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Abstract.

Aerosols play an important role for atmospheric radiative transfer in biomass burning (BB) plumes, where they control

photochemistry, direct radiative forcing, and radiation-induced atmospheric dynamics. The optical properties of BB aerosol,

however, remain poorly constrained with respect to their absorptive properties at ultraviolet and visible wavelengths. In-situ

observations show considerable variability due to heterogeneity in BB plumes, and different measurement methods do not5

agree with each other. To overcome this challenge, we have developed an algorithm based on the VLIDORT for photochem-

istry (VPC) radiative transfer model to retrieve the imaginary refractive index k(λ) from airborne actinic flux observations at

wavelengths λ of 310 - 440 nm. Using three flights from NASA/NOAA’s Fire Influence on Regional to Global Environments

and Air Quality (FIREX-AQ) airborne experiment, we obtain values k(387nm) between 0.02 and 0.03 for different transects,

while the absorption Angstrom exponent αk is 4± 1. Volume absorption cross section (VAC) and single scattering albedo10

generally agree with in situ observations, but show less variability, most likely because of the inherent spatial averaging of our

observations. k(λ), VAC and single-scattering co-albedo decrease with physical plume age, with half-lives τ1/2 of 13±3, 16±4

and 17± 4 hours, respectively. Based on our observations, we present a parameterization of the absorptive properties of BB

aerosol from western US wildfires as a function of wavelength and plume age, which will help to improve the representation

of BB aerosol in models.15
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1 Introduction

The optical properties of biomass burning (BB) aerosols in the ultraviolet (UV) and Visible (Vis) spectral range play an

important role in quantifying the impact of BB emissions on climate and air quality. These properties control plume radiative

transfer, so they are of direct relevance for plume photochemical processing, direct radiative forcing, remote sensing of plume

composition, and radiation-induced atmospheric dynamics.20

A crucial parameter contributing to these effects is the particle absorptivity and its dependence on the radiation wavelength, λ. It

is commonly described via the particle single scattering albedo (SSA), ω(λ), or the imaginary part of the refractive index (RI),

k(λ), of the particle material, which is directly linked to the single scattering co-albedo (SSC = 1−SSA) (Bohren and Huffman,

1998; Moosmüller et al., 2009). UV-Vis particle absorption properties allow us to distinguish four BB particle components:

non-absorbing compounds (NAC), black carbon (BC), brown carbon (BrC), and dark brown carbon (d-BrC). NAC compounds25

possess a negligible imaginary RI and thus only scatter light. They consist of inorganic material, water, and non-absorbing

organic compounds. BC refers to refractory elemental carbon, featuring a strong uniform absorption over the UV-Vis spectral

range with k on the order of 0.8 (Bond and Bergstrom, 2006). BrC comprises a subgroup of organic compounds, which is

weakly absorbing in the Visible (k ≈ 0.01) but shows a strong increase in absorption towards the UV, approaching values of

k ≳ 0.1 at wavelengths λ < 350nm (Kirchstetter et al., 2004; Chakrabarty et al., 2014; Laskin et al., 2015). D-BrC was recently30

proposed as an additional optically relevant compound (Chakrabarty et al., 2023), comprising insoluble organic compounds

with similar absorption behaviour as BC but a smaller imaginary RI of k ≈ 0.1.

Because of their differing RI values, the four classes show very different scattering and absorption properties, as illustrated

in Figure 1A, where absorption, scattering and extinction (absorption + scattering) cross-sections for spherical homogeneous

particles of typical size (≈ 100nm in radius) are shown. The extinction cross-section is controlled by the particle size and35

the real RI. The latter is similar for the different compounds, and so is their extinction cross-section. In contrast, the balance

between scattering and absorption, i.e. the SSA, is determined by the imaginary RI, which varies among the compounds by

several orders of magnitude.

In the case of a mixed BB particle of the same diameter (Figure 1B), BrC typically dominates the optical properties in the UV

and short-wave Visible, due to its high abundance. Scattering is the dominant process in the Visible, making BB plumes act as40

bright diffusors, similar to a clouds (Figure 1D). Towards the UV, the contribution of absorption increases, rendering the plume

relatively dark and opaque (Figure 1C).

The strong wavelength-dependent UV absorption, imposed by the presence of BrC, constitutes a unique challenge for mod-

eling radiative transfer in BB plumes. Among other effects, it influences the plume’s direct radiative forcing (Park et al., 2010;

Feng et al., 2013; Wang et al., 2014; Liu et al., 2015a; Shamjad et al., 2018; Drugé et al., 2022), it affects the plume photo-45

chemical processing (Forrister et al., 2015; Mok et al., 2016; Sumlin et al., 2017; Peng et al., 2021; Xu et al., 2021), limits the

sensitivity of satellite measurements (Bousserez, 2014; Theys et al., 2020; Rowe et al., 2022; Theys et al., 2025), and changes

atmospheric dynamics by heating the surrounding air (Yu et al., 2002; Barbaro et al., 2014; Hodzic and Duvel, 2018). Despite

their importance, BB aerosol absorption properties, particularly in the UV, are still not well constrained, for two major reasons:
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Figure 1. Qualitative illustration of extinction, absorption and scattering cross-sections for a spherical homogeneous particle consisting of

various BB particle compounds. Panel A assumes particles consisting of pure brown carbon (BrC), dark brown carbon (dBrC), black carbon

(BC) and non-absorbing compounds (NAC). Panel B assumes a mixture, based on the abundances of the individual compounds in Panel A.

Abundances are given in terms of volume and represent typical values in a BB plume (Bond et al., 2004; Reid et al., 2005; Sun et al., 2021;

Chakrabarty et al., 2023). Panels C and D illustrate the macroscopic appearance of a plume consisting of such particles.

First, they vary strongly with aerosol composition and mixing state (Bond et al., 2006), which are both influenced by factors50

such as fuel composition, fuel moisture content, the combustion process, smoke age, and atmospheric conditions (e.g., Laskin

et al., 2015; Pokhrel et al., 2021; Liu et al., 2021; Zeng et al., 2022; Saide et al., 2022; Shetty et al., 2023). Thus comprehensive

and consistent datasets are required to understand and capture these variabilities through parameterizations of BB aerosol

absorption properties. The acquisition of such datasets and the development of improved parameterizations are priorities for

BB research.55

Second, aerosol absorption properties are still challenging to measure. In recent decades, various measurement approaches

have been developed, each with its own advantages and limitations (e.g. Moosmüller et al., 2009; Corr et al., 2009). Probably,

the most common in situ technique to measure absorption coefficients of suspended particles is photoacoustic spectroscopy

(PAS, e.g., Patrick Arnott et al., 1999; Beck et al., 2003; Lack et al., 2012; Sharma et al., 2013; Langridge et al., 2013;

Fischer and Smith, 2018). This contactless technique provides real-time data at high temporal resolution. However, accurate60

PAS measurements require suitable light sources (stable high-power collimated beams) that are challenging to realize for

UV wavelengths, particularly below 350nm. Direct PAS measurements of UV absorption are therefore scarce and have only

been applied in laboratory and ground-based settings (Ajtai et al., 2010; Wiegand et al., 2014; Sumlin et al., 2018). In most
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applications, PAS measurements are limited to a few wavelengths in the Visible spectral range. UV absorption properties are

inferred via spectral extrapolation, which is associated with large uncertainties (Zeng et al., 2022). In a humid environment65

(ambient relative humidity ≳ 40%), additional biases can arise from light-induced particle evaporation (Langridge et al., 2013).

Less direct optical approaches, such as combining cavity enhanced absorption spectroscopy (CEAS) or cavity ring-down

spectroscopy (CRDS) for extinction with nephelometry for scattering measurements (e.g., Singh et al., 2016), are also em-

ployed. While these methods share most of the limitations inherent to PAS, an additional challenge arises because absorption

is calculated as a typically small difference between two large measured quantities (extinction minus scattering). This requires70

exceptionally high accuracy for both extinction and scattering measurements to yield meaningful absorption results (Massoli

et al., 2009).

Absorption properties of soluble BrC compounds are often determined by gathering particles on filters for later analysis. In

the laboratory, these particles are extracted from the filters with water or methanol. Insoluble compounds are removed from

the solution, and the absorption of the remaining dissolved chromophores is measured using a liquid light waveguide capillary75

(e.g., Hecobian et al., 2010; Forrister et al., 2015; Liu et al., 2014, 2015a; Zhang et al., 2017). Such measurements can be

performed over broad spectral ranges at high resolution. However, reconstructing the absorption of the aerosol in its particulate

state requires information on the original morphology and the absorption of insoluble compounds. Usually, information on

both these aspects is limited, and uncertainties on reconstructed absorption properties > 50% are not uncommon (Shetty et al.,

2019; Zeng et al., 2020, 2022).80

Instruments such as the aethalometer or the particle soot absorption photometer (PSAP) calculate particle absorption from

transmittance and reflectance of particle-laden filters. Using conveyor-belt filters, such measurements can be performed in a

fully automated manner in real-time at sufficient temporal resolution, and over the UV spectral range. However, they are known

to suffer from artifacts related to filter-loading and multiple scattering effects (Weingartner et al., 2003; Lack et al., 2008; Cappa

et al., 2008; Drinovec et al., 2015).85

All of the above measurement techniques are far from ideal, as they alter the original state of the particles, and they have

limited sensitivity or suffer from cross-interferences. Various comparison studies show considerable inconsistencies among

the different approaches (e.g. Science, 2020; Cheng et al., 2021; Zeng et al., 2022). Clearly, observations and techniques

with reliable uncertainty estimates are highly desirable to (1) understand artifacts and inconsistencies in existing methods, (2)

identify crucial factors and processes determining the particle absorption, and (3) develop and improve parameterizations of90

aerosol properties for better prediction of plume radiative transfer in BB scenarios.

The retrieval of aerosol absorption properties from passive spectral observations of solar radiation, offers a valuable comple-

mentary approach to in situ measurements. Retrievals have been performed from ground (Petters et al., 2003; Bhartia, 2005;

Barnard et al., 2008; Corr et al., 2009; Pistone et al., 2019; Jeong et al., 2022), aircraft (Corr et al., 2012) and satellite platforms

(Torres et al., 2007; Jethva and Torres, 2011), based on spectral observations of radiance, irradiance and actinic flux (the direc-95

tionally integrated amount of radiation incident at a given location). Remote sensing provides spectrally continuous sampling

of the unaltered aerosol state, down to wavelengths as low as 300 nm. At the same time, remote sensing inherently averages

over large parts of the plume, potentially reducing biases from spatial variability. Aerosol optical property retrievals for BB
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Figure 2. The aerosol absorption signal can clearly be seen in the actinic flux spectra from the CAFS instrument. The ratio of spectra recorded

inside and outside of the plume reveals an increasing attenuation towards UV wavelengths.

scenarios have, for example, been performed by Corr et al. (2012), showing the potential of this approach. However, Corr et al.

(2012) only used wavelengths longer than 350 nm, thus missing the strongest BrC absorptions. Retrievals of aerosol properties100

from remote sensing observations rely heavily on a priori information of various factors that influence the radiative transfer,

such as plume geometry, choice of particle size distribution (PSD), and stratospheric total ozone column. Preferably, these

factors are constrained by direct observations or alternatively taken from literature. In both cases they introduce uncertainties

that often limit the significance of the retrieval results. Any aerosol optical property retrieval from remote sensing observations

thus needs an extensive uncertainty analysis.105

In the present study, we have two main goals. First, we aim to assess feasibility and accuracy of UV-Vis remote sensing of

aerosol absorption properties in dense BB plumes. Second, we want to compare the determination of absorption properties from

in situ and remote sensing observations, and ultimately derive a parameterization for the aerosol absorption properties. We will

use the unique dataset acquired during the FIREX-AQ campaign (Section 2), where various young and dense BB plumes were

sampled with a comprehensive suite of in situ and remote sensing instruments on the NASA DC-8 research aircraft. The key110

measurements for our analysis are UV-Vis actinic flux spectra recorded on the aircraft by a Charged-coupled device Actinic

Flux Spectroradiometer (CAFS). The sensitivity of these measurements to UV aerosol absorption can easily be demonstrated

by comparing two spectra recorded outside and inside the plume, respectively (Figure 2). Their ratio indicates a strong increase

in attenuation towards the UV, whose major portion can unambiguously be attributed to BrC absorption (Tirpitz et al., 2025).

This very strong absorption signal allows us to use inverse modeling to derive aerosol absorption properties. In other words,115

a radiative transfer model is used to simulate actinic flux spectra, and the model results are then fit iteratively to the observed

actinic fluxes by varying the aerosol absorption properties in the model.

The FIREX-AQ dataset provides comprehensive and unprecedentedly accurate constraints for remote sensing retrievals and

their uncertainties, enabling us to study several fires for a wide range of plume ages. In addition, remote sensing observations

were performed for an extended wavelength range down to 310 nm, thus enabling the analysis of the strongest part of the120

atmospheric BrC absorption. Based on this dataset, we will address the following questions:
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1. Can particle UV absorption properties be reliably retrieved from actinic flux spectra in dense BB plumes, considering

the various sources of uncertainty?

2. Can we gain new insights regarding biases and inconsistencies in existing measurements?

3. Can we find a parameterization for aerosol UV absorption properties, to better constrain radiative transfer in BB plumes125

in general?

We introduce a retrieval framework (Section 3) based on the VPC (VLIDORT for PhotoChemistry) radiative transfer model

(Section 3.1). This framework is applied to plume data from three fires sampled during FIREX-AQ (Section 2) to retrieve

smoke particle imaginary RIs from 310 to 440 nm, and their uncertainties (Section 4.1 and 4.2). From the imaginary RI we

further derive SSA and volume absorption cross-section (VAC). The latter describes the aerosol absorption cross-section per130

aerosol volume in units of µm−1 (Bond and Bergstrom, 2006). The more common mass absorption cross-section (MAC) can

be obtained by dividing by an appropriate particle material density.

We compare our results to filter based and photoacoustic in situ measurements from the FIREX-AQ aircraft to assess method

agreement and reliability (Section 4.3), and propose new parameterizations for the dependece of imaginary RI, VAC and SSA

on wavelength and plume age (Section 4.6).135

2 FIREX-AQ campaign

The present study is based on data from the NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality

(FIREX-AQ) measurement campaign (Warneke et al., 2023). This 6-week campaign took place in the Western US from July to

September 2019, and comprised sampling of more than 90 wildfire plumes with a variety of in situ and remote sensing instru-

mentation on the NASA DC-8 research aircraft. The full dataset is available at https://www-air.larc.nasa.gov/missions/firex-aq/140

(Aknan and Chen, 2023).

2.1 Investigated fires

In the present study, we performed retrievals for three fires: Shady, Lefthand, and Williams Flats. These fires evolved under

clear-sky ambient conditions; this consideration simplifies the radiative transfer modeling. Table 1 provides an overview of

the fire occurrences and their key characteristics, such as plume aerosol optical depth (AOD), burned fuel, and meteorological145

conditions. Figure 3 shows a typical flight path through the Shady fire. The aircraft crossed the plume in transects perpendicular

to the wind direction, and in sequentially increasing distances (steps of ≈ 10km) to the fire. At a distance of about 100 km

from the fire, the aircraft returned to the original starting point, repeating the transect pattern over the plume.

2.2 Key instruments

The key FIREX-AQ observations for the present study are the actinic flux spectra from which aerosol absorption properties150

are retrieved. However, ancillary FIREX-AQ measurements were used to constrain other relevant environmental parameters;
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Table 1. Investigated fires

Name Shady Lefthand Williams flats

Date July 25 July 30 August 3

Latitude 44.517 46.933 47.939

Longitude -115.019 -120.9930 -118.618

State ID WA WA

Fuel
Timber,

tall grass

Timber,

logging slash

Dead trees,

grass, sage

bitter brush

Max. AOD a 9.8 0.5 11.3

SZA [◦] b 47 - 82 73 - 79 43 - 78

Smoke age 0:15 - 3:10 4:50 - 6:30 0:30 - 6:50

MCE c 0.88± 0.02 NA d 0.92± 0.02

Wind [ms−1] 8.9± 3.3 7.4± 1.6 4.1± 1.3

Wind dir. [◦] e 270± 18 265± 8 270± 30

Humidity [%] 33± 5 35± 1 20± 13

Transects 20 5 22

Lidar profiles f 284 39 564

a At 400 nm
b Retrievals ultimately limited to SZA≤ 75◦ (Section 4.1)
c Mass combustion efficiency (Stockwell et al., 2014).
d CO enhancement too low for reliable MCE calculation.
e Clockwise with respect to North.
f Complete profiles with plume AOD > 0.2.

Figure 3. A segment of the flight path sampling the Shady fire plume, illustrating the typical flight pattern. The aircraft crossed the plume in

so-called ’transects’ perpendicular to the wind direction, and in sequentially increasing distances (steps of ≈ 10km) to the fire. Track color

indicates plume signal based on in situ carbon monoxide measurements.
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these include atmospheric conditions, particle size and plume geometry. The following paragraphs introduce the most relevant

instruments. Assimilation of the data into the retrieval is described in Section 3.

Actinic flux spectra were recorded by the CAFS instrument onboard the NASA-DC8 aircraft (Shetter and Müller, 1999;

Hall et al., 2018). This instrument combines data from two channels with upward and downward-facing entrance optics, to155

capture radiation over the full 4π steradian solid angle. The instrument was calibrated in the laboratory to provide absolute

actinic flux density spectra in units of photons s−1 cm2 nm−1. It covers the spectral range from 298 to 640nm at a resolution

of 1.7nm (FWHM) at 297nm and ≈ 0.8nm sampling. Typical spectra are shown in Figure 2. Its limit of detection is 6×
1010 photonss−1 cm2 nm−1, a values determined from noise analysis under low light conditions. The error in sensitivity was

estimated to be 5% and arises from uncertainties in the instrument’s calibration.160

The aerosol spatial distribution was constrained using Lidar observations from the aircraft, from an instrument called DIAL-

HSRL, which combines a High Spectral Resolution Lidar (HSRL, Hair et al. (2008)) and an ozone DIfferential Absorption

Lidar (DIAL, Browell (1989)). The Lidar observations where complemented by in situ measurements of the aerosol extinction,

absorption, and scattering coefficients, using TSI Nephelometers, a Radiance Research Particle Soot Absorption Photometer

(PSAP), and the NOAA Aerosol Optical Properties Suite (AOP, Langridge et al., 2011; Lack et al., 2012). The data were165

combined and processed as described in Tirpitz et al. (2025) to infer vertical profiles of the aerosol extinction coefficient at

532 nm, at a temporal resolution of 10 s (equivalent to a horizontal spatial resolution of 1.5 km at the average speed of the

aircraft of about 150ms−1) and a vertical resolution of 30 m (Figure 5). Time series of these profiles (Lidar curtains) for the

individual transects are shown in panel A of Figure 5, and in the Supplement Figures S1 and S2.

A TSI model 3340 laser aerosol spectrometer measured aerosol size distributions at 1s temporal resolution, at aircraft cabin170

temperature and dry humidity. Hygroscopic growth effects were neglected, since relative humidities during the investigated

flights were < 40% (Table 1). Under these conditions, scattering enhancements for BB aerosol are reported to be ≲ 1%,

(Kotchenruther and Hobbs, 1998; Chang et al., 2023).

For the physical plume age, i.e. the residence time of the smoke in the atmosphere since emission, we use data from the

FIREX-AQ database (Aknan and Chen, 2023). These are the "wind uncorrected" plume ages, calculated as described in Holmes175

et al. (2025) by backtracking upwind trajectories from the aircraft to the source fire location using the NOAA HYSPLIT model

(Stein et al., 2015).

The DC-8 aircraft meteorology and navigation systems provided temperature, pressure, humidity, wind speed, wind direc-

tion, geolocation, altitude above sea level, ground speed, and radar measured altitude above ground at 1 s temporal resolution.

3 Retrieval setup180

We developed a general retrieval scheme that can be applied at any given time in the flight. The basic idea is (1) to use

a radiative transfer model with the capability to model actinic flux spectra, (2) constrain the model with information from

ancillary FIREX-AQ measurements and literature data, and (3) to vary the a priori aerosol absorption properties in the model

in order to match the coincident CAFS actinic flux measurement. To obtain reliable estimates of the retrieval uncertainties for
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Figure 4. Schematic diagram of the retrieval setup. The left side provides an overview of the various model inputs. Most relevant are the fixed

critical parameters (Section 3.5) and the fit parameters (Section 3.3), mathematically represented by the vectors b and x in the parameter

vector space. Both critical and uncritical fixed parameters are constrained by external data from aircraft, satellite or literature. The retrieval is

performed by minimizing the least-squares residual between model results and measurements, represented by the vectors F (x) and y in the

measurement vector space. Once the imaginary RI has been successfully retrieved, further parameters like VAC, MAC and SSA are derived

using a Mie code. Blue arrows and symbols illustrate the error propagation strategy (Section 3.6). Symbols C indicate covariance matrices,

symbols J indicate Jacobian matrices.

a wide range of measurement conditions, the framework includes an error propagation scheme, considering uncertainties from185

the CAFS measurements, ancillary constraints, and simplifying assumptions in the modeling approach. Figure 4 provides a

schematic overview of the framework. Details of each element are discussed in the following subsections. Key quantities in

this scheme and their mathematical expressions (we follow the notation by Rodgers (2000)) used throughout this paper are the

following:

1. The measurements, summarized in the vector y: They comprise the CAFS measurements of up- and downwelling actinic190

fluxes at various wavelengths λ (Section 3.4).

2. The critical fixed model input parameters, summarized in the vector b. These are model inputs that will not be varied

during the fit, but are critical to constrain atmospheric state and radiative transfer. They are inferred from FIREX-AQ

aircraft measurements or satellite observations, or taken from literature (Section 3.5).

3. The fit parameters, which are elements of the vector x, describe the aerosol absorptive properties and will be varied in195

order to bring model simulations and measurements into agreement. The fit result is denoted as x̂.
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4. The radiative transfer model, in the following equations referred to as the vector function F (x,b).

To find the solution x̂, we use the "optimize.least_squares" method from the SciPy Python library (Virtanen et al., 2020).

This method minimizes a weighted least-squares cost function

χ2 = (F (x,b)−y)T Cy
−1 (F (x,b)−y) (1)200

applying a Levenberg-Marquardt iteration scheme (Levenberg, 1944; Marquardt, 1963), where Cy is the measurement error

covariance matrix (Section 3.6).

3.1 Radiative transfer model F

We use the 1D radiative transfer model VPC (VLIDORT for PhotoChemistry Tirpitz et al., 2025), built around the Quasi-

Spherical Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT-QS) code (Spurr et al., 2022). The model sim-205

ulates actinic fluxes for a given atmospheric state, solar geometry, and observer altitude. The atmospheric state is described

in terms of various model input parameters, including aerosol properties and aerosol vertical profile (details in Section 3.5

and 3.3). For plumes that are several kilometers wide and for solar zenith angles ≲ 75◦,Tirpitz et al. (2025) showed that the

application of 1D radiative transfer models such as VPC, is highly successful.

3.2 Representation of plume aerosol210

In the model, we approximate plume particles as an ensemble of homogeneous spherical particles of uniform composition.

For their representation we make use of VPC’s "microphysical aerosol" module (Tirpitz et al., 2025), which characterizes

the ensembles in terms of a bimodal log-normal PSD, the complex refractive index n(λ)+ ik(λ) of the particle material and a

vertical extinction coefficient profile E(λ0) at a predefined reference wavelength λ0. This simplified aerosol representation was

chosen to 1) best accommodate available FIREX-AQ measurements, 2) minimize the number of retrieved parameters, given215

the limited information in the spectra, and 3) align with the Mie aerosol representation commonly used for radiative transfer

calculations in current chemical transport and climate models (Bond and Bergstrom, 2006; Stevens and Dastoor, 2019). The

description is complete in the sense that all bulk optical properties (extinction coefficient, SSA and scattering phase function)

can be calculated for arbitrary wavelengths and altitudes by running VPC’s integrated Mie model. The imaginary RI is the

parameter of primary interest in this study and the target quantity of the retrieval (Section 3.3).220

It should be noted that the retrieved imaginary RI represents a "Mie equivalent" value. This means that it might differ from

the physical RI values for the actual particles, due to the assumptions regarding mixing state and particle morphology. At the

same time, this Mie-equivalent RI value is "radiatively correct", in the sense that the Mie code will yield optical bulk properties

(extinction cross-section, SSA, scattering phase function) that are close to reality.

3.3 Retrieved model input parameters x225

The goal of the retrieval is to infer the wavelength dependent imaginary refractive index k(λ) of the aerosol material. To reduce

the number of retrieved parameters, we do not retrieve independent values k(λ) at multiple wavelengths. Instead, we assume

10
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an Angstrom wavelength dependence

k(λ) = k(λ0)
(

λ0

λ

)αk

(2)

and we then retrieve the Angstrom coefficient αk, plus magnitude k(λ0) at a reference wavelength of λ0 = 387nm. These two230

parameters constitute the parameter vector x = (k(λ0),αk).

The retrieved state vector elements combined with information on the size distribution and real RI (see Section 3.5), enable

calculations of the imaginary refractive index, and the SSA and VAC at other wavelengths.

3.4 Measurements y

The measurement vector y in our retrieval scheme contains m = 18 values: these are the logarithm of CAFS upwelling and235

downwelling actinic fluxes, each at 9 selected wavelengths (308, 313, 322, 332, 347, 364, 387, 405, 440 nm). Instead of the full

spectra provided by the CAFS, this reduced set of wavelengths has been selected to improve computational efficiency, while

still capturing the spectrally smooth aerosol signal. The wavelengths are specially chosen to avoid interference with strong solar

Fraunhofer lines. To temporally match the CAFS and the Lidar, the 1Hz CAFS data was averaged over the 10s Lidar mea-

surement window. The logarithmic transformation of y improves model linearity, numerical stability, and representativeness240

of uncertainties, considering the exponential nature of the Beer-Lambert law.

3.5 Fixed model inputs b

The fixed model inputs were constrained with ancillary FIREX-AQ aircraft measurements, satellite observations and literature

data. We distinguish between uncritical and critical fixed inputs, based on their relevance to the modeled actinic fluxes and

ultimately to the retrieval results.245

Uncritical fixed parameters have a negligible impact on the modeled actinic flux (< 3% when uncritical input is varied within

its uncertainty) and are not considered in the retrieval error propagation scheme (Section 3.6). They comprise the pressure

profile, temperature profile, NO2 profile and background aerosols, and are constrained following the procedures described in

detail in Tirpitz et al. (2025). Table 2 provides an overview of all uncritical fixed inputs, along with short descriptions of the

respective sources of information (FIREX-AQ instrument or literature reference).250

Critical fixed parameters have a higher impact on modeled actinic flux and are considered in the retrieval error propagation

scheme (Section 3.6). Critical fixed inputs are the PSD, the aerosol vertical profile, the ozone vertical profile, the surface

albedo and the real part of the plume aerosol RI. Except for the real RI, the critical fixed inputs are constrained following the

procedures in Tirpitz et al. (2025), a summary of which is provided in the following paragraphs.

PSDs were measured in situ by a laser aerosol spectrometer on the the aircraft. For the retrieval we use transect-averaged255

data. The Mie module of VPC describes particle sizes in terms of a normalized multi-modal log-normal size distribution,

described via median radii, modal widths, and modal fraction for each mode. These model input parameters were inferred

by fitting a bimodal distribution to the observed PSDs. The amount and spatial distribution of aerosols are described through

vertical profiles of the aerosol extinction coefficient at 532 nm. These are inferred combining Lidar observations and in situ
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Table 2. Overview of the uncritical fixed model parameters and how they are constrained during the retrieval. A more detailed explanation

of the retrieval process can be found in Tirpitz et al. (2025)

Parameter Data source description

Tropospheric background aerosol Size distribution Laser aerosol spectrometer measurements outside plume

Refractive index Literature (Levoni et al., 1997)

Extinction profile Lidar extinction profiles outside plume

Stratospheric background aerosol Size distribution Literature (Wrana et al., 2021)

Refractive index Literature (Levoni et al., 1997)

Extinction profile SAGE II database (SAGE Science Team, 2012)

Other Pressure profile Std. atmosphere, scaled with in situ

Temperature profile Std. atmosphere, troposphere scaled with in situ

NO2 profile Lidar aerosol profile scaled by in situ NO2-aerosol-ratio

measurements , both performed on the aircraft (Section 2.2). Conversion to the actual retrieval wavelengths in the UV-Vis260

(Section 3.4) is performed on-the-fly at each inverse-model iteration, based on derived aerosol microphysical properties from

the current iteration. The surface albedo is constrained using the TROPOMI database for monthly Lambertian-equivalent

reflectivity (LER, Tilstra et al., 2023), which is integrated into the VPC model. The O3 tropospheric profile is inferred from O3

in situ measurements during ascent and descent of the corresponding flight. For the stratospheric profile we assumed the 1976

US Standard Atmosphere, scaled according to OMI satellite observations (Bhartia, 2012).265

The most critical fixed parameter in our retrieval is the real RI n(λ) of the aerosol. During FIREX-AQ, no direct mea-

surements of n(λ) were performed. Based on literature review and FIREX-AQ related investigations presented in Saide et al.

(2022), we choose a fixed value of n = 1.52 for all wavelengths.

3.6 Error propagation scheme

Finding a realistic uncertainty estimate for the retrieval results x̂, based on the various uncertainties and assumptions involved270

in the retrieval, constitutes a major challenge. Sources of uncertainty are present in both the parameter space (e.g. errors in the

critical fixed parameters) and the measurement space (e.g. CAFS measurement error). Combining these requires propagation of

error contributions through the radiative transfer model F in both the forward direction (from the parameter to the measurement

space) and the backward direction (from the measurement to the parameter space). For this purpose, we resort to the most

general approach for linear propagation of statistical errors: the formalism for error propagation with covariance matrices (e.g.275

Strutz, 2011; Tellinghuisen, 2001; Rodgers, 2000). This approach is based on the equation

Cf = JTCβ J (3)

12

https://doi.org/10.5194/egusphere-2025-5541
Preprint. Discussion started: 5 February 2026
c© Author(s) 2026. CC BY 4.0 License.



where Cf is the covariance of some function or model f(β), resulting from covariances Cβ in the input parameters β,

propagated using the Jacobian matrix

J =
∂f

∂β
(4)280

Here, the "T" suffix denotes matrix transpose.

This formalism is applicable to any vector-valued function and considers potential correlations between errors, represented

by the off-diagonal elements of the covariance matrices. It should be noted that for a multivariable scalar function f(β) and

uncorrelated errors, Equation 3 reduces to the much more familiar equation for error propagation:

∆f2 =
∑

i

(
∂f

∂βi

)2

∆β2
i (5)285

For our retrieval, we consider the following error contributions: (1) uncertainties in the CAFS measurements, (2) uncertain-

ties in the fixed model parameters, (3) errors arising from model simplifications, and (4) the fit residual to capture potential

failures in convergence of the fit. For these initial uncertainties, we construct covariance matrices, assuming the errors to be

uncorrelated, i.e. the off-diagonal elements of these covariance matrices are identically zero. The measurement covariance ma-

trix Cy is constructed based on the CAFS measurement uncertainties ∆y (see Section 2.2). The covariance of the fixed model290

parameter Cb is constructed similarly, assuming the uncertainties ∆b listed in Table 3. Uncertainties arising from model sim-

plifications are considered by additional uncertainties in distinct model input parameters, which lead to similar errors in the

modeling results as one would expect from the actual model simplifications. These errors, ∆b′, are listed in Table 3 and are

represented by the covariance matrix C′b. They are applied to (1) the PSD radii to account for the simplified representation of

aerosols as homogeneous and spherical particles, (2) the aerosol optical depth to account for horizontal inhomogeneity of the295

plume and related 3D radiative transfer effects, and (3) the surface albedo to account for horizontal inhomogeneity in surface

properties. The fit residual is represented by the covariance matrix Cr, with the squared residual elements (Fi(x̂)− yi)2 on

the diagonal. It captures the cases in which the simplified model cannot reproduce the real observations, most noteworthy in

scenarios where the assumption of a simple angstrom dependence of k does not hold.

The complete error propagation scheme is qualitatively illustrated by the blue arrows and symbols in Figure 4. The scheme300

unfolds in two major steps, indicated by the upper and lower light-blue arrows, respectively. In the first step, we forward

propagate Cb and C′b through the model to obtain a "model covariance" CF in the measurement space. This covariance

describes the uncertainties in the modeled actinic fluxes that arise from uncertainties in the critical fixed model inputs and

model simplifications. In accordance with equation 3, it is calculated as

CF = Jb (Cb +C′b)JT
b (6)305

using the radiative transfer model Jacobians with respect to the fixed input parameters:

Jb =
∂F (x,b)

∂b
. (7)
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In the second step, the covariances in the measurement space (CF,Cr and Cy) are combined and propagated back through

the model to obtain the fit result covariance

Ĉx = J̄x (CF +Cr +Cy) J̄T
x , (8)310

using the weighted Moore-Penrose inverse (also referred to as weighted generalized inverse or gain matrix in literature):

J̄x = (Jx
T CyJx)−1Jx

T Cy. (9)

Here, J̄x are the Jacobians with respect to the retrieved parameters

Jx =
∂F (x,b)

∂x
. (10)

With the retrieval state vector having just two elements, Ĉx is a 2× 2 matrix providing the uncertainties for the retrieved315

imaginary RI and its Angstrom coefficient

∆k̂(λ0) =
√

Ĉx,11 and ∆α̂k =
√

Ĉx,22. (11)

as well as their correlation coefficient

r̂ =
Ĉx,12√

Ĉx,11Ĉx,22

. (12)

Table 3. Assumed uncertainties for the fixed model inputs

Parameter bi ∆bi ∆b′i

PSD radii 10% 20%

Real refractive index 0.1

Aerosol extinction profile 15% 20%

Ozone vertical column 5%

Surface albedo 30% 40%

4 Retrieval application and post-processing320

Our goal is to determine the average aerosol absorption properties on a transect basis, as they will form the dataset for our

analysis. Calculation of these transect averages is performed in multiple steps as outlined in the following subsections.

4.1 Retrievals on individual profiles

In a first step, we apply the retrieval scheme described in Section 3 to each Lidar profile where (1) vertical gaps in the Lidar

profile are absent or can reliably be interpolated and (2) the AOD is > 0.2. This results in 10 - 20 individual retrievals per325
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plume transect at 10s temporal resolution. For all three fires, we perform nearly 900 retrievals (see Table 1). As these retrievals

include any data with a notable plume signal, they cover a broad range of conditions. We use this set of results to assess (1) the

ideal conditions for accurate and stable retrievals, (2) the reliability of propagated errors, and (3) the contribution from various

error sources to the total uncertainty in the retrieval results.

Figure 5 shows a time series of the lidar profiles and the imaginary RI retrieval results in terms of k0 (at λ0 = 387nm)) and330

αk for the Shady fire. Supplement S1 provides similar plots for the Lefthand and Williams Flats fire.

Figure 5. Results from retrievals performed on individual lidar profiles from the 20 transects crossing the Shady fire. Similar timeseries for

the Williams Flats and Left hand fires can be found in the Supplement, Section S1. Panel A shows the plume cross-sections in terms of Lidar

curtains of aerosol extinction coefficient. Panels B and C show the retrieval results in terms of imaginary RI magnitude k0 (at 387 nm) and the

Angstrom coefficient αk. Error bars indicate propagated uncertainties according to Eq. 11. Grey data points are flagged as invalid according

to the filter criteria described in Section 4.2. Panel D shows solar zenith angle. Panel E indicates contributions from the model error CF, fit

residual Cr and measurement error Cy to the total retrieval uncertainty Ĉx. Values represent root-mean-square differences (RMSDs) over

the diagonal of the corresponding covariance matrix. Panel F illustrates the relative contributions of each critical fixed parameter to the total

model covariance CF. As indicated on the transect x-axis, results for transects 4 and 17 are shown in more detail in Supplement S5.

At first glance, the retrieval results show significant variability within and between transects (Figure 5B and 5C). However,

there are clear indications that the quality of the retrieval strongly depends on the geometrical configuration and the under-

lying atmospheric conditions and that particularly large variations originate from retrieval artifacts rather than from any real

variations of the plume aerosol properties.335
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Based on our sensitivity studies in Supplement S2 and Tirpitz et al. (2025) and considering the limitations of the 1D radiative

transfer model, most reliable results are expected when the aircraft is inside the plume, the AOD is moderate, the horizontal

variability is low, and the sun is relatively high in the sky (SZA < 75◦). For retrievals where these conditions are met, the

variability in the retrieval results is relatively small and the propagated errors in k(λ0) and αk are on the order of 20 % and

5 %, respectively. A few examples of such retrievals are highlighted by the green shading in panels B and C of Figure 5. For340

the imaginary RI k(λ), this translates into uncertainties of about 20 % in the UV and 25 % in the Visible (example shown in

the Supplement, Figure S5, top row). In these cases, the errors are dominated by uncertainties in the critical fixed parameters

CF (Figure 5E), with the highest contributions from the real RI of the aerosol and the plume AOD (green and blue areas in

Figure 5F). Interestingly, the sensitivity to the PSD (red, Figure 5F) is relatively small, i.e., similar retrievals for other plumes

are conceivable in the future, even in scenarios where the PSD is not as well constrained as was the case during FIREX-AQ.345

On the other hand, there are scenarios where conditions are less favorable. For example, for low AODs, the aerosol signal

in the spectra is small, rendering the retrieval susceptible to inaccurate assumptions about surface properties, the presence of

thin clouds, or horizontal inhomogeneities. Furthermore, when the aircraft is far above, well below, or close to the edge of the

plume, 3D radiative transfer effects not captured by the model, such as shadowing and side-illumination, become increasingly

probable. As a result, the retrieval occasionally becomes unstable and yields extreme or even unrealistic values for k0 and350

αk. Such scenarios are sometimes captured by the error propagation scheme, in terms of correspondingly large associated

uncertainties (example indicated by the orange shading in Figure 5), which provides confidence in our error propagation

scheme to reflect the quality of the conditions and results well. However, accounting accurately for all detrimental effects is

impractical and, for extreme scenarios, the non-linearity of the problem can cause the error propagation scheme to fail (example

indicated by the red shading in Figure 5). Consequently, it becomes necessary to apply additional filters, as described in detail355

in Section 4.2.

The error magnitudes shown in panel E, indicate that the contribution of the fit residual Cr to the propagated retrieval error

typically stays below the contribution of the model error CF, indicating a successful convergence of the fit within the limits of

the model. During in-plume observations at high SZAs, the retrieval error is dominated by the increasing measurement noise

Cy of the CAFS measurements (Panel E, transects 17-20) due to low-light conditions.360

4.2 Calculation of transect averages

To obtain the final absorptivity results discussed in the result sections, we calculate average values for each transect from the

time series in Figure 5. The averaging smoothes out small-scale variability and retrieval instabilities, thereby providing more

reliable results, while major dependencies, e.g., on the plume age, can still be investigated.

To reduce biases introduced by extreme outliers, we apply additional filtering, as noted above in Section 4.1. We generally365

find that unrealistic retrieval results occur when we obtain very large values in k0 and very low values in αk, or vice versa. We

therefore apply a filter based on the k0/αk ratio. We discard retrieval results where k0/αk deviates from the k0/αk median

by more than a factor of 5 or 0.2 in the upper or lower direction, respectively. In our dataset for all three fires, this filtering

removes 14 % of the retrievals. Allowing for larger or smaller deviations in k0/αk affects the variability of our results, but
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does not introduce significant biases in the transect-averaged values (Supplement Figure S7). During transect averaging of the370

filtered data, individual retrievals are weighted by their propagated error, such that the averages are driven by the most reliable

retrievals. We use the weighted average of the propagated errors of the individual retrievals to represent the uncertainties of

the transect averages. This is a conservative approach, but quite reasonable, considering that many of the contributing errors

are expected to systematically bias individual retrievals in a common direction (such as biases arising from the fixed real RI,

PSD size calibration, Lidar ratio estimates for the current transect, etc.). In the Supplement (Figure S4) we present examples375

showing how the averaging process successfully calculates transect-averaged spectrally resolved RI, VAC, and SSA for a case

where retrievals vary little during a transect and one where larger systematic variations are encountered.

Figure 6. The final transect-averaged retrieval results for all three investigated fires. Panel A shows the directly retrieved parameters (imag-

inary RI k0 at 387 nm and Angstrom exponent αk). Panel B (panel C) shows derived VACs (SSAs) at three wavelengths. Panel D shows

physical plume age and solar zenith angle.

Based on the approach described in Section 4, we derive transect-averaged imaginary RI and Angstrom exponents for all

three investigated fires (Figure 6A). The retrieved imaginary RIs vary between 0.02 and 0.03 between transects with uncer-

tainties below 0.01. The Angstrom exponents are 4± 1. Outliers in k0 and αk, as for instance occurring for transects 5 and 6380

during the Lefthand fire (Figure 6A), can be attributed to non-ideal conditions such as low AOD, which are partly captured by

the error propagation scheme and associated with correspondingly large uncertainties in αk.
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To further illustrate our results, we calculate VACs and SSAs at three wavelengths (Figure 6B and 6C). We observe the

expected strong increase in absorption towards shorter wavelengths. Although the different transects comprise varying numbers

of individual retrievals and variability among them (e.g. Supplement Figure S5, A and C), the transect averages are mostly385

consistent, within the uncertainty estimates (Figure 6). Surprisingly, the values are similar between the three different fires, in

particular towards shorter wavelengths (Figure 6B and 6C). The dependence of the optical properties on plume age (the latter

is shown in Figure 6D), will be analyzed in more detail in Section 4.4.

Transect-averaged imaginary RI and Angstrom exponents, as well as VAC and SSA derived from them, are in line with

previous studies (as, for example, reviewed in Laskin et al. (2015)) and coincident in situ measurements, which we will discuss390

further in Section 4.3.

4.3 Comparison with in situ techniques

During the Shady fire flight, our retrievals coincide with in situ aircraft UV-Vis aerosol absorption measurements from two

different techniques; from these measurements, we proceeded to obtain two independent sets of transect-averaged aerosol

absorption coefficients for comparison with our remote sensing results.395

The first in situ technique, referred in the sequel to as SAEB (spectral analysis of extracted BrC chromophores), is filter based.

Particles were collected on separate filters for each transect. The filters were then extracted with water and afterwards with

methanol. While most organic material dissolves in either of these solvents, insoluble black carbon remainders can be removed

from the solution using pore filters. The absorption coefficients of the solutions between 300 and 700nm were determined using

a Liquid Waveguide Capillary Cell. Detailed descriptions of the procedure can be found in Liu et al. (2014, 2015a); Zeng et al.400

(2020). Following Zeng et al. (2022), we combined this data with BC measurements from a single-particle soot photometer

(Schwarz et al., 2006) and sizing information from the laser aerosol spectrometer, to reconstruct the absorption coefficient of

the original particle ensemble and to estimate uncertainties (≈ 30%) for the full measurement and analysis procedure.

The second in situ technique is based on PAS. The PAS instruments during FIREX-AQ provided real-time measurements

of the dry aerosol absorption coefficient at wavelengths of 405, 532 and 664 nm. Given the low humidity conditions during405

the Shady fire (< 35%), dry absorption can be considered representative of ambient absorption (Langridge et al., 2013). In

contrast to SAEB, PAS observations measure directly the total absorption of aerosol in its particulate state. Uncertainties for

the direct PAS measurements are estimated to be 20 % (Langridge et al., 2011). However, since the measurements were limited

to three wavelengths in the Visible, UV absorption properties were determined as described in Zeng et al. (2022), a process

based on long-linear spectral extrapolation, something that potentially introduces considerable biases (Liu et al., 2015b; Zeng410

et al., 2022).

Zeng et al. (2022) performed a detailed comparison of absorption coefficients from the two in situ techniques and reported

substantial inconsistency (as also evident in Figure 7 and Supplement Figure S6 in the present study). In the following, we

perform a similar comparison, this time including our remote sensing results. For this purpose, in situ absorption coefficients

from PAS and SAEB were converted to VACs, assuming the same aerosol PSDs from the laser aerosol spectrometer (Section415

3.5) that were used in our retrieval. For 14 transects during the Shady fire, all three absorption datasets (Remote sensing, SAEB

18

https://doi.org/10.5194/egusphere-2025-5541
Preprint. Discussion started: 5 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Figure 7. Statistical comparison of VACs from our retrieval, with in situ data from filter based and photoacoustic measurements. Boxes

expand from the first to the third quartile of the data. Whiskers indicate the 5th and 95th percentile. Grey shaded areas in the background

indicate the retrieval’s average propagated errors, including systematic uncertainties that are not necessarily reflected by the box plots. Blue

and red shaded areas in the background indicate average specified uncertainties for the SAEB and PAS measurements, respectively.

and PAS) contain sufficient data and enough temporal overlap for meaningful comparisons to be made. Comparing data for

individual transects shows that, within the specified uncertainties, our remote sensing results agree with at least one of the in

situ techniques for nearly all transects and wavelengths (Supplement Figure S6). Figure 7 summarizes these comparison over

all transects in the form of VAC box-plots at five UV-Vis wavelengths and VAC Angstrom exponents, thereby revealing general420

systematic features. On average, our retrieved VACs and Angstrom coefficients are between the SAEB and PAS results. In the

UV spectral range, VACs are closer to the SAEB data but stay slightly below, whereas in the Visible, our results tend towards the

PAS data. These trends agree well with the recent analysis by Zeng et al. (2022). In the UV, they expect the SAEB measurements

to be most reliable, since soluble BrC dominates the absorption. At the same time, they postulate a potential overestimation in

SAEB measurements due to the alteration of the chromophores through the extraction process, such as change in pH or direct425

reaction with the solvent. The UV PAS measurements suffer from uncertainties introduced by the UV extrapolation. Since

the Angstrom exponent is inferred in the Visible, where BC weakens the absorption wavelength dependence, PAS is expected

to increasingly underestimate the real VAC towards shorter wavelengths. The situation changes in the Visible spectral range.

Here, SAEB excludes potentially relevant absorption from insoluble compounds and thus underestimates the VAC, whereas

the PAS provides direct reliable measurements. However, while our results confirm the assumptions by Zeng et al. (2022), it430

should be noted that the propagated errors of the retrieval (with a large systematic contribution from uncertainty in the fixed

real RI) could allow for other outcomes and further measurements would be beneficial to increase confidence in the validity of

the results.

Our remote sensing results feature remarkably low variability (c.f. small box sizes in Figure 7), which is about three times

less than in the corresponding in situ observations. As demonstrated in Supplement Figure S7, this low variability is not arti-435
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Figure 8. The dependence of the volume absorption cross-section at 300nm on plume age (Pearson correlation coefficient 0.5). Similar

plots for the imaginary RI and SSC can be found in Supplement Figure S8. Error bars represent propagated errors. Marker size indicates

cos(SZA), as a proxy for the solar exposure. The grey dashed line shows an exponential fit, based on all data points.

ficially imposed by our filtering (Section 4.2) but likely related to the enhanced spatial averaging inherent to remote sensing.

This indicates that in situ measurements averaged over a single plume transect, suffer from biases due to small-scale variations,

and thus do not necessarily provide representative values for the entire plume cross-section. This effect may be in part respon-

sible for the large variability in absorption properties reported in the literature, and for the current consensus that a simple

parameterization of the aerosol absorption properties of BB cannot be found (Laskin et al., 2015).440

4.4 Dependence on plume age

Based on the data from all three investigated fires, we find a dependence of imaginary RI, VAC and SSC on physical plume

age (Figure 8 and Supplement Figure S8), with Pearson correlation coefficients of ≈ 0.5. Fitting an exponential decay to data

of strongly absorbing wavelengths (300 to 350nm), yields half-lives τ1/2 of 13± 3, 16± 4 and 17± 4 hours for imaginary RI,

VAC and SSC, respectively. The fit result for VAC is indicated by the gray dashed line in Figure 8. The values obtained are in445

good agreement with previous studies investigating the oxidative and photochemical bleaching of BB aerosol (which leads to a

decay of BrC absorption with plume age). While laboratory studies with synthetic organic aerosol have reported a wide range

of absorption half-live times from a few minutes to several hours (Zhong and Jang, 2011; Zhao et al., 2015), measurements

in real plumes report values between 9 and 24 hours (Wang et al., 2016; Lee et al., 2014; Forrister et al., 2015; Zeng et al.,

2022). Given the limited amount of data and the relatively large uncertainties, we could not identify a dependence of τ1/2 on450

the exposure to sunlight in terms of solar zenith angle (dot size in Figure 8).
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Figure 9. Statistical comparison of retrieved spectral imaginary RI, VAC and SSA for the three investigated fires. The plotted data has been

adjusted to represent a plume-age of zero, using the plume age parameterization described in Section 4.6. Boxes expand from the first to the

third quartile of the data. Whiskers indicate the 5th and 95th percentiles. Surprisingly, the results for different fires agree within the retrieval

uncertainties.

4.5 Variability among fires

Given the uncertainty limits in our retrievals, we find no significant differences in imaginary RI, VAC and SSA between the

three fires (Figure 9). This is surprising considering that aerosol absorption properties have been reported to vary significantly

between different fires for a variety of reasons (Section 1). The small differences might be partly explained by the similarity in455

combustion conditions. A common proxy for combustion conditions is the modified combustion efficiency (MCE), defined as

∆CO/(∆CO + ∆CO2), where ∆CO and ∆CO2 are background-corrected concentrations of carbon monoxide and carbon

dioxide, respectively (Akagi et al., 2011). For both the Shady and the Williams Flats fires we find little variation in MCE

throughout the plumes and average values close to 0.9 (see Table 1), representing approximately equal contributions from

flaming and smoldering combustion (Stockwell et al., 2014). For the Lefthand fire, the enhancement ∆CO is too small to460

calculate a reliable MCE value.

4.6 Parameterization for general applications

We have seen that the aerosol UV absorption properties depend on wavelength and plume age, while the variation among the

three investigated fires is insignificant within the retrieval uncertainties. Our retrieved absorption properties might therefore be

applicable to other fires, for which comprehensive measurements similar to FIREX-AQ are not available. Example applica-465

tions are chemical transport modeling, assessment of BB radiative forcing, or other remote sensing applications such as trace

gas retrievals from satellite-based measurements. For such purposes we consolidate our results into a parameterization, that

considers the relevant dependencies according to:

A(λ,t) = A0 ·
(

λ0

λ

)α

· exp
(
− t ln2

τ1/2

)
. (13)
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A(λ,t) is the absorption property of interest (either k, VAC or SSC), that is a function of wavelength λ and physical smoke age470

t. A0 is the value of the property at λ0 = 400nm and t = 0h. The wavelength parameterization is given by an Angstrom depen-

dence with exponent α, while plume age is characterized by an exponential decay with time constant τ1/2. Table 4 provides the

values for A0, α and τ for each absorption property. These values were determined by fitting Eq. 13 to correspondingly binned

averages of our retrieval results. It should be pointed out that this parameterization is intended for plume ages between 0.5 and

8 hours, and a wavelength range from 300 to 450 nm; it is probably only valid for fires with fuel and MCE values similar to475

those for the three fires treated in the present study (see Table 1).

Table 4. Values of various absorption properties and their uncertainties, with their wavelength and plume age dependencies.

Property A0
a α τ1/2

Values k 0.023 3.5 13h

VAC 1.1 µm−1 4.0 16h

SSC 0.1 2.9 17h

Uncertainties k 0.0068 3.5 NA

VAC 0.32 µm−1 3.2 NA

SSC 0.028 2.3 NA

a Property value at wavelength λ0 = 400nm and plume age t = 0h.

5 Conclusions

Remote sensing based on radiation measurements taken inside and in proximity of BB plumes is a promising approach to

determine aerosol UV absorption properties in a contactless manner. Using the VPC radiative transfer model, we developed

a retrieval scheme based on actinic fluxes, including a rigorous error propagation scheme that considers various sources of480

uncertainties. This retrieval was applied to three fires from the FIREX-AQ campaign.

5.1 Factors for successful retrievals

The quality of the retrieval results clearly depends on the geometrical configurations and the atmospheric conditions for a

given fire scenario. Best results are achieved at high sun (SZA < 75◦) and when the aircraft is inside a plume of moderate AOD

(between 1 and 3 at 532 nm) with little horizontal variability. Under such favorable conditions, the results and uncertainty esti-485

mates are stable and consistent. Propagated uncertainties for the retrieved imaginary RI, VAC and SSC are on the order of 20 to

30 %. Uncertainties in the Angstrom exponent for the imaginary RI are < 10%. Less favorable conditions can destabilize the

retrieval, leading to unrealistic results and false uncertainty estimates. This was the case for ≈ 20% of the retrievals performed

in the present study, which could be identified and filtered based on simple criteria. For the remaining data, we find a relatively

small variability of aerosol absorption properties within individual transects on the order of or smaller than the retrieval uncer-490
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tainties. We conclude that BB particle properties are surprisingly homogeneous for smoke from the same fire and of similar

atmospheric age, at least on the scales of the retrieval spatial resolution (few km horizontally, few hundred meters vertically).

Under favorable conditions, the error of the retrieval is dominated by uncertainties in the real RI and the plume AOD, whereas

the aerosol size distribution is a minor contributor. This is particularly interesting for aerosol absorption remote sensing of

other plumes, where comprehensive additional measurements such as those obtained during FIREX-AQ are not available. Ac-495

tinic fluxes have been and likely will be measured routinely during aircraft campaigns that comprise BB plume events, such as

ARCTAS (Corr et al., 2012) SEAC4RS (Wolfe et al., 2022), WE-CAN (e.g. Palm et al., 2021; Peng et al., 2021)), or ASIA-AQ

(Zavaleta and Vasques, 2025). In the future, our evaluation scheme might be extended to such datasets, to cover a wider range

of fire scenarios. Furthermore, the retrieval scheme can be modified for application to additional measured quantities, such as

radiance spectra, and to other geometries, e.g., from ground or space.500

5.2 Limitations of the current model implementation

As detailed and justified in Section 3.2, our forward model uses a Mie code to map microphysical properties (size distribution

and complex refractive index) to optical bulk properties (extinction, single-scattering albedo, and phase function). This ap-

proach assumes an ensemble of homogeneous, spherical particles. Consequently, the retrieved imaginary refractive index (RI)

should be interpreted as a ’Mie-equivalent’ value. It may thus diverge from the physical RI of the actual particles, but remains505

radiatively consistent, in the sense that the Mie code will yield optical bulk properties that are close to reality.

Furthermore, we parameterize the spectral dependence of all retrieved variables using a simple Angstrom relationship.

While our fit residuals (see Supplement Fig. S4) suggest this representation is robust within the scope of our retrieval, caution

is advised when extrapolating these spectral dependencies beyond the wavelength range investigated in this work.

5.3 New insights on the inconsistency of existing methods510

Through the comparisons with coincident in situ measurements based on photoacoustic spectroscopy (PAS) and filter sampling

(SAEB), our retrieval results provide new insights into the validity of in situ techniques. In the UV, we find closer agreement

with the SAEB observations, while in the Visible, our results show better agreement with the PAS measurements. This is in

line with current speculations on the origin of the the disagreement between the in situ techniques (e.g. Zeng et al., 2022).

5.4 Remote sensing observations are representative of average plume properties515

When comparing data for different transects, our retrieval results show about three times less variability than is the case

with the corresponding in situ observations. This illustrates the advantage inherent in the use of spatial averaging typical of

remote sending applications. In contrast to remote sensing observations, it seems that in situ measurements, averaged over

a single plume transect, do not necessarily provide aerosol absorption properties that are representative of the entire plume

cross-section. This effect may have contributed to the high variability of reported BB aerosol absorption in the past.520
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5.5 A new set of brown carbon lifetime estimates

In the wavelength range between 310 and 477 nm, our retrievals yield Angstrom coefficients of 3.5±0.5, 4±0.6, and 2.9±0.4

for the imaginary refractive index, VAC, and SSC, respectively. In addition to wavelength dependence, we also find a significant

correlation with physical smoke age. For the smoke age range covered in the present study (0.5 to 8 hours), we estimate a half-

life decay time for the imaginary RI in the UV of 15± 4h, and similar values for VAC and SSC. This is in agreement with525

other studies suggesting a limited lifetime for BrC (see Section 4.4).

5.6 A new parameterization for aerosol absorption properties in wildfire plumes

Encouraged by these findings, we have consolidate our results into a parameterization for aerosol absorption properties (Section

4.6), applicable to other fires with similar fuel, combustion states, and atmospheric conditions (Table 1), such as those generally

found in the western US. Conceivable applications in this context are, for instance, plume chemistry models, chemical transport530

models, or trace gas remote sensing from satellite observations.
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Table A1. Abbreviations

AOD Aerosol optical depth

BB Biomass burning

BC Black carbon

BrC Brown carbon

CAFS CCD Actinic Flux Spectro-radiometer
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RI Refractive index

SAEB Spectral analysis of extracted BrC chromophores

SSA Single scattering albedo

SSC Single scattering co-albedo (1-SSA)
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UV Ultra-violet (spectral range)
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Vis Visible (spectral range)

VPC VLIDORT for photochemistry
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