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Abstract. This study presents improvements to the implementation of Gaussian dispersion model for estimating methane (CH4)

emissions using mobile real-time measurements at facility scale. The Gaussian plume models often rely on discretized atmo-

spheric states, characterized by stability classes. The proposed enhancements include blending (weighted averaging) the two

nearest atmospheric stability classes to create a more continuous model of the atmosphere, and then systematically adjusting

the source location along the transect to improve the fit. Stability classes (and the weights assigned) were derived by comparing5

surface roughness and Obukhov length. The source translation was performed by examining the shapes of the observed and

modeled plume. The methods were tested on a widely used, open-source Gaussian dispersion model from Polyphemus, with

mobile observations and a Bayesian inversion scheme to estimate emissions. Observations included both controlled release

studies that were performed in Canada, as well as observation data from Canadian refineries and waste management facilities.

A wide range of methane emission rates were examined, with estimating emissions ranging from 1.7 to 14,213 kg/day. Results10

showed that blending the stability classes results in model performance that are roughly the weighted averages of the two ini-

tial classes, and in some instances slightly better. Source translation resulted in increased correlation and decreased root mean

square error (RMSE), in many cases significantly so (e.g., from R2 of 0.02 to 0.96, seen in a transect from Courtright). The

algorithm was also able to locate a previously unknown source. While blending stability classes showed small improvements

in some cases, it generally aligned emission estimates with observations. Our novel approach worked across various stability15

classes, although its sensitivity to surface roughness remains a limitation for certain situations/environments.

1 Introduction

Understanding and quantifying the emissions of trace gases into the atmosphere is imperative for both air quality and climate

change concerns. In fact, many nations have pledged to track and reduce their anthropogenic greenhouse gas (GHG) emissions20

in an effort to curb their impact on climate change following the recommendations made by the Intergovernmental Panel on

Climate Change (IPCC, 2014). Canada, in particular, has committed to reduce its greenhouse gas emissions by 40 to 45%
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below 2005 levels by 2030 and to achieve net zero emissions by 2050, with a strong emphasis on curbing methane emis-

sions (see Government of Canada’s Methane Strategy, available at https://www.canada.ca/en/services/environment/weather/

climatechange/climate-plan/reducing-methane-emissions/faster-further-strategy.html; last accessed May 2025, for more de-25

tails). Methane (CH4) is the most significant anthropogenic GHG after carbon dioxide (CO2), and has received much attention

due to its potent radiative forcing effects. Indeed, the global warming potential (GWP), which measures how much heat a

particular gas traps in the atmosphere relative to CO2 (i.e., GWP of CO2 is by definition 1) is 28 for methane over a 100-year

time scale. Because methane has a shorter atmospheric lifetime compared to CO2 (on the order of about 12 years compared

to centuries-long persistence of CO2) it has an immediate impact on global warming (Smith et al., 2021). This characteristic30

makes methane a critical target for mitigation strategies that aim to reduce the pace of climate change. The potential for rapid

and noticeable changes from methane reduction efforts has led many to regard it as "low-hanging fruit" for emission control

(e.g., Hansen et al., 2000; Christensen, 2018), and Canada in particular has explicitly stated in their methane strategy that tar-

geting methane offers a cost-effective opportunity for Canada to make substantial near-term progress toward its climate goals.

However, addressing methane emissions remains a significant challenge due to the complexities of accurately estimating its35

release into the atmosphere and identifying the specific sources of these emissions (e.g., Chang et al., 2019; Nisbet et al., 2020).

Quantifying methane emissions presents a difficult challenge due to a number of factors that contribute to uncertainty in

emission estimates. There are two categories off approaches to estimating emissions. The first category is often referred to

as "bottom-up" approaches. In bottom-up approaches, emissions are often calculated based on activity data and emission fac-40

tors, or consumption-based statistics, all of which all of which have associated uncertainties. Furthermore, complex emissions

models can incorporate factors such as meteorological conditions, terrain, and operational practices at emission sites can lead

to significant variation in emission rates (Melton et al., 2013; Poulter et al., 2017). In contrast, top-down emission estimates,

which rely on atmospheric measurements and often also employing inverse modeling techniques, offer a complementary ap-

proach by directly observing the concentrations of methane in the atmosphere. This approach also has uncertainties, both45

with the measurements and in the model used for the inversion, however it can provide an independent and direct estimate

of emissions, and can also help identify localized hotspots of methane emissions. Revealing discrepancies between emission

inventories and atmospheric-based estimates can provide valuable insights into emission process and inform targeted miti-

gation efforts. Studies such as Ars et al. (2020) have highlighted the importance of improving the identification of emission

sources to reduce the uncertainties associated with methane estimates. In Canada, recent top-down studies have demonstrated50

that bottom-up inventories report may underestimate methane emissions from the oil and gas industry by between 25% and

90%. These discrepancies have been observed at various scales, from local facilities to national levels. Airborne studies have

revealed significant discrepancies between reported and observed methane emissions from oil and gas production facilities,

while mobile surveys in urban areas have highlighted the relevance of landfills and natural gas distribution infrastructure as

methane sources (Johnson et al., 2017; Chan et al., 2020; Ars et al., 2020; MacKay et al., 2021; Tyner and Johnson, 2021).55

These findings underscore the importance of integrating top-down methods to enhance emission inventories and inform effec-
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tive mitigation strategies.

At facility scale, one approach to top-down emissions estimates is to use a Bayesian inversion with Gaussian dispersion

models. These models provide a relatively simple, computationally quick, and efficient method for calculating the distribu-60

tion of pollutants, including methane, in the atmosphere. The use of Bayesian inversion for estimating CH4 emissions have

been well documented and well tested; it has been used with in-situ data(e.g., Ganesan et al., 2015; Bergamaschi et al., 2018;

Yadav et al., 2019), satellite data (e.g., Alexe et al., 2015; Zhang et al., 2021; Cusworth et al., 2021), and aircraft data (e.g.,

Miller et al., 2013). Gaussian dispersion models work by calculating the spread of pollutants from a known source under

specific meteorological conditions. The model gives a steady-state solution with constant emission rates as well as constant65

and homogeneous winds and terrain. By comparing the measured concentrations of methane at various locations with the pre-

dicted concentrations of the model, emissions from a particular source can be estimated. Although simplistic, this technique

offers a valuable tool for modeling short-range transport and estimating emissions, as it is computationally less demanding than

high-resolution atmospheric models that require extensive meteorological data and potentially significant computing resources.

70

Several studies (e.g., Hosseini and Stockie, 2016; Vogel et al., 2024; Gillespie et al., 2025) have demonstrated the use of

Gaussian dispersion models in emission estimation, particularly in the context of urban or industrial sites. These models provide

a practical way to assess emissions at multiple sites without the need for resource-intensive simulations. Despite their advan-

tages, Gaussian models are not without limitations. For example, most Gaussian dispersion models use discretized atmospheric

stability classes (Briggs, 1972), a parameter that affects the dispersion rate of pollutants. This parameter being discretized can75

result in systematic biases, depending on which class is chosen. Additionally, emissions calculated using this approach tend

to be underestimated, with emission estimates being especially sensitive to the placement of the emitting source, which may

not be well known (Ars et al., 2017). Many of the industrial sites that emit CH4 are sized on the order of 100 m2 to 1 km2

and the emissions are typically emitted from several specific locations within the facilities, although the exact locations may

not be identified exactly (Ars et al., 2017). Furthermore, as the model only describes the steady-state, with constant winds and80

emission rates, it may not fully capture the complex behaviors of trace gases under varying atmospheric conditions.

In this study, the Polyphemus gaussian dispersion model was used to estimate methane emissions, and to improve the per-

formance of the model and inversion scheme, we present a novel method to blend stability classes in an attempt to represent

a more continuous (i.e., less discretized) atmosphere, and an algorithm to adjust the source location parameter based on the85

statistics of posterior emission profiles and observations to obtain better emission estimates. The resulting model setup was

tested on several landfills, waste treatment facilities, and oil refinement plants in Canada. Furthermore, in an attempt to reduce

the effects of shifting winds, a method of sampling the same plume on the same road back to back and smoothing them to

get an averaged plume was also tested. By integrating real-time trace gas measurements with Gaussian dispersion models and

novel model optimization techniques, this study improves the robustness of methane emission estimates and offers valuable90
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insights for targeted mitigation strategies in various industrial contexts.

2 Methods

2.1 Mobile Measurements

The observational CH4 data used for inversion in this study came from mobile measurements, where real-time data is collected95

from a vehicle-mounted sensor setup. The sampling inlet was mounted approximately 2.5 meters above ground to capture air

samples at a height that would minimize interference from surface-level sources and ensure an accurate representation of ambi-

ent air concentrations (Vogel et al., 2024). The inlet was connected to a LI-7810 CH4/CO2/H2O OF-CEAS (Optical Feedback

– Cavity Enhanced Absorption Spectroscopy) Trace Gas Analyzer manufactured by LI-COR Environmental (Lincoln, NE,

USA). This instrument is capable of measuring CH4 from 0 to 100 parts per million (ppm), with a precision of 0.60 parts per100

billion (ppb) at 2 ppm with 1 second averaging or 0.25 ppb at 2 ppm with 5 second averaging. The response time for these

measurements is reported to be less than 2 seconds. Additionally, a weather station was also mounted on top of the vehicle to

collect real-time meteorological data, including wind speed, wind direction, temperature, and atmospheric pressure (AIRMAR

220WX (Airmar Technology Corporation, Milford, NH, USA)).

105

2.2 Model Setup

To analyze the methane measurements collected from the mobile platform, and to run the inversion for estimating emis-

sions, a Gaussian dispersion model from the Polyphemus suite (see Doi: 10.5281/zenodo.10067062 and https://cerea.enpc.fr/

polyphemus/introduction.html; last accessed March, 2025) of atmospheric models was employed. The Polyphemus platform

is supported by CEREA, Marne-la-Vallee, France, and is described in detail in Mallet et al. (2007). The Bayesian inversion110

process to estimate emissions was done following Ars et al. (2020). Bayesian inversion is particularly powerful because it inte-

grates prior knowledge about emission sources and their characteristics with observed data, providing a probabilistic estimate

of emission rates. Specifically, the posterior emissions were calculated as follows:

Fa = Fb +BMT(Rm +MBMT)−1(Y−MFb), (1)

and the uncertainty calculation as follows:115

A = (B−1 +MTRmM)−1, (2)

where Fa and Fb are the posterior and prior methane emission rates, respectively, A and B are the uncertainties on the poste-

rior and prior, respectively, Y is the observation, M is the observation operator, and Rm is the covariance of the observation

operator M (Tarantola, 2005). This method enables the incorporation of uncertainties in the input data and the model itself,
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yielding more robust and reliable emission estimates. Emission sources were modeled to be 1-meter diameter circular area-120

sources for smaller sources (e.g., chimneys), and larger circles of up to 50-meters in diameter for larger area sources such as

waste treatment ponds. Initial (a priori) estimates of emissions were taken to be 1 gram per second. Uncertainty analysis was

performed based on the approach outlined by Ars et al. (2017). In their study, Ars et al. conducted several sensitivity tests on

the Gaussian model to evaluate how each parameter impacts the emissions estimate. They found that the primary source of

uncertainty was the selection of the stability class, accounting for 48 % of the uncertainty, followed by wind direction (38%),125

wind speed (28%), and source location (19%). They also found that parameters such as temperature, pressure, and measure-

ment height were much smaller sources of uncertainty. The overall uncertainty of their method was estimated to be 75% of

the final emissions estimate. In this study, the stability class and source location uncertainties were dropped, and the overall

uncertainty was estimated to be 48% (the components added in quadrature).

130

Meteorological data from the High-Resolution Rapid Refresh (HRRRv4 native 3km resolution, see https://rapidrefresh.

noaa.gov/hrrr/; last accessed March, 2025) reanalysis dataset (Dowell et al., 2022) provided by the National Oceanic and At-

mospheric Administration (NOAA), USA, was used to drive the dispersion model. The HRRR data were chosen over the

weather station data mounted on the vehicle due to the weather station having unreliable wind data when the vehicle was

traveling at higher speeds, and because HRRR data is available across Canada. The HRRR dataset includes crucial parameters135

such as wind speed, wind direction, temperature, and planetary boundary layer (PBL) height, which are necessary for accurate

predictions of gas dispersion. The PBL height defines the altitude at which the atmosphere becomes stably stratified, marking

the boundary between the turbulent mixed layer and the free atmosphere. The mean of the latitude and longitude along the

mobile measurement path was used to obtain the most representative coordinates for each transect. Most transects analyzed in

this study were less than 3-km long.140

2.2.1 Stability Classes

Gaussian dispersion models often rely on atmospheric stability classes, which provide a measure of how turbulent the at-

mosphere is, and directly affects the dispersion of pollutants. This parameter also affects plume-rise. In this study, a Briggs

plume-rise scheme was used, which is a decision-tree-like algorithm that calculates the rise of a buoyant plume, with the sta-145

bility class and buoyancy factor as inputs. The classes vary from A to F, A being extremely unstable, F being stable, and D

being neutral. This was also derived from the HRRR data.

To improve the model, and in an attempt to get away from the discretized representation of the atmospheric processes, these

classes were "blended" to better capture the continuous nature of the atmosphere. This was done following the relationship150

between surface roughness (z0) and the inverse of the Obukhov length (L) (Golder curves) (Golder, 1972). They were used to

compute a weighted average of the stability classes, allowing for a more continuous representation of the atmosphere. Specif-

ically, the surface roughness and Obukhov length derived from HRRR were plugged into the Golder curves, and the position
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in this z0-1/L plane and the distances to the nearest two classes were used to calculate the weighted average of the blended

stability classes. The z0-1/L space and the curves on this plane are shown in Figure 1. For cases where the calculated position155

in the space was to the left of stability class A, or to the right of stability class F, then no blending was done. Blending was

omitted if z0 was extremely small (z0 < 0.002) or large (z0 > 0.5). These scenarios were not seen in any of the sites tested

(although these conditions do appear in some extreme scenarios, such as in the middle of a city). Once the weights for the two

stability classes were determined, the model was run as usual in these two modes, and the resulting fields were then blended

by calculating the weighted average with the weights obtained.160

Figure 1. This figure shows the A, B, C, D, E, and F stability classes on the z0-1/L space, with the colored lines indicating the centerlines

of each of the stability classes, and the black lines indicating the "border" between each of the stability classes. The axes are linear, and the

units are in meters for surface roughness (y-axis) and m−1 for 1/L (x-axis).

2.2.2 Locating the Source

To further improve the emission estimates, a systematic, algorithmic approach was used to adjust the source location, nudging

the source location after the initial inversion process to optimize the agreement between observed and modeled concentrations.

The source location was translated along (parallel to) the transect path (i.e., the line of travel of the mobile measurement plat-165

form). If the autocorrelation between the observed and modeled concentrations was sufficiently high, meaning that there is

good agreement between the modeled plume and the observation up to some translation, and if the skewness in the transects
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were sufficiently close to each other (meaning that the model and the observation share a similar "shape"), then the source

location was translated by matching the peaks in the observed and modeled concentration profiles. Kurtosis (or other moments

of the distribution) was not examined in this analysis. Autocorrelation values of 0.66 to 0.955 were chosen as the cutoffs for170

this algorithm, and similarly, a requirement that the difference in skewness be less than 2 was also added. These values were

chosen after running the model for various transects of varying quality and noise-level.

2.3 Test Sites

The methodology discussed above was tested across several diverse sites to evaluate the performance and robustness of the175

model/inversion setup. The sites included both natural and largely flat environments as well as more industrialized areas, both

with varying levels of CH4 emissions. The first tests were done with data collected from the Sarnia region in Southern Ontario,

Canada. Controlled release campaigns were conducted in this area, near 4120 Oil Heritage Road, Petrolia, Ontario (henceforth

referred to simply as the "Petrolia" site in this study), which allowed for testing of the model under known emission conditions,

helping to calibrate the system and evaluate its performance in a more controlled setting. Controlled release runs were carried180

out on November 7th and 9th of 2023. A measurement from the same area as where the controlled release took place, but not

during the experiment (July 27th, 2022) was also examined. Just south of Petrolia, other (not controlled release) measurements

were also made. These measurements were collected near 161 Bickford Line, Courtright, Ontario (and labeled "Courtright"

in this study). These were conducted on October 31st and November 8th of 2023. These transects came from one facility

complex, but likely came from different sources within the facility. In addition to the controlled release experiments in 2023,185

a second controlled release campaign was conducted in May 2025 at the same location in Petrolia. In this field campaign,

multiple transects of the same plume were measured by going back and forth on the same road in succession. These transects

were then averaged, by overlaying the measurements on top of each other and then smoothing them by applying a Gaussian

filter. This approach was tested in this campaign in an effort to minimize the effects of wind meandering and shifting. These

experiments were carried out from May 16 to May 18, 2025.190

Additional testing was conducted at several sites in Quebec, including an oil refinery (Energie Valero oil refinery in Lévis,

Quebec, labeled "Quebec City Valero" in this study) and a recycling center (Hêtrière Ecocentre located in the District of Sainte-

Foy–Sillery–Cap-Rouge, labeled "Quebec City Hêtrière" in this study) in Quebec City, and a recycling plant near Trois-Rivières

(Enercycle headquarters in Saint-Étienne-des-Grès, Quebec, labeled "Trois-Rivières" in this study for simplicity). These sites195

were chosen for their diversity in emission sources, including CH4 from industrial (oil & gas) processes and microbial pro-

cesses (waste management). These measurements were made on November 19th, 20th, and 22nd of 2024. By testing the model

at multiple sites, the study ensured that the methodology was generalizable and could be applied to a wide range of emission

scenarios, providing reliable estimates of methane emissions across different sectors.

200
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3 Results and Discussion

3.1 Effects of Stability Classes

The model with the posterior (after the inversion scheme) emissions generally showed similar results with the two nearest

stability classes, and after blending, the statistics (e.g., correlation) were roughly the weighted averages of the two classes,

and slightly better in some cases (e.g., Petrolia #4, where R2 went from 0.94 and 0.84 to 0.96 after blending). Table 1 shows205

the blended classes and the respective performances. The results shown here were taken from the model runs after the source

translation, which is discussed in Section 3.2. The resulting blended runs will have emission estimates that are the weighted

averages of the two stability classes, and as evident in Figure 2, these tended to be more in line with measurements.

The algorithm was stable under extreme cases; for example, the Petrolia transect #5 was run with stability class F alone,

as was the Quebec City Valero run (see Table 1 and Figure 3). Petrolia #4 was run blending stability classes E and F, and the210

inversion converged to give physical and meaningful emission estimates with a reasonably high R2 (as noted above, this was

also a case in which the blended runs resulted in slightly better correlation). In fact, it is worth noting that this stability blending

methodology is stable and performs as expected regardless of which stability classes are blended (or not blended); nearly all

stability classes were examined; indeed, B, C, D, E, and F classes were seen across the runs in this study (see Table 1).

However, this approach is not without problems. This approach to estimating the stability class is very sensitive to the surface215

roughness parameter (z0) when z0 <∼ 0.1 (see Figure 1, and note the low, nearly-flat slopes of the curves), which was often

the case in Petrolia and Courtright (e.g., z0 was roughly 0.06 in Petrolia). z0, which in this study was taken from the HRRR

reanalysis dataset, may in some cases be outdated or too coarse in resolution, or both; because the methodology discussed in this

study assumes z0 to be well-known, this can sometimes result in strange stability classes. However, without highly specialized

equipment (e.g., Trepekli and Friborg, 2021, which used a LiDAR-equipped drone), making empirical measurements of z0 can220

be challenging, and thus the value was taken from existing reanalysis datasets. Conversely, when z0 >∼ 0.2, the stability class

becomes extremely sensitive to the Obukhov length (or rather 1/L), necessitating good estimates of L. On a similar note, a

dedicated setup to measure Obukhov length (or rather the parameters needed to derive L) may result in improvements to this

methodology, although this is also challenging to accomplish in a mobile setup (Araújo da Silva et al., 2022).

3.2 Emission Estimates and Source Location225

The source translation algorithm generally resulted in higher correlation, lower RMSE, and higher emission estimates. The re-

sults are summarized in Table 2. The results of controlled release experiments, in which known quantities of CH4 were released

from known locations, showed particularly promising results; the algorithm in all cases found, within ∼50 meters, the correct

source locations. Here, the a priori source location taken to be several hundred meters north of the actual sources. Additionally,

in one of the transects (Petrolia #4), the algorithm was able to find a completely different source: a farm stable located about230

1200 meters away (see Figure 4). The transect plots for this run, along with birds-eye view of the plume, are shown in Figure

5. It is also evident that this is a completely different source by looking at the estimated emission rate, estimated to be 880 ±
420 kg/d, which is roughly an order of magnitude less than the other controlled release studies (see Table 2).
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Figure 2. Transect plots showing the measurements, model prior and model posterior for Petrolia # 2, for (a) stability class C, (b) stability

class D, and (c) blended. All units are in parts per billion (ppb) and meters (m).

For Petrolia #1 and #2 (controlled release experiments conducted in 2023), the actual emission rates are available for com-

parison; For Petrolia #2, our inversion estimate was 3380± 1620 kg/day while the actual rate was 3567 kg/day, and for Petrolia235

#1, we estimated 2770 ± 1330 kg/day, while the actual rate was 1991 kg/day. The source locating algorithm performed well

and drastically improved Petrolia #2 results, but led to a further overestimation for Petrolia #1. This may be due to the uncer-

tainty in the source location in the direction perpendicular to the transect; This is supported by the fact that the overestimation

was present before the source translation took place. Furthermore, the Petrolia #2 correlation improved significantly with the

source location algorithm (see Table 2), also indicating that the discrepancy in emission rates is likely not due to the uncertainty240

of the source location in the direction parallel to the transect.

The algorithm was also stable with "real" observational data (not from controlled release experiments). The transects from

Petrolia (# 4 and #5), Quebec City, Trois-Rivières, and Courtright all show better correlation and errors after optimizing for

the source location (see Table 2). The two transects from Trois-Rivières appeared to have at least two sources, two of which

were fairly close to each other and well mixed by the time the plume reached the road. There also appeared to be another,245
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Figure 3. Transect plots showing the measurements, model prior and model posterior for the Quebec City Valero, for (a) original source

location, and (b) optimized source location. All units are in parts per billion (ppb) and meters (m).

smaller source southeast of the main source; an attempt was made to evaluate the smaller signal, and indeed the source locating

algorithm was able to "find" it once the a priori was nudged over, but the plume was too small and perturbed (not Gaussian

in shape) to do a meaningful inversion. While the emissions from the second smaller plume could not be quantified, this does

demonstrate the algorithm’s ability to handle multiple sources if they are sufficiently separated (i.e., not well mixed as to form a

single, larger, Gaussian-shaped plume). Note that, as mentioned in Section 2.3, transects from Courtright (#1∼ #5) likely came250

from different sources (within the same facility complex), and thus the emissions are not expected to agree with each other. Of

the controlled release experiments, both Petrolia #1 and #2 the estimated emission rates remained the same or increased (this

excludes Petrolia #4 as this was likely a completely different source, as discussed above), which is in line with the findings by

Ars et al. (2017). It should be noted here that Petrolia #3 transect was on highly non-Gauissian. The method works regardless

of the size of the signal; the enhancement seen in the Valero plant transect from Quebec City is very small in comparison with255

other sites, but the optimized run shows large improvements in both the fit and RMSE (see Figure 3 and Table 2). Furthermore,

in all cases, the algorithm returned meaningful and physical results. Even without constraints or limitations on how far the

source could be translated, the resulting optimized location was within the emitting facility grounds.

However, the limitation of this approach is in the second degree of freedom; it is not possible to determine the source lo-

cation in the direction perpendicular to the transect path. Because the transected plume shape is the same whether the source260

is farther away and emitting less, or closer but emitting more, it is not possible to determine this from the transect alone. The

problem caused by this invariance can be ameliorated by taking a transect from both sides, if the wind conditions and roads

permit such measurements (the wind will need to be blowing in an appropriate direction, and there must be roads to make

measurements). By iterating this algorithm from one side to another alternately, a better estimate on the true source location
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Transect Primary stability class Secondary stability class Primary class Secondary class Blended class

R2 RMSE R2 RMSE R2 RMSE

Petrolia-1 C (54 %) D (46 %) 0.92 22.4 0.94 11.2 0.94 15.8

Petrolia-2 C (84 %) D (16 %) 0.79 41.5 0.72 52.4 0.78 42.4

Petrolia-3 B (57 %) C (43 %) 0.86 386 0.74 580 0.82 455
[1]Petrolia-4 E (89 %) F (11 %) 0.94 8.63 0.84 19.9 0.96 9.52
[2]Petrolia-5 F (100 %) N/A 0.82 8.3 N/A N/A N/A N/A

Quebec City Valero F (100 %) N/A 0.81 2.22 N/A N/A N/A N/A

Quebec City Hêtrière C (66 %) D (34 %) 0.80 72.3 0.86 60.5 0.83 65.8

Trois-Rivières-1 C (56 %) D (44 %) 0.85 387 0.84 440 0.85 392

Trois-Rivières-2 C (56 %) D (44 %) 0.68 165 0.78 146 0.74 153

Courtright-1 D (59 %) C (41 %) 0.88 67 0.86 61 0.88 60

Courtright-2 D (59 %) C (41 %) 0.80 43 0.79 43 0.80 41

Courtright-3 C (75 %) D (25 %) 0.87 72 0.92 44 0.89 63

Courtright-4 C (75 %) D (25 %) 0.95 14 0.95 18 0.96 13

Courtright-5 C (75 %) D (25 %) 0.78 2.1 0.83 1.6 0.80 1.9
Table 1. Stability classes for each of the transects and their statistics. These results are from the source-location optimized run (see Section

3.2).
[1]This observation was made during the controlled release experiment, but was likely not part of it (see Section 3.2 for more discussion).
[2]This was measured at the same location as the controlled release experiments, but was measured the previous year and not part of the

controlled release campaign..
[3]These runs were from averaged transects (see Section 2.3 for more details on the averaging methodology).

may be obtained in a converging "spiraling stairwell". In practice, such conditions (wind and road) are difficult to come by,265

meaning that in most cases the source must be manually identified given the constraint imposed by this algorithm. Without

appropriate observational data, the algorithm can still improve emission estimates given a rough knowledge of the source loca-

tion, as shown in this study. However, for this algorithm to triangulate the source from both dimensions, observations should be

carefully planned, ensuring that routes on both sides of the source are available, and all planned with wind forecast data in mind.

270

3.3 Averaged Plumes

For controlled release experiments carried out in 2025, transects were averaged by overlaying the measurements on top of

each other, and then smoothing them by applying a Gaussian filter. This approach was tested in this campaign in an effort to

minimize the effects of wind meandering and shifting. The averaging method worked well in smoothing out the noisy data, re-

turning a more "Gaussian-like" transect even when individual transects were not (due to e.g., plume meandering. This method275
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Figure 4. Satellite view of the a priori source location for the controlled release experiments at Petrolia. The bottom (southern-most) indicator

optimized location for Petrolia # 4 transect) is likely from a farm to the left (west). The wind direction for this run is indicated with a red

arrow by the indicator. Imagery taken from Google Earth, © Airbus, 2025.

also worked in reducing the effects of measurement delay, where measurements are slightly delayed because the air has to

travel through the inlet tubing (while most of the delay is corrected during data processing, the averaging methodology aided

in further improving the residual uncertainty of the delay).

The comparison between the actual reported emission rates and the model estimated emission rates (utilizing all of the

methodologies discussed in this study) are shown in Figure 6. The estimated emission rates of both the source-location op-280

timized and original (i.e., the location was simply taken to be roughly the center of the site) showed good agreement, with

Pearson correlation (R) of 0.83 and 0.81, respectively. We noted an outlier point on the far right, where the model failed to

accurately estimate the emission rate from a very high-emission test (10,000+ kg/day), and the statistical analysis was done

without this point (it is included in the plot, however). It is worth noting that correlation remained largely unaffected by the re-

moval of this outlier (R was 0.78 with this outlier). The estimated emissions (with uncertainty) are all within the one-to-one line285
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Figure 5. Transect plots showing the measurements, model prior and model posterior for the Petrolia #4, for (a) original source location, and

(b) optimized source location, and the birds-eye plots showing the modeled plume and the observations for (c) original source location, and

(d) optimized source location. All units are in parts per billion (ppb) and meters (m) (for (a) and (b)).

(aside from the outlier mentioned above), showing that the inversion model is able to successfully estimate the emission rates.

The slope of the lines of best fit indicate overestimation; the slope was 1.27 ± 0.32 and 1.19 ± 0.32 for the source-optimized

and original estimates, respectively. Interestingly, unlike the results from the individual transects, running the source-algorithm

did not strictly increase emissions estimates (this is also evident from the slopes on the lines of best fit). This is likely because

the averaging of the transects masked the effects of meandering and shifting winds on the plume, as well as the uncertainty290

associated with the source location.

4 Conclusions

The use of Gaussian dispersion model inversion allows for a simple, computationally efficient, yet robust estimations of emis-

sions of GHGs such as CH4 at the facility scale. In this study, we proposed and tested novel improvements to the existing

Gaussian dispersion model framework, by blending, with appropriate weights, the nearest two stability classes to get a more295

continuous and less discretized model of atmospheric conditions, and imposing a simple algorithm to translate the source lo-

cation along the direction of the transect to improve the fit. A Gaussian dispersion model in the Polyphemus suite was used in
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Transect Before After Distance/direction of translation

R2 RMSE Emission rate R2 RMSE Emission rate

Petrolia-1 0.40 34.3 2270 ± 1090 0.94 15.8 2770 ± 1330 296 m, south

Petrolia-2 0.01 95.3 1640 ± 790 0.78 42.4 3380 ± 1620 246 m, south

Petrolia-3 0.66 840 19070 ± 9150 0.82 455 14213 ± 6820 70 m, south
[1]Petrolia-4 0.08 51.9 20 ± 10 0.96 9.52 880 ± 420 1200m, south
[2]Petrolia-5 0.78 9.2 17 ± 8 0.82 8.3 18 ± 9 8.2 m, east

Quebec City Valero 0.32 4.75 1.9 ± 0.9 0.81 2.22 1.7 ± 0.8 16 m, northwest

Quebec City Hêtrière 0.04 160 340 ± 160 0.83 65.8 790 ± 380 83 m, north

Trois-Rivières-1 0.34 933 11920 ± 5720 0.85 392 10370 ± 4980 82 m, southwest

Trois-Rivières-2 0.58 194 7000 ± 3360 0.74 153 6670 ± 3200 58 m, northwest

Courtright-1 0.04 201 310 ± 150 0.88 59.7 730 ± 350 137 m, east

Courtright-2 0.03 102 148 ± 71 0.80 41.1 330 ± 160 60 m. west

Courtright-3 0.17 205 440 ± 210 0.89 63.2 1030 ± 490 184 m, south

Courtright-4 0.02 68.9 180 ± 86 0.96 12.8 400 ± 190 123 m, south

Courtright-5 0.19 6.70 53 ± 25 0.80 1.88 32 ± 15 226 m, south

Table 2. Correlation (R2), RMSE, and the posterior emission rates (in kg/day) for before and after the source location optimization for each

of the transect runs. The distance (in meters) and the general direction of the source translation is also tabulated. The results listed are from

runs with "blended" stability class (see Section 2.2.1).
[1]This observation was made during the controlled release experiment, but was likely not part of it (see Section 3.2 for more discussion).
[2]This was measured at the same location as the controlled release experiments, but was measured the previous year and not part of the

controlled release campaign.

this study, with meteorological data from HRRRv4. This was compared against observational CH4 data from mobile measure-

ments, where real-time data is collected from a vehicle-mounted sensor setup. A Bayesian inversion was performed to estimate

emissions from the source. The stability class were blended with weights (of the weighted averages) derived by calculating the300

Obukhov length examining its value along with the surface roughness (from HRRR data). The source location, which in many

cases is not exactly known, was allowed to vary along the direction of the transect, and an algorithm that examines correla-

tion, plume maximal location, autocorrelation (and lag), and skewness was utilized to determine if translating the source was

needed, and by how much.

The results show that the model improves and gives better fits after translating the source in all scenarios examined in this305

study. Correlation increased and RMSE decreased in all instances, and the algorithm in one instance was able to "find" a new

source over a kilometer away. While improvements in R2 ranged from minor (0.78 to 0.82, seen in Petrolia #5) to major (e.g.,

0.02 to 0.96 seen in Courtright #4), the former was the exception; most improvements were large and significant. The shape

of the transect also qualitatively improved, and the algorithm was stable under all of the scenarios examined in this study. This
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Figure 6. Scatterplot comparing the actual reported emission rates and the model estimated emission rates, in kg/day. Blue points and red

line indicate the estimates with the source location optimization algorithm, while the grey points indicate the estimates prior to the source

location optimization. The dashed black line indicates the line of unity (one-to-one). Red shaded area indicates the 95% confidence interval.

approach showed improvements both with controlled release data and "real" observational data. The model, with the stability310

classes blended, showed slight improvements in a few instances, but generally showed results that were the weighted averages

of the two blended classes, which was expected. This includes the emission rate estimates, and in many cases this tended to

be more in line with observations. In this study, all stability classes except for A were observed (from B to F), and the method

worked without issues, converging to give physical and meaningful emissions estimates.

This approach relies on, and is very sensitive to surface roughness (when z0 <∼ 0.1) and Obukhov length (when z0 >∼ 0.2),315

and the value of z0 that was obtained from HRRR may be outdated in some areas, possibly leading to misclassifications. Empiri-

cally measuring surface roughness was outside the scope of this study, although improvements in this could lead to significantly

better, more robust stability classifications (and weights associated with the blending). Similarly, making empirical measure-

ments of Obukhov length could also be another future work. Indeed, one of our future work includes measuring Obukhov

length using a stationary (i.e., not onboard the car), high-frequency anemometer to assess, compare with, and better understand320

the derived value from HRRR data; this approach requires the anemometer to be setup before driving through the plume to

measure transects, meaning it is ill-suited for campaigns where multiple sites are visited throughout the day, and realistically

can only be used for case studies that focus on estimating emissions from a particular source. Other possible future work and
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improvements to the approach discussed here include obtaining more transects to improve the source locating algorithm; the

method discussed here does indeed improve the estimates on source location parallel to the transect, but is not able to determine325

how far away the source is, from the road where the measurements are made. This could be remedied by having measurements

from sides that are orthogonal to each other (e.g., west side and north side) allowing the algorithm to refine, and converge onto,

the source location in a "spiraling stairwell" like manner. This was not tested in this study due to limited data, which in many

cases was due to uncontrollable factors such as wind direction; a controlled release study conducted over a longer period to en-

sure favorable wind conditions will allow this methodology to be tested on both axes. Indeed, there are plans to conduct future330

experiments to provide data to test the spiraling stairwell approach. The latest controlled release campaign involved testing a

method in which multiple transects from the same road were averaged and smoothed before running the inverse modeling. This

methodology worked well in smoothing out the noisy data, as well as reducing the effects of measurement delay, where mea-

surements are slightly delayed because the air has to travel through the inlet tubing. Comparing with model estimated emission

rates and the actual reported emission rates showed decent agreement (Pearson correlation of 0.83), although the model had335

challenges accurately estimating the emission rate from a very high-emission test (10,000+ kg/day).

Overall, the study describes and tests novel improvements to the Gaussian dispersion model, showcasing that the meth-

ods presented, while they have limitations - such as the inability to fully triangulate the source and the sensitivity to surface

roughness - do indeed improve the model and inversion, giving meaningful results across a variety of real-world scenarios.

Code availability. The source code used for blending stability classes is publicly available here: Doi: 10.5281/zenodo.18190453 as well as340

on the PyPI Python packages repository and Github (e.g., https://test.pypi.org/project/blendie/), or from authors upon request. The Polyphe-

mus suite, including the Gaussian dispersion model used in this study, is available for download at Doi: 10.5281/zenodo.10067062, with

documentation and user guide available at https://cerea.enpc.fr/polyphemus/ (last accessed April, 2025). The code used for the methane

inversion can be found at Doi: 10.5281/zenodo.18249816, details of which are described in Ars et al. (2017).

Data availability. Data used in this study are available at Doi: 10.18164/2264d3b1-761e-4521-9ebb-0b8124d1dab4 (Yamanouchi, 2025).345

The meteorological data extracted from HRRRv4 used in this study are available at Doi: 10.5281/zenodo.18319805. For more information

on HRRR, see https://rapidrefresh.noaa.gov/hrrr/ and Doi: 10.1175/WAF-D-21-0151.1.
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