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Abstract. Direct in-situ observation of marine CO; concentrations is, crucial for estimating air-sea

CO; fluxes, yet such observations remain scarce. Drawn on experiences from urban CO, monitoring and
buoy-based measurements, this study deployed a sea-air interface buoy platform in the northern South

China Sea, near Maoming, Guangdong Province, China. This platform was equipped with three low-cost

5  SenseAir K30 sensors to enable continuous atmospheric CO, measurement. This paper presents the first
detailed account of the methodology, encompassing hardware design, environmental corrections, land-

based validation tests, offshore deployment procedures, and initial observational results. These findings

thus provide valuable insights for advancing marine CO; observations practices. To mitigate the impacts

of temperature, humidity, and pressure on sensor readings - while simultaneously compensating for zero-

10  drift - an environmental correction method was implemented. This approach significantly improved data
accuracy: in land tests, the root mean square errors was reduced from 8.03 ppm to 3.64 ppm; in marine
observations, the root mean square errors decreased from 24.26 ppm to 1.59 ppm. Importantly, this level

of precision meets the requirements for resolving sea surface CO, dynamics (~420-480 ppm). Observed
concentrations were consistent with HYSPLIT-simulated long-range atmospheric transport, revealing

15  the stable and homogeneous nature of the marine atmospheric boundary layer, with diurnal variations of
approximately 3 ppm, and capturing localized or short-term fluctuations due to terrestrial carbon sources.

These results demonstrate the effectiveness of the method, offering a low-cost, high-density solution for
marine atmospheric CO, monitoring and providing key inputs for inversely estimating ocean carbon sink.
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20 1 Introduction

Since the Industrial Revolution, less than half of the carbon emitted into the atmosphere by human
activities remains in the atmosphere (Friedlingstein et al., 2020; Costa et al., 2023), highlighting the
pivotal role of terrestrial and ocean sinks in regulating atmospheric CO, concentrations. From 2013 to
2022, the ocean absorbed and stored CO, approximately 26% of total anthropogenic CO; emissions

25 (Friedlingstein et al., 2023). The ocean stores a vast amount of CO2, with inorganic carbon reservoir
approximately 50 times greater than those in the atmosphere (Sabine et al., 2004). Therefore, studying
oceanic CO; sources and sinks is crucial for developing mitigation strategies and mitigate climate change.
The most widely and extensively applied, and long-established method for ocean carbon sink
investigation involves measuring the partial pressure difference of CO, (ApCO,) across the air-sea

30 interface (Song et al., 2023). Continuous observations used to calculate the air-sea CO- flux, providing
the most direct characterization of the ocean carbon cycle system (Wanninkhof et al., 2019; Song et al.,
2023).

Owing to the past several decades of continuous observations, a large amount of sea surface pCO-
data has been accumulated, yet it remains insufficient relative to the vast ocean area. The Surface Ocean

35 CO; Atlas (SOCAT 2023) revealed that the ocean area covered by monthly CO, measurements has
decreased by nearly half since 2017, reflecting the decline in global open-ocean CO; observation capacity
(Bakker et al., 2024). Although recently studies have increasing employed artificial intelligence and big
data technologies to investigate the dynamics of ocean carbon sinks (Landschiizer et al., 2013; Xu et al.,
2019; Yu et al., 2023), the fundamental limitation of in-situ field observation remains unresolved. Due

40  to the limited spatial and temporal coverage of ApCO, measurements, as well as uncertainties in wind
forcing and transport velocity parameterization, the uncertainty in global and regional fluxes estimated
from ApCO, measurements can reach up to #50% (Wanninkhof et al., 2013; Rhein et al., 2013). In
addition to ApCO, data, air-sea CO; fluxes can also be estimated using a top-down inversion method
that integrates atmospheric CO> concentrations with atmospheric transport models (Jacobson et al., 2007;

45  Wanninkhof et al., 2019). Spatial and temporal variations in atmospheric CO; concentrations reflect the
pattern of sources and sinks across large spatial scales. Consequently, top-down atmospheric inversion

methods are suitable for assessing global and regional CO; fluxes and are currently widely adopted to
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estimate CO, emissions from fossil fuels and carbon sinks in terrestrial ecosystems (Piao et al., 2022;

Han et al., 2024). However, due to the sparse sampling of CO, concentration over the open ocean,

50  significant uncertainties persist in those flux estimations, limiting its applicability (R&Glenbeck et al.,

2006; Wanninkhof et al., 2019). In summary, the scarcity of marine atmospheric CO; concentration
observations is the primary obstacle to accurately quantify the oceanic carbon sink.

For marine atmosphere, buoy observations excel at meeting the requirements of expanding field

observation coverage and significantly increasing data volume compared to research vessel observations

55 constrained by voyage frequency, range, and cost, or satellite observations limited by operational cycles

and atmospheric conditions (e.g., clouds, aerosols). Currently, both the ARGO Global Ocean Observing

System and the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) project

have proposed utilizing buoys for seawater CO, observations (Sarmiento et al., 2023), but none of them

have conducted atmospheric CO; concentrations over the ocean. Urban CO, monitoring efforts provide

60  valuable experience for selecting CO; observation instruments suitable for deployment on buoys. In

recently years, high-density monitoring networks based on low-cost CO- sensors have been established

in numerous cities worldwide (Karion et al., 2020), as supplements to the land-based observations from

the sites within the World Meteorological Organization’s (WMO) Global Atmosphere Watch Programme

(GAW). For instance, Shusterman et al. (2016) established a CO, observation network (BEACO;N)

65  which consists of 34 sensors in and around Oakland, California. After applying environmental parameter

and drift corrections, the network achieved an accuracy of +1.2 — 2.0 ppm for 1-minute average dry-air

concentrations between, effectively capturing CO, variations across multiple temporal scales in urban

areas and abnormal short-term CO, emission events. Delaria et al. (2021) further corrected the

temperature-dependent zero bias of the BEACO-N sensor, reducing the error to 1.6 ppm or less. Han et

70 al. (2024) established a 134-station SenseAir K30 sensor observation network and developed a CO;

calibration system. Data accuracy was enhanced through averaging raw observations, environmental

corrections, and calibration with standard gases. After applying long-term drift correction, the sensors

(SENSE - 1AP) maintained a root mean square error (RMSE) of 2.4 +0.2 ppm after 30 months of

operation (Cai et al., 2025). Compared to high-precision instruments, low-cost sensors exhibited

75 relatively lower accuracy (several ppm versus ~ 0.1 ppm) but at drastically reduced cost (under 15,000

dollars versus over 150,000 dollars). This cost-performance balance enables the construction of dense

observation networks to reveal significant spatial variations of CO, induced by emission sources,
4
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vegetation carbon sinks, and meteorological conditions (Shusterman et al., 2016; Bakker et al., 2024;
Han et al., 2024; Cai et al., 2025).

80 Considering the advantages of low-cost sensors in land-based CO, monitoring and inversion, and
the relative maturity of buoy-based observation technologies, we designed a sea-air interface buoy
platform equipped with SenseAir K30 sensors (SenseAir AB, Delsbo, Sweden) in the coastal waters off
Maoming, Guangdong, China, and evaluated its performance in monitoring marine atmospheric CO;
concentration. Satisfying measurement accuracy was obtained after instrumental calibration, data

85 processing, and correction strategies, validating the feasibility of marine CO, monitoring with low-cost
sensors. Here we presented the preliminary results of the buoy-based low-cost sensor system for
atmospheric CO, monitoring at the Sea-Air interface. Section 2 introduces the instruments and data
correction methods; Section 3 presents the results of the land-based experiments for calibration and

correction; and Section 4 demonstrates a short-term marine observation case study.

90 2 Data and Methods

2.1 Instruments and observation site

This study employed a low-cost sensor system integrating three CO, Sensor Modules (referred to
as CM1, CM2, and CM3) (Figure 1c), capable of simultaneously measuring atmospheric CO,
concentration and meteorological parameters including temperature, pressure, and humidity. Each CM

95 integrates a CO; sensor, environmental parameter sensors, and a Micro-controller Unit (MCU) processor
onto a single circuit board housed within a waterproof cube enclosure. Three CM modules are
individually mounted in cylindrical housings bolted to a cube enclosure, with silicone seals at the
connection points. Both sides and the bottom of the individual housings are wrapped with a membrane
that is both breathable and waterproof, ensuring the CMs can operate normally in a marine environment.

100  The CM feature an open-type design that allows ambient air to flow directly through the sensing chamber,

without a sealed sampling volume typical of high-precision analysers. The sensors are paired with a data

acquisition instrument, and data is collected by a micro-processor named BeagleBone Green Wireless
(BBGW) and transmitted back to the server via 4G communication from the base station.

The CO> sensor is the K30 sensor module from SenseAir of Sweden, operating on a non-dispersive

105 infrared principle (NDIR). Compared to other low-cost sensors (such as the COZIR Environmental
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Sensor (CO;Meter, Inc., Orlando, FL, USA) and TelaireT6615 (Amphenol Advanced Sensors, USA),
etc.), it demonstrates higher raw accuracy, with = 30 ppm + 3% (Martin et al., 2017), with a
measurement range of 1-10,000 ppm and a resolution of 0.01 ppm, featuring easy configuration and
maintenance-free operation. To account for the influence of external environmental variations on the

110 K30 sensor’s response, the CM is equipped with a BME680 sensor (Bosch Sensortec GmbH, Reutlingen,
Germany) that simultaneously monitors temperature (T, <C), relative humidity (RH, %), and atmospheric
pressure (P, hPa) of the internal air mass. The measurement accuracies are £0.1 <C, £3%, and 0.6 hPa,
with corresponding resolutions of 0.01 <C, 0.01%, and 0.01 hPa, respectively. These measurements
enable real-time correction of the CO, response values for environmental parameters, thereby enhancing

115  the overall accuracy of the observations. The CMs adopt a standard RS485 output mode and are powered
by the buoy’s 12 V DC battery, operating continuously with a 2s sampling interval. In the marine
environment, pitching, strong winds, wave impacts, and rainy conditions are common. Combined with
the high humidity and salinity of surface air, these factors often cause condensation and salt deposition
on instrument surfaces. To mitigate these effects, the sensors and data logger were connected and

120  securely mounted inside a Stevenson screen (Figure 1c), which was installed near the buoy’s center of
gravity within the supporting frame (Figure 1b), at an approximate height of 3 m above the sea surface,
to provide a relatively stable observation environment.
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Figure 1: Deployment and performance evaluation of buoy-mounted sensors for marine atmospheric CO2
125 observation. (a) Location of the offshore observation site. Basemap source: Esri World Topographic Map
(Esri, https://server.arcgisonline.com). (b) On-site scene of the offshore buoy during observation. (c)

Schematic of the CO2 sensor modules (CMs), data logger, and Stevenson screen.

The sea-air coupled monitoring buoy system is composed of a buoy platform and a land-based

station (Figure 2). The buoy consists of a buoy body, mooring system, sensors, data acquisition system,
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130  power system, safety system, and communication system. Real-time data transmission between the buoy
and shore station is achieved via BeiDou (Figure 1b). The buoy body has a diameter of 3 meters, a depth
of 0.9 meters, and a total height exceeding 5 meters. The power system comprises high-capacity, compact,
rechargeable batteries, and solar panels. The batteries are housed within the instrument compartment,
while solar panels are mounted around the buoy tower. These panels charge the batteries, supplying a

135  single operating voltage to the buoy system. The system can sustain normal power supply to the buoy
observation system for 15 consecutive days of overcast or rainy weather, ensuring continuous and reliable
operation even under severe sea conditions. The buoy data communication system employs dual-mode
Beidou and Iridium satellite communication, with redundant data transmission to ensure an effective data
reception rate of better than 95%. The shore station reception and processing system features reception,

140  post-processing, and report generation capabilities, enabling modification and configuration of
parameters such as buoy sampling frequency and transmission cycle. It also provides low-voltage, water

ingress, and displacement alarm functions for buoys.
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Figure 2: Schematic diagram of a deep-sea air-sea coupled monitoring buoy system
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145 To calibrate the CMs, it was first placed in the laboratory and a meteorological observation field
within Jiangwan Campus of Fudan University, for side-by-side observations with a cavity ring-down
spectrometer (Picarro G2301, Picarro Inc., Santa Clara, USA). (Figure 3). The CMs equipped with
Stevenson screen was placed outside the station building, while the sampling gas tube of Picarro was
extended into the Stevenson screen through a duct connecting the station building to the outside

150 environment, ensuring simultaneous observations with CMs. Following land-based field observations,
the instrument was deployed for field observations at sea. The offshore field observation point is located
in the coastal area of Dianbai District, Maoming City, Guangdong Province (21.44 N, 111.39 <)
(Figure 1a), belonging to northern shelf coastal section of the South China Sea nearshore areas feature
port zones, shallow bays, and small islands (such as Dazhuzhou), while offshore lies the broad continental

155  shelf and slope transition zone of the northern South China Sea. Integrated multi-source observations
indicate that most of the South China Sea is a weak to moderate CO, source with seasonal variations
(Zhai et al., 2013; Li et al., 2020; Chen et al., 2024; Zhang et al., 2024). The annual average flux in the
northern continental slope region is approximately 0.46 mol m2 yr!, with higher values in the central
and southern areas (about 1.37 mol m2 yr!) (Zhai et al., 2013). During summer, the coastal upwelling

160 brings up subsurface water rich in dissolved inorganic carbon and low in temperature to the surface layer,
typically tending to increase atmospheric CO, emissions. However, spatiotemporal variations in wind
events, biological consumption, and estuarine runoff can cause significant short-term or inter seasonal
reversals (Xu et al., 2013; Li et al., 2021). In summary, the northern South China Sea, where the
observation point in this study are located, is generally characterized as a minor CO; source but exhibits

165  strong spatiotemporal variability (Zhang et al., 2024).
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Figure 3: Land-based field observation experiments. (a) Configuration of CMs, Stevenson screen, and Picarro
sampling channel. (b) Meteorological observation station, experimental cabin, and field deployment of CMs.
(c) Field setup of the Picarro G2301.
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170 2.2 CMs data correction method

The original signals had a sampling interval of 2 s and a background noise level of +30 ppm. The
raw data from the CMs were filtered and resampled. After quality control, outliers deviating by more
than 4o from the mean were removed, and temporal averaging was applied to reduce the noise level. The
4o threshold is applied to achieve a compromise between eliminating extreme outliers and retaining the

175  inherent variability of the dataset (Cai et al., 2025). Allan variance, which quantifies the time-averaged
stability of continuous measurements, was used to determine the optimal averaging interval that
minimizes noise while preserving the integrity of the data signals (Martin et al., 2017). Langridge (2008)
indicated that the optimal averaging time for the Allan variance of the K30 sensor to reach its minimum
is approximately 3 min, after which extending the averaging time step no longer significantly reduces

180  the noise. Cai et al. (2025) evaluated the noise characteristics of the SenseAir K30 by continuously
introducing standard gases. The results showed that at a measurement interval of 2 s, the noise level was
4 ppm, and 1-2 min showed 0.4-0.7 ppm noise level, and from 2 min to 1 h, the noise level decreased to
approximately 0.2 ppm. Therefore, in this study, we selected a 1-minute time step to average the raw
data before proceeding with subsequent corrections. This approach significantly reduces the noise level

185 in the data while enabling the resolution of atmospheric changes on a relatively short timescale.

Using CM1 as an example, results from observations conducted by CMs and Picarro in laboratory
and terrestrial field are presented in Figure 4. After quality control and resampling of raw data, the
standard deviation (SD) for the three CMs in laboratory tests improved from 13.05, 17.32, 18.28 ppm to
4.68, 5.26, and 5.48 ppm, respectively. For field tests, the values improved from 15.14, 21.93, 17.06 ppm

190  to 9.33, 14.83, and 8.83 ppm, respectively (Figure 4; Figures S1-S2). Data accuracy improved after
minute averaging (Figure 4 a-d), but differences still exist compared to the reference instrument Picarro
(ACO,). A comparison between the laboratory and field results (Figure 4 c, d) shows that the CMs
performed better under laboratory conditions. In the stable laboratory environment, ACO, exhibited no
pronounced diurnal variation (Figure 4 c, e), fluctuating steadily around a constant value (system bias).

195 By contrast, in the field, where atmospheric conditions naturally vary (Figure 4f), the environmental
parameters showed clear diurnal cycles, and ACO; also displayed diurnal oscillations. This indicates that
the CMs are highly sensitive to environmental conditions, and their measurement accuracy is affected by

both atmospheric variability and the CO, concentration baseline. Therefore, further calibration with
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205

210

respect to environmental parameters is required. The most used environmental correction method for
NDIR sensors is multiple linear regression. This involves establishing empirical regression models using
environmental parameters such as temperature, air pressure, and water vapor under laboratory or side-
by-side observations with standard instrument (Martin et al., 2017; Han et al., 2024, Cai et al., 2025). In
recent years, numerous studies have attempted to model environmental nonlinear effects using machine
learning methods such as random forests, gradient boosting, or neural networks, achieving lower root
mean square error (RMSE) than linear regression (Biagi et al., 2024; Dubey et al., 2024). However, these

approaches still exhibit limitations in interpretability and transferability.
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Figure 4:  Time series of CM1 data during laboratory (a, c, e) and land-based field (b, d, f) observations. (a,
d) CM1-measured COz concentration at second-level resolution (grey dots) and minute-level resolution (blue
dots), alongside Picarro-measured CO2 concentration (black line). (b, ) Time series of CO2 concentration
difference (ACO2-=CM1-Picarro) at second-level (grey dots) and minute-level (blue dots) resolution. (c, f) Time

series of ambient temperature (T, red line) and relative humidity (RH, blue line).

The 1-min ACO; exhibits linear relationships with T, P, and RH, and this environment-related

dependence differs among individual CMs (Figure 5). Based on these characteristics, this study adopts a

10
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215  multiple linear regression approach for environmental calibration as Cai et al., (2025), where ACO; and
the environmental parameters satisfy the following relationship:
AC =Y — Yo (1)
AC = ay + f(a, T) + f(ay, P) + f(agu, RH) + f(a., CO;) )
Here, Yy represents the CMs measurements, and y, is the true atmospheric CO2 concentration.
The coefficients a,, a,, agy, and a, are the correction parameters associated with T, P, RH, and the CO;
concentration, respectively; including the CO, term in the calibration equation serves to eliminate the

220 zero-point bias of the CMs. For each CM, the corresponding values of a,, a,,

agy, and a,. are unique.
a, is the baseline concentration correction parameter, calibrated using measurements from reference
instruments at the observation site or from nearby atmospheric background stations. All these parameters
can be determined through multiple linear regression using the Linear Regression function in Python.
The corrected data of CO; after environmental correction is:
Yeorrectea = Yem — @ — f(ap, T) — f(ap' P) — f(agy, RH) — f(a., €Oz) (3)
225 When standard instrument (e.g., Picarro) co-located observations are available, these measurements
shall be considered the true values for atmospheric CO» concentrations. The specific correction results
will be described in Section 3. For marine observations, the baseline correction of CMs is performed
using data from the Mauna Loa atmospheric background station in Hawaii, USA (Thoning et al., 2025),

corresponding to periods where CMs observations are stable and close to background values. The specific

230 method and results will be introduced in Section 4.

3 Environmental correction results for land-based field observations

Temperature variations affect the sensor’s light source intensity, detector response, and absorption
cross-section, leading to systematic drifts in output (Yasuda et al., 2012). Pressure influences gas density
and infrared absorption line broadening, making corrections based on the equation of state or sensor

235  sensitivity particularly important in regions with strong pressure fluctuations (Chen et al., 2010; Curcoll
etal., 2022). Water vapor exerts the most complex effects on NDIR sensors: it not only dilutes CO, mole
fractions in moist air relative to dry air but also causes spectral line broadening within the CO absorption
band, introducing biases (Chen et al., 2010; Dubey et al., 2024). Accordingly, the multivariate linear

calibration of CMs focuses on three key environmental factors - T, P, and RH. Figure 5 shows the

11
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240  variations of ACOz between the three CMs and the collocated Picarro measurements as a function of

environmental parameters (T, P, and RH) during the land-based field observations, where the orange and

green colors correspond to the data before and after environmental correction, respectively. Figure 6
presents the linear relationships between the CMs and the Picarro, along with the histograms of ACOx.

Prior to correction, the ACO,of all three CMs exhibited linear relationships with environmental

245 parameters (Figure 5): negative correlation with T, and positive correlation with P and RH. Among these,

CM2 demonstrated the most pronounced correlations. The correlation coefficients (r) between ACO,

and T, P, and RH were -0.79, 0.71, and 0.43, respectively, while the r values for CM1 and CM3 were -

0.49, 0.52, 0.22, and - 0.39, 0.44, 0.16, respectively, all significant at the 0.01 level (p < 0.01). After

correction, the systematic drift of ACO, across the three CMs due to environmental parameters was

250 successfully eliminated. The corresponding r values were all 0, indicating no significant correlations,

with ACO, fluctuating around the zero line. Beyond environmental factors, the multiple linear

regression also incorporated the true CO; concentration in the atmosphere, represented by Picarro co-

located measurements in field observations. The values of the first three CMs before correction all exhibit

zero bias relative to the true values (the fit between CO; observations and true values includes intercepts)

255 (Figure 6 a-c), with respective r values of 0.98, 0.93, and 0.98, all significant at the 0.01 level (p < 0.01).

After correction, the correlations all improved to 0.99 (p < 0.01), and data points largely converged on

either side of the 1:1 line. The bias between CMs and Picarro shifted from -3.7 ppm, + 43.6 ppm, and -

16 ppm to + 0.1 ppm, + 1.6 ppm, and + 0.6 ppm, respectively, shifting from significantly biased to

essentially unbiased (Figure 6 d-f). The results above suggest that all three CMs are influenced by

260  environmental variables, but to markedly different extents. Whether for CM2, which inherently exhibits

substantial systematic errors, or CM1, which shows minimal data offset prior to correction, our

environmental correction method significantly enhances observational accuracy, improves data quality,

and demonstrates good universality.

12
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Figure 5: Variations of ACO2 (ACO2=CM-Picarro) for CM1 (a-c), CM2 (d-f), and CM3 (g-i) during land-

based field observations, as functions of temperature (a, d, g), atmospheric pressure (b, e, h), and relative

humidity (c, f, i). Orange dots represent data before environmental correction, while green dots represent

data after environmental correction.
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270 Figure 6: Direct comparison of hourly moving averages of CO2 concentrations among CM1, CM2, CM3 and
Picarro during land-based field observations (a-c), and histograms of ACO2 distributions (d-f) ACO2=CM-
Picarro, where CM corresponds to CM1, CM2, and CM3, respectively). Orange dots and bars represent data
before environmental correction, while green dots and bars represent data after environmental correction.

Environmental correction effectively reduced the offset values between CMs and Picarro (Figure

275 7). Before correction, CMs captured CO; concentration trends like Picarro but exhibited significant
deviations. For the best performing CM1, this deviation was particularly noticeable at low CO;
concentrations, while CM2 and CM3 showed overall high and low biases, respectively. The ACO, of
CMs exhibited a certain "downward" drift trend over the one-week observation period, CM1 and CM3
moved from zero toward negative values, while CM2 shifted from a relatively high positive value around

280 50 ppm toward zero. The calibrated results showed high consistency with Picarro, with the RMSE
decreasing from 11.04 ppm, 30.51 ppm, and 18.70 ppm to 4.03 ppm, 3.96 ppm, and 3.88 ppm,
respectively. The correction effectively eliminated the linear drift trend of ACO, over time, stabilizing
it to fluctuate around the zero line. During the land-based field observations in Shanghai in early spring,
the atmospheric temperature and humidity exhibited pronounced diurnal variations, fluctuating between

285  5-30 °C and 10-60%, respectively. The average RMSE of corrected CMs was 3.64 ppm, which is

sufficient to capture terrestrial CO; variations (400-600 ppm), even during periods of significant CO,

14
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fluctuations with pronounced peaks and troughs, such as cases on March 22nd-23rd and March 25th-

26th, where the environmental correction method performed well.
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290 Figure 7: Hourly moving average time series of CM1 (a-c), CM2 (d-f), and CM3 (g-i) during land-based field
observations: CO2 concentration of CMs before environmental correction (orange line), after environmental
correction (green line) , and CO2 concentration from Picarro (black dashed line) (a, d, g); ACO:2
(ACO2=CM-Picarro) of CMs before and after calibration (b, e, h); Ambient temperature (T, red line) and
relative humidity (RH, blue line) (c, f, i).

295 4 Marine observation results

Based on the instrument deployment and marine environment described in Section 2, and the
environmental correction method validated through land-based field observations in Section 3, the CMs-

15
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equipped air-sea interface buoy observation platform commenced operation in May 2025 in the northern
South China Sea off the coast of Dianbai District, Guangdong Province. Following signal debugging and
300 regular equipment maintenance, observational data were obtained over three months from May 28th to
August 28th. The hourly moving-averaged time series of CO, concentration, T, and RH from the three
CMs are shown in Figure 8. During environmental calibration, measurements are first corrected using

the environmental coefficients a,, a,,

agy, and a,. obtained from land-based calibration; baseline
correction is then applied by updating a, with reference CO, concentrations from the marine
305 atmospheric boundary layer. Over the open ocean, strong horizontal atmospheric mixing results in small
zonal variations in marine boundary layer CO; concentrations, indicating high zonal uniformity at similar
latitudes (Bakwin et al., 2004; Palter et al., 2023). Given the strong real-time nature of this study's
observations and the limited availability of co-located and near-surface observation resources, CO;
observation data from the Mauna Loa atmospheric background station in Hawaii, USA (MLO, 19.54<N,
310 155.58 W) - located at a latitude similar to the observation site - served as the reference value. The CO:

datasets were obtained from the NOAA Global Monitoring Laboratory (GML)

(https://gml.noaa.gov/ccgg/trends/data.html; Thoning et al., 2025). The relatively stable period (June

17th-24th) of CMs concentrations during the observation was regarded as the atmospheric background

state. Both values were substituted into a multiple linear regression calculation to obtain a,. After

315 environmental correction, the RMSE of the CMs significantly decreased from 9.27 ppm, 52.39 ppm, and
11.24 ppm to 1.57 ppm, 1.86 ppm, and 1.52 ppm, respectively (Figure 8a; Figures S3-S5).

During the three-month marine observations, the atmosphere at the observation site exhibited high

temperatures and humidity, with temperatures ranging from 25 to 37.5 °C and humidity levels between

50% and 100% (Figure 8b). Both showed pronounced diurnal and weekly variations. The mean CMs

320  values before and after correction were 459.48 ppm and 436.94 ppm, with medians of 456.53 ppm and

433.75 ppm, respectively (Figure 8c). The means consistently exceeded the medians, and the ranges

surpassed 100 ppm in both cases, which indicates many signal peaks in CO during the observation, and

the observation site is susceptible to terrestrial anthropogenic CO, emissions. After correction, the overall

concentration was approximately 22 ppm lower than the original values, consistent with the CO; range

325 at the atmospheric background station MLO (mean 429.32 ppm). The correction eliminated systematic

overestimation, bringing the results closer to background concentrations.
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The SD of the raw data is 9.79 ppm, showing a slight difference from the corrected value of 9.62
ppm. The first quartile (Q1) changed from 453.08 ppm to 430.10 ppm, and the third quartile (Q3) changed
from 463.29 ppm to 441.32 ppm, with an inter-quartile range (IQR) of 10.21 ppm, slightly below the

330 corrected value of 11.22 ppm. These indicate that the correction process reduced the overall CO;
concentrations but did not significantly decrease data variability. In fact, the distribution of the middle
50% of data points became wider. Whether considering the extreme fluctuation range (extreme value
difference) influenced by anthropogenic land effects, the typical fluctuation range IQR after removing
most extreme signals, or the average fluctuation amplitude SD of overall concentrations, the accuracy of

335 CMs corrected data is sufficiently to capture the corresponding signals.
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Figure 8: Offshore buoy observation results of CMs. (a) Hourly moving average time series of CO:2
concentrations from CMs before correction (orange line) and after correction (green line), together with daily
mean CO; series from Mauna Loa Observatory (MLO, red line). The light red and light blue shaded
340 backgrounds correspond to CO: fluctuation periods and stable periods, respectively. (b) Time series of
ambient temperature (T, red line) and relative humidity (RH, blue line). (c) Histograms and boxplots showing
the distributions of COz concentrations before (orange bars) and after correction (green bars).
During the three-month observation period, CO, at the monitoring site exhibited short-term
fluctuation peaks as well as periods of stable concentrations, both of which can be analyzed and
345  interpreted from the perspective of atmospheric transport. Using the NOAA Hybrid Single-Particle

Lagrangian Integrated Trajectory (HYSPLIT) model, 36-hour backward trajectories were calculated for

the observation point to identify the primary transport pathways influencing the air mass sources at the
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location (Cohen et al., 2015). The trajectory origin is set at the observation point, with a time resolution
of 6 hours. Meteorological driving data were from the Global Data Assimilation System (GDAS1, 1°x

350 19 reanalysis data provided by NOAA (Rolph et al., 2017). After obtaining a series of backward
trajectories, the HYSPLIT clustering module was employed to classify the trajectories. This approach
mitigates the impact of uncertainty inherent in individual trajectories and extracts key transport pathway
characteristics, providing a basis for subsequent analysis of the relationship between air mass transport
and observational results (Cohen et al., 2015). The entire period of marine observations was divided

355 into four segments for clustering. The periods from May 28th to June 16th (Figure 9a) and June 25th to
August 1st (Figure 9c) constituted CO; fluctuation phases (the background is light red in Figure 8a), with
many concentration peaks occurring during these periods. The periods from June 17th to 24th (Figure
9b) and August 2nd to 13rd (Figure 9d) constituted CO, stable phases (the background is light blue in
Figure 8a). During these phases, CO, concentrations fluctuated minimally and approached the

360 background levels of the marine boundary layer. It is particularly noteworthy that during the two-week
period from August 14th to August 28th (the background is white in Figure 8a), CO- exhibited alternating
patterns of relatively dense peaks and sustained background concentration levels, with each state lasting
no more than five days. The limited number of trajectories obtained from segmented analysis makes it
inconvenient for cluster analysis.

365 The trajectory clustering results (Figure 9) indicate that the atmospheric transport pathways
corresponding to concentration fluctuation periods are relatively complex, significantly influenced by air
masses transported from land. Trajectories from May 28th to June 16th were classified into 17 categories,
with 40% originating from land and 60% from the ocean. The most typical inland air mass, represented
by Trajectory 4, was transported from northern Guangdong all the way to western Guangdong. Trajectory

370 12, although originating from the sea, reached the observation point via the western coast of Guangdong
within the first 6 hours of the observation period. From June 25th to August 1st, trajectories ending over
land accounted for 54%, while those ending over the ocean accounted for 46%. Trajectory 2,
corresponding to short-range inland transport, accounted for 13%. The clustering results indicate that
local urban emissions from land areas significantly contributed to CO, concentrations at the observation

375 point, effectively explaining the observed large fluctuations and multiple peaks during the corresponding
period. Correspondingly, air masses at observation point during concentration stable periods were

predominantly transported from clean marine atmospheres. The trajectories from June 17th to 24th were
18



https://doi.org/10.5194/egusphere-2025-5588
Preprint. Discussion started: 19 January 2026
(© Author(s) 2026. CC BY 4.0 License.

380

385

390

395

clustered into 11 groups, all originating from the South China Sea. Consequently, the observed CO,
concentrations during this period remained near background levels, which can be considered the CO»
concentration level in clean air without anthropogenic pollution. This also demonstrates that using CO;
observations from this period combined with MLO atmospheric background concentrations for baseline
correction of CMs is reasonable. Trajectories from August 2nd to 13rd were categorized into 4 types,
with 92% originating from marine sources and 8% from land sources. Consequently, although CO
concentrations at observation point during this period were slightly elevated above background values,

they remained generally stable.
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Figure 9: Clustered results of 36-hour backward trajectories from Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT) model analyses at the offshore observation site during four time periods of
buoy observations. Each trajectory is labeled with its cluster number and proportion, and markers on the
trajectories indicate 12-hour intervals. (a) 28th May-16th June, (b) 17th-24th June, (c) 25th June-1st August,
(d) 2nd-13rd August. (a) and (c) correspond to CO2 concentration fluctuation periods, while (b) and (d)

correspond to CO2 concentration stable periods.

By comparing the corrected CMs data during the concentration stable periods (including 19
complete days) with the diurnal variations in CO; concentration during the summer of 2024 (June to
August) at the MLO station (Figure 10), we can further understand how CMs captures the diurnal
variation of oceanic boundary layer CO,. Hourly CO, mole fractions at MLO were obtained from NOAA

GML (https://gml.noaa.gov/data/dataset.php?item=mlo-co2-observatory-hourly; Thoning et al., 2025).
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Both CMs and MLO exhibit daily variations in background CO; concentrations characterized by lower
daytime values and higher nighttime values. This pattern likely stems from the primary influence of air-
400  sea CO; fluxes and atmospheric convective transport on oceanic CO; concentrations (Lv et al., 2015).
During the day, solar radiation heats the Earth's surface, which enhances photosynthesis in marine
ecosystems and promotes the uptake of atmospheric CO,. As atmospheric temperatures rise, enhanced
turbulent activity thickens the mixed layer, diluting CO. through vertical mixing and reducing its
concentration. At night, photosynthesis ceases in regional marine ecosystems, leaving only respiration.
405  The sea surface cools, and weakened turbulent mixing restricts vertical air exchange.CO; struggles to
diffuse into the upper layers, accumulating in the near-surface layer and increasing in concentration. The
daily amplitude of CO, at MLO station during summer is approximately 2 ppm, while CMs is 3 ppm.
This indicates that the environmentally calibrated CMs is sufficiently sensitive to capture the daily
variation signal of CO; in clean background air unaffected by terrestrial anthropogenic emissions,
410 demonstrating its potential for observing atmospheric CO, concentrations in open ocean environments.
The daily amplitude of CO, at MLO Station during summer is approximately 2 ppm, while CMs is 3
ppm. This indicates that the environmentally calibrated CMs is sufficiently sensitive to capture the daily
variation signal of CO; in clean background air unaffected by terrestrial anthropogenic emissions,
demonstrating its potential for observing atmospheric CO, concentrations in open ocean environments.
415 Observations of the CMs show that the daily maximum and minimum values of CO, exhibit a 3-
hour lag compared to the MLO station, which may be attributed to differences in the surrounding
environments of the two sites. The MLO station is situated on high altitude land, exhibiting a typical
mountainous diurnal variation in CO; concentration. Mountainous terrain induces strong upslope and
downslope airflows, leading to earlier atmospheric mixing. During the day, upslope flow and mixing
420 intensify (NOAA GML, 2024a), resulting in the lowest concentrations around 4 p.m. when vertical
mixing is strongest. At night, the mountain air becomes isolated from the free atmosphere, with
downslope flows carrying high CO; air (NOAA GML, 2024a), reaching peak concentrations around 6
a.m. The observation site in this study is over an ocean surface, which possesses high thermal capacity,
exhibits small diurnal temperature variations, and experiences delayed turbulence enhancement and
425 boundary layer development (Nemoto et al., 2009). Consequently, the nocturnal accumulation of CO;
persists until 8 a.m., several hours after sunrise. Daytime sea breezes and mixing intensify later, with the

lowest CO, values occurring around 7 p.m. The average CO; concentrations at MLO and CMs were
20



https://doi.org/10.5194/egusphere-2025-5588
Preprint. Discussion started: 19 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

424.85 ppm and 431.38 ppm, respectively, differing by approximately 6.5 ppm. This discrepancy may
be due to the fact that the comparison uses 2024 data. According to the NOAA, the annual growth rates
430 of CO; concentrations for MLO 2023 and 2024 were 3.36 ppm/yr and 3.33 ppm/yr (NOAA GML, 2024b).
Furthermore, even after filtering out short term terrestrial sources, the East Asian monsoon transport can
still cause regional increases in atmospheric CO,. This monsoon-driven transport represents mesoscale
or large-scale processes, not local pollution peaks, and thus systematic differences between CO,

concentrations and MLO can still be observed during stable periods (Fang et al., 2014; Lin et al., 2018).
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Figure 10: Diurnal variations of CO2 concentrations from CMs (environmentally corrected, green line) during
stable concentration periods and from Mauna Loa Observatory (MLO, Jun-Aug 2024, red line), along with
corresponding temperature (T, red dash line) and relative humidity (RH, blue dash line) variations.
5  Conclusions

440 We successfully established a sea-air interface buoy platform along the coast of Maoming,

Guangdong Province, employing low-cost sensors to observe marine CO concentrations in the nearshore
region of the northern South China Sea. Environmental correction methods effectively eliminated the
impact of environmental factors such as temperature, pressure, and humidity fluctuations on CO;
measurements while correcting for zero bias. With land-based Picarro G2301 co-located observations
445 for comparison, CO; accuracy improved from 8.03 ppm to 3.64 ppm. Over ocean, baseline correction
using MLO atmospheric background station data improved accuracy from 24.26 ppm to 1.59 ppm,

meeting the precision requirements for capturing marine CO; concentration signals (e.g., 420-480 ppm).
21
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Systematic errors were eliminated, ensuring observed overall concentration levels align with MLO
background stations, thereby meeting CO, concentration levels in the marine boundary layer. The

450  temporal variations in CO, observed by the CMs, including both fluctuating and steady-state phases, can
be explained by the long-range atmospheric transport simulated by HYSPLIT. Moreover, the CMs
successfully captured the diurnal variations of background CO; in the marine atmospheric boundary layer,
with an amplitude of approximately 3 ppm.

In summary, this study proposes an environmental correction method for calibrating low-cost

455 sensors, demonstrating its reliability and scientific validity. It has successfully facilitated the application
of low-cost sensors aboard buoys for observing marine atmospheric CO, concentrations, providing
valuable experience for field deployment of marine atmospheric CO, monitoring. To our knowledge, this
marks the first application of this method, holding significant importance for acquiring CO. concentration
data in under-observed marine regions. This approach significantly reduces the cost of observing CO; in

460  the ocean, opening new possibilities for achieving the goal of substantially increasing observation data.
At the same time, high-precision instruments demand stringent environmental conditions. When
deployed on buoy platforms in the harsh field observation environment of the ocean, with its powerful
winds and waves, maintenance becomes extremely difficult. Low-cost sensors, however, overcome these
technical challenges to a large extent.

465 This study represents the first trial in deploying low-cost sensors aboard buoys to monitor marine
CO; concentrations. The buoy platform equipped with CMs has withstood several typhoon events,
demonstrating excellent watertightness, mechanical robustness, and stability under wave conditions,
which are essential for reliable long-term marine monitoring. The successful detection of daily variations
in the CO; stable periods further demonstrates the method's potential for deployment in open ocean

470 observations. To achieve the goal of significantly increasing the number of marine observations, low-
cost sensors must be deployed on small drifting buoys in the following studies. Additionally, the data in
this paper covers a relatively short time scale and has not yet accounted for long-term sensor drift. As
the duration of observations continues to increase, it will be necessary to correct for this long-term drift.
Therefore, this method requires continued refinement and enhancement. In the future, if large-scale

475 deployment of buoys for observation can be realized to obtain extensive regional oceanic CO;
observational data, these data could be utilized for “top-down" atmospheric inversions. This would

provide new perspectives and methodologies for estimating air-sea CO; fluxes, representing a
22
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groundbreaking endeavor. It holds significant importance for accurately estimating oceanic carbon sinks
and quantifying the dynamics of the carbon cycle.
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