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Abstract. High-precision and efficient atmospheric environmental forecasting is essential for protecting public health and
supporting environmental management. However, traditional physics-based numerical models, while mechanistically inter-
pretable, struggle to balance computational cost and forecast accuracy. Although artificial intelligence (AI) has advanced rapidly
in meteorological forecasting, most existing AI models are not optimized for atmospheric environmental prediction and rely
heavily on gridded inputs, limiting their ability to integrate site observations and their operational applicability. To overcome
these limitations, we develop BiXiao, a new-generation Al-based atmospheric environmental forecasting model. BiXiao features
a heterogeneous architecture with non-continuous grids, coupling independent meteorological and environmental modules
for synergistic use of multi-source data. The meteorological module employs a 3D Swin Transformer (Swin3D) to process
structured meteorological fields, while the environmental module directly assimilates discrete station data, enabling operational
urban-scale forecasts. Testing in the Beijing-Tianjin-Hebei region shows that BiXiao completes 72-hour forecasts for six major
pollutants across all key cities within 30 seconds. Compared with mainstream numerical models (CAMS and WRF-Chem),

BiXiao achieves substantially higher computational efficiency and forecast accuracy, particularly during heavy pollution events.

1 Introduction

High-precision and efficient atmospheric environmental forecasting is essential for protecting public health and supporting
environmental management. Traditional physics-based numerical models, while mechanistically interpretable, have long
struggled to achieve an effective balance between computational efficiency and forecast accuracy (Meng et al., 2023). For
decades, such models have served as the research cornerstone in this field, providing a physically grounded predictive framework
by solving complex partial differential equations that describe atmospheric dynamics, physical, and chemical processes (Wang
et al., 2008, 2024). However, this mechanism-driven paradigm faces significant challenges in reconciling accuracy with

computational cost, posing a fundamental limitation to further model advancement (Diiben et al., 2021).
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The rise of artificial intelligence (AI) has opened a transformative pathway for Earth system modeling. This evolution is
particularly evident in meteorological forecasting. Early studies explored the potential of fundamental deep learning architectures:
convolutional neural networks (CNNs) have shown strong spatial feature extraction capabilities for short-term precipitation
nowcasting (Ayzel et al., 2020), while recurrent neural networks (RNNs) and their variants effectively captured temporal
dependencies in dynamic meteorological processes (Xiao et al., 2019; Shi et al., 2015). The development of the ConvLSTM
architecture (Shi et al., 2015) marked a milestone by integrating convolutional and recurrent mechanisms to jointly model the
spatiotemporal evolution of atmospheric systems.

With advances in deep learning theory and computational capacity, research has entered the era of large-scale pre-trained
models. Huawei’s Pangu-Weather model (Bi et al., 2023), based on a three-dimensional Transformer, achieved accuracy
comparable to traditional numerical weather prediction (NWP) systems while improving computational efficiency by orders
of magnitude. Google’s GraphCast (Lam et al., 2023) introduced graph neural networks as an alternative paradigm. The
MetNet series (Sgnderby et al., 2020) demonstrated kilometer-scale precipitation forecasts through multi-source data fusion,
and FourCastNet (Pathak et al., 2022) extended data-driven forecasting boundaries with adaptive Fourier neural operators.
More recently, generative Al techniques such as diffusion models have shown promising potential—GenCast (Price et al.,
2023) enables probabilistic forecasting and uncertainty quantification, while Microsoft’s Aurora (Bodnar et al., 2025) extends
predictive capabilities to atmospheric composition, revealing the broad applicability of foundation models in Earth system
science.

Despite their impressive capabilities, these advanced Al models remain fundamentally constrained by the characteristics
of their training datasets. For instance, Aurora relies heavily on CAMS reanalysis data (Inness et al., 2019), resulting in
three core limitations: insufficient spatial resolution(~0.4° grids fail to capture urban-scale pollution gradients), incomplete
variable coverage (lack of surface concentration fields for key pollutants), and the absence of real-time data assimilation. This
dependence on structured gridded data highlights a fundamental disconnect between Al-driven forecasting systems and the
actual observational network—precisely the gap that must be bridged for fine-scale operational environmental forecasting.
Consequently, existing AI models often fall short of the high demands for precision, timeliness, and reliability required in
operational air-quality prediction and management (Zhou et al., 2017; Lin et al., 2020).

These technical constraints, coupled with escalating environmental management needs, form a pronounced contradiction.
As pollution control efforts deepen, the demand for refined and accurate forecasts continues to rise (Meng et al., 2023). In the
context of China’s Air Pollution Prevention and Control Action Plan, the strategic focus has shifted from “weather-driven” to
“emission-control-oriented” approaches, imposing stricter requirements on forecasting technology (Meng et al., 2025).

To address these challenges, we propose BiXiao, an innovative Al-based atmospheric environmental forecasting model.
BiXiao introduces a heterogeneous architecture with non-continuous grids, inspired by the offline coupling framework of
traditional numerical systems such as WRF-CMAQ (Wang et al., 2024). The design incorporates two independent modules:
a meteorological module that processes structured grid data, and an environmental module capable of directly assimilating
discrete observation data. This architecture fundamentally overcomes the dependence of existing AI models on regular grids

and enables effective utilization of monitoring-network data for fully operational forecasts. Moreover, the purely data-driven
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inference allows BiXiao to achieve second-level prediction speeds, providing exceptional adaptability for real-world applications
across diverse operational scenarios.

The remainder of this paper is organized as follows. Section 2 presents the model architecture and training methodology.
Section 3 describes the datasets and study region. Section 4 evaluates model performance and compares it with mainstream
systems. Section 5 validates BiXiao’s capabilities through a representative pollution episode, and Section 6 summarizes the

conclusions and outlines future perspectives.

2  Model Description
2.1 Model Name

The name “BiXiao” originates from a classical Chinese term for “blue sky,” derived from the famous verse by Liu Yuxi. The

model is thus named to symbolize an aspiration toward a cleaner and more beautiful atmospheric environment..
2.2 Model Architecture
2.2.1 Overall Framework

BiXiao adopts an “offline” architecture, consisting of two decoupled components—a meteorological module and an environ-
mental module. This configuration is conceptually similar to the “stand-alone” mode in the WRF-CMAQ numerical modeling
framework, in which the environmental module operates independently without feedback to the meteorological computations.
Such a design ensures modularity and plug-and-play flexibility.

To mitigate the excessive dependence of conventional Al models on structured gridded data and to better accommodate the
characteristics of observational datasets, BiXiao employs a heterogeneous architecture with non-continuous grids. Specifically,
the meteorological module follows the regular gridded structure of traditional numerical weather prediction (NWP) systems,
while the environmental module operates on discrete grids, enabling it to utilize irregular, station-based observations without
requiring complete gridded datasets. This design allows the environmental module to be trained and inferred directly from
scattered observation data.

During the training phase, the two modules are trained separately. The meteorological module, implemented as an autore-
gressive large model, is trained using reanalysis datasets such as ERAS. The environmental module is trained under idealized
meteorological backgrounds using both reanalysis data (e.g., ERAS) and in situ air-quality observations.

During the inference phase, the two modules operate sequentially. The meteorological module first generates gridded
meteorological forecasts, which provide background fields for the environmental module. The environmental module then
integrates these meteorological fields with discrete observational data to predict pollutant concentrations on discrete grids.
Specifically, the environmental module takes the initial meteorological state at time T+0 and its one-step prediction at T+1 as

inputs, together with environmental observations at T+0, to produce pollutant forecasts at T+1.
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2.2.2 Meteorological Module

The Swin Transformer is a vision-based deep learning architecture built upon the Transformer framework. Its core concept
involves partitioning input images into multiple windows and applying self-attention within each window to extract features
efficiently (Liu et al., 2021). Compared with the traditional two-dimensional Swin Transformer (Swin2D), the three-dimensional
Swin Transformer (Swin3D) extends this approach into 3D space, enabling it to capture volumetric and altitude-dependent
features that align well with the three-dimensional structure of the atmosphere. Owing to these advantages, Swin3D is highly
suitable for atmospheric modeling and has been successfully implemented in the large-scale meteorological model Pangu-
Weather (Bi et al., 2023).

To effectively address the joint prediction of upper-air (3D) and surface (2D) meteorological fields, this study develops a
3D Swin Transformer-based deep neural network following an encoder-decoder architecture. The key idea is to establish a
shared latent space that learns the deep representations of both upper-air and surface features, capturing their intrinsic physical
relationships for accurate future-state prediction. As illustrated in Fig. 1a, the module comprises three stages: multimodal data

embedding and fusion, hierarchical feature extraction and interaction, and feature decoding and output generation.
2.2.3 Multimodal Data Embedding and Fusion

To reconcile the dimensional inconsistencies among input data, parallel Patch Embedding layers are designed at the model
entrance. For upper-air meteorological data (dimensions: BatchSize x Variables x Levels x Height x Width), 3D convolutional
layers (Conv3D) are applied for feature extraction and downsampling. For surface data (dimensions: BatchSize x Variables x
Height x Width), 2D convolutional layers (Conv2D) are used. The resulting surface feature tensors are then expanded along the
vertical dimension and concatenated with upper-air tensors to form a unified 3D feature tensor (BatchSize x Channels x Depth

x Height x Width). This design achieves spatial alignment and preliminary fusion of multi-modal meteorological features.
2.2.4 Hierarchical Feature Extraction and Interaction

The fused feature tensor is processed by the model’s core feature extractor, which consists of multiple BasicLayers, each
composed of several SwinTransformerBlock3D modules. The main innovation of these blocks lies in the 3D window-based
multi-head self-attention mechanism. In this approach, the feature map is partitioned into a set of non-overlapping local 3D
windows (e.g., 2 X 4 x 4), and self-attention is computed within each window, substantially reducing computational complexity.

To promote cross-window information exchange, the model alternates between regular and shifted window partitioning
strategies in consecutive layers. In addition, learnable relative position bias is introduced to encode 3D spatial relationships,
enabling the model to better capture dependencies across longitude, latitude, and altitude. Through hierarchical stacking, the
receptive field progressively expands, allowing the model to learn global-scale atmospheric patterns from local features and

effectively capture the complex spatiotemporal dynamics of meteorological fields.
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Figure 1. Schematic Diagram of the "BiXiao" Large Model Architecture

2.2.5 Decoding and Output

The decoder (Patch Recovery) performs operations symmetric to those of the encoder. The deeply transformed latent features are

separated along the vertical dimension to reconstruct distinct representations for upper-air and surface components. Subsequently,

3D transposed convolutions (ConvTranspose3D) are applied to upsample the upper-air features, restoring their original vertical

and horizontal resolutions, while 2D transposed convolutions (ConvTranspose2D) are used for surface features. Finally, the

model outputs the predicted upper-air and surface variables simultaneously, achieving end-to-end, multi-variable meteorological

forecasting.
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2.2.6 Environmental Module

The environmental module of BiXiao is designed to infer future atmospheric composition by integrating the spatiotemporal
evolution of meteorological fields with the current environmental state. The key principle is to extract multi-temporal, three-
dimensional meteorological features that capture the evolution of atmospheric dynamics and use these as “background fields” to
drive environmental predictions. This approach reflects the underlying physical mechanism in which environmental variables

are governed by meteorological forcing, while leveraging deep learning to simulate this interaction.
2.2.7 Multi-temporal Meteorological Feature Extraction

Although the environmental and meteorological modules are trained independently, the environmental module reuses the 3D
Swin Transformer architecture from the meteorological component for feature extraction. Instead of focusing on the stepwise
inference from T+0 to T+1, this module processes meteorological fields at multiple time points (T+0 and T+1) through the same
patch embedding, hierarchical feature extraction, and interaction procedures described in Section 2.2.2. This enables the model

to capture the temporal evolution of meteorological conditions and extract consistent dynamic features across time.
2.2.8 Meteorology-Environment Feature Fusion

A major innovation of the environmental module lies in its efficient feature fusion mechanism, which integrates meteorological
background information with environmental observations. The fusion process consists of two stages. First, the meteorological
features extracted by Swin3D are compressed via dimensionality reduction convolutions to match the dimensionality of
environmental data. Then, the compressed meteorological feature vectors are concatenated with environmental observation
vectors to form a unified representation of fused features.

This design carries clear physical significance: meteorological features represent the external dynamic forcing that drives
environmental changes, while environmental observations describe the current initial state. Their combination allows the model
to simultaneously account for both external forcing and initial conditions, aligning with the fundamental physical principles of
atmospheric evolution. To enhance cross-domain interactions, a feature interaction mechanism is implemented through nonlinear

transformations in fully connected layers, facilitating information exchange between the two feature sources.
2.2.9 Environmental Evolution Network

Building upon the fused feature representation, the environmental module employs a multi-layer perceptron (MLP) network to
map these features to future environmental states. The network follows an encoder-decoder structure, where the hidden layers
apply SiL.U activation and Dropout regularization to balance expressiveness and generalization.

The output layer directly maps predictions onto station-level dimensions, enabling a transformation from continuous feature
space to discrete observation sites. This design eliminates the error accumulation often caused by grid interpolation in traditional

methods, allowing the model to learn directly from site-level observations and thus substantially improving prediction accuracy.
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3 Model Training and Validation
3.1 Data and Study Area
3.1.1 Study Area

In this study, the Beijing-Tianjin-Hebei region (34.75°N-43°N, 112.5°E-120.75°E) is selected as the research area. This region
is one of the most economically developed and densely populated in China. Furthermore, it is one of the first regions in China to
deploy atmospheric environment forecasting services. In the future, precise forecasting of air pollutants in the Beijing-Tianjin-
Hebei region will continue to be of significant importance, and atmospheric environment forecasting remains a foundational task
for environmental protection in the area.

The Beijing-Tianjin-Hebei region is a high-incidence area for haze events, and its pollution characteristics are representative of
other major urban areas in China. Conducting model training and testing in this region will help improve the model’s adaptability
and provide a reliable basis for its broader application across the country. Moreover, compared to direct nationwide training and
forecasting, focusing on a regional study reduces the computational resource demands, thus facilitating the efficient development

and optimization of the model.
3.1.2 Meteorological Field Data

The "BiXiao" model uses ERAS5 reanalysis data as the driving data for the meteorological module. ERAS is generated using the
four-dimensional variational (4D-Var) data assimilation and model forecasting methods from the ECMWF Integrated Forecasting
System (IFS), version CY41R2. The data has a horizontal resolution of 0.25°x0.25° and is widely used in atmospheric science
(Hersbach et al., 2020). The ERAS5 data used in this study includes both three-dimensional and two-dimensional variables.

Three-Dimensional Variables: These primarily include vertical velocity, temperature, and geopotential height, with values
obtained from a global model on 137 model layers. The data is then interpolated through the FULL-POS method in IFS to 37
pressure levels.

Two-Dimensional Variables: These include surface (or single-layer) data, such as precipitation and top-of-atmosphere
radiation, with values provided as vertical integrals over the entire atmospheric depth.

In terms of temporal coverage, this study uses ERAS data from January 2014 to March 2024, extracting meteorological
variables at UTC times 00, 06, 12, and 18. Since the primary task of the environmental module is to predict various chemical
environmental elements at ground-based observation stations, this study focuses on six prressure-level atmospheric variables
at six levels (500, 600, 700, 850, 925, and 1000 hPa), as well as five surface variables, totaling 41 elements. These specific
variables are listed in Table 1.

In terms of data area selection, considering that this study focuses on the Beijing-Tianjin-Hebei region and to improve training
efficiency, the original ERAS5 data with a spatial resolution of 0.25° (a total of 721 x 1440 grid points) is cropped. The data
driving the meteorological module covers the area from 14.75° N to 55° N and 65° E to 140° E, as shown in the full map in

Figure 2 (left), corresponding to 160 x 300 grid points. The data driving the environmental module is further focused on the
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Table 1. List of meteorological variables used in the model.

short-name long-name levels

u U-component of wind pressure levels
v V-component of wind pressure levels
w Vertical velocity pressure levels
t Temperature pressure levels
q Specific humidity pressure levels
z Geopotential pressure levels
t2m 2 m temperature surface

ul0m 10 m U-component of wind  surface

v10m 10m V-component of wind  surface

d2m 2 m dewpoint temperature surface

sp Surface pressure surface

Beijing-Tianjin-Hebei region (34.75° N-43° N, 112.5° E-120.75° E), corresponding to 34 x 34 grid points, as shown in Figure 2
(right).

In addition, the meteorological variables used in the environmental module are consistent in type with those in the meteoro-
logical module, but differ slightly in pressure levels. Specifically, only the four lower atmospheric levels (700, 850, 925, and

1000 hPa) that are closer to the surface are used to better capture near-surface meteorological conditions influencing air quality.
3.1.3 Environmental Field Data

This study uses hourly observational data from 79 environmental monitoring stations in the Beijing-Tianjin-Hebei region,
covering the period from January 2021 to March 2024, as training data (specific station information can be found in the
Appendix). The observational data includes the six major pollutants specified in China’s "Ambient Air Quality Standards,"
namely sulfur dioxide (SO,), nitrogen dioxide (NO,), carbon monoxide (CO), ozone (O3), and particulate matter (PM, 5 and
PMyo).

To ensure compatibility with the ERAS meteorological data at a 0.25° resolution, the station observation data is gridded.
Specifically, each station’s observational data is assigned to the nearest ERAS grid based on the station’s latitude and longitude.
For grids with only one station, the atmospheric environmental observation value directly uses the data from that station. If
multiple monitoring stations exist within a grid, the air quality level of the grid is represented by the average value of all station
data. After data processing, the 79 stations in the Beijing-Tianjin-Hebei region are mapped to 29 valid grids, as shown by the red

grid points in Figure 2 (right).
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Figure 2. Meteorological Data Range for the Meteorological Module (Left) and Meteorological Data Range and Environmental Grid
Distribution for the Environmental Module (Right)

3.2 Model Training

Before training the model, all input data, including ERAS meteorological fields and environmental station data, need to undergo
preprocessing. The preprocessing steps mainly include calculating the mean and variance required for data normalization,
ensuring the stability of data distribution during the model training process. After preprocessing, all data are divided into two
parts: the "training set" for training and the "test set" for testing.

For the selection of training data, the meteorological module’s training data include ERAS data from January 2014 to March
2024, using data from four time points: UTC 00, 06, 12, and 18. The environmental module’s training data use hourly data from
January 2021 to March 2024. For the test set selection, to ensure objectivity, five consecutive days of data are randomly selected
each month as the test set, and this portion of data does not participate in model training and validation. Additionally, to further
evaluate the model’s performance in forecasting typical heavy pollution events, extra data from an ozone pollution event in the
Beijing-Tianjin-Hebei region in June 2022 and a PM, 5 pollution event in October 2023 are included in the "test set," while the
remaining data are used as the training set.

The model training uses smoothL1 loss as the loss function and employs supervised learning to optimize the model’s
single-step autoregressive prediction. The model construction and training are based on the PyTorch framework, and the AdamW
optimizer is used in conjunction with a linear decay scheduler to dynamically adjust the learning rate, improving training
convergence efficiency. The meteorological module and environmental module are trained independently, with substantial

differences in training duration and computational resource requirements. For example, the meteorological module is trained
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using 8 Nvidia RTX 4090 GPUs, completing 150 epochs of training in several hours, with the final loss reduced to 0.02. The
environmental module is trained on a single Nvidia RTX 4090 GPU, requiring 24 hours to complete 200 epochs of training, with
the final loss reduced to 0.01. While further training could still lower the loss, the prediction accuracy on the validation set did

not show significant improvement, indicating that a lower loss does not necessarily correlate with better generalization ability.
3.3 Model Validation
3.3.1 Validation Metrics

The model performance is evaluated using three metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
Pearson Correlation Coefficient (PCC).

— RMSE reflects the average deviation between the model’s predicted values and the actual values. It is more sensitive to

larger errors and provides a comprehensive measure of the overall deviation of the predicted values.

— MAE is used to assess the average absolute error between the predicted and actual values, focusing on the actual magnitude

of errors.

— PCC measures the linear correlation between the predicted values and the actual values. A PCC value closer to 1 or -1
indicates a strong linear correlation between the predicted and actual values, while a value closer to 0 indicates a weak

linear correlation.

These three metrics are common model evaluation parameters and have been widely used in many related studies. The specific

calculation methods for the three parameters are as follows:

1
— J— . )2
RMSE N;(Pl 0,)2, (1)
1 N
MAE = N;mf()ﬂ. (2)

i, (P —P)(0;—0)
VI (P - P2y SN, (0, - 0)2

3.3.2 Validation Experiment

PCC = 3)

As mentioned earlier, to avoid having data samples in the test set that are similar to those in the training set, this study strictly
divides the training and test datasets to ensure their independence. In the validation experiment, simulation predictions are made

for the selected data samples from the test set, and the results are compared with the measured data. For the 5-day test set, ERAS
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reanalysis data for the first two days at UTC 00, 06, 12, and 18 hours are used as the initial input for the meteorological fields
(T+0), and the corresponding environmental observation data for the same times are used as the initial state of the environmental
fields (T+0). The model uses a 6-hour time step for inference, generating pollution concentration simulation results for the next
72 hours. The simulation results are then compared with the remaining 3 days of measured data. The entire validation experiment
includes 308 forecast times, and the model’s prediction results are verified using the measured data. The RMSE, MAE, and PCC
values for the forecast results at different time steps on all grids are calculated and used to assess the model’s forecasting ability.

Figure 3 shows the overall forecast performance of the "BiXiao" model. The forecast results are categorized and statistically
analyzed according to the latitude and longitude of the grids and the administrative divisions of the Beijing-Tianjin-Hebei
(Beijing-Tianjin-Hebei) region. The analysis focuses on the forecast correlation coefficients (PCC) for O3, PM; s, and PMyg
at 6 h, 48 h, and 72 h forecast times for different administrative regions. Figure 4 presents the PCC, RMSE, and MAE for six
pollutants (O3, PM; 5, PM g, NO,, CO, SO,) at different forecast time steps across all grids.

Among the six pollutants, "BiXiao" performs best in simulating O3. For forecasts from 6 h to 72 h, the PCC for O3 consistently
outperforms other pollutants, with the average O3z PCC across 29 grids reaching as high as 0.91 at 6 h. The RMSE and MAE
for O3 forecasts remain moderate, at 2646 g m-3 and 2045 g m-3, respectively. Regional analysis shows that the forecast
performance for O; is better in the central areas of Beijing-Tianjin-Hebei, such as Beijing, Tianjin, Langfang, and Baoding,
where the PCC at all forecast times is slightly higher than in other areas of the region.

For particulate matter concentration forecasts, the performance of the "BiXiao" model for PM; 5 and PM is similar, with
slightly better performance for PM, 5. At the 6-hour forecast, the PCC for PM; 5 and PM are 0.86 and 0.79, respectively. As
the forecast time increases, the correlation gradually decreases, with the PCC for PM showing a more pronounced drop after
48 h and remaining slightly lower than for PM, 5. Since PM( concentration includes PM; s, the RMSE and MAE for PM are
higher than those for PM, 5 across all forecast periods, with a noticeable increase in RMSE and MAE for PM after 48 h. The
reasons behind this trend require further investigation. Spatial distribution analysis indicates that "BiXiao" performs better in
simulating particulate matter in the southern and central regions of Beijing-Tianjin-Hebei.

For other gaseous pollutants, the "BiXiao" model shows acceptable forecast ability for NO, and CO, with a relatively steady
decrease in PCC as the forecast time increases. The RMSE and MAE for these two pollutants also increase gradually with
forecast time, though the increase is relatively small. Specifically, the RMSE for NO, and CO are 14+3 g m-3 and 0.3240.04
mg m-3, respectively, while the MAE for NO; and CO are 11+2 ug m-3 and 0.22+0.04 mg m-3, respectively. Compared to
other pollutants, the forecast correlation for SO, is the lowest, but its RMSE and MAE show relatively stable changes.

Overall, these results suggest that "BiXiao" excels in simulating O3 and particulate matter, while there is still considerable
room for improvement in simulating SO,.

Pearson Correlation Coefficient (PCC)

Root Mean Square Error (RMSE)

Mean Absolute Error (MAE).
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Figure 3. Pearson Correlation Coefficient (PCC) between the simulated and observed values for "BiXiao," where the first column represents

the 24-hour forecast, the second column represents the 48-hour forecast, and the third column represents the 72-hour forecast.
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Figure 4. the following between the predicted values of "BiXiao" and the actual observed values:
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4 Routine Environmental Forecasting — ''BiXiao' vs CAMS
4.1 Experimental Setup

ECMWF’s CAMS provides global atmospheric environmental monitoring and forecasting, widely recognized in the industry for
its high forecasting capability and broad representativeness (Inness et al., 2019). Therefore, this study selects CAMS forecast
data as a benchmark to evaluate the performance of the "BiXiao" model in operational environmental forecasting.

When comparing, two main issues must be considered: spatial and temporal matching. In terms of spatial matching,
environmental forecast results from CAMS are extracted from the corresponding locations based on the latitude and longitude
of the 29 discrete environmental grids in "BiXiao." For temporal matching, both CAMS and BiXiao provide 6-hour forecast
intervals, and the comparison is made over the 72-hour forecast period.

It is worth noting that since CAMS only provides forecast results at UTC 00:00 and 12:00 each day, the comparison
is conducted using only the common start times between CAMS and BiXiao. Additionally, as CAMS provides surface
concentrations of PM; s and PM( only, whereas "BiXiao" forecasts column concentrations of pollutants, the comparison is
focused only on particulate matter (PM, s and PM (). The experiment uses observed environmental grid data to validate the

forecast results from both CAMS and BiXiao to assess the differences in forecasting performance between the two models.
4.2 Experimental Results
4.2.1 Grid-based Statistical Comparison

The comparison of PM, s and PM forecast results between "BiXiao" and CAMS across the 29 valid grids is shown in Figure 5.
In the 6-hour forecast, "BiXiao" outperforms CAMS, with a Pearson Correlation Coefficient (PCC) of 0.87 for PM, s and 0.82
for PM, significantly higher than CAMS’s PCC of 0.60 for PM; s and 0.45 for PM;y. The RMSE (MAE) for PM; 5 and PMg
in "BiXiao" are 21.41 pug/m3 (12.45 pg/m?) and 41.55 pg/m? (20.94 pg/m?), respectively, much lower than the RMSE (MAE)
of 40.86 pg/m3 (27.7 pg/m?) and 72.03 pg/m? (43.25 pug/m?) in CAMS.

As the forecast time increases, the forecast performance of both models decreases. Overall, for most forecast times, the
PCC between the forecasted pollutant concentrations and observations decreases as forecast duration increases, with "BiXiao"
maintaining higher correlation than CAMS. In the longer forecast period, i.e., the 72-hour forecast, "BiXiao" achieves PCC
values of 0.44 for PM; 5 and 0.40 for PM,o, while CAMS’s PCC for PM; s and PM; are 0.45 and 0.31, respectively.

From the error perspective, the RMSE and MAE for PM, s, as well as the MAE for PM, consistently show that "BiXiao" has
lower deviations compared to CAMS across all forecast times. This indicates that "BiXiao" has an overall superior forecasting
ability for particulate pollutants, particularly in the short-term forecasts.

(a) PM, 5 Pearson Correlation Coefficient (PCC)

(b) PM;( Pearson Correlation Coefficient (PCC)

(c) PM; 5 Root Mean Square Error (RMSE)

(d) PM;y Root Mean Square Error (RMSE)
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Figure 5. Comparison of forecast accuracy between the "BiXiao" model and CAMS:

(e) PM, 5 Mean Absolute Error (MAE)
(f) PM ¢y Mean Absolute Error (MAE)

310 4.2.2 Effective Grid Comparison

On the 29 valid grids, the forecast performance of the "BiXiao" model for PM; s and PM;y was compared with the numerical
model CAMS at the same forecast time, as shown in Figure 6. The comparison results are presented using interpolation, where
the difference in the Pearson Correlation Coefficient (PCC) is calculated as "BiXiao" minus "CAMS," and the difference in the

Root Mean Square Error (RMSE) is calculated as "CAMS" minus "BiXiao."
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For PM, 5 forecasting, within the first 48 hours, BiXiao consistently outperforms CAMS with higher PCC and smaller RMSE
across all grids. After 48 hours, BiXiao’s PCC is slightly lower than that of CAMS in the central and eastern regions of the
Beijing-Tianjin-Hebei (Beijing-Tianjin-Hebei) area, but the RMSE is still smaller than CAMS in most grids.

For PM | forecasting, the evaluation results in the first 24 hours show similar characteristics to those of PM; 5, with BiXiao
achieving higher PCC and smaller RMSE in all grids compared to CAMS. After 24 hours, BiXiao continues to outperform
CAMS in PCC, and most regions also show smaller RMSE than CAMS, with a few grids in the southern region showing slightly
worse performance. After 48 hours, BiXiao’s PCC in the southern and northern regions is slightly lower than CAMS, with
similar trends observed in the RMSE.

This trend is speculated to be related to the method of combining environmental grids, where each environmental grid
represents the average data of all the monitoring stations within that grid. In the central urban areas, where monitoring stations
are more concentrated, the data in each grid is more stable, leading to better model performance in these areas. Overall, BiXiao
shows a significant advantage in the first 48 hours of forecasting. After 48 hours, the forecast ability in some regions gradually

declines to the point where it becomes comparable to or slightly worse than CAMS.

5 Heavy Pollution Case Forecast—*“BiXiao” vs WRF-Chem
5.1 Experimental Setup

In this study, the WRF-Chem model, developed jointly by the NOAA Forecast Systems Laboratory (FSL) and the Pacific
Northwest National Laboratory (PNNL), is selected as a representative atmospheric environment model for comparison. The
analysis aims to compare the performance of WRF-Chem and the "BiXiao" model in predicting typical fine particulate matter
(PM;5) and ozone (O3) pollution events.

The two pollution events selected for this study are the O3 pollution event from June 24-27, 2022, and the PM; s pollution
event from October 28-31, 2023. Both WRF-Chem and "BiXiao" models are used to simulate these two events, and the results
are compared with observed data.

The WRF-Chem model is set up with two nested grids. The first grid consists of 91 x74 horizontal grid points, while the
second grid, which covers the Beijing-Tianjin-Hebei (Beijing-Tianjin-Hebei) region, has a resolution of 27 km and includes
97x 106 grid points. The boundary conditions for the second grid are provided by the first grid. The simulations for the two
pollution events start at 00:00 on June 21, 2022, and October 25, 2023, respectively. The first 72 hours are used for model
integration, and the subsequent 72 hours serve as the effective forecast period.

In this study, WRF-Chem version 4.1 is used with the RADM2 chemical mechanism and the MADE/SOGARM aerosol
parameterization scheme. Anthropogenic emission sources are based on the 2023 release of the Chinese Multiscale Emission
Inventory (MEIC v1.4) (http://www.meicmodel.org/).

The "BiXiao" model uses ERAS data for meteorological initial conditions at 00:00 on June 24, 2022, and October 28, 2023,

respectively, and uses environmental observational data from the same times as environmental initial conditions. The model runs
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PM; s RMSE Diff - Day 1 PM;o PCC Diff - Day 1 PM;o RMSE Diff - Day 1
7 T 7

\

\
\

1-day, 2-day, and 3-day forecast periods: Pearson Correlation Coefficient (PCC) difference (BiXiao minus CAMS) and Root Mean Square
Error (RMSE) comparison (CAMS minus BiXiao).

with a 6-hour time step to forecast the next 72 hours. The experimental results are compared with observed environmental grid

data to evaluate the forecast performance of both models during these typical pollution events.
5.2 Experimental Results
5.2.1 Ozone Pollution Case Study

In June 2022, frequent extreme heat events occurred across northern China, coinciding with increased ozone (O3) pollution. The
temporal and spatial distribution of ozone pollution, including its intensity, significantly intensified during this period, with a
strong correlation between temperature anomalies and O3 pollution in the Beijing-Tianjin-Hebei (BTH) region (Yang et al.,
2025). This study focuses on a specific ozone pollution event from June 24 to 27, 2022, to assess the forecasting capability of the

BiXiao model. During this event, peak O3 concentrations in the BTH region occurred at 14:00 local time (UTC 06:00) on June
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Figure 7. 500 hPa geopotential height and temperature map for June 24-27, 2022, 00:00 UTC.

25 and 26, with grid-averaged O3 concentrations reaching 270.0 g m~2 and 163 g m~3, respectively, surpassing the Chinese
air quality standards. During this period, the region was under the influence of a weather pattern following an upper-level trough
(Figure 7), with clear skies, no precipitation, high temperatures, and weak winds. Afternoon surface temperatures in the grid
averaged above 30°C, peaking at 37°C on June 25, and the relative humidity at the surface was 76% in the afternoon of the same
day. Strong sunlight and high temperatures accelerated photochemical reactions, fostering O3 formation. The near-surface wind
speed peaked at 4.8 m s~! at 06:00 UTC on June 25 and 26, with wind speeds not exceeding 3.7 m s~ at other times during the
event, which hindered pollutant dispersion.

Figure 8 presents the forecast results of the BiXiao and WRF-Chem models, initialized at 00:00 UTC on June 24, 2022.
Both models predict the trend of O3 concentration well, though WRF-Chem tends to underestimate the values compared to
observations. Throughout all forecast hours, the mean forecast values from BiXiao are closer to the observed values than those
from WRF-Chem. During this pollution event, at 14:00 local time on June 25, 2022 (UTC 06:00), which corresponds to the
30th hour of the model forecast, O3 concentration reached its peak, with a correlation coefficient of 0.82 between BiXiao and
observations, while WRF-Chem had a value of -0.34. Six hours later, at the 36th hour of the forecast, O3 concentration reached
its secondary peak of 201 pg m-3, with a correlation coefficient of 0.55 for BiXiao and 0.02 for WRF-Chem. At these two
times, the mean absolute errors of BiXiao were 85.33 pg m-3 and 56.37 ug m-3, respectively, lower than WRF-Chem’s 181.38

pg m-3 and 91.28 pg m-3. For all other forecast times between 0 and 72 hours, the average absolute error between BiXiao
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Figure 8. Time series of average pollutant concentrations during the O3 pollution event and forecast values from BiXiao and WRF-Chem

(top), surface wind speed and temperature time series (middle), and surface relative humidity and pressure time series (bottom).

and observations was approximately 21.43 pg m-3, indicating the high accuracy of the BiXiao model in forecasting the ozone
pollution event.

Figure 9 shows the average pollution levels across all grids during the entire pollution event, as well as the average forecast

375 errors of BiXiao and WRF-Chem in different grids. BiXiao’s average absolute forecast error is consistently lower than that

of WRF-Chem across all grids. Moreover, the distribution of BiXiao’s forecast errors is more uniform across different grids,
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Figure 9. Distribution of average O3 observed concentration (left), BiXiao forecast average absolute error (middle), and WRF-Chem forecast

average absolute error (right) across different grids for the 6-72 hour forecast period starting from 00:00 UTC, June 24, 2022.

whereas WRF-Chem exhibits larger forecast errors in the central region, where O3 pollution is more severe. Overall, BiXiao

outperforms WRF-Chem significantly during this O3 pollution event.
5.2.2 PM,;;5 Pollution Case

From October 29 to November 1, 2023, the Beijing-Tianjin-Hebei (Beijing-Tianjin-Hebei) region experienced a severe PM, 5
pollution event, influenced by both local emissions (such as motor vehicle exhaust, industrial furnaces, and straw burning)
and regional transport. Several cities, including Beijing, Tianjin, Shijiazhuang, and Anyang, issued heavy pollution weather
warnings. This study selected this pollution episode for a comparative analysis, with a forecast start time of 00:00 UTC, October
29, 2023, and a total forecast period of 72 hours, to evaluate the forecasting capability of the BiXiao model and compare it with
numerical forecast models.

Meteorologically, starting from October 29, the Beijing-Tianjin-Hebei region and surrounding areas were under the control of
a saddle-shaped pressure pattern, characterized by low surface pressure and persistent southerly winds near the surface with
an average wind speed of only 2 m/s. Due to the static weather pattern, atmospheric diffusion conditions in the region were
unfavorable. As shown in Figure 10, this pollution event was also accompanied by prolonged high temperatures and humidity.
The highest near-surface temperatures exceeded 23°C, while the relative humidity at night reached 97%, nearly saturated, which
favored the accumulation and transformation of particulate pollution. During this pollution event, the PM, 5 concentration peaked
at 20:00 local time (12:00 UTC) on both October 29 and 31, with the average grid concentrations in the Beijing-Tianjin-Hebei
region reaching 151.4 ug/m?3 and 147.1 pug/m?®, respectively.

Figure 11 shows the average observed PM, 5 concentrations across all grids during the forecast period, as well as the
forecasted concentrations from the BiXiao and WRF-Chem models. Comparing the forecast results every 6 hours with observed

concentrations, BiXiao’s forecasts are closer to the observed values, with the highest correlation coefficient of (.82 at the Oh and
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Figure 10. 500 hPa geopotential height and temperature map from 00:00 UTC, October 29 to November 1, 2023.

30h forecast times. The correlation coefficients are lower at the 24h and 72h forecasts, at 0.49 and 0.56, respectively, with the
average absolute error around 37.07416.65 pg m-3. In contrast, WRF-Chem’s forecasts exhibit an underestimation, with lower
correlation coefficients, peaking at 0.67 at the 30h forecast time.

Figure 12. Average pollutant concentrations in different grids during the forecast period, along with the average absolute
forecast errors from BiXiao and WRF-Chem in various grids. BiXiao exhibits higher forecast accuracy for fine particulate
concentrations in northern regions of the Beijing-Tianjin-Hebei area compared to the southern regions, with the northern average
absolute error for PM, 5 around 32 pg m~2 (e.g., Zhangjiakou, Beijing, Chengde). Compared to BiXiao, WRF-Chem shows
larger forecast errors in most grids, with significantly higher errors in the heavily polluted central and southern regions. Overall,

BiXiao performs significantly better than WRF-Chem in forecasting this PM, 5 pollution event.

6 Conclusion

To address the limitations of traditional numerical forecasting models, such as low computational efficiency and insufficient
resolution in atmospheric environmental element predictions, this study proposes the "BiXiao" AI model for atmospheric
environmental forecasting based on a non-uniform grid design. Leveraging the rapid development of Al-driven meteorological
large models, the "BiXiao" model innovatively integrates the weather and environmental modules in a "heterogeneous"
architecture. This approach enables the direct use of discrete station observation data, overcoming the current dependency of Al

large models on gridded data.
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Figure 11. Time series of average pollutant concentrations during the PM, s pollution event and forecast values from BiXiao and WRF-Chem

(top), surface wind speed and temperature time series (middle), surface relative humidity and pressure time series (bottom).
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Figure 12. Distribution of average PM, s observed concentrations (left), BiXiao forecast average absolute errors (middle), and WRF-Chem

forecast average absolute errors (right) for different grids over the 6-72 hour forecast period, starting from 00:00 UTC on October 29, 2023.

The meteorological module employs a 3D Swin Transformer as the backbone network to extract three-dimensional atmospheric
dynamic features. The environmental module combines the evolution characteristics of the meteorological fields with discrete
environmental field data to accurately predict six major pollutants. Additionally, the model can perform inference tasks using a
single GPU, significantly improving computational efficiency compared to traditional numerical models.

In validation experiments using the test dataset, the BiXiao model demonstrated strong performance, with the best 6-hour
O3 forecast, achieving a correlation coefficient (PCC) of 0.91. The PCC for PM; s and PM, forecasts were 0.86 and 0.79,
respectively. In comparisons with the mainstream numerical model CAMS for 72-hour forecasts, BiXiao outperformed CAMS
in the first 48 hours in terms of both PCC and RMSE for particulate matter forecasts. After 48 hours, BiXiao’s performance
slightly lagged behind CAMS in small regional areas, though it still outperformed CAMS in most regions. The model reduced
short-term RMSE errors for PM, 5 and PM( by over 50% compared to CAMS.

In case study simulations, the BiXiao model showed better performance in simulating PM; 5 and O3 pollution events, with
significantly lower average errors compared to the WRF-Chem model, demonstrating stronger robustness. This positions the
BiXiao model as a new paradigm for fine-scale urban atmospheric environment forecasting.

The development of the BiXiao model marks an initial attempt to apply Al technologies in atmospheric environmental
research. Future extensions will focus on the following directions: Firstly, incorporating satellite remote sensing, mobile
monitoring data, and other observational data to build a multi-modal dataset that enhances the model’s ability to capture
local pollution sources. Secondly, expanding the model’s research into pollution source tracing capabilities, in addition to
forecasting. Finally, addressing the simulation needs for different emission reduction scenarios in atmospheric environmental
forecasting, incorporating emission source impact factors into the BiXiao model. The model will also be extended from the
Beijing-Tianjin-Hebei region to nationwide applications, with a focus on its suitability in complex terrains (such as plateaus

and basins) and typical pollution areas (such as the Yangtze River Delta and Pearl River Delta). With these improvements, the
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BiXiao model is expected to become an important technological tool in the "pollution reduction and carbon reduction” strategy,

providing a Chinese solution for global atmospheric environmental governance.
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