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Abstract.

The development of physics parameterizations in Earth system models typically emphasizes whether the intended physics

is reasonably represented, while mathematical aspects such as solvability of the governing equations and convergence of the

numerical algorithms used to approximate their solutions receive far less attention. In this paper, we examine these mathemat-

ical issues for a widely used ocean–atmosphere turbulent flux parameterization and its implementation in the Energy Exascale5

Earth System Model version 2 (E3SMv2). We show that, under simulated meteorological conditions, the parameterization can

yield no solution or multiple (including unintended) solutions. These problems arise primarily from (1) a discontinuity in the

formulation of the neutral exchange coefficients and (2) the use of an ad hoc limiter on the Monin–Obukhov length to address

a singularity in its definition. Compounding these problems is the fact that interventions of calculations such as limiters are

often thought to have only a “minor” effect on numerical algorithms and are not documented in technical model descriptions.10

To address these solvability issues, we propose (1) a regularization that enforces continuity in the neutral exchange coefficients

and (2) an adaptive procedure for selecting limiting values of the Monin–Obukhov length based on mathematical analysis

of solution uniqueness. Implementing these revisions in E3SMv2 leads to statistically significant changes in the simulated

latent heat fluxes over the mid-latitude oceans in the winter hemisphere as well as over the subtropical and tropical oceans.

Overall, this work improves the well-posedness and numerical accuracy of ocean–atmosphere turbulent flux calculations in15

E3SMv2. Moreover, because discontinuities and ad hoc limiters are frequently encountered in physics parameterizations, this

work serves as an example of how non-existence and non-uniqueness issues in parameterizations can be identified, analyzed,

and resolved.

1 Introduction

Turbulent fluxes at the Earth’s surface are major contributors to the exchange of mass, heat, and momentum between the atmo-20

sphere and the other components of the Earth system. Accurate calculations of these fluxes are crucial for faithful simulations
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of the responses and feedbacks related to component interactions. While the atmosphere interacts with various types of surfaces

such as ocean, land, sea ice, and land ice, this study considers only the ocean–atmosphere interface.

Since ocean–atmosphere turbulent fluxes occur at spatial and temporal scales that are much smaller than the typical Earth

System Model (ESM) grid spacing of a few tens to a few hundreds of kilometers, surface turbulent flux parameterizations,25

which rely on Monin-Obukhov Similarity Theory (MOST, Monin and Obukhov, 1954), are employed to relate these fluxes to

the resolved quantities such as wind speed, temperature, and specific humidity in the lowest atmospheric layer, as well as sea

surface temperature and humidity. Many different ocean–atmosphere turbulent flux parameterizations have been developed in

the past several decades based on observational data from various oceanic regimes (see, e.g., Large and Pond, 1982, 1981;

Zeng et al., 1998; Fairall et al., 2003). While the particular physical effects considered vary from parameterization to parame-30

terization, e.g., some consider convective wind gustiness or reduction of surface humidity due to salinity of ocean water (Zeng

et al., 1998; Brunke et al., 2002, 2003), each parameterization consists of a system of nonlinear equations whose solutions are

approximated iteratively, for instance using a fixed-point iteration (Isaacson and Keller, 1994).

A number of studies have shown that ESMs are quite sensitive to the choice of ocean–atmosphere turbulent flux parameteri-

zation (see, e.g., Reeves Eyre et al., 2021; Harrop et al., 2018; Large and Caron, 2015), as, for instance, different parameteriza-35

tions can produce a wide spread of turbulent fluxes in weak or strong wind conditions (Chang and Grossman, 1999; Zeng et al.,

1998). While those studies have focused on the modeled physics, there has been no systematic analysis carried out to ascertain

whether or not the aforementioned parameterizations are well-posed from a mathematical perspective — that is, whether or

not the equation set used in a parameterization has a unique solution for each set of input values. In other words, underpinning

much of the analysis in the literature of turbulent flux parameterizations is the assumption that the numerical methods used40

therefore converge to a unique solution, but the validity of this assumption and the potential impacts of its violation are largely

overlooked. Such considerations are not merely academic but have significant impact on computed turbulent fluxes, as we

demonstrate in this paper.

The focus of this study is on the well-posedness of the equations in a widely used ocean–atmosphere turbulent flux-

parameterization based on the work of Large and Pond (1981) and Large and Pond (1982), hereafter referred to as the Large45

and Pond parameterization. This parameterization is currently the default in the Energy Exascale Earth System Model ver-

sion 2 (E3SMv2, Golaz et al., 2022) and version 3 (E3SMv3, Xie et al., 2025), the Community Earth System Model (CESM,

Hurrell et al., 2013; Danabasoglu et al., 2020), and several models based on CESM, such as the Taiwanese Earth System

Model (TaiESM, Lee et al., 2020), the Norwegian Earth System Model version 1 (NorESM v1, Bentsen et al., 2013), the

Euro-Mediterranean Center on Climate Change’s ESM (CMCC-ESM2, Lovato et al., 2022), and the Regional Arctic System50

Model (RASM, Cassano et al., 2017). We demonstrate that under certain meteorological conditions, the equations of the pa-

rameterization have either no solution or multiple solutions, some of which correspond to physically-unrealistic values of the

turbulent fluxes. The consequence is a computed turbulent flux with large errors which are then propagated back into the ocean

and atmosphere models.

We focus on discontinuous neutral exchange coefficients and ad hoc limiters applied to the Obukhov length as key causal55

factors in the lack of well-posedness in the equations of the Large and Pond parameterization. Abrupt changes in physical
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quantities sometimes have a physical basis. For instance, the neutral heat exchange coefficient from Large and Pond (1982) is

derived from ship and deep stable water tower data that show a potential separation of values based on atmospheric stratifi-

cation. In such cases, a discontinuity in the model formulation can be viewed a simple approximation of the abrupt changes.

Limiters are commonly used in ESMs in a wide variety of contexts preventing physical quantities from taking negative val-60

ues, for instance in the Cloud Layers Unified By Binormals (CLUBB) model of clouds and turbulence (see discussions in

Zhang et al., 2023a). Discontinuous quantities might not be as prevalent but examples are not hard to find, for instance in

cloud microphysics schemes (Morrison and Gettelman, 2008; Santos et al., 2020). And yet, the impact of these features on

well-posedness and algorithm convergence is often overlooked. Indeed, limiters are often not documented in published liter-

ature and sometimes even excluded from technical model descriptions despite their potential to cause unwanted behavior in65

numerical algorithms. For example, E3SMv2’s ocean–atmosphere turbulent flux algorithms are inherited from CESM, whose

implementation utilizes the same Obukhov length limiters which are notably absent from the model’s technical documentation

(Neale et al., 2012). Only recently have ESM developers begun to address the lack of documentation of key model features

such as limiters and noting that these seemingly “minor” interventions often have outsized effects on Earth system simulations

(see, e.g., Kawai et al., 2022).70

In this paper, we use the Large and Pond parameterization implemented in E3SMv2 as an example to demonstrate how

mathematical issues of well-posedness manifest themselves in practice and how the potential causes can be diagnosed. Based

on those analyses, we present two techniques to ensure that the turbulent flux parameterization is well-posed. These techniques

include (1) simple polynomial interpolation to regularize discontinuous heat exchange coefficients to ensure solution existence

and (2) an adaptive adjustment to Monin-Obukhov length limiters to ensure solution uniqueness. We demonstrate that the75

proposed techniques for addressing solution non-existence and non-uniqueness have statistically significant impacts on the

computed turbulent fluxes. The techniques and analysis in this work provide a foundation for future efforts aimed at improving

the accuracy and efficiency of turbulent flux algorithms at other interfaces (e.g. sea ice, land). More generally, given the fact

that limiters are widely used in ESMs and discontinuities in parameterizations are not uncommon, the work presented here may

provide inspirations for assessing and addressing potential issues of well-posedness in other ESMs and in parameterizations of80

other subgrid-scale processes.

The rest of the paper is organized as follows. In Sect. 2, we provide an overview of the ocean–atmosphere surface flux param-

eterization and its numerical implementation in E3SMv2. In Sects. 3 and 4, we analyze issues of well-posedness and present

modifications to ensure well-posedness. Sect. 5 presents the sensitivity of E3SMv2 simulations to the proposed modifications,

followed by conclusions in Sect. 6.85

2 Model description and analysis overview

In this section, we describe the Large and Pond ocean–atmosphere turbulent flux parameterization (Large and Pond, 1981, 1982)

and the numerical methods used to compute the turbulent fluxes in E3SMv2. While this description is focused on methods used

in E3SM, it is also valid for the other models which utilize this parameterization.
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2.1 Terminology90

The following terminology shall be used frequently hereafter. Of particular note is that we make a distinction between the

turbulent flux parameterization and the turbulent flux algorithm.

– Turbulent flux parameterization: the equations that describe the scaling parameters, u∗, θ∗, and q∗, i.e. Eq. (13) in

Sect. 2.3.

– Turbulent flux algorithm or iterative method: the numerical method used to compute a solution of the turbulent flux95

parameterization, e.g. Alg. 1 in Sect. 2.3. Such an algorithm/method is called convergent if the iterates converge to a

solution of the parameterization.

– Equations underlying the turbulent flux algorithm: the turbulent flux parameterization.

– Existence of a solution (to the underlying equations): at least one solution can be determined which satisfies the equations

underlying the turbulent flux algorithm.100

– Uniqueness of a solution (to the underlying equations): exactly one solution satisfies the equations underlying the turbu-

lent flux algorithm.

– Well-posed equation or parameterization: an equation or system of equations for which there exists a unique solution.

2.2 E3SMv2

E3SMv2 is an ESM developed by the U.S. Department of Energy (Golaz et al., 2022) that includes components for the105

atmosphere, land, ocean, sea ice, land ice, rivers, and human systems. In this study, we use the atmosphere component, EAMv2,

in the “uncoupled” mode, i.e., with interactive land and river components, while external forcing conditions including sea

surface temperatures and sea ice fraction, aerosol emissions, etc. are specified using the climatological mean of 2005–2014 with

repeating annual cycles. We refer to such simulations as F2010 following E3SM’s naming convention for model configurations.

Overviews and some more detailed descriptions of EAMv2 can be found in Golaz et al. (2022), Ma et al. (2022), Rasch et al.110

(2019), and Xie et al. (2018).

2.3 Parameterization of ocean–atmosphere turbulent fluxes

The turbulent fluxes of interest in this work are the surface wind stress (τ ) in N m−2, sensible heat flux (SH) in W m−2, and

latent heat flux (LH) in W m−2 defined as (see, e.g., Eqs. 1-3 in Brunke et al., 2003)

τ = ρa

[(
w′u′

)2
+

(
w′v′

)2
] 1

2
, (1)115

SH = ρaCpw′θ′ , (2)

LH = ρaLvw′q′ , (3)
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where the notation w′Φ′ denotes the (eddy) covariance between the vertical velocity w (in m s−2) and another quantity Φ.

Here, u, v, q, and θ are the zonal and meridional components of horizontal wind in m s−1, specific humidity in kg kg−1, and

potential temperature in K, respectively; Cp is the specific heat of moist air at constant pressure in J kg−1 K−1; and Lv is the120

latent heat of vaporization in J kg−1.

Numerical models require turbulent flux parameterizations in which the eddy covariances are often expressed in terms of

resolved (bulk) meteorological quantities, in the form of

[(
w′u′

)2
+

(
w′v′

)2
] 1

2
= CDSU , (4)

w′θ′ =−CHS∆θ , (5)125

w′q′ =−CES∆q , (6)

where U is wind speed in m s−1; S is the wind speed in m s−1 including wind gustiness if the latter is considered, and

S = U if gustiness is not considered; ∆θ = θa−θs is the potential temperature difference between the respective values in the

atmosphere (θa) and at the surface (θs), in K; ∆q = qa−qs is the specific humidity difference between the respective values in

the atmosphere (qa) and at the surface (qs), with a unit of kg water vapor per kg air. The central goal in the development of a130

parameterization is to provide formulae for CD, CH, and CE, the dimensionless turbulent exchange coefficients for momentum,

heat, and moisture, respectively.

A practical complication is that these exchange coefficients are typically formulated as piecewise empirical fits of obser-

vational data dependent on stability of the surface layer, while this stability depends, in turn, on the surface fluxes that we

are trying to parameterize. This results in a situation where a set of nonlinear equations needs to be solved to determine both135

the stability and the exchange coefficients. More specifically, the stability of the surface layer is typically described using the

dimensionless Obukhov stability parameter ζ defined as

ζ(u∗,θ∗, q∗) = z/L(u∗,θ∗, q∗), (7)

where z is height above the surface and L is Monin-Obukhov length. u∗, θ∗ and q∗ are the scaling parameters for momentum,

heat and moisture, respectively, from Monin-Obukhov similarity theory (see, e.g., Brunke et al., 2003, Eq. 4-6), namely140

u2
∗ =

[(
w′u′

)2
+

(
w′v′

)2
] 1

2
, (8)

θ∗ =−w
′θ′

u∗
, (9)

q∗ =−w
′q′

u∗
. (10)

An expression for L can be found in Eq. (4) of Zeng et al. (1998), namely,

L(u∗,θ∗, q∗) =
u2
∗θv

κgθv∗
=

u2
∗θa(1 +0.61qa)

κg
[
θ∗(1 +0.61qa)0.61θaq∗

] . (11)145
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The symbols κ and g denote the dimensionless von Kármán constant of ∼0.4 and gravitational acceleration of ∼9.8 m · s−2,

respectively. The sign of ζ dictates the stability of the surface layer, with ζ < 0 corresponding to unstable, ζ = 0 to neutral, and

ζ > 0 to stable conditions.

The Large and Pond parameterization used in E3SMv2 and various other models expresses the exchange coefficientsCD,CH,

and CE using the so-called neutral exchange coefficients CDN, CHN, and CEN, a neutral 10-m wind speed u10N, and functions150

of ζ. The detailed formulation can be found in Appendix A1, from which we can see that CD, CH, and CE depend directly on

u10N and ζ, which are unknown, and on z. Furthermore, these exchange coefficients also have indirect dependencies on the

known bulk meteorological variables since the stability parameter ζ depends on both the unknown u∗, θ∗, and q∗ as well as

known meteorological variables θa, qa, etc. (see Eqs. (7) and (11)). To facilitate discussions and analyses later in the paper, we

symbolically note these dependencies by155

C(D,H,E) = C(D,H,E)

(
u10N, ζ(u∗,θ∗, q∗);ξ

)
, (12)

where, for ease of notation, we denote the aggregation of bulk meteorological variables by ξ = (U,θa,θs,z,ρa, qa, qs)T , with

ρa being the density of air in kg m−3.

As elaborated in Appendix A2, one can define an additional set of coefficients Ĉ(D,H,E) by adjusting C(D,H,E) (see Eq. A11)

to the height and stability of the atmospheric state variables. The set of equations used in E3SMv2 is based on these adjusted160

coefficients and is given by




u10N =
ĈD

(
u10N, ζ(u∗,θ∗, q∗);ξ

)

√
CDN(u10N)

·U ,

u∗ = ĈD

(
u10N, ζ(u∗,θ∗, q∗);ξ

)
·U ,

θ∗ = ĈH

(
u10N, ζ(u∗,θ∗, q∗);ξ

)
·∆θ ,

q∗ = ĈE

(
u10N, ζ(u∗,θ∗, q∗);ξ

)
·∆q .

(13)

Detailed expressions of ĈD, ĈH, and ĈE can be found in Eq. (A13). A key feature relevant for this paper is that the expression

for ĈH involves an adjustment of the aforementioned neutral heat exchange coefficient, denoted by ĈHN, which is discontinuous

by construction:165

ĈHN

(
ζ(u∗,θ∗, q∗)

)
=





0.0327, if ζ < 0

0.018, if ζ ⩾ 0.
(14)

The discontinuous construction of ĈHN is based upon measurements from deep stable water towers and weather ships (Large

and Pond, 1982) which show that the average measurements differ significantly for stable and unstable conditions, as explained

by the text around Eq. (23) in Large and Pond (1982).
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2.4 Numerical algorithm for solving the scaling parameter equations170

Eq. (13) can be written more succinctly as

x = f (x;ξ) , (15)

where x = (u10N,u∗,θ∗, q∗)T , and f is the vector-valued function on the right-hand side of Eq. (13). In mathematics, solutions

to Eq. (15) are referred to as fixed points. Since an analytic solution to Eq. (13) is not available, the scaling parameters and

neutral 10-m wind speed must be approximated using an iterative method. A standard fixed-point iteration approximates the175

solution of the equation x = f(x;ξ) by producing iterates of the form

xn+1 = (1−α)xn +αf(xn;ξ), (16)

where 0< α⩽ 1 is a damping parameter. Other (more advanced) solution algorithms are also available, as mentioned later in

Sect. 3.6. In E3SMv2, a sequence of fixed-point iterations in the form of Eq. (16) with α= 1 are utilized to update the neutral

10-m wind speed first followed by the scaling parameters, with the initial iterate x0 being derived from neutral stability con-180

ditions. The iterative method is summarized in Alg. 1. The specific sequential approach employed by E3SMv2 more generally

falls under the umbrella of nonlinear Gauss-Seidel methods; we direct the interested reader to Ortega and Rockoff (1966) for a

rigorous analysis of such methods.

Additionally, the E3SMv2 code applies an upper bound (limiter) to the Obukhov stability parameter in Eq. (13) to prevent

its magnitude from growing too large throughout the course of the iterations. The limited stability parameter, which we denote185

by ζ̃, is defined by

ζ̃
(
u∗,θ∗, q∗;ζmax

)
= min

(∣∣ζ(u∗,θ∗, q∗)
∣∣, ζmax

)
· sgn

(
ζ(u∗,θ∗, q∗)

)
. (17)

We refer to the parameter ζmax > 0 as the limiting parameter. Its value is set to 10 in E3SMv2 and ζ is replaced with ζ̃ in

Eq. (13). A detailed analysis of the stability limiter and its relationship with uniqueness of solutions of Eq. (13) is provided in

Sect. 4.2.190

Finally, it is worth noting that E3SMv2’s default iterative algorithm uses a hardwired total of two iterations without checks

on numerical convergence. Further discussions on this can be found in Sect. 3.5.

2.5 Offline analyses and E3SM simulations

The convergence of numerical methods used for finding fixed points requires at minimum that there exists at least one solution

to the underlying equation Eq. (15). A system with no solutions can result in numerical methods oscillating between two195

values and never converging. If the system has multiple solutions, numerical methods may converge to an undesired (e.g.

non-physical) solution. Thus, it is important that well-posedness of turbulent flux parameterizations be analyzed prior to the

application of any numerical methods. To the best of our knowledge, this analysis has not yet been carried out for the Large

and Pond parameterization or any other ocean–atmosphere turbulent flux parameterizations.
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Algorithm 1 Default atmosphere-ocean iteration in E3SMv2.

Input: Bulk variables ξ = (U,θa,θs,z,ρa, qa, qs)
T and limiting parameter ζmax .

Output: Approximation (u∗)n, (u10N)n, (θ∗)n, and (q∗)n to the turbulent flux parameterization Eq. (13).

1: function DEFAULTITERATION(ξ, ζmax)

2: Compute the initial estimate based on neutral conditions:

(u10N)0 = U ,

(u∗)0 =
√

CDN(U) ·U ,

(θ∗)0 = ĈHN(∆θ) ·∆θ ,

(q∗)0 = ĈEN ·∆q.

3: Compute limited stability parameter ζ̃0 = ζ̃
(
(u∗)0,(θ∗)0,(q∗)0;ζmax

)
according to Eq. (17).

4: for n = 1,2 do

5: Update 10-m neutral wind speed:

(u10N)n =
ĈD

(
(u10N)n−1, ζ̃n−1;ξ

)
√

CDN

(
(u10N)n−1

) ·U.

6: Apply updated 10-m neutral wind speed to simultaneously update scaling parameters:
(u∗)n

(θ∗)n

(q∗)n

 =


ĈD

(
(u10N)n, ζ̃n−1;ξ

)
·U

ĈH

(
(u10N)n, ζ̃n−1;ξ

)
·∆θ

ĈE

(
(u10N)n−1, ζ̃n−1;ξ

)
·∆q

 .

7: Update stability parameter ζ̃n = ζ̃
(
(u∗)n,(θ∗)n,(q∗)n;ζmax

)
.

8: end for

9: return (u∗)n,(θ∗)n,(q∗)n.

Our well-posedness analysis presented here consists of two components. The first part, described in Sect. 3, sheds lights on200

whether there always exists a solution to Eq. (13). The second part, described in Sect. 4, answers the question of whether a

solution to Eq. (13) is always unique. The analysis uses theoretical reasoning as well as offline calculations based on output from

E3SMv2. The E3SMv2 data used therein were obtained from a 10-year F2010 simulation performed at EAMv2’s standard grid

spacing of about 165 km for the atmospheric physics parameterization (Hannah et al., 2021). The simulation uses E3SMv2’s

default ocean–atmosphere flux algorithm detailed in Alg. 1 and hence is referred to as the CTRL simulation hereafter. Daily205

instantaneous values of the atmospheric and oceanic conditions used by the flux calculations were captured and archived using

the online diagnostics tool CondiDiag from Wan et al. (2022). These values were then used to identify grid cells in which the

8

https://doi.org/10.5194/egusphere-2025-5430
Preprint. Discussion started: 21 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Figure 1. Results of fixed-point iteration applied to a simple, illustrative example with no actual solution due to discontinuity (see Sect. 3.1

and Eq. (18)). Shown here is the iterate xn against the number of iterations. The various lines correspond to different values of the damping

parameter α.

iterative method in Alg. 1 (a) is not able to converge to any solution or (b) converges to more than one solution depending on

the initial guess.

Based on the results of the well-posedness analysis, revisions to the default flux algorithm are proposed in Sects. 3 and 4.210

Key features of the proposed revisions are analyzed in these sections using offline calculations. After that, Sect. 5 presents a

10-year simulation SENS, with the proposed revisions included, to assess the impact on the simulated long-term climatology,

with a focus on the parameterized surface fluxes.

3 Analyzing and addressing existence issues

One approach to analyzing existence of solutions to Eq. (13) is to consider the system in the form x = f(x;ξ). Solutions215

to this system lie on the surface described by the intersections of the two graphs x and f(x;ξ). If f(x;ξ) contains any

discontinuities, then x and f(x;ξ) may not intersect, and hence Eq. (13) may not have a solution. From this perspective, one

should examine any potential discontinuities in f . For completeness, we note that solutions to x = f(x;ξ) may still exist

despite discontinuities in f(x;ξ), an abstract example of which is shown in Appendix B. Therefore, our analysis begins with

identifying discontinuities, followed by investigating whether the discontinuities cause non-existence of a solution or non-220

convergence of a numerical algorithm. Below, we first show a simple, illustrative example and then apply this analysis strategy

to the Large and Pond parameterization implemented in E3SMv2.

9
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3.1 A simple illustrative example

To demonstrate how iterative methods may behave in the presence of a discontinuity in f(x;ξ), we first consider a minimal

model problem which still captures the key issue. Suppose we are interested in solutions to x= f(x), where f(x) is defined225

by

f(x) =




x+ 1/2, x⩽ 0

−1/2, x > 0.
(18)

One can easily verify by hand or graphically that this equation has no solutions. We apply the fixed-point iteration described

by Eq. (16) with 100 iterations to this equation. While our goal is to show the behavior of this iteration for this example using

the same settings as those in E3SMv2 (i.e. no damping, α= 1), we also provide results with damping (i.e. 0< α < 1), which230

can be viewed as reducing the “step size” of the iterates. The results in Fig. 1 demonstrate that xn oscillates infinitely between

two values for each of the damping parameters used.

The magnitude of the oscillation depends on the value of the damping parameter as well as particular features of the function

f(x) at the discontinuity. By using a very small damping parameter, one can reduce the size of the oscillations in the iterations,

but it is important to note that the approximate solution will not satisfy the equation x= f(x) because the equation has no235

actual solution.

3.2 Discontinuities and oscillations in E3SMv2

Figure 2. The iterate (θ∗)n and its relative residual |f3

(
(u∗)n,(u10N)n,(θ∗)n,(q∗)n

)
−(θ∗)n|/|(θ∗)n+ϵ3|when approximating the solution

of the turbulent flux parameterization in Eq. (13) with conditions described by Eq. (20). The iterates are described by Alg. 1 with the exception

that 100 iterations are performed rather than 2 and damping is employed. For visual clarity, only the first 30 iterations are shown here.

We next turn our attention to the equations and algorithm in E3SMv2. As documented in Sect. 2.3, the adjusted neutral

heat exchange coefficient ĈHN is defined in a piecewise constant manner for stable and unstable conditions (see Eq. (14)). As

a result, the right-hand side of the third equation in Eq .13, hereafter denoted by f3 for brevity, has a discontinuity at ζ = 0240

(neutral stability).
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Using 10 years of model output from the E3SMv2 CTRL simulation described in Sect. 2.5, we apply the default iterative

method in Alg. 1 while replacing the fixed number of iterations with a variable number of iterations and a stopping criterion

based on the relative residual

R(x;ξ) :=

√√√√
4∑

i=1

∣∣∣∣
xi−fi(x;ξ)

xi + ϵi

∣∣∣∣
2

. (19)245

The addition of the constant ϵi in the denominator of Eq. (19) is designed to ensure that the residual is well-defined even when

xi is small. The stopping criterion used in the offline analysis was R(x;ξ)< 10−10 with ϵ1 = 10−3, ϵ2 = 10−3, ϵ3 = 10−5,

ϵ4 = 10−8 for u10N, u∗, θ∗, and q∗, respectively. We filter the E3SMv2 data to identify conditions for which this stopping

criterion could not be satisfied after a maximum of 1000 iterations.

One example of problematic neutral-stability conditions that we identified from E3SMv2 output is the following combina-250

tion:



U = 0.35 m/s, z = 13.36 m, θs = 299.29 K,

θa = 299.83 K, qa = 18.85 g/kg.
(20)

We apply to this example E3SMv2’s default numerical algorithm documented in Alg. 1 except with the fixed 2 iterations

replaced by 100 iterations and show results for the iterate (θ∗)n in the left panel of Fig. 2, where the oscillatory feature is clear.

If Eq. (13) were well-posed and the fixed-point iteration were convergent, we could define a relative residual in the form of255

|f3((u∗)n,(θ∗)n,(q∗)n)− (θ∗)n|/|(θ∗)n + ϵ3|, and we would expect this residual to decrease, eventually to very small values

close to machine epsilon, as the iteration proceeds. For the conditions described by Eq. (20), however, the relative residual

resulting from E3SM’s default algorithm oscillates between about +50% to −110%, with the iterate (θ∗)n jumping between

two significantly different values, neither of which satisfies the equation θ∗ = f3(u∗,u10N ,θ∗, q∗). Moreover, while damping

reduces the magnitude of the oscillations, it does not substantially reduce the magnitude of the relative residual, which still260

takes values as large as −70%.

It is worth noting that while we have observed oscillations in all solution variables, i.e., u∗, θ∗, q∗, and u10N, the oscillation

in θ∗ is the strongest. This observation, together with the known discontinuity in f3 as well as the resemblance between the

oscillations in E3SMv2 and those in the simple problem discussed in Sect. 3.1, suggests that the oscillations in E3SMv2

may be caused by non-existence of the solution at ζ = 0. While we are unable to rigorously prove that the turbulent flux265

parameterization in Eq. (13) has no solution for the conditions described by Eq. (20), we shall demonstrate in the remainder of

this section that a modification to ĈHN to remove the discontinuity at ζ = 0 eliminates the oscillations entirely and allows the

iteration to converge to a solution.

To further characterize the Earth system states associated with oscillations in the ocean–atmosphere flux parameterization,

we perform offline calculations using 10 years of daily instantaneous output from E3SMv2 as mentioned in Sect. 2.5. In these270

offline calculations, we again apply Algorithm 1 until either the stopping criterionR(xn;ξ)< 10−10 is reached or a maximum

of 1000 iterations have been taken. Each data point is classified as either (i) exhibiting oscillatory behavior or (ii) having

converged if the stopping criterion is reached. Since the focus here is on cases near neutral stability (ζ = 0) and since the
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Figure 3. A corner plot showing histograms and pairwise scatter plots of the variables U , ∆θ, and ∆q for both atmospheric conditions

that produce oscillatory, non-convergent iterations and those whose iteration converges to a solution. Histograms are normalized so that the

heights of bars in different case categories sum to the same value. The U , ∆θ, and ∆q samples used here are 10 years of daily instantaneous

output from the CTRL simulation. The classification (“converged” versus “oscillatory”) was done in offline calculations using Alg. 1 and

1000 iterations.

stability is controlled in part by U , ∆θ, and ∆q, normalized histograms of U , ∆θ, and ∆q values are provided in the main

diagonal of Fig. 3 for both data points with oscillations and data points that have converged to a solution. Off-diagonal entries275

show the pairwise scatter plots of U , ∆θ, and ∆q for each class of data. The main condition for which there is usually a lack

of convergence in the solution of Eq. (13) is approximately 0 K <∆θ < 0.7 K. Having identified this condition, we explore

in which geographical locations and how often the CTRL simulation exhibits this condition. Fig. 4 shows the percentage of

days in which 0 K <∆θ < 0.7 K for the months of December, January, and February (hereinafter DJF) as well as June,

July, and August (hereinafter JJA) averaged over the 10 years of output from the CTRL simulation. In DJF, the most frequent280

occurrences (>8%) of these conditions are in the Southern Ocean along the ice edge. Higher frequencies are also found in the

mid-latitude storm tracks over the North Atlantic and Pacific Oceans. In JJA, the most frequent occurrences (>8%) are over

the North Atlantic and Pacific just south of the ice edge, as well as over the Arabian Sea.

3.3 Regularization of heat exchange coefficient to recover solution existence

To enforce continuity of the heat exchange coefficient CHN, we propose a standard Ck regularization which replaces the jump285

discontinuity with a polynomial function p(k)
εreg with two parameters k (a non-negative integer) and εreg (a small positive value).
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Figure 4. Percentage of days for which the daily instantaneous output of ∆θ in DJF (left) or JJA (right) falls in the range of 0 K to 0.7 K

in 10 years of the CTRL simulation, which, as indicated by Fig. 3, is the main condition under which an oscillatory iteration is most likely.

Gray shading indicates land, and white areas are sea ice.

The new regularized coefficient, which we denote by Ĉ(k)
HN,εreg

, has k continuous derivatives and is defined by

Ĉ
(k)
HN,εreg

(ζ) :=





0.0327, ζ ⩽−εreg

p(k)
εreg

(ζ), −εreg < ζ ⩽ εreg

0.018, ζ > εreg.

(21)

In turn, Ĉ(k)
HN,εreg

is used to derive a regularized version of the exchange coefficient ĈH, which we denote by Ĉ(k)
H,εreg

and which

will take the place of ĈH in Eq. (13). Details on the construction of the polynomial p(k)
εreg and the regularized exchange coeffi-290

cient Ĉ(k)
H,εreg

are provided in Appendix C. Fig. 5 provides a visualization of the polynomial p(0)
εreg , which corresponds to the case

of linear interpolation. Higher-order regularizations which preserve continuity of first and second derivatives are not necessary

for the fixed-point iterations used in E3SMv2 which require no information on the derivatives of f . We thus use only the poly-

nomial p(0)
εreg in Eq. (21) in the rest of this work. However, if higher-order fixed-point solvers are desired, then commensurately

higher-order regularizations corresponding to the polynomials p(1)
εreg and even p(2)

εreg may be required. Details on the construction295

of these regularizations are provided in Appendix C for the interested reader.

The regularization parameter εreg determines how much of the original exchange coefficient CHN is replaced by the polyno-

mial p(k)
εreg . In principle, any positive value of εreg ensures that f is continuous and thus, the turbulent flux parameterization in

Eq. 13 has a solution. In practice, smaller values of εreg will preserve more of the original exchange coefficient in Large and

Pond (1982) but may not alleviate the problem of oscillating iterations due to the sharp gradient at ζ = 0, an issue which we300

highlight in Sect. 3.4. In contrast, larger values of εreg make it easier for numerical methods to converge to a solution of the

regularized equation but modify more of the original exchange coefficient. Thus, care must be taken in choosing εreg so that

desirable features of the original exchange coefficient are preserved while also not making it onerously difficult for iterative

methods to converge to a solution. A comparison of the convergence of the iterative method as well as differences in the com-

puted turbulent fluxes for various values of εreg is provided in Appendix C. Based on these results, we recommend a value of305

13

https://doi.org/10.5194/egusphere-2025-5430
Preprint. Discussion started: 21 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Figure 5. Neutral exchange coefficient of heat ĈHN and its continuous regularization using linear interpolation, p
(0)
εreg . Continuity is enforced

by matching the interpolant to the values of ĈHN at the endpoints of the region of regularization given by −εreg ⩽ ζ ⩽ εreg.

εreg = 0.1, which produces turbulent fluxes that do not differ significantly from the fluxes produced when using a regularization

with smaller values of εreg.

3.4 Ensuring convergent iteration for the regularized system

While the goal of the regularization in Sect. 3.3 is to ensure that the system Eq. (13) has at least one solution for iterative

methods to converge to, the potentially sharp gradient (depending on how small the regularization parameter εreg is) introduced310

in the regularization can pose issues for iterative methods such as the fixed-point and nonlinear Gauss-Seidel iterations. In

particular, the presence of sharp gradients often necessitates the use of damping (i.e. α < 1 in Eq. (16)) to reduce the iteration

“step size” and prevent over and under-shooting of iterates. To see this, we apply a variant of the default iteration described in

Alg. 1 that (i) takes a fixed 100 iterations and (ii) introduces a damping parameter 0< α < 1 to compute the solution of the

regularized turbulent flux parameterization in Eq. (C3) with εreg = 0.1 for the example described by Eq. (20). We consider the315

damping parameters α= 1, 0.5, and 0.1 and show the results in Fig. 6. It is clear that the damped iteration converges to the

solution of the regularized Eq. (C3) so long as the damping parameter is chosen small enough. In particular, if α is too large

relative to εreg, the oscillations are still present at varying levels depending on the value of α chosen. In the F2010 simulations

described in Sect. 2.2, we fix εreg = 0.1 and α= 0.016, which allows convergence of the iterations for all meteorological

conditions encountered in the 10-year model run according to the convergence criteria discussed next in Sect. 3.5.320

3.5 Number of iterations and stopping criterion

Before presenting the full algorithm for numerically solving the regularized turbulent flux parameterization in Eq. (C3), we

discuss convergence criteria for terminating the iterative process. The default E3SM iteration described in Alg. 1 takes two it-
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Figure 6. The iterate (θ∗)n and its relative residual |f
(
(u∗)n,(u10N)n,(θ∗)n,(q∗)n

)
−(θ∗)n|/|(θ∗)n+ϵ3|when approximating the solution

of the regularized turbulent flux parameterization in Eq. (C3) with conditions described by Eq. (20). The value of the regularization parameter

is εreg = 0.1. The iterates are described by Alg. 2 with damping parameters chosen from α ∈ {1,0.5,0.1}.

erations and returns the second iterate as the approximation to the scaling parameters. Standard practice in numerical methods

is to have iterative methods, such as the fixed-point iteration, terminate when a convergence test is passed or after a maxi-325

mum number of iterations maxiter is reached (chosen to be orders of magnitude larger than is expected for the iteration to

converge).

We utilize the same relative residual as in Sect. 3.2, i.e. Eq. (19). Given the iterate xn = ((u∗)n,(u10N)n,(θ∗)n,(q∗)n)T , the

proposed convergence test is to check whether R(xn;ξ)< tol for a user-prescribed tolerance tol> 0. The full algorithm

for approximating the scaling parameters described by the turbulent flux parameterization in Eq. (C3) is given in Alg. 2. For330

the 10-year simulation SENS described in Sect. 2.5, we take tol= 10−4 and maxiter= 2× 106.

To demonstrate the efficacy of the regularized neutral exchange coefficient in removing oscillations in the iterate xn, we

perform an offline test on the same 10 years of daily instantaneous output from the CTRL simulation shown in Fig. 3, this time

using Alg. 2. The corresponding corner plot showing classifications of each data point as oscillatory or convergent is presented

in Fig. 7. We observe that all sets of meteorological conditions are now able to be driven to the desired residual error tolerance,335

from which we surmise that the regularization proposed in Sect. 3.3 is sufficient in addressing solution non-existence in the

Large and Pond parameterization.

3.6 Comments on computational cost

Finally, we briefly comment on the efficiency of the proposed Alg. 2 compared to the E3SMv2 default Alg. 1. One should not

generally expect to obtain a high level of accuracy in the scaling parameters (and hence, the turbulent fluxes as well) using340

the default two iterations described in Alg. 1. On the one hand, developers of E3SM and other ESMs might argue that the

level of accuracy achieved with two iterations is on par with the low level of accuracy associated with many other numerical

calculations of E3SM, for instance, first-order time integration and coupling methods (Wan et al., 2021, 2015). On the other

hand, recent explorations of more accurate time integration techniques for the resolved atmospheric dynamics (Vogl et al.,
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Figure 7. A corner plot showing the histograms and pairwise scatter plots of the variables U , ∆θ, and ∆q for both atmospheric conditions that

produce oscillatory, non-convergent iterations and those whose iteration converges to a solution in the regularized parameterization described

in Sect. 3.3. Histograms are normalized along the diagonal so that the heights of the bars for each group sum to the same value. The U , ∆θ,

and ∆q samples used here are 10 years of daily instantaneous output from the CTRL simulation. The classification (“converged” versus

“oscillatory”) was done in offline calculations using the regularized Alg. 2 with ε = 0.1, α = 0.016, and tol= 10−4. The corresponding

results without regularization can be found in Fig. 3.

Figure 8. A demonstration of Anderson acceleration to improve convergence of scaling parameters. (left) Behavior of the relative residual

R(xn;ξ) for approximating surface fluxes from the parameterization Eq. (C3) at a single location with maxiters= 100 and tol= 10−14.

(right) Average residual for meteorological conditions sampled across a year of data from the CTRL simulation vs. wall clock time. Individual

points correspond to fixed-point and Anderson acceleration iterations with maxiters= 2,5,10,100 and tol= 10−14.

16

https://doi.org/10.5194/egusphere-2025-5430
Preprint. Discussion started: 21 January 2026
c© Author(s) 2026. CC BY 4.0 License.



2019; Gardner et al., 2018) in conjunction with improvements to physics parameterizations and their coupling (Wan et al.,345

2024; Zhang et al., 2023b) in ESMs means that the relatively large approximation errors associated with Alg. 1 may start to

exceed errors in the other parts of E3SM in future versions of this ESM.

While Alg. 2 is usually (depending on the value of tol) more computationally expensive than the default E3SMv2 algorithm

since more than two iterations are usually required to reach a given tolerance, techniques for accelerating convergence of Alg. 2

are readily available. For example, Anderson acceleration (Anderson, 1965) updates the iteration by computing a linear com-350

bination of m previous iterates and, in many cases, converges faster than the standard fixed-point and Gauss-Seidel iterations.

Efficient implementations are available to Fortran and C++ codes via software libraries such as SUNDIALS (Hindmarsh et al.,

2005; Gardner et al., 2022). To demonstrate the potential benefits of Anderson acceleration, we solve the equations underlying

the regularized turbulent flux parameterization Eq. (C3) in offline calculations using Earth system conditions sampled from

the CTRL simulation every five days over the course of one year. Numerical solution of the scaling parameter equations is355

done using either (i) Anderson acceleration from SUNDIALS with m= 1 which computes the update xn+1 using the previous

iterates xn and xn−1, or (ii) the standard fixed-point iteration Eq. (16) which has the same computational cost per iteration

as the default E3SM iteration in Alg. 1 (Fig. 8). We observe that Anderson acceleration converges rapidly and also results in

significant speed-up in wall clock time in comparison to the standard fixed-point iteration. For instance, Anderson acceleration

attains an average relative residual of 10−4 more than three times faster than the standard fixed-point iteration.360

4 Analyzing and addressing uniqueness issues for the scaling parameters

With some confidence that a solution now exists to the regularized Large and Pond parameterization described in Sect. 3.3 and

its corresponding algorithm in Alg. 2, we now turn our attention to the issue of solution uniqueness. If the underlying equations

have more than one solution, then the iterative method described in Alg. 2 may converge to different solutions depending on

the initial guess.365

4.1 Unbounded Obukhov stability parameter produces unintended solution

In this subsection, we demonstrate that the principal driver of solution non-uniqueness is a singularity in the Obukhov stability

parameter ζ defined in Eqs. (7) and (11). In particular, due to the presence of u∗ in its denominator, ζ is undefined when u∗ = 0.

Likewise, the function f describing the right-hand side of Eq. (13) depends on ζ and is also undefined when u∗ = 0. From a

practical perspective, this also means that small values of u∗ may potentially cause ζ to take on extremely large magnitudes.370

The remainder of this section shall be divided into two parts: in Sect. 4.1.1 we provide a mathematical description of expected

outcomes in the case when u∗ = 0, while in Sect. 4.1.2 we relate the mathematical analysis to the observed outcomes of

iterative methods such as those in Algs. 1 and 2 in light of the aforementioned undefined behavior.
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Algorithm 2 Regularized atmosphere-ocean iteration.

Input: Bulk variables ξ = (U,θa,θs,z,ρa, qa, qs)
T ; limiting parameter ζmax; damping parameter α ∈ (0,1]; tolerance tol; maximum

iterations maxiter.

Output: Approximation (u∗)n, (u10N)n, (θ∗)n, and (q∗)n to the turbulent flux parameterization Eq. (C3).

1: function REGULARIZEDITERATION(ξ, ζmax, α, tol, maxiter)

2: Set n = 0.

3: Compute the initial estimate based on neutral conditions:

(u10N)n = U ,

(u∗)n =
√

CDN(U) ·U ,

(θ∗)n = ĈHN(∆θ) ·∆θ ,

(q∗)n = ĈEN ·∆q.

4: Compute limited stability parameter ζ̃0 = ζ̃
(
(u∗)0,(θ∗)0,(q∗)0;ζmax

)
according to Eq. (17).

5: whileR
(
(u∗)n,(u10N)n,(θ∗)n,(q∗)n;ξ

)
> tol do

6: n← n +1.

7: Update 10-m neutral wind speed:

(u10N)n = α
ĈD

(
(u10N)n−1, ζ̃n−1;ξ

)
√

CDN

(
(u10N)n−1

) ·U +(1−α) · (u10N)n−1.

8: Apply updated 10-m neutral wind speed to simultaneously update scaling parameters using regularized coefficients:
(u∗)n

(θ∗)n

(q∗)n

 = α


ĈD

(
(u10N)n, ζ̃n−1;ξ

)
·U

Ĉ
(0)
H,εreg

(
(u10N)n, ζ̃n−1;ξ

)
·∆θ

ĈE

(
(u10N)n, ζ̃n−1;ξ

)
·∆q

+(1−α)


(u∗)n−1

(θ∗)n−1

(q∗)n−1

 .

9: Update stability parameter ζ̃n = ζ̃
(
(u∗)n,(θ∗)n,(q∗)n;ζmax

)
.

10: if n > maxiter then

11: ERROR(“Maximum iterations reached without achieving desired tolerance.”)

12: end if

13: end while

14: return (u∗)n,(θ∗)n,(q∗)n.

4.1.1 Theoretical analysis of iterate convergence to wrong solution

While ζ is undefined whenever u∗ = 0, we may still gain understanding of the behavior of ζ by examining the limiting behavior375

as u∗→ 0. It is important to note that ζ is also a function of θ∗ and q∗, whose values will also vary throughout the application
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of an iterative method. For reasons that will become apparent in Sect. 4.1.2, we shall consider the multivariable limiting

behavior lim(u∗,θ∗,q∗)→(0,0,0) ζ(u∗,θ∗, q∗), where, in addition to u∗→ 0, we are also interested in the case when θ∗ and q∗

simultaneously approach 0.

In what may seem like a purely academic exercise at first, we demonstrate that the limiting behavior of ζ is different depend-380

ing on the trajectory taken towards (u∗,θ∗, q∗) = (0,0,0). We will express u∗, θ∗, and q∗ using a dummy variable s so that the

limiting behavior may be examined as s→ 0 instead — that is, lim(u∗,θ∗,q∗)→(0,0,0) ζ(u∗,θ∗, q∗) = lims→0 ζ(u∗(s),θ∗(s), q∗(s)).

A basic result from multivariable calculus states that the limit of a multivariable function as its input variables approach a

particular point exists if and only if the function approaches the same value along every trajectory that approaches the particular

point. We show here that it is possible to construct two trajectories along which ζ converges to different values, and explain the385

expected implication of each case on the turbulent flux algorithms 1 and 2.

1. The first trajectory is described by u∗(s) = s3/2, θ∗(s) = s, and q∗(s) = s. By evaluating the limit along this trajec-

tory using Eq. (7) and the definition of the trajectory, we can see that lims→0 ζ(u∗(s),θ∗(s), q∗(s)) = +∞. Whenever

ζ→+∞, we can see by inspection of the stability functions ψ(m,h,q) (see Eqs. (A4)-(A5)) and exchange coefficients

Ĉ(D,H,E) (see Eqs. (A1)-(A3) and their regularized variants in Eq. (A11)) that the right-hand side of the turbulent flux390

parameterization Eq. (13) approaches 0. In other words, along this kind of trajectory, the residual of Eq. (13) decays to 0.

We expect that numerically, (u∗,θ∗, q∗) = (0,0,0) serves as a secondary “solution” that iterative methods may converge

to if they approach a trajectory such as the one described here.

2. The second trajectory is described by u∗(s) = s, θ∗(s) = s3, and q∗(s) = s3, from which we see that

lims→0 ζ(u∗(s),θ∗(s), q∗(s)) = 0. In other words, the right-hand side of Eq. (13) is finite and nonzero, and the residual395

of Eq. (13) does not decay to 0. This case demonstrates the existence of trajectories along which iterative methods will

not converge to (u∗,θ∗, q∗) = (0,0,0).

In summary, the Obukhov stability parameter may become unbounded due to division by u∗ in its definition. When iterations

produced by iterative methods fall along certain trajectories, we expect that they may converge to (u∗,θ∗, q∗) = (0,0,0), which

serves as a secondary “solution” to Eq. (13). However, according to the multivariate calculus result stated earlier, because ζ400

can approach distinct values (e.g., +∞ and 0) when different trajectories are taken towards (u∗,θ∗, q∗) = (0,0,0), the point

(u∗,θ∗, q∗) = (0,0,0) is not an actual solution to Eq. (13), hence it is problematic that an iterative method may converge to this

point. Furthermore, it is worth noting that the danger of converging to (u∗,θ∗, q∗) = (0,0,0) can be seen from the continuous

formulation of the parameterization; hence, using a different numerical algorithm might not automatically avoid this danger

unless deliberate design features are introduced, as we discuss below in Sect. 4.4.405

4.1.2 Numerical example of convergence to unintended solution

We now use offline calculations to demonstrate that certain meteorological conditions indeed result in the situation of iterative

methods being able to converge to two different solutions depending on how the initial iterate is chosen. An example of such
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Figure 9. Progress of approximating the scaling parameters u∗, θ∗, and q∗ and 10-m wind speed, u10N, in Alg. 2 with and without stability

limiter. Each dashed line represents an application of Algorithm 2 with an initial guess drawn randomly from a uniform distribution. Without

the limiter, the iterations converge to one of two solutions depending on the initial guess: a trivial one at (u∗,u10N,θ∗, q∗) = (0,0,0,0) and a

non-trivial solution (u∗,u10N,θ∗, q∗) = (0.0288,0.303,−0.000142,0.0281). When the limiter is applied with ζmax = 10, as is currently done

in E3SM, the trivial solution at (u∗,u10N,θ∗, q∗) = (0,0,0,0) is shifted to (u∗,u10N,θ∗, q∗) = (0.00393,0.00959,−3.28×10−5,0.00572).

meteorological conditions for which it is possible that the iterates
(
(u∗)n,(u10N)n,(θ∗)n,(q∗)n

)
→ (0,0,0,0) is

U = 0.1 m/s, z = 13.43 m, θs = 300.04 K, θa = 301.78 K, qa = 16.87 g/kg. (22)410

We apply Alg. 2 100 times without the stability limiter (i.e. ζ̃ is replaced by ζ in Alg. 2), each with a randomized initial

iterate, and plot the scaling parameters at each iteration of the algorithm (Fig. 9). We observe convergence of the iterates to two

distinct points for this example — one at (u∗,u10N,θ∗, q∗) = (0,0,0,0) corresponding to the case when ζ→±∞ and another

at (u∗,u10N,θ∗, q∗) = (0.0288,0.303,0.0281,−0.000142). Such behavior shows the importance of preventing ζ→±∞ for

the regularized turbulent flux parameterization Eq. (C3), and it supports the idea of limiting ζ in general, although we shall415

elaborate in the next subsection that the limiter needs to be implemented in a careful way in order to be effective and reliable.

We also note that while this issue also persists for the default unregularized parameterization Eq. (13), the experiment presented

in Fig. 9 is performed with the regularized turbulent flux parameterization in order to ensure that issues with solution existence

are not encountered.
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4.2 Role of Obukhov stability limiter in solution non-uniqueness420

We now turn our attention to the limited stability parameter ζ̃ and address its role in determining uniqueness of the surface

fluxes. Recall that E3SM utilizes the stability limiter (i.e., Eq. 17) in the implementation of Alg. 1 to prevent the magnitude of ζ

from growing to physically unreasonable values but also prevents the scenario where ζ→±∞. To the best of our knowledge,

no systematic analysis has been carried out to determine the effect of the limiter (17) on convergence of Alg. 1.

One might expect that since the limiter removes the possibility that ζ→±∞, iterative methods should not be able to con-425

verge to (u∗,u10N,θ∗, q∗) = (0,0,0,0), and Eq. (C3) should have a unique solution when the limiter is applied. However,

we demonstrate that while the limiter does prevent convergence of the iterates to (u∗,u10N,θ∗, q∗) = (0,0,0,0), it introduces

a shifted “solution” to the system. To see this, we consider the same example described by Eq. (22) but apply the limiter

(17) with ζmax = 10 as in E3SMv2 (Fig. 9). We observe that the “solution” at (u∗,u10N,θ∗, q∗) = (0,0,0,0) is shifted to

(u∗,u10N,θ∗, q∗) = (0.00393,0.00959,−3.28× 10−5,0.00572) and in fact, the regularized turbulent flux parameterization de-430

scribed by Eq. (C3) has two solutions when the stability limiter is applied.

4.3 Exploring the solution space via bifurcation diagrams

More generally, the value of the limiting parameter ζmax has a strong effect on the number of solutions of Eq. (C3). When an

analytic solution of a given equation is known, a systematic analysis of the effect of a model parameter on uniqueness of the

solution is straightforward. For instance, one can express the solution as a function of the parameter of interest and generate435

a bifurcation diagram (Chow and Hale, 2012) which provides qualitative information on the solution for each value of the

parameter. Given that an analytic solution of Eq. (C3) is not known, an approximate bifurcation diagram may still be generated

by performing several runs of Alg. 2 for a range of different initial guesses and observing how many distinct solutions the

algorithm converges to for different values of ζmax.

With E3SM’s default of ζmax = 10 in mind, we examined a large number of meteorological conditions in the CTRL simula-440

tion while varying ζmax over a range of values from 10−1 to 104. Based on this analysis, we observed four distinct scenarios

regarding solution uniqueness. These scenarios are illustrated in Fig. 10 alongside examples of the meteorological conditions

producing those scenarios. An in-depth explanation of these scenarios is provided below.

1. There is exactly one solution which does not depend on ζmax.
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Figure 10. Four different possible scenarios arising from use of limiters on the Obkuhov stability parameter. Detailed discussions can be

found in Sect. 4.3.
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2. There is exactly one solution which varies with ζmax until a turning point after which the solution is constant with ζmax.445

When the solution varies with ζmax, it is described implicitly by the manifold on which |ζ|= ζmax :





u∗(ζmax) = ĈD

(
u10N(ζmax), ζmax · sgn(∆θ);ξ

)
·U

u10N(ζmax) =
ĈD

(
u10N(ζmax), ζmax · sgn(∆θ);ξ

)

√
CDN

(
u10N(ζmax)

) U

θ∗(ζmax) = Ĉ
(k)
H,εreg

(
u10N(ζmax), ζmax · sgn(∆θ));ξ

)
·∆θ

q∗(ζmax) = ĈE

(
u10N(ζmax), ζmax · sgn(∆θ);ξ

)
∆q.

(23)

3. There is exactly one solution which depends on ζmax. This solution is given implicitly by Eq. (23).

4. For ζmax within a certain range, there are exactly two solutions, one of which does not vary with ζmax and one of which

varies with ζmax. The latter is described by Eq. (23). For ζmax outside of this range, there is a unique solution which may450

or may not vary with ζmax. The value of ζmax at which the number of possible solutions transitions from one to two is

known as a bifurcation point.

The first scenario is ideal in the sense that the limiter has no effect on the solution. While a rigorous theory establishing

precisely when this scenario occurs is beyond the mathematical techniques described in this paper, we suspect that this scenario

may occur when the meteorological conditions prevent the stability parameter ζ from taking on large values during the iteration.455

The second scenario illustrates that the limiter must be chosen carefully in order to ensure that the obtained solution exhibits

desirable behavior, namely that the obtained solution should not vary with the value of ζmax. When ζmax ≳ 15, we observe that

the solution is constant with respect to ζmax. It is this desired solution which a numerical method should converge to. On the

other hand, if ζmax ≲ 15, we observe the undesired behavior in which the solution varies with the value of ζmax. Notably, the

current value of ζmax = 10 in E3SM is too small in that it would result in obtaining the undesired solution.460

The third scenario in which the only solution depends on the value of ζmax suggests that there is no desired solution to the

turbulent flux parameterization (C3). In particular, the only solution is the shifted trivial “solution” (c.f. Fig. 9) which suggests

that the Large and Pond parameterization is not valid for the range of meteorological conditions that produce this behavior.

For instance, it is well known that in extremely stable conditions as ζ→∞, the assumption of constant surface fluxes with

respect to altitude is violated (Optis et al., 2016) and the Monin-Obukhov Similarity Theory that underpins the derivation of465

the parameterization is no longer valid.

The fourth scenario, much like the second, illustrates the importance of correctly selecting ζmax to obtain the physically

relevant solution. When ζmax ≳ 0.8, there are two solutions to the turbulent flux parameterization Eq. (C3), and Alg. 2 may

converge to either solution depending on the initial guess. For the small interval 0.5 ≲ ζmax ≲ 0.8, only the desired solution

that does not vary with ζmax is obtained, and this finding suggests that the value of ζmax should fall in this interval to guarantee470

convergence of Alg. 2 to the desired solution.
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Lastly, the issue of the limiting parameter value dictating the number of possible solutions to the underlying equations of the

Large and Pond turbulent flux parameterization is likely to cause problems with solution uniqueness in other parameterizations

as well. For instance, the alternate University of Arizona parameterization (Zeng et al., 1998) was implemented into E3SMv2

as a possible alternative to the Large and Pond parameterization with the same limiters described by Eq. (17). The COAREv3475

parameterization (Fairall et al., 2003), on the other hand, does not utilize limiters on the stability parameter. However, when

stability limiters are not applied, one may view this as the asymptotic case when ζmax →∞ in Fig. 11; in this case, it is still

possible for the underlying equations to have two solutions (c.f. Fig. 9) although we have not explored this possibility for any

parameterizations aside from that of Large and Pond.

4.4 Adaptive selection of limiting parameters480

The preceding discussions in Sect. 4.2 and Sect. 4.3 suggests that there is no single value of ζmax that will ensure the existence of

only one solution to the turbulent flux parameterization for all meteorological conditions. For instance, for the meteorological

conditions described in the fourth scenario in Fig. 10, a value of ζmax = 0.6 is appropriate but would result in obtaining an

undesired solution if the same value is used for the meteorological conditions described in the second scenario in Fig. 10.

Instead, we propose utilizing an adaptive stability limiter in which the value of ζmax is permitted to vary based on the485

meteorological conditions. The key idea is to begin with an initial maximum value of ζmax and apply Alg. 2 to obtain a

Figure 11. An example of the adaptive stability limiting process. For the initial limiter, two solutions exist — the desired solution which

is constant in ζmax (orange curve) and the second, undesired solution that lies on the manifold described by |ζ̃|= ζmax (blue curve). If the

desired solution is obtained by Alg. 3, there is no need to adjust the limiting parameter ζmax. Otherwise, we incrementally decrease ζmax

until a solution satisfying |ζ̃| ̸= ζmax is reached. In this example, the process is guaranteed to terminate once ζmax falls in the approximate

interval (0.5,0.8). In general, if the process terminates without finding the desired solution, e.g. because it does not exist (see third scenario

in Fig. 10), then we default to the solution obtained from the default E3SM limiting parameter value of ζmax = 10. A more detailed discussion

may be found in Sect. 4.4.
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Algorithm 3 Modified atmosphere-ocean iteration for uniqueness.

Input: Bulk variables ξ = (U,θa,θs,z,ρa, qa, qs)
T ; damping parameter α ∈ (0,1]; initial limiting parameter ζmax; limiter increment

ζincr > 0; tolerance tol; maximum iterations maxiter.

Output: Approximation (u∗)n, (u10N)n, (θ∗)n, and (q∗)n to the turbulent flux parameterization Eq. (C3) using adaptive stability

limiter.

1: function REGULARIZEDUNIQUEITERATION(ξ, ζmax, ζincr, α, tol, maxiter)

2: Set ζ̃n = ζmax.

3: while ζ̃n = ζmax and ζmax > 0 do

4: Increment ζmax←max{ζmax− ζincr,0}.
5: Call [(u∗)n, (θ∗)n, (q∗)n] = REGULARIZEDITERATION(ξ, ζmax, α, tol, maxiter).

6: Compute limited stability parameter ζ̃n = ζ̃
(
(u∗)n,(θ∗)n,(q∗)n;ζmax

)
according to Eq. (17).

7: end while

8: if ζmax = 0 then

9: Set ζmax = 10.

10: Call [(u∗)n, (θ∗)n, (q∗)n] = REGULARIZEDITERATION(ξ, ζmax, α, tol, maxiter).

11: end if

12: return (u∗)n,(θ∗)n,(q∗)n.

first approximation of the scaling parameters u∗, θ∗, and q∗. If the value of the stability parameter associated with scaling

parameters, ζ̃(u∗,θ∗, q∗;ζmax), is equal to ζmax, we decrease the value of ζmax and apply Alg. 2 until scaling parameters are

obtained for which ζ̃(u∗,θ∗, q∗;ζmax) ̸= ζmax. A visualization of this procedure is provided in Fig. 11. The complete turbulent

flux algorithm with adaptive stability limiter is presented in Alg. 3.490

When there is no desired solution, e.g. the third scenario in Fig. 10, we elect to leave the limiting parameter at its default

value of ζmax = 10. As previously mentioned, this scenario suggests that the underlying assumptions for which the turbulent

flux parameterization has been developed have been violated. This issue is a parameterization formulation problem that is

beyond the scope of the present paper, which focuses on equation solvability and solution convergence.

The computational cost of Algorithm 3 is dependent on the initial value of ζmax. An exploration of the sensitivity of the495

overall Earth system to the choice of ζmax is provided in Appendix D. We only note here that the choice ζmax = 200 appears to

be sufficient for Algorithm 3 to return scaling parameters satisfying |ζ| ̸= ζmax when possible.

4.5 Occurrence of undesired solutions in E3SM

The preceding discussion highlights the issues associated with the stability limiter (17). In particular, current implementations

of ocean–atmosphere turbulent flux algorithms may potentially converge to undesired solutions on the manifold |ζ|= ζmax.500

To better understand the physical conditions producing |ζ|= ζmax when ζmax is fixed at E3SMv2’s value of 10, we again

consider ten years of data from the CTRL simulation. We apply the default Alg. 1 with 100 iterations instead of 2 iterations

and categorize each spatial location based on the value of ζ. Fig. 12 shows the distribution of meteorological conditions
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Figure 12. A corner plot similar to Fig. 3 but comparing atmospheric conditions that yield |ζ̃|= ζmax and those that yield |ζ̃| ̸= ζmax, with

ζmax fixed at E3SMv2’s value of 10. Further details can be found in Sect. 4.5.

when |ζ|= ζmax = 10 and when |ζ| ̸= ζmax = 10. The clearest distinction between the two cases is that locations for which

|ζ|= ζmax = 10 have relatively small wind speeds of less than 2 m s−1. Such conditions are most frequent around the Equator,505

especially across the Indian Ocean, as shown in Fig. 13.

5 Climatological impact on E3SM simulations

We perform a pair of 10-year simulations — CTRL and SENS described in Sect. 2.5 — to investigate the sensitivity of E3SM

to the proposed changes in Alg. 3. For SENS, a tolerance of tol= 10−4 is used for the stopping criterion with a maximum

permissible number of iterations maxiter= 2× 106; the value of maxiter is arbitrarily chosen to be significantly larger510

than expected to reach the specified tolerance. A C0 regularization is used to enforce continuity of the exchange coefficient

ĈHN with εreg = 0.1. A damping value of α= 0.016 is employed in the iteration. Lastly, an initial stability limiting parameter

of ζmax = 200 is used with an increment of ζincr = 0.25 in the adaptive limiting process.

When analyzing the simulation results, one must distinguish impacts of the regularization and the revisions in the numer-

ical algorithm from noise caused by natural variability and other sources of uncertainty in the model. To determine whether515

differences in the 10-year mean fluxes are statistically significant, a one-sample Student’s t-test is performed using monthly

mean output data. Since the data are serially correlated, we utilize a revised t-test in which the t statistic is scaled by an ef-
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Figure 13. Percentage of days for which |ζ̃|= ζmax = 10 in ten years of daily instantaneous output from the CTRL simulation. The condition

|ζ̃|= ζmax = 10 indicates that the surface fluxes lie on the manifold of solutions to (C3) which would vary with ζmax. Different panels

correspond to different seasons. Gray shading indicates land, and white areas are sea ice. Further details can be found in Sect. 4.5.

fective sample size (Zwiers and von Storch, 1995). A significance level of 0.05 is utilized to determine when the mean of the

differences is likely to be non-zero.

The largest effects on turbulent fluxes occur in DJF (Fig. 14) and JJA (Fig. 15), while the effects in other months are520

substantially smaller. Statistically significant latent heat flux differences exceeding 10 W m−2 in magnitude and sensible heat

flux differences exceeding 6 W m−2 in magnitude can be found in several regions, mainly over the oceans of the winter

hemisphere including off of the East Asian coast, over the Gulf of Alaska, and over the Labrador Sea in DJF and over the

Southern Ocean in JJA. Smaller but still statistically significant differences in latent heat fluxes are found in tropical and

subtropical areas. The changes in atmospheric circulation, temperature, and humidity are small in terms of 10-year averages,525

but we note that in the future, it will be useful to performed fully coupled Earth system simulations to assess whether larger

impacts will be seen when the atmosphere and ocean components can interact with each other.

We also performed additional sensitivity experiments using regularization parameters larger or smaller than εreg = 0.1. These

results can be found in Appendix C, Fig. C2. Within the tested range of εreg = 0.015 to 0.5, the overall results from E3SM, in

terms of 10-year averages, are not substantially different from what is presented here in Figs. 14 and 15.530
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Figure 14. The 10-year mean latent heat flux (left), sensible heat flux (middle), and wind stress (right) for the months of DJF (upper row), as

well as the difference between the CTRL and SENS simulations (bottom row) in which statistically insignificant differences are masked out

in white.

Figure 15. Same as Fig. 14 except for the months of JJA.
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Table 1. Summary of well-posedness findings in the turbulent flux parameterization in E3SMv2 based on Large and Pond (1981) and Large

and Pond (1982).

Well-posedness issues

Issue Solution non-existence Solution non-uniqueness

Cause Discontinuous neutral heat exchange coef-

ficient ĈHN:

ĈHN(ζ) =

0.0327, ζ < 0 (unstable)

0.0180, ζ ⩾ 0 (stable).

Under certain conditions, the discontinuity

in ĈHN causes the system x = f(x;ξ) to

have no solutions, i.e. the curves x and

f(x;ξ) do not intersect.

Ad hoc Obukhov length limiter:

ζ̃ = min(|ζ|, ζmax) · sgn(ζ).

Under certain conditions, when iteration

“rides” the limiting value ζmax, the curves

x and f(x;ξ) may have two intersections.

Primary diagnostic Oscillatory iteration which can be tracked

with proper residual computation after each

iteration.

Obukhov stability parameter equal to lim-

iting value ζmax, i.e. |ζ̃|= ζmax. Can be

tracked by checking magnitude of ζ̃ of nu-

merical solution.

Associated meteorolog-

ical conditions

Slightly stable atmospheric stratification

(0 K ≲ ∆θ ≲ 0.7 K) occurring mostly in

mid-latitude oceans and Arabian Sea

Very low wind speed (0 m/s ≲ U ≲ 2 m/s)

occurring mostly in equatorial regions.

Remedy Regularization of CHN along with proper

convergence testing after each iteration and

throwing error if residual does not decrease.

Adaptive stability limiter which searches

values of ζmax until one is found which pro-

duces a solution with |ζ̃| ̸= ζmax.

6 Conclusions

In this study, we have analyzed the solvability of the underlying equations of an ocean–atmosphere turbulent flux parameteri-

zation that is based on measurements discussed in Large and Pond (1981) and Large and Pond (1982) and is used by a number

of ESMs, e.g., E3SM, CESM, TaiESM, NorESM, CMCC-ESM2, and RASM. Our analysis has shown that there are certain

meteorological conditions, mostly encountered over the mid-latitude oceans under stable conditions, for which the turbulent535

flux algorithm implemented in E3SMv2 is unable to converge to a solution. This non-convergence manifests as oscillations of

the scaling parameter iterates and results in a rather large residual error (> 50% on average). The likely causal factor of non-

convergence is lack of solution existence in the underlying continuum equations. Moreover, we have shown that this turbulent

flux algorithm does not always yield unique surface fluxes and the use of an ad hoc limiter on the Monin-Obukhov length has
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a strong influence on the number of solutions. Meteorological conditions that produce non-unique solutions are found mostly540

in regions with low wind speed near the Equator.

We have introduced two modifications to the Large and Pond parameterization in order to enforce both existence and unique-

ness of the computed surface fluxes. These modifications include (i) regularization of the discontinuous neutral exchange co-

efficient for heat, which resolves issues with oscillating surface fluxes corresponding to large residual errors, and (ii) adaptive

selection of the limiter on the Monin-Obukhov to eliminate unintended solutions when the numerical solutions are not unique.545

Our analysis also points to the need to exercise caution when applying turbulent flux algorithms globally under conditions for

which the underlying assumptions of the parameterization are violated. For instance, in the extreme stability limit as ζ→+∞,

the assumptions of Monin-Obukhov Similarity Theory are violated, suggesting that the Large and Pond formulation (or any

parameterization based on Monin-Obukhov Similarity Theory) should not be utilized under these conditions. A summary of

these issues and their remedies is provided in Table. 1.550

Sensitivity of E3SMv2’s mean climate to these issues of well-posedness was investigated by comparing 10-year simulations

using the default formulation and algorithm (see Eq. 14, Appendix A, and Alg. 1) as well as the regularized formulation and

revised algorithm (Sect. 3.3, Appendix C, and Alg. 3). The modifications lead to statistically significant differences in the

10-year mean latent and sensible heat fluxes compared to those of the default model, exceeding 10 W m−2 and 6 W m−2 in

magnitudes, respectively, in various regions.555

While the impacts of the revised flux algorithm on the simulated 10-year mean atmospheric circulation, temperature, and

humidity are relatively small, it will be worth performing fully coupled Earth system simulations in the future to assess whether

there will be larger impacts when the atmosphere and ocean components of E3SM can interact with each other. In addition, the

analysis in this study demonstrates a strategy for future investigations of other ocean–atmosphere flux parameterization options

in E3SM, such as the Coupled Ocean–Atmosphere Response Experiment (COARE, Fairall et al., 2003) and the University of560

Arizona (UA, Zeng et al., 1998) parameterizations. Furthermore, turbulent flux algorithms over sea ice and land share many

similarities with the ocean–atmosphere algorithms since they too are based on MOST. They may also include discontinuous

exchange coefficients in certain scenarios as well as ad hoc use of stability limiters as seen here in the ocean–atmosphere

algorithm, which will be subjects of future research.

Beyond the topic of turbulent flux parameterizations at the Earth’s surface, it is worth noting that many parameterization565

codes include discontinuities to distinguish between regimes, and employ limiters to avoid singularities or constrain values to

physically plausible ranges. Model developers who focus primarily on the simulated physics may not always be aware that

these discontinuities and limiters can significantly influence simulation outcomes, or that in mathematics and computational

science, well-established techniques and concepts exist to address the underlying needs for such constructs, for instance poly-

nomial regularization and bifurcation analysis in this paper. Some of these methods are straightforward to implement and570

need not incur prohibitive computational costs, as demonstrated in this study. Raising awareness of well-posedness issues in

parameterizations—and of the computational techniques available to address them—is therefore a key contribution of this

paper, perhaps as important as the specific improvements made to the ocean–atmosphere turbulent flux parameterization in

E3SMv2.
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Appendix A: Ocean–atmosphere turbulent flux parameterization in E3SMv2575

In this section, we first clarify the expression of the exchange coefficients C(D,H,E) (Sect. A1) and then describe their adjustment

to measurement height and stability which is utilized in the E3SMv2 code (Sect. A2).

A1 Exchange coefficients

The parameterization used in E3SMv2 is based on the work of Large and Pond (1981) and Large and Pond (1982) which

provide expressions for CD, CH and CE in terms of neutral exchange coefficients CDN, CHN, CEN (see Eq. (15) in Large and580

Pond (1981) and Eq. (10) in Large and Pond (1982)). These expressions are as follows:

CD =
CDN (u10N)

(
1 +

√
CDN(u10N)

κ

[
ln

(
z

zref

)
−ψm(ζ)

])2 , (A1)

CH =
CHN (u10N, ζ)

√
CD

CDN(u10N)(
1 + CHN(u10N,ζ)

κ
√

CDN(u10N)

[
ln

(
z

zref

)
−ψh(ζ)

]) , (A2)

CE =
CEN(u10N)

√
CD

CDN(u10N)(
1 + CEN(u10N)

κ
√

CDN(u10N)

[
ln

(
z

zref

)
−ψq(ζ)

]) . (A3)

Here, zref = 10 m is the reference height. The dimensionless stability functions ψm, ψh, and ψq are defined in terms of the585

Obukhov stability parameter ζ and are as follows(Large, 2006, Eq. 20):

ψm(ζ) =





2ln
(1 +χ(ζ)

2

)
+ ln

(
1 +χ(ζ)2

2

)
− 2tan−1χ(ζ) +

π

2
, ζ < 0

−5ζ, ζ ⩾ 0 ,
(A4)

ψh(ζ) = ψq(ζ) =





ln
(

1 +χ(ζ)2

2

)
, ζ < 0

−5ζ, ζ ⩾ 0 ,
(A5)

where χ(ζ) = |1− 16ζ|1/4 (see Eq. (20) in Large (2006) but note that the parentheses therein need to be replaced by an

absolute value sign). The stability functions ψm, ψh, and ψq are continuous at ζ = 0 despite their piecewise definitions. The590

neutral exchange coefficients are defined as follows.

– For momentum (Large, 2006, Eq. (34)),

CDN(u10N) =
0.0027
u10N

+ 0.000142 +0.0000764u10N. (A6)
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– For heat (Large and Pond, 1982, Eq. (23)),

CHN(u10N, ζ) =





√
CDN(u10N) · 0.0327, if ζ < 0

√
CDN(u10N) · 0.018, if ζ ⩾ 0 .

(A7)595

– For moisture (Large and Pond, 1982, Eq. (24))),

CEN(u10N) =
√
CDN(u10N) · 0.0346 . (A8)

We see from Eq. (A1)-(A3) that the exchange coefficients are functions of u10N, ζ, and z (represented by the bulk meteorological

variables ξ), i.e.,

C(D,H,E) = C(D,H,E) (u10N, ζ;ξ) . (A9)600

A2 Nonlinear equation solved in E3SMv2

Neglecting wind gustiness (i.e., assuming S = U ) and combining Eqs. (4)-(6) with Eqs. (8)-(10) to eliminate the eddy covari-

ances, we obtain

u2
∗

U2
= CD ,

θ∗
∆θ

= CH
U

u∗
,

q∗
∆q

= CE
U

u∗
. (A10)

We introduce the new set of symbols Ĉ(D,H,E) to denote the adjusted exchange coefficients which are defined by605

ĈD :=
u∗
U

=
√
CD, ĈH := CH

u∗
U

=
CH√
CD

, ĈE := CE
u∗
U

=
CE√
CD

, (A11)

and write Eq. (A10) as

u∗ = ĈD U , θ∗ = ĈH∆θ , q∗ = ĈE∆q . (A12)

The definitions of Ĉ(D,H,E) in Eq. (A11) may be expanded using Eqs. (A1)-(A3) to obtain

ĈD =

√
CDN(u10N)

1 +

√
CDN(u10N)

κ

[
ln

(
z

zref

)
−ψm

(
ζ
)] ,

ĈH =
ĈHN(ζ)

1 +
ĈHN(ζ)
κ

[
ln

( z

zref

)
−ψh

(
ζ
)] ,

ĈE =
ĈEN

1 +
ĈEN

κ

[
ln

(
z

zref

)
−ψq

(
ζ
)] ,

(A13)610
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where the adjusted neutral exchange coefficients ĈHN and ĈEN no longer depend on the neutral 10 m wind speed and are given

by

ĈHN(ζ) =
CHN(u10N, ζ)√
CDN(u10N)

=





0.0327, ζ < 0

0.018, ζ ⩾ 0
, ĈEN =

CEN(u10N)√
CDN(u10N)

= 0.0346. (A14)

Finally, the neutral 10 m wind speed is itself a function of the friction velocity u∗ and CDN and is given by the nonlinear

equation615

u10N =
u∗√

CDN(u10N)
. (A15)

Eq. (A15) together with Eq. (A12) constitutes the nonlinear system of equations as implemented in E3SMv2.

Appendix B: Discontinuity and solution existence

Discontinuities in the neutral exchange coefficient CHN can cause Eq. (13) to have no solutions. However, the presence of

the discontinuity is not in itself a guarantee of solution non-existence. Fig. B1 shows two possible scenarios with abstract620

Figure B1. A graphical visualization of the existence or non-existence of a solution to the Large and Pond turbulent flux parameterization

equations (13) due to the discontinuity in the neutral heat exchange coefficient ĈHN. We focus on the third equation of (15) which contains

the discontinuity and may be written as θ∗ = f3(x).
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illustrations in one dimension to demonstrate when the discontinuity causes solution non-existence. Based on offline analysis

of the 10-year CTRL simulation described in Sect. 2.5, we are able to link each of the scenarios in Fig. B1 to different stability

regimes in the atmosphere. In particular, it appears (see Fig. 3) that the discontinuity only causes solution non-existence under

mildly stable atmospheric conditions while unstable conditions as well as stable conditions with ∆θ > 0.7 do not pose any

issues to solution existence.625

Appendix C: Regularization of the neutral heat exchange coefficient

The discontinuous neutral heat exchange coefficient ĈHN is replaced by the regularized coefficient

Ĉ
(k)
HN,εreg

(ζ) :=





0.0327, ζ ⩽−εreg

p(k)
εreg

(ζ), −εreg < ζ ⩽ εreg

0.018, ζ > εreg

.

The polynomial p(k)
εreg is given by

p(k)
εreg

(ζ) :=
2k+1∑

j=0

ajζ
j , εreg > 0, (C1)630

where the coefficients, aj , are obtained by enforcing the continuity conditions

p(k)
εreg

(−εreg) = 0.0327, p(k)
εreg

(εreg) = 0.018,
djpk,εreg

dζj

∣∣∣∣
ζ=±εreg

= 0, 1 ⩽ j ⩽ k,

which amounts to solving a system of 2k+ 2 linear equations.

For the fixed-point and nonlinear Gauss-Seidel iterations employed by E3SM, enforcing C0 continuity — i.e. continuity

of just Ĉ(k)
HN,εreg

— is enough to allow these methods to converge. However, we have provided the polynomial regularization635

for enforcing general continuity of up to order k derivatives Ĉ(k)
HN,εreg

since higher-order iterative methods such as Newton’s

method require C1 or even stronger continuity of the right-hand side function f . For completeness, we state the C0 and C1

polynomials below:

p(0)
εreg

(ζ) = 0.02535− 0.00735
εreg

ζ

p(1)
εreg

(ζ) = 0.02535− 0.011025
εreg

ζ +
0.003675
ε3reg

ζ3.640

With the regularized neutral heat exchange coefficient Ĉ(k)
HN,εreg

, we may define a corresponding regularized heat exchange

coefficient Ĉ(k)
H,εreg

:

Ĉ
(k)
H,εreg

(u10N, ζ;ξ) :=
Ĉ

(k)
HN,εreg

(ζ)

1 +
Ĉ

(k)
HN,εreg

(ζ)

κ

[( z

zref

)
−ψh(ζ)

] (C2)
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Figure C1. The iterate (θ∗)n and its relative residual when approximating the solution of the regularized turbulent flux parameterization

(C3) with conditions described by (20). The value of the regularization parameter is chosen from εreg ∈ {0.5,0.1,0.01,0.001} with damping

parameter α = εreg.

Finally, the regularized turbulent flux parameterization based on the Large and Pond (1982) parameterization is given by





u∗ = ĈD

(
u10N, ζ(u∗,θ∗, q∗);ξ

)
·U ,

u10N =
ĈD

(
u10N, ζ(u∗,θ∗, q∗);ξ

)

√
CDN(u10N)

·U ,

θ∗ = Ĉ
(k)
H,εreg

(
u10N, ζ(u∗,θ∗, q∗);ξ

)
·∆θ ,

q∗ = ĈE

(
u10N, ζ(u∗,θ∗, q∗);ξ

)
·∆q.

(C3)645

The effect of the regularization parameter εreg on the convergence of iterations is shown in Fig. C1 for the meteorological

conditions described by Eq. (20). As discussed in Sect. 3.3, the particular construction of the regularized neutral heat exchange

coefficient (21) means that smaller values of εreg introduce sharper gradients to f which require smaller values of the damping

parameter α to resolve in Alg. 2. Indeed, we observe nearly an order of magnitude increase in the number of iterations required

to reach a relative residual of 10−12 for each order of magnitude decrease in εreg.650

To determine the effect of the regularization parameter on the overall Earth system, we consider the differences between

the CTRL latent and sensible heat fluxes and wind stress, which are computed using the default E3SMv2 algorithm (Alg. 1)

without any modifications to address solution non-existence and non-uniqueness, and the corresponding fluxes obtained from a

sequence of simulations with εreg = 0.5,0.1,0.015 and a fixed ζmax = 200 (Alg. 3). The CTRL and regularized turbulent fluxes

are not substantially different as εreg is decreased. For this reason, we suggest taking εreg = 0.1 to capture the most significant655

changes resulting from the regularization.
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Figure C2. 10-year mean differences in latent heat flux (top row), sensible heat flux (middle row), and wind stress (bottom row) between

CTRL simulation and a sequence of simulations with εreg = 0.5,0.1,0.015 (from left to right). The initial adaptive stability limiter described

in Sect. 4.4 is fixed at ζmax = 20.
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Figure D1. 10-year mean differences in latent heat flux (top row), sensible heat flux (middle row), and wind stress (bottom row) between

CTRL simulation and a sequence of simulations with ζmax = 20,200,1000 (from left to right). The regularization parameter εreg is fixed at

0.5.

Appendix D: Selection of adaptive limiter parameter

The adaptive limiter described in Sect. 4.4 requires one to select an initial value of ζmax, which is then decreased if no suitable

solution is found that satisfies |ζ| ̸= ζmax. In certain scenarios, for instance the second panel of Fig. 10, the initial value of

ζmax must be sufficiently large in order for the system of equations describing the ocean–atmosphere turbulent fluxes to have a660

solution that does not vary with ζmax. If ζmax is chosen too small, the adaptive limiting algorithm may terminate without finding

a solution for which |ζ| ̸= ζmax. To this end, we perform a numerical experiment in which the value of the regularization

parameter, εreg, is held fixed and the initial limiting parameter is varied. A reference simulation is generated with ζmax = 1000

and the latent and sensible heat fluxes are compared with those from a sequence of simulations with ζmax = 20 and 200

(Fig. D1). We observe that an initial limiting parameter value of ζmax = 200 allows Algorithm 3 to return the same turbulent665

fluxes as an initial value of ζmax = 1000. We thus recommend ζmax = 200 in Algorithm 3.
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Code and data availability. Simulation output data corresponding to the CTRL and SENS simulations and sensitivity runs in Appendices C

and D may be found in https://doi.org/10.5281/zenodo.17498126 (Dong et al., 2025b), https://doi.org/10.5281/zenodo.17498147 (Dong et al.,

2025c), and https://doi.org/10.5281/zenodo.17510833 (Dong et al., 2025d). Python scripts used to generate bifurcation diagrams, create

corner plots, and analyze convergence of the turbulent flux algorithms may be found in https://doi.org/10.5281/zenodo.17511114 (Dong670

et al., 2025a). A fork of E3SMv2 containing the proposed changes to E3SM’s ocean–atmosphere turbulent flux algorithm in Algorithm 3

may be found at the repository https://doi.org/10.5281/zenodo.18180192 (Dong, 2025).
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