

1 Distinct atmospheric drivers of Ross Sea coastal polynya 2 variability during winter

3 **Girija Kalyani Burada^{1,2}, James Renwick¹, and Adrian McDonald³**

4 ¹ School of Geography Environment and Earth Sciences, Victoria University of Wellington, Wellington 6012,
5 New Zealand.

6 ² *Current affiliation:* Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot,
7 7610001 Israel

8 ³ School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand

9 **10 Correspondence to:** Girija Kalyani Burada (girija.kalyani18@gmail.com)

11

12 **Abstract:** Coastal polynyas in the Ross Sea have well-documented links to atmospheric circulation, but the role
13 of specific circulation patterns in driving extreme wind events and their differential impact on individual polynyas
14 remains poorly explored. This study examines peak-winter (Aug-Oct) variability in the Ross Sea, Terra Nova Bay,
15 and McMurdo Sound polynyas using EOF analysis of high-resolution passive microwave sea-ice concentration
16 data. Patterns of variability are related to surface extreme winds and 500 hPa geopotential height anomalies from
17 ERA5, allowing concurrent assessment of local forcing and hemispheric-scale circulation connections.

18 Results reveal that each polynya responds differently to shifts in large-scale atmospheric features. Variations
19 in the position and intensity of the Amundsen Sea Low, and its influence on Ross Ice Shelf Air Stream winds, are
20 associated with marked changes in polynya area. By combining high-resolution sea ice concentration records with
21 targeted extreme-wind analysis, this work identifies previously unresolved, location-specific atmospheric controls
22 on Ross Sea polynya variability.

23 1. Introduction

24 Antarctic sea-ice exerts outsized influence on Southern Hemisphere and global climate through air-sea
25 heat exchange and shelf water formation; understanding the drivers of its regional variability is therefore
26 fundamental to projecting polar and global climate change. The Ross Sea (RS) sector is central to this issue: it
27 exhibits one of the largest and most variable contributions to Antarctic sea-ice trends (Yuan *et al.*, 2017), its
28 polynya contribute significantly to deep-water formation and local energy budgets, and is strongly modulated by
29 remote and regional circulation modes such as El Niño Southern Oscillation (ENSO, Cohen *et al.*, 2013),, the
30 Southern Annular Mode (SAM, Park *et al.*, 2018), Zonal Wave3 (ZW3, Goyal *et al.*, 2021) patterns and, crucially,
31 shifts in the Amundsen Sea Low (ASL, Raphael *et al.*, 2019).

32 Coastal polynyas — persistent zones of thin ice or open water adjacent to the coastline — are the
33 proximate loci of much of the Ross Sea's variability and ice production (Mezgec *et al.*, 2017; Tamura *et al.*, 2008).
34 While easy to describe in broad terms, they are complex features of the sea-ice field, and their behaviour can be
35 difficult to interpret from satellite soundings. Field campaigns and process studies (e.g., Ackley *et al.*, 2020; Guest,
36 2021; Thompson *et al.*, 2020) emphasise that polynyas are internally structured: an open-water/frazil-ice
37 production zone, an accumulation/rafted-pancake zone, and a young-floe zone, and that most of the new ice
38 formation and heat fluxes are confined to the active frazil/open-water zones. This physical zoning explains why

39 coarse or poorly validated satellite retrievals can misrepresent the processes that make polynyas “ice-production
40 factories” (Martin *et al.*, 2004; Bradtke & Herman, 2023). At the same time, studies focusing on frazil and active
41 ice production (Tamura *et al.*, 2008; Nakata *et al.*, 2021) highlight that estimates of polynya characteristics are
42 highly sensitive to the spatial resolution and retrieval approach used. Higher-resolution datasets and algorithms
43 tuned to detect thin or newly forming ice can capture the fine-scale variability within the polynya, whereas coarse
44 or generalized methods often underestimate its true area and ice production rate.

45 A large body of work links near-surface winds and synoptic circulation to polynya behaviour in the RS.
46 Strong offshore katabatic and synoptic winds drive dynamic ice export and sustain the Ross Ice Shelf Air Stream
47 (RAS), producing characteristic episodes of ice advection and polynya opening (Dale *et al.*, 2017; Coggins &
48 McDonald, 2015; Seefeldt *et al.*, 2007). Other studies document extreme, event-scale responses — for example,
49 the dramatic expansion of the Terra Nova Bay polynya during cyclone-driven wind events (Wenta & Cassano,
50 2020) — and show how large-scale modes such as a displaced ASL modulate the frequency and intensity of these
51 wind regimes (Raphael *et al.*, 2016;). Yet despite these advances, two important limitations remain in the
52 literature.

53 First, most process-level studies that validate the physics of frazil formation and air-sea fluxes (e.g.,
54 Ackley *et al.*, 2020; Guest, 2021; Thompson *et al.*, 2020) are necessarily limited in time and spatial coverage —
55 they provide excellent snapshots but cannot by themselves characterise interannual to decadal variability. Second,
56 longer-term statistical and remote sensing studies have typically sacrificed spatial resolution for record length:
57 coarser (≈ 25 km) passive microwave products and large-scale indices are useful for trends but do not reliably
58 resolve the narrow frazil or young-floe bands that control production and the detailed footprint of katabatic and
59 barrier winds (Burada *et al.*, 2023, also refer Figure S1). Conversely, newer high-resolution approaches that can
60 resolve frazil signatures or use active sensors (e.g., Sentinel-1 SAR, Nakata *et al.*, 2021; Tamura *et al.*, 2008)
61 either cover shorter time windows or are spatially fragmented, complicating assessments of long-term and large-
62 scale change.

63 There are three clear gaps to address: (i) We lack a long-term, high-spatial-resolution view of how the
64 same local polynyas; Ross Sea Polynya (RSP), Terra Nova Bay Polynya (TNBP), McMurdo Sound Polynya
65 (MCMP) respond across years to systematic shifts in large-scale circulation. (ii) There is limited synthesis that
66 links field-observed process zones (frazil/accumulation/young floe) to satellite-derived sea ice concentration
67 (SIC) patterns and to the synoptic and upper-level flow that modulates extreme winds. (iii) many statistical studies
68 quantify correlations between circulation indices and polynya area but stop short of resolving the multi-scale
69 pathway (Large-scale circulation → Extreme surface winds → local sea-ice advection), and they often over-
70 interpret observational data (melting vs. inhibited freeze-up) without reconciling process measurements.

71 This study directly targets those gaps. Using a 20-year SIC record at ~ 6.25 km resolution — combined
72 with an extreme-wind metric and 500-hPa geopotential fields from ERA5 — we provide the first comprehensive
73 multi-decadal, high-resolution analysis that: (a) examines all three major Ross Sea coastal polynyas together, (b)
74 explicitly links upper-level circulation anomalies to event-scale extreme winds and to the spatial fingerprint of
75 thin-ice/open-water bands. Using combined statistical techniques to quantify co-variability across scales, and by
76 treating SIC anomalies as proxies for thin-ice/open-water bands (with careful discussion of existing passive

77 microwave dataset limitations), we bridge the timescale/resolution divide and provide mechanistic — not merely
78 correlative — evidence that large-scale circulation shifts modulate polynya behaviour via their control of extreme
79 coastal winds.

80 In short; previous work has either resolved processes at high fidelity over short periods or produced
81 long records at coarse resolution; our contribution is to join these strengths — multi-decadal perspective, process-
82 aware interpretation, and sufficient spatial resolution to resolve the active frazil/young-floe bands — thereby
83 enabling robust attribution of polynya variability to atmospheric regimes relevant for predictability and for
84 evaluating coupled model behaviour.

85 **2. Data and Methods**

86 **2.1. Data**

87 Coastal polynyas in the Ross Sea operate across the late-autumn through early-spring period, but their
88 physical character and dominant forcing mechanisms shift seasonally. The August-September-October (ASO)
89 window (late austral winter → early spring) has three features that make it a robust target for a focused statistical
90 study: (i) sea-ice extent is near its annual maximum so polynyas appear as persistent, coastal thin-ice/open-water
91 bands embedded in a largely contiguous pack — this favours consistent detection in passive-microwave (PMW)
92 time series; (ii) wind-driven dynamical processes (katabatic and synoptic offshore winds, barrier jets) are most
93 active and repeatedly modulate ice advection and frazil-ice formation during ASO, so the atmospheric imprint is
94 strong and interpretable; (iii) before strong surface solar forcing and the onset of intense ocean–mixed-layer
95 warming (which grow after October), ASO minimizes competing oceanic thermodynamic influences (e.g., shelf
96 upwelling, summer melt) that complicate attribution of polynya variability to the atmosphere. For these reasons
97 ASO provides an optimal balance between (a) a clear atmospheric control signal, (b) reliable passive-microwave
98 detection of thin-ice bands, and (c) reduced confounding by oceanic heat-driven processes — all of which are
99 essential for statistical attribution of multi-scale linkages.

100 Daily SIC fields come from the University of Bremen ASI retrieval applied to AMSR-E (2002–2011)
101 and AMSR-2 (2012–2022) at nominal 6.25 km grid spacing. The AMSR-E → AMSR-2 transition window (Oct
102 2011–Jul 2012) is excluded from analyses to avoid known calibration discontinuities. SIC fields were masked
103 over grounded and floating ice shelves using the Antarctic Digital Database coastline (Gerrish et al., 2023) to
104 avoid contamination from shelf ice. Hourly 10-m wind fields and 500 hPa geopotential height (H500) were
105 obtained from ERA5 (0.25°). We derive the ExWinds metric as described below. All reanalysis fields were
106 regridded to the SIC grid for coupled analyses (bilinear for H500 and wind components). The spatial domain for
107 coupled analysis is 162°E–160°W, 80°S–73°S (RS sector, refer Figure 1). Analyses use ASO (August–October)
108 daily data for 2002–2022 (excluding Oct 2011–Jul 2012), providing 19 discrete annual ASO blocks for statistical
109 analysis.

110 **2.2. Methods**

111 Prior to analysis, the SIC fields were pre-processed to produce standardized anomaly time series. First, grid cells
112 over ice shelves were masked and excluded from the dataset. Next, each retained grid-cell time series was area-
113 weighted by the square root of its latitude, as a proxy for area ($\propto \sqrt{\cos \varphi}$) to remove latitudinal sampling bias. A

114 daily climatology for ASO (2002–2022) was then computed by averaging data for each calendar day over a chosen
115 reference period. A linear trend was removed from each grid point (least-squares fit) to minimize long-term bias
116 and focus on interannual variability. The resulting detrended anomalies were divided by their temporal standard
117 deviation (SD), calculated independently for each grid point. No additional averaging or smoothing was applied
118 so that the data retain the short-term and regional variability important for capturing polynya-scale changes. This
119 per-grid-point approach standardizes variability without mixing spatial and temporal variance, ensuring that all
120 locations contribute comparably to the subsequent analysis. Finally, the daily ASO standardized anomalies from
121 all years were concatenated in time to form the analysis matrix \mathbf{S} ($N_t \times N_s$), where N_t is the total number of ASO
122 days and N_s is the number of spatial grid points.

123 To capture event-scale impacts of winds (the processes most relevant to polynya opening), we compute
124 at each ERA5 grid cell; the hourly 10 m wind speed magnitude from ERA5; the daily maximum of the hourly
125 wind speed (i.e., the maximum 10-m wind observed during a given UTC day) — this is our ExWinds daily field;
126 regrid ExWinds to the SIC grid and apply the same ASO climatology removal, detrending and standardization
127 procedure as for SIC. The rationale for using daily maxima is that they better capture intense, short-lived wind
128 events than daily means and therefore produce stronger dynamic signals in coupled analysis.

129 Two standard multi-variate methods are used to analyse spatial structure and coupling strength between
130 fields:

131 **Empirical Orthogonal Functions (EOF):** Let \mathbf{S} be the standardized SIC anomaly matrix ($N_t \times N_s$). We compute
132 the spatial covariance matrix $\mathbf{C} = \mathbf{S}^T \mathbf{S}$ ($N_s \times N_s$) and perform eigen-decomposition of

$$133 \mathbf{C} \boldsymbol{\varphi}_k = \lambda_k \boldsymbol{\varphi}_k \quad [1]$$

134 where $\boldsymbol{\varphi}_k$ are spatial EOF patterns (orthonormal after area weighting) and λ_k are eigenvalues representing the
135 variance associated with each EOF (Wilks 2011). The principal component (PC) time series for mode k is the
136 projection $\mathbf{PC}_k(t) = \mathbf{S}(t, :) \cdot \boldsymbol{\varphi}_k$. The variance explained by mode k is $\lambda_k / \sum_j \lambda_j$. We test eigenvalue separation
137 using North's rule of thumb (North et al., 1982) and report modes that are distinct beyond estimated sampling
138 uncertainty.

139 **Maximum covariance analysis (MCA):** For coupled MCA (Bretherton et al 1992; Mo 2003) between SIC (\mathbf{S} ,
140 $N_t \times N_s$) and another field (\mathbf{P} , $N_t \times N_p$; e.g., ExWinds or H500), we compute

141 Cross-covariance matrix: $\mathbf{Cov} = \mathbf{S}^T \mathbf{P}$ ($N_s \times N_p$) [2]

142 Singular value decomposition yields: $\mathbf{Cov} = \mathbf{U} \mathbf{L} \mathbf{V}^T$, [3]

143 where columns of \mathbf{U} are the left singular vectors (spatial pattern in SIC), columns of \mathbf{V} are the right
144 singular vectors (spatial pattern in the other field), and diagonal entries λ_k of \mathbf{L} are singular values. The associated
145 amplitude time series are

146 $\mathbf{PC}_{\mathbf{S},k}(t) = \mathbf{S}(t, :) \cdot \mathbf{U}_k$ and $\mathbf{PC}_{\mathbf{P},k}(t) = \mathbf{P}(t, :) \cdot \mathbf{V}_k$. [4]

147 The squared covariance fraction (SCF) for mode k is

148

$$SCF_k = \frac{l_k^2}{\sum l_j^2}$$

[5]

149

and measures the fraction of total squared covariance explained by mode k.

150

Spatial maps shown in the paper are derived by regressing the standardized field (SIC, ExWinds, or H500) onto the normalized PC time series for each mode; this produces maps in standardized units (SD of the field) that are straightforward to compare across variables.

153

To verify that AMSR 6.25 km captures the same timing and broad spatial extent of polynya openings as higher-resolution sensors we performed targeted validations against Sentinel-1 SAR scenes and ARTIST-derived maps for a set of representative events (not shown). These comparisons show that 6.25 km AMSR reliably reproduces the timing and large-scale footprint of polynyas, although SAR reveals finer frazil/pancake structure within the active production band that passive-microwave retrievals show as smooth. We also performed sensitivity checks with alternative spatial weighting (no area weighting, area weighting) and with/without linear detrending; the principal modes, their interpretation, and MCA couplings are qualitatively robust across these choices. Finally, because 3.125 km-scale frazil-mapping products exist, we advise their use for event/process case studies rather than as the backbone for multi-decadal EOF/MCA, because of data set length, and we use them here only for validation and for illustrating process detail.

163 **3. Results**

164 **3.1. Winter Sea-ice concentration (SIC) and EOFs**

165

The average winter SIC (Figure 1a) is broadly uniform across the RS except in the three coastal polynya regions, which exhibit markedly lower mean SIC (~50%, green shading). The variability map in Figure 1b displays the aggregated ASO daily SD, defined as the standard deviation of all daily SIC anomaly values during ASO across 2002–2022 (within-season, day-to-day variability aggregated across all years;). This clearly highlights enhanced variability concentrated within the RSP, TNBP, and MCMP domains. In contrast, regions of compact, stable winter pack ice (e.g., central RS) maintain SIC persistently close to 100% during ASO, resulting in very low SD values (often <3%). These low values reflect the physical stability of the ice cover. A 12% SD threshold (black dashed line in Figure 1b) is used to delineate the spatial extent of polynya domains for subsequent analyses.

173

The spatial patterns of SIC variability were extracted using EOF analysis applied to the standardized ASO SIC anomaly fields. The first three EOFs (Figure 2) are statistically significant (Figure S2) by the North et al. (1982) criterion and together explain 37% of the total SIC variance within the RS coastal domain. In geophysical datasets, such explained variance is typical — the leading modes isolate the most coherent, physically interpretable large-scale patterns, whereas the remaining variance is a mix of higher-order spatial variability, localised processes, and stochastic noise (Figure S3). EOF 1 (Figure 2a) captures a coherent mode of variability encompassing all three major polynyas, with spatial anomalies closely matching the high-variability regions identified by the 12 % SD threshold in Figure 1b. Its PC time series (PC1) shows a notable increase after 2015, consistent with a recent reduction in SIC across these polynya zones. The spatial patterns two and three (Figure 2b and 2c) capture opposing behaviours in sea-ice distribution within the SD boundary of RSP, seen as north-south and east-west variances. The second pattern (Figure 2b), with 7.6% variance displays lower concentrations of sea ice over the western portion of the RSP and over the MCMP. However, opposite effects are on the eastern

185 RS and the TNBP region with higher SICs. MCMP variations dominate in this pattern. A north-south dipole
186 centred around Ross Island within RSP (black dotted lines in Figure 1), can be seen here. Increased sea-ice in
187 Eastern RS and TNBP regions, co-occur with decreased sea-ice in MCMP and east of Ross Island. Pattern three
188 (Figure 2c), with 7.4% of the variance, is close to the second pattern in terms of variance accounted for. Within
189 the SD boundary, east-west split in RS region, with a clear polynya activity in Western Ross Sea (WRS). This
190 pattern highlights lower concentration of sea ice in the western portion of RS and opposite anomalies over eastern
191 RS. PCs associated 3 show increases in 2015-2018 implying SIC decreases over WRS.

192 EOF 2 and EOF 3 have similar eigenvalues, suggesting they may represent mixed modes — i.e., different
193 linear combinations of these patterns can capture similar variance. By focusing on EOF 1–3, we retain the
194 dominant, spatially robust patterns most relevant to RSP variability, while acknowledging that the remaining 63
195 % of variance contains smaller-scale and transient processes beyond the scope of this EOF-based framework.

196 **3.2. Circulation variability and sea-ice**

197 **3.2.1. Role of Extreme Winds in RS polynya dynamics during ASO**

198 The relationship between ExWin and SIC is analysed using MCA. MCA Mode 1 (Figure 3A(a) and
199 3A(d), 73% SCF) reveals a relationship characterised by intense (seen as positive anomalies in ExWin) wind
200 speed anomalies over the three polynyas and the RIS (dashed box in Figure 3), along with a pronounced low-level
201 jet (the RAS) near the southern Siple Coast (Figure 3A(d)). This wind configuration presumably drives SIC
202 reductions particularly over central RS, through enhanced ice advection. Strengthened southerly (northerly) winds
203 exert strong offshore transport, dynamically forcing the surface ice away from the coast (towards) resulting in
204 reduced (higher) SIC near close to the coast, in polynya zones. These southerly winds directed onto the central
205 part of RIS are associated with the RAS pattern (Figure 3B). As MCA patterns are sign-independent, reversing
206 the sign (or colours) would invert the interpretation without altering the underlying physical relationship. The
207 associated PCs from ExWin are correlated with PCs of large-scale wind vectors (Figure 3B: MCA of
208 ExWin/WinVec), by a coefficient of 0.83. Given the large SCF, this coupling clearly dominates SIC variability in
209 the three polynya regions during winters.

210 Mode 2 between SIC and ExWinds (Figure 3A(b,e); 15 % SCF) is characterised by lower SICs in eastern
211 RSP and TNBP under weak or light winds. These conditions are associated with an anticyclonic circulation that
212 reorients the flow into a northwest–southeast pattern (Figure 3B(e)), weakening the katabatic outflows that
213 normally sustain high ice divergence and export in these polynyas. Although weaker winds are generally
214 associated with reduced ice divergence, in this mode the decrease in katabatic strength may coincide with a
215 reorientation of wind flow into a northwest–southeast pattern. This shift could alter ice drift perhaps advecting ice
216 away from certain coastal sectors even under weaker forcing (Holland & Kwok, 2012; Dale *et al.*, 2017). At the
217 same time, suppressed turbulence and surface cooling may inhibit frazil ice formation and delays freeze-up
218 (Ackley *et al.*, 1990; Thompson *et al.*, 2020), allowing open-water or thin-ice areas to persist. Later in the ASO
219 season, these calm conditions may also enhance shortwave absorption, further delaying refreeze (Stammerjohn *et*
220 *al.*, 2008). Thus, the apparent SIC reductions under weak-wind conditions presumably reflect a combination of
221 dynamical (drift reorientation) and thermodynamic (slower ice growth) effects, consistent with the anticyclonic
222 or weak-synoptic regime typical of the RS. The observed accumulation and higher SIC near MCMP are consistent

223 with wind-driven convergence and mechanical thickening in this sector. These patterns align with RS regime
224 classifications (Seefeldt *et al.*, 2007; Coggins & McDonald, 2015) that identify anticyclonic or weak-synoptic
225 states as conducive to altered drift and redistribution. While MCA diagnoses statistical coupling rather than
226 causation, the spatial and temporal consistency with known RS dynamics provides a robust physical basis for the
227 interpretation.

228 Mode 3 (Figure 3c & 3f; 5 % SCF) represents a circulation regime influenced by the Barrier Wind Corner
229 Jet (BWCJ) mechanism, where strong southerly barrier winds approaching Ross Island are deflected and
230 accelerated as they round the Ross Island's eastern flank (Seefeldt, 2012). This process results from the interaction
231 of large-scale flow with the steep topography of Ross Island, causing the wind to split into two branches — one
232 flowing eastward along the RIS front and the other curving northward along the eastern RS. Although Mode 3's
233 wind origin along the Siple Coast resembles Mode 1 (Figure 3d), ExWin weakens slightly before reaching Ross
234 Island, then intensifies sharply near the island's eastern tip presumably due to BWCJ acceleration. We suggest
235 this enhanced flow drives rapid offshore advection of sea ice east of Ross Island, lowering SIC locally and
236 transporting ice equatorward. In the ASO season, this impact is most likely predominantly dynamical — involving
237 increased ice divergence and redistribution — rather than thermodynamic melt, since both air and ocean
238 temperatures over the RS continental shelf remain at or near the freezing point (Jacobs & Giulivi, 1998; Williams
239 *et al.*, 2010). While strong winds can enhance local air–sea coupling where thin ice or open water is created, the
240 net effect during late winter is the mechanical removal and displacement of ice, occasionally followed by new-ice
241 formation in exposed areas (Bromwich *et al.*, 1998; Massom *et al.*, 1998; Parish *et al.*, 2006; Nicolas & Bromwich,
242 2011). The MCA-derived SIC pattern for Mode 3 correlates with EOF3 ($r \approx 0.69$), confirming that this barrier-
243 wind-dominated mode captures a distinct and coherent component of SIC variability in the Ross Island sector.

244 Altogether 93% of the squared covariance between ExWinds and associated polynya is captured in this
245 analysis. Modes one and three suggest different regimes of ExWin that intricately modulate RAS during different
246 period of evolution. ExWinds patterns play a very strong role in modulating the three polynya regions of the RS.
247 The origin of extreme winds arriving at RIS are evidently influenced by atmospheric dynamics around the RS. It
248 is also worth noting, that in our localized analysis of MCA analysis with wind vectors and ExWin (not shown),
249 we were unable to capture the BWCJ wind regime.

250 3.2.2. Role of large-scale circulation in polynya dynamics in the RS

251 To explore the role of large-scale circulation variability on ExWinds of RS we carried out another MCA
252 analysis between H500 and ExWinds (H500/ExWinds).

253 The first mode of H500-ExWinds coupling (Figure 4(a)/(d), SCF 46%) displays a significant anomaly to
254 the northeast of the RS (Figure 4d). This pattern resembles an ASL pattern in H500 fields, with its centre shifted
255 westward from its climatological position near $\sim 110^{\circ}$ W toward $\sim 150^{\circ}$ W over the eastern RS (Turner *et al.*,
256 2013), and extending eastward across the Amundsen - Bellingshausen Sea. This positioning would steer surface
257 cyclones onto the RS (Coggins & McDonald, 2015) and is consistent with enhanced southerly flow impinging on
258 the central shelf region. The H500 anomaly pattern is associated with decreased SIC (Figure 4g), presumably
259 through the modulation of local winds that favour northward advection of ice. The polarity of this relationship is
260 sign-independent though and could equally be interpreted as a northerly flow associated with higher SIC. This

261 circulation pattern may correspond to the RAS pattern identified in Figure 3(d) with the low H500 centre likely
262 inducing a south-to-southeasterly flow over the central RS and weaker activity in the western sector, leading to a
263 dominant RSP. Figure 4(g) is derived from regressing the PCs of ExWin pattern (Figure 4a) onto the SIC field,
264 which mirrors the spatial pattern of EOF1 reinforcing the coherent coupling between large-scale circulation,
265 surface winds, and sea-ice variability.

266 Mode two (Figure 4(b) and 4(e): SCF 21%) is characterised by a deep low (negative H500 anomaly) near
267 the Antarctic Peninsula (AP) with a positive H500 anomaly over the WRS, a dipole pattern over West Antarctica.
268 The positive H500 anomaly (high-pressure system) is usually associated with calm and stable environments,
269 bringing anticyclonic winds over the RS. The anticyclonic winds, traveling from west to east across the northern
270 RS, appears subdued in speed, as indicated by weak ExWin anomalies, consistent with the reduced pressure
271 gradients characteristic of high-pressure systems. These weaker winds may contribute to reduced wind-driven ice
272 export and likely influence sea-ice redistribution, perhaps removing ice from the TNBP and eastern RS sectors
273 (Figure 4h) and enhancing ice divergence that lowers SIC. In this redistribution, ice is piled up near MCMP, hence
274 positive SIC anomalies. Under such calm, high-pressure regimes, the absence of strong wind forcing probably
275 slows the formation of new ice in recently opened water by reducing turbulent heat loss and frazil ice production,
276 allowing thin ice or open-water areas to persist for longer (Drucker *et al.*, 2003; Morales Maqueda *et al.*, 2004;
277 Fusco *et al.*, 2009). This process, combined with altered advection, may explain the observed lower SIC in TNBP
278 and eastern RS and the higher SIC in MCMP. Thus, Mode 2 reflects a coupled dynamic–thermodynamic response
279 in which anticyclonic, weak-wind conditions drive redistribution of sea ice and modify freeze-up rates, producing
280 the spatial SIC variability observed in Figure 4(h).

281 Mode three (Figure 4c and 4f: SCF ~11%) displays a positive H500 anomaly over the RS centred near
282 Cape Colbeck (Figure 4f), possibly related to blocking. The upper-level ridge (positive H500) modulates the
283 BWCJ regime. Blocking of stably stratified air by the barrier causes imbalance, the creation of a terrain-induced
284 region of high pressure. The BWCJ forms when a stably stratified low-level airflow along the base of the
285 Transantarctic Mountains (TAM) interacts with the topographical barrier imposed by Ross Island. The wind
286 intensifies and flows towards the north-west. Most of the flow passes on the right side of Ross Island, whereas a
287 minimal amount of the flow passes on the left (Figure 4f). This deflection is because of the balance between the
288 pressure gradient force and the Coriolis force. The development of BWCJ is often associated with mesoscale
289 cyclones (Carrasco & Bromwich, 1993). The high-pressure H500 anomalies or the blocking patterns may relate to
290 tropically induced Rossby wave trains resulting in strong ENSO modulation in this region (Renwick, 2005) but
291 are not discussed further. Therefore, the positioning of the H500 gradients to TAM modulates different wind
292 regimes onto RS region.

293 Together 78% of squared covariability between extreme winds and H500 field is captured here,
294 emphasizing the importance of the position of larger scale H500 anomalies influencing surface winds in the RS
295 region. We therefore demonstrate the potential for the upper-level circulation in controlling the intricate local wind
296 regimes in RS region. These patterns of large-scale H500 anomalies and associated maximum surface winds are
297 clearly linked to with sea-ice distributions in winter within each of the polynya regions.

298 **4. Discussions**

299 Our MCA/EOF results lead us to postulate that RS polynya variability during the ASO season is
300 dominated by a small set of coupled modes in which upper-level circulation anomalies (H500) modulate local
301 extreme winds (ExWin), and those wind regimes in turn control the spatial footprint of thin-ice/open-water bands
302 inferred from SIC. Mode 1 is characterised by intensified katabatic/southerly RAS flows that export sea-ice
303 northward and expand the RSP; Mode 2 corresponds to anticyclonic/weak-wind regimes that favour lateral
304 spreading/accumulation near McMurdo and relative opening in TNBP; Mode 3 reflects BWCJ behaviour around
305 Ross Island that drives lateral sea-ice advection eastwards. These interpretations emphasise dynamic ice export
306 and inhibited freeze-up (i.e., delayed new-ice formation) as the proximate mechanisms for polynya area changes
307 in ASO, consistent with targeted process observations (PIPERS, Ackley *et al.*, 2020) and recent detailed katabatic
308 jet studies (Guest 2021; Thompson *et al.*, 2020).

309 The strong negative phase in EOF1 after 2016 coincides with the well-documented Antarctic-wide
310 decline in winter sea ice, suggesting that the RS response forms part of this broader shift. While the immediate
311 reduction in SIC may be linked to the enhanced wind events and associated ASL displacements, the persistence
312 of these anomalies likely reflects coupled atmosphere–ocean processes. This is also supported by recent multi-
313 year and decadal studies that show polynya behaviour is not only event-driven but also modulated on interannual
314 to multi-decadal timescales by changes in atmospheric circulation and by slowly varying ocean conditions.

315 Two aspects from the literature are important when placing our ASO-focused results in a broader
316 temporal context. First, the ASL exerts a first-order control on wind regimes over the RS. Longitudinal or intensity
317 shifts in the ASL alter the frequency and orientation of katabatic and synoptic wind patterns (e.g., RAS, barrier
318 jets), thereby modulating the occurrence and extent of polynyas (Raphael *et al.*, 2016; Turner *et al.*, 2013; Park
319 *et al.*, 2018). Our Mode 1/Mode 2 distinctions map directly onto ASL displacements and dipole states, suggesting
320 that interannual changes in ASL statistics will translate into systematic changes in polynya regime frequency —
321 a linkage our MCA quantifies at daily-to-interannual scales.

322 Second, while wind forcing (atmosphere-driven) governs the timing of polynya openings, subsurface
323 ocean processes determine their persistence. Enhanced subsurface heat content and altered stratification can delay
324 refreezing once the ice cover is disrupted (Zhang *et al.*, 2022), sustaining low SIC even under neutral atmospheric
325 conditions. This oceanic preconditioning likely contributed to the prolonged negative anomalies in EOF1 beyond
326 2016. Supporting this view, large-scale analyses show interdecadal variability in polynya activity arising from
327 interactions between ASL/SAM variability and slowly evolving oceanic states (Duffy *et al.*, 2024). Together, these
328 studies emphasize a coupled atmosphere–ocean control: atmospheric variability sets the timing, while oceanic
329 conditions regulate the duration and magnitude of anomalies.

330 Our analysis captures coherent interannual variability associated with ASL-driven winds, but finer-scale
331 processes likely underpin much of this variability. As shown by Burada *et al.* (2023), transitions between “no
332 polynya” and “clear polynya” states can occur within a few days, highlighting their highly dynamic nature. Such
333 short-lived events are difficult to resolve with coarse-temporal satellite products, and even Sentinel-1 SAR, despite
334 its spatial resolution, suffers from temporal gaps that can miss strong wind events and rapid transitions.
335 Consequently, event-scale openings may be under-sampled in multi-year records, contributing to uncertainty in
336 trend interpretation. This underscores the need for integrated observational frameworks combining high spatial

337 and temporal resolution to better capture the mechanisms driving polynya variability, particularly during
338 transitions between active and quiescent states.

339 Our ASO-focused MCA modes robustly capture some of the dominant atmospheric pathways by which
340 large-scale circulation anomalies modulate extreme coastal winds and thereby control ice advection and delayed
341 freezing. However, the multi-year persistence or trends in polynya area and production likely emerge from the
342 interaction of that atmospheric forcing with evolving ocean heat content and stratification; this explains why
343 polynya trends seen in long records (e.g., Park *et al.*, 2018; Duffy *et al.*, 2024) can sometimes amplify or dampen
344 the direct wind forcing signal we diagnose at daily/interannual scales.

345 Field campaigns and frazil-mapping research (Tamura *et al.*, 2008; Nakata *et al.*, 2021; Ackley *et al.*,
346 2020; Guest, 2021) show that the active frazil/open-water band — the true engine of new ice production and
347 latent-heat flux — is narrow and often sub-pixel for coarse retrievals. Our use of 6.25 km AMSR as a long-term
348 backbone was chosen to balance record length and spatial fidelity, and targeted validation against SAR cases
349 confirms that AMSR correctly captures the timing and broad footprints of polynya openings while naturally
350 smoothing the finest frazil structure. Thus, our study bridges the gap between short, process-rich field studies and
351 longer statistical analyses: we show that the circulation regimes invoked in process work (katabatic bursts, RAS,
352 barrier jets) are the same regimes that dominate the multi-year EOF/MCA modes extracted from a 20-year SIC
353 archive. This cross-scale consistency strengthens confidence that our MCA modes map to physical regimes
354 observed in situ.

355 Rather than only correlating an index (e.g., ASL index) with polynya area, we show paired spatial modes
356 that spatially cohere across fields and explain a large fraction of the SCF. This quantification supports the inference
357 that large-scale circulation changes alter polynya behaviour primarily through the modulation of extreme coastal
358 winds. We present this as a mechanistic linkage and we show it is consistent with both event-scale observations
359 and decadal variability studies. By analysing RSP, TNBP and MCMP jointly, we identify that these polynyas
360 respond differently to the same H500 anomaly — an important finding for regional process understanding and for
361 model evaluation. For example, the same ASL displacement that intensifies southerlies and expands RSP can
362 produce accumulation/retention in MCMP under a different regime, highlighting the need for spatially explicit
363 model diagnostics and policy-relevant projections.

364 **5. Conclusions**

365 Prior long-term studies have used coarser SIC products (≈ 25 km) or focused on single polynyas, and
366 process studies provide short-term mechanism tests, whereas our work is the first to combine a continuous 20-
367 year AMSR record with MCA/EOF to diagnose how H500 anomalies map to ExWinds regimes and then to
368 specific polynya footprints across all three RS coastal polynyas. This resolves a longstanding timescale/resolution
369 gap in the literature.

370 This study used EOF analysis of 6.25×6.25 km 2 SIC data to identify regions of reduced concentration
371 but high variability during peak winter, aligning with the three well-known RS polynya zones. Analysis of two
372 decades of daily reanalysis data revealed that the leading modes of variability ($\sim 37\%$ of SIC variance) capture
373 both synchronous and contrasting behaviour across these zones. The dominant mode (21.5%) shows simultaneous

374 SIC changes in all three polynyas, while secondary modes (~7.5%) highlight north–south and east–west dipole
375 structures linked to distinct extra-tropical circulation patterns and their influence on extreme winds over the RIS.

376 Modes from MCA between 500 hPa heights and extreme winds suggest that the position and intensity of
377 geopotential height gradients, particularly those associated with shifts in the Amundsen Sea Low, modulate local
378 wind regimes including katabatic flows, RAS, and BWCJ patterns. These wind regimes, in turn, are likely to
379 influence SIC distribution differently across the Ross Sea, Terra Nova Bay, and McMurdo Sound polynyas.
380 Importantly, our results show that similar RAS regimes can occur under different large-scale pressure
381 configurations, and that the alignment of pressure gradients with the Transantarctic Mountains is a key determinant
382 of wind direction and strength.

383 By resolving variability at high spatial resolution and explicitly linking large-scale circulation features
384 to location-specific wind regimes, this work provides evidence of how synoptic-scale atmospheric patterns shape
385 SIC variability in RS polynya zones. Our study advances understanding of how hemispheric-scale circulation and
386 local wind dynamics jointly shape RS coastal polynyas. The results provide a baseline for model evaluation and
387 seasonal prediction efforts, and highlight the need to capture both large-scale pressure anomalies and local wind–
388 terrain interactions in future climate projections.

389 We emphasise three practical limitations. (1) Seasonal window: Our ASO focus isolates winter/spring
390 dynamic forcing, but it excludes the full March–October polynya season — extending analyses beyond ASO (and
391 explicitly comparing seasons) is a useful next step to capture the full thermodynamic and oceanic contributions
392 noted by in-situ studies. (2) Ocean subsurface fields: We have not explicitly included ocean temperature/heat
393 content or circulation in the MCA framework; given evidence that subsurface warming controls persistence
394 (*Zhang et al., 2022*), future coupled EOF/MCA that include ocean fields (e.g., upper ocean heat content, mixed-
395 layer depth) would help close the attribution loop. (3) SIC retrieval limits: Passive microwave SIC underestimates
396 very low-concentration frazil bands and smooths frazil structure; therefore, while AMSR provides the requisite
397 continuity for EOF/MCA, SAR based high-resolution products remain essential for validating process inferences.
398 We recommend that follow-on work integrates longer in situ and ocean observations to test the multi-year
399 persistence mechanisms. Looking ahead, this combination of multi-sensor datasets and multivariate frameworks
400 may also lend itself well to emerging artificial intelligence and machine learning approaches, which could help
401 capture the nonlinear, scale-dependent relationships between atmosphere, ocean, and sea ice more efficiently. We
402 recommend that follow-on work integrates longer in-situ and ocean observations potentially within such hybrid
403 statistical–machine learning frameworks, to better test the mechanisms underpinning multi-year persistence.

404 Our work suggests that both policymakers and modelers need to interpret long-term changes in RS
405 polynya frequency/openings in the light of both atmospheric (teleconnections – SAM/ENSO) shifts and ocean
406 subsurface changes that modulate anomaly persistence. Our results identify an atmospheric pathway and therefore
407 provide a diagnostics framework for model evaluation and seasonal predictability studies. Coupled models should
408 be tested for their ability to reproduce this linkage and the distinct responses of the three polynyas.

409

410 **Funding:**

411 This research is funded by the New Zealand Antarctic Science Platform (Grant Number ANTA1801)
412 (<https://www.antarcticscienceplatform.org.nz/>)

413 **Data Availability Statement**

414 ECMWF ERA5 data were downloaded from <https://cds.climate.copernicus.eu/> and the SIC data from
415 <https://seaice.uni-bremen.de/>.

416 **Acknowledgments**

417 We thank the University of Bremen, Institute of Environmental Physics for the provision of AMSRE/2
418 data and European Centre for Medium-Range Weather Forecasts (ECMWF) for making fifth
419 generation reanalysis data available for public.

420 **References:**

421 Ackley, S.F., Xie, H., Tichenor, E.A. et al. Sea-ice production and air/ice/ocean/biogeochemistry interactions
422 in the Ross Sea during the PIPERS 2017 autumn field campaign. *J. Phys. Oceanogr.* 50, 2389–2414
423 (2020). <https://doi.org/10.1175/JPO-D-20-0065.1>

424 Bradtke, K.M., & Herman, A. (2023). Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya
425 from high-resolution visible satellite imagery. *The Cryosphere*.

426 Bretherton, C. S., Smith, C., & Wallace, J. M. (1992). An intercomparison of methods for finding coupled
427 patterns in climate data. *Journal of Climate*, 5, 541–560.

428 Bromwich, D. H., J. F. Carrasco, Z. Liu, and R.-Y. Tzeng (1993), Hemispheric atmospheric variations and
429 oceanographic impacts associated with katabatic surges across the Ross ice shelf, Antarctica, *J.*
430 *Geophys. Res.*, 98(D7), 13045–13062, doi:10.1029/93JD00562.

431 Burada, G. K., McDonald, A., Renwick, J., & Jolly, B. (2023). Delineating Polynya Area Using Active and
432 Passive Microwave Sensors for the Western Ross Sea Sector of Antarctica. *Remote Sensing*, 15(10),
433 2545. <https://doi.org/10.3390/rs15102545>

434 Carrasco, J. F., & Bromwich, D. H. (1993). Mesoscale cyclogenesis dynamics over the southwestern Ross
435 Sea, Antarctica. *Journal of Geophysical Research*, 98(D7), 12973.
436 <https://doi.org/10.1029/92JD02821>

437 Caton Harrison, T., S. Biri, T. J. Bracegirdle, J. C. King, E. C. Kent, É. Vignon, and J. Turner, 2022: Reanalysis
438 representation of low-level winds in the Antarctic near-coastal region. *Weather and Climate*
439 *Dynamics*, 3, 1415–1437, doi:10.5194/wcd-3-1415-2022

440 Carrasco, J. F., Bromwich, D. H., & Monaghan, A. J. (2003). Distribution and Characteristics of Mesoscale
441 Cyclones in the Antarctic: Ross Sea Eastward to the Weddell Sea*. *Monthly Weather Review*,
442 131(2), 289–301. [https://doi.org/10.1175/1520-0493\(2003\)131<0289:DACOMC>2.0.CO;2](https://doi.org/10.1175/1520-0493(2003)131<0289:DACOMC>2.0.CO;2)

443 Chenoli, S. N., Turner, J., & Samah, A. A. (2012). A climatology of strong wind events at McMurdo station,
444 Antarctica: A CLIMATOLOGY OF STRONG WIND EVENTS AT MCMURDO STATION.
445 *International Journal of Climatology*, n/a-n/a. <https://doi.org/10.1002/joc.3617>

446 Chenoli, S. N., Turner, J., & Samah, A. A. (2015). A Strong Wind Event on the Ross Ice Shelf, Antarctica: A
447 Case Study of Scale Interactions. *Monthly Weather Review*, 143(10), 4163–4180.
448 <https://doi.org/10.1175/MWR-D-15-0002.1>

449 Cohen L, Dean S, Renwick J (2013) Synoptic weather types for the Ross Sea region, Antarctica, *J Clim*, 26
450 (2): 636–649 <https://doi.org/10.1175/JCLI-D-11-00690.1>

451 Coggins, J. H. G., & McDonald, A. (2015). The influence of the Amundsen Sea Low on the winds in the Ross
452 Sea and surroundings: Insights from a synoptic climatology. *Journal of Geophysical Research: Atmospheres*, 120, 2167–2189. <https://doi.org/10.1002/2014JD022830>

453 Dale, E. R., McDonald, A. J., Coggins, J. H. J., & Rack, W. (2017). Atmospheric forcing of sea ice anomalies
454 in the Ross Sea polynya region. *The Cryosphere*, 11(1), 267–280. <https://doi.org/10.5194/tc-11-267-2017>

455 Drucker, R., S. Martin, and R. Moritz (2003), Observations of ice thickness and frazil ice in the St. Lawrence
456 Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings, *J. Geophys. Res.*, 108, 3149, doi:10.1029/2001JC001213, C5

457 Duffy, G. A., Montiel, F., Purich, A., & Fraser, C. I. (2024). Emerging long-term trends and interdecadal
458 cycles in Antarctic polynyas. *Proceedings of the National Academy of Sciences*, 121(11),
459 e2321595121. <https://doi.org/10.1073/pnas.2321595121>

460 Eayrs, C., Li, X., Raphael, M. N., & Holland, D. M. (2021). Rapid decline in Antarctic sea ice in recent years
461 hints at future change. *Nature Geoscience*, 14(7), 460–464. <https://doi.org/10.1038/s41561-021-00768-3>

462 Emanuelsson, B. D., Bertler, N. A. N., Neff, P. D., Renwick, J. A., Markle, B. R., Baisden, W. T., & Keller,
463 E. D. (2018). The role of Amundsen–Bellingshausen Sea anticyclonic circulation in forcing marine
464 air intrusions into West Antarctica. *Climate Dynamics*, 51(9–10), 3579–3596.
465 <https://doi.org/10.1007/s00382-018-4097-3>

466 Fonseca, R., Francis, D., Aulicino, G., Mattingly, K. S., Fusco, G., & Budillon, G. (2023). Atmospheric
467 controls on the Terra Nova Bay polynya occurrence in Antarctica. *Climate Dynamics*,
468 <https://doi.org/10.1007/s00382-023-06845-0>

469 Gerrish, L., Ireland, L., Fretwell, P., & Cooper, P. (2023). High resolution vector polygons of the Antarctic
470 coastline (7.8) [Data set]. UK Polar Data Centre, Natural Environment Research Council, UK
471 Research & Innovation. <https://doi.org/10.5285/c7fe759d-e042-479a-9ecf-274255b4f0a1>

472 Goyal, R., Jucker, M., Sen Gupta, A., & England, M. H. (2021). Generation of the Amundsen Sea Low by
473 Antarctic Orography. *Geophysical Research Letters*, 48(4). <https://doi.org/10.1029/2020GL091487>

474 Guest, P.S., Persson, P.O.G., Morrison, H. et al. Inside Katabatic Winds Over the Terra Nova Bay Polynya:
475 1. Mobile measurements and finescale structure. *J. Geophys. Res. Atmos.* 126, e2021JD034902
476 (2021). <https://doi.org/10.1029/2021JD034902>

477 Guest, P.S., Persson, P.O.G., Morrison, H. et al. Inside Katabatic Winds Over the Terra Nova Bay Polynya:
478 2. Ship-based surface energy budget and fluxes. *J. Geophys. Res. Atmos.* 126, e2021JD034904
479 (2021). <https://doi.org/10.1029/2021JD034904>

480 Holland, P. R., & Kwok, R. (2012). Wind-driven trends in Antarctic sea-ice drift. *Nature Geoscience*, 5(12),
481 872–875. <https://doi.org/10.1038/ngeo1627>

482 Hollands, T., & Dierking, W. (2016). Dynamics of the Terra Nova Bay Polynya: The potential of multi-sensor
483 satellite observations. *Remote Sensing of Environment*, 187, 30–48.
484 <https://doi.org/10.1016/j.rse.2016.10.003>

489 Ito, M., Ohshima, K. I., Fukamachi, Y., Hirano, D., Mahoney, A. R., Jones, J., Takatsuka, T., & Eicken, H.
490 (2019). *Favorable conditions for suspension freezing in an Arctic coastal polynya*. *Journal of*
491 *Geophysical Research: Oceans*, 124(12), 8701–8719. <https://doi.org/10.1029/2019JC015536>.

492 Itkin, P., Spreen, G., Cheng, B., Doble, M., Girard-Ardhuin, F., Haapala, J., et al. (2017). Thin ice and storms:
493 Sea ice deformation from buoy arrays deployed during N-ICE2015. *Journal of Geophysical*
494 *Research: Oceans*, 122(6), 4661–4674. <https://doi.org/10.1002/2016JC012403>

495 Jacobs, S.S. and C.F. Giulivi (1998). Interannual Ocean and Sea Ice Variability in the Ross Sea. In *Ocean,*
496 *Ice, and Atmosphere: Interactions at the Antarctic Continental Margin* (eds. S.S. Jacobs and R.F.
497 Weiss), American Geophysical Union, Washington, D.C., doi: 10.1029/AR075p0135.

498 Jena, B., Bajish, C. C., Turner, J., Ravichandran, M., Anilkumar, N., & Kshitija, S. (2022). Record low sea
499 ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar
500 cyclones. *Npj Climate and Atmospheric Science*, 5(1), 19. <https://doi.org/10.1038/s41612-022-00243-9>

502 Jolliffe, I. T. (2003). A Cautionary Note on Artificial Examples of EOFs. Retrieved from
503 https://journals.ametsoc.org/view/journals/clim/16/7/1520-0442_2003_016_1084_acnoae_2.0.co_2.xml

505 Josey, S. A., Meijers, A. J. S., Blaker, A. T., Grist, J. P., Mecking, J., Ayres, H. C., ... (2024). *Record-low*
506 *Antarctic sea ice in 2023 increased ocean heat loss and storms*. *Nature*, 636, 635–639.
507 <https://doi.org/10.1038/s41586-024-08368-y>

508 Kwok, R. (2005). Ross Sea Ice Motion, Area Flux, and Deformation. *Journal of Climate*, 18(18), 3759–3776.
509 <https://doi.org/10.1175/JCLI3507.1>

510 Lachlan-Cope, T., & Connolley, W. (2016). Teleconnections between the tropical Pacific and the Amundsen-
511 Bellinghausens Sea: Role of the El Niño/Southern Oscillation.
512 <https://doi.org/10.1029/2005JD006386>

513 Laxon, S. W., Ridout, A. L., Barber, D. G., & Van den Broeke, M. R. (2013). CryoSat-2 estimates of Antarctic
514 sea ice thickness. *Geophysical Research Letters*, 40(11), 2578–2583.
515 <https://doi.org/10.1002/grl.5056>

516 Lian, T., & Chen, D. (2012). An Evaluation of Rotated EOF
517 Analysis and Its Application to Tropical Pacific SST Variability. *Journal of Climate*, 25(15), 5361–
5373. <https://doi.org/10.1175/JCLI-D-11-00663.1>

518 Martin, S., Drucker, R., & Kwok, R. Sea-ice production and export from coastal polynyas in the Weddell and
519 Ross Seas. *Geophys. Res. Lett.* 31, L15306 (2004). <https://doi.org/10.1029/2003GL017953>

520 McDonald, A. J., & Cairns, L. H. (2020). A New Method to Evaluate Reanalyses Using Synoptic Patterns:
521 An Example Application in the Ross Sea/Ross Ice Shelf Region. *Earth and Space Science*, 7(1),
522 e2019EA000794. <https://doi.org/10.1029/2019EA000794>

523 Melsheimer, Christian, & Spreen, Gunnar. (2020). AMSR-E ASI sea ice concentration data, Antarctic, version
524 5.4 (NetCDF) (June 2002 - September 2011) [Text/tab-separated-values]. PANGAEA - Data
525 Publisher for Earth & Environmental Science. <https://doi.org/10.1594/PANGAEA.919778>

526 Meng, Z. (2023, July 25). SACPY -- A Python Package for Statistical Analysis of Climate (Version 0.0.19).
527 Zenodo. <https://doi.org/10.5281/zenodo.8182411>

528 Mezgec, K., Stenni, B., Crosta, X., Masson-Delmotte, V., Baroni, C., Braida, M., et al. (2017). Holocene sea
529 ice variability driven by wind and polynya efficiency in the Ross Sea. *Nature Communications*,
530 8(1), 1334. <https://doi.org/10.1038/s41467-017-01455-x>

531 Mo, R. P. (2003). Efficient algorithms for maximum covariance analysis of datasets with many variables and
532 fewer realizations: A revisit. *Journal of Atmospheric and Oceanic Technology*, 20(12), 1804-1809.

533 Morales Maqueda, M. A., A. J. Willmott, and N. R. T. Biggs (2004), Polynya dynamics: A review of
534 observations and modeling, *Rev. Geophys.*, 42, RG1004, doi:10.1029/2002RG000116.

535 Murphy, B. F., and I. Simmonds, 1993: An Analysis of Strong Wind Events Simulated in a GCM near Casey
536 in the Antarctic. *Mon. Wea. Rev.*, 121, 522–534, [https://doi.org/10.1175/1520-0493\(1993\)121<0522:AAOSWE>2.0.CO;2](https://doi.org/10.1175/1520-0493(1993)121<0522:AAOSWE>2.0.CO;2).

537 Murphy, B. F., 2003: Prediction of Severe Synoptic Events in Coastal East Antarctica. *Mon. Wea. Rev.*, 131,
538 354–370, [https://doi.org/10.1175/1520-0493\(2003\)131<0354:POSSEI>2.0.CO;2](https://doi.org/10.1175/1520-0493(2003)131<0354:POSSEI>2.0.CO;2). Nakata, K., Ohshima, K., I.,
539 & Nihashi, S. (2021). Mapping of active frazil for Antarctic coastal polynyas, with an estimation of
540 sea-ice production. *Geophysical Research Letters*, 48, e2020GL091353. <https://doi.org/10.1029/2020GL091353>

541 Nigro, M. A., & Cassano, J. J. (2014). Identification of Surface Wind Patterns over the Ross Ice Shelf,
542 Antarctica, Using Self-Organizing Maps. *Monthly Weather Review*, 142(7), 2361–2378.
543 <https://doi.org/10.1175/MWR-D-13-00382.1>

544 Nicolas, J. P., and D. H. Bromwich, 2011: Climate of West Antarctica and Influence of Marine Air
545 Intrusions. *J. Climate*, 24, 49–67, <https://doi.org/10.1175/2010JCLI3522.1>

546 North, G. R., Bell, T. L., Cahalan, R. F., & Moeng, F. J. (1982). Sampling Errors in the Estimation of Empirical
547 Orthogonal Functions. *Monthly Weather Review*, 110(7), 699–706. [https://doi.org/10.1175/1520-0493\(1982\)110<0699:SEITEO>2.0.CO;2](https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2)

548 O'Connor, W. P., Bromwich, D. H., & Carrasco, J. F. (1994). Cyclonically Forced Barrier Winds along the
549 Transantarctic Mountains near Ross Island. *Monthly Weather Review*, 122(1), 137–150.
550 [https://doi.org/10.1175/1520-0493\(1994\)122<0137:CFBWAT>2.0.CO;2](https://doi.org/10.1175/1520-0493(1994)122<0137:CFBWAT>2.0.CO;2)

551 Organization (WMO), W. M. (n.d.). WMO Sea-Ice Nomenclature. Retrieved February 19, 2024, from
552 <https://library.wmo.int/records/item/41953-wmo-sea-ice-nomenclature>

553 Parish, T. R., & Bromwich, D. H. (1998). A Case Study of Antarctic Katabatic Wind Interaction with Large-
554 Scale Forcing. *Monthly Weather Review*, 126(1), 199–209. [https://doi.org/10.1175/1520-0493\(1998\)126<0199:ACSOAK>2.0.CO;2](https://doi.org/10.1175/1520-0493(1998)126<0199:ACSOAK>2.0.CO;2)

555 Parish, T. R., J. J. Cassano, and M. W. Seefeldt (2006), Characteristics of the Ross Ice Shelf air stream as
556 depicted in Antarctic Mesoscale Prediction System simulations, *J. Geophys. Res.*, 111, D12109,
557 doi:10.1029/2005JD006185.

558 Park, J., Kim, H.-C., Jo, Y.-H., Kidwell, A., & Hwang, J. (2018). Multi-temporal variation of the Ross Sea
559 Polynya in response to climate forcings. *Polar Research*, 37(1), 1444891.
560 <https://doi.org/10.1080/17518369.2018.1444891>

561 Paul, S., Lengaigne, M., & Vialard, J. (2013). Impact of wind variability on sea ice export in the Southern
562 Ocean. *Geophysical Research Letters*, 40(6), 1063–1067. <https://doi.org/10.1002/grl.50216>

563

564

565

566

567

568 Rack, W., Price, D., Haas, C., Langhorne, P. J., & Leonard, G. H. (2021). Sea Ice Thickness in the Western
569 Ross Sea. *Geophysical Research Letters*, 48(1), e2020GL090866.
570 <https://doi.org/10.1029/2020GL090866>

571 Raphael, M. N., and Coauthors, 2016: The Amundsen Sea Low: Variability, Change, and Impact on Antarctic
572 Climate. *Bull. Amer. Meteor. Soc.*, 97, 111–121, <https://doi.org/10.1175/BAMS-D-14-00018.1>.

573 Raphael, M. N., Holland, M. M., Landrum, L., & Hobbs, W. R. (2019). Links between the Amundsen Sea
574 Low and sea ice in the Ross Sea: seasonal and interannual relationships. *Climate Dynamics*, 52(3–
575 4), 2333–2349. <https://doi.org/10.1007/s00382-018-4258-4>

576 Renwick, J. A. (2005). Persistent Positive Anomalies in the Southern Hemisphere Circulation. *Monthly
577 Weather Review*, 133(4), 977–988. <https://doi.org/10.1175/MWR2900.1>

578 Renwick, J. A., & Revell, M. J. (1999). Blocking over the South Pacific and Rossby Wave Propagation.
579 *Monthly Weather Review*, 127(10), 2233–2247. [https://doi.org/10.1175/1520-0493\(1999\)127<2233:BOTSPA>2.0.CO;2](https://doi.org/10.1175/1520-
580 0493(1999)127<2233:BOTSPA>2.0.CO;2)

581 Rieger, N., Corral, Á., Olmedo, E., & Turiel, A. (2021). Lagged teleconnections of climate variables identified
582 via complex rotated Maximum Covariance Analysis. *Journal of Climate*, 1–59.
583 <https://doi.org/10.1175/JCLI-D-21-0244.1>

584 Schroeter, S., O’Kane, T. J., & Sandery, P. A. (2023). Antarctic sea ice regime shift associated with decreasing
585 zonal symmetry in the Southern Annular Mode. *The Cryosphere*, 17(2), 701–717.
586 <https://doi.org/10.5194/tc-17-701-2023>

587 Schwerdtfeger, W. (1975), The effect of the Antarctic Peninsula on the temperature regime of the Weddell
588 Sea, *Mon. Weather Rev.*, 103, 41–51.

589 Seefeldt, M. W., Cassano, J. J., & Parish, T. R. (2007). Dominant Regimes of the Ross Ice Shelf Surface Wind
590 Field during Austral Autumn 2005. *Journal of Applied Meteorology and Climatology*, 46(11), 1933–
591 1955. <https://doi.org/10.1175/2007JAMC1442.1>

592 Seefeldt, M. W., and J. J. Cassano (2012), A description of the Ross Ice Shelf air stream (RAS) through the
593 use of self-organizing maps (SOMs), *J. Geophys. Res.*, 117, D09112, doi:10.1029/2011JD016857.

594 Stammerjohn, S. E., Maksym, T., & Martinson, D. G. (2008). Sea ice in the Southern Ocean: The Weddell
595 Sea and Ross Sea. *Progress in Oceanography*, 78(3–4), 375–394.
596 <https://doi.org/10.1016/j.pocean.2008.02.002>

597 Tamura, T., Ohshima, K.I., & Nihashi, S. Mapping of sea ice production for Antarctic coastal polynyas.
598 *Geophys. Res. Lett.* 35, L07606 (2008). <https://doi.org/10.1029/2007GL032903>

599 Thomas, E. R., & Abram, N. J. (n.d.). Ice core reconstruction of sea ice change in the Amundsen-Ross Seas
600 since 1702 A.D. <https://doi.org/10.1002/2016GL068130>

601 Thompson, L., Smith, M., Thomson, J., Stammerjohn, S., Ackley, S., & Loose, B. (2020). Frazil ice growth
602 and production during katabatic wind events in the Ross Sea, Antarctica. *The Cryosphere*, 14(10),
603 3329–3347. <https://doi.org/10.5194/tc-14-3329-2020>

604 Turner, J., Bromwich, D., Colwell, S., Dixon, S., Gibson, T., Hart, T., et al. (1996). The Antarctic First
605 Regional Observing Study of the Troposphere (FROST) Project. *Bulletin of the American
606 Meteorological Society*, 77(9), 2007–2032. [https://doi.org/10.1175/1520-0477\(1996\)077<2007:TAFROS>2.0.CO;2](https://doi.org/10.1175/1520-0477(1996)077<2007:TAFROS>2.0.CO;2)

608 Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J., & Orr, A. (2013). The Amundsen Sea low: The
609 Amundsen Sea low. *International Journal of Climatology*, 33(7), 1818–1829.
610 <https://doi.org/10.1002/joc.3558>

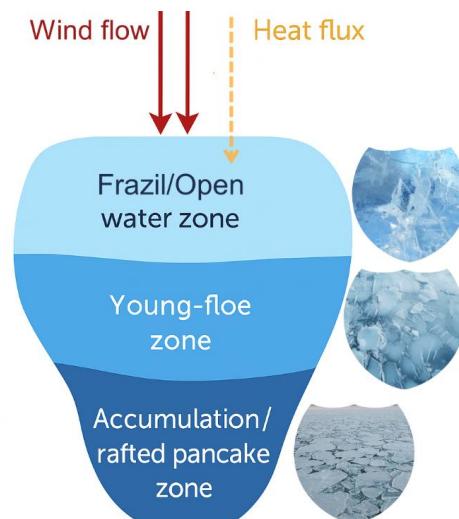
611 Voropayev, S. I., H. J. S. Fernando, and L. A. Mitchell, 1995: On the Rate of Frazil Ice Formation in Polar
612 Regions in the Presence of Turbulence. *J. Phys. Oceanogr.*, 25, 1441–
613 1450, [https://doi.org/10.1175/1520-0485\(1995\)025<1441:OTROFI>2.0.CO;2](https://doi.org/10.1175/1520-0485(1995)025<1441:OTROFI>2.0.CO;2).

614 Wallace, J. M., Smith, C., & Bretherton, C. S. (1992). Singular Value Decomposition of Wintertime Sea
615 Surface Temperature and 500-mb Height Anomalies. *Journal of Climate*, 5(6), 561–576.
616 [https://doi.org/10.1175/1520-0442\(1992\)005<0561:SVDOWS>2.0.CO;2](https://doi.org/10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2)

617 Weber, N. J., Lazzara, M. A., Keller, L. M., and Cassano, J. J.: The extreme wind events in the ross island
618 region of Antarctica, *Weather Forecast*, 31, 985–1000, 2016. [a](#)

619 Wenta, M., & Cassano, J.J. (2020). The Atmospheric Boundary Layer and Surface Conditions during
620 Katabatic Wind Events over the Terra Nova Bay Polynya. *Remote. Sens.*, 12, 4160.

621 Wilks, D. S. (2011). *Statistical Methods in the Atmospheric Sciences* (3rd ed., Vol. 100). Academic Press.sss


622 Williams, G. D., N. L. Bindoff, S. J. Marsland, and S. R. Rintoul (2008), Formation and export of dense shelf
623 water from the Adélie Depression, East Antarctica, *J. Geophys. Res.*, 113, C04039,
624 doi:10.1029/2007JC004346.

625 Yuan, N., Ding, M., Ludescher, J., & Bunde, A. (2017). Increase of the Antarctic Sea Ice Extent is highly
626 significant only in the Ross Sea. *Scientific Reports*, 7, 41096. <https://doi.org/10.1038/srep41096>

627 Zhang, L., Delworth, T. L., Yang, X., Zeng, F., Lu, F., Morioka, Y., & Bushuk, M. (2022). The relative role
628 of the subsurface Southern Ocean in driving negative Antarctic Sea ice extent anomalies in 2016–
629 2021. *Communications Earth & Environment*, 3(1), 1–9. <https://doi.org/10.1038/s43247-022-00624-1>

630

631

632
633 Conceptual Model of Wind and Heat Flux Controls on Polynya Sea-Ice Formation

634

635

Ppaer figures

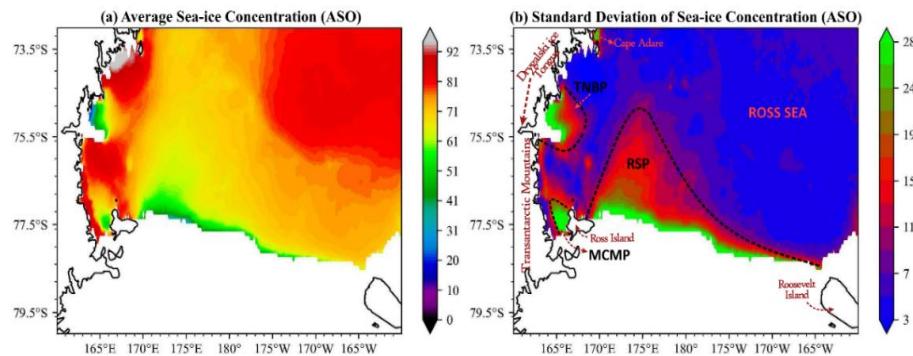
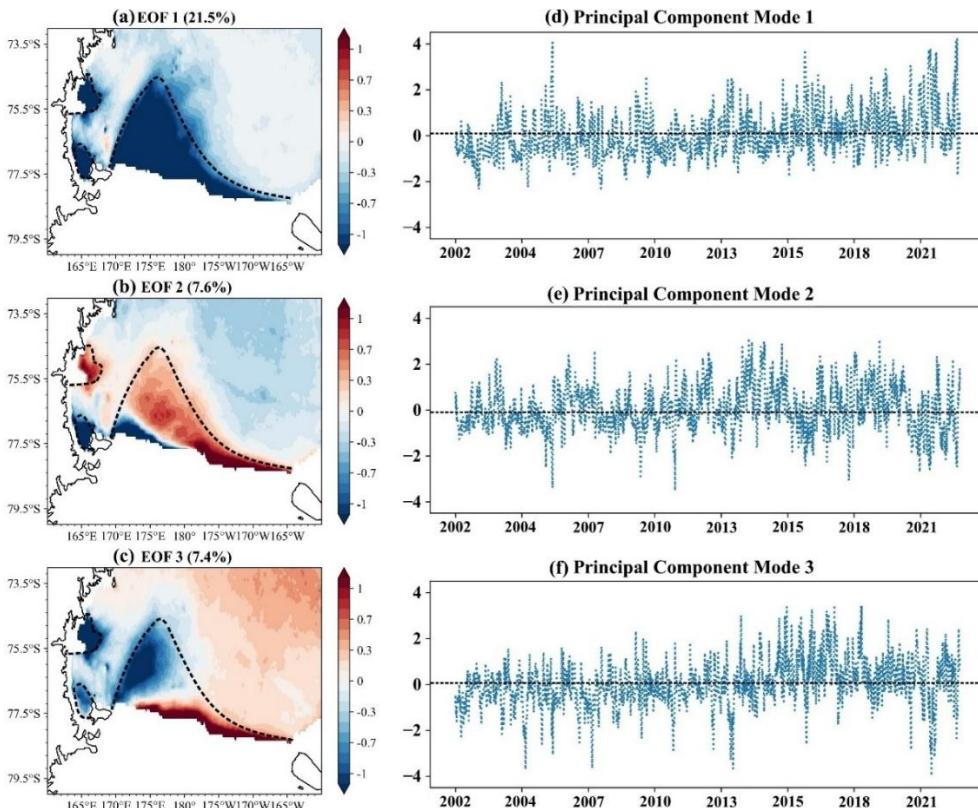
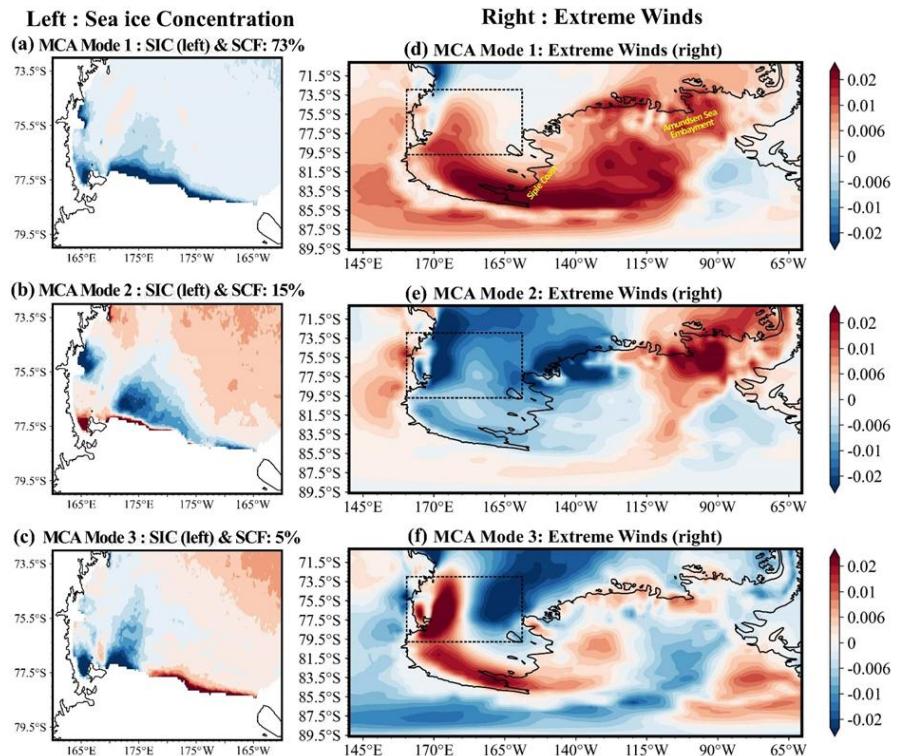



Figure 1: (a) Average SIC (percentage, on left) and (b) Standard Deviation of SIC during ASO for the period 2002-2022 (polynya regions are enclosed in black-dotted lines in 1b)


636

637
 638

Figure 2: First three EOF modes derived from AMSRE/2 SIC data for the ASO (Spatial patterns on left (a-c) and PCs on right (d-f)). Black dotted lines represent standard deviation threshold from Figure 1(b).

639

640

641

642

643

Figure 3A: Leading MCA spatial patterns (Top to bottom) of SIC/ExWinds (left: SIC and right: Extreme Winds). Covarying patterns spatially in Mode 1 are shown in panels (a) and (d), mode 2 in (b) and (e), and mode 3 in (c) and (f)

644

645

646

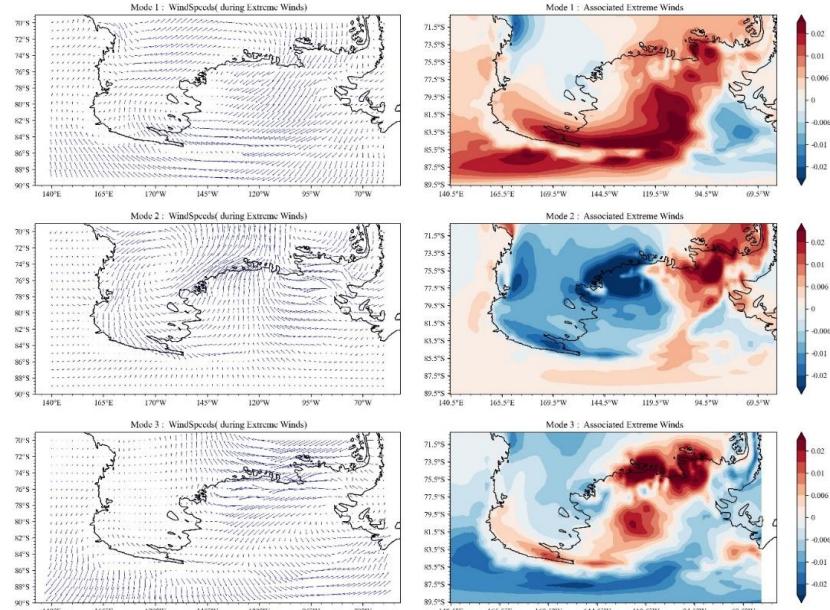
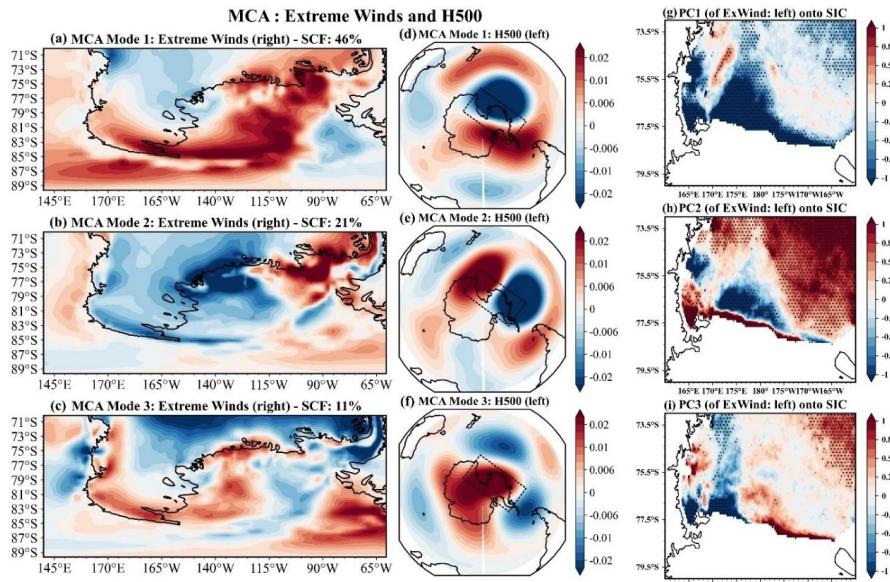



Figure 3B: Extreme Winds and Large-scale wind vectors to demonstrate wind directions

647

648

Figure 4: Leading MCA modes of Extreme Winds (1st column) and H500 (2nd column). 3rd column represents
649 regressions (p-value 0.005) from PCs of ExWin (MCA: ExWin/H500) on SIC anomalies

650