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Abstract. Southern Brazil faces escalating flood risk, yet intraday storm dynamics remain under-characterized. This work
presents a season-resolved, intraday Variable Length Markov Chain analysis (VLMC) of storm state transitions, using hourly
precipitation from 15 INMET stations from 2007 to 2024. Storms were identified and quantified by depth, duration, and
intensity, then classified into Moderate, Strong, and Very Strong states. Peak mean intensities reach 9 to 11 mm h! in
mountainous units, compared with maxima near 7 mm h™! on the coast, where mean intensities are about 3 mm h™'. Storms
last roughly 11 to 13 hours in the Southern Plateau and Southern Shield, and 15 to 17 hours in the Central Depression and
Coastal Plain, indicating greater lowland persistence. Upward transition probabilities increase in summer, with Moderate to
Strong and Strong to Very Strong reaching about 0.20 in orographic areas, while persistence of Very Strong ranges from 0.10
t0 0.20 in the Southern Shield. In winter, downward transitions to Moderate exceed 0.90 across most of the domain. Chi-square
diagnostics support first-order, season-specific chains with stable transition structure. These intraday, spatially resolved
probabilities link geomorphology to storm persistence and provide actionable inputs for early warning, zoning, and climate
risk management.

Keywords: storm intensity, VLMC, orographic influence, climate variability.

1 Introduction

Precipitation is one of the most important atmospheric elements in the climatic context, with direct impacts on economic
activities, water resources, and the daily lives of the population (Agel et al., 2015). In southern Brazil, especially in the state
of Rio Grande do Sul, episodes of heavy rainfall and extreme storms have become increasingly frequent and severe, causing
flooding, landslides, and social and economic losses (Guedes et al., 2019; Junges et al., 2019; Minuzzi and Lopez, 2013;
Ribeiro-Viana et al., 2009; Valente et al., 2023). The growing occurrence of these extreme events raises concerns about changes
in regional climate patterns (Avila-Diaz et al., 2020) and demands detailed analyses of their temporal and probabilistic
characteristics.
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Previous studies have already demonstrated an increase in the frequency and intensity of extreme events in Rio Grande
do Sul (Berlato et al., 2007; Junges et al., 2019; Melo et al., 2015). Valente et al., (2023), when analyzing events from the 20th
century, observed that years influenced by the EI Nifio phenomenon tend to show positive precipitation anomalies, while La
Nifia years are associated with water deficits. This relationship between oceanic patterns and rainfall behavior was also
evidenced by Santos; Barbosa-Diniz, (2014), who demonstrated the influence of oceanic indices on the variability of monthly
precipitation in Rio Grande do Sul.

Despite these advances, there are still gaps in understanding precipitation behavior on shorter time scales, such as hourly
precipitation, and how these events are temporally organized. The characterization of extreme events using statistical tools
such as trend analysis, probability distributions, and Markov Chains allows not only for the description of observed patterns
but also for the projection of likely future states based on the temporal dependence of the data (Junges et al., 2019).

Markov chains have been widely used to model rainfall data. The first known application was carried out by (Gabriel
and Neumann, 1962) using rainfall records from Israel, and numerous applications have been developed since then. More
recently, (Wilks, 2011) consolidated these methods, emphasizing their value for simulating precipitation sequences in
atmospheric sciences. Previous studies have used Markov chains to analyze precipitation in Brazil, Back (2017) applied a
stochastic Markov chain model to study daily precipitation in the state of Santa Catarina, in southern Brazil, describing
geographical patterns of rainfall. Similarly, Jale et al., (2019) examined rainfall on a daily scale in three states (dry, humid,
and rainy) for the state of Paraiba, in northeastern Brazil. In their study, they reported transition probabilities between states,
equilibrium probabilities, and expected durations for the different states. More recently, Vargas; Corso; Vallejos, (2022)
applied Markov chains to assess how normal climate patterns may shift to altered states in the future for the city of Caxias do
Sul, in the state of Rio Grande do Sul. They used the results of Markov modeling to support agricultural planning in the context
of climate change.

The present study proposes an integrated analysis of the temporal and probabilistic behavior of storms in southern
Brazil, with an emphasis on the eastern portion of the Rio Grande do Sul state, consists of the Jacui Basin, the Sdo Gongalo
Basin, and rivers that flow directly into the Atlantic Ocean - Drainage Area of the Lagoons (DAL), using hourly precipitation
data from the Instituto Nacional de Meteorologia (INMET). The study aims to characterize storms and model the transitions
through Markov chains.

Recent hydrometeorological disasters in southern Brazil, including the September 2023 crisis and the unprecedented
rainfall of April to May 2024, expose systemic vulnerabilities in flood preparedness and motivate analyses that resolve storm
evolution at intraday scales (Alvala et al., 2024; Collischonn et al., 2025). Most regional climatologies emphasize annual
signals (Berlato et al., 2007; Guedes et al., 2019; Junges et al., 2019; Minuzzi and Lopez, 2013), monthly or seasonal behavior
(Britto et al., 2006; Marques and Mdller, 2008; Santos and Barbosa Diniz, 2014; Valente et al., 2023), or daily statistics
(Dorneles et al., 2020; Melo et al., 2015; Sanches et al., 2019; Schumacher et al., 2016; Teixeira and Prieto, 2020a), leaving
intraday persistence and transition dynamics underexplored. Addressing this gap, we use hourly precipitation from 15 stations

from 2007 to 2024 to identify storms, quantify depth, duration, and intensity across contrasting physiographic units, and
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estimate season-specific transition probabilities among intensity states with Variable Length Markov Chains. This intraday,
state-based framework yields spatially and seasonally resolved metrics of intensification and persistence that can feed early
warning, strengthen risk mapping, and support the revision of hydrologic design criteria in flood-prone basins. The structure
of the document is organized as follows. Chapter 2 presents a description of the study area and the precipitation data used.
Chapter 3 details the methodology applied for storm characterization and Markov chain modeling. Chapter 4, presents and
maps the results, followed by a discussion in light of the existing literature. Finally, Chapter 5 provides the main conclusions
of the study.

2 Study area and precipitation data

The study area is located in southern Brazil, in the state of Rio Grande do Sul (see Figure 1a). The eastern portion consists of
the Jacui Basin, the Sdo Gongalo Basin, and rivers that flow directly into the Atlantic Ocean (see Figure 1b). Collectively, we
refer to this as the Drainage Area of the Lagoons (DAL). In this region, rivers drain into the large lagoons of southern Brazil,

including Lagoa dos Patos, Lagoa Merin, and Lagoa Mangueira (Marques; Mdller, 2008).

The Jacui Basin discharges its waters into Lagoa dos Patos via the Guaiba River, on which the city of Porto Alegre is located
(see Porto Alegre station in Figure 1), the main city in southern Brazil. The Sdo Gongalo Basin, in turn, acts as a natural
channel connecting Lagoa dos Patos and Lagoa Mirim, regulating water flow in the lower part of the system (Marques; Méller,
2008).

A total of 15 weather stations with hourly data from 2007 to 2024 were used. These data are publicly available from the
Instituto Nacional de Meteorologia (INMET) at https://portal.inmet.gov.br/dadoshistoricos. The spatial distribution of the
stations is evenly spread across DAL, as shown in Figure 1c, and the statistical basic data of the stations are presented in Table
1.

The mountainous region of DAL is concentrated in the north, in the Souther Plateu, reaching a maximum elevation of 1,373
meters above sea level (m a.s.l.) (See Figure 1). In the south, the terrain features slightly lower mountains, around 300 m a.s.l.,
in the Souther Shield. Meanwhile, the lowland areas are prone to prolonged flooding, particularly in the Central Depression
and Coastal Plain (Valente et al., 2023).
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Figure 1. Localization of the Drainage Area of the Lagoons (DAL) and weather stations

Table 1. Basic statistical description of the rainfall stations with hourly data used

. Mean M.a>.<|mym Desvest Missing
Station ID precipitation
(mm) (mm)  data (%)
(mm)
Bento Goncalves  A840 0.19 56.8 1.19 3.46
Cacapava do Sul A812 0.2 45.8 1.26 3.05
Camaqua A838 0.18 51.4 1.08 5.66
Canela A879 0.25 59.4 1.22 15.29
Cangucu A811 0.18 46.4 11 8.98
Cruz Alta A853 0.2 47 1.32 5.04
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Jaguarao A836 0.16 48.8 1.09 6.75
Mostardas A878 0.13 30.4 0.91 19.62
Passo Fundo A839 0.21 47.8 1.27 1.23
Porto Alegre A801 0.18 37.8 1.12 0.75
Rio Grande A802 0.14 85.8 1.09 7.97
Rio Pardo A813 0.19 46.4 1.18 4.88
Sdo Gabriel A832 0.17 76.8 1.21 11.24
Soledade A837 0.21 47.4 1.33 10.85
Torres A808 0.18 50 1.09 10.29

3 Methodology

The study utilized 15 hourly precipitation stations provided by INMET. Storm characterization was conducted using the hourly
precipitation data as recommended by (Lamijiri et al., 2017). From the characterization of storms, the following variables were

obtained: total storm precipitation, storm duration, maximum storm intensity, and average storm intensity.

The maximum storm precipitation data, which is a categorical variable, was taken and the 95th and 99th percentiles were
estimated to define the states: Moderate, Strong and Very Strong Storms. These were the states used for Markov chain

modeling.

For each station, four season-specific Markov chains were fitted to account for seasonal differences in storm-intensity
transitions. Before modeling, the order of the chains was verified with a chi-square test and the homogeneity of the time series.

The general scheme of the methodology can be seen in Figure 2.
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Figure 2. General methodology for storm analysis at hourly scale

3.1 Characterization of storms

In this study, hourly precipitation data were used to identify "storms". A storm is defined as a continuous stretch of precipitation
separated by at least 6 hours of zero precipitation, with a minimum total precipitation of 5 mm. This criterion for defining a
storm was adopted from previous studies to ensure comparability (Lamjiri et al., 2017; Palecki et al., 2005). For each storm,
the total precipitation (mm) was estimated as the sum of hourly precipitation values from the start to the end of the event. The
storm duration (h) was defined as the number of hours with precipitation greater than 5 mm, from the beginning to the end of
the event. The average storm intensity (mm h') is the total precipitation divided by the storm duration. Finally, the maximum
storm intensity (mm h1) is the highest hourly precipitation rate observed from the beginning to the end of the event (see Figure

3). The variables characterizing the storm, as defined above, were spatialized as an average over the study basin.
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Figure 3. Graphical definition of storm-event metrics and detection criteria

3.2 Methodology for Calculating the Transition Probability Between Storm States using Markov Chains

3.2.1  Organization and discretization of storm intensity data

120 The variables resulting from the characterization of storms were examined statistically and graphically. An exploratory analysis
was performed on the mean, median, standard deviation, and coefficient of variation (Table 1). Stations were grouped
according to these variables, frequency histograms and box plots were generated for them, and the data were subsequently
analyzed by season.

The seasons of the year were defined based on the dates of the solstices and equinoxes for the southern hemisphere. Summer

125 was defined as December 21 to March 20 (of the following year), fall as March 20 to June 20, winter as June 20 to September
22, and spring as September 22 to December 21.

Considering the statistical analysis, the maximum storm intensity series at each rainfall station were modeled using Markov

chains, grouped by season. The 95th and 99th percentiles of the intensity distribution were used as thresholds to define the

state boundaries, as shown in Table 2, following approaches adopted by other authors (Gao et al., 2021; Jiang et al., 2023;
130 Kemsley et al., 2024).

Table 2. Classification of rainfall intensity states

7
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States Criterion

Moderate Storm  Intensity < 18 mm h!

Strong Storm Intensity > 18 mm h™* and < 23 mm h*

Very Strong Storm Intensity > 23 mm h!

3.2.2  Evaluation of assumptions for Markovian modeling

First-order dependency was evaluated by comparing observed and expected frequencies in the transition matrices. For each
combination of station and season, first-order transition matrices were constructed, representing the probabilities of
transitioning from one discrete rainfall intensity state to another in consecutive events. These matrices quantify the conditional
probabilities (Eq. 1).

P(X; = jlX¢—1 = 1) ()

where X, denotes the discrete state of rainfall intensity at time ¢, and i, j are the possible states (Moderate, Strong, Very
Strong).

This formulation embodies the Markovian dependence property (Norris, 1997; Ross, 2014), where the probability distribution
of the current state depends only on the immediately preceding state (Eq. 2).

P(XelXi—1, Xeepr s X1) = P(Xe|Xe—1) 2

This assumption allows modeling the temporal dynamics through a single-step transition matrix, simplifying estimation and
interpretation.

The transition matrix P was constructed by computing the relative frequencies of state transitions over consecutive events, as
shown in Eq. (3).

Pll P12 P13
P21 P22 P23
P31 P32 P33

pP= 3)

Where each element P;; represents the probability of transitioning from state i to state j. The assumption of a first-order
Markov process implies that the future state depends only on the present state, simplifying the modeling of storm persistence
and progression.

To investigate potential seasonal differences in transition behavior at each station, a chi-square test was applied to the

corresponding transition matrices. Rather than treating the data as a single continuous series, the time series at each location

8
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was segmented into four separate Markov chains—one for each of the four seasons: summer, fall, winter, and spring. This
approach made it possible to observe seasonal patterns more clearly and assess whether state transition probabilities remained
stable within each period. Verifying this internal consistency was key, as it supported the decision to represent each season
with a distinct transition matrix, thereby preserving the integrity of intra-seasonal dynamics while avoiding the distortion that
could arise from mixing data across different times of the year. The chi-square test was applied to verify the temporal
homogeneity of transition probabilities within each season, ensuring that the Markov chain assumptions of stationarity and

first-order dependence were satisfied.

3.2.3 Estimation and Application of the Markov Model

The transition probability matrices were estimated by calculating the relative frequencies of transitions between discrete states.
These matrices were used to quantify the conditional probability of observing a given rainfall intensity state, given the state of
the preceding event (Gabriel and Neumann, 1962; Wilks, 2011). This approach allows simulating future sequences of rainfall

intensity by sequential sampling from the estimated transition probabilities (Eq. 4).

, N _ _NG=)
P, =jlXey =0) = m (4)

Where N (i - j) is the number of transitions observed from state i to j, and the denominator ;,, N(i — k) is the total number
of transitions departing from i across all possible states k, ensuring that each row of the matrix sums to one. This formulation
ensures that the probabilities in each row of the transition matrix sum to one, forming a stochastic matrix. The model provides
a framework to assess the likelihood of occurrence of Moderate, Strong, or Very Strong events conditioned on antecedent
conditions, supporting the analysis of temporal persistence patterns. It is important to note that the Markov assumption implies
that the process is memoryless beyond one lag and that the estimated probabilities are assumed constant across the observed
period.

To avoid linking events separated by long gaps, each seasonal series (summer, fall, winter, spring) was split by year, and
transitions were computed only within the same seasonal block. Here s denotes the season and y the year of observation. At
the start of each new season, the chain was “reset,” meaning that the first event of the season s in year y is treated as

independent of the last event of season s in year y — 1 (Eq. 5).

P (Xl(s,}’) =]|Xl(;_;}£—1) — l) — P(Xl(s,}’) =]) (5)

This simple reset procedure, inspired by the idea of Variable Length Markov Chains (VLMC) (Bihlmann and Wyner, 1999),

prevents spurious transitions between years and yields a more realistic picture of how storms evolve within each season.

4. Results and discussion
4.1 Storm Characterization

The results of the storm characterization are presented in Figure 4. The highest precipitation amounts occur in the Southern

Plateau, with average magnitudes of approximately 29 mm per event. Total precipitation shows a decrease, being greater in

9
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the Southern Plateau (north) and decreasing toward the Coastal Plain (south), with a slight increase observed in the
mountainous region of the Southern Shield.
190 The average storm duration is shorter in the mountainous areas of the Southern Plateau and Southern Shield, ranging between
11 and 13 hours, whereas the longest-lasting storms occur in the ocean-facing foothills of the Central Depression and Coastal
Plain, ranging between 14 and 17 hours.
Rainfall intensities are higher in the western part of the DAL and lower near the ocean. Consequently, maximum intensities
are also greater in the west, particularly in the mountainous zones of the Southern Plateau and Southern Shield, where average
195 peak values range from 9 to 10 mm h%, In contrast, precipitation intensities are lower in the Coastal Plain, with mean values

of 3 mm h! and maximum intensities averaging around 8 mm h*,

I A) Average Storm Total Precipitation (mm) " B) Average Storm Duration (h) ]

54°W 52°W 50°W N |

28°S

11
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13
14

16

.29
! ! !
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s ow
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RO km

Figure 4. Spatialization of the average storm behavior in terms of (a) magnitude, (b) duration, (c) average intensity and (d)
maximum intensity of storms
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200 4.2 Verification of Markov Chain Assumptions and Seasonal Rainfall Intensity Analysis
The time series modeled with Markov chains corresponds to the Average Maximum Rainfall Intensity of the storms
characterized in the previous analysis. An exploratory graphical analysis was conducted to evaluate potential seasonal
differences. Figure 5 presents boxplots of the data grouped by season.
The results highlight clear seasonal contrasts. During summer, rainfall intensities are higher in terms of magnitude (greater
205 extreme values between 27 mm h and 90 mm h'1), frequency (123 outliers), and variability (interquartile range between 5
mm h to 14 mm h). In contrast, winter exhibits the lowest intensities (extreme values between 18 mm h and 48 mm h),
with fewer extreme events (63 outliers) and reduced variability (interquartile range between 4 mm h? to 8 mm h) compared
to the other seasons. Spring and fall display intermediate behavior between the two opposite phases, with spring showing
slightly higher rainfall intensities relative to fall.

80 1 ° °
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—_— L] °
_TC 60 T ° . .
: § *
2 ' . E
‘n 8 ]
g : i
£ 40+ g
£
: |
= v
[1°]
=
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ol _ 1 1 I
Summer Fall Winter Spring
Season

210
Figure 5. Boxplots of the average maximum rainfall intensity grouped for summer, fall, winter, and spring

Considering the seasonal differences highlighted in Figure 5, four separate time series were constructed, one for each season

at every station. First-order transition matrices were then derived, and the order of each chain was verified. The chi-square
215 values and corresponding p-values of this test are presented in Appendix Al. Additionally, the temporal homogeneity of the

11
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Markov chains defined by season was assessed through the transition matrices, with the chi-square statistics and p-values also
reported in Appendix Al.

The results indicate that, for each station and season analyzed, the transition matrices exhibit homogeneous behavior consistent
with first-order Markov chains. The chi-square statistics and their corresponding p-values were generally not significant (p >
0.05), suggesting that transition probabilities do not vary substantially within each station and can be considered stable over
time. This outcome reinforces the suitability of applying Markov chains—considering the reset of the VLMC—and validates

the results obtained from modeling extreme rainfall events using this approach.

4.3 Spatial Results of Markov Chain Modeling

In this chapter, the transition probabilities between rainfall intensity states are presented, grouped by season: spring (Figure
6), summer (Figure 7), winter (Figure 8), and fall (Figure 9). The interpretation of the transition maps follows this logic: the
initial state corresponds to the rows, and the subsequent state to the columns. Therefore, Figures 6b, 7b, 8b, and 9b illustrate
the probability of transitioning from the Moderate state (row) to the Strong state (column). The same logic applies to all other
cells and figures presented in this chapter.

Figure 6 shows the transition probabilities between rainfall intensity states derived from the Markov chain modeling for spring.
Upward transition probabilities, like Moderate to Strong (Figure 6b), Strong to Very Strong (Figure 6f), Moderate to Very
Strong (Figure 6c) are relatively low, remaining below 0.2 across the entire study area. In contrast, there is a high probability
of downward transitions to the Moderate state, like Strong to Moderate (Figure 6d) and Very Strong to Moderate (Figure 6g),
with values exceeding 0.7 throughout the region and particularly pronounced in the Coastal Plain.

Probabilities of transitioning to or persisting in the Strong state remain below 0.1 (Figures 6b, 6e, 6h), although slightly higher
in the mountainous regions of the Southern Plateau and Southern Shield. In the lowland areas of the Central Depression and
Coastal Plain, the probability of maintaining Strong conditions is nearly zero. The greater persistence of the Strong state in
mountainous zones may be attributed to the role of topography in modulating orographic convection, which in spring has not
yet reached its peak development.

12
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Figure 7 shows the transition probabilities between rainfall intensity states for summer. The probability of maintaining a
Moderate storm state ranges between 0.7 and 0.95 (Figures 7a, 7d, 7g), indicating strong persistence. In contrast, the probability
of remaining in the Strong or Very Strong states is below 0.2 (Figures 7b, 7c, 7e, 7f, 7h, 7i).

Upward transitions, like Moderate to Strong (Figure 7b), Strong to Very Strong (Figure 7f), and Moderate to Very Strong
(Figure 7c) display higher probabilities in summer compared to the other seasons. The probability of a Moderate to Strong
transition reaches up to 0.2 in the Southern Shield, while the probability of Strong to Very Strong transitions ranges from 0.025
to 0.2 across the Central Depression and Coastal Plain. Persistence of the Very Strong state can reach 0.2, particularly in the
mountainous Southern Shield (Figures 7c, 7f, 7i).

The higher rainfall intensities in the mountainous regions coincide with the peak of convection in the area, where orographic
effects enhance air uplift and favor more intense storms. Conversely, in the flat areas of the Central Depression and Coastal
Plain, Very Strong events dissipate more quickly. This pattern reflects the typical behavior of plains, where the absence of

topographic barriers reduces the persistence of convective systems.
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Figure 7. Spatial distribution of Markov transition probabilities between rainfall intensity states during summer
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Figure 8 shows the transition probabilities between rainfall intensity states for winter. During this season, extreme events are
less frequent, with downward transition probabilities reaching values close to 0.9 (Figures 8a, 8d, 8g). While Upward transition
probabilities, like Moderate to Strong (Figure 8b), Strong to Very Strong (Figure 8f), Moderate to Very Strong (Figure 8c)
remain near 0.025. The probability of transitioning from Strong to Very Strong (Figure 8f), or of persisting in the Very Strong
(Figures 8c, 8f, 8i), is below 0.025 across the entire study area.

In contrast, downward transitions (Strong to Moderate, Very Strong to Moderate) are dominant, with probabilities exceeding
0.9 in most of the region. Unlike summer and spring, winter does not exhibit distinct spatial patterns in the behavior of extreme
events, indicating a more homogeneous distribution of rainfall intensity across the study area.
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Figure 8. Spatial distribution of Markov transition probabilities between rainfall intensity states during winter
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Figure 9 shows the transition probabilities between rainfall intensity states for fall. Upward transition probabilities, like
Moderate to Strong (Figure 9b), Moderate to Very Strong (Figure 9¢) remain below 0.1 across the study area. Similarly,
transitions between the Strong and Very Strong states (Figures 9f, 9h) are generally below 0.2, with slightly higher values
observed for the Strong to Very Strong transition (Figure 9f).
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Figure 9. Spatial distribution of Markov transition probabilities between rainfall intensity states during fall
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The comparative analysis of rainfall regimes throughout the year reveals well-defined patterns of persistence and transition in
storm events, closely linked both to seasonal dynamics and to the particularities of regional topography. In spring, there is a
marked tendency for rapid returns to moderate conditions after high-intensity episodes, a phenomenon especially evident in
the Coastal Plain. By contrast, in the elevated areas of the Southern Plateau and Southern Shield, the Strong state persists more
frequently, suggesting a significant influence of topography in modulating orographic convection.

During summer, rainfall dynamics become more complex: upward transitions to more intense states—Moderate to Strong and
Strong to Very Strong—are more frequent, particularly concentrated in the Southern Shield, where topographic conditions act
as catalysts of repeated and intense convective processes. In the lowland regions, such as the Central Depression and Coastal
Plain, Very Strong events tend to dissipate more quickly, consistent with the absence of orographic forcing mechanisms that
sustain convective activity.

Fall, in turn, is characterized by a remarkable stability in rainfall regimes: Moderate events predominate with little variability,
and transition probabilities between states remain considerably low. This regularity suggests a more predictable rainfall pattern,
marked by a more uniform distribution of precipitation. In winter, by contrast, the highest downward transition rates are
observed—exceeding 90%—and sequences of extreme events are rare. This pattern is consistent with the predominance of
frontal systems, which tend to generate less intense, more homogeneous, and shorter-lived rainfall.

Taken together, the findings highlight the decisive role of topography in enhancing the intensity and persistence of summer
rainfall, as well as the concentration of prolonged flood risk in the lowland areas during winter. These seasonal and spatial
differences are of strategic importance for hydrological modeling and for the design of risk management policies tailored to

the specific characteristics of the territory.

4.4 Discussing of the results

Our findings indicate higher probabilities of upward transitions (e.g., Strong to Very Strong) during summer, consistent with
synoptic studies in the region (Sanches et al., 2019; Schumacher et al., 2016; Teixeira and Prieto, 2020b), which highlight the
intensification of the Low-Level Jet and moisture convergence in this season. Moreover, Sanches et al., (2019) reported a
significant increase in extreme events in December and a reduction in return periods, which aligns with the elevated upward
transition probabilities observed in our study (up to 0.2 in the Southern Shield).

In winter, by contrast, our analysis shows dominant downward transitions (e.g., Very Strong to Strong), suggesting that frontal
systems prevailing during this season are more stable and less convective, consistent with the findings of Teixeira; Prieto,
(2020a, 2020b). This mechanism favors less intense rainfall and reduces the likelihood of consecutive extreme events, in
agreement with Britto; Barletta; Mendonca, (2006), who documented the frequent passage of cold fronts. Our results extend
this evidence by showing that such systems quickly return to moderate conditions.

The persistence of Strong and Very Strong events in mountainous areas confirms that orography modulates the rainfall regime,
enhancing air uplift and storm continuity during summer. In contrast, the rapid dissipation of extremes in the Central

Depression and Coastal Plain reflects the flat topography, where the absence of orographic barriers limits convective
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persistence. This is consistent with previous studies (Britto et al., 2006; Guedes et al., 2019; Teixeira and Prieto, 2020a) that
identified persistent events associated with frontogenesis and slow-moving cyclogenesis in mountainous zones. Our results
add detail by showing that these areas exhibit higher maximum intensities (9—11 mm h) and greater persistence of Strong
states, supporting the hypothesis that relief enhances both frontal and convective rainfall.

The higher upward transition probabilities observed in summer over the Southern Shield reflect mechanisms similar to those
described for Mesoscale Convective Complexes (MCCs), where the Low-Level Jet (LLJ) and orography favor the persistence
of intense rainfall. Ribeiro-Viana et al., (2009) reported 22 MCCs between October and December 2003, with an average
duration of 18.6 hours, consistent with the persistence patterns identified in our study.

Storm characterization further revealed that rainfall events in lowland areas tend to last longer, which aligns with the increase
in five-day precipitation totals (CMax5) documented by Minuzzi; Lopez, (2013). This suggests that storm persistence is a key
driver of seasonal rainfall accumulation. The marked geomorphological contrasts in the study area also help explain why trend
analyses do not show consistent signals across all stations, as highlighted by Melo; Louzada; Pedrollo, (2015). Orography not
only influences trend detection but also affects the occurrence of extreme indices (R95p, R99p) (Melo et al., 2015) and the
ICEXT index (Extreme Rainfall Intensity) analyzed by (Minuzzi and Lopez, 2013), both showing that relief can either attenuate
or intensify extreme rainfall occurrence, producing spatially contrasting responses. Futhermore, across southern Brazil,
including Parand, Santa Catarina, and Rio Grande do Sul, multi-model projections from CMIP6 indicate stronger precipitation
extremes through mid to late century. Intensity-based indices rise, with increases in RX1day and RX5day, very-wet and
extremely-wet day totals (R95p, R99p), and the simple daily intensity index (SDII), alongside higher frequencies of heavy-
rain days (R20mm) (Avila-Diaz et al., 2020).

The heterogeneous storm patterns driven by topography highlight the need for differentiated management strategies across
physiographic units. The high persistence of rainfall in the Southern Shield indicates that this region may be an important
source of runoff and sediment, suggesting the need for reforestation and soil management practices to reduce flood peaks. In
the plains, where extreme events may lead to prolonged flooding, priority should be given to wetland restoration and the
reinforcement of early warning systems to mitigate risks. (Marques and Méller, 2008), who studied water levels in the Lagoa
dos Patos, emphasized that while storms dissipate in this ecosystem, water accumulation remains significant.

These management strategies are particularly relevant in light of evidence from previous studies pointing to an increasing trend
in rainfall. (Guedes et al., 2019) reported that 50% of the stations they analyzed showed a significant increase in annual rainfall,
linked to El Nifio events. (Berlato et al., 2007) also demonstrated a generalized increase in precipitation in Rio Grande do Sul,
associated with the higher frequency of El Nifio. Such findings are concerning when considered alongside projections of
increased El Nifio frequency and intensity (Cai et al., 2014; Chen et al., 2024). Furthermore, Melo; Louzada; Pedrollo, (2015)
estimated increases in R95p and R99p indices and projected up to 600 mm of additional annual rainfall above the 95th
percentile by the end of the century in Rio Grande do Sul. Similarly, (Junges et al., 2019) found a significant increase of 6.3

mm/year in annual precipitation, with notable seasonal increases in spring (+2.5 mm/year) and winter (+1.9 mm/year).
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5. Conclusions

The analysis revealed that summer is characterized by higher probabilities of transitions toward more intense storms, reaching
values of up to 0.2, consistent with the intensification of the Low-Level Jet and the enhancement of orographic convection
reported in previous synoptic studies. Conversely, winter is dominated by downward transitions, with probabilities
approaching 0.95, reflecting the influence of more stable and homogeneous frontal systems.

Topography was found to play a decisive role in the persistence and dissipation of storms. In the Central Depression and the
Coastal Plain, storms tend to last longer, with mean duration of 15 - 17 hours, but exhibit lower intensities, with average
maximum values of 7 - 8 mm h. In contrast, in the mountainous regions of the Southern Shield and the Southern Plateau,
storms are more intense, with maximum intensities of 10 - 11 mm h%, but shorter-lived, lasting on average 11 — 12 hours. This
pattern reflects the direct influence of relief on rainfall dynamics.

Overall, the spatial and temporal characterization of storms developed in this study provides a solid foundation for advancing
early warning systems, guiding land-use planning adapted to distinct physiographic units, and supporting the design of
adaptation strategies in response to the projected increase in extreme precipitation events in southern Brazil.

Appendix Al
Temporal homogeneity test results and chain order determination for seasonal Markov models

Order Homogeneity

Season Station
Chi? p-value Chi? p-value

Bento Goncalves 3.383 0.496 3.457 0.485

Cacapava do Sul 3.493 0.479 3.148 0.533
Camaqua 4.078 0.396 4.29 0.368

Canela 1.936 0.748 1.893 0.756

Cangucu 2.973 0.562 2.991 0.559

Cruz Alta 2.758 0.599 3.035 0.552

Jaguarao 3.195 0.526 3.173 0.529

Spring  Mostardas 2.471 0.65 2.563 0.634
Passo Fundo 0.108 0.999 0.123 0.998

Porto Alegre 2.599 0.627 2.587 0.629

Rio Grande 2.511 0.643 2.489 0.647

Rio Pardo 1.381 0.847 1.284 0.864

Sdo Gabriel 4.569 0.335 4.535 0.338
Soledade 1.911 0.752 1.878 0.758

Torres 1.94 0.747 0.425 0.98

summer Bento Goncalves 6.551 0.162 8.522 0.074
Cacapava do Sul 1.558 0.816 1.832 0.767
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Camaqua 5.816 0.213 5.128 0.274
Canela 0.898 0.925 0.994 0.911
Cangucu 5.301 0.258 5.395 0.249
Cruz Alta 0.418 0.981 0.666 0.955
Jaguarao 4.99 0.288 3.531 0.473
Mostardas 2.826 0.587 3.109 0.54
Passo Fundo 2.367 0.669 2.304 0.68
Porto Alegre 2.077 0.722 2.293 0.682
Rio Grande 3.606 0.462 3.784 0.436
Rio Pardo 3.851 0.427 3.683 0.451
Sdo Gabriel 1.851 0.763 1.889 0.756
Soledade 2.506 0.644 2.714 0.607
Torres 2.98 0.426 2.086 0.72
Bento Goncalves 3.623 0.459 3.587 0.465
Cacapava do Sul 6.007 0.199 5.865 0.21
Camaqua 6.169 0.187 6.136 0.189
Canela 2.382 0.666 2.58 0.63
Cangucu 2.379 0.666 2.368 0.669
Cruz Alta 8.196 0.085 8.138 0.087
Jaguarao 1.766 0.779 2.109 0.716
Fall Mostardas 4.502 0.342 4.458 0.348
Passo Fundo 2.574 0.631 2.593 0.628
Porto Alegre 1.204 0.878 1.671 0.796
Rio Grande 10.067 0.056 9.896 0.056
Rio Pardo 1.547 0.818 1.531 0.821
Sdo Gabriel 3.89 0.421 3.852 0.426
Soledade 2.432 0.657 2.357 0.67
Torres 0.425 0.98 1.346 0.854
Bento Goncalves 3.778 0.437 3.837 0.429
Cacapava do Sul 4.736 0.315 6.89 0.142
Camaqua 0.07 0.999 0.07 0.999
Canela 0.153 0.997 0.152 0.997
Cangucu 0.523 0.944 0.083 0.995
Winter
Cruz Alta 0.647 0.958 0.647 0.958
Jaguarao 0.171 0.997 0.171 0.997
Mostardas 0.079 0.999 0.079 0.999
Passo Fundo 1.167 0.883 1.184 0.881
Porto Alegre 0.219 0.994 0.217 0.995
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Rio Grande 9.564 0.052 9.605 0.052
Rio Pardo 1.486 0.829 1.486 0.829
Sdo Gabriel 0.13 0.998 0.13 0.998
Soledade 0.284 0.991 0.284 0.991
Torres 1.3 0.861 0.079 0.98

Data availability
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