

1 **O₃–NO_x–VOC_s Sensitivity in Major Chinese Regions: Detailed Insights from
2 GEMS Satellite Hourly Observations**

3

4 Cheng Huang¹, Junjie Wang¹, Yinbao Jin^{1,2}, Min Min^{*1}, Qi Fan^{*1,3,4}, Jhoon Kim⁵

5 ¹School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China

6 ²Guangzhou Meteorological Satellite Ground Station (Guangdong Meteorological Satellite Remote
7 Sensing Center), Guangzhou, China

8 ³Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

9 ⁴Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen
10 University, Guangzhou, China

11 ⁵Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

12 *Correspondence: Qi Fan(eesfq@mail.sysu.edu.cn) and Min Min(minm5@mail.sysu.edu.cn)

13 **Abstract**

14 Ozone (O₃) pollution continues to pose a severe environmental and public health challenge in
15 China. Identifying whether ozone formation is more sensitive to nitrogen oxides (NO_x) or volatile
16 organic compounds (VOCs) is therefore fundamental to designing effective control strategies. This
17 study investigates the diurnal evolution of O₃ formation sensitivity across major regions of China,
18 utilizing high-temporal-resolution observations from the Geostationary Environment Monitoring
19 Spectrometer (GEMS) from 2021 to 2023. By analyzing the formaldehyde-to-nitrogen dioxide ratio
20 (HCHO/NO₂ or FNR) at an hourly scale (09:00–16:00 LST) during the warm season alongside
21 ground-level O₃ measurements and meteorological reanalysis, we capture the dynamic daytime
22 transitions in O₃–NO_x–VOC chemistry. Results show distinct diurnal patterns: O₃ and HCHO
23 concentrations generally increase through the afternoon, peaking around 15:00–16:00, while NO₂
24 declines with a morning rebound. Spatially, elevated precursor levels and complex sensitivity regimes
25 are concentrated in key urban agglomerations (BTH, YRD, SC, PRD). The analysis reveals a
26 systematic shift from VOC-limited regimes in the morning toward transitional or NO_x-limited regimes
27 in the afternoon, driven by intensified photochemistry. A comparative city-level analysis demonstrates
28 that Beijing's strong radiation under NO_x-rich conditions sustains a morning VOC-limited regime,
29 Nanjing remains in a complex transitional state, Chengdu's basin topography reinforces a persistent
30 VOC-limited condition, and Guangzhou's active VOC emissions promote a shift toward NO_x
31 limitation. This study provides the first regional-scale, diurnally-resolved insight into O₃ formation
32 sensitivity dynamics in China, offering a critical scientific basis for designing temporally precise and
33 regionally tailored emission control strategies.

34

35 **1 Introduction**

36 Near-surface ozone (O₃) pollution has emerged as a major environmental challenge in rapidly
37 urbanizing countries such as China. Ozone is not only an important greenhouse gas that influences
38 climate change (Akimoto, 2004), but also poses direct threats to regional air quality, public health, and
39 ecosystems by altering atmospheric oxidizing capacity (Feng et al., 2022). Previous studies have shown
40 that long-term exposure to O₃ has led to a substantial increase in premature mortality from respiratory
41 and cardiovascular diseases in China (Maji and Namdeo, 2021), and has caused considerable yield
42 losses in major crops such as rice and wheat (Feng et al., 2019). Ozone formation depends on complex

43 and nonlinear photochemical reactions between its precursors, nitrogen oxides (NO_x) and volatile
44 organic compounds (VOCs) (Sillman, 1995; Kleinman et al., 2005). Accordingly, ozone formation
45 regimes are commonly classified into NO_x -limited, VOC-limited, and transitional regimes (Sillman and
46 He, 2002). Therefore, accurately diagnosing the sensitivity of ozone formation to its precursors is a
47 fundamental scientific prerequisite for the development of effective air pollution control strategies.

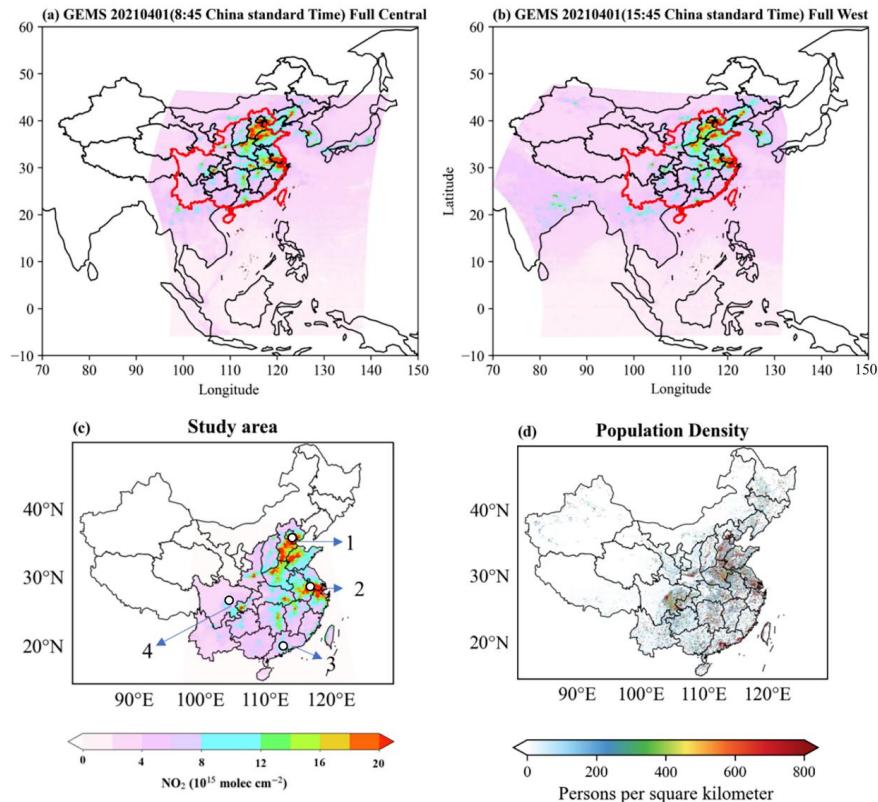
48 The column concentration ratio of formaldehyde to nitrogen dioxide (HCHO/NO_2 , FNR) is one of
49 the most widely used metrics for diagnosing ozone formation sensitivity (Chen et al., 2023; Wang et al.,
50 2023). This indicator plays an important role in advancing the understanding of ozone formation
51 mechanisms and in informing the design of region-specific air pollution control strategies (Jin et al.,
52 2020). At present, FNR values are mainly derived from three types of data sources: instantaneous
53 overpass observations from polar-orbiting satellites, chemical transport model simulations, or
54 ground-based monitoring measurements. Numerous studies have employed FNR values calculated
55 from these datasets to investigate their correspondence with ozone formation sensitivity, where higher
56 FNR values generally indicate a NO_x -limited regime, whereas lower FNR values suggest a
57 VOC-limited regime (Souri et al., 2020; Acdan et al., 2023). For example, in East Asia, Itahashi et al.
58 (2022) reported an overall increasing trend in FNR values over Japan and South Korea based on Ozone
59 Monitoring Instrument (OMI) satellite observations. In South Asia, Mahajan et al. (2015) compared
60 observations from four different satellite instruments and found relatively high FNR values over India,
61 implying that ozone formation is more likely to be NO_x -limited, while urban and industrialized regions
62 exhibit distinct sensitivity characteristics. Jin et al. (2017) combined satellite observations with
63 chemical transport modeling to reveal pronounced regional-scale differences in ozone formation
64 sensitivity across major urban agglomerations in North America. For typical urban clusters in China,
65 Zhou et al. (2024) reported, based on ground-based observations during April–September 2020, that
66 urban Beijing was predominantly VOC-limited. Using OMI satellite data, Xu et al. (2025) found that
67 ozone formation in the Sichuan–Chongqing (SC) region during summer was mainly characterized by a
68 VOC– NO_x transitional regime, accounting for approximately 42.42% of the area. Pan (2023),
69 integrating OMI satellite observations with ground-based measurements, demonstrated that northern
70 parts of the Yangtze River Delta (YRD) had long been dominated by a transitional regime, with an
71 areal fraction consistently around 50.0%, substantially higher than those of the VOC-limited and
72 NO_x -limited regimes. Similarly, Liang et al. (2024), using OMI satellite data combined with grey
73 relational analysis, reported that in 2020 the Pearl River Delta (PRD) exhibited areal fractions of 1.6%,
74 42.4%, and 56.0% for the VOC-limited, transitional, and NO_x -limited regimes, respectively; at the
75 provincial scale of Guangdong, the NO_x -limited regime further increased to 86.4%. In contrast, Du et al.
76 (2022b), employing the Comprehensive Air quality Model with extensions (CAMx), emphasized that
77 the Chengdu metropolitan area was predominantly NO_x -limited and highlighted the critical role of
78 industrial and mobile-source emission reductions in ozone mitigation. Collectively, these studies
79 indicate that urban areas are more often characterized by VOC-limited or transitional regimes, whereas
80 rural and background regions tend to be NO_x -limited, and that major urban agglomerations worldwide
81 exhibit broadly similar patterns of regional differentiation in ozone formation sensitivity.

82 In addition to spatial heterogeneity, ozone formation sensitivity also exhibits pronounced temporal
83 variability. Changes in meteorological conditions, surface characteristics, and anthropogenic emissions
84 jointly drive transitions in ozone sensitivity across different time scales (Liu and Shi, 2021). On the
85 interannual scale, the implementation of emission control policies has led to shifts in ozone sensitivity
86 from VOC-limited regimes toward transitional or NO_x -limited regimes in many regions of China (Min

87 et al., 2021). At seasonal and monthly scales, ozone sensitivity also shows systematic variations; for
88 example, under high-temperature and strong-radiation conditions in summer, NO_x-limited or
89 transitional regimes are more prevalent, whereas VOC-limited regimes tend to dominate in spring and
90 autumn (Li, 2023; Jing et al., 2025; Yang et al., 2025; Du et al., 2022a). Furthermore, studies based on
91 observations and chemical transport modeling indicate that ozone sensitivity exhibits more complex
92 behavior at the monthly scale, characterized by pronounced interconversions among different regimes.
93 For example, Wu et al. (2018) found, through an analysis of ozone formation mechanisms in the
94 Beijing–Tianjin–Hebei (BTH) region, that the area classified as VOC-limited increased markedly in
95 September, while regions that were predominantly NO_x-limited during June–August gradually
96 transitioned to a transitional regime in September, and portions of the transitional regime further shifted
97 toward a VOC-limited regime. Xu et al. (2025) further pointed out that in the SC region, the fraction of
98 VOC-limited areas gradually decreased from June to August, reaching a minimum in August with an
99 areal proportion of only 4.02%. Similarly, Li (2021), based on numerical modeling and FNR threshold
100 analysis, reported that in July most of the PRD region was characterized by a NO_x-limited regime,
101 whereas by October, western Dongguan, western Shenzhen, the Nansha District of Guangzhou, and
102 southeastern Foshan transitioned to a VOC-limited regime, with some areas further evolving into a
103 transitional regime. These studies provide important support for a deeper understanding of ozone
104 formation mechanisms. However, a key question that remains insufficiently addressed is whether ozone
105 formation sensitivity—given the pronounced diurnal variability of ozone—also undergoes systematic
106 and regular transitions on the diurnal timescale.

107 A key challenge is that the three prevailing approaches mentioned above for calculating FNR all
108 have inherent limitations in investigating diurnal variability. (1) Polar-orbiting satellite products (such
109 as OMI and TROPOspheric Monitoring Instrument (TROPOMI)) provide only a single overpass
110 “instantaneous snapshot” per day, which is insufficient to capture the continuous diurnal evolution of
111 ozone formation sensitivity (Lyu et al., 2024; Bhartia et al., 2002; Grytsai and Milinevsky, 2013; Zhang
112 et al., 2018; Peng et al., 2024). In addition, these observations are highly susceptible to cloud
113 contamination, leading to data gaps and spatial discontinuities that can introduce biases in
114 satellite-derived products (Li and Chen, 2021). (2) Numerical models can deliver hourly data products,
115 but their results depend strongly on the accuracy of meteorological inputs, emission inventories, and
116 chemical mechanisms. Even the most recent chemical mechanisms (such as Mechanism for
117 Atmospheric Chemistry eXtended 1 (MAX1)) are still being continuously refined to improve
118 simulation performance (Liu et al., 2025; Pan, 2023; Chen et al., 2022; Wang et al., 2022). Moreover,
119 uncertainties associated with meteorological forcing, emission magnitudes and temporal allocation,
120 chemical reactions among pollutants and deposition processes can further propagate substantial
121 uncertainties in model results (Georgiana et al., 2016; Yu et al., 2020). (3) Ground-based observations
122 offer high temporal resolution but suffer from sparse and uneven station coverage, resulting in limited
123 spatial representativeness and an inability to depict complete regional-scale diurnal patterns (Yang et al.,
124 2013; Xu et al., 2024; Klára et al., 2019; Wang et al., 2025b; Bin et al., 2022; Zhang et al., 2020; Han et
125 al., 2023). For individual sites, ozone research relies primarily on longitudinal time-series analyses, in
126 which comparisons with satellite observations are used to validate data accuracy or to identify temporal
127 patterns for assessing long-term trends in local ozone levels. Indeed, Wang et al. (2019), when
128 analyzing the spatiotemporal variability of surface ozone column concentrations in China using data
129 from six stations, also highlighted these limitations and emphasized the need for broader spatial
130 coverage to robustly evaluate ozone. Consequently, none of these three mainstream approaches can

131 simultaneously provide high temporal resolution and extensive spatial coverage to directly and reliably
132 characterize the true diurnal evolution and spatial patterns of O₃ formation sensitivity.


133 This study leverages observations from the Geostationary Environment Monitoring Spectrometer
134 (GEMS) to fill the knowledge gap regarding the diurnal dynamics of ozone formation sensitivity.
135 Unlike the “instantaneous snapshots” provided by polar-orbiting satellites, GEMS enables continuous
136 “staring” observations over Asia, thereby allowing, for the first time, the investigation of the FNR at an
137 hourly resolution on a regional scale. Building on this capability, we systematically examine the hourly
138 spatiotemporal evolution of FNR across China from morning to afternoon, with the aim of elucidating
139 the diurnal transitions in ozone formation mechanisms and identifying their driving factors. Specifically,
140 this study addresses two key questions: (1) What spatiotemporal patterns characterize the diurnal
141 evolution of ozone formation sensitivity (FNR) across different regions of China during daytime
142 (09:00–16:00 LST)? (2) Do these diurnal transition patterns differ among major urban agglomerations
143 in China, and what are the dominant factors driving these differences? The findings of this work enable
144 the identification of ozone-sensitive periods and key regions with unprecedented spatiotemporal detail,
145 providing direct scientific support for the implementation of dynamic, time-resolved, region-specific,
146 and category-based emission reduction strategies. More importantly, they contribute to a fundamental
147 understanding of the diurnal dynamics of nonlinear photochemical processes governing ozone
148 formation, facilitating a paradigm shift in regional air quality management from “static control” toward
149 “dynamic regulation”. This study provides crucial insights into the temporal dynamics of O₃ pollution,
150 offering a scientific basis for its coordinated management in China.

151

152 **2 Data and Methods**

153 **2.1 Dataset**

154 To enhance air quality monitoring and climate change forecasting in East and Southeast Asia, the
155 National Institute of Environmental Research (NIER) of South Korea developed the new-generation
156 and first GEMS aboard the Geostationary (GEO) Korea Multi-Purpose Satellite 2B
157 (GEO-KOMPSAT-2B). This satellite was successfully launched in February 2020. GEMS operates at a
158 spectral resolution of 0.6 nm, covering a wavelength interval of 0.2 nm across the 300-500 nm range
159 (Kim et al., 2020). It provides hourly observations across Asia, from 5°S to 45°N and 75°E to 145°E,
160 with a spatial resolution of 7 × 8 km. This instrument primarily tracks key atmospheric components,
161 including NO₂, O₃, HCHO, and aerosols. GEMS offers significant advantages over other satellites with
162 its exceptional temporal resolution, collecting data eight times daily (00:45 to 07:45 UTC) (Kim et al.,
163 2020; Baek et al., 2023). As depicted in Fig. 1, GEMS covers most of China from 08:45 LST to 15:45
164 LST with an interval of 1 hour. LST was used for all study times in this paper if not otherwise stated.
165 The study area for GEMS eight observation periods is defined as 17–43°N, 97–127°E, with a spatial
166 resolution of 0.07° × 0.08°. Additionally, the observation window has been adjusted to 09:00 to
167 16:00, crucial for monitoring photochemical activities and urban emissions in major Chinese cities
168 (BTH, YRD, PRD, SC, in Fig. 1c). GEMS level-2 tropospheric NO₂ and HCHO data from 2021 to 2023
169 are free to download at <https://nesc.nier.go.kr/ko/html/index.do>. It has also demonstrated high
170 correlation coefficients (R) of 0.9 with the NO₂ data of TROPOMI and 0.81 with ground-based HCHO
171 observations, affirming its reliability and effectiveness in capturing accurate atmospheric data (Lee et
172 al., 2024; Kim and Kim, 2023; Oak et al., 2024).

173

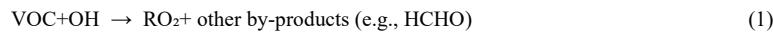
174 **Figure 1.** (a) NO_2 in the Full Central (FC) region as inverted by GEMS satellite at 8:45 LST on April 1, 2021. (b) NO_2 in the Full West
175 (FW) region as inverted by GEMS satellite at 15:45 LST on April 1, 2021, and (c) the study area of this study (the red combined region in
176 panel (a)), where regions 1 ~ 4 denote the BTH, YRD, PRD, and SC regions, respectively. The white circular symbols from north to south
177 indicate Beijing, Nanjing, Chengdu, and Guangzhou. (d) Spatial distribution of population density in China, 2017, the population data for
178 the study area((a) red ensemble area) represents approximately 87% of the country's total population.

179 The China National Air Quality Monitoring Network provides hourly surface O_3 measurements
180 through an extensive network of over 1,400 ground-based stations in more than 330 cities across China.
181 This invaluable data can be accessible through the official website at <https://air.cnemc.cn:18007/>. Our
182 analysis includes data from 642 stations located in 210 cities, with all O_3 concentrations recorded in
183 micrograms per cubic meter ($\mu\text{g}/\text{m}^3$). Many scholars have studied Ozone- NO_x -VOCs sensitivity using
184 satellite-observed tropospheric NO_2 and HCHO concentrations along with near-surface O_3 data, and
185 therefore the above GEMS data and site data were selected for this study (Jin et al., 2020; Ren et al.,
186 2022). Additionally, this study incorporates hourly ERA5 reanalysis data, provided by the European
187 Centre for Medium-Range Weather Forecasts (ECMWF). The ERA5 dataset includes critical
188 meteorological variables such as 2-meter temperature (T_{2m}), relative humidity (RH), near-surface net
189 radiation flux (SSR), and boundary layer height (BLH). These variables provide comprehensive
190 insights into the meteorological conditions affecting ozone formation and its diurnal variations across
191 the study area, enhancing the understanding of O_3 - NO_x -VOCs interactions.

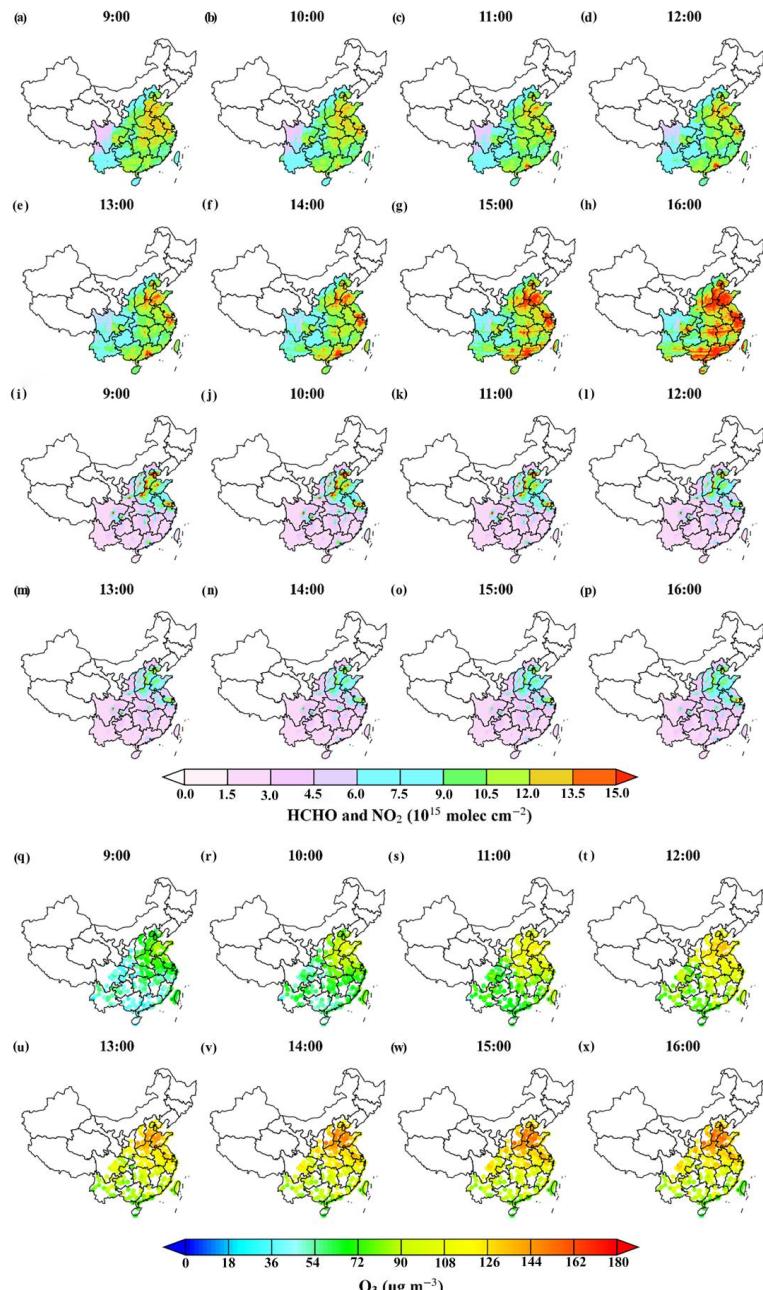
192 **2.2 Methodology**

193 The Locally Estimated Scatterplot Smoothing (LOESS) method is a non-parametric regression
194 technique used to capture the underlying patterns in data, particularly useful for modeling complex
195 relationships. It works by fitting simple models (usually linear or quadratic) to localized subsets of the
196 data, rather than the entire dataset at once. This approach helps to smooth out fluctuations and reveal
197 trends by applying different weights to data points based on their distance from a target point. In this
198 study, LOESS was employed to analyze the diurnal variations of the HCHO/NO₂ ratio, which serves as
199 an indicator of O₃ formation sensitivity. By focusing on hourly shifts in this ratio, the method
200 effectively highlights local trends and transitions in the O₃-NO_x-VOC_s sensitivity regimes throughout
201 the day. Its ability to reveal intricate patterns makes LOESS particularly valuable in examining ozone
202 formation processes, which are known to exhibit non-linear dynamics and significant spatiotemporal
203 variability. This adaptive smoothing approach thus provides a clearer understanding of diurnal changes
204 in O₃ precursors and their interactions, contributing to more accurate interpretations of GEMS satellite
205 observations.

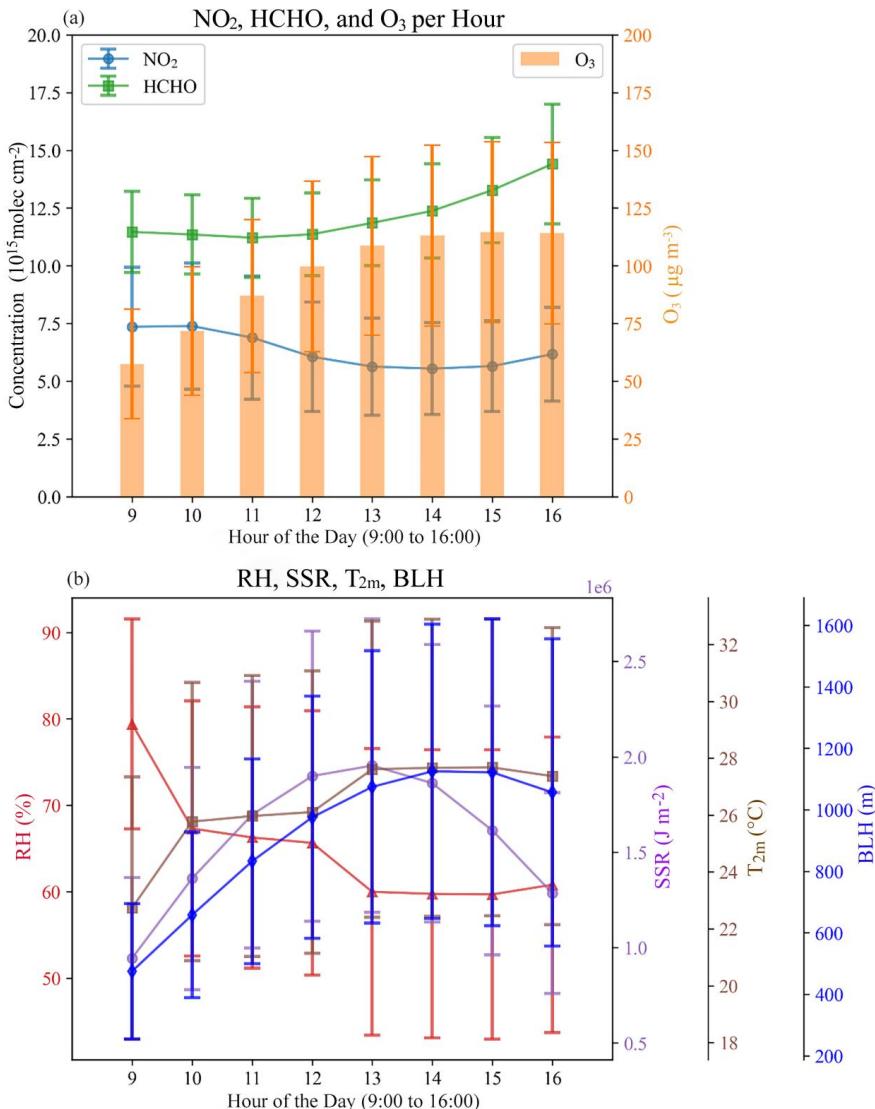



206 **3 Results and Discussion**

207 **3.1 Spatial distribution of HCHO, NO₂, and O₃**


208 Figure. 2 based on GEMS data and ground monitoring, shows daily variations in atmospheric
209 pollutants in China during the warm season (April to September) from 2021 to 2023, including the
210 tropospheric column concentration of HCHO and NO₂, as well as the ground-level concentrations of O₃.
211 At 09:00, higher initial concentrations of HCHO relative to NO₂ are apparent, likely from reduced
212 nighttime dispersion and increased morning emissions (Yang et al., 2017). The majority of HCHO is
213 produced through photo-oxidation of VOC_s, while relatively little is emitted directly (Sun et al., 2021).
214 As the day progresses, increases in temperature and radiation intensity promote the conversion of VOC_s
215 to HCHO (Eq. 1), significantly increasing HCHO levels, especially in densely populated urban areas
216 (Fig. 1) with larger concentrations of VOC_s such as BTH, YRD, PRD, and SC. Wu et al. (2023)
217 demonstrated that HCHO concentration increased with increasing photochemical activity, especially in
218 the afternoon when solar radiation is strongest. The HCHO peaks around 16:00, correlating with
219 findings by Lee et al. (2024). Although the reaction of HCHO with OH radicals serves as a
220 consumption mechanism (Eq. 2), in regions with high VOC emissions, the continuous conversion of
221 both biogenic and anthropogenic VOC_s, driven by increasing temperature and radiation, may result in a
222 net production rate of HCHO that surpasses its consumption rate, thereby leading to a sustained
223 increase in HCHO concentrations during the afternoon period (Li et al., 2021; Javed et al.,
224 2019). HCHO increases steadily for the day, reaching approximately 1.3 times the 9:00 level by 16:00.
225 Simultaneously, NO₂ levels show significant diurnal fluctuations, with high morning levels from traffic
226 and industrial activities and minimal photochemical reduction due to low solar intensity (Fig. 3) (Xie et
227 al., 2016). As sunlight and temperatures rise, intensified photochemical activities facilitate NO₂
228 consumption (Eqs. 3 and 4), leading to a gradual decline in its levels throughout the day. The most
229 rapid reduction of NO₂ during the 13:00-14:00 hours is mainly due to rapid photochemical
230 transformations and a strong diffusion effect due to the highest boundary layer height (Fig. 3). However,
231 after 16:00, as photochemical activity diminishes and traffic increases in some cities due to school
232 dismissals and varying work shifts, NO₂ levels rise again (Zhang and Batterman, 2009; Kelly et al.,
233 1984). This trend is consistent with observations by Kim et al. (2020) and Elise and Tracey (2020).
234 NO₂ peak in the morning and then gradually decline, reaching around 70% of their initial level by

235 15:00, followed by a slight rebound in the late afternoon. Although NO₂ is also regenerated during this
236 process (Eqs. 5-7), increased photolytic activity and the conversion of NO₂ to nitric acid (Eq. 8)
237 typically decrease NO₂ concentrations throughout the daytime (Tan et al., 2019). The peak of O₃ occurs
238 between 15:00 and 16:00, with concentrations gradually increasing throughout the day, starting from a
239 morning average of 56.29 µg/m³ and reaching a peak of 122.32 µg/m³ around 15:00. Liu and Wang
240 (2020) and Xia et al. (2021) also reported that high O₃ concentrations during the warm season peak
241 around 15:00 in major city clusters in China. Overall, the spatial distribution of HCHO, NO₂, and O₃
242 concentrations reveals significant regional differences across China. In the morning, high
243 concentrations of HCHO and NO₂ are primarily concentrated in urban clusters, reflecting the impact of
244 industrial activities and traffic emissions on the precursors of O₃. Meanwhile, O₃ concentrations are
245 predominantly concentrated in the northern regions. In the afternoon, both HCHO and ozone
246 concentrations increase significantly, with their distribution range notably expanding compared to the
247 morning, particularly in high-population-density urban areas. However, high concentrations of NO₂
248 remain primarily concentrated in northern China, but due to the influence of local meteorological
249 conditions, industrial emissions, and the involvement in O₃ formation, NO₂ concentrations gradually
250 decrease.



251 Here, VOC_s react with hydroxyl radicals (OH), producing peroxy radicals (RO₂) and by-products
252 like HCHO. RO₂ and HCHO can further react with nitrogen monoxide (NO), forming NO₂. NO₂
253 undergoes photolysis (hv), breaking down into NO and atomic oxygen (O), which combines with
254 molecular oxygen (O₂) to form O₃. O₃ can react with NO to regenerate NO₂, maintaining the NO_x (NO
255 + NO₂) cycle. Meanwhile, HCHO can photolyze into carbon monoxide (CO) and more hydroperoxy
256 radicals (HO₂), accelerating O₃ formation. NO₂ can also react with OH and a third body (M) to form
257 nitric acid (HNO₃), reducing NO_x levels and limiting further O₃ production.

258

259 **Figure 2.** Hourly atmospheric monitoring in China during the warm season (April to September 2021-2023). (a-h) and (i-p) Spatial
260 distribution of hourly mean HCHO and NO₂ levels retrieved from GEMS satellite data. (q-x) Temporal variations in ground-level mean
261 O₃ concentrations, observed at various monitoring stations.

262

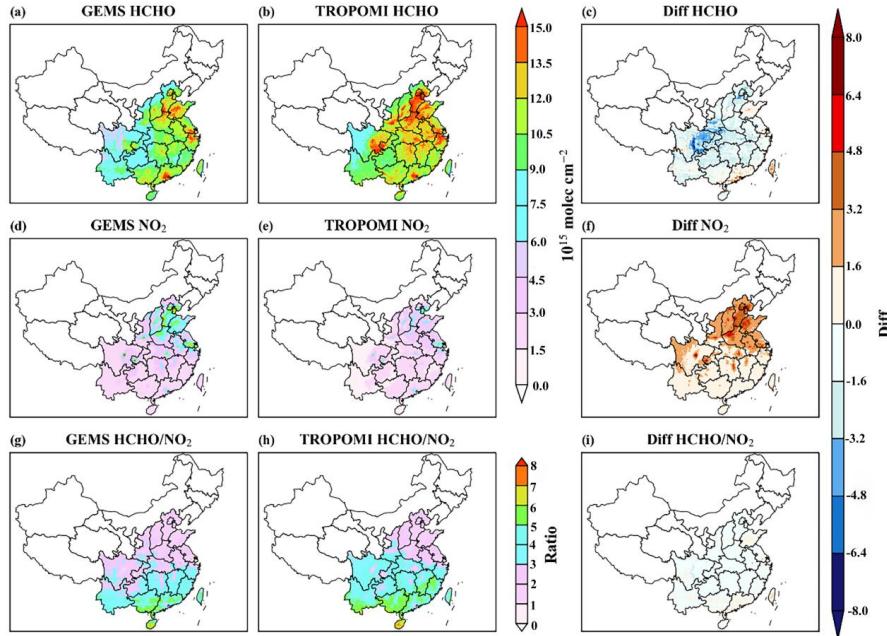
263 **Figure 3. (a)** Warm-season hourly ozone averages and deviations for all stations in the study area, with corresponding HCHO and NO₂
 264 from GEMS. **(b)** and ERA5 corresponding to T_{2m}, RH, SSR, and BLH at the closest point site.

265 **3.2 O₃–NO_x–VOC_s chemistry captured by GEMS satellite-based HCHO/NO₂**

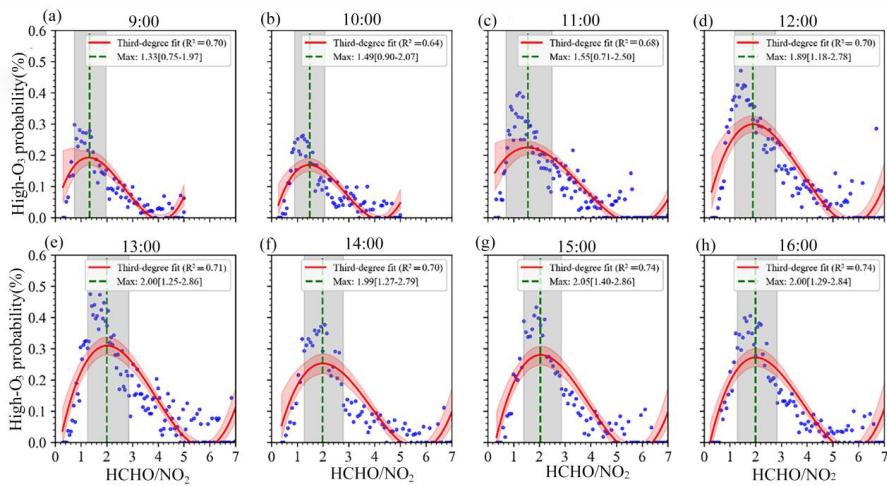
266 Figure. 4 displays the daily relationship between HCHO and NO₂ concentrations and ground-level
 267 O₃ utilizing LOESS fitting method to highlight trends and high O₃ concentration events. The
 268 distributions of HCHO and NO₂ at 09:00 are dispersed. The concentration of O₃ is relatively low in Fig.
 269 4a, so the photochemical reaction required for O₃ formation has not yet started completely because of
 270 the low temperature and radiation (Fig. 3). At this time, data points (NO₂>20×10¹⁵molec·cm⁻²) are
 271 concentrated in the upper left corner, suggesting a NO_x-saturated state with VOC_s (represented by
 272 HCHO) as the limiting factor. In addition, a small amount of O₃ reacts with NO to form new NO₂ at

273 this time (Eq. 5), but its contribution is smaller than the impact of direct emissions and the effect of
274 nighttime accumulation (Paul et al., 2018). From 10:00 to 12:00, as sunlight and temperature rise, data
275 points move towards the lower right, significantly increasing O_3 concentration. During this period,
276 three typical states of O_3 - NO_x - VOC_s chemical processes can be identified: the VOC -limited regime, the
277 transition zone, and the NO_x -limited regime. In the afternoon, data are mostly in areas of high $HCHO$
278 and low NO_2 , efficient O_3 production in $HCHO$ -rich environments, even with low NO_2 , resulting in the
279 day's highest O_3 levels. The photochemical reaction of VOC_s is accelerated with increasing solar
280 radiation (peak at 13:00) and temperature, generating more free radicals and intermediates (e.g.,
281 $HCHO$). The increase of these free radicals will further promote the photolysis of NO_2 and accelerate
282 the generation of O_3 . At the same time, the photolysis of NO_2 not only produces O_3 directly but also
283 reduces the concentration of NO_2 , reducing the O_3 consumption reaction (Yang et al., 2021). In addition,
284 the lower relative humidity reduces the involvement of water vapor, which usually consumes O_3 , and
285 this reduction favors the accumulation of O_3 (Zhang et al., 2022). Since the reaction of VOC_s and NO_2
286 photolysis are mutually reinforcing, O_3 production in this environment shows a nonlinear enhancement,
287 which is particularly evident under conditions of abundant VOC_s but low NO_2 . Although there are
288 some differences in the concentration and spatial distribution of $HCHO$ and NO_2 between the GEMS
289 and TROPOMI satellite data (Fig. 5), they all exhibit similar distribution characteristics of high values
290 in the four major urban agglomerations (BTH, YRD, SC, and PRD). Specifically, the areas of high
291 concentrations of $HCHO$ and NO_2 are the same in both data, while the $HCHO/NO_2$ ratio also exhibits a
292 similar spatial pattern. This similarity is further verified by the difference values (Fig. 5i), which show
293 that the difference between the two ratios in major urban agglomeration regions is relatively small,
294 indicating that both GEMS and TROPOMI data are effective in capturing the nonlinear relationship of
295 precursors in the O_3 formation mechanism.

296 After establishing these nonlinear relationships across most of China, we further explored the
297 diurnal variation characteristics of the quantitative relationship between high O_3 event probabilities and
298 FNR observed by GEMS satellites, as shown in Fig. 4(i-p). Compared to cubic polynomial fitting (Fig.
299 6), we found that LOESS fitting performed better in identifying peak probabilities of high O_3 events
300 with minimal uncertainty. During the morning hours (from 09:00 to 12:00), O_3 concentrations
301 gradually increase within the transition ranges of [0.94, 1.46] to [1.36, 2.07], with fitting curves that are
302 steep and closely aligned to the y-axis, indicating a rapid shift from a VOC -limited to a regime
303 significantly influenced by $HCHO$ and NO_2 . As solar radiation intensifies and emissions from traffic
304 and industrial sources continue, O_3 gradually accumulates near the ground. Note that the maximum
305 FNR position gradually shifts rightward, indicating the growing importance of NO_2 in O_3 formation. In
306 the afternoon (after 12:00), the fitted regimes, with broader transition zones spanning [1.30, 2.22] to
307 [1.36, 2.28], more accurately captured the nonlinear relationship of O_3 - NO_x - VOC_s ($R^2 > 0.88$) than
308 those in the morning. The afternoon typically meets peak radiation and temperatures (Fig. 3),
309 accelerating chemical reactions, especially photochemical reactions, thus enhancing O_3 production
310 (Coates et al., 2016). Besides, the stable emissions and atmospheric chemical processes lead to
311 consistent O_3 sensitivity curves from 13:00 to 16:00. Throughout the day, the maximum
312 high-probability O_3 values from GEMS LOESS fitting increase, peaking at 1.97 at 15:00, before
313 declining at 16:00. The O_3 sensitivity thresholds at 13:00 in this study align with previous findings,
314 such as [1.0, 2.0] by Jin and Holloway (2015), and [1.5, 2.3] by Chang et al. (2016). Furthermore,
315 GEMS data further revealed that the hourly variability in O_3 - NO_x - VOC_s sensitivity throughout the day
316 was more complex and dynamic compared to previous studies, which primarily reported diurnal



317 | changes limited to a single time period, as observed by polar-orbiting satellites.

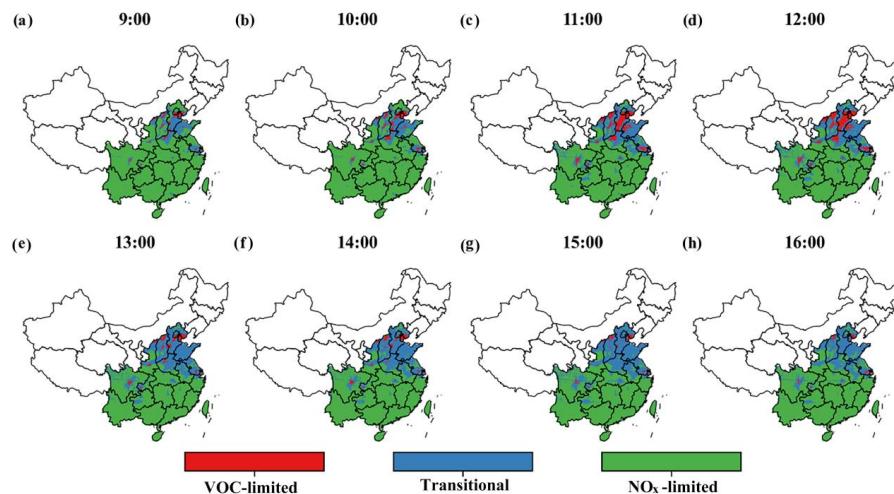

318

319 **Figure 4.** The relationship between hourly surface O₃ levels and GEMS HCHO/NO₂ from 2021 to 2023, analyzed using LOESS. **(a-h)** O₃
320 concentrations versus GEMS HCHO and NO₂. All surface hourly O₃ observations (9:00-16:00 LST) during the warm season from 2021 to
321 2023 were aggregated according to the corresponding GEMS HCHO and NO₂. The black line represents the hourly LOESS fit FNR
322 values for GEMS data. **(i-p)** show the relationship of HCHO/NO₂ (x-axis) to high O₃ probability (y-axis), with data organized into 200
323 bins. Each bin represents a half-monthly average matched with corresponding hourly O₃ levels. Defined high O₃ event thresholds: 9:00 >
324 80 µg/m³, 10:00 > 100 µg/m³, 11:00 > 110 µg/m³, 12:00 > 120 µg/m³, 13:00 > 130 µg/m³, 14:00 and later > 140 µg/m³. The red line
325 indicates the LOESS fit, with shading showing the 95% confidence interval. Bootstrap analysis with 1000 iterations was performed to
326 ensure robustness, with each iteration involving random sampling and LOESS fitting. A vertical line and shading mark the peak and
327 initial 15% transition range of the fitted curve, respectively.

328

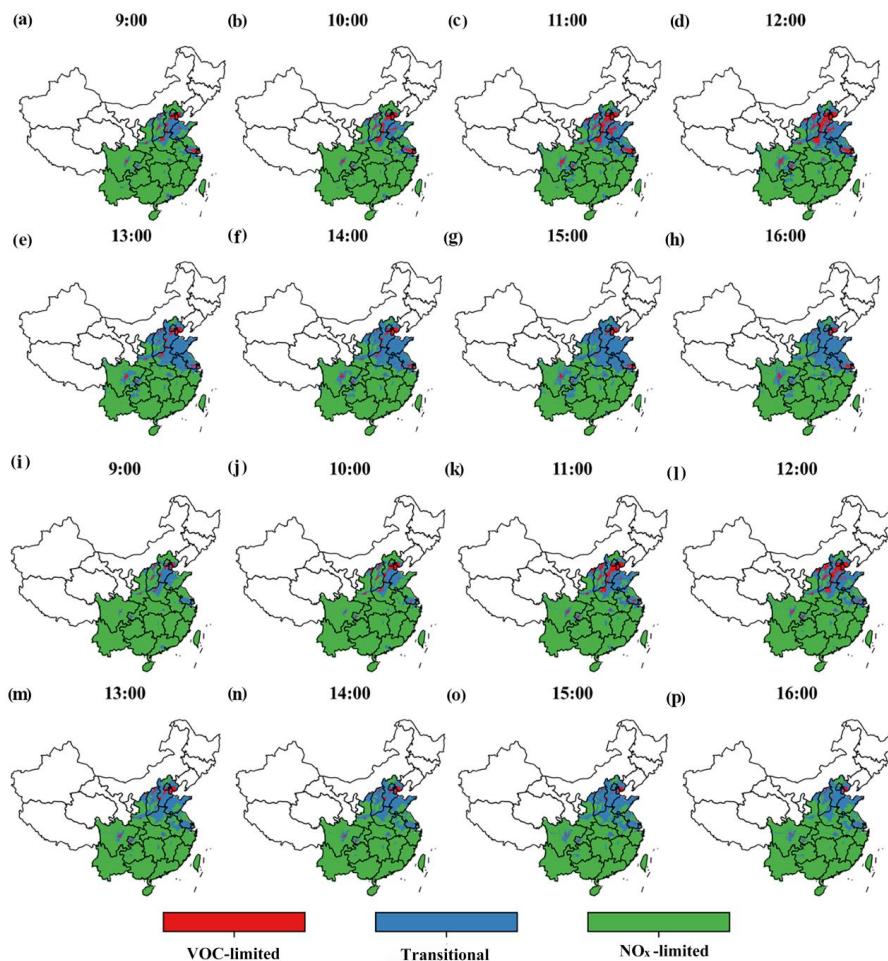
329 **Figure 5.** Mean values of HCHO, NO₂, and HCHO/NO₂ at 13 p.m. LST from 2021 to 2023 retrieved from GEMS and TROPOMI
330 satellite data and their respective differences.

331


332 **Figure 6.** Similar to Figure 4(i-p), but with a third-order polynomial fit.

333 3.3 Spatiotemporal distribution of O₃ production regimes

334 In the afternoon (from 13:00), many urban areas initially VOC-limited in the morning start
335 shifting to transition regimes (Fig. 7). The photochemical reactions of VOCs are accelerated with
336 increasing sunlight (peaking in the late afternoon), temperature (Fig. 3) and these reactions produce
337 more free radicals and intermediates (Eqs. 1 and 9), such as HCHO. In addition, NO₂ is also rapidly
338 photolyzed to NO and O (Eq.3), which not only contributes directly to O₃ production but also leads to a


339 further reduction in NO_2 concentration. Altogether, these conditions may accelerate the transition from
340 VOC-limited to a state influenced by both NO_x and VOC_s (transition regimes) in many urban areas.
341 Specifically at 13:00, VOC-limited regimes are primarily concentrated in downtown areas, aligning
342 with former findings from TROPOMI-based studies (Li et al., 2024; Ren et al., 2022). However, the
343 regimes are less extensive. In specific city clusters, apart from the PRD, the other three primarily
344 maintain VOC-limited regimes in the morning but begin transitioning by the afternoon. It is worth
345 noting that the PRD region exhibits specific photochemical changes throughout the day, with transition
346 regimes in the morning and NO_x -limited regimes in the afternoon. The higher temperature and
347 humidity conditions in the PRD may accelerate the reactions of VOC_s and NO_x , thereby affecting the
348 formation of O_3 . This hypothesis aligns with the findings of Wang et al. (2024) regarding the
349 photochemical reaction rates in the PRD. In addition, air quality policies in the PRD in recent years
350 have significantly reduced the concentrations of VOC_s and NO_x , which may contribute to the region's
351 shift from a VOC-limited to a NO_x -limited regime (Li et al., 2024). Combined with Fig. 8 (same as
352 Fig. 7, but for 2021 and 2022), it is also evident that the PRD has recently begun transitioning from
353 VOC-limited to NO_x -limited and transitional regimes in the morning. In addition, most urban centers
354 are VOC-limited in the morning and start transitioning to NO_x -limited at the urban edge by the
355 afternoon. Furthermore, the geographical characteristics of the SC may contribute to limited
356 atmospheric circulation, fostering the formation of a pronounced temperature inversion layer. This
357 phenomenon partially inhibits the dispersion of air pollutants, resulting in the region predominantly
358 experiencing a VOC-limited regime during the daytime (Yang et al., 2020). Notably, the intensity of the
359 VOC-limited regimes in the SC diminishes in the afternoon and is not particularly strong in the
360 morning, likely influenced by the solar intensity and its effects on atmospheric dynamics.

361
362 **Figure 7.** Diurnal photochemical-regime classification over study areas in O_3 pollution period from April to September 2023. (a-h) the
363 analysis utilizes eight-hourly HCHO/NO_2 ratio data from the GEMS satellite to classify the regional O_3 formation dynamics in polluted
364 areas (regions with GEMS NO_2 columns exceeding $1.0 \times 10^{15} \text{ molec} \cdot \text{cm}^{-2}$). The classification thresholds for VOC-limited, transitional,
365 and NO_x -limited conditions are based on the relationship between hourly surface high O_3 occurrence probabilities and GEMS HCHO/NO_2 ,

366 as shown in Figure 4.

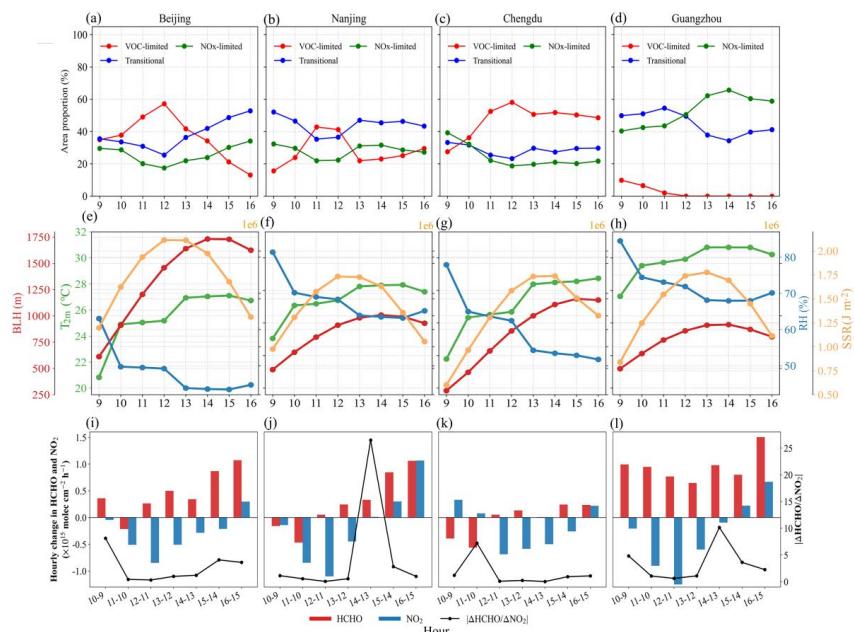
367

368 Figure 8. Similar to Figure 7, but for 2021 (a-h) and 2022 (i-p).

369 3.4 Analysis of O₃ Formation Mechanisms in Representative Cities

370 Four representative cities — Beijing, Nanjing, Chengdu, and Guangzhou — were selected to
371 represent the BTH, YRD, SC and PRD regions, respectively. As shown in Fig. 9(a-d), except for
372 Guangzhou, the other three cities exhibit a high proportion of VOC-limited regimes during daytime.
373 Notely, the VOC-limited fraction in Beijing and Chengdu peaks around noon (12:00). The changes in
374 ΔHCHO and ΔNO_2 , along with their rate-of-change ratio ($|\Delta\text{HCHO}/\Delta\text{NO}_2|$), serve as a robust indicator
375 for tracking the dynamic response of relative precursor conversion intensities. With this analytical
376 framework, we integrate hourly meteorological conditions (Fig. 9(e-h)) with the rates of change in
377 ΔHCHO and ΔNO_2 (Fig. 9(i-l)) to conduct a comparative analysis of ozone formation mechanisms and
378 their diurnal evolution.

379 Beijing is characterized by the coexistence of VOC-limited and transitional regimes between


380 09:00 and 16:00, reflecting a NO₂-abundant environment. More specifically, Beijing remains
381 predominantly VOC-limited from 09:00 to 13:00, after which the fractions of the NO_x-limited and
382 transitional regimes gradually increase. Notably, taking 12:00 as a turning point, the VOC-limited
383 fraction increases hourly before noon while the other regimes decrease, whereas after 12:00 the
384 VOC-limited fraction declines sharply and reaches a minimum at 16:00, accompanied by a concurrent
385 increase in the other two regimes, which peak at the same time. Strong SSR, particularly between 12:00
386 and 13:00, together with a rapidly increasing BLH, substantially enhances NO₂ photolysis and weakens
387 the titration of O₃ by NO. As a result, even under high-NO_x emission conditions, ozone formation is
388 unlikely to enter a NO_x-limited regime and is instead more strongly constrained by VOC_s availability.
389 Previous studies have shown that under NO_x-rich conditions, ozone production is more sensitive to
390 VOC_s, and that boundary layer development and enhanced radiation further amplify this sensitivity
391 (Ren et al., 2022; Wang et al., 2025a). Consistently, Fig. 9i shows a relatively large net loss rate of NO₂,
392 whereas the increase in HCHO is comparatively limited, leading to low values of $\Delta \text{HCHO} / \Delta \text{NO}_2$ in
393 the morning and further indicating VOC-limited ozone formation under a NO_x-abundant background.
394 In the afternoon, $\Delta \text{HCHO} / \Delta \text{NO}_2$ begins to increase, suggesting a transition toward a transitional
395 regime with emerging NO_x-limited characteristics.

396 O₃ formation in Nanjing exhibits a more complex diurnal evolution, characterized by a
397 predominantly transitional regime jointly controlled by VOC_s and NO_x, alongside a non-negligible
398 contribution from the VOC-limited regime. During 09:00 – 11:00, the fractions of the NO_x-limited and
399 transitional regimes decrease, whereas the VOC-limited fraction increases. Taking 13:00 as a turning
400 point, the former two regimes show an increase followed by a decrease, while the VOC-limited regime
401 displays the opposite pattern. Compared with Beijing, the growth rate of the BLH in Nanjing is
402 substantially weaker, whereas T_{2m} and RH are considerably higher. Such meteorological conditions
403 may affect the efficiency of HO₂/RO₂ chain reactions, rendering ozone production more nonlinearly
404 responsive to precursor changes and thereby leading to more complex dynamic behavior (Lu et al.,
405 2019b). Consistent with this interpretation, the rates of change in ΔHCHO and ΔNO_2 (Fig. 9j)
406 increase synchronously after 12:00, resulting in a transient rise in $\Delta \text{HCHO} / \Delta \text{NO}_2$; however, this
407 elevated ratio is not sustained. This indicates that Nanjing does not stably enter a
408 single-precursor-limited regime but instead remains largely within a transitional state characterized by
409 joint VOC-NO_x control, reflecting strong photochemical activity under a NO₂-rich background.

410 In contrast, Chengdu is dominated by a VOC-limited regime, followed by the transitional regime,
411 while the NO_x-limited regime accounts for the smallest fraction. Before 12:00, the fractions of the
412 NO_x-limited and transitional regimes decrease hourly, accompanied by a continuous increase in the
413 VOC-limited fraction. After 12:00, although the VOC-limited fraction decreases slightly, it remains
414 substantially higher than the other two regimes. Ozone formation in Chengdu is strongly influenced by
415 basin-induced meteorological conditions: the enclosed topography restricts atmospheric dispersion and
416 suppresses photochemical intensity, while sustained traffic and industrial emissions maintain relatively
417 high NO_x levels, making ozone production more strongly constrained by VOC availability (Lu et al.,
418 2019a). The rate-of-change characteristics of ΔHCHO and ΔNO_2 further support this interpretation.
419 Compared with the other three cities, Chengdu exhibits the smallest variability in both ΔHCHO and
420 ΔNO_2 . During the morning (09:00 – 11:00), NO₂ continues to increase, whereas HCHO does not show
421 a corresponding enhancement, limiting the amplification of radical chain reactions and thereby
422 suppressing rapid ozone formation. Even in the afternoon, when NO₂ experiences sustained net loss
423 and HCHO increases concurrently, $\Delta \text{HCHO} / \Delta \text{NO}_2$ remains persistently low, indicating that ozone

424 formation in Chengdu is consistently dominated by a VOC-limited regime.
 425 In Guangzhou, ozone formation is dominated by the transitional regime before 12:00, followed by
 426 the NO_x-limited and VOC-limited regimes. After 12:00, the VOC-limited regime disappears, and ozone
 427 formation gradually shifts toward a pattern dominated by the NO_x-limited regime, with the transitional
 428 regime as secondary. Guangzhou exhibits the T_{2m} and RH among the four cities, reflecting a typical hot
 429 and humid coastal climate in southern China. Under emission conditions characterized by the
 430 coexistence of high NO_x levels and abundant reactive VOCs, together with strong photochemical
 431 activity, NO₂ is rapidly photolyzed, while the continuously increasing emissions and oxidation of
 432 biogenic and anthropogenic VOCs in the southern coastal region sustain high HCHO concentrations.
 433 This feature results in a persistently low fraction of the VOC-limited regime (Wang et al., 2021b; Wei
 434 et al., 2023). After 12:00, the net loss rate of NO₂ weakens rapidly, whereas HCHO maintains stable
 435 positive production, leading to a pronounced short-term enhancement in the marginal sensitivity of
 436 ozone formation to NO_x and a progressive transition toward a NO_x-limited regime. Overall, Guangzhou
 437 is characterized by an HCHO-abundant regime driven by strong biogenic and anthropogenic VOC
 438 emissions. These features are consistent with previous understandings of ozone formation mechanisms
 439 in eastern and southern Chinese cities (Wang et al., 2021a; Wang et al., 2025c).
 440 Therefore, effective ozone pollution control should avoid single-precursor strategies and instead
 441 implement coordinated and time-dependent reductions of VOCs and NO_x tailored to different regions
 442 and meteorological conditions to achieve stable and effective ozone mitigation.
 443

444
 445 **Figure 9.** O₃ formation regimes and hourly variations in meteorological conditions and precursors for representative cities (Beij
 446 ing(a,e,i), Nanjing(b,f,j), Chengdu(c,g,k), and Guangzhou(d,h,l)). (a-d) fractional contributions of O₃ formation regimes. (e-h) ho
 447 urly time series of meteorological variables (BLH, T_{2m}, RH, SSR). (i-l) hourly rates of change in Δ HCHO and Δ NO₂.
 448

4 Conclusions and Outlook

449 HCHO is a key intermediate in photochemical reactions involving VOCs and serves as a precursor
450 for ozone formation. Here, utilizing GEMS satellite technology and ground-based monitoring stations,
451 we analyzed the relationship between meteorological factors and the spatiotemporal distribution of
452 O₃-NO_x-VOC_s from 9:00 to 16:00 in major Chinese regions, based on daily O₃-NO₂-HCHO data and
453 meteorological parameters from the warm seasons of 2021–2023. In addition, the sensitivity
454 characteristics of the HCHO-to-NO₂ relationship were examined to analyze the spatiotemporal
455 characteristics of O₃ formation and the differences in formation mechanisms across major regions of
456 China and representative cities (Beijing, Nanjing, Chengdu, and Guangzhou). The main conclusions are
457 summarized as follows:

458 O₃ and HCHO concentrations generally exhibited an upward trend from 09:00 to 16:00, peaking at
459 15:00 and 16:00, respectively. In contrast, NO₂ concentrations generally declined, with a notable
460 rebound only at 10:00. Spatially, elevated levels of O₃, NO₂ and HCHO were concentrated in the BTH,
461 YRD, SC and PRD regions. Meteorologically, both T_{2m} and SSR exerted positive effects on ozone and
462 HCHO concentrations. Meanwhile, enhanced photochemical activity and increased boundary layer
463 height occasionally led to a reduction in nitrogen dioxide levels.

464 The scatter plot indicates that NO_x reaches saturation at 09:00. During the afternoon period (after
465 12:00), the ozone formation environment exhibits a distinct non-linear trend characterized by high
466 VOC concentrations and low NO₂ concentrations. Moreover, compared to cubic polynomial fitting,
467 LOESS fitting better highlights the diurnal variation characteristics of the quantitative relationship
468 between FNR. Particularly after 12:00, the nonlinear relationship between O₃-NO_x-VOC_s exhibits R² ≥
469 0.88. The O₃ sensitivity curve remains consistent, peaking at 15:00 (1.97) with values ranging between
470 [1.40–2.45].

471 From the spatio-temporal distribution of ozone formation mechanisms, China's primary regions
472 remain predominantly NO_x-limited, with VOC-limited and transitional zones concentrated in the
473 northern study area and parts of SC. Temporally, VOC-limited zones peak between 11:00 and 12:00,
474 while transitional zones expand after 13:00. Additionally, the PRD region gradually transitioned from a
475 VOC-limited pattern towards NO_x-limited and transitional modes between 2021 and 2023.

476 With respect to the dominant drivers of the diurnal variation in ozone formation sensitivity across
477 major urban regions, Beijing, Nanjing, Chengdu, and Guangzhou are selected as representative cities
478 for the BTH, YRD, SC and PRD regions, respectively. The results show that Beijing, under a NO_x-rich
479 emission background, exhibits a VOC-limited regime driven by strong solar radiation and rapid
480 boundary layer development, and transitions toward a transitional regime in the afternoon. Nanjing is
481 dominated by a transitional regime jointly controlled by VOC_s and NO_x under hot and humid
482 meteorological conditions, with complex diurnal variability arising from the nonlinear photochemical
483 response of ozone formation to its precursors. Chengdu is dominated by a VOC-limited regime,
484 primarily driven by basin-induced constraints on atmospheric dispersion that lead to persistent NO_x
485 accumulation and relatively weak photochemical activity, resulting in a comparatively stable diurnal
486 pattern. Guangzhou, under hot and humid climatic conditions, experiences persistently high HCHO
487 levels driven by active biogenic and anthropogenic VOC emissions, which promote a transition of
488 ozone formation toward a NO_x-limited regime.

489 It should be noted that this study still has some limitations in characterizing ozone formation
490 mechanisms. On the one hand, the formation processes of ozone precursors within the study regions
491 have not been explicitly examined, including anthropogenic sources (such as industrial, traffic, and
492 power generation emissions) as well as other influencing factors such as atmospheric pressure,

493 precipitation, and vegetation, and a detailed source apportionment of ozone over major regions of
494 China is lacking. On the other hand, the suppressive effects of aerosols on ozone formation—through
495 the attenuation of solar radiation and the reduction of photolysis rates—are not considered, which may
496 further influence the diagnosis of ozone sensitivity to NO_x and VOCs. Future research will integrate
497 regional air quality models, high-resolution anthropogenic VOC emission inventories, and
498 aerosol-radiation interaction processes to systematically analyze the nonlinear response characteristics
499 of O₃-VOC-NO_x, in order to support the formulation of precise emission reduction and coordinated
500 control strategies for different periods and regions.

501

502 **Data availability.** GEMS satellite data (level-2 tropospheric NO₂ and HCHO data) are accessib
503 le via the National Institute of Environmental Research (NIER) website (<https://nesc.nier.go.kr/k0/html/Index.do>). Ground-based ozone station data originate from the China National Atmospher
504 ic Environment Monitoring Network (<https://air.cnemc.cn:18007/>). Land use type remote sensing
505 data (30-metre resolution) can be found at <https://www.resdc.cn/DOI/doi.aspx?DOIid=54>. 2-met
506 er temperature (T2m), relative humidity (RH), near-surface net radiation flux (SSR), and bound
507 ary layer height (BLH) can be downloaded from the ERA5 database (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html>).

508

509 **Author contributions.** Conceptualization: FQ and MM. Methodology: FQ. Investigation: CH, JW and
510 YJ. Visualization: YJ and MM. Supervision: QF and JK. Writing—original draft: YJ, CH and MM.
511 Writing—review & editing: MM. and JK.

512

513 **Competing interests.** The contact author has declared that none of the authors has any competing
514 interests.

515

516 **Acknowledgements.** The GEMS team is gratefully acknowledged for their valuable data and technical
517 support in this study.

518

519 **Financial support.** This work was supported by the Science and Technology Program of Guangdong
520 Province (Science and Technology Innovation Platform Category) (Grant No. 2019B121201002), and
521 the National Natural Science Foundation of China (Grant No. 42075181, 42375182, and 42175086).

522

523

524 **References**

525
526 Akimoto.: Global Air Quality and Pollution, Science., 302, 1716-1719, <https://doi.org/10.1126/science.1092666>, 2004.
527
528 Acdan, J. J., Pierce, R. B., Dickens, A. F., Adelman, Z., and Nergui, T.: Examining TROPOMI
529 formaldehyde to nitrogen dioxide ratios in the Lake Michigan region: implications for oz
530 one exceedances, Atmos. Chem. Phys., 23, 7867–7885, <https://doi.org/10.5194/acp-23-7867-2>
531 023, 2023.
532
533 Bhartia, P.K.: OMI algorithm theoretical basis document, volume II, OMI ozone products, In N
534 ASA-OMI (Ed.), Washington, DC: ATBD-OMI-02, 2002.
535 Bin, C., Wang, Y. X., Huang, J. P., Zhao, L., Chen, R. M., Song, Z. H., and Hu, J. H.: Esti
536 mation of near-surface ozone concentration and analysis of main weather situation in Chin

537 a based on machine learning model and Himawari-8 TOAR data, *The Science of the total*
538 *environment*, 864, 160928-160928, <https://doi.org/10.1016/J.SCITOTENV.2022.160928>, 2022.
539

540 Baek, K., Kim, J. H., Bak, J., Haffner, D. P., Kang, M., and Hong, H.: Evaluation of total oz
541 one measurements from Geostationary Environmental Monitoring Spectrometer (GEMS), *At*
542 *mos. Meas. Tech.*, 16, 5461–5478, <https://doi.org/10.5194/amt-16-5461-2023>, 2023.

543 Chen, Y., Wang, M., Yao, Y., Zeng, C., Zhang, W., Yan, H., Gao, P., Fan, L., and Ye, D.: Res
544 *earch on the Ozone Formation Sensitivity Indicator of Four Urban Agglomerations of Chin*
545 *a Using Ozone Monitoring Instrument (OMI) Satellite Data and Ground-Based Measureme*
546 *nts*, *Sci. Total Environ.*, 869, 161679, <https://doi.org/10.1016/J.SCITOTENV.2023.161679>, 20
547 23.

548 Chen, J. J., Shen, H. F., Li, X. H., Li, T. W., and Wei, Y.: Ground-level ozone estimation bas
549 ed on geo-intelligent machine learning by fusing in-situ observations, remote sensing data,
550 and model simulation data, *International Journal of Applied Earth Observation and Geoinfo*
551 *rmation*, 112, <https://doi.org/10.1016/J.JAG.2022.102955>. 2022.

552 Coates, J., Mar, K., Ojha, N., and Butler T.: The influence of temperature on ozone production
553 under varying NO_x conditions – a modelling study, *Atmos. Chem. Phys.*, 16, 11601–1161
554 5, <https://doi.org/10.5194/acp-16-11601-2016>, 2016.

555 Chang, C. Y., Faust, E., Hou, X. T., Lee, P. K., Hyun, C. K., Brent, C. H., and Liao, K. J.: I
556 *nvestigating ambient ozone formation regimes in neighboring cities of shale plays in the*
557 *Northeast United States using photochemical modeling and satellite retrievals*, *Atmospheric*
558 *Environment*, 142, 152–170, <https://link.cnsi.net/doi/10.1016/j.atmosenv.2016.06.058>, 2016.

559 Du, X. H., Tang, W., Zhang, Z. Z., Li, Y., Yu, Y., Xiao, Z. S., and Meng, F.: Sensitivity mod
560 *eling of ozone and its precursors over the Chengdu metropolitan area*, *Atmospheric Enviro*
561 *nment*, 277, <https://doi.org/10.1016/J.ATMOSENV.2022.119071>, 2022a.

562 Du, X. H., Wei, T., Cheng, M. M., Zhang, Z. Z., Li, Y., Li, Y., and Fan, M.: Modeling of sp
563 *patial and temporal variations of ozone-NO_x-VOC sensitivity based on photochemical indicat*
564 *ors in China*, *Journal of Environmental Sciences*, 114, 454–464, <https://doi.org/10.1016/J.JES.2021.12.026>, 2022b.

566 Elise, P., and Tracey, H.: Evaluating current satellite capability to observe diurnal change in nit
567 *rogen oxides in preparation for geostationary satellite missions*, *Environmental Research Le*
568 *tters*, 15, 034038–034038, <https://doi.org/10.1088/1748-9326/ab6b36>, 2020.

569 Feng, Z. Z., Xu, Y. S., Kobayashi, K., Dai, L. L., Zhang, T. Y., Agathokleous, E., Calatayud,
570 V., Paoletti, E., Mukherjee, A., Agrawal, M., Park, R. J., Oak, Y. J., and Yue, X.: Ozone
571 *pollution threatens the production of major staple crops in East Asia*, *Nature Food*, 3, 47–
572 56, <https://doi.org/10.1038/S43016-021-00422-6>, 2022.

573 Feng, Z. H., Alessandra, D. M., Alessandro, A., Maurizio, G., Pierre, S., Tian, H. Q., Francesc
574 a, F., Tao, F. L., Guo, A. H., and Elena, P.: Economic losses due to ozone impacts on hu
575 *man health, forest productivity and crop yield across China*, *Environment International*, 131,
576 104966, <https://doi.org/10.1016/j.envint.2019.104966>, 2019.

577 Grytsai, A., and Milinevsky, G.: SCIAMACHY/Envisat, OMI/Aura, and ground-based total ozon
578 e measurements over Kyiv-Goloseyev station, *International Journal of Remote Sensing*, 34,
579 5611–5622, <https://doi.org/10.1080/01431161.2013.794988>, 2013.

580 Georgiana, G., Sabina, S., Constantin, R., and Cristinel, G.: Assessing of surface-ozone concent

581 ration in Bucharest, Romania, using OML and satellite data, *Atmospheric Pollution Research*
582 h, 7, 567–576, <https://doi.org/10.1016/j.apr.2016.02.001>, 2016.

583 Han, T., Hu, X. M., Zhang, J., Xue, W. H., Che, Y. F., Deng, X. Q., and Zhou, L. H.: Rebuil
584 ding high-quality near-surface ozone data based on the combination of WRF-Chem model
585 with a machine learning method to better estimate its impact on crop yields in the Beijin
586 g-Tianjin-Hebei region from 2014 to 2019, *Environmental pollution*, 336, 122334-122334,
587 <https://doi.org/10.1016/J.ENVPOL.2023.122334>, 2023.

588 Itahashi, S., Yumimoto, K., Uno, I., Kurokawa, J., Ohara, T., Morino, Y., and Nagashima, T.:
589 Fifteen-year trends (2005–2019) in the satellite-derived HCHO and NO₂ columns over East
590 Asia, *Remote Sensing*, 14, 4512, <https://doi.org/10.3390/rs14184512>, 2022.

591 Jin, X., Fiore, A., Boersma, K. F., Smedt, I. D., and Valin, L.: Inferring Changes in Summerti
592 me Surface Ozone–NO_x–VOC Chemistry over U.S. Urban Areas from Two Decades of Sat
593 ellite and Ground-Based Observations, *Environ. Sci. Technol.*, 54, 6518–6529, [https://doi.org/10.1021/acs.est.9b07785](https://doi.or
594 g/10.1021/acs.est.9b07785), 2020.

595 Jin, X. M., Arlene, M. F., Lee, T. M., Lukas, C. V., Lok, N. L., Bryan, D. K., Folkert, B., Is
596 abelle, D. S., Gonzalo, G. A., Kelly, C., and Gail, S. T.: Evaluating a space-based indicat
597 or of surface ozone-NO_x-VOC sensitivity over midlatitude source regions and application t
598 o decadal trends, *J. Geophys. Res. Atmos.*, 122, 10439–10461, [https://doi.org/10.1002/2017JD026720](https://doi.org/10.1002/2017J
599 D026720), 2017.

600 Jing, F., Chao, Y., Li, Y. C., Ying, Z., Meng, F., Tao, J. H., and Chen, L. F.: Comparison of
601 FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chin
602 ese Urban Agglomerations, *Remote Sensing*, 17, 3321-332, [https://doi.org/10.3390/RS171933 21](https://doi.org/10.3390/RS171933
603 21), 2025.

604 Javed, Z., Liu, C., Khokhar, M. F., Tan, W., Liu, H., Xing, C., Ji, X., Tanvir, A., Hong, Q., a
605 nd Sandhu, O.: Ground-Based MAX-DOAS Observations of CHOCHO and HCHO in Beij
606 ing and Baoding, China, *Remote Sens.*, 11, 1524, <https://doi.org/10.5194/acpd-12-3983-2012>,
607 2019.

608 Jin, X., and Holloway, T.: Spatial and temporal variability of ozone sensitivity over China obse
609 rved from the Ozone Monitoring Instrument, *Journal of Geophysical Research: Atmosphere*
610 s, 120, 7229–7246, <https://doi.org/10.1002/2015JD023250>, 2015.

611 Kleinman, L. I., Daum, P. H., Lee, Y. N., Nunnermacker, L. J., Springston, S. R., Weinstein-LI
612 oyd, J., and Rudolph, J.: A comparative study of ozone production in five U.S. metropolit
613 an areas, *Journal of Geophysical Research*, 110, D02301, [https://doi.org/10.1029/2004JD005096](https://doi.org/10.1029/2004JD005
614 096), 2005.

615 Klára, Č., Kamil, L., Ladislav, M., and Martin, S.: Intercomparison of Ground- and Satellite-Ba
616 sed Total Ozone Data Products at Marambio Base, Antarctic Peninsula Region, *Atmosphere*,
617 10, <https://doi.org/10.3390/atmos10110721>, 2019.

618 Kim, J., Jeong, U., Ahn, M. h., Kim, J. H., Park, R. J., Lee, H. L., Song, C. H., Choi, Y. S.,
619 Lee, K. H., Yoo, J. M., Jeong, M. J., Park, S. K., Lee, K. M., Song, C. K., Kim, S. W.,
620 Kim, Y. J., Kim, S. W., Kim, M. J., Go, S. J., Liu, X., Chance, K., Miller, C. C., Jay,
621 A. S., Ben, V., Bhartia, P. K., Torres, O., Abad, G. G., Haffner, D. P., Ho, K. D., Lee, S.
622 H., Woo, J. H., Chong, H. S., Park, S. S., Nicks, D., and Cho, W. J.: New era of air q
623 uality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS),
624 *Bull. Am. Meteorol. Soc.*, 101, E1–E22, <https://doi.org/10.1175/BAMS-D-18-0013.1>, 2020.

625 Kim, S., and Kim, D.: First-time comparison between NO₂ vertical columns from Geostationary
626 Environmental Monitoring Spectrometer (GEMS) and Pandora measurements, *Atmos. Meas. Tech.*, 16, 3959–3972, <https://doi.org/10.5194/amt-16-3959-2023>, 2023.

627 Kelly, N. A., Wolff, G. T., and Ferman, M. A.: Sources and sinks of ozone in rural areas, *Atmos. Environ.*, 18, 1251–1266, [https://doi.org/10.1016/0004-6981\(84\)90036-2](https://doi.org/10.1016/0004-6981(84)90036-2), 1984.

630 Liang, Y. N., Wang, X. H., Qi, S. M., Xu, J. M., and Liu R.: Analysis of Ozone Formation Sensitivity in Guangdong Province Based on OMI Satellite and Ground Observation Data, *Environmental Science*, 45, 6248-6254, <https://doi.org/10.13227/j.hjkx.202311261>, 2024.

633 Liu, C. Q., and Shi, K.: A review on methodology in O₃-NO_x-VOC sensitivity study, *Environmental Pollution*, 291, 118249-118249, <https://doi.org/10.1016/J.ENVPOL.2021.118249>, 2021.

635 Li, Z. K.: Nonlinear responses of ozone and its precursors and control strategies in the Pearl River, Ph.D. thesis, South China University of Technology, China, https://kns.cnki.net/kcms2/article/abstract?v=CeTIW1Ci4b03H3XltRrYGM3j24nM-2ZEag1rBEF0gz-DuXyagqymhLMSoswUwcREHljiL3_XwQICI_Z3gMhuM4_XbaFiYNeLuyPBKk3iwgaefYcRhnvdm1tD_lOglNmirZ5jjovCZ2U3mrqiC1fTPPicHFnPbu4SzR-ndxZQJBAtEmAb4IO92Zg0mfj4Htjp&uniplatform=NZKPT&language=CHS, 2023.

641 Li, Y.: Study on Ozone Formation Sensitivity in the Pearl River Delta Based on Satellite Remote Sensing and Air Quality Models, Ph.D. thesis, South China University of Technology, China, <https://doi.org/10.27151/d.cnki.ghnlu.2021.005599>, 2021.

644 Lyu, C. G., Zhang, W. M., Zhang, C., Shi, Y. F., Zhang, Y., and Wang, Y. P.: Evaluating the spatial representativeness of ground-based observations for satellite total ozone products, *International Journal of Applied Earth Observation and Geoinformation*, 129, 103778, <https://doi.org/10.1016/J.JAG.2024.103778>, 2024.

648 Li, T. W., and Chen, X.: Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach, *International Journal of Applied Earth Observations and Geoinformation*, 101, <https://doi.org/10.1016/J.JAG.2021.102356>, 2021.

652 Liu, Y. H., Zhou, H. H., Wei, W. Y., Chen, X. S., Zhou, M., Liu, Y. H., Ma, X. F., Yang, X. P., Song, H., Chen, X. R., Wang, H. C., Tan, Z. F., Wang, Z. F., Zhang, Y. H., and Lu, K. D.: Development and Evaluation of Mechanism for Air pollution complex version 1.0 (MAX1), *Advances in Atmospheric Sciences*, 43, 695-705, <https://doi.org/10.1007/S00376-025-4456-Z>, 2025.

657 Lee, G. T., Park, R. J., Kwon, H. A., Ha, E. S., Lee, S. D., Shin, Seunga, A. M., Kang, M., Choi, Y. S., and Kim, G.: First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period, *Atmos. Chem. Phys.*, 24, 4733–4749, <https://doi.org/10.5194/egusphere-2023-1918>, 2024.

661 Li, D. R., Wang, S. S., Xue, R. B., Zhu, J., Zhang, S. B., Sun, Z. B., and Zhou, B.: OMI-oberved HCHO in Shanghai, China, during 2010–2019 and ozone sensitivity inferred by an improved HCHO/NO₂ ratio, *Atmospheric Chemistry and Physics*, 21, 15447-15460, <https://doi.org/10.5194/ACP-21-15447-2021>, 2021.

665 Liu, Y., and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – Part 1: The complex and varying roles of meteorology, *Atmos. Chem. Phys.*, 20, 6305–6321, <https://doi.org/10.1073/pnas.1812168116>, 2020.

668 Li, Y., Yu, C., Tao, J., Lu, X., and Chen, L.: Analysis of Ozone Formation Sensitivity in Chin

669 ese Representative Regions Using Satellite and Ground-Based Data, *Remote Sens.*, 16, 316,
670 <https://doi.org/10.3390/RS16020316>, 2024.

671 Lu, X., Zhang, L., and Shen, L.: Meteorology and Climate Influences on Tropospheric Ozone:
672 a Review of Natural Sources, Chemistry, and Transport Patterns, *Current Pollution Reports*,
673 5, 238–260, <https://doi.org/10.1007/s40726-019-00118-3>, 2019b.

674 Lu, X., Zhang, L., Chen, Y. F., Zhou, M., Zheng, B., Li, K., Liu, Y. M., Lin, J. T., Fu, T.
675 M., and Zhang, Q.: Exploring 2016–2017 surface ozone pollution over China: source contr
676 ibutions and meteorological influences, *Atmospheric Chemistry and Physics*, 19, 8339–8361.
677 <https://doi.org/10.5194/acp-19-8339-2019>, 2019a.

678 Maji, K. J., and Namdeo, A.: Continuous increases of surface ozone and associated premature
679 mortality growth in China during 2015–2019, *Environmental Pollution*, 269, 116183, <https://doi.org/10.1016/J.ENVPOL.2020.116183>, 2021.

680 Mahajan, A. S., Isabelle, D. S., Mriganka, S. B., Sachin, G., Suvarna, F., Chaitri, R., and Mic
681 hel, V. R.: Inter-annual variations in satellite observations of nitrogen dioxide and formalde
682 hyde over India, *Atmospheric Environment*, 116, 194–201, <https://doi.org/10.1016/j.atmosenv.2015.06.004>, 2015.

683 Min, S., Wang, W. J., Bin, Y., David, D. P., Li, X., Lu, K. D., Wu, L. L., Wang, X. M., Mo,
684 Z. W., Yang, S. X., Peng, Y. W., Kuang, Y., Chen, W. H., Hu, M., Zeng, L. M., Su, H.,
685 Cheng, Y. F., Zheng, J. Y., and Zhang, Y. H.: Quantifying the role of PM_{2.5} dropping in
686 variations of ground-level ozone: Inter-comparison between Beijing and Los Angeles, *Scienc
687 e of the Total Environment*, 788, 147712, <https://doi.org/10.1016/j.scitotenv.2021.147712>, 2
688 021.

689 Oak, Y. J., Jacob, D. J., Balasus, N., Yang, L. H., Chong, H., Park, J., Lee, H., Lee, G. T., H
690 a, E. S., Park, R. J., Kwon, H. A., and Kim, J.: A bias-corrected GEMS geostationary sa
691 tellite product for nitrogen dioxide using machine learning to enforce consistency with the
692 TROPOMI satellite instrument, *Atmos. Meas. Tech.*, 17, 5147–5159, <https://doi.org/10.5194/amt-17-5147-2024>, 2024.

693 Pan, Q. Q.: Spatiotemporal Distribution Characteristics of Ozone and Its Precursors in the Yang
694 tze River Delta Region and Analysis of Ozone Formation Processes under Different NO_x E
695 mission Scenarios, Ph.D. thesis, Donghua University, China, [https://doi.org/10.27012/d.cnki.g dhuu.2023.001648](https://doi.org/10.27012/d.cnki.g
696 dhuu.2023.001648), 2023.

697 Peng, H. C., Xing, C. Z., Li, Y. K., Zhang, C. X., Lin, J. N., Xue, J. K., Wang, X. H., Song,
698 Y. H., Niu, X. H., and Liu, C.: Studies on regional ozone formation sensitivities and tran
699 sport with higher spatiotemporal resolutions in a stereoscopic dimension: GEMS and vertic
700 al observations, *Atmospheric Research*, 302, 107314, [https://doi.org/10.1016/J.ATMOSRES.2024.107314](https://doi.org/10.1016/J.ATMOSRES.2
701 024.107314), 2024.

702 Paul, S. R., Kaitlin, C. D., Paul, J. W., Eric, E., Karsten, B., Philip, A. F., David, O. M., Will
703 iam, H. B., Abigail, R. K., Joost, A. G., Pawel, K. M., Allen, H. G., and Ronald, C. C.:
704 Effects of temperature-dependent NO_x emissions on continental ozone production, *Atmosph
705 eric Chemistry and Physics*, 18, 2601–2614, <https://doi.org/10.5194/acp-18-2601-2018>, 2018.

706 Ren, J., Guo, F. F., and Xie, S. D.: Diagnosing ozone–NO_x–VOC sensitivity and revealing cau
707 ses of ozone increases in China based on 2013–2021 satellite retrievals, *Atmospheric Che
708 mistry and Physics*, 22, 15035–15047, <https://doi.org/10.5194/ACP-22-15035-2022>, 2022.

709 Sillman, S.: The use of NO_y, H₂O₂, and HNO₃ as indicators for ozone–NO_x–hydrocarbon sensit

713 ivity 100, 14175–14188, Journal of Geophysical Research Atmospheres, <https://doi.org/10.1029/94JD02953>, 1995.

714

715 Sillman, S., and He, D.: Some theoretical results concerning O₃-NO-VOC chemistry and NO-V
716 OC indicators, *Geophys. Res. Atmos.*, 107, 1-15, <https://doi.org/10.1029/2001JD001123>, 200
717 2.

718 Souri, A., Nowlan, C., Wolfe, G., Lamsal, L., Miller, C., Abad, G. G., Janz, S., Fried, A., Bla
719 ke, D., Weinheimer, A., Diskin, G., Liu, X., and Chance, K.: Revisiting the effectiveness
720 of HCHO/NO₂ ratios for inferring ozone sensitivity to its precursors using high resolution
721 airborne remote sensing observations in a high ozone episode during the KORUS-AQ cam
722 paign, *Atmos. Environ.*, 224, 117341, <https://doi.org/10.1016/j.atmosenv.2020.117341>, 2020.

723 Sun, Y. W., Yin, H., Liu, C., Zhang, L., Cheng, Y., Palm, M., Notholt, J., Lu, X., Vigouroux,
724 C., Zheng, B., Wang, W., Jones, N., Shan, C. G., Qin, M., Tian, Y., Hu, Q. H., Meng, F.
725 H., and Liu, J. G.: Mapping the drivers of formaldehyde (HCHO) variability from 2015 t
726 o 2019 over eastern China: insights from Fourier transform infrared observation and GEO
727 S-Chem model simulation, *Atmospheric Chemistry and Physics*, 21, 6365-6387, <https://doi.org/10.5194/ACP-21-6365-2021>, 2021.

728

729 Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., and Yue, D.:
730 Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemi
731 cally polluted season: a case study based on box model simulation, *Atmos. Chem. Phys.*,
732 19, 3493–3513, <https://doi.org/10.5194/acp-19-3493-2019>, 2019.

733 Wang, M., Sheng, H., Liu, Y., Wang, G., Huang, H., Fan, L., and Ye, D.: Research on the Di
734 urnal Variation Characteristics of Ozone Formation Sensitivity and the Impact of Ozone Po
735 llution Control Measures in “2 + 26” Cities of Henan Province in Summer, *Sci. Total En
736 viron.*, 888, 164121, <https://doi.org/10.1016/J.SCITOTENV.2023.164121>, 2023.

737 Wu, W. L., Xue, W. B., Lei, Y., and Wang, J. N.: Sensitivity of Ozone Formation in the Beiji
738 ng-Tianjin-Hebei Region and Surrounding Areas Based on OMI Data, *China Environmental
739 Science*, 38, 1201-1208, <https://doi.org/10.19674/j.cnki.issn1000-6923.2018.0143>, 2018.

740 Wang, W. H., Liu, X., Bi, J. Z., and Liu, Y.: A machine learning model to estimate ground-le
741 vel ozone concentrations in California using TROPOMI data and high-resolution meteorolo
742 gy, *Environment International*, 158, 106917-106917, <https://doi.org/10.1016/J.ENVINT.2021.106917>, 2022.

743

744 Wang, X. H., Shen, X. E., Jiang, L., Zhang, J., Sun, S., Li, L., and Song, X. K.: Analysis of
745 changes in ozone precursors and formation sensitivity in the Beijing-Tianjin-Hebei region
746 based on TROPOMI and Ground observations, *China Environmental Science*, 45, 6571-658
747 3, <https://doi.org/10.19674/j.cnki.issn1000-6923.20250721.003>, 2025b.

748 Wang, R. F., Ma, X. D., Zhao, T. L., Wang, H. L., Ding, H., and Zheng, X. B.: Evaluation o
749 f the Applicability of MACC Reanalysis Ozone Data over China Using Ground-Based Obs
750 servations and AIRS Satellite Data, *Environmental Science*, 40, 4412-4422, <https://doi.org/10.13227/j.hjkx.201904029>, 2019.

751

752 Wu, Y., Huo, J., Yang, G., Wang, Y., Wang, L., Wu, S., Yao, L., Fu, Q., and Wang, L.: Meas
753 urement report: Production and loss of atmospheric formaldehyde at a suburban site of Sh
754 anghai in summertime, *Atmos. Chem. Phys.*, 23, 2997–3014, <https://doi.org/10.5194/acp-2022-682>, 2023.

755

756 Wang, W., Li, X., Cheng, Y., Parrish, D. D., Ni, R., Tan, Z., Liu, Y., Lu, S., Wu, Y., and Ch

757 en, S.: Ozone pollution mitigation strategy informed by long-term trends of atmospheric o
758 xidation capacity, *Nat. Geosci.*, 17, 20–25, <https://doi.org/10.1038/s41561-023-01334-9>, 202
759 4.

760 Wang, Y. H., Lucas, A. J. B., Wang, Y. A., Jin, L., and Robert, A. H.: Temperature and stagn
761 ation effects on ozone sensitivity to NO_x and VOC: an adjoint modeling study in central
762 California, *Atmospheric Chemistry and Physics*, 25, 17651–17688, [https://doi.org/10.5194/ac
763 p-25-17651-2025](https://doi.org/10.5194/ac
763 p-25-17651-2025), 2025a.

764 Wang, J., Zhang, Y. L., Xiao, S. X., Wu, Z. F., and Wang, X. M.: Ozone Formation at a Sub
765 urban Site in the Pearl River Delta Region, China: Role of Biogenic Volatile Organic Co
766 mpounds, *Atmosphere*, 14, 609, <https://doi.org/10.3390/atmos14040609>, 2021b.

767 Wei, C. B., Yu, G. H., Cao, L. M., Han, H. X., Xia, S. Y., and Huang, X. F.: Tempo-spatial
768 variation and source apportionment of atmospheric formaldehyde in the Pearl River Delta,
769 China, *Atmospheric Environment*, 312, <https://doi.org/10.1016/J.ATMOSENV.2023.120016>, 2
770 023.

771 Wang, W., Van, D. A. R., Ding, J., Van, W. M., and Cheng, T.: Spatial and temporal changes
772 of the ozone sensitivity in China based on satellite and ground-based observations, *Atmosp
773 heric Chemistry and Physics*, 21, 7253–7272, <https://doi.org/10.5194/acp-21-7253-2021>, 2021
774 a.

775 Wang, Z., Zhang, H., Shi, C. E., Ji, X. G., Zhu, Y. Z., Xia, C. Z., Sun, X. Y., Zhang, M., Lin,
776 X. F., Yan, S. W., Zhou, Y., Xing, C. Z., Chen, Y. J., and Liu, C.: Vertical and spatial dif
777 ferences in ozone formation sensitivities under different ozone pollution levels in eastern C
778 hinese cities, *npj Climate and Atmospheric Science*, 8, 30-30, [https://doi.org/10.1038/S4161
779 2-024-00855-3](https://doi.org/10.1038/S4161
779 2-024-00855-3), 2025c.

780 Xu, W., Yang, H., He, M., Yang, Z., Zhang, Y., Liu, Z. h., and He, Y. M.: Spatiotemporal Dis
781 tribution and Influencing Factors of Ozone Formation Sensitivity in the Chengdu-Chongqing
782 Region, *Environmental Science*, 46, 736-745, <https://doi.org/10.13227/j.hjkx.202312065>, 20
783 25.

784 Xu, J., Zhang, Z., Rao, L. L., Wang, Y. P., Yan, H. H., Hu, S. T., Shi, C., Liu, S., Gegen, T.,
785 Wang, W. Y., Shi, E., Yao, S., Zhu, J., Wang, Y. M., Dong, X. L., and Shi, J. C.: Trop
786 ospheric ozone retrieval from satellite remote sensing—a review, *Advances in Earth Science*,
787 39, 56–70, <https://doi.org/10.11867/j.issn.1001-8166.2024.002>, 2024.

788 Xie, M., Zhu, K., Wang, T., Chen, P., Han, Y., Li, S., Zhuang, B., and Shu, L.: Temporal cha
789 racterization and regional contribution to O₃ and NO_x at an urban and a suburban site in
790 Nanjing, China, *Sci. Total Environ.*, 551–552, <https://doi.org/10.1016/j.scitotenv.2016.02.047>,
791 2016.

792 Xia, N., Du, E. Z., Guo, Z. D., and Wim, D. V.: The diurnal cycle of summer tropospheric o
793 zone concentrations across Chinese cities: Spatial patterns and main drivers, *Environmental
794 Pollution*, 286, 117547-117547, <https://doi.org/10.1016/J.ENVPOL.2021.117547>, 2021.

795 Yang, K. P., Liu, H. R., Xing, C. Z., Su, W. J., Hong, Q. Q., Li, Q. H., Ji, X. G., and Liu,
796 C.: Study on Tropospheric Ozone Characteristics in the Pearl River Delta Region Based o
797 n TROPOMI Observations, *Journal of Atmospheric and Environmental Optics*, 20, 47-59,
798 [https://kns.cnki.net/kcms2/article/abstract?v=IC7xd21WxIgGWOCGHFjrWcJdWGGUXTUtn1
800 MdXPLthyYjTgTKSephpq9a9Ps9sajJR9fgJE81QBSu6JRWKnNSQYWRNnRiDHOHFSkq_Ddtf
VzeBFsRGluXg5OwAyP3QAD1Kmf9L6E8Sdh4z2tYojS2PUsNg7DPCMwAgJFBMBFZKeekT_](https://kns.cnki.net/kcms2/article/abstract?v=IC7xd21WxIgGWOCGHFjrWcJdWGGUXTUtn1
799 MdXPLthyYjTgTKSephpq9a9Ps9sajJR9fgJE81QBSu6JRWKnNSQYWRNnRiDHOHFSkq_Ddtf
800 VzeBFsRGluXg5OwAyP3QAD1Kmf9L6E8Sdh4z2tYojS2PUsNg7DPCMwAgJFBMBFZKeekT_)

801 g0k2fUow==&uniplatform=NZKPT&language=CHS, 2025.

802 Yu, L., Cheng, M. M., Guo, Z., Zhang, X. Y., Cui, X. M., and Chen, S. G.: Increase in Surface
803 Ozone over Beijing-Tianjin-Hebei and the Surrounding Areas of China Inferred from Sa-
804 tellite Retrievals, 2005-2018, *Aerosol and Air Quality Research*, 20, 2170-2184, <https://doi.org/10.4209/aaqr.2019.11.0603>, 2020.

805 Yang, W., Lampel, J., Xie, P., Beirle, S., and Wagner, T.: Ground-based MAX-DOAS observati-
806 ons of tropospheric aerosols, NO₂, SO₂ and HCHO in Wuxi, China, from 2011 to 2014,
807 *Atmos. Chem. Phys.*, 17, 2189-2215, <https://doi.org/10.5194/acp-17-2189-2017>, 2017.

808 Yang, Y. M., Li, X., Zu, K. X., Lian, C. F., Chen, S. Y., Dong, H. B., Feng, M., Liu, H. F.,
809 Liu, J. W., Lu, K. D., Lu, S. H., Ma, X. F., Song, D. L., Wang, W. G., Yang, S. D., Ya-
810 ng, X. P., Yu, X. N., Zhu, Y., Zeng, L. M., Tan, Q. W., and Zhang, Y. H.: Elucidating the
811 effect of HONO on O₃ pollution by a case study in southwest China, *Science of the To-
812 tal Environment*, 756, <https://doi.org/10.1016/J.SCITOTENV.2020.144127>, 2021.

813 Yang, X., Wu, K., Wang, H., Liu, Y., and Wang, Z.: Summertime ozone pollution in Sichuan
814 Basin, China: Meteorological conditions, sources and process analysis, *Atmos. Environ.*, 22
815 6, 117392, <https://doi.org/10.1016/j.atmosenv.2020.117392>, 2020.

816 Zhou, H., Wang, M., Chai, W. X., and Zhao, X.: Analysis of Ozone Sensitivity in Beijing Urb-
817 an Area Based on Random Forest, *Environmental Science*, 45, 2497-2506, <https://doi.org/10.13227/j.hjkx.202306034>, 2024.

818 Zhang, Y. Z., Wang, Y. H., Crawford, J., Cheng, Y., and Li, J. F.: Improve observation-based
819 ground-level ozone spatial distribution by compositing satellite and surface observations: A
820 simulation experiment, *Atmospheric Environment*, 180, 226-233, <https://doi.org/10.1016/j.at->
821 mosev.2018.02.044, 2018.

822 Zhang, X. Y., Zhao, L. M., Cheng, M. M., and Chen, D. M.: Estimating Ground-Level Ozone
823 Concentrations in Eastern China Using Satellite-Based Precursors, *IEEE Transactions on
824 Geoscience and Remote Sensing*, 1-10, <https://doi.org/10.1109/tgrs.2020.2966780>, 2020.

825 Zhang, K., and Batterman, S. A.: Time allocation shifts and pollutant exposure due to traffic
826 congestion: an analysis using the national human activity pattern survey, *Sci. total environ.*,
827 407, 5493-5500, <https://doi.org/10.1016/j.scitotenv.2009.07.008>, 2009.

828 Zhang, J. X., Gao, Y., Leung, L. R., Luo, K., Wang, M. H., Zhang, Y., Bell, M. L., and Fan,
829 J. R.: Disentangling the mechanism of temperature and water vapor modulation on ozone
830 under a warming climate, *Environmental Research Letters*, 17, <https://doi.org/10.1088/1748-9326/ACA3BC>, 2022.

831

832

833