean rocks
371 (Fu et al., 2019). The 2.9–2.80 Ga dioritic gneiss and felsic orthogneiss in the Caochang area are characterized by a wide range
372 of zircon $\varepsilon_{\text{Hf}}(t)$ values (-7.4 to 2.5), regarded as the result of mixing of mafic magma derived from a depleted mantle source
373 and felsic magma from ancient crustal materials (Liou et al., 2019; Liou and Guo, 2019a). Therefore, we propose that both
374 crustal growth and reworking occurred in the Mesoarchean (3.12–2.80 Ga) in Eastern Hebei. Notably, the proportion of the
375 positive zircon $\varepsilon_{\text{Hf}}(t)$ values increased from 21% in the Paleoarchean to 43% in the Mesoarchean, attributable to enhanced
376 crustal growth during this period (Fig. 12).

377 The late Neoarchean rocks (2.61–2.49 Ga) account for over 80 % of the Archean basement in Eastern Hebei (Yang et al.,
378 2008; Nutman et al., 2011; Bai et al., 2014, 2015, 2019; Duan et al., 2017, 2022; Fu et al., 2016, 2017; Yao et al., 2017; Li et
379 al., 2019, 2024; Wang et al., 2019b, c). Whether late Neoarchean magmatism represents significant crustal growth or reworking

380 has long been controversial. Some researchers proposed that the late Neoarchean may represent a period of the 2.8–2.7 Ga
381 crust reworking because the whole-rock Sm-Nd and zircon Lu-Hf model ages of the late Neoarchean magmatic zircons show
382 a prominent age cluster centered on 2.8–2.7 Ga (Wu et al., 2005; Geng et al., 2012; Wan et al., 2022, 2024). However, the
383 model age is a derivative parameter calculated based on several inherent assumptions (Hawkesworth et al., 2010; Fisher et al.,
384 2014; Vervoort and Kemp, 2016; Diwu et al., 2024). The parameter variations tend to inevitably affect the model ages and
385 propagate uncertainties more than 200–300 Ma (Kemp and Hawkesworth, 2014; Diwu et al., 2024). Thus, some scholars
386 argued that the model ages should be used with caution when interpreting the generation of new crust (Diwu et al., 2012, 2024;
387 Vervoort and Kemp, 2016). As shown in Fig. 12, the majority of the late Neoarchean magmatic rocks in Eastern Hebei have
388 positive zircon $\varepsilon_{\text{Hf}}(t)$ values. Some of them are close to those of the contemporaneous depleted mantle (Fig. 7a), with their Hf
389 model ages close to the corresponding U-Pb ages, supporting an origin from the juvenile crust. In addition, the late Neoarchean
390 greenstone belts are widespread in Eastern Hebei, characterized by metamorphosed volcanic-sedimentary sequences, with the
391 volume ratio of volcanics to sediments being ~3:1, and about 50 % of the volcanics are mafic (Shen et al., 1994; Guo et al.,
392 2013, 2014, 2015, 2017; Fu et al., 2021). The meta-mafic rocks have MORB- or arc-like geochemical affinities involving a
393 primary mantle source with minor continental crust contamination, indicating the growth of late Neoarchean juvenile crust in
394 Eastern Hebei (Guo et al., 2013, 2014, 2015, 2017). Therefore, the late Neoarchean represents a major period of crustal growth
395 in Eastern Hebei. Nevertheless, crustal reworking in the late Neoarchean cannot be completely ruled out, as part of the
396 magmatic rocks have negative $\varepsilon_{\text{Hf}}(t)$ values and older Hf model ages, implying the partial melting of pre-existing crust (Fig.
397 8a). In addition, the K-rich granitoid rocks have been reported in Eastern Hebei, and were resulted from partial melting of the
398 regionally widespread dioritic, granodioritic, monzonitic, and quartz monzonitic gneiss (Fu et al., 2017, 2019). Collectively,
399 we propose that the late Neoarchean (2.61–2.49 Ga) is a major period of crustal growth in Eastern Hebei with a small portion
400 of crustal reworking occurring.

401 This study first identified the 2.45 Ga trondjemitic gneiss in Eastern Hebei, which provides evidence for the magmatism
402 during the TML in the Eastern Block, NCC. These rocks have concentrated, positive $\varepsilon_{\text{Hf}}(t)$ values from +3.3 to +4.9, with
403 corresponding T_{DM2} ages varying from 2769 to 2671 Ma, suggesting the 2.45 Ga crustal growth in Eastern Hebei. Therefore,
404 we propose that the early Paleoproterozoic era in the NCC was not a period of magmatic quiescence, and the plate tectonics
405 and crustal growth remained active during this period. Notably, the 2.45 Ga trondjemitic gneiss shows similar whole-rock
406 geochemical and zircon Hf-O isotopic characteristics to some 2.55 Ga TTG gneiss in Eastern Hebei (Figs. 4–7). Consequently,
407 we suggest that the 2.45 Ga trondjemitic gneiss was probably a continuation of the late Neoarchean magmatism. In addition
408 to the magmatic activity, some paleoclimatic changes also extensively occurred in the early Paleoproterozoic era. However,
409 the relationship between magmatic activity and paleoclimatic upheavals needs further studies.

410 To sum up, we conclude that Eastern Hebei possesses a complex crustal evolution history from the Eoarchean to the early
411 Paleoproterozoic. The Eoarchean (3.84–3.64 Ga) is characterized by Hadean crustal reworking. Both crustal growth and
412 reworking occurred in the Paleoarchean (3.53–3.22 Ga), Mesoarchean (3.12–2.80 Ga), and late Neoarchean (2.61–2.49 Ga).
413 Notably, the proportion of crustal growth increased from the Paleoarchean to the late Neoarchean, among which the late

414 Neoarchean represents a major period of crustal growth. The newly recognized ca. 2.45 Ga trondhjemite gneiss was probably
415 a continuation of the late Neoarchean magmatism, and the crustal growth persisted into this period.

416 **6 Conclusions**

417 (1) The 2.45 Ga trondhjemite gneiss was discovered in Eastern Hebei, providing unambiguous evidence for an early
418 Paleoproterozoic tectonothermal event in the Eastern Block, NCC.

419 (3) The protolith of the 2.45 Ga trondhjemite gneiss was derived from partial melting of a juvenile, low-K thickened
420 lower crust, with garnet and rutile as residues.

421 (2) Multiple stages of magmatism (3.84–3.64 Ga, 3.53–3.22 Ga, 3.12–2.80 Ga, and 2.61–2.45 Ga) and metamorphism
422 (3.50–3.23 Ga, 3.18–2.80 Ga, ~2.50 Ga, ~2.45 Ga, ~1.82 Ga) are identified in Eastern Hebei.

423 (4) From the Eoarchean to the late Neoarchean, the crustal evolution of Eastern Hebei shifted from extensive reworking
424 of ancient crust to a significant increase in crustal growth. The ca. 2.45 Ga trondhjemite gneiss was probably a continuation
425 of the late Neoarchean magmatism, and the crustal growth persisted into this period.

426 **Data availability**

427 Supplementary data to this article can be found online at [xxx](#).

428 **Author contributions**

429 Jiahao Jing: Investigation, Validation, Formal analysis, Writing-Original draft preparation, Writing-Review & Editing,
430 Visualization. Qian Liu: Investigation, Conceptualization, Methodology, Resources, Validation. Yigui Han: Validation.
431 Jinlong Yao: Validation. Donghai Zhang: Validation. Chenyang Sun: Investigation, Methodology, Validation. Jiakang Zheng:
432 Investigation. Guochun Zhao: Methodology, Validation.

433 **Competing interest**

434 The authors declare that they have no conflict of interest.

435 **Acknowledgments**

436 We are grateful to the staff from the Secondary Ion Mass Spectrometer Laboratory of Nanjing University for their assistance
437 in the zircon O isotopic analyses. This work was financially supported by the National Key Research and Development
438 Program of China (2024YFF0808000) and Northwest University Excellent Doctoral Thesis Cultivation Program (YB2024017).

439 **References**

440 Alkmim, F. F. and Teixeira, W.: The Paleoproterozoic Mineiro Belt and the Quadrilátero Ferrífero, in: São Francisco Craton,
441 Eastern Brazil: Tectonic Genealogy of a Miniature Continent, edited by: Heilbron, M., Cordani, U. G., and Alkmim, F.
442 F., Springer International Publishing, Cham, 71-94, 10.1007/978-3-319-01715-0_5, 2017.

443 Bai, W., Dong, C., Nutman, A. P., Xie, H., Liu, D., and Wan, Y.: Timing of late Neoarchean to late Paleoproterozoic events
444 in the North China Craton: SHRIMP U-Pb dating and LA-ICP-MS Hf isotope analysis of zircons from magmatic and
445 metamorphic rocks in the Santunying area, eastern Hebei, Gondwana Res., 76, 348-372,
446 <https://doi.org/10.1016/j.gr.2019.06.005>, 2019.

447 Bai, X., Liu, S., Guo, R., Zhang, L., and Wang, W.: Zircon U-Pb-Hf isotopes and geochemistry of Neoarchean dioritic–
448 trondhjemite gneisses, Eastern Hebei, North China Craton: Constraints on petrogenesis and tectonic implications,
449 Precambrian Res., 251, 1-20, <https://doi.org/10.1016/j.precamres.2014.05.027>, 2014.

450 Bai, X., Liu, S., Guo, R., and Wang, W.: Zircon U-Pb-Hf isotopes and geochemistry of two contrasting Neoarchean
451 charnockitic rock series in Eastern Hebei, North China Craton: Implications for petrogenesis and tectonic setting,
452 Precambrian Res., 267, 72-93, <https://doi.org/10.1016/j.precamres.2015.06.004>, 2015.

453 Bai, X., Liu, S., Guo, R., and Wang, W.: A Neoarchean arc–back-arc system in Eastern Hebei, North China Craton: Constraints
454 from zircon U-Pb-Hf isotopes and geochemistry of dioritic–tonalitic–trondhjemite–granodioritic (DTTG) gneisses and
455 felsic paragneisses, Precambrian Res., 273, 90-111, <https://doi.org/10.1016/j.precamres.2015.12.003>, 2016.

456 Barker, F.: Chapter 1 - Trondhjemite: Definition, Environment and Hypotheses of Origin, in: Developments in Petrology,
457 edited by: Barker, F., Elsevier, 1-12, <https://doi.org/10.1016/B978-0-444-41765-7.50006-X>, 1979.

458 Bédard, J. H.: A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric
459 mantle, Geochim. Cosmochim. Ac., 70, 1188-1214, <https://doi.org/10.1016/j.gca.2005.11.008>, 2006.

460 Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O'Reilly, S. Y., and Pearson, N. J.: The growth of the
461 continental crust: Constraints from zircon Hf-isotope data, Lithos, 119, 457-466,
462 <https://doi.org/10.1016/j.lithos.2010.07.024>, 2010.

463 Bouvier, A., Vervoort, J. D., and Patchett, P. J.: The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from
464 unequilibrated chondrites and implications for the bulk composition of terrestrial planets, Earth Planet. Sci. Lett., 273,
465 48-57, <https://doi.org/10.1016/j.epsl.2008.06.010>, 2008.

466 Cavosie, A. J., Valley, J. W., and Wilde, S. A.: Chapter 12 - The Oldest Terrestrial Mineral Record: Thirty Years of Research
467 on Hadean zircon from Jack Hills, Western Australia, in: Earth's Oldest Rocks (Second Edition), edited by: Van
468 Kranendonk, M. J., Bennett, V. C., and Hoffmann, J. E., Elsevier, 255-278, <https://doi.org/10.1016/B978-0-444-63901-1.00012-5>, 2019.

470 Cawood, P. A., Hawkesworth, C. J., and Dhuime, B.: The continental record and the generation of continental crust, Geol. Soc.
471 Am. Bull., 125, 14-32, 10.1130/b30722.1, 2013.

472 Cawood, P. A., Chowdhury, P., Mulder, J. A., Hawkesworth, C. J., Capitanio, F. A., Gunawardana, P. M., and Nebel, O.:
473 Secular Evolution of Continents and the Earth System, *Rev. Geophys.*, 60, e2022RG000789,
474 <https://doi.org/10.1029/2022RG000789>, 2022.

475 Chaudhuri, T., Wan, Y., Mazumder, R., Ma, M., and Liu, D.: Evidence of Enriched, Hadean Mantle Reservoir from 4.2–4.0
476 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India, *Sci. Rep.*, 8, 7069,
477 10.1038/s41598-018-25494-6, 2018.

478 Condie, K. C., Belousova, E., Griffin, W. L., and Sircombe, K. N.: Granitoid events in space and time: Constraints from
479 igneous and detrital zircon age spectra, *Gondwana Res.*, 15, 228–242, <https://doi.org/10.1016/j.gr.2008.06.001>, 2009.

480 Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Lee, H.-Y., Wen, D.-J., Lo, C.-H., Lee, T.-Y., Qian, Q., and Zhang, Q.: Adakites from
481 continental collision zones: Melting of thickened lower crust beneath southern Tibet, *Geology*, 31, 1021–1024,
482 10.1130/g19796.1, 2003.

483 Condie, K. C., Pisarevsky, S. A., Puetz, S. J., Spencer, C. J., Teixeira, W., and Meira Faleiros, F.: A reappraisal of the global
484 tectono-magmatic lull at ~ 2.3 Ga, *Precambrian Res.*, 376, 106690, <https://doi.org/10.1016/j.precamres.2022.106690>,
485 2022.

486 Davies, J. H. F. L. and Heaman, L. M.: New U–Pb baddeleyite and zircon ages for the Scourie dyke swarm: A long-lived large
487 igneous province with implications for the Paleoproterozoic evolution of NW Scotland, *Precambrian Res.*, 249, 180–198,
488 <https://doi.org/10.1016/j.precamres.2014.05.007>, 2014.

489 Dhuime, B., Hawkesworth, C. J., Delavault, H., and Cawood, P. A.: Rates of generation and destruction of the continental
490 crust: implications for continental growth, *Philosophical Transactions of the Royal Society A: Mathematical, Physical
491 and Engineering Sciences*, 376, 20170403, doi:10.1098/rsta.2017.0403, 2018.

492 Diwu, C. R., Sun, Y., and Wang, Q.: The crustal growth and evolution of North China Craton: Revealed by Hf isotopes in
493 detrital zircons from modern rivers, *Acta Petrol. Sin.*, 28, 3520–3530, 2012 (in Chinese with English abstract).

494 Diwu, C. R., Liu, X., and Sun, Y.: The composition and evolution of the Taihua complex in the southern North China Craton,
495 *Acta Petrol. Sin.*, 34 (4), 999–1018, 2018 (in Chinese with English abstract).

496 Diwu, C. R.: Crustal growth and evolution of Archean continental crust in the southern North China Craton, *Acta Petrol. Sin.*,
497 37 (2), 317–340, 2021 (in Chinese with English abstract).

498 Diwu, C. R., Sun, Y., Si, B. W., and Yan, M. J.: Archean continental crustal growth and reworking of the North China Craton:
499 Constraints from zircon U–Pb age and Hf isotopic composition, *Earth-Sci. Rev.*, 248, 104624,
500 <https://doi.org/10.1016/j.earscirev.2023.104624>, 2024.

501 Dong, C., Liu, S., Nutman, A. P., Li, P., Xie, H., Li, Y., Liu, D., and Wan, Y.: New discovery of 3.84–3.64 Ga diverse
502 granitoids in eastern Hebei, North China Craton: Petrogenesis and significance, *Soc. Am. Bull.*, 136, 5249–5261,
503 10.1130/B37553.1, 2024.

504 Dong, C., Li, P., Nutman, A. P., Xie, H., Liu, S., Li, Y., Liu, D., and Wan, Y.: New discovery of Paleoarchean-Mesoarchean
505 magmatic rocks in eastern Hebei, North China Craton: Petrogenesis and tectonic environment, *Precambrian Res.*, 427,
506 107870, <https://doi.org/10.1016/j.precamres.2025.107870>, 2025.

507 Drummond, M. S., Defant, M. J., and Kepezhinskas, P. K.: Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite
508 magmas, *Earth and Environmental Science Transactions of the Royal Society of Edinburgh*, 87, 205-215,
509 10.1017/S0263593300006611, 1996.

510 Drummond, M. S. and Defant, M. J.: A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting:
511 Archean to modern comparisons, *Journal of Geophysical Research: Solid Earth*, 95, 21503-21521,
512 <https://doi.org/10.1029/JB095iB13p21503>, 1990.

513 Du, L., Yang, C., Wyman, D. A., Nutman, A. P., Lu, Z., Song, H., Xie, H., Wan, Y., Zhao, L., Geng, Y., and Ren, L.: 2090–
514 2070 Ma A-type granitoids in Zanhuang Complex: Further evidence on a Paleoproterozoic rift-related tectonic regime in
515 the Trans-North China Orogen, *Lithos*, 254-255, 18-35, <https://doi.org/10.1016/j.lithos.2016.03.007>, 2016.

516 Duan, Q., Du, L., Song, H., Ren, L., Wyman, D. A., Geng, Y., Wang, J., and Yang, C.: Petrogenesis of the 2.3 Ga Lengkou
517 metavolcanic rocks in the North China Craton: Implications for tectonic settings during the magmatic quiescence,
518 *Precambrian Res.*, 357, 106151, <https://doi.org/10.1016/j.precamres.2021.106151>, 2021.

519 Duan, Z., Wei, C., and Qian, J.: Metamorphic P–T paths and Zircon U–Pb age data for the Paleoproterozoic metabasic dykes
520 of high-pressure granulite facies from Eastern Hebei, North China Craton, *Precambrian Res.*, 271, 295-310,
521 <https://doi.org/10.1016/j.precamres.2015.10.015>, 2015.

522 Duan, Z., Wei, C., and Rehman, H. U.: Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei, North
523 China Craton: Insights into the regional Archean P–T–t history, *Precambrian Res.*, 292, 240-257,
524 <https://doi.org/10.1016/j.precamres.2017.02.008>, 2017.

525 Duan, Z., Wei, C., and Li, Z.: Metamorphic P–T paths and zircon u–pb ages of Paleoproterozoic metabasic dykes in eastern
526 Hebei and northern Liaoning: Implications for the tectonic evolution of the North China Craton, *Precambrian Res.*, 326,
527 124-141, <https://doi.org/10.1016/j.precamres.2017.11.001>, 2019.

528 Duan, Z., Wei, C., Li, Z., and Zhang, C.: Zircon U-Pb Dating and Metamorphism of Granitoid Gneisses and Supracrustal
529 Rocks in Eastern Hebei, North China Craton, 12, 863, <https://www.mdpi.com/2075-163X/12/7/863>., 2022.

530 Eriksson, P. G. and Condie, K. C.: Cratonic sedimentation regimes in the ca. 2450–2000Ma period: Relationship to a possible
531 widespread magmatic slowdown on Earth, *Gondwana Res.*, 25, 30-47, <https://doi.org/10.1016/j.gr.2012.08.005>, 2014.

532 Fisher, C. M., Vervoort, J. D., and Hanchar, J. M.: Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and
533 potential pitfalls in the interpretation of these data, *Chem. Geol.*, 363, 125-133,
534 <https://doi.org/10.1016/j.chemgeo.2013.10.019>, 2014.

535 French, J. E., Heaman, L. M., and Chacko, T.: Feasibility of chemical U–Th–total Pb baddeleyite dating by electron microprobe,
536 *Chem. Geol.*, 188, 85-104, [https://doi.org/10.1016/S0009-2541\(02\)00074-8](https://doi.org/10.1016/S0009-2541(02)00074-8), 2002.

537 Fu, J., Liu, S., Chen, X., Bai, X., Guo, R., and Wang, W.: Petrogenesis of taxitic dioritic–tonalitic gneisses and Neoarchean
538 crustal growth in Eastern Hebei, North China Craton, Precambrian Res., 284, 64-87,
539 https://doi.org/10.1016/j.precamres.2016.08.002, 2016.

540 Fu, J., Liu, S., Wang, M., Chen, X., Guo, B., and Hu, F.: Late Neoarchean monzogranitic–syenogranitic gneisses in the Eastern
541 Hebei–Western Liaoning Province, North China Craton: Petrogenesis and implications for tectonic setting, Precambrian
542 Res., 303, 392-413, https://doi.org/10.1016/j.precamres.2017.05.002, 2017.

543 Fu, J., Liu, S., Zhang, B., Guo, R., and Wang, M.: A Neoarchean K-rich granitoid belt in the northern North China Craton,
544 Precambrian Res., 328, 193-216, https://doi.org/10.1016/j.precamres.2019.04.021, 2019.

545 Fu, J., Liu, S., Sun, G., and Gao, L.: Two contrasting Neoarchean metavolcanic rock suites in eastern Hebei and their
546 geodynamic implications for the northern North China Craton, Gondwana Res., 95, 45-71,
547 https://doi.org/10.1016/j.gr.2021.02.023, 2021.

548 Geng, Y.S., Liu, F.L., and Yang, C.H.: Magmatic event at the end of the Archean in Eastern Hebei Province and its geological
549 implications, *Acta Geol. Sin.*, 80, 819-833, 2006 (in Chinese with English abstract).

550 Geng, Y. S., Du, L., and Ren, L.: Growth and reworking of the early Precambrian continental crust in the North China Craton:
551 Constraints from zircon Hf isotopes, *Gondwana Res.*, 21, 517-529, https://doi.org/10.1016/j.gr.2011.07.006, 2012.

552 Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O'Reilly, S. Y., and Shee, S. R.: The Hf
553 isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites, *Geochim.
554 Cosmochim. Acta*, 64, 133-147, https://doi.org/10.1016/S0016-7037(99)00343-9, 2000.

555 Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X., and Zhou, X.: Zircon chemistry and magma
556 mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes, *Lithos*, 61, 237-269,
557 https://doi.org/10.1016/S0024-4937(02)00082-8, 2002.

558 Guo, R., Liu, S., Santosh, M., Li, Q., Bai, X., and Wang, W.: Geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes
559 of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton, *Gondwana Res.*,
560 24, 664-686, https://doi.org/10.1016/j.gr.2012.12.025, 2013.

561 Guo, R., Liu, S.W., Bai, X., Zhang, L.F., Wang, W., Hu, F.Y., and Yan, M.: Geochemistry and zircon U-Pb chronology of
562 Shuangshanzi Group in the eastern Hebei province, North China Craton: constraints on petrogenesis and tectonic setting,
563 *Acta Petrol. Sin.*, 30, 2885-2904, 2014 (in Chinese with English abstract).

564 Guo, R., Liu, S., Wyman, D., Bai, X., Wang, W., Yan, M., and Li, Q.: Neoarchean subduction: A case study of arc volcanic
565 rocks in Qinglong-Zhuzhangzi area of the Eastern Hebei Province, North China Craton, *Precambrian Res.*, 264, 36-62,
566 https://doi.org/10.1016/j.precamres.2015.04.007, 2015.

567 Guo, R., Liu, S., Bai, X., and Wang, W.: A Neoarchean subduction recorded by the Eastern Hebei Precambrian basement,
568 North China Craton: Geochemical fingerprints from metavolcanic rocks of the Saheqiao-Shangying-Qinglong
569 supracrustal belt, *J. Asian Earth Sci.*, 135, 347-369, https://doi.org/10.1016/j.jseas.2017.01.007, 2017.

570 Halls, H. C., Kumar, A., Srinivasan, R., and Hamilton, M. A.: Paleomagnetism and U–Pb geochronology of easterly trending
571 dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37Ga,
572 Precambrian Res., 155, 47–68, <https://doi.org/10.1016/j.precamres.2007.01.007>, 2007.

573 Hartlaub, R. P., Heaman, L. M., Chacko, T., and Ashton, K. E.: Circa 2.3 Ga Magmatism of the Arrowsmith Orogeny, Uranium
574 City Region, Western Churchill Craton, Canada, J Geol., 115, 181–195, 10.1086/510641, 2007.

575 Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., Cawood, P. A., Kemp, A. I. S., and Storey, C. D.: The generation and
576 evolution of the continental crust, J. Geol. Soc., 167, 229–248, 10.1144/0016-76492009-072, 2010.

577 Huang, X., Ziwei, B., and DePaolo, D. J.: Sm–Nd isotope study of early Archean rocks, Qianan, Hebei Province, China,
578 Geochim. Cosmochim. Ac., 50, 625–631, [https://doi.org/10.1016/0016-7037\(86\)90111-0](https://doi.org/10.1016/0016-7037(86)90111-0), 1986.

579 Hu, Z., Li, X.-H., Luo, T., Zhang, W., Crowley, J., Li, Q., Ling, X., Yang, C., Li, Y., Feng, L., Xia, X., Zhang, S.-B., Wang,
580 Z., Guo, J., Xu, L., Lin, J., Liu, X., Bao, Z., Liu, Y., Zong, K., Chen, W., and Hu, S.: Tanz zircon megacrysts: a new
581 zircon reference material for the microbeam determination of U–Pb ages and Zr–O isotopes, J. Anal. Atom. Spectrom.,
582 36, 2715–2734, 10.1039/D1JA00311A, 2021.

583 Jahn, B. M., Auvray, B., Cornichet, J., Bai, Y. L., Shen, Q. H., and Liu, D. Y.: 3.5 Ga old amphibolites from eastern Hebei
584 Province, China: Field occurrence, petrography, Sm–Nd isochron age and REE geochemistry, Precambrian Res., 34, 311–
585 346, [https://doi.org/10.1016/0301-9268\(87\)90006-4](https://doi.org/10.1016/0301-9268(87)90006-4), 1987.

586 Jing, J. H., Liu, Q., Han, Y. G., Yao, J. L., Zhang, D. H., Sun, C. Y., Wang, C., Zheng, J. K., Zhao, G. C.: Petrogenesis of
587 Neoarchean tonalite–trondhjemite–granodiorite and dioritic gneisses in Eastern Hebei, North China: Implications for
588 coexisting vertical and horizontal geodynamic regime, Geosci. Front., in press, 2025.

589 John, T., Klemd, R., Klemme, S., Pfänder, J. A., Elis Hoffmann, J., and Gao, J.: Nb–Ta fractionation by partial melting at the
590 titanite–rutile transition, Contrib. Mineral. Petrol., 161, 35–45, 10.1007/s00410-010-0520-4, 2011.

591 Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., Coath, C. D., Nemchin, A., Pidgeon, R. T., Vervoort, J. D., and DuFrane,
592 S. A.: Hadean crustal evolution revisited: New constraints from Pb–Hf isotope systematics of the Jack Hills zircons, Earth
593 Planet. Sci. Lett., 296, 45–56, <https://doi.org/10.1016/j.epsl.2010.04.043>, 2010.

594 Kemp, A. I. S. and Hawkesworth, C. J.: Growth and Differentiation of the Continental Crust from Isotope Studies of Accessory
595 Minerals, in: Treatise on Geochemistry (Second Edition), edited by: Holland, H. D., and Turekian, K. K., Elsevier, Oxford,
596 379–421, <https://doi.org/10.1016/B978-0-08-095975-7.00312-0>, 2014.

597 Klemme, S., Prowatke, S., Hametner, K., and Günther, D.: Partitioning of trace elements between rutile and silicate melts:
598 Implications for subduction zones, Geochim. Cosmochim. Ac., 69, 2361–2371, <https://doi.org/10.1016/j.gca.2004.11.015>,
599 2005.

600 Kröner, A., Hoffmann, J. E., Xie, H., Münker, C., Hegner, E., Wan, Y., Hofmann, A., Liu, D., and Yang, J.: Generation of
601 early Archaean grey gneisses through melting of older crust in the eastern Kaapvaal craton, southern Africa, Precambrian
602 Res., 255, 823–846, <https://doi.org/10.1016/j.precamres.2014.07.017>, 2014.

603 Kumar, A., Hamilton, M. A., and Halls, H. C.: A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern
604 India, *Geochem. Geophys. Geosyst.*, 13, <https://doi.org/10.1029/2011GC003926>, 2012.

605 Laurent, O., Martin, H., Moyen, J. F., and Doucelance, R.: The diversity and evolution of late-Archean granitoids: Evidence
606 for the onset of “modern-style” plate tectonics between 3.0 and 2.5Ga, *Lithos*, 205, 208-235,
607 <https://doi.org/10.1016/j.lithos.2014.06.012>, 2014.

608 Laurent, O., Björnsen, J., Wotzlaw, J.-F., Bretscher, S., Pimenta Silva, M., Moyen, J.-F., Ulmer, P., and Bachmann, O.: Earth’s
609 earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions, *Nature Geosci.*, 13, 163-169,
610 10.1038/s41561-019-0520-6, 2020.

611 Li, T., Zhai, M., Peng, P., Chen, L., and Guo, J.: Ca. 2.5 billion year old coeval ultramafic–mafic and syenitic dykes in Eastern
612 Hebei: Implications for cratonization of the North China Craton, *Precambrian Res.*, 180, 143-155,
613 <https://doi.org/10.1016/j.precamres.2010.04.001>, 2010.

614 Li, X. H., Long, W. G., Li, Q. L., Liu, Y., Zheng, Y. F., Yang, Y. H., Chamberlain, K. R., Wan, D. F., Guo, C. H., Wang, X.
615 C., and Tao, H.: Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination
616 of Hf–O Isotopes and U–Pb Age, *Geostand. Geoanal. Res.*, 34, 117-134, <https://doi.org/10.1111/j.1751-908X.2010.00036.x>, 2010.

617 Li, X. H., Tang, G., Gong, B., Yang, Y., Hou, K., Hu, Z., Li, Q., Liu, Y., and Li, W.: Qinghu zircon: A working reference for
618 microbeam analysis of U-Pb age and Hf and O isotopes, *Chin. Sci. Bull.*, 58, 4647-4654, 10.1007/s11434-013-5932-x,
619 2013.

620 Li, Z., Wei, C., Zhang, S., Yang, C., and Duan, Z.: Neoarchean granitoid gneisses in Eastern Hebei, North China Craton:
621 Revisited, *Precambrian Res.*, 324, 62-85, <https://doi.org/10.1016/j.precamres.2019.01.020>, 2019.

622 Li, Z., Wei, C., Yang, C., and Zhang, X.: A Deep Mantle Source for the Late Neoarchean Metamorphosed Basalts in Eastern
623 Hebei, North China Craton: Insights from Whole-Rock Geochemistry and Sm-Nd Isotopes, and Zircon U-Pb-Hf Isotopes,
624 *J. Earth Sci-China.*, 35, 29-40, 10.1007/s12583-023-1807-5, 2024.

625 Liou, P. and Guo, J.: Deciphering the Mesoarchean to Neoarchean history of crustal growth and recycling in the Caochang
626 region of the Eastern Hebei Province, North China Craton using combined zircon U–Pb and Lu-Hf isotope analysis,
627 *Lithos*, 334-335, 281-294, <https://doi.org/10.1016/j.lithos.2019.03.013>, 2019a.

628 Liou, P. and Guo, J.: Generation of Archaean TTG Gneisses Through Amphibole-Dominated Fractionation, *J. Geophys. Res. Solid Earth.*, 124, 3605-3619, <https://doi.org/10.1029/2018JB017024>, 2019b.

629 Liou, P., Guo, J., Huang, G., and Fan, W.: 2.9 Ga magmatism in Eastern Hebei, North China Craton, *Precambrian Research*,
630 326, 6-23, <https://doi.org/10.1016/j.precamres.2017.11.002>, 2019.

631 Liou, P., Wang, Z., Mitchell, R. N., Doucet, L. S., Li, M., Guo, J., and Zhai, M.: Fe isotopic evidence that “high pressure”
632 TTGs formed at low pressure, *Earth Planet. Sci. Lett.*, 592, 117645, <https://doi.org/10.1016/j.epsl.2022.117645>, 2022.

635 Liu, T. and Wei, C.: Metamorphic evolution of Archean ultrahigh-temperature mafic granulites from the western margin of
636 Qian'an gneiss dome, eastern Hebei Province, North China Craton: Insights into the Archean tectonic regime,
637 Precambrian Res., 318, 170-187, <https://doi.org/10.1016/j.precamres.2018.10.007>, 2018.

638 Liu, T. and Wei, C.: Metamorphic P-T paths and Zircon U-Pb ages of Archean ultra-high temperature paragneisses from the
639 Qian'an gneiss dome, East Hebei terrane, North China Craton, J. Metamorph. Geol., 38, 329-356,
640 <https://doi.org/10.1111/jmg.12524>, 2020.

641 Liu, T., Wei, C., Johnson, T. E., and Sizova, E.: Newly-discovered ultra-high temperature granulites from the East Hebei
642 terrane, North China Craton, Sci. Bull., 67, 670-673, <https://doi.org/10.1016/j.scib.2021.12.023>, 2022.

643 Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., and Chen, H.: Reappraisal and refinement of zircon U-Pb isotope and
644 trace element analyses by LA-ICP-MS, Chin. Sci. Bull., 55, 1535-1546, 10.1007/s11434-010-3052-4, 2010.

645 Lu, H. and Wei, C.: Late Neoarchean or late Paleoproterozoic high-pressure granulite facies metamorphism from the East
646 Hebei terrane, North China Craton, J. Asian Earth Sci., 190, 104195, <https://doi.org/10.1016/j.jseas.2019.104195>, 2020.

647 Lu, J. S., Zhai, M. G., Lu, L. S., and Zhao, L.: P-T-t evolution of Neoarchean to Paleoproterozoic pelitic granulites from the
648 Jidong terrane, eastern North China Craton, Precambrian Res., 290, 1-15,
649 <https://doi.org/10.1016/j.precamres.2016.12.012>, 2017.

650 Ludwig, K.R.: User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel, special publication, 4, 1-71,
651 2003.

652 Lv, B., Zhai, M., Li, T., and Peng, P.: Zircon U-Pb ages and geochemistry of the Qinglong volcano-sedimentary rock series
653 in Eastern Hebei: Implication for ~2500Ma intra-continental rifting in the North China Craton, Precambrian Res., 208-
654 211, 145-160, <https://doi.org/10.1016/j.precamres.2012.04.002>, 2012.

655 Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.: The rise of oxygen in Earth's early ocean and atmosphere, Nature, 506,
656 307-315, 10.1038/nature13068, 2014.

657 Macpherson, C. G., Dreher, S. T., and Thirlwall, M. F.: Adakites without slab melting: High pressure differentiation of island
658 arc magma, Mindanao, the Philippines, Earth Planet. Sci. Lett., 243, 581-593, <https://doi.org/10.1016/j.epsl.2005.12.034>,
659 2006.

660 Maniar, P. D. and Piccoli, P. M.: Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 101, 635-643, 10.1130/0016-
661 7606(1989)101<0635:Tdog>2.3.Co;2, 1989.

662 Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., and Champion, D.: An overview of adakite, tonalite-trondhjemite-
663 granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution, Lithos, 79, 1-24,
664 <https://doi.org/10.1016/j.lithos.2004.04.048>, 2005.

665 Middlemost, E. A. K.: Naming materials in the magma/igneous rock system, Earth-Sci. Rev., 37, 215-224,
666 [https://doi.org/10.1016/0012-8252\(94\)90029-9](https://doi.org/10.1016/0012-8252(94)90029-9), 1994.

667 Moyen, J. F., Martin, H., Jayananda, M., and Auvray, B.: Late Archaean granites: a typology based on the Dharwar Craton
668 (India), Precambrian Res., 127, 103-123, [https://doi.org/10.1016/S0301-9268\(03\)00183-9](https://doi.org/10.1016/S0301-9268(03)00183-9), 2003.

669 Moyen, J. F.: The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting
670 for Archaean crustal growth, *Lithos*, 123, 21-36, <https://doi.org/10.1016/j.lithos.2010.09.015>, 2011.

671 Neil, B. J. C., Chacko, T., Heaman, L. M., Dufrane, S. A., Creaser, R. A., Martel, E., Canam, R., and Pearson, D. G.: 2.4–
672 2.3 Ga granitoids of the Arrowsmith orogeny, southwestern Rae craton, Canada: Syn- and post-orogenic magmatism
673 during a global tectono-magmatic lull, *Precambrian Res.*, 427, 107880, <https://doi.org/10.1016/j.precamres.2025.107880>,
674 2025.

675 Nutman, A. P., Wan, Y., Du, L., Friend, C. R. L., Dong, C., Xie, H., Wang, W., Sun, H., and Liu, D.: Multistage late
676 Neoarchaean crustal evolution of the North China Craton, eastern Hebei, *Precambrian Res.*, 189, 43-65,
677 <https://doi.org/10.1016/j.precamres.2011.04.005>, 2011.

678 O'Neill, C., Jellinek, A. M., and Lenardic, A.: Conditions for the onset of plate tectonics on terrestrial planets and moons, *Earth*
679 *Planet. Sci. Lett.*, 261, 20-32, <https://doi.org/10.1016/j.epsl.2007.05.038>, 2007.

680 Palin, R. M., Santosh, M., Cao, W., Li, S.-S., Hernández-Uribe, D., and Parsons, A.: Secular change and the onset of plate
681 tectonics on Earth, *Earth-Sci. Rev.*, 207, 103172, <https://doi.org/10.1016/j.earscirev.2020.103172>, 2020.

682 Peccerillo, A. and Taylor, S. R.: Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern
683 Turkey, *Contrib. Mineral. Petrol.*, 58, 63-81, 10.1007/BF00384745, 1976.

684 Pehrsson, S. J., Buchan, K. L., Eglington, B. M., Berman, R. M., and Rainbird, R. H.: Did plate tectonics shutdown in the
685 Palaeoproterozoic? A view from the Siderian geologic record, *Gondwana Res.*, 26, 803-815,
686 <https://doi.org/10.1016/j.gr.2014.06.001>, 2014.

687 Polat, A. and Hofmann, A. W.: Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland,
688 *Precambrian Res.*, 126, 197-218, [https://doi.org/10.1016/S0301-9268\(03\)00095-0](https://doi.org/10.1016/S0301-9268(03)00095-0), 2003.

689 Polat, A., Li, J., Fryer, B., Kusky, T., Gagnon, J., and Zhang, S.: Geochemical characteristics of the Neoarchean (2800–2700
690 Ma) Taishan greenstone belt, North China Craton: Evidence for plume–craton interaction, *Chem. Geol.*, 230, 60-87,
691 <https://doi.org/10.1016/j.chemgeo.2005.11.012>, 2006.

692 N. Ramesh, B., E, N., V, P., and M, V.: Preliminary anisotropy of magnetic susceptibility studies on 2367 Ma Bangalore-
693 Karimnagar giant dyke swarm, southern India: Implications for magma flow, *Phys. Earth Planet. In.*, 306, 106540,
694 <https://doi.org/10.1016/j.pepi.2020.106540>, 2020.

695 Rapp, R. P. and Watson, E. B.: Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and
696 Crust-Mantle Recycling, *J. Petrol.*, 36, 891-931, 10.1093/petrology/36.4.891, 1995.

697 Rapp, R. P., Shimizu, N., Norman, M. D., and Applegate, G. S.: Reaction between slab-derived melts and peridotite in the
698 mantle wedge: experimental constraints at 3.8 GPa, *Chem. Geol.*, 160, 335-356, [https://doi.org/10.1016/S0009-2541\(99\)00106-0](https://doi.org/10.1016/S0009-2541(99)00106-0), 1999.

700 Rehman, H. U., Kitajima, K., Valley, J. W., Chung, S. L., Lee, H. Y., Yamamoto, H., and Khan, T.: Low- $\delta^{18}\text{O}$ mantle-derived
701 magma in Panjal Traps overprinted by hydrothermal alteration and Himalayan UHP metamorphism: Revealed by SIMS
702 zircon analysis, *Gondwana Res.*, 56, 12-22, <https://doi.org/10.1016/j.gr.2017.12.004>, 2018.

703 Reimink, J. R., Chacko, T., Stern, R. A., and Heaman, L. M.: Earth's earliest evolved crust generated in an Iceland-like setting,
704 *Nature Geosci.*, 7, 529-533, 10.1038/ngeo2170, 2014.

705 Rollinson, H.R.: *Using Geochemical Data: Evaluation, Presentation*, Longman Scientific and Technical, London, 52-61,
706 <https://doi.org/10.4324/9781315845548>, 1993.

707 Schiano, P., Monzier, M., Eissen, J. P., Martin, H., and Koga, K. T.: Simple mixing as the major control of the evolution of
708 volcanic suites in the Ecuadorian Andes, *Contrib. Mineral. Petrol.*, 160, 297-312, 10.1007/s00410-009-0478-2, 2010.

709 Schmidt, M. W., Dardon, A., Chazot, G., and Vannucci, R.: The dependence of Nb and Ta rutile–melt partitioning on melt
710 composition and Nb/Ta fractionation during subduction processes, *Earth Planet. Sc. Lett.*, 226, 415-432,
711 <https://doi.org/10.1016/j.epsl.2004.08.010>, 2004.

712 Shen, B. F., Luo, H., Li, S. B., Li, J. J., Peng, X. L., Hu, X. D., Mao, D. B., and Liang, R. X.: *Geology and metallization of*
713 *Archean greenstone belts in the North China Platform*, Geological Publishing House, in Beijing, 1994 (in Chinese with
714 English abstract).

715 Siégel, C., Schoneveld, L., Spaggiari, C., Le Vaillant, M., Barnes, S., Godel, B., Mahon, D., Verrall, M., Martin, L., Caruso,
716 S., and Shelton, T.: A newly recognised mafic sill-hosted Ni-sulfide deposit emplaced during the 2.4 Ga Widgiemooltha
717 dike swarm event, Eastern Goldfields, Western, AustraliaMiner. Deposita., 60, 653-676, 10.1007/s00126-024-01305-z,
718 2025.

719 Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala,
720 L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J.: Plešovice zircon—A new natural
721 reference material for U–Pb and Hf isotopic microanalysis, *Chem. Geol.*, 249, 1-35,
722 <https://doi.org/10.1016/j.chemgeo.2007.11.005>, 2008.

723 Söderlund, U., Patchett, P. J., Vervoort, J. D., and Isachsen, C. E.: The ^{176}Lu decay constant determined by Lu–Hf and U–Pb
724 isotope systematics of Precambrian mafic intrusions, *Earth Planet. Sci. Lett.*, 219, 311-324,
725 [https://doi.org/10.1016/S0012-821X\(04\)00012-3](https://doi.org/10.1016/S0012-821X(04)00012-3), 2004.

726 Söderlund, U., Bleeker, W., Demirer, K., Srivastava, R. K., Hamilton, M., Nilsson, M., Pesonen, L. J., Samal, A. K., Jayananda,
727 M., Ernst, R. E., and Srinivas, M.: Emplacement ages of Paleoproterozoic mafic dyke swarms in eastern Dharwar craton,
728 India: Implications for paleoreconstructions and support for a $\sim 30^\circ$ change in dyke trends from south to north,
729 *Precambrian Res.*, 329, 26-43, <https://doi.org/10.1016/j.precamres.2018.12.017>, 2019.

730 Spencer, C. J., Roberts, N. M. W., and Santosh, M.: Growth, destruction, and preservation of Earth's continental crust, *Earth*
731 *Sci. Rev.*, 172, 87-106, <https://doi.org/10.1016/j.earscirev.2017.07.013>, 2017.

732 Spencer, C. J., Murphy, J. B., Kirkland, C. L., Liu, Y., and Mitchell, R. N.: A Palaeoproterozoic tectono-magmatic lull as a
733 potential trigger for the supercontinent cycle, *Nature Geosci.*, 11, 97-101, 10.1038/s41561-017-0051-y, 2018.

734 Stepanova, A. V., Salnikova, E. B., Samsonov, A. V., Egorova, S. V., Larionova, Y. O., and Stepanov, V. S.: The 2.31Ga
735 mafic dykes in the Karelian Craton, eastern Fennoscandian shield: U–Pb age, source characteristics and implications for
736 continental break-up processes, *Precambrian Res.*, 259, 43-57, <https://doi.org/10.1016/j.precamres.2014.10.002>, 2015.

737 Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition
738 and processes, Geological Society, London, Special Publications, 42, 313-345, doi:10.1144/GSL.SP.1989.042.01.19,
739 1989.

740 Sun, H. Y., Xie, H. Q., Liu, S. J., Dong, C. Y., Liu, D. Y., and Wan, Y. S.: Archean magmatism and metamorphism in the
741 Huangbaiyu-Yangyashan area, eastern Hebei Province: evidence from SHRIMP zircon U-Pb dating, *Geol. Bull. China*,
742 35 (1), 27-42, 2016 (in Chinese with English abstract).

743 Taylor, R. J. M., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., and Kelly, N. M.: Experimental determination of REE
744 partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes, *J. Metamorph.
745 Geol.*, 33, 231-248, <https://doi.org/10.1111/jmg.12118>, 2015.

746 Teixeira, W., Ávila, C. A., Dussin, I. A., Corrêa Neto, A. V., Bongiolo, E. M., Santos, J. O., and Barbosa, N. S.: A juvenile
747 accretion episode (2.35–2.32Ga) in the Mineiro belt and its role to the Minas accretionary orogeny: Zircon U–Pb–Hf and
748 geochemical evidences, *Precambrian Res.*, 256, 148-169, <https://doi.org/10.1016/j.precamres.2014.11.009>, 2015.

749 Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R., and Foley, S. F.: Trace-Element Partitioning Between Amphibole and
750 Silicate Melt, *Rev. Mineral. Geochem.*, 67, 417-452, 10.2138/rmg.2007.67.11, 2007.

751 Valley, J. W.: Oxygen Isotopes in Zircon, *Rev. Mineral. Geochem.*, 53, 343-385, 10.2113/0530343, 2003.

752 Vermeesch, P.: On the visualisation of detrital age distributions, *Chem. Geol.*, 312-313, 190-194,
753 <https://doi.org/10.1016/j.chemgeo.2012.04.021>, 2012.

754 Vervoort, J. D. and Kemp, A. I. S.: Clarifying the zircon Hf isotope record of crust–mantle evolution, *Chem. Geol.*, 425, 65-
755 75, <https://doi.org/10.1016/j.chemgeo.2016.01.023>, 2016.

756 Wan, Y. S., Xie, H. Q., Wang, H. C., Li, P. C., Chu, H., Xiao, Z. B., Dong, C. Y., Liu, S. J., Li, Y., Hao, G. M., and Liu, D.
757 Y.: Discovery of ~3.8 Ga TTG rocks in eastern Hebei, North China Craton, *Acta Geol. Sin.*, 95 (5), 1321-1333, 2021 (in
758 Chinese with English abstract).

759 Wan, Y. S., Dong, C. Y., Xie, H. Q., Li, Y., Wang, Y. Q., Wang, K. L.: Huge growth of the late Mesoarchean-early Neoarchean
760 (2.6–3.0 Ga) continental crust in the North China Craton: a review, *J. Geomech.*, 28, 866-906, 2022 (in Chinese with
761 English abstract).

762 Wan, Y. S., Dong, C. Y., Xie, H. Q., Li, P. C., Liu, S. J., Wang, Y. Q., Wang, K. L., and Liu, D.Y.: Late Neoarchean magmatism
763 in the North China Craton: Implication for tectonic regimes and cratonization, *Earth Sci. Front.*, 31,01, 2024 (in Chinese
764 with English abstract).

765 Wan, Y., Dong, C., Xie, H., Wilde, S. A., Liu, S., Li, P., Ma, M., Li, Y., Wang, Y., Wang, K., and Liu, D.: Hadean to early
766 Mesoarchean rocks and zircons in the North China Craton: A review, *Earth-Sci. Rev.*, 243, 104489,
767 <https://doi.org/10.1016/j.earscirev.2023.104489>, 2023.

768 Wang, C., Song, S., Wei, C., Su, L., Allen, M. B., Niu, Y., Li, X.-H., and Dong, J.: Palaeoarchaean deep mantle heterogeneity
769 recorded by enriched plume remnants, *Nature Geosci.*, 12, 672-678, 10.1038/s41561-019-0410-y, 2019a.

770 Wang, J., Li, X., Ning, W., Kusky, T., Wang, L., Polat, A., and Deng, H.: Geology of a Neoarchean suture: Evidence from the
771 Zunhua ophiolitic mélange of the Eastern Hebei Province, North China Craton, *Geol. Soc. Am. Bull.*, 131, 1943-1964,
772 10.1130/b35138.1, 2019b.

773 Wang, J. and Long, X.: Early Paleoproterozoic TTG gneisses and potassic granitoids in the southern Trans-North China
774 Orogen: Key constraints on the tectonic setting during the tectono-magmatic lull and the initiation of plate tectonics,
775 *Earth-Sci. Rev.*, 250, 104713, <https://doi.org/10.1016/j.earscirev.2024.104713>, 2024.

776 Wang, W., Liu, F. L., Ji, L., and Santosh, M.: Geochronology and geochemistry of the Neoarchean Lulong Complex in the
777 eastern Hebei Province, North China Craton: Implications on regional crustal evolution, *Precambrian Res.*, 323, 102-
778 125, <https://doi.org/10.1016/j.precamres.2019.01.013>, 2019c.

779 Wang, X., Huang, X. L., and Yang, F.: Geochronology and geochemistry of the Xiaoqinling Taihua Complex in the southern
780 Trans-North China Orogen: Implications for magmatism during the early Paleoproterozoic global tectono-magmatic
781 shutdown, *Lithos*, 402-403, 106248, <https://doi.org/10.1016/j.lithos.2021.106248>, 2021.

782 Wei, C.J.: Neoarchean granulite facies metamorphism and its tectonic implications from the East Hebei terrane, *Acta Petrol.*
783 *Sin.*, 34, 895-912, 2018 (in Chinese with English abstract).

784 Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. C., And Spiegel, W.:
785 Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element, and REE analyses, *Geostandards Newsletter*, 19, 1-23,
786 <https://doi.org/10.1111/j.1751-908X.1995.tb00147.x>, 1995.

787 Wingate, M.: Mafic dyke swarms and large igneous provinces in Western Australia get a digital makeover. *Geol. Surv. Western*
788 *Australia Rec.* 2:4-8, 2017.

789 Wu, F. Y., Zhao, G. C., Wilde, S. A., and Sun, D. Y.: Nd isotopic constraints on crustal formation in the North China Craton,
790 *J. Asian Earth Sci.*, 24, 523-545, <https://doi.org/10.1016/j.jseaes.2003.10.011>, 2005.

791 Wu, Z., Wang, C., Song, S., Allen, M. B., Kusky, T., and Su, L.: Ultrahigh-pressure peridotites record Neoarchean collisional
792 tectonics, *Earth Planet. Sci. Lett.*, 596, 117787, <https://doi.org/10.1016/j.epsl.2022.117787>, 2022.

793 Xiong, X., Adam, J., Green, T. H., Niu, H., Wu, J., and Cai, Z.: Trace element characteristics of partial melts produced by
794 melting of metabasalts at high pressures: Constraints on the formation condition of adakitic melts, *Sci. China Earth Sci.*,
795 49, 915-925, 10.1007/s11430-006-0915-2, 2006.

796 Yang, C. and Wei, C.: Ultrahigh temperature (UHT) mafic granulites in the East Hebei, North China Craton: Constraints from
797 a comparison between temperatures derived from REE-based thermometers and major element-based thermometers,
798 *Gondwana Res.*, 46, 156-169, <https://doi.org/10.1016/j.gr.2017.02.017>, 2017a.

799 Yang, C. and Wei, C.: Two phases of granulite facies metamorphism during the Neoarchean and Paleoproterozoic in the East
800 Hebei, North China Craton: Records from mafic granulites, *Precambrian Res.*, 301, 49-64,
801 <https://doi.org/10.1016/j.precamres.2017.09.005>, 2017.

802 Yang, C. X., Santosh, M., Lloyd, J., Glorie, S., Anilkumar, Y., Anoop, K. S., Gao, P., and Kim, S.-W.: Breakup of the
803 Neoarchean supercontinent Kenorland: Evidence from zircon and baddeleyite U-Pb ages of LIP-related mafic dykes in
804 the Coorg Block, southern India, *Geosci. Front.*, 15, 101804, <https://doi.org/10.1016/j.gsf.2024.101804>, 2024.

805 Yang, J. H., Wu, F. Y., Wilde, S. A., and Zhao, G.: Petrogenesis and geodynamics of Late Archean magmatism in eastern
806 Hebei, eastern North China Craton: Geochronological, geochemical and Nd–Hf isotopic evidence, *Precambrian Res.*, 167,
807 125-149, <https://doi.org/10.1016/j.precamres.2008.07.004>, 2008.

808 Yang, Q. Y. and Santosh, M.: Paleoproterozoic arc magmatism in the North China Craton: No Siderian global plate tectonic
809 shutdown, *Gondwana Res.*, 28, 82-105, <https://doi.org/10.1016/j.gr.2014.08.005>, 2015.

810 Yao, X. and Zhang, J.: A late Neoarchaean–early Palaeoproterozoic crustal thickening event in the eastern North China Craton:
811 petrological and geochronological evidence from Eastern Hebei terrane, *Int. Geol. Rev.*, 59, 502-522,
812 10.1080/00206814.2016.1233462, 2017.

813 Young, G. M.: Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that
814 may have changed the second half of Earth history, *Geosci. Front.*, 4, 247-261, <https://doi.org/10.1016/j.gsf.2012.07.003>,
815 2013.

816 Yuan, H. L., Gao, S., Dai, M. N., Zong, C.-L., Günther, D., Fontaine, G. H., Liu, X. M., and Diwu, C. R.: Simultaneous
817 determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole
818 and multiple-collector ICP-MS, *Chem. Geol.*, 247, 100-118, <https://doi.org/10.1016/j.chemgeo.2007.10.003>, 2008.

819 Zakharov, D. O., Bindeman, I. N., Serebryakov, N. S., Prave, A. R., Azimov, P. Y., and Babarina, I. I.: Low $\delta^{18}\text{O}$ rocks in the
820 Belomorian belt, NW Russia, and Scourie dikes, NW Scotland: A record of ancient meteoric water captured by the early
821 Paleoproterozoic global mafic magmatism, *Precambrian Res.*, 333, 105431,
822 <https://doi.org/10.1016/j.precamres.2019.105431>, 2019.

823 Zhai, M. G. and Peng, P.: Origin of early continents and beginning of plate tectonics, *Sci. Bull. (Beijing)*, 65, 970-973,
824 10.1016/j.scib.2020.03.022, 2020.

825 Zhang, L., Zhai, M. G., Zhang, X., Xiang, P., Dai, Y., Wang, C., and Pirajno, F.: Formation age and tectonic setting of the
826 Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon
827 U–Pb dating, *Precambrian Res.*, 222-223, 325-338, <https://doi.org/10.1016/j.precamres.2011.09.007>, 2012.

828 Zhao, C., Liu, J., Zhang, H., Zhang, C., Chen, J., Cui, D., and Zhang, J.: Low-pressure ~ 3.53 Ga trondhjemite in the Eastern
829 Hebei: Implications on the continental nucleus formation of the North China Craton, *Precambrian Res.*, 417, 107668,
830 <https://doi.org/10.1016/j.precamres.2024.107668>, 2025b.

831 Zhao, C., Zhang, J., Zhao, G. C., Yin, C. Q., Chen, G., Liu, J., Liu, X., and Chen, W.: Kinematics and structural evolution of
832 the Anziling dome-and-keel architecture in east China: Evidence of Neoarchean vertical tectonism in the North China
833 Craton, *Geol. Soc. Am. Bull.*, 134, 2115-2129, 10.1130/b36225.1, 2021.

834 Zhao, D. Y., Cawood, P. A., Teng, F.-Z., Zhao, G., Xia, X. P., Sun, M., and Wang, X.: A two-stage mantle plume-sagduction
835 origin of Archean continental crust revealed by water and oxygen isotopes of TTGs, *Sci. Adv.*, 11, eadr9513,
836 10.1126/sciadv.adr9513, 2025a.

837 Zhao, G. C., and Zhai, M. G.: Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic
838 implications, *Gondwana Res.*, 23, 1207-1240, <https://doi.org/10.1016/j.gr.2012.08.016>, 2013.

839 Zhao, G. C., Sun, M., Wilde, S. A., and Li, S. Z.: Late Archean to Paleoproterozoic evolution of the North China Craton: key
840 issues revisited, *Precambrian Res.*, 136, 177-202, <https://doi.org/10.1016/j.precamres.2004.10.002>, 2005.

841 Zheng, Y., Zhou, Y., Zhai, M., Wang, X., Deng, X., Liu, R., Zhao, T., and Wu, T.: Ca. 2.1 Ga low- $\delta^{18}\text{O}$ gabbro-diorite
842 association in southern North China Craton: Implications for an intraplate rifting, *Lithos*, 430-431, 106858,
843 <https://doi.org/10.1016/j.lithos.2022.106858>, 2022.

844 Zhou, Y., Sun, Q., Zhao, T., and Zhai, M.: Petrogenesis of the early Paleoproterozoic low- $\delta^{18}\text{O}$ potassic granites in the southern
845 NCC and its possible implications for no confluence of glaciations and magmatic shutdown at ca. 2.3 Ga, *Precambrian
846 Res.*, 361, 106258, <https://doi.org/10.1016/j.precamres.2021.106258>, 2021.

847 Zhou, Y. and Zhai, M.: Mantle plume-triggered rifting closely following Neoarchean cratonization revealed by 2.50–2.20 Ga
848 magmatism across North China Craton, *Earth-Sci. Rev.*, 230, 104060, <https://doi.org/10.1016/j.earscirev.2022.104060>,
849 2022.

850 Zhou, Y., Zhai, M., Mitchell, R. N., Cawood, P. A., Huang, G., Spencer, C. J., Chen, M., Li, Y., Zhao, T., and Wu, T.: Low $\delta^{18}\text{O}$
851 and $\delta^{30}\text{Si}$ TTG at ca. 2.3 Ga Hints at an Intraplate Rifting Onset of the Paleoproterozoic Supercontinent Cycle, *J. Geophys.
852 Res.-Sol. Ea.*, 129, e2023JB027306, <https://doi.org/10.1029/2023JB027306>, 2024.

853 Zhu, R., Zhao, G., Xiao, W., Chen, L., and Tang, Y.: Origin, Accretion, and Reworking of Continents, *Rev. Geophys.*, 59,
854 e2019RG000689, <https://doi.org/10.1029/2019RG000689>, 2021.