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Abstract. Foehn generates over alpine terrain and is exerting increasingly pronounced impacts on air pollution, heatwaves,

wildfires, and human health under global warming. Due to the complexity of influencing factors of foehn, it is difficult for

traditional techniques to identify them, thereby limiting foehn’s comprehensive assessments and accurate forecasting. Based

on 64 years (1959–2022) of surface-station observations and reanalysis data, this study employs interpretable machine-10

learning techniques and synoptic analysis, to systematically reveal the key controlling factors, dynamic thresholds, and

synoptic patterns of foehn on the eastern foothills of the Taihang Mountains, China. Our results show that foehn formation is

predominantly controlled by surface conditions and the influence of foehn factors varies seasonally: the leeward wind

speed > 3 m/s from 203°–324° annually, the windward temperature below -17°C in winter or 9°C in summer, and the

windward specific humidity > 0.07 g/kg in winter or 0.75 g/kg in summer. Synoptic analyses further validate the results15

obtained from the machine learning model, revealing that foehns preferentially occur in a stably stratified atmospheric

environment with a surface pressure pattern characterized by a high- and low-pressure system on the windward and leeward,

respectively, accompanied by an upper-level cold trough at 500 hPa and pronounced subsidence at 850 hPa on the leeward.

The results provide a scientific basis for improving foehn forecasting capabilities, offering valuable guidance for forecasting

compound disaster events associated with foehns.20
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1 Introduction

The term “foehn” originated from the name of a local wind over the European Alps. Nowadays, it is widely used in

meteorology as a generic term to denote any warm and dry downslope wind descending from the leeward slope of a

mountain range (Kusaka et al., 2021). Foehn not only influences the local climatic environment of mountainous regions but25

can also exacerbate the spread of forest fires (Zumbrunnen et al., 2009). Moreover, the foehn accelerates the spring

snowmelt process, and exerts adverse effects on air pollution conditions (Li et al., 2020a; Li et al., 2025) and human health

(Liu et al., 2025). Therefore, the foehn pose a significant challenge to the stability of mountain ecosystems and the

sustainability of local socio-economic structures.

Recently, some studies showed that the impacts of foehn have become increasingly prominent under the global30

warming. For example, Cape, Vernet et al. (2015) demonstrated that foehn occurring in Antarctica serves as a critical linkage

between global warming and the evolution of Antarctic ice shelves; Elvidge and Renfrew (2016) further pointed out that
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foehn jets over the Larsen C Ice Shelf on the eastern side of the Antarctic Peninsula (AP) play an important role in the

regional warming of the AP’s eastern coast; Bozkurt, Rondanelli et al. (2018) revealed that foehn events triggered by

atmospheric rivers led to record-breaking temperatures on the Antarctic continent; Takane and Kusaka (2011) also found that35

the 2007 revision of Japan’s record of daily maximum temperature (the first in 74 years) was associated with foehn or foehn-

like phenomena. In fact, as the influence of foehn expands, the risks of meteorological disasters it triggers are also increasing.

Li, Jacob et al. (2020) reported that rising temperatures in June–July during 2013–2019 over the North China Plain were

associated with strengthened foehn, which in turn promoted surface ozone pollution. Ning, Yim et al. (2019) noted that in

Sichuan Basin of China, foehn interacts with topography and synoptic systems, leading to enhanced atmospheric stability40

that not only increases near-surface temperatures and produces heatwaves but also suppresses boundary-layer convection and

pollutant dispersion, thereby aggravating air pollution. Zumbrunnen, Bugmann et al. (2009) found that in the Swiss Alpine

valleys, the hot and dry conditions induced by foehn not only elevated fire risk but also intensified heatwaves by raising

temperatures and lowering humidity. Consequently, understanding the factors influencing foehn and accurately forecasting

its occurrence are of great significance for disaster risk management in the context of global warming.45

Previous studies on the mechanisms, impacts, variability, and prediction of foehn have mainly focused on the Eastern

Alps (Seibert, 1990), Antarctica (Speirs et al., 2010), the Andes (Seluchi et al., 2003), the Rocky Mountains (Beran, 1967),

the Toyama Plain in Japan (Kusaka et al., 2021), and the southeastern Australia (Sharples et al., 2010). China is also a

country where foehn occurs frequently, and the Taihang Mountains, as an important geographical boundary between the

second and third topographic steps of China, host typical foehn phenomena owing to their complex topographic conditions50

(Wang et al., 2012; Shilin et al., 1993; Di et al., 2022). However, most studies on foehn in China primarily focused on the

spatiotemporal characteristics analyses based on statistics methods (Wang et al., 2012; Di et al., 2022; Shilin et al., 1993;

Zhao et al., 2021; Huang, 2011) and associated impacts of foehn (Chen and Lu, 2015; Li et al., 2020a; Ning et al., 2019).

However, the complexity of the foehn formation mechanism makes it difficult for traditional statistical methods to identify

the dominant factors influencing its occurrence. At present, there is few studies on the influencing factors of foehn formation55

in typical regions and forecasting the foehn. Therefore, it is critical to adopt new approaches such as interpretable machine

learning to identify the key influencing factors of foehn formation and improve forecasting skill in complex terrain regions.

In the Taihang Mountain region of Northern China, the permanent population reaches 30.3 million, with Taiyuan and

Shijiazhuang cities located on the windward and leeward sides, respectively. These two cities represent the two typical

densely populated cities. As an important agricultural and industrial base in China, the Taihang Mountains are endowed with60

abundant natural, mineral, and tourism resources. What are the main factors influencing foehn formation? Do these factors

exhibit thresholds and seasonal variations? How do these factors act in synoptic patterns and what synoptic patterns are

conducive to foehn occurrence? Addressing these questions is essential for improving the accurate forecasting of
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meteorological variables associated with foehn in densely populated areas with complex terrain, thereby contributing to

regional disaster prevention and mitigation as well as ecological and environmental protection.65

2 Data and Methods

2.1 Study Area

The study area is the Taihang Mountain region in Northern China (Figure 1), with major cities including Taiyuan, the

capital of Shanxi Province (the blue dot in Figure 1b) and Shijiazhuang, the capital of Hebei Province (the middle red dot in

Figure 1b). The Taihang Mountains are one of China’s most important mountain ranges, extending approximately 500 km in70

length and 40–50 km in width (Yusheng, 2010), roughly spanning 110–117°E and 35–41°N (the orange solid line in Figure

1b).

Figure 1: Regional map. (a) Major part of China (large black box) and the key area of foehn occurrence along the eastern foothills

of the Taihang Mountains (small black box). (b) Geographical locations of meteorological stations in the region of Taihang75
Mountains, where blue and red dots indicate stations located on the windward and leeward sides, respectively.

2.2 Data and Processing

Meteorological data from five surface observation stations in the Taihang Mountain region (one located on the

windward side and four on the leeward side; Figure 1b) were obtained from the National Oceanic and Atmospheric

Administration (NOAA), covering a period of 64 years (1959–2022) with a temporal resolution of 3 hours. Corresponding80

upper-air data were acquired from the ERA5 reanalysis dataset of the European Centre for Medium-Range Weather

Forecasts (ECMWF), with a spatial resolution of 0.25° × 0.25° and an hourly temporal resolution.
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Since foehn occurs on the leeward slope, and the leeward stations vary in distance from the mountains, we compared

the mean hourly temperatures during the main foehn season (winter, refer to Sect. 3.2) over the past 10 years (2012–2022) at

the four leeward stations to select a representative site. The results show that Shijiazhuang and Xingtai, with closer proximity85

to the mountains, exhibit consistent diurnal variations, a pattern also observed in the more distant stations of Baoding and

Zhengding. Moreover, the temperatures at stations closer to the mountains are higher than those at more distant stations

(Figure S1). Therefore, Shijiazhuang, where is close to the mountains, exhibits more pronounced foehn characteristics and is

densely populated, was selected as the representative leeward station, while Taiyuan was chosen as the windward station for

subsequent analyses. For simplicity, the subscripts Wind and Lee are used below to denote the windward and leeward90

stations and their associated meteorological variables, respectively.

This study is limited to surface observations and lacks long-term upper-air data. To ensure the appropriate use of the

high-resolution ERA5 reanalysis dataset, a comparative analysis was first performed with ground-based station

measurements. Taking the average hourly surface temperature, humidity, and pressure during winter over the past 10 years

(2012–2022), the results (Figure S2) indicate that ERA5 grid data are slightly lower in magnitude than the station95

observations but exhibit highly consistent temporal variations, confirming the reliability of the ERA5 dataset. Therefore, this

study will subsequently use 64 years of station observations and ERA5 reanalysis data to characterize surface and upper-air

meteorological factors, respectively, for modeling and analysis.

2.3 Definition of foehn

Considering the local standard of Hebei Province (Administration, 2010) and the foehn definitions proposed by Mony,100

Xiong, Kusaka, Aichinger-Rosenberger, Stauffer, and others (Kusaka et al., 2021; Aichinger-Rosenberger et al., 2022;

Stauffer et al., 2024; Mony, 2020; Xianping et al., 2020), this study defines foehn events as summarized in Table 1.

Table 1: Definition of foehn events on the eastern foothills of the Taihang Mountains, China.

Definition Criteria Explanation

Potential temperature (�) difference

∆� > ��
θLee − θWind > 2K，where θ = T( 1000

P
)0.286

Relative humidity (Rh) difference

∆�� > ��%
RhLee − RhWind <− 20%

Wind direction (Dir)

��� = ���, ���

DirLee = WSW, WNW ∩ DirWind = WSW, WNW

Wind directions on the windward and leeward sides occur within the WSW

(West-Southwest) to WNW (West-Northwest) range.

Wind speed (W)

� > ��/�

WLee > 2m/s ∩ WWind > 2m/s

Wind speeds on the windward and leeward sides both faster than 2m/s.
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2.4 Model Comparison105

After cleaning and preprocessing the station observations and ERA5 reanalysis data, machine learning methods were

employed to analyze the main influencing factors of foehn events on the eastern foothills of the Taihang Mountains. Six

machine learning models were selected for this task, all of which are well-suited for handling high-dimensional data and

complex nonlinear relationships, including K-Nearest Neighbor Classification (KNN) (Cover and Hart, 1967), Logistic

Regression (Kleinbaum, 2010), Neural Network (NN) (Krizhevsky et al., 2017), Decision Tree (Salzberg, 1994), Random110

Forest (RF) (Breiman, 2001), and Adaptive Boosting (AdaBoost) (Freund and Schapire, 1997).

The preprocessed data were divided into training and testing sets, accounting for 70% and 30% of the total samples,

respectively. The training set was used for model training with stratified 5-fold cross-validation, and hyperparameters were

tuned to optimize model performance. Since the defined foehn samples were much fewer than the non-foehn samples, this

study addressed the class imbalance issue by combining Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et115

al., 2002), Random Undersampling method (Liu and Tsoumakas, 2020), and Class Weight method (Yan et al., 2017)

before conducting model training.

Based on model performance and reliability metrics, the most suitable machine learning model was selected. The

correlation matrix (Figure S3) shows that the correlation between individual environmental factors and foehn occurrence is

very low (correlation coefficients generally < 0.07), indicating that the complex nonlinear relationship between120

environmental factors and foehn events may lead to the difficulty of modeling with traditional methods, thus justifying the

use of machine learning in this study. Evaluation results of accuracy, precision, recall, and F1 score (Figure S4) indicate that

only the decision tree model achieves values above 0.8 for all four metrics. The confusion matrix (Figure S5) reveals that,

since the 0 label (non-foehn samples) far outnumbers the 1 label (foehn samples), relying on a single metric such as accuracy

is insufficient to evaluate model performance, and metrics like precision must also be considered. Receiver Operating125

Characteristic (ROC) curves and Area Under the Curve (AUC) values (Figure S6) show that logistic regression, decision

tree, random forest, and AdaBoost models all have AUC values above 0.95, with the ROC curves of decision tree, random

forest, and AdaBoost closely approaching the top-left corner, indicating superior performance. Learning curves (Figure S7)

reveal that the KNN model suffers from overfitting while logistic regression is underfitted (overfitted) when the sample size

is less (greater) than 50,000. Although the neural network fits well, it exhibits large fluctuations and uncertainties. The130

models of random forest and AdaBoost perform well with large samples but poorly with small samples, whereas the decision

tree model consistently performs well. Therefore, the decision tree model was chosen finally as the basis for this study.

Subsequently, Shapley Additive Explanations (SHAP) values (Lundberg and Lee, 2017) were applied to interpret the model

results and reveal the key factors influencing foehn formation on the eastern foothills of the Taihang Mountains.
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2.5 Selection of Influencing Factors135

Based on the previous studies (Kusaka et al., 2021; Aichinger-Rosenberger et al., 2022; Stauffer et al., 2024; Mony,

2020), this study extracted a total of 28 meteorological factors from the windward and leeward sides of the Taihang

Mountains over the 64-year period (1959–2022), including 10 surface variables and 18 upper-air variables (Table 2), to serve

as predictors for training the machine learning models.

Table 2: The 28 meteorological factors used as input variables for the machine learning models.140

Leeward side Windward side Explanation

Surface
factors

SLP��� SLP���� Sea level pressure
T��� T���� Temperature
W��� W���� Wind speed
Dir��� Dir���� Wind direction
Q��� Q���� Specific humidity

Upper-air
factors

TG��� TG����

Temperature gradient between 850 and
500hPa, obtained by the slope from the

linear regression
Q8��� Q8���� Specific humidity at 850hPa
W8��� W8���� Wind speed at 850hPa
Dir8��� Dir8���� Wind direction at 850hPa
Q7��� Q7���� Specific humidity at 700hPa
W7��� W7���� Wind speed at 700hPa
Dir7��� Dir7���� Wind direction at 700hPa
Z5��� Z5���� Geopotential height at 500hPa
T5��� T5���� Temperature at 500hPa

Label Foehn A foehn event occurred
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3 Results

3.1 The dominant factors contributing to the formation of foehn

Figure 2: The dominant factors of foehn formation and their associated SHAP values revealed by interpretable machine-learning145
models. (a) SHAP summary plot, where the horizontal axis denotes SHAP values, individual dots represent samples, and dot color

encodes the magnitude of the sample’s feature value. (b) SHAP scatter plot for the leeward surface wind speed. (c) Same as (b) but

for the windward 2-m temperature. (d) Same as (b) but for the windward surface specific humidity. In panels (b–d), the horizontal

and vertical axes indicate the feature value and the SHAP value, respectively; dots denote individual samples, the grey histogram

bars show sample counts, and the black curve traces the average SHAP values.150

In this study, SHAP values are employed to quantify the contribution of each influencing factor to foehn formation.

Across the entire year, we identified four most influential factors: W���、Dir���、T����、Q���� (Figure 2a). Figure 2a

further demonstrates that surface-related factors dominate the formation of foehn winds, whereas the contribution of upper-

air factors is comparatively minor. The most influential upper-air factor, TG���� , only ranks eighth, demonstrating that

foehn initiation and maintenance on the eastern Taihang foothills are governed primarily by near-surface processes.155
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W��� ranks first among all factors, indicating that elevated wind speeds on the leeward side strongly favor foehn

formation or persistence. The SHAP scatter plot (Figure 2b) shows an abrupt increase in SHAP values from 0 to

approximately 0.15 once W��� exceeds 3 m/s, signifying a sharp increase in foehn likelihood. The finding highlights 3 m/s

of W��� as a critical threshold for the foehn formation. The average SHAP values curve (black line in Figure 2b) further

exhibits a higher peak near 8 m/s, suggesting that this wind speed is even more conducive to foehn occurrence. The details160

are associated with seasons and discussed in Sect. 3.2,

The positive contribution of T���� decreases with increasing temperature (Figure 2c), implying that low-temperature

conditions on the windward side facilitate foehn development. The average SHAP values curve crosses zero at 3℃ (black

line in Figure 2c), highlighting 3℃ of T���� as a critical threshold for the foehn formation. As a result, the peak SHAP

value around −18 °C suggests that such low temperature on the windward side are highly favorable for the foehn genesis.165

In contrast, the SHAP mean for Q���� remains largely negative, denoting an overall inhibitory effect on foehn

formation (Figure 2d). The curve crosses zero at roughly 0.1 g/kg (black line in Figure 2d), marking the threshold beyond

which the inhibitory influence of Q���� becomes pronounced. The negative contribution weakens as Q���� increases,

implying that the drier (lower specific-humidity) conditions on the windward side favor the foehn occurrence.

Comparing factors between the windward and leeward sides reveals that the same meteorological variables exerts170

markedly different influences depending on location. For example, leeward wind speed influences foehn formation far more

strongly than windward wind speed, because the accelerated subsidence of cross-mountain flow and its ability to reach the

leeward stations constitute the foremost dynamical prerequisite for foehn formation. Conversely, the windward 2 m

temperature and surface specific humidity exert stronger influences than the leeward 2-m temperature, underscoring that a

cold, moist environment on the windward side favors the development of the foehn winds. Collectively, these results indicate175

that foehn occurrence requires a certain synoptic background that promotes dry-adiabatic descent of the cross-mountain flow,

thereby warming and drying the leeward boundary layer and finally amplifying the surface foehn signal. The details are

further examined in Sect. 3.3.
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Figure 3: The role of the leeward surface wind direction and its contribution to foehn formation revealed by the interpretable180
machine-learning models. (a) SHAP-value scatter plot for the leeward surface wind direction. (b) Coordinate diagram of the

leeward surface wind direction; the black straight line indicates the orientation of the central Taihang Mountains. In both (a) and

(b), the shaded sectors correspond to each other: light pink shading denotes the positive-contribution with mean SHAP > 0, while

rose red shading marks the largest positive mean SHAP values.

Dir��� is the second most influential factor for foehn occurrence on the eastern foothills of the Taihang Mountains185

(Figure 2a). Figure 3 shows the SHAP-based interpretable analysis for this factor. When Dir��� falls between 203° and

324° (the light-pink sector in Figure 3), the SHAP values are positive. This wind-direction range on the leeward side favors

the foehn occurrence, and approximately 41 % of the samples fall within this positively contributing range (Figure 3a).

Within the narrower sector 237° to 294° (rose-red shading in Figure 3), the positive contribution of the SHAP values further

intensifies, signifying even more favorable conditions for the foehn formation. The average SHAP values curve (black line190

in Figure 3a) peaks when Dir��� equals 275°, revealing that a leeward wind direction of 275°, roughly 52° relative to the

mountain axis, is most conducive to the foehn development in this region.

Previous studies suggest that the range 237° to 294° corresponds to a critical transitional Froude-number regime (Fr ≈

0.8–1.2) on the leeward side. Within this range, the airflow neither fully circumvents the range (Fr > 1) nor is completely

blocked (Fr < 1), thereby sustaining a persistent downslope warming that favors foehn occurrence (Durran, 1990).195

Considering the relation between the positive contribution range (red shading in Figure 3b) and the orientation of the central

Taihang Mountains (black line in Figure 3b), it becomes evident that the favorable wind directions are not strictly

perpendicular to the ridge, rather a certain angle between the leeward wind and the range is more favorable.

Across all foehn cases examined here, approximately 56.4% (1473/2611) occurs when Dir��� lies within the optimal

range of 237° to 294°. Seasonally, 42.3%（623/1473）of winter foehns and 9.2% (135/1473) of summer foehns fall within200

this favorable range, underscoring that the role of large-scale circulation patterns varies across seasons.
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3.2 Seasonal variation of dominant foehn factors

Figure 4: The seasonal dominant factors of foehn formation and their associated SHAP values revealed by interpretable machine-

learning models. (a) SHAP summary plot for the key factors influencing winter foehn formation. (f) As in (a) but for summer. (b)205
SHAP scatter plot for the leeward surface wind speed in winter. (c–e) As in (b) but for the windward 2-m temperature, the

windward surface specific humidity, and the leeward 2-m temperature in winter, respectively. (g) SHAP scatter plot for the

leeward surface wind speed in summer. (h–j) As in (g) but for the windward 2-m temperature, the windward surface specific

humidity, and the leeward surface specific humidity in summer, respectively.

To examine the seasonal dominant factors governing foehn formation on the eastern Taihang foothills, we re-trained210

models for winter and summer, respectively. The result shows that winter (December to February) as the peak season for

haze and wildfire occurrences in North China (Zhang et al., 2020; Huang et al., 2023), and summer (June to August) as the

key period drive the heat waves, ozone, and ultrafine particles (Li et al., 2020b; Zhang et al., 2024). The ranking of the

leading factors is nearly identical in winter and summer, where W���、T����、Q���� consistently occupy the top three
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positions (Figure 4a, f). Based on the fourth-ranking T��� in winter to Q��� in summer, we concluded that temperature215

become relatively more important in winter foehns, while humidity gained prominence in summer foehns. These three

surface variables also dominate the annual SHAP ranking (Figure 2a), demonstrating that the leading role of surface factors

is season-independent. On the annual scale, however, the leeward wind-direction factor (Dir���) become more important.

We noticed that the large-scale wind direction was mainly determined by the weather-scale circulation field. Therefore, the

favorable synoptic circulations further modulated foehn occurrence by persistently influencing the leeward wind direction.220

In addition to the seasonal differences in the dominant factors of the foehn wind, the influence thresholds and

contribution strengths of specific factors also vary seasonally, which are summarized in Table S1. Figure 2b,Figure 4b and

4g reveal that W��� remains the overwhelmingly dominant factor in both seasons, with a universal threshold of 3 m/s.

However, once this threshold is exceeded, the SHAP values in winter are markedly higher than those in summer, and a

pronounced peak appears around 8.5 m/s in winter which is absent in summer (Figure 4b, g). The result indicates that the225

synoptic patterns conducive to high leeward wind speeds are more effective in triggering foehn events in winter than in

summer.

In contrast to the influence of leeward wind speed, the temperature impacts become dominated by windward T����

rather than T��� . Positive contribution of T���� decreases monotonically with increasing temperature in both seasons

(Figure 2c; Figure 4c, h), but the thresholds vary seasonally, being 3 °C annually, –6 °C in winter, and 9 °C in summer.230

Overall, the SHAP magnitudes are larger in summer, with a distinct peak near 7 °C that is absent in winter. As a result, a

low windward temperature is more conducive to the foehn formation in summer than in winter.

The impacts of Q���� on foehn formation exceeds that of Q���, yet Q���� exerts a negative contribution in all seasons,

with the inhibitory effect weakening as the humidity increases (Figure 2d; Figure 4d, i). The thresholds also vary seasonally,

being 0.1 g/kg annually, 0.07 g/kg in winter, and 0.75 g/kg in summer. Overall, the SHAP magnitudes are larger in winter235

than in summer, which is opposite to the T���� pattern, demonstrating that a moist windward environment is more

favorable for foehn development in winter than in summer.

3.3 Synoptic patterns associated with foehn occurrence

Xiong, Wang et al. (Xianping et al., 2020) noted that foehns on the eastern Taihang foothills are most pronounced in

winter. Across the 2,611 foehn events identified during the 64 years in this study, 790 occurred in spring, 376 in summer,240

558 in autumn, and 887 in winter, indicating that winter foehn events account for the largest proportion of the dataset. Our

study also shows that winter foehn events also exhibit the longest persistence, which is up to 24 h, whereas in the other

seasons no event exceeds 6 h. Although previous studies documented the annual and seasonal variability of foehns (Xianping

et al., 2020), the synoptic background conducive to their development remained unexamined.
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We further define more precise winter foehn events on the eastern Taihang foothills simultaneously meeting the criteria245

in Sect. 2.3 and the thresholds (W��� > 3 m s⁻¹, T���� < −6 °C, Q����> 0.07 g kg⁻¹, and Dir��� = 203°–324°) mention in

Sect. 3.1 and 3.2. Using ERA5 reanalysis data spanning the most recent decade (2012–2022), we composited and analyzed

the synoptic patterns favorable for foehn in winter on the eastern foothills of the Taihang Mountains (Figure 5).
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250

Figure 5: Anomalies of meteorological fields relative to the climatological mean during foehn events in winter on the eastern

foothills of the Taihang Mountains: (a–b) Sea-level pressure (shaded) and 10 m wind field; (c–d) Surface specific humidity and 10

m wind field; (e–f) 500 hPa geopotential height (thick black contour denotes the westerly transverse trough), wind field, and 850

hPa vertical velocity (black contours, solid lines indicate subsidence); (g) Vertical profiles of potential temperature on the
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windward and leeward sides. Blue and red dots mark the windward and leeward stations, respectively; the orange solid line255
indicates the position of the Taihang Mountains (defined by the 1000 m elevation contour); the black dashed box in the left column

outlines the domain shown in the right column. (h) Vertical profiles of potential temperature on the windward and leeward sides;

“Yes” and “Ave” denote the foehn events and the climatological mean, respectively.

Figure 5a, b display the winter-foehn anomalies in sea-level pressure (SLP) and 10 m wind relative to the climatological

mean. It shows the zero-anomaly line (white contour) precisely transects the Taihang Mountains and the SLP was higher260

than climatological mean in southwest of the mountains (dark-green shading), accompanied by an anticyclonic (clockwise)

wind shear on the synoptic scale. However, there was lower than climatological mean in the northeast (yellow shading),

accompanied by cyclonic (counter-clockwise) wind (Figure 5a). Consequently, the region of Taihang Mountains is typically

under a synoptic pattern featuring high pressure on the windward side and low pressure on the leeward side, accompanied by

west-to-southwesterly upslope flow at the windward side (blue dots) and west-to-northwesterly downslope flow at the265

leeward side (red dots) (Figure 5b). This configuration favors the advection of warm and moist air masses which descends

with sustained wind speed and thereby fosters foehn formation. The conclusion further confirmed the previous findings

based on the SHAP method in Sect. 3.1.

Figure 5c, d display the surface specific-humidity anomalies. A pronounced dry anomaly extends northward from South

China to the region of Taihang Mountains (Figure 5c). Although the entire mountain area is drier than climatology, the270

leeward side exhibits a sharp “upward bulge”, forming the driest core at the same latitude (Figure 5d). The combination of

downslope flow and the inherently dry leeward environment further amplifies the foehn warming drying signal on the

leeward side. The synoptic analysis again corroborating the results in Sect. 3.1.

At 500 hPa (Figure 5e, f), a westerly cold trough (thick black line) is formed over the region of Taihang Mountains,

with its low-pressure center situated on the leeward side (red dot) (Figure 5e). Strong northerly or north-easterly flow behind275

the trough drives vigorous subsidence on the leeward side (black contours in Figure 5f; maximum ≈ 0.7 Pa s⁻¹), supplying

favorable dynamic conditions for the foehn formation through adiabatic warming during subsidence and downward

momentum transfer.

Figures 5g, h reveal the atmospheric stratification stability through vertical potential-temperature (θ) profiles. The foehn

events exhibit lower θ than the climatological mean between 700 and 300 hPa, with the largest deficit near 450 hPa on the280

leeward side. The result shows that the presence of a mid-tropospheric cold air mass positively contributes to the foehn

formation. However, both windward and leeward sides is within a stably stratified environment (θ increases with height)

overall (Figure 5h). Compared with climatology, the leeward side exhibits lower θ above 650 hPa, whereas the windward

side shows a markedly lower θ within the 850–700 hPa lower troposphere (Figure 5g). It indicates that a pattern, which is

colder in lower troposphere on the windward side and colder in upper layer on the leeward side, provides a stable285

atmospheric environment highly conducive to foehn events.
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In summary, foehns on the eastern Taihang Mountains preferentially occur in a stably stratified atmospheric

environment with a surface pressure pattern characterized by a high- and low-pressure system on the windward and leeward

side, respectively. The foehn events are accompanied by an upper-level cold trough at 500 hPa and pronounced subsidence at

850 hPa on the leeward side.290

4 Discussion and Conclusion

Based on the 64 years (1959–2022) of surface observations and ERA5 reanalysis data, and by integrating an

interpretable machine-learning model with synoptic analysis, this study finds the dominant factors of foehn events on the

eastern foothills of the Taihang Mountains as well as their spatiotemporal variability and its matched synoptic patterns.

Our study identifies W���、Dir���、T����、Q���� as the four most influenced factors for the foehn formation on the295

eastern Taihang foothills. In contrast to the previous reported foehn formation in Antarctica (Bozkurt et al., 2018) or the Alps

(Aichinger-Rosenberger et al., 2022; Zumbrunnen et al., 2009), which rely heavily on upper-level jets or atmospheric rivers,

the Taihang foehn is governed almost exclusively by the surface factors and local topography, with upper-air contributes

little. This result underscores a surface-dominated mechanism driven by local topography and the coupled surface wind–

thermal system. Therefore, we recommend that the government should reinforce the weather monitoring stations along the300

eastern Taihang Mountain, prioritizing real-time observations of the leeward wind and of the windward temperature and

specific humidity. Meanwhile, it is necessary to optimize the regional observation network so that more accurate inputs can

be provided for foehn early warning systems.

By applying the SHAP-based explainable machine learning, we have quantified the critical dynamic thresholds for the

foehn formation in this region and demonstrated their pronounced seasonal and spatial variability for the first time. The305

threshold of the leeward 10-m wind speed (W��� ) remains stably above 3 m/s year-round, yet its contribution to foehn

occurrence is significantly stronger in winter than in summer. Differently, the threshold of the windward 2-m temperature

(T���� ) is seasonally variable, being −10 °C annually, −17 °C in winter, and 9 °C in summer, with stronger impacts in

summer than in winter. The windward specific humidity (Q����) is predominantly suppressive and its thresholds are 0.1 g/kg

annually, 0.07 g/kg in winter and 0.75 g/kg in summer, exerting a greater influence in winter than in summer. The thresholds310

of leeward wind-direction (Dir��� ) are given as the favorable range from 203° to 324°, with the range from 237° to 294°

being most conducive to foehn formation. These thresholds can directly guide the development of seasonally and slope-

resolved (windward versus leeward) differentiated early-warning models. For example, winter warnings should particularly

target persistent strong foehns with an extended lead time (up to 24 h) and focus on leeward wind speeds (W���) exceeding 3

m/s and windward specific humidity ( Q���� ) above 0.07 g/kg, while summer warnings should focus on windward315

temperature (T����) below 9 °C (Figure 4).
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Further analysis reveals that winter foehns not only account for 34% of annual events but also exhibit the longest

durations (up to 24 h). These persistent episodes coincide with stable synoptic patterns that favor subsidence warming

(Figure 5). Such conditions enhance low-level inversions and suppress boundary-layer ventilation, allowing pollutants to

accumulate in a shallow surface layer and form a wintertime leeward haze layer (Wang et al., 2015; Li et al., 2020b; Gao et320

al., 2015; Zhong et al., 2019). The severe haze pollution events in winter pose potentially severe health risks along the

Taihang mountain foothills. Consequently, winter alerts must pay particular attention to the superposition of foehn and

stagnant weather.

Unlike the persistent haze pollution in winter, summer foehns act synergistically with heat waves and ozone episodes.

Previous work shows that foehns can trigger anomalously hot and dry heat waves (Takane and Kusaka, 2011), amplifying325

the surface radiative heating and accelerating the photochemical reactions (Li et al., 2020b; Zhang et al., 2024; Zhou et al.,

2025), thereby causing rapid ozone accumulation. Summer foehn warnings should therefore monitor the coupled threshold

of the rising temperature and plunging humidity on the leeward side to mitigate compound heat-ozone hazards. Moreover,

the foehn’s dry-hot signature sharply reduces humidity and elevates temperature on the leeward side, significantly increasing

fire danger during the dry autumn–winter vegetation period (Zumbrunnen et al., 2009). Our study shows that westerly330

winds > 3 m/s during foehn events can further accelerate fire spread. An integrated “foehn–fire” monitoring and early-

warning mechanism is therefore essential.

Composite analysis of winter foehn events, which dominate among different seasons, reveal the following favorable

synoptic background: (i) A pronounced pressure gradient with higher pressure on the windward side and lower pressure on

the leeward side drives westerly flow across the range; (ii) the ambient air mass is cold and dry, whereas the leeward slope335

becomes markedly warm and dry; (iii) a 500-hPa cold trough in the westerlies affects the leeward slope, inducing westerly or

north-westerly downslope flow and pronounced subsidence in the lower troposphere (850 hPa); (iv) the thermal structure is

characterized by a stable stratification with colder air at low levels on the windward side and colder mid-upper levels on the

leeward side. Therefore, priority should be given to the surface pressure gradient, the low-level vertical motion (especially

subsidence), and the position of westerly troughs and ridges across the range of Taihang mountains. And we recommend that340

when developing foehn-warning models, it is better to combine the SHAP-derived surface thresholds with favorable

synoptic-pattern information to construct a reliable “synoptic pattern plus surface factors” framework that overcomes the

physical interpretability limitations of traditional single-model approaches (Stauffer et al., 2024; Seluchi et al., 2003).

Based on the findings above, here we recommend integrating the dynamic thresholds identified here into coupled

meteorology-chemistry models to establish a unified “foehn–pollution–fire” monitoring and response system, thereby345

enhancing regional disaster prevention and climate-change resilience In winter, the system should prioritize haze events

triggered by continuous, intense foehn events that coincide with surface-based temperature inversions, and should extend the
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forecast horizon to 24 h. In summer, the focus shifts to foehn-triggered heatwaves and ozone pollution, with intensified joint

monitoring of high temperature and low humidity on the leeward side. In addition, a dynamic fire-risk module also should be

embedded, coupling foehn wind-speed and humidity thresholds with a vegetation dryness index to enable early detection and350

rapid response to natural hazards.
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