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Abstract. Direct in-situ observation of marine CO2 concentrations is, crucial for estimating air-sea 

CO2 fluxes, yet such observations remain scarce. Drawn on experiences from urban CO2 monitoring and 

buoy-based measurements, this study deployed a sea-air interface buoy platform in the northern South 

China Sea, near Maoming, Guangdong Province, China. This platform was equipped with three low-cost 

SenseAir K30 sensors to enable continuous atmospheric CO2 measurement. This paper presents the first 5 

detailed account of the methodology, encompassing hardware design, environmental corrections, land-

based validation tests, offshore deployment procedures, and initial observational results. These findings 

thus provide valuable insights for advancing marine CO2 observations practices. To mitigate the impacts 

of temperature, humidity, and pressure on sensor readings - while simultaneously compensating for zero-

drift - an environmental correction method was implemented. This approach significantly improved data 10 

accuracy: in land tests, the root mean square errors was reduced from 8.03 ppm to 3.64 ppm; in marine 

observations, the root mean square errors decreased from 24.26 ppm to 1.59 ppm. Importantly, this level 

of precision meets the requirements for resolving sea surface CO2 dynamics (~420-480 ppm). Observed 

concentrations were consistent with HYSPLIT-simulated long-range atmospheric transport, revealing 

the stable and homogeneous nature of the marine atmospheric boundary layer, with diurnal variations of 15 

approximately 3 ppm, and capturing localized or short-term fluctuations due to terrestrial carbon sources. 

These results demonstrate the effectiveness of the method, offering a low-cost, high-density solution for 

marine atmospheric CO2 monitoring and providing key inputs for inversely estimating ocean carbon sink. 
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1 Introduction 20 

Since the Industrial Revolution, less than half of the carbon emitted into the atmosphere by human 

activities remains in the atmosphere (Friedlingstein et al., 2020; Costa et al., 2023), highlighting the 

pivotal role of terrestrial and ocean sinks in regulating atmospheric CO2 concentrations. From 2013 to 

2022, the ocean absorbed and stored CO2 approximately 26% of total anthropogenic CO2 emissions 

(Friedlingstein et al., 2023). The ocean stores a vast amount of CO2, with inorganic carbon reservoir 25 

approximately 50 times greater than those in the atmosphere (Sabine et al., 2004). Therefore, studying 

oceanic CO2 sources and sinks is crucial for developing mitigation strategies and mitigate climate change. 

The most widely and extensively applied, and long-established method for ocean carbon sink 

investigation involves measuring the partial pressure difference of CO2 (ΔpCO2 ) across the air-sea 

interface (Song et al., 2023). Continuous observations used to calculate the air-sea CO2 flux, providing 30 

the most direct characterization of the ocean carbon cycle system (Wanninkhof et al., 2019; Song et al., 

2023).  

Owing to the past several decades of continuous observations, a large amount of sea surface pCO2 

data has been accumulated, yet it remains insufficient relative to the vast ocean area. The Surface Ocean 

CO2 Atlas (SOCAT 2023) revealed that the ocean area covered by monthly CO2 measurements has 35 

decreased by nearly half since 2017, reflecting the decline in global open-ocean CO2 observation capacity 

(Bakker et al., 2024). Although recently studies have increasing employed artificial intelligence and big 

data technologies to investigate the dynamics of ocean carbon sinks (Landschützer et al., 2013; Xu et al., 

2019; Yu et al., 2023), the fundamental limitation of in-situ field observation remains unresolved. Due 

to the limited spatial and temporal coverage of ΔpCO2 measurements, as well as uncertainties in wind 40 

forcing and transport velocity parameterization, the uncertainty in global and regional fluxes estimated 

from ΔpCO2 measurements can reach up to ±50% (Wanninkhof et al., 2013; Rhein et al., 2013). In 

addition to ΔpCO2 data, air-sea CO2 fluxes can also be estimated using a top-down inversion method 

that integrates atmospheric CO2 concentrations with atmospheric transport models (Jacobson et al., 2007; 

Wanninkhof et al., 2019). Spatial and temporal variations in atmospheric CO2 concentrations reflect the 45 

pattern of sources and sinks across large spatial scales. Consequently, top-down atmospheric inversion 

methods are suitable for assessing global and regional CO2 fluxes and are currently widely adopted to 
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estimate CO2 emissions from fossil fuels and carbon sinks in terrestrial ecosystems (Piao et al., 2022; 

Han et al., 2024). However, due to the sparse sampling of CO2 concentration over the open ocean, 

significant uncertainties persist in those flux estimations, limiting its applicability (Rödenbeck et al., 50 

2006; Wanninkhof et al., 2019). In summary, the scarcity of marine atmospheric CO2 concentration 

observations is the primary obstacle to accurately quantify the oceanic carbon sink. 

For marine atmosphere, buoy observations excel at meeting the requirements of expanding field 

observation coverage and significantly increasing data volume compared to research vessel observations 

constrained by voyage frequency, range, and cost, or satellite observations limited by operational cycles 55 

and atmospheric conditions (e.g., clouds, aerosols). Currently, both the ARGO Global Ocean Observing 

System and the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) project 

have proposed utilizing buoys for seawater CO2 observations (Sarmiento et al., 2023), but none of them 

have conducted atmospheric CO2 concentrations over the ocean. Urban CO2 monitoring efforts provide 

valuable experience for selecting CO2 observation instruments suitable for deployment on buoys. In 60 

recently years, high-density monitoring networks based on low-cost CO2 sensors have been established 

in numerous cities worldwide (Karion et al., 2020), as supplements to the land-based observations from 

the sites within the World Meteorological Organization’s (WMO) Global Atmosphere Watch Programme 

(GAW). For instance, Shusterman et al. (2016) established a CO2 observation network (BEACO2N) 

which consists of 34 sensors in and around Oakland, California. After applying environmental parameter 65 

and drift corrections, the network achieved an accuracy of ± 1.2 – 2.0 ppm for 1-minute average dry-air 

concentrations between, effectively capturing CO2 variations across multiple temporal scales in urban 

areas and abnormal short-term CO2 emission events. Delaria et al. (2021) further corrected the 

temperature-dependent zero bias of the BEACO₂N sensor, reducing the error to 1.6 ppm or less. Han et 

al. (2024) established a 134-station SenseAir K30 sensor observation network and developed a CO2 70 

calibration system. Data accuracy was enhanced through averaging raw observations, environmental 

corrections, and calibration with standard gases. After applying long-term drift correction, the sensors 

(SENSE - IAP) maintained a root mean square error (RMSE) of 2.4 ± 0.2 ppm after 30 months of 

operation (Cai et al., 2025). Compared to high-precision instruments, low-cost sensors exhibited 

relatively lower accuracy (several ppm versus ~ 0.1 ppm) but at drastically reduced cost (under 15,000 75 

dollars versus over 150,000 dollars). This cost-performance balance enables the construction of dense 

observation networks to reveal significant spatial variations of CO2 induced by emission sources, 
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vegetation carbon sinks, and meteorological conditions (Shusterman et al., 2016; Bakker et al., 2024; 

Han et al., 2024; Cai et al., 2025). 

Considering the advantages of low-cost sensors in land-based CO2 monitoring and inversion, and 80 

the relative maturity of buoy-based observation technologies, we designed a sea-air interface buoy 

platform equipped with SenseAir K30 sensors (SenseAir AB, Delsbo, Sweden) in the coastal waters off 

Maoming, Guangdong, China, and evaluated its performance in monitoring marine atmospheric CO2 

concentration. Satisfying measurement accuracy was obtained after instrumental calibration, data 

processing, and correction strategies, validating the feasibility of marine CO2 monitoring with low-cost 85 

sensors. Here we presented the preliminary results of the buoy-based low-cost sensor system for 

atmospheric CO2 monitoring at the Sea-Air interface. Section 2 introduces the instruments and data 

correction methods; Section 3 presents the results of the land-based experiments for calibration and 

correction; and Section 4 demonstrates a short-term marine observation case study. 

2 Data and Methods 90 

2.1 Instruments and observation site 

This study employed a low-cost sensor system integrating three CO2 Sensor Modules (referred to 

as CM1, CM2, and CM3) (Figure 1c), capable of simultaneously measuring atmospheric CO2 

concentration and meteorological parameters including temperature, pressure, and humidity. Each CM 

integrates a CO2 sensor, environmental parameter sensors, and a Micro-controller Unit (MCU) processor 95 

onto a single circuit board housed within a waterproof cube enclosure. Three CM modules are 

individually mounted in cylindrical housings bolted to a cube enclosure, with silicone seals at the 

connection points. Both sides and the bottom of the individual housings are wrapped with a membrane 

that is both breathable and waterproof, ensuring the CMs can operate normally in a marine environment. 

The CM feature an open-type design that allows ambient air to flow directly through the sensing chamber, 100 

without a sealed sampling volume typical of high-precision analysers. The sensors are paired with a data 

acquisition instrument, and data is collected by a micro-processor named BeagleBone Green Wireless 

(BBGW) and transmitted back to the server via 4G communication from the base station.  

The CO2 sensor is the K30 sensor module from SenseAir of Sweden, operating on a non-dispersive 

infrared principle (NDIR). Compared to other low-cost sensors (such as the COZIR Environmental 105 
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Sensor (CO2Meter, Inc., Orlando, FL, USA) and TelaireT6615 (Amphenol Advanced Sensors, USA), 

etc.), it demonstrates higher raw accuracy, with  ±  30 ppm ±  3% (Martin et al., 2017), with a 

measurement range of 1-10,000 ppm and a resolution of 0.01 ppm, featuring easy configuration and 

maintenance-free operation. To account for the influence of external environmental variations on the 

K30 sensor’s response, the CM is equipped with a BME680 sensor (Bosch Sensortec GmbH, Reutlingen, 110 

Germany) that simultaneously monitors temperature (T, °C), relative humidity (RH, %), and atmospheric 

pressure (P, hPa) of the internal air mass. The measurement accuracies are ± 0.1 °C, ± 3%, and ± 0.6 hPa, 

with corresponding resolutions of 0.01 °C, 0.01%, and 0.01 hPa, respectively. These measurements 

enable real-time correction of the CO2 response values for environmental parameters, thereby enhancing 

the overall accuracy of the observations. The CMs adopt a standard RS485 output mode and are powered 115 

by the buoy’s 12 V DC battery, operating continuously with a 2s sampling interval. In the marine 

environment, pitching, strong winds, wave impacts, and rainy conditions are common. Combined with 

the high humidity and salinity of surface air, these factors often cause condensation and salt deposition 

on instrument surfaces. To mitigate these effects, the sensors and data logger were connected and 

securely mounted inside a Stevenson screen (Figure 1c), which was installed near the buoy’s center of 120 

gravity within the supporting frame (Figure 1b), at an approximate height of 3 m above the sea surface, 

to provide a relatively stable observation environment. 

 

Figure 1: Deployment and performance evaluation of buoy-mounted sensors for marine atmospheric CO2 

observation. (a) Location of the offshore observation site. Basemap source: Esri World Topographic Map 125 

(Esri, https://server.arcgisonline.com). (b) On-site scene of the offshore buoy during observation. (c) 

Schematic of the CO2 sensor modules (CMs), data logger, and Stevenson screen. 

The sea-air coupled monitoring buoy system is composed of a buoy platform and a land-based 

station (Figure 2). The buoy consists of a buoy body, mooring system, sensors, data acquisition system, 
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power system, safety system, and communication system. Real-time data transmission between the buoy 130 

and shore station is achieved via BeiDou (Figure 1b). The buoy body has a diameter of 3 meters, a depth 

of 0.9 meters, and a total height exceeding 5 meters. The power system comprises high-capacity, compact, 

rechargeable batteries, and solar panels. The batteries are housed within the instrument compartment, 

while solar panels are mounted around the buoy tower. These panels charge the batteries, supplying a 

single operating voltage to the buoy system. The system can sustain normal power supply to the buoy 135 

observation system for 15 consecutive days of overcast or rainy weather, ensuring continuous and reliable 

operation even under severe sea conditions. The buoy data communication system employs dual-mode 

Beidou and Iridium satellite communication, with redundant data transmission to ensure an effective data 

reception rate of better than 95%. The shore station reception and processing system features reception, 

post-processing, and report generation capabilities, enabling modification and configuration of 140 

parameters such as buoy sampling frequency and transmission cycle. It also provides low-voltage, water 

ingress, and displacement alarm functions for buoys.  

 

Figure 2: Schematic diagram of a deep-sea air-sea coupled monitoring buoy system  
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To calibrate the CMs, it was first placed in the laboratory and a meteorological observation field 145 

within Jiangwan Campus of Fudan University, for side-by-side observations with a cavity ring-down 

spectrometer (Picarro G2301, Picarro Inc., Santa Clara, USA). (Figure 3). The CMs equipped with 

Stevenson screen was placed outside the station building, while the sampling gas tube of Picarro was 

extended into the Stevenson screen through a duct connecting the station building to the outside 

environment, ensuring simultaneous observations with CMs. Following land-based field observations, 150 

the instrument was deployed for field observations at sea. The offshore field observation point is located 

in the coastal area of Dianbai District, Maoming City, Guangdong Province (21.44 °N, 111.39 °E) 

(Figure 1a), belonging to northern shelf coastal section of the South China Sea nearshore areas feature 

port zones, shallow bays, and small islands (such as Dazhuzhou), while offshore lies the broad continental 

shelf and slope transition zone of the northern South China Sea. Integrated multi-source observations 155 

indicate that most of the South China Sea is a weak to moderate CO2 source with seasonal variations 

(Zhai et al., 2013; Li et al., 2020; Chen et al., 2024; Zhang et al., 2024). The annual average flux in the 

northern continental slope region is approximately 0.46 mol m⁻² yr⁻¹, with higher values in the central 

and southern areas (about 1.37 mol m⁻² yr⁻¹) (Zhai et al., 2013). During summer, the coastal upwelling 

brings up subsurface water rich in dissolved inorganic carbon and low in temperature to the surface layer, 160 

typically tending to increase atmospheric CO2 emissions. However, spatiotemporal variations in wind 

events, biological consumption, and estuarine runoff can cause significant short-term or inter seasonal 

reversals (Xu et al., 2013; Li et al., 2021). In summary, the northern South China Sea, where the 

observation point in this study are located, is generally characterized as a minor CO2 source but exhibits 

strong spatiotemporal variability (Zhang et al., 2024). 165 

 

Figure 3: Land-based field observation experiments. (a) Configuration of CMs, Stevenson screen, and Picarro 

sampling channel. (b) Meteorological observation station, experimental cabin, and field deployment of CMs. 

(c) Field setup of the Picarro G2301. 
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2.2 CMs data correction method 170 

 The original signals had a sampling interval of 2 s and a background noise level of ± 30 ppm. The 

raw data from the CMs were filtered and resampled. After quality control, outliers deviating by more 

than 4σ from the mean were removed, and temporal averaging was applied to reduce the noise level. The 

4σ threshold is applied to achieve a compromise between eliminating extreme outliers and retaining the 

inherent variability of the dataset (Cai et al., 2025). Allan variance, which quantifies the time-averaged 175 

stability of continuous measurements, was used to determine the optimal averaging interval that 

minimizes noise while preserving the integrity of the data signals (Martin et al., 2017). Langridge (2008) 

indicated that the optimal averaging time for the Allan variance of the K30 sensor to reach its minimum 

is approximately 3 min, after which extending the averaging time step no longer significantly reduces 

the noise. Cai et al. (2025) evaluated the noise characteristics of the SenseAir K30 by continuously 180 

introducing standard gases. The results showed that at a measurement interval of 2 s, the noise level was 

4 ppm, and 1-2 min showed 0.4-0.7 ppm noise level, and from 2 min to 1 h, the noise level decreased to 

approximately 0.2 ppm. Therefore, in this study, we selected a 1-minute time step to average the raw 

data before proceeding with subsequent corrections. This approach significantly reduces the noise level 

in the data while enabling the resolution of atmospheric changes on a relatively short timescale. 185 

Using CM1 as an example, results from observations conducted by CMs and Picarro in laboratory 

and terrestrial field are presented in Figure 4. After quality control and resampling of raw data, the 

standard deviation (SD) for the three CMs in laboratory tests improved from 13.05, 17.32, 18.28 ppm to 

4.68, 5.26, and 5.48 ppm, respectively. For field tests, the values improved from 15.14, 21.93, 17.06 ppm 

to 9.33, 14.83, and 8.83 ppm, respectively (Figure 4; Figures S1-S2). Data accuracy improved after 190 

minute averaging (Figure 4 a-d), but differences still exist compared to the reference instrument Picarro 

(∆CO2). A comparison between the laboratory and field results (Figure 4 c, d) shows that the CMs 

performed better under laboratory conditions. In the stable laboratory environment, ∆CO2 exhibited no 

pronounced diurnal variation (Figure 4 c, e), fluctuating steadily around a constant value (system bias). 

By contrast, in the field, where atmospheric conditions naturally vary (Figure 4f), the environmental 195 

parameters showed clear diurnal cycles, and ∆CO2 also displayed diurnal oscillations. This indicates that 

the CMs are highly sensitive to environmental conditions, and their measurement accuracy is affected by 

both atmospheric variability and the CO2 concentration baseline. Therefore, further calibration with 
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respect to environmental parameters is required. The most used environmental correction method for 

NDIR sensors is multiple linear regression. This involves establishing empirical regression models using 200 

environmental parameters such as temperature, air pressure, and water vapor under laboratory or side-

by-side observations with standard instrument (Martin et al., 2017; Han et al., 2024; Cai et al., 2025). In 

recent years, numerous studies have attempted to model environmental nonlinear effects using machine 

learning methods such as random forests, gradient boosting, or neural networks, achieving lower root 

mean square error (RMSE) than linear regression (Biagi et al., 2024; Dubey et al., 2024). However, these 205 

approaches still exhibit limitations in interpretability and transferability. 

 

Figure 4:  Time series of CM1 data during laboratory (a, c, e) and land-based field (b, d, f) observations. (a, 

d) CM1-measured CO2 concentration at second-level resolution (grey dots) and minute-level resolution (blue 

dots), alongside Picarro-measured CO2 concentration (black line). (b, e) Time series of CO2 concentration 210 

difference (ΔCO2=CM1-Picarro) at second-level (grey dots) and minute-level (blue dots) resolution. (c, f) Time 

series of ambient temperature (T, red line) and relative humidity (RH, blue line). 

The 1-min ∆CO2 exhibits linear relationships with T, P, and RH, and this environment-related 

dependence differs among individual CMs (Figure 5). Based on these characteristics, this study adopts a 
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multiple linear regression approach for environmental calibration as Cai et al., (2025), where ∆CO2 and 215 

the environmental parameters satisfy the following relationship: 

 ∆𝐶 = 𝑌𝐶𝑀 − 𝑦0 (1) 

 ∆𝐶 = 𝑎0 + 𝑓(𝑎𝑡 , 𝑇) + 𝑓(𝑎𝑝 , 𝑃) + 𝑓(𝑎𝑅𝐻 , 𝑅𝐻) + 𝑓(𝑎𝑐 , 𝐶𝑂2) (2) 

Here, YCM represents the CMs measurements, and y
0
 is the true atmospheric CO2 concentration. 

The coefficients at, ap, aRH, and ac are the correction parameters associated with T, P, RH, and the CO2 

concentration, respectively; including the CO2 term in the calibration equation serves to eliminate the 

zero-point bias of the CMs. For each CM, the corresponding values of at, ap, aRH, and ac are unique. 220 

𝑎0 is the baseline concentration correction parameter, calibrated using measurements from reference 

instruments at the observation site or from nearby atmospheric background stations. All these parameters 

can be determined through multiple linear regression using the Linear Regression function in Python.  

The corrected data of CO2 after environmental correction is: 

 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝑌𝑐𝑚 − 𝑎0 − 𝑓(𝑎𝑡 , 𝑇) − 𝑓(𝑎𝑝, 𝑃) − 𝑓(𝑎𝑅𝐻 , 𝑅𝐻) − 𝑓(𝑎𝑐 , 𝐶𝑂2) (3) 

When standard instrument (e.g., Picarro) co-located observations are available, these measurements 225 

shall be considered the true values for atmospheric CO2 concentrations. The specific correction results 

will be described in Section 3. For marine observations, the baseline correction of CMs is performed 

using data from the Mauna Loa atmospheric background station in Hawaii, USA (Thoning et al., 2025), 

corresponding to periods where CMs observations are stable and close to background values. The specific 

method and results will be introduced in Section 4. 230 

3 Environmental correction results for land-based field observations 

Temperature variations affect the sensor’s light source intensity, detector response, and absorption 

cross-section, leading to systematic drifts in output (Yasuda et al., 2012). Pressure influences gas density 

and infrared absorption line broadening, making corrections based on the equation of state or sensor 

sensitivity particularly important in regions with strong pressure fluctuations (Chen et al., 2010; Curcoll 235 

et al., 2022). Water vapor exerts the most complex effects on NDIR sensors: it not only dilutes CO2 mole 

fractions in moist air relative to dry air but also causes spectral line broadening within the CO2 absorption 

band, introducing biases (Chen et al., 2010; Dubey et al., 2024). Accordingly, the multivariate linear 

calibration of CMs focuses on three key environmental factors - T, P, and RH. Figure 5 shows the 
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variations of ∆CO2 between the three CMs and the collocated Picarro measurements as a function of 240 

environmental parameters (T, P, and RH) during the land-based field observations, where the orange and 

green colors correspond to the data before and after environmental correction, respectively. Figure 6 

presents the linear relationships between the CMs and the Picarro, along with the histograms of ∆CO₂.  

Prior to correction, the ∆CO2of all three CMs exhibited linear relationships with environmental 

parameters (Figure 5): negative correlation with T, and positive correlation with P and RH. Among these, 245 

CM2 demonstrated the most pronounced correlations. The correlation coefficients (r) between ∆CO2 

and T, P, and RH were -0.79, 0.71, and 0.43, respectively, while the r values for CM1 and CM3 were - 

0.49, 0.52, 0.22, and - 0.39, 0.44, 0.16, respectively, all significant at the 0.01 level (p < 0.01). After 

correction, the systematic drift of ∆CO2 across the three CMs due to environmental parameters was 

successfully eliminated. The corresponding 𝑟 values were all 0, indicating no significant correlations, 250 

with ∆CO2  fluctuating around the zero line. Beyond environmental factors, the multiple linear 

regression also incorporated the true CO2 concentration in the atmosphere, represented by Picarro co-

located measurements in field observations. The values of the first three CMs before correction all exhibit 

zero bias relative to the true values (the fit between CO2 observations and true values includes intercepts) 

(Figure 6 a-c), with respective r values of 0.98, 0.93, and 0.98, all significant at the 0.01 level (p < 0.01). 255 

After correction, the correlations all improved to 0.99 (p < 0.01), and data points largely converged on 

either side of the 1:1 line. The bias between CMs and Picarro shifted from -3.7 ppm, + 43.6 ppm, and - 

16 ppm to + 0.1 ppm, + 1.6 ppm, and + 0.6 ppm, respectively, shifting from significantly biased to 

essentially unbiased (Figure 6 d-f). The results above suggest that all three CMs are influenced by 

environmental variables, but to markedly different extents. Whether for CM2, which inherently exhibits 260 

substantial systematic errors, or CM1, which shows minimal data offset prior to correction, our 

environmental correction method significantly enhances observational accuracy, improves data quality, 

and demonstrates good universality.  
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Figure 5: Variations of ΔCO2 (ΔCO2=CM-Picarro) for CM1 (a-c), CM2 (d-f), and CM3 (g-i) during land-265 

based field observations, as functions of temperature (a, d, g), atmospheric pressure (b, e, h), and relative 

humidity (c, f, i). Orange dots represent data before environmental correction, while green dots represent 

data after environmental correction. 
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Figure 6: Direct comparison of hourly moving averages of CO2 concentrations among CM1, CM2, CM3 and 270 

Picarro during land-based field observations (a-c), and histograms of ΔCO2 distributions (d-f) (ΔCO2=CM-

Picarro, where CM corresponds to CM1, CM2, and CM3, respectively). Orange dots and bars represent data 

before environmental correction, while green dots and bars represent data after environmental correction. 

Environmental correction effectively reduced the offset values between CMs and Picarro (Figure 

7). Before correction, CMs captured CO2 concentration trends like Picarro but exhibited significant 275 

deviations. For the best performing CM1, this deviation was particularly noticeable at low CO2 

concentrations, while CM2 and CM3 showed overall high and low biases, respectively. The ∆CO2 of 

CMs exhibited a certain "downward" drift trend over the one-week observation period, CM1 and CM3 

moved from zero toward negative values, while CM2 shifted from a relatively high positive value around 

50 ppm toward zero. The calibrated results showed high consistency with Picarro, with the RMSE 280 

decreasing from 11.04 ppm, 30.51 ppm, and 18.70 ppm to 4.03 ppm, 3.96 ppm, and 3.88 ppm, 

respectively. The correction effectively eliminated the linear drift trend of ∆CO2 over time, stabilizing 

it to fluctuate around the zero line. During the land-based field observations in Shanghai in early spring, 

the atmospheric temperature and humidity exhibited pronounced diurnal variations, fluctuating between 

5-30 ℃ and 10-60%, respectively. The average RMSE of corrected CMs was 3.64 ppm, which is 285 

sufficient to capture terrestrial CO2 variations (400-600 ppm), even during periods of significant CO2 
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fluctuations with pronounced peaks and troughs, such as cases on March 22nd-23rd and March 25th-

26th, where the environmental correction method performed well.  

 

Figure 7: Hourly moving average time series of CM1 (a-c), CM2 (d-f), and CM3 (g-i) during land-based field 290 

observations: CO2 concentration of CMs before environmental correction (orange line), after environmental 

correction (green line) , and CO2 concentration  from Picarro (black dashed line) (a, d, g); ΔCO2  

(ΔCO2=CM-Picarro) of CMs before and after calibration (b, e, h); Ambient  temperature (T, red line) and 

relative humidity (RH, blue line) (c, f, i). 

4 Marine observation results 295 

Based on the instrument deployment and marine environment described in Section 2, and the 

environmental correction method validated through land-based field observations in Section 3, the CMs-
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equipped air-sea interface buoy observation platform commenced operation in May 2025 in the northern 

South China Sea off the coast of Dianbai District, Guangdong Province. Following signal debugging and 

regular equipment maintenance, observational data were obtained over three months from May 28th to 300 

August 28th. The hourly moving-averaged time series of CO2 concentration, T, and RH from the three 

CMs are shown in Figure 8. During environmental calibration, measurements are first corrected using 

the environmental coefficients at , ap , aRH , and ac  obtained from land-based calibration; baseline 

correction is then applied by updating a0  with reference CO2 concentrations from the marine 

atmospheric boundary layer. Over the open ocean, strong horizontal atmospheric mixing results in small 305 

zonal variations in marine boundary layer CO2 concentrations, indicating high zonal uniformity at similar 

latitudes (Bakwin et al., 2004; Palter et al., 2023). Given the strong real-time nature of this study's 

observations and the limited availability of co-located and near-surface observation resources, CO2 

observation data from the Mauna Loa atmospheric background station in Hawaii, USA (MLO, 19.54°N, 

155.58°W) - located at a latitude similar to the observation site - served as the reference value. The CO₂ 310 

datasets were obtained from the NOAA Global Monitoring Laboratory (GML) 

(https://gml.noaa.gov/ccgg/trends/data.html; Thoning et al., 2025). The relatively stable period (June 

17th-24th) of CMs concentrations during the observation was regarded as the atmospheric background 

state. Both values were substituted into a multiple linear regression calculation to obtain a0 . After 

environmental correction, the RMSE of the CMs significantly decreased from 9.27 ppm, 52.39 ppm, and 315 

11.24 ppm to 1.57 ppm, 1.86 ppm, and 1.52 ppm, respectively (Figure 8a; Figures S3-S5). 

During the three-month marine observations, the atmosphere at the observation site exhibited high 

temperatures and humidity, with temperatures ranging from 25 to 37.5 ℃ and humidity levels between 

50% and 100% (Figure 8b). Both showed pronounced diurnal and weekly variations. The mean CMs 

values before and after correction were 459.48 ppm and 436.94 ppm, with medians of 456.53 ppm and 320 

433.75 ppm, respectively (Figure 8c). The means consistently exceeded the medians, and the ranges 

surpassed 100 ppm in both cases, which indicates many signal peaks in CO2 during the observation, and 

the observation site is susceptible to terrestrial anthropogenic CO2 emissions. After correction, the overall 

concentration was approximately 22 ppm lower than the original values, consistent with the CO2 range 

at the atmospheric background station MLO (mean 429.32 ppm). The correction eliminated systematic 325 

overestimation, bringing the results closer to background concentrations. 
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The SD of the raw data is 9.79 ppm, showing a slight difference from the corrected value of 9.62 

ppm. The first quartile (Q1) changed from 453.08 ppm to 430.10 ppm, and the third quartile (Q3) changed 

from 463.29 ppm to 441.32 ppm, with an inter-quartile range (IQR) of 10.21 ppm, slightly below the 

corrected value of 11.22 ppm. These indicate that the correction process reduced the overall CO2 330 

concentrations but did not significantly decrease data variability. In fact, the distribution of the middle 

50% of data points became wider. Whether considering the extreme fluctuation range (extreme value 

difference) influenced by anthropogenic land effects, the typical fluctuation range IQR after removing 

most extreme signals, or the average fluctuation amplitude SD of overall concentrations, the accuracy of 

CMs corrected data is sufficiently to capture the corresponding signals.  335 

 

Figure 8: Offshore buoy observation results of CMs. (a) Hourly moving average time series of CO2 

concentrations from CMs before correction (orange line) and after correction (green line), together with daily 

mean CO2 series from Mauna Loa Observatory (MLO, red line). The light red and light blue shaded 

backgrounds correspond to CO2 fluctuation periods and stable periods, respectively. (b) Time series of 340 

ambient temperature (T, red line) and relative humidity (RH, blue line). (c) Histograms and boxplots showing 

the distributions of CO2 concentrations before (orange bars) and after correction (green bars). 

During the three-month observation period, CO2 at the monitoring site exhibited short-term 

fluctuation peaks as well as periods of stable concentrations, both of which can be analyzed and 

interpreted from the perspective of atmospheric transport. Using the NOAA Hybrid Single-Particle 345 

Lagrangian Integrated Trajectory (HYSPLIT) model, 36-hour backward trajectories were calculated for 

the observation point to identify the primary transport pathways influencing the air mass sources at the 
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location (Cohen et al., 2015). The trajectory origin is set at the observation point, with a time resolution 

of 6 hours. Meteorological driving data were from the Global Data Assimilation System (GDAS1, 1° × 

1°) reanalysis data provided by NOAA (Rolph et al., 2017). After obtaining a series of backward 350 

trajectories, the HYSPLIT clustering module was employed to classify the trajectories. This approach 

mitigates the impact of uncertainty inherent in individual trajectories and extracts key transport pathway 

characteristics, providing a basis for subsequent analysis of the relationship between air mass transport 

and observational results (Cohen et al., 2015).  The entire period of marine observations was divided 

into four segments for clustering. The periods from May 28th to June 16th (Figure 9a) and June 25th to 355 

August 1st (Figure 9c) constituted CO2 fluctuation phases (the background is light red in Figure 8a), with 

many concentration peaks occurring during these periods. The periods from June 17th to 24th (Figure 

9b) and August 2nd to 13rd (Figure 9d) constituted CO2 stable phases (the background is light blue in 

Figure 8a). During these phases, CO2 concentrations fluctuated minimally and approached the 

background levels of the marine boundary layer. It is particularly noteworthy that during the two-week 360 

period from August 14th to August 28th (the background is white in Figure 8a), CO2 exhibited alternating 

patterns of relatively dense peaks and sustained background concentration levels, with each state lasting 

no more than five days. The limited number of trajectories obtained from segmented analysis makes it 

inconvenient for cluster analysis. 

The trajectory clustering results (Figure 9) indicate that the atmospheric transport pathways 365 

corresponding to concentration fluctuation periods are relatively complex, significantly influenced by air 

masses transported from land. Trajectories from May 28th to June 16th were classified into 17 categories, 

with 40% originating from land and 60% from the ocean. The most typical inland air mass, represented 

by Trajectory 4, was transported from northern Guangdong all the way to western Guangdong. Trajectory 

12, although originating from the sea, reached the observation point via the western coast of Guangdong 370 

within the first 6 hours of the observation period. From June 25th to August 1st, trajectories ending over 

land accounted for 54%, while those ending over the ocean accounted for 46%. Trajectory 2, 

corresponding to short-range inland transport, accounted for 13%. The clustering results indicate that 

local urban emissions from land areas significantly contributed to CO2 concentrations at the observation 

point, effectively explaining the observed large fluctuations and multiple peaks during the corresponding 375 

period. Correspondingly, air masses at observation point during concentration stable periods were 

predominantly transported from clean marine atmospheres. The trajectories from June 17th to 24th were 
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clustered into 11 groups, all originating from the South China Sea. Consequently, the observed CO2 

concentrations during this period remained near background levels, which can be considered the CO2 

concentration level in clean air without anthropogenic pollution. This also demonstrates that using CO2 380 

observations from this period combined with MLO atmospheric background concentrations for baseline 

correction of CMs is reasonable. Trajectories from August 2nd to 13rd were categorized into 4 types, 

with 92% originating from marine sources and 8% from land sources. Consequently, although CO2 

concentrations at observation point during this period were slightly elevated above background values, 

they remained generally stable. 385 

 

Figure 9: Clustered results of 36-hour backward trajectories from Hybrid Single-Particle Lagrangian 

Integrated Trajectory (HYSPLIT) model analyses at the offshore observation site during four time periods of 

buoy observations. Each trajectory is labeled with its cluster number and proportion, and markers on the 

trajectories indicate 12-hour intervals. (a) 28th May-16th June, (b) 17th-24th June, (c) 25th June-1st August, 390 

(d) 2nd-13rd August. (a) and (c) correspond to CO2 concentration fluctuation periods, while (b) and (d) 

correspond to CO2 concentration stable periods. 

By comparing the corrected CMs data during the concentration stable periods (including 19 

complete days) with the diurnal variations in CO2 concentration during the summer of 2024 (June to 

August) at the MLO station (Figure 10), we can further understand how CMs captures the diurnal 395 

variation of oceanic boundary layer CO2. Hourly CO2 mole fractions at MLO were obtained from NOAA 

GML (https://gml.noaa.gov/data/dataset.php?item=mlo-co2-observatory-hourly; Thoning et al., 2025). 
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Both CMs and MLO exhibit daily variations in background CO2 concentrations characterized by lower 

daytime values and higher nighttime values. This pattern likely stems from the primary influence of air-

sea CO2 fluxes and atmospheric convective transport on oceanic CO2 concentrations (Lv et al., 2015). 400 

During the day, solar radiation heats the Earth's surface, which enhances photosynthesis in marine 

ecosystems and promotes the uptake of atmospheric CO2. As atmospheric temperatures rise, enhanced 

turbulent activity thickens the mixed layer, diluting CO2 through vertical mixing and reducing its 

concentration. At night, photosynthesis ceases in regional marine ecosystems, leaving only respiration. 

The sea surface cools, and weakened turbulent mixing restricts vertical air exchange.CO2 struggles to 405 

diffuse into the upper layers, accumulating in the near-surface layer and increasing in concentration. The 

daily amplitude of CO2 at MLO station during summer is approximately 2 ppm, while CMs is 3 ppm. 

This indicates that the environmentally calibrated CMs is sufficiently sensitive to capture the daily 

variation signal of CO2 in clean background air unaffected by terrestrial anthropogenic emissions, 

demonstrating its potential for observing atmospheric CO2 concentrations in open ocean environments. 410 

The daily amplitude of CO2 at MLO Station during summer is approximately 2 ppm, while CMs is 3 

ppm. This indicates that the environmentally calibrated CMs is sufficiently sensitive to capture the daily 

variation signal of CO2 in clean background air unaffected by terrestrial anthropogenic emissions, 

demonstrating its potential for observing atmospheric CO2 concentrations in open ocean environments. 

Observations of the CMs show that the daily maximum and minimum values of CO2 exhibit a 3-415 

hour lag compared to the MLO station, which may be attributed to differences in the surrounding 

environments of the two sites. The MLO station is situated on high altitude land, exhibiting a typical 

mountainous diurnal variation in CO2 concentration. Mountainous terrain induces strong upslope and 

downslope airflows, leading to earlier atmospheric mixing. During the day, upslope flow and mixing 

intensify (NOAA GML, 2024a), resulting in the lowest concentrations around 4 p.m. when vertical 420 

mixing is strongest. At night, the mountain air becomes isolated from the free atmosphere, with 

downslope flows carrying high CO2 air (NOAA GML, 2024a), reaching peak concentrations around 6 

a.m. The observation site in this study is over an ocean surface, which possesses high thermal capacity, 

exhibits small diurnal temperature variations, and experiences delayed turbulence enhancement and 

boundary layer development (Nemoto et al., 2009). Consequently, the nocturnal accumulation of CO2 425 

persists until 8 a.m., several hours after sunrise. Daytime sea breezes and mixing intensify later, with the 

lowest CO2 values occurring around 7 p.m. The average CO2 concentrations at MLO and CMs were 
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424.85 ppm and 431.38 ppm, respectively, differing by approximately 6.5 ppm. This discrepancy may 

be due to the fact that the comparison uses 2024 data. According to the NOAA, the annual growth rates 

of CO2 concentrations for MLO 2023 and 2024 were 3.36 ppm/yr and 3.33 ppm/yr (NOAA GML, 2024b). 430 

Furthermore, even after filtering out short term terrestrial sources, the East Asian monsoon transport can 

still cause regional increases in atmospheric CO2. This monsoon-driven transport represents mesoscale 

or large-scale processes, not local pollution peaks, and thus systematic differences between CO2 

concentrations and MLO can still be observed during stable periods (Fang et al., 2014; Lin et al., 2018). 

 435 

Figure 10: Diurnal variations of CO2 concentrations from CMs (environmentally corrected, green line) during 

stable concentration periods and from Mauna Loa Observatory (MLO, Jun-Aug 2024, red line), along with 

corresponding temperature (T, red dash line) and relative humidity (RH, blue dash line) variations. 

5 Conclusions 

We successfully established a sea-air interface buoy platform along the coast of Maoming, 440 

Guangdong Province, employing low-cost sensors to observe marine CO2 concentrations in the nearshore 

region of the northern South China Sea. Environmental correction methods effectively eliminated the 

impact of environmental factors such as temperature, pressure, and humidity fluctuations on CO2 

measurements while correcting for zero bias. With land-based Picarro G2301 co-located observations 

for comparison, CO2 accuracy improved from 8.03 ppm to 3.64 ppm. Over ocean, baseline correction 445 

using MLO atmospheric background station data improved accuracy from 24.26 ppm to 1.59 ppm, 

meeting the precision requirements for capturing marine CO2 concentration signals (e.g., 420-480 ppm). 
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Systematic errors were eliminated, ensuring observed overall concentration levels align with MLO 

background stations, thereby meeting CO2 concentration levels in the marine boundary layer. The 

temporal variations in CO2 observed by the CMs, including both fluctuating and steady-state phases, can 450 

be explained by the long-range atmospheric transport simulated by HYSPLIT. Moreover, the CMs 

successfully captured the diurnal variations of background CO2 in the marine atmospheric boundary layer, 

with an amplitude of approximately 3 ppm. 

In summary, this study proposes an environmental correction method for calibrating low-cost 

sensors, demonstrating its reliability and scientific validity. It has successfully facilitated the application 455 

of low-cost sensors aboard buoys for observing marine atmospheric CO2 concentrations, providing 

valuable experience for field deployment of marine atmospheric CO2 monitoring. To our knowledge, this 

marks the first application of this method, holding significant importance for acquiring CO2 concentration 

data in under-observed marine regions. This approach significantly reduces the cost of observing CO2 in 

the ocean, opening new possibilities for achieving the goal of substantially increasing observation data. 460 

At the same time, high-precision instruments demand stringent environmental conditions. When 

deployed on buoy platforms in the harsh field observation environment of the ocean, with its powerful 

winds and waves, maintenance becomes extremely difficult. Low-cost sensors, however, overcome these 

technical challenges to a large extent. 

This study represents the first trial in deploying low-cost sensors aboard buoys to monitor marine 465 

CO2 concentrations. The buoy platform equipped with CMs has withstood several typhoon events, 

demonstrating excellent watertightness, mechanical robustness, and stability under wave conditions, 

which are essential for reliable long-term marine monitoring. The successful detection of daily variations 

in the CO2 stable periods further demonstrates the method's potential for deployment in open ocean 

observations. To achieve the goal of significantly increasing the number of marine observations, low-470 

cost sensors must be deployed on small drifting buoys in the following studies. Additionally, the data in 

this paper covers a relatively short time scale and has not yet accounted for long-term sensor drift. As 

the duration of observations continues to increase, it will be necessary to correct for this long-term drift. 

Therefore, this method requires continued refinement and enhancement. In the future, if large-scale 

deployment of buoys for observation can be realized to obtain extensive regional oceanic CO2 475 

observational data, these data could be utilized for "top-down" atmospheric inversions. This would 

provide new perspectives and methodologies for estimating air-sea CO2 fluxes, representing a 
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groundbreaking endeavor. It holds significant importance for accurately estimating oceanic carbon sinks 

and quantifying the dynamics of the carbon cycle. 
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