
 

1 
 

Comparing the MEMS v1 model performance with MCMC and 1 

4DEnVar calibration methods over a continental soil inventory 2 

Toni Viskari1, Tristan Quaife2, Fernando Fahl1, Yao Zhang3, and Emanuele Lugato1 3 

1 European Commission, Joint Research Centre (JRC), Ispra, Italy 4 

2 National Centre for Earth Observation, Department of Meteorology, University of Reading, United Kingdom 5 

3 Natural Resource Ecology Lab, Colorado State University, USA 6 

Correspondence to: Toni Viskari (toni.viskari@ec.europa.eu) 7 

 8 

Abstract. An abundant amount of different data is required to calibrate soil organic carbon (SOC) models to 9 
represent ecosystems at large-scale. However, due to challenges related to model state projections, this 10 
calibration becomes very computationally heavy with traditional calibration methods. In this work, we test 4-11 
Dimensional Ensemble Variational data assimilation (4DEnVar) method to parameterize the MEMS v1 SOC 12 
model using data from the LUCAS soil sampling network and compare its performance against MCMC 13 
calibration. Comparing the total SOC projections from both parameterizations and validation datasets showed 14 
similar improvements even though the produced parameter sets differed. A thorough analysis revealed that the 15 
detailed SOC states were not similar to a meaningful degree, but we also lacked information to determine which 16 
parameter set was closer to the truth. Our results here establish 4DEnVar as an applicable calibration method for 17 
SOC models but also highlight the need for more nuanced validation methods, as well careful examination how 18 
different data sets affect the model calibration. 19 

 20 

1 Introduction 21 

Soil organic carbon (SOC) stocks are a major component of the global carbon cycle (Scharlemann et al., 2014) 22 
and are inherently linked to surface vegetation, as the long-term SOC compounds forming them are produced by 23 
decomposition of plant litter (Cornwell et al., 2008). Due to the importance of those stocks, they are a central 24 
part of national carbon budgets (van den Berg et al., 2020) and targeted by climate related policy (e.g. LULUCF, 25 
CRCF; Schlamadinger et a., 2007) aiming at enhancing carbon accumulation into the soils and improve 26 
terrestrial carbon sinks (Rumpel et al., 2020). All of this has also highlighted the need to improve the current 27 
soil related Monitoring, Reporting and Verification (MRV) systems (Bellassen et al., 2015). 28 

Soil inventory and numerous measurement campaigns, both temporary and continuous, have been set up to 29 
actively observe the soil carbon states within given regions and/or ecosystems (Smith et al., 2020). While these 30 
provide valuable information about the SOC stocks in that time window, also utilizing faster sample collections 31 
and analysis (Loria et al., 2024), they generally provide only information on the total SOC stocks. Indeed, 32 
current understanding of SOC cycling has been recently advanced separating the bulk soil into SOC fractions 33 
(Lavallee et al., 2019; Yu et al., 2022), notably the mineral-associated (MAOM) and the particulate organic 34 
matter carbon (POM).  Though there are different methods to measure these short- and long-lived SOC fractions 35 
(Delahaie et al., 2024), they require considerable resources to be applicable on a large spatial scale. Thus, 36 
models are a crucial tool in both providing more cost-effective estimates of SOC states across landscapes, as 37 
well as their responses to both climate and environmental changes. 38 

To this purpose, numerous models have been developed from simple first-order dynamic models such as RothC 39 
(Coleman and Jenkins, 1996) to more complicated non-linear models such as MIMICS (Wieder et al., 2014) and 40 
Millennial (Abramoff et al., 2022). However, the lack of detailed information both regarding the SOC state and 41 
drivers, such as litter and soil moisture, does affect the ability to reliably constrain the various processes 42 
included into the models. Therefore, it is necessary to calibrate the model with more measurements from 43 
different pedo-climatic and land cover conditions, in order to capture how they affect the SOC state. This, 44 
though, increases the computational cost of the calibration.  45 
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Additionally complicating matters is that even when using spatially diverse data for calibration, there are 46 
numerous assumptions regarding how that driver data is applied within the model that will affect not just model 47 
forward projections, but also the calibration process itself. For example, NPP is commonly used as a proxy for 48 
litterfall in SOC models (e.g. Abramoff et al., 2022; Pierson et al., 2022), with empirical work showing that the 49 
approach is justified (Matthews, 1997). How this NPP should be divided between above- and belowground 50 
biomass and, consequently between different model pools, depends on the ecosystem (Jevon et al., 2022; Cao et 51 
al., 2024) and is critical for determining the soil litter input. Without much more detailed information than is 52 
often available, these NPP/litter related parameter cannot be simultaneously calibrated with the SOC model 53 
parameters because of how fundamentally those values are connected; increasing/decreasing the amount of soil 54 
litter will simply result in an increase/decrease in decomposition rates to fit the measured SOC values. This is 55 
just one example of driver associated assumptions and a quick nimble calibration method is needed to assess 56 
how these uncertainties impact the calibration results. 57 

The traditional grand standard for model calibration is the Monte Carlo Markov Chain Metropolis Hastings 58 
algorithm (MCMC; Geyer, 1992). This is a very computationally heavy approach with multiple variants having 59 
been developed over the years to make it more efficient in exploring the parameter space and avoid local 60 
likelihood maximas in its search for the most likely parameter sets (e.g Papaioannou et al., 2015; Vrugt, 2016). 61 
Due to the challenges discussed before, only computationally light SOC models can be calibrated within a 62 
practical time frame using large scale data (for example Tuomi et al., 2009). There have been workarounds 63 
presented, making assumptions about the initial state (Nemo, 2017; Mathers et al., 2023), using simpler 64 
calibration methods (Gurung et al, 2020) or taking advantage of machine learning approaches (Heuvelink et al., 65 
2021). However, there remains a need for a fast and trustworthy calibration method for SOC models that would 66 
allow for easy experimentation on how different datasets affect the calibration or constraining new model 67 
dynamics being included. 68 

Similarly to MCMC, in the Four-dimensional Variational data assimilation (4DVar; Le Dimet and Talagrand, 69 
1986), a model projection is compared with observations and the new initial state for the next iteration is 70 
generated from this information. A key difference between MCMC and 4DVar is that the latter uses gradient 71 
descent methods to determine the next state instead of randomly sampling. While this method has initially been 72 
used more commonly for state data assimilation, for example, in weather forecast (Huang et al., 2009), it has 73 
also been successfully applied to calibrate ecosystem models (e.g. Raoult et al., 2016; Peylin et al., 2016; 74 
Pinnington et al. 2016).  However, to implement 4Dvar with observations from multiple different times, an 75 
adjoint version of the model is needed which imposes its own challenges and limitations on the application 76 
(Thepaut and Courtier, 1991).  Four-dimensional ensemble variational data assimilation (4DEnVar; Liu et al., 77 
2008) is a novel data assimilation approach, where an ensemble is used to sidestep the need for the model 78 
adjoint. It has already been used for parameter calibration (Douglas et al., 2025; Pinnington et al. 2020) and is 79 
much faster than the traditional MCMC methods as it requires far fewer model iterations. 80 

In the work presented here, we calibrated the MEMS v1 SOC model (Robertson et al., 2019) with both MCMC 81 
and 4DEnVar parameterization methods. Soil data from the Land Use/Land Cover Area Frame Survey 82 
(LUCAS) measurement network (Orgiazzi et al., 2018) were used for calibration and validation against 83 
estimated model parameters, assessing their performances relative to each other and the default parameters. Our 84 
hypothesis is that the 4DEnVar improves the model fit to the same degree as the MCMC, with much less 85 
computational cost. 86 

Specifically, there are two objectives for the work presented here: the first is to test if 4DEnVar calibration 87 
performs as well as the MCMC calibration and examine if there are any meaningful differences in the resulting 88 
parameter sets; the second is to conduct a simple experiment where we made a change on how the NPP litter 89 
input was calculated. The intent here is to see both how this will affect the calibration and if the two methods 90 
respond similarly to the change. 91 

 92 

2. Methods and data 93 

2.1 LUCAS measurements 94 
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For the MEMS model calibration, we used the LUCAS points from a field campaign conducted in 2009 as 95 
reported in (Cotrufo et al., 2019; Lugato et al., 2021). This dataset comprises; 1) the main physico-chemical 96 
characteristic of topsoil (0-20 cm), including total SOC content for about 20.000 samples distributed across 97 
different land covers in the EU and UK; 2) a size-fraction of the bulk SOC into mineral-associated (MAOM) 98 
and particulate organic matter carbon (POM) in a representative sub-set of 350 samples. Both the calibration and 99 
total dataset are similarly distributed across ecosystems with approximately 73 % being grass- or croplands with 100 
the rest being various forest types. Figure 1 shows the LUCAS data points across Europe and the calculated 101 
SOC stock at each measurement site.    102 

 103 

Figure 1:  The LUCAS 2009 sampling point across Europe and their SOC stock. 104 

For the calibration, the 348 LUCAS measurements from the 2009 campaign containing POM/MAOM fractions 105 
are used. The remaining 19 476 total SOC measurements were set aside for validation. In both allocations, 106 
measurements which were not classified as agricultural, grassland or forest were removed as well as all the 107 
sampling points where the driver data was not available. As a result, 322 datapoints are used for calibration and 108 
17 430 for validation. 109 

 110 

2.2 MEMS/Parameters chosen for calibration 111 

The Microbial Efficiency-Matrix Stabilization (MEMS; Robertson et al., 2019) model is a novel soil organic 112 
carbon (SOC) model framework, which is built around the scientific understanding that the soil microbial pool 113 
modulates the SOC stocks. In the model, both surface vegetation and SOC decomposition are represented by 114 
multiple pools defined by their physical properties. There are several paths for carbon fluxes to transfer from 115 
one pool to another or lost as CO2, with the rate of change calculated on a daily timestep.  116 
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Since the calibration, here, focuses on the SOC stock, only the model equations affecting MEMS pools C5 117 
(Heavy particulate organic matter), C8 (Dissolved organic matter), C9 (Mineral associated organic matter 118 
(MAOM)) and C10 (Light particulate organic matter) were considered in this work. While the surface 119 
vegetation decomposition pools do determine the litter input entering to soil C pools, those mechanics were not 120 
included in the calibration as the type of data required to constrain them was not available. Therefore, we used 121 
the default parameters values established in Robertson et al. (2019) for the surface processes. 122 

The equations that govern the change in the relevant pools in MEMS are: 123 

 
𝑑𝐶5

𝑑𝑡
= 𝐶5,𝑖𝑛

2 + 𝐶5,𝑖𝑛
3 + 𝐶5,𝑖𝑛

4 − 𝑇𝑚𝑜𝑑𝑘5𝐶5         (1) 124 

 
𝑑𝐶8

𝑑𝑡
= 𝐶8,𝑖𝑛

5 + 𝐶8,𝑖𝑛
6 + 𝐶8,𝑖𝑛

10 − 𝑠𝑜𝑟𝑝 − 𝐷𝑂𝐶𝑙𝑐ℎ𝐶8 − 𝑇𝑚𝑜𝑑𝑘8𝐶8      (2) 125 

 
𝑑𝐶9

𝑑𝑡
= 𝑠𝑜𝑟𝑝 − 𝑇𝑚𝑜𝑑𝑘9𝐶9          (3) 126 

 
𝑑𝐶10

𝑑𝑡
= 𝐶10,𝑖𝑛

2 + 𝐶10,𝑖𝑛
3 − 𝑇𝑚𝑜𝑑𝑘10𝐶10        (4) 127 

Where 𝐶𝑖 is the amount of carbon stored in pool i, 𝐶𝑖,𝑖𝑛
𝑗

 is the carbon input to pool i from pool j as a result of the 128 

decomposition process and 𝑘𝑖 is the decomposition rate for pool i. The leaching coefficient 𝐷𝑂𝐶𝑙𝑐ℎ represents 129 
the dissolution of SOC to deeper soil layers and the temperature coefficient 𝑇𝑚𝑜𝑑  reflects how soil temperature 130 
affects the decomposition rate. In this work, 𝑇𝑚𝑜𝑑 is the same for all pools and follows the STANDCARB 2.0 131 
model (Harmon et al., 2009). 132 

The sorption coefficient sorp controls the flow of carbon between the microbial pool and the mineral associated 133 
carbon pool as determined by the equation 134 

 𝑠𝑜𝑟𝑝 = 𝐶8

𝐾𝑙𝑚𝑄𝑚𝑎𝑥𝐶8
1+𝐾𝑙𝑚𝐶8

−𝐶9

𝑄𝑚𝑎𝑥
          (5) 135 

 𝑄𝑚𝑎𝑥 = 𝑑 ⋅ 𝜌𝑠𝑜𝑖𝑙 ⋅ (1 − 𝑝𝑟𝑜𝑐𝑘) ⋅ 𝑠𝑐𝐶𝑜𝑛𝑐         (6) 136 

 𝑠𝑐𝑐𝑜𝑛𝑐 = 𝑠𝑐𝑠𝑙𝑜𝑝𝑒 ⋅ (1 − 𝑝𝑠𝑎𝑛𝑑) + 𝑠𝑐𝑖𝑛𝑡         (7) 137 

In which 𝐾𝑙𝑚 is the langmuir isotherm term that depends on the soil pH, 𝑄𝑚𝑎𝑥  is the maximum absorption 138 
capacity of the soil, 𝜌𝑠𝑜𝑖𝑙 is the soil bulk density, 𝑝𝑟𝑜𝑐𝑘 is the rock percentage of the soil and 𝑝𝑠𝑎𝑛𝑑  is the sand 139 
percentage of the soil. The maximum concentration of fine fraction, 𝑠𝑐𝑐𝑜𝑛𝑐 , is governed by the two coefficients 140 
𝑠𝑐𝑖𝑛𝑡  and 𝑠𝑐𝑠𝑙𝑜𝑝𝑒 . Consequently, those two parameters effectively control the saturation ratio for the MAOM 141 
pool. 142 

The decomposition rate parameters 𝑘5, 𝑘8, 𝑘9 and 𝑘10 were the central parameters chosen for calibration as well 143 
as 𝑠𝑐𝑖𝑛𝑡  and 𝑠𝑐𝑠𝑙𝑜𝑝𝑒 . As the primary focus of this work is to compare the calibration methods, these parameters 144 
were simply chosen as a straight-forward test case. The boundary values are presented in Table 1. As prior 145 
values for our calibration, we also set randomly drawn and rounded values for the parameters near the middle of 146 
the set of the boundary conditions after testing that the model runs remained stable with these parameter values.  147 

Name Symbol Prior Minimum value Maximum value 

Decomposition rate 

for Pool C5 

k5 0.0008 0.0001 0.002 

Decomposition rate 

for pool C8 

k8 0.001 0.0001 0.01 

Decomposition rate 

for pool C9 

k9 0.000025 0.00001 0.00004 

Decomposition rate 

for pool C10 

k10 0.0005 0.0001 0.0004 

Saturation intercept SCIcept 10.0 5 20 

Saturation slope SCSlope 0.25 0.1 0.4 
 148 

Table 1: The calibrated parameters chosen for calibration, their baseline values as well as boundaries. 149 
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 150 

To determine how we divide the litter input to MEMS model pools, the site ecosystem type was assigned by the 151 
Corine Land Cover (Buttner, 2014). Following that, NPP is split into the MEMS model pools according to the 152 
following framework established in  Robertson et al. (2019): 153 

𝐶1,𝑖𝑛𝑝𝑢𝑡(𝑡) = (1 − 𝑓𝑑𝑜𝑐
𝑒𝑐𝑜)𝑓𝑠𝑜𝑙

𝑒𝑐𝑜𝑟𝑒𝑐𝑜𝑁𝑃𝑃(𝑡)         (8) 154 

𝐶2,𝑖𝑛𝑝𝑢𝑡(𝑡) = (1 − 𝑓𝑠𝑜𝑙
𝑒𝑐𝑜 − 𝑓𝑙𝑖𝑔

𝑒𝑐𝑜)𝑟𝑒𝑐𝑜𝑁𝑃𝑃(𝑡)       (9) 155 

𝐶3,𝑖𝑛𝑝𝑢𝑡(𝑡) =  𝑓𝑙𝑖𝑔
𝑒𝑐𝑜𝑟𝑒𝑐𝑜𝑁𝑃𝑃(𝑡)         (10) 156 

𝐶6,𝑖𝑛𝑝𝑢𝑡(𝑡) = 𝑓𝑠𝑜𝑙
𝑒𝑐𝑜𝑓𝑑𝑜𝑐

𝑒𝑐𝑜𝑟𝑒𝑐𝑜𝑁𝑃𝑃(𝑡)         (11) 157 

Where 𝐶𝑖,𝑖𝑛𝑝𝑢𝑡(𝑡) is the carbon input to pool i from NPP at a given time t and eco refers to the ecosystem for the 158 

LUCAS point. Then, 𝑓𝑠𝑜𝑙 is the hot water extractable fraction of the litter input, 𝑓𝑑𝑜𝑐 is the cold-water 159 
extractable fraction of the water extractable fraction and 𝑓𝑙𝑖𝑔 is the acid-insoluble fraction of the of the litter 160 
input. It is important to note that these fractions are not the totality of the litter input and, while equations from 161 
17 to 20 do sum up to the total NPP, the fractions presented here do not sum up to 1.  162 

The coefficient values based on Campbell et al. (2016) are presented in Table 2. It is important to make two 163 
notes regarding these values. First, we are using a single fraction here and do not account for the uncertainty 164 
range provided in the work referenced. Second, only 𝑓𝑠𝑜𝑙 and 𝑓𝑙𝑖𝑔 fraction ranges are presented in Campbell et 165 

al., (2016). For 𝑓𝑑𝑜𝑐 we used a constant value across land covers in line with the work Robertson et al. (2019). 166 

 NPP fraction fsol flig fdoc 

Woody grassland 0.67 0.35 0.15 0.15 

Pure grass 0.51 0.35 0.15 0.15 

Sporadic grassland 0.59 0.35 0.15 0.15 

Cropland 0.43 0.35 0.15 0.15 

Mixture 0.77 0.375 0.295 0.15 

Broadleaf 0.68 0.4 0.27 0.15 

Conifer 0.78 0.35 0.32 0.15 

 167 

Table 2: The fraction of NPP that is used for litter input and how it is divided into different litter 168 
compounds 169 

 170 

 171 

2.3 MCMC 172 

Markov Chain Monte Carlo (MCMC; Geyer, 1992) is a widely used Bayesian model parameterization method. 173 
The basis of this approach is straightforward: First values for the parameters chosen for calibration are drawn by 174 
randomly perturbing accepted parameter values and the model is run for given locations with these parameters. 175 
Assuming that the uncertainties are normally distributed, the total likelihood F of these projections, given 176 
observations that correspond to model predictions, is calculated with 177 

 𝐹  = ∏ (2𝜋𝜎𝑙
2)

1

2
𝑁𝑜𝑏𝑠
𝑙=1  𝑒

−
1

2
∑

(𝑥𝑙−𝑦𝑙)
2

𝜎𝑙

𝑁𝑜𝑏𝑠
𝑙=1 ⋅ ∏ (2𝜋𝜎𝜃,𝑘

2 )
1

2
𝑁𝑝𝑎𝑟

𝑘=1  𝑒
−

1

2
∑

(𝜃𝑘−𝜃𝑘,𝑝𝑟𝑖𝑜𝑟)
2

𝜎𝜃,𝑘

𝑁𝑝𝑎𝑟
𝑙=1

    (12) 178 

Where l is the observation index, 𝑁𝑜𝑏𝑠 is the number of observations, σ is the associated uncertainty, 𝑥𝑙  is the 179 
model projection with parameter set θ and 𝑦𝑙  is the observation for index l. Furthermore, k is the parameter 180 
index, 𝑁𝑝𝑎𝑟 is the number of parameters being estimated and Θ𝑝𝑟𝑖𝑜𝑟  is the prior estimate of parameters. 181 

Once the likelihood is determined, it is compared to the likelihood of the previously accepted parameter set. If 182 
the new likelihood is higher, then that parameter set is automatically accepted and used as the parameters for the 183 
next iteration. However, if the new likelihood is lower than the previous one, there is still a probability that the 184 
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new parameter set will still be accepted depending on how close the new likelihood is to the previous accepted 185 
likelihood. 186 

By allowing the lower likelihoods to be possibly accepted, MCMC also provides an acceptable parameter range, 187 
which can be used to represent the parameter uncertainties. This iterative process is repeated until a given 188 
convergence goal is satisfied (Roy, 2020). 189 

For the study here, we used the MCMC framework established in Viskari et al. (2022), which utilizes the 190 
BayesianTools R-library (Hartig et al., 2019). The chosen MCMC algorithm is the Differential evolution 191 
Markov Chain with snooker updater (DEzs; ter Braak and Vrugt, 2008), where multiple calibration chains 192 
progress concurrently from different starting point with information shared between the chains at given 193 
intervals. This should lead to a more efficient and faster convergence of the calibration, especially as this 194 
approach makes it possible to parallelize the different chains. 195 

Six chains were used for the calibration with the initial values for each chain randomly drawn from the prior 196 
parameter range. The MCMC was run for 100 000 accepted iterations with the convergence test and statistical 197 
values calculated from the last 10 000 iterations.  198 

 199 

2.4 4-Dimensional Ensemble Variational assimilation  200 

The foundational theory for 4-Dimensional Ensemble Variational data assimilation (4DEnVar) method is 201 
explained in Liu et al. (2008). The formulation established in Pinnington et al. (2020) was used as the basis for 202 
this work. In this section, we will provide a simplified description of the method as it applies to our purposes. 203 

In traditional baseline 4-Dimensional Variational data assimilation (4DVar; Le Dimet and Talagrand, 1986), 204 
similarly to MCMC, the most likely state, i.e. the model parameter set, is solved by determining the minimum of 205 
the cost function J 206 

𝐽 =
1

2
((𝛉 − 𝛉𝒑𝒓𝒊𝒐𝒓)

𝑇
𝐁−𝟏(𝛉 − 𝛉𝒑𝒓𝒊𝒐𝒓) + ∑ (𝑀0→𝑡(𝛉, 𝐱𝟎) − 𝐲k)𝑻𝐑𝒕

−𝟏(𝑀0→𝑡(𝛉, 𝐱𝟎) − 𝐲k)𝑲
𝒕=𝟏   (13) 207 

In which 𝛉 and 𝛉𝑝𝑟𝑖𝑜𝑟  are, respectively, the suggested and prior parameter value vectors, B is the prior 208 

parameter error covariance matrix and 𝐑𝐭 is the observation error covariance matrix at the measurement time t. 209 
The model operator 𝑀0→𝑡 calculates from the given parameters and the initial state 𝐱𝟎 the output comparable to 210 
the observation vector 𝐲𝐤. The measurement times in the chosen time window is represented by K.  211 

Two brief notes on this formulation. First, it is essentially the same as exponent component in Eq 8, except that 212 
is written it in vector form. Second, in an effort to simplify the equations, we did not include anobservation 213 
operator component in the equations. All our observations are point measurements that can be directly compared 214 
with the model output, hence a separate observation operator was unnecessary for our purposes. 215 

4DVar, like MCMC, is also an iterative approach that calculates the cost function with different state vectors to 216 
test if the cost function value decreases. However, with 4DVar, the iterations suggested after the first attempt are 217 
not randomly drawn, but rather determined by the gradient function 218 

∇𝐽 = 𝐁−1(𝛉 − 𝛉𝒑𝒓𝒊𝒐𝒓) + ∑ 𝐌𝟎→𝒕
𝑻 𝐑𝒕

−𝟏(𝑀0→𝑡(𝛉, 𝐱𝟎) − 𝐲k)𝑲
𝒕=𝟏       (14) 219 

Where 𝐌𝟎→𝐭
𝐓  is the adjoint of the tangent-linear version 𝐌𝟎→𝐭 of the model operator M.   220 

The benefit of the gradient use is that it results in a value of zero for the state vector that produces the cost 221 
function minimum. Thus, gradient descent techniques (Ruder, 2016) are able to use the information from the 222 
gradient to efficiently locate the cost function minimum and the optimal state vector. 223 

Naturally, there are challenges in applying this method. The core hurdle is the adjoint operator in equation Eq. 224 
10, which is the transpose of the tangent-linear version of process model. Creating these model versions, though, 225 
is not a simple task and imposes a linearity assumption on the driving processes. Furthermore, since background 226 
error covariance matrix B can have non-diagonal terms representing error covariances, the inverse matrix can 227 
become computationally implausible to be calculated for larger systems. 228 
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In 4DEnVar, these issues are approached by expanding on the square root transform framework established in 229 
Tippett et al, 2003. Let us have an ensemble of model runs where, in our case, every ensemble has a different 230 
parameter set randomly drawn from the same baseline prior distribution. In the 4DEnVar formulation, this prior 231 
distribution is assumed normally distributed. For each ensemble member, we can then determine how its output 232 
differs from the prior parameter set output. These perturbations from the mean across the ensemble can be 233 
written in matrix format 𝚯𝐛

′  as follows 234 

𝚯𝐛
′ =

(𝛉𝑏,1−𝛉̅𝑏,𝛉𝑏,2−𝛉̅𝑏,𝛉𝑏,3−𝛉̅𝑏,….,𝛉𝑏,𝐿−𝛉̅𝑏)

√𝐿−1
        (15) 235 

Where L is the ensemble size, 𝛉𝑏,𝑖 is the ith vector of the perturbation matrix, and 𝛉̅𝑏is the average over the 236 
perturbations. In our case, the average over the perturbations is the same as the prior parameter vector 𝛉𝑝𝑟𝑖𝑜𝑟 .  237 

Since this matrix essentially represents the uncertainty related to the parameter values, the prior error covariance 238 
matrix B can be approximated as 239 

𝐁 ≈ 𝚯𝐛
′ 𝚯𝐛

′,𝐓
           (16) 240 

We admit that in this formulation we ignore model structural error and assume the dominant error is from the 241 
parameter uncertainty. 242 

Furthermore, we can define a vector w with the length of L that satisfies the equation 243 

𝐰 = 𝚯𝐛
′,−𝟏(𝛉 − 𝛉𝐩𝐫𝐢𝐨𝐫)          (17) 244 

With these formulations and assumptions, the cost and gradient functions can be written as 245 

𝐉(𝐰) =  
1

2
𝐰. 𝐰𝑇 +

1

2
∑ (𝐌0→𝑡𝚯𝐛

′ 𝐰 + 𝑀0→𝑡(𝛉, 𝐱𝟎) − 𝐲𝐤)𝑻𝐑𝒕
−𝟏(𝐌0→𝑡𝚯𝐛

′ 𝐰 + 𝑀0→𝑡(𝛉, 𝐱𝟎) − 𝐲k)𝑲
𝒕=𝟏    (18) 246 

∇𝐽(𝐰) = 𝐰 + ∑ 𝚯𝐛
′,𝐓𝐌𝟎→𝒕

𝐓 𝐑𝒕
−𝟏(𝐌0→𝑡𝚯𝐛

′ 𝐰 + 𝑀0→𝑡(𝛉, 𝐱𝟎) − 𝐲k)𝑲
𝒕=𝟏      (19) 247 

With this new formulation, we can further approximate 248 

∇𝐽(w) = 𝐰 + ∑ (𝐌𝟎→𝐭𝚯𝐛
′ )𝐓𝐑𝒕

−𝟏(𝐌0→𝑡𝚯𝐛
′ 𝐰 + 𝑀0→𝑡(𝛉, 𝐱𝟎) − 𝐲k)𝑲

𝒕=𝟏      (20) 249 

This formulation removes the need for the adjoint version of the model. An additional benefit of the 4DEnVar 250 
method is that the gradient function value can be calculated for each ensemble member, since we are already 251 
running an ensemble to approximate the prior error covariance matrix. This information, then, makes 252 
straightforward determining the state estimate. 253 

Compared to filter-based data assimilation methods (for example the Ensemble Kalman Filter; Evensen, 2003), 254 
the variational methods do not estimate the posterior uncertainty directly. However, we used the method 255 
established in Pinnington et al. (2021) to calculate the posterior distributions.  256 

For the study here, we used the 4DEnVar algorithm provided in Quaife (2023). The gradient approach method 257 
used there is BFGS2 (Saito and Nakano, 1997) from the GNU Scientific Library (GSL). 258 

The 4DEnVar methodology holds crucial benefits for our model calibration even beyond the reduction in 259 
computational cost compared to MCMC. Even though all the measurements used for calibration in this work are 260 
from the same year, the model outputs are steady state products that take hundreds of simulated years to 261 
produce. Hence, a 3-dimensional variational data assimilation (3DVar; Lorenc et al., 2000) cannot be applied 262 
and the adjoint of the model would be required, as the gradient function needs to be calculated at the start of the 263 
simulation. To complicate things further, the validity of the tangent-linear assumption would be questionable 264 
due to the length of the simulation in this situation. 265 

 266 

2.5 Calibration setup and uncertainty attribution 267 

After having set up the algorithmic framework for both calibration methods for the selected LUCAS data points, 268 
the first task was to complete a twin experiment, where we generated synthetic observations from with the 269 
model using a parameter set perturbed from the baseline parameters. Then, we performed the calibration with 270 
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these synthetic observations with their associated uncertainties set to be 1 % of those synthetic observations. 271 
This allows us to check if both methods were able to find the correct parameter sets in a situation where the true 272 
answer was known. For the 4dEnVar, the additional importance of these tests is to assess the ensemble size 273 
dimension required to consistently estimate the correct parameter set. 274 

After the twin experiments have been conducted, the calibration itself is performed with the calibration dataset, 275 
before the validation runs are done for the validation dataset locations. In both situations the SOC is assumed to 276 
reflect a steady state. These runs were completed separately with two different 𝑓𝑑𝑜𝑐 values as a simple test 277 
regarding how NPP assumptions impact the MEMS model calibration. 278 

For our test case study on the impact of the NPP assumptions on the parameterization, we repeated the 279 
calibrations with a small adjustment. We changed the 𝑓𝑑𝑜𝑐 value of grass- and croplands from 0.15 to 0.35. This 280 
increases the amount of the litter that is directly deposited to the soi and consequently adsorbed by the mineral 281 
matrixl instead of being lost during the transition between the surface and soil carbon pools. The logic behind 282 
this is that, in our expert opinion, it is likely that there will be the proportion of exudates and root litter inputted 283 
to the topsoil in grasslands and herbaceous crops to the litter pools compared to forests.. When calculating the 284 
steady state, the MEMS model is simulated over the period of 700 years from an initial state vector of (0.35, 285 
0.35, 0.15, 0., 0., 0.15, 0., 0., 3000., 0., 0.) for the MEMS C1 to C9 pools, respectively. The values in pools C1, 286 
C2, C3 as well as C6 are used to ensure that there are no numerical errors at the start of the simulation and do no 287 
impact the steady state at all. For the MAOM pool C9, though, we initialised the model with some carbon 288 
already accumulated in order to reduce the number of simulated years required for steady state. Here, during 289 
calibration each LUCAS point is simulated for 700 years with the last output values compared to the 290 
measurements. At some sites, the MEMS model did not reach full steady state during this time, but the 291 
difference was within fractions of a percentage of the final steady state. As the change was so marginal already 292 
at this point, the shorter time period was chosen for computational efficiency. 293 

As driver data at the European level, the model uses daily air temperature extracted from the E-OBS grid 294 
(Cornes et al., 2018). For each day of the year, an average temperature is calculated from a time series that spans 295 
from 2009-2018, with the temperature cycle then repeated for each year when calculating the steady state. 296 
Furthermore, the clay, sand and rock content of the soil as well as the soil bulk density and pH from LUCAS are 297 
used to determine soil properties driving SOC processes. 298 

For Net Primary Production (NPP), first the average annual NPP over the decade 2000-2010 is extracted from 299 
the MODIS (Running et al., 2004) grid cell overlaying each LUCAS point. Then, a standard sine function is 300 
used to distribute the NPP across the year in order to produce the daily litter input. This approach was used 301 
instead of an averaged MODIS NPP annual time series as the NPP reflects the time when the atmospheric 302 
carbon is allocated into vegetation, not when the vegetation becomes litter input. Hence, we simplified the time 303 
series here, although it is not expected to meaningfully affect the modelling results. 304 

The total SOC measurement uncertainties from the LUCAS dataset are used as the uncertainties in this 305 
application. Since LUCAS protocol requires to take a composite soil sample (out of 5 samples), the uncertainty 306 
was estimated propagating the error associated to all variables for calculating SOC stock (i.e. SOC content, 307 
depth, rock fragment). We run a Monte Carlo simulation with 5000 draws, using a standard deviation derived 308 
from the coefficient of variation reported in Goidts et al., 2009 for the microsite scale, with a similar sampling 309 
scheme of LUCAS. It is important to note, though, that these values are calculated from mixed samples. Thus, it 310 
may be an underestimation of the real uncertainty for several reasons as, for example, how LUCAS samples are 311 
overall representative of the field conditions. However, we do not have more information concerning the SOC 312 
measurement uncertainties available. 313 

Regarding the MAOM fraction, there is no established uncertainty estimate to utilize. Because of that, we 314 
assigned an uncertainty where the standard deviation was 5 percent of the measured MAOM value. This choice 315 
was driven by both a discussion with the data collection team about the reliability of the data and to ensure an 316 
appropriate weight during the calibration process. When the initial cost function is calculated using the baseline 317 
MEMS parameter set with this uncertainty, the total SOC values account for approximately two thirds of the 318 
cost function value, with the MAOM fraction being responsible for the remainder. 319 

The prior uncertainty assigned to the parameters introduced challenges in this work. With MCMC, because we 320 
only use the prior parameter value range for the initial sampling, we were able to apply a uniform uncertainty 321 
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distribution that was used to approximate the baseline parameter set in Robertson et al., 2019. For those 322 
parameters where the uncertainty was not provided, we approximated a wide enough uniform distribution 323 
around the assigned parameter value. The 4DEnVar method, though, requires a Gaussian uncertainty 324 
distribution as explained in section 2.4. As there is no prior information available, we used the baseline 325 
parameter values as the expected values, with the uncertainty represented by a standard deviation of 10 % of the 326 
parameter value. This uncertainty range, deliberately imposing a larger uncertainty, resulted in 4DEnVar 327 
calibration producing negative parameter values, which are naturally unrealistic. We will discuss the reasons 328 
and implications of this behaviour later. 329 

In some studies, for example, uncertainty has also been a parameter estimated with MCMC (Cailleret et al., 330 
2020). Considering the meaningful unknowns regarding the uncertainty approximations, this would be a valid 331 
approach to be applied here. We did not estimate uncertainties for the initial MCMC/4DEnVar comparison, as 332 
varying the uncertainties might cause issues with the gradient approach methods and, consequently, would make 333 
it difficult to interpret the differences between the two. After the comparison, though, we did perform a MCMC 334 
calibration of MEMS, where we also estimated a scaling parameter for both total SOC and MAOM fraction 335 
uncertainties.  However, these results are not shown here, as the calibration did not result in a successful 336 
convergence. 337 

 338 

3 Results 339 

The twin experiments (not shown) established that both methods were able to produce the true parameters when 340 
calibrating against synthetic observations. For 4DEnVar, the experiments established that an ensemble size of 341 
250 members consistently produced the parameters used to generate the synthetic observations and, thus, we 342 
chose to this ensemble size for the 4DEnVar consequents. 343 

 344 

Figure 2: Estimated parameter distributions for both MCMC (orange) and 4DEnVar (green) calibrations with 𝑓𝑑𝑜𝑐  345 
set to 0.15 (solid) and 0.35 (dashed).  The µ indicates a multiplier of 10-6. 346 

The parameter distributions estimated by the MCMC and 4DEnVar calibration for both 𝑓𝑑𝑜𝑐  scenarios are 347 
presented in Figure 2. For clarity, the expected values from all the calibrations are in Table 3. From these, we 348 
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see that MCMC and 4DEnVar parameter sets differ meaningfully from each other in their value, but remain 349 
within the same range even when changing the NPP assumption. Furthermore, with the higher 𝑓𝑑𝑜𝑐 value, the 350 
uncertainty estimates with both methods end up being narrower, with the exception of k5 for the MCMC 351 
calibration. It is also apparent that with three parameters (k8, k9 and Scslope), the MCMC produces expected 352 
values that are very close to the set boundaries when 𝑓𝑑𝑜𝑐 is set to 0.15 while, when set to 0.35, those 353 
distributions are clearly within the given parameter ranges. This indicates that with the lower 𝑓𝑑𝑜𝑐, the MCMC 354 
calibration struggles to find an acceptable parameter set within the accepted range. Similarly, the uncertainties 355 
with the 4DEnVar are quite wide, which implies that it also cannot effectively locate an ideal parameter set. 356 

The uncertainty distributions for 4DEnVar are generally wider than for MCMC in both cases. With 4DEnVar, 357 
we repeated the calibration multiple times to ascertain that the randomness associated with the ensemble 358 
selection did not result in meaningfully different parameter sets. While there was variance in the expected 359 
values, the standard deviation of the produced estimates was smaller than the standard uncertainty projection for 360 
any single estimation. 361 

 362 

 4DEnVar MCMC 

k5 0.0006/0.00043 0.0019/0.0019 

k8 0.00078/0.00053 0.0001/0.0001 

k9 0.000038/0.000055 0.00001/0.000037 

k10 0.00013/0.00021 0.00047/0.0006 

SCIcept 7.14/7.16 4.15/3.7 

SCSlope 0.51/0.54 0.144/0.197 

 363 

Table 3: The expected parameter values produced by the different calibration methods and the baseline parameters. 364 
The first value is for fdoc 0.15, the second for fdoc 0.3s5. 365 

To examine the impact of the new parameter sets, Figure 3 presents the differences between the measurements 366 
and model projections across all the validation sites. While the 4DEnVar parameter sets produces a somewhat 367 
symmetric error distribution around zero in both calibrations, with the lower 𝑓𝑑𝑜𝑐 there is a slight tendency 368 
towards negative errors. In contrast, the MCMC error distribution shows a notable lean towards positive errors 369 
for the lower 𝑓𝑑𝑜𝑐, which largely disappears when the increasing direct litter input. Since the SOC errors here 370 
are calculated as the measurement minus the model projection, this means that positive errors reflect the 371 
parameter set systematically underestimating the SOC projections. It is notable that with the higher 𝑓𝑑𝑜𝑐, the two 372 
error distributions are nearly identical. 373 

 374 
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 375 

Figure 3: The validation dataset error distributions for both MCMC (orange) and 4DEnVar (green) calibrations with 376 
𝑓𝑑𝑜𝑐  set to 0.15 (solid) and 0.35 (dashed). 377 

To better comprehend what is causing these systematic errors when 𝑓𝑑𝑜𝑐, is lower, we further examined the 378 
actual calibration fit with both approaches in this scenario. Figure 4a shows how well the model SOC 379 
projections follow the measurements and in Figure 4b the fit of the MAOM fraction with the 322 data points 380 
used for calibration. From these comparisons, it is evident that, while the 4DEnVar parameter set follows the 381 
measurement trend more closely than the MCMC, the latter calibration in turn replicates the MAOM:SOC 382 
fraction much better. We also note that there are also clear biases as the 4DEnVar parameters constantly 383 
underestimate the MAOM:SOC fraction, while there is a similar systemic underestimation of the total SOC with 384 
the MCMC parameters. When comparing the calibration fits for the higher 𝑓𝑑𝑜𝑐 (Not shown), the behaviour 385 
remains similar with calibration methods, although the differences between the measured and modelled values 386 
become smaller. 387 
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 388 

Figure 4: For the calibration dataset, comparison between the modelled and measured a) Total SOC value and b) 389 
MAOM:SOC fraction for both the MCMC and 4DEnVar calibrations 390 
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Figure 5 shows the spatial distribution of the errors in Europe for both the MCMC and 4DEnVar parameter sets. 391 
In the case of the lower 𝑓𝑑𝑜𝑐, the MCMC underestimation is evident across Europe and, while the 4DEnVar map 392 
is more evenly distributed, there are also clearly more local overestimations than when 𝑓𝑑𝑜𝑐 is set higher. In the 393 
latter case, decrease in error can be seen across the whole Europe, with only a few clear areas, such as Nordic 394 
countries and the Iberian Peninsula, with consistent bias in the error. However, what is intriguing is that across 395 
central Europe, the prominent error points mirror each other. Where the MCMC parameter set produces 396 
overestimations, the 4DEnVar parameter set conversely results in underestimations. 397 

 398 

 399 

 400 

Figure 5: Spatial error distributions across the LUCAS validation sites for a) MCMC with 𝒇𝒅𝒐𝒄 value of 0.15, b) 401 
4DEnVar with 𝒇𝒅𝒐𝒄 value of 0.15, c) MCMC with 𝒇𝒅𝒐𝒄 value of 0.35, and d) 4DEnVar with 𝒇𝒅𝒐𝒄 value of 0.35 402 
parameter sets 403 

Because of the pronounced errors when 𝑓𝑑𝑜𝑐 is set to the lower value, we further examined the relationship of 404 
the SOC error with the NPP used as an approximation of the total litter input (Figure 6). During this 405 
examination, it becomes evident that especially the MCMC parameter set projected a SOC underestimation 406 
clustered around low NPP values. When doing a further split into various ecosystems (Not shown), we see that 407 
the biases become much more pronounced with forest ecosystems. 408 
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  409 

 410 

Figure 6: Relationship between NPP and SOC projection error for both calibrated parameter sets 411 

Finally, we examined the POM, MAOM and MAOM:SOC fractions in relation to the total projected SOC stock 412 
for the validation dataset with all calibrated parameter sets. Because of the systematic error when using the 413 
lower 𝑓𝑑𝑜𝑐 and, due to the general behaviour remaining similar between the two scenarios, we are only 414 
presenting the higher 𝑓𝑑𝑜𝑐 parameter set results here in Figure 7 for clarity. With the POM (Fig 7a) and MAOM 415 
(Fig 7b), we can see a similar differences between the two calibrations resulting from the initial calibrations. 416 
The MCMC parameterization still produces much higher MAOM stocks than 4DEnVar, and the latter 417 
parameterization contrastingly results in higher POM stocks. Additionally, POM with MCMC parameters 418 
remains at lower values than with the 4DEnVar parameters while, for the 4DEnVar parameters, MAOM hits a 419 
ceiling sooner than for the MCMC parameters. To further examine the impact of these behaviours on the 420 
projections, Figure 7c illustrated the relationship between the MAOM fraction and model error across all the 421 
validation data points. Analysing the results further, we found that the very high SOC projections with both 422 
MCMC and baseline parameters occurred in specific circumstances, where both NPP and annual temperatures 423 
were low (not shown), and hence we attribute this to a structural issue within the model that arises in specific 424 
conditions rather than the parameterization per se. 425 
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 426 

Figure 7: The model projected a) POM, b) MAOM stocks in relation to the total modelled SOC stocks as well as c) 427 
The MAOM:SOM ratio in relation to the model error across the LUCAS sites after fdoc was increased from 0.15 to 428 
0.35. 429 

 430 
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4 Discussion 431 

4.1 Comparison between the performances of MCMC and 4DEnVar calibration methods 432 

As seen in the results, the 4DEnVar approach is a straightforward tool for calibrating the MEMS v1 model with 433 
LUCAS data, as valid as the MCMC approach. Both had issues with the first parameterization attempt when it 434 
came to the validation dataset, but performed similarly when the direct litter fraction to soil was increased. 435 
Hence, the central problem with the first calibration attempt was not due to the calibration method itself. This 436 
supports 4DEnVar as a meaningful approach for initial calibration of soil carbon models, especially considering 437 
the massive difference in the required computational costs. For MCMC, the 100 000 iterations used here took 438 
over a month to compute on our HPC server while, simulating the 250 ensemble members without using 439 
parallelization, took approximately four hours. It should be noted that the MCMC calibration did begin to 440 
converge to the final values already after 40 000 iterations, but there is a risk in accepting the first stable 441 
parameter set after such a relatively short calibration cycle. The computational cost for calibration from having 442 
to spin-up to steady state is a known issue with land system models in general (Raoult et al., 2025). 443 

What is striking, though, is that the parameter sets produced by the two calibration methods in both litter 444 
distribution scenarios differ from each to a meaningful extent, even when they perform equally well with the 445 
validation dataset. In further analysis of the cost function (J) for each estimated parameter set, the MCMC 446 
calibration resulted in a meaningfully lower J with the initial fdoc while, with the increased fdoc (i.e. from 0.15 to 447 
0.35), the difference in J between the two approached becomes marginal.  However, when further looking at 448 
both total SOC and MAOM fractions measurements in both cases, the 4DEnVar produces a better match with 449 
total SOC while, conversely, the MCMC parameter set results in a closer fit with the MAOM fraction (MAOM: 450 
SOC) data. If we tighten the prior uncertainty used in the calibration, the 4DEnVar produces a different 451 
parameter set, though even those new parameters do still result in lower MAOM fractions in the validation 452 
dataset projections.   453 

While we are not certain of what is driving these systematic differences between calibration sets, we 454 
hypothesize that one crucial component is that the total SOC and MAOM fraction measurements appear to 455 
incentivize contradicting model behaviours. This is especially evident when the fdoc is lower and there is less 456 
litter to distribute between the SOC pools. In that situation, MCMC is still able to find a solution by forcing a 457 
reduction in the decomposition rate for the MAOM pool and increasing the decomposition rate for the POM 458 
pool. This leads to a high MAOM fraction but at the cost of lower POM pool values and, consequently, a 459 
tendency to project lower SOC values. Meanwhile, this conflict between the two measurement types does seem 460 
to cause issues with the gradient approach method applied by 4DEnVar to determine the ideal parameter set. 461 
This could be because the disagreement between the data sources will create such a degree of noise in the 462 
likelihood space that determining a correct gradient descent from a collection of ensembles will become much 463 
more challenging. Simultaneously, though, this vulnerability in the 4DEnVar could be exploited in future work 464 
to quickly test if different measurement types and drivers are compatible within the model framework. 465 

These results further highlight the fundamental impact of the priors on the calibration results, especially with the 466 
4DEnVar approach, that has been recognized as a larger challenge in ecosystem modelling (Dietze, 2017). 467 
While experimenting with the initial setup, we found that the 4dEnVar calibration produced unrealistic 468 
parameter values with negative decomposition rates, if prior was set to be too loose. This remained true even 469 
when increasing the fdoc value, although then the uncertainty could be loosened slightly more. Our hypothesis is 470 
that, while the MCMC iterative approach allows setting boundaries for the region where the values are sampled, 471 
such hard constraints are not present with the 4DEnVar.  Additionally, the 4DEnVar does rely on the first order 472 
Taylor expansion, making it vulnerable to non-linear behaviours. Thus, incongruities resulting from missing 473 
model processes such as soil moisture, for example, can drive the parameterization beyond acceptable values if 474 
there is not a sufficient prior constrain implemented. A further limitation is that the 4DEnVar algorithm used 475 
here draws the ensemble members by sampling the prior distribution. While this is a logical approach when 476 
those distributions are reliably approximated, here we do not know what the prior distributions are and must use 477 
a tight uncertainty range in order to avoid unrealistic estimations. Consequently, our application of 4DEnVar 478 
samples the parameter space in a more limited manner than would be preferable. 479 

The lack of knowledge on prior distributions for the parameters is an obstacle that is further hindered by the lack 480 
of reliable measurement uncertainty estimates. An important aspect of Bayesian statistics is that the weight of an 481 
individual information source depends on how accurate it is in comparison to the other available information 482 
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sources. Hence, the width of the prior uncertainty that we can assign to constrain the parameter estimate to 483 
remain in a reasonable range is dependent on the measurement uncertainty. In this work, those uncertainties 484 
were so low that we had to use a relatively narrow prior parameter range for the 4DEnVar approach. 485 
Furthermore, as detailed in the Methods section, we do not have reliable approximations of the measured 486 
MAOC:SOC fraction uncertainties. Their uncertainty here is, thus, defined by how much weight we wished to 487 
give them in relation to the total SOC measurements. When we tested a larger measurement error, which in turn 488 
allowed us to increase the prior parameter distribution for the 4DEnVar without producing unrealistic estimates, 489 
the 4DEnVar ensembles also changed with the new values moving farther away from the baseline values. The 490 
implication is that the 4DEnVar is much more sensitive to the measurement uncertainty representation than 491 
MCMC, due to how the prior constraint is applied. 492 

4.2 The impact of the NPP assumption on the calibrated parameter set performance 493 

Our results clearly underline how the fundamental assumptions regarding the NPP, as a litter proxy, impact the 494 
model calibration results. The lower fdoc resulted in a noticeable bias on total SOC predictions, especially with 495 
regard to the MCMC calibration. Another encouraging aspect of the work is that the differences between the 496 
two calibration methods results remain consistent even when changing the litter input assumption. This supports 497 
the capability of using the quicker 4DEnVar calibration to explore the impact of the NPP assumptions on the 498 
parameterization as any signal noted there should be reflected also in MCMC results. 499 

What complicates future work is that coefficients associated with litter input are challenging to calibrate 500 
simultaneously with parameters associated with SOC decomposition, as their influence on the SOC overlap too 501 
much. In addition, even attempting to calibrate the NPP/litter coefficients would first necessitate determining 502 
which exact coefficients would be calibrated. For example, in our case, there is first the question how well the 503 
MODIS NPP product represents reality for different systems. Then, part of that NPP is removed to represent 504 
economic activity before it is distributed to the four MEMS initial pools based on the three coefficients. Any of 505 
these three parts can be altered to change the final NPP input to the soil in different ways, but there is really no 506 
certainty at the moment what is the correct manner to better regulate the NPP based litter input. This 507 
complicated relationship in the surface vegetation driving litterfall and the SOC state has been shown in prior 508 
work such as in Raczka et al. (2021). There when they used remote sensing data to constrain their model state, 509 
while this improved their modelled aboveground biomass and carbon exchange accuracy, it also caused their 510 
modelled SOC accuracy to decrease because they were only using the aboveground data for both systems.  511 

Naturally this is not to questioning the use of NPP as a litter input for soil carbon models. Rather it is another 512 
reminder on how important it is to be aware of the various assumptions related to the NPP and remain consistent 513 
with them while running the calibrated model in various systems. Additionally, when doing future SOC 514 
projections, the uncertainties related to the various NPP/litter assumptions should be considered during analysis. 515 

The error distributions for both calibration methods when applying the higher litter input is in itself worthy of 516 
analysis. The MEMSv1 model used is lacking several dynamics that are known to impact soil carbon stock, such 517 
as soil moisture (Falloon et al., 2011), various nutrient cycles (Gardenas, et al., 2011; Feng et al., 2023) and 518 
mycorrhiza abundance (Hawkins et al., 2023). However, when considering the multitude of simplifications 519 
made to calculate the steady state approximations using parameters calibrated with data from 322 sites, the error 520 
distribution for the 17 000+ validation sites is remarkably narrow. Which raises question how much of a further 521 
performance issue could be expected with addition of new processes? And, consequently, how can this limited 522 
data be used to evaluate which processes are most important for future projections? 523 

Notably, while the spatial presentation of the model error under the higher fdoc shows only few regions where the 524 
differences between the two model errors are consistently larger than 10 tons of carbon per hectare, such as the 525 
Nordic countries, the MAOM fraction projections by the two model calibrations differ systematically to a 526 
meaningful degree. For instance, 4DEnVar calibration resulted in a higher turnover rate of the MAOM pool, 527 
which in turn causes lower MAOM stocks. Both calibration methods are adjusting the parameters to produce 528 
lower total SOC, as the baseline parameters tend to overestimate the SOC stocks, but they solve the issue with 529 
very different representations of the internal SOC state that would have a major impact on future projections. 530 
With the current available information, it is not possible to evaluate which of the two states is more realistic; 531 
while the MCMC modelled MAOM fractions are on average high for all ecosystems (Georgiou et al., 2022), the 532 
LUCAS dataset leans towards arable soils where the MAOM fraction is expected to be larger in the top layer 533 
than for forests (Schrumpf et al, 2013; Sokol et al, 2022). 534 
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These outcomes emphasise the importance of carefully considering how model performance improvements are 535 
assessed with large-scale datasets such as the LUCAS measurement data, since the total SOC seems not 536 
sufficient. This is especially relevant as the model validation should be a crucial aspect of model choice 537 
regarding different SOC sequestration projects (Garsia et al., 2023). New measurement analysis methods allow 538 
for more efficient POM/MAOM fractioning of SOC samples (Delahaie et al., 2023), thus providing more 539 
detailed measurements to use during validation. However, as our results show, the SOC fractions might not be 540 
compatible with the total SOC measurements within the model context and indicate that there are missing 541 
processes within our model framework. Consequently, their value might be rather to evaluate what missing 542 
processes are needed within the model than validate existing parameterizations. Another approach for evaluation 543 
could be to examine the model performance within sub-regions or individual ecosystems instead of weighing it 544 
against the total dataset at once. A more nuanced approach to do this would be to use a hierarchical Bayesian 545 
approach (Gelman and Hill, 2007), but that requires more research on the applicability of that approach in 546 
solving the challenges highlighted by our results. 547 

 548 

5 Conclusions 549 

Calibrating soil organic carbon (SOC) models with large scale data sets is always a challenge due to the 550 
computational cost involved. Furthermore, numerous assumptions are made regarding model drivers that can 551 
potentially deeply affect the parameterization. In our work presented in this article, we have shown that 552 
4DEnVar parameterization produces as good validation performance as the traditional and more cumbersome 553 
MCMC DEzs algorithm. However, the parameter sets produced by the calibration methods meaningfully 554 
differed from each other as did the model states they projected. Even though the total SOCs were similar, the 555 
difference between shorter lived POM and longer lived MAOM compounds was large enough to notably impact 556 
future projections. We also conducted a simple experiment to assess the impact of a slight change in how the 557 
soil litter input was calculated. From those results, we did see that this change did result in meaningfully 558 
different parameterizations, but also that the comparisons between the two methods remained similar. The work 559 
here highlights how further consideration is required how to evaluate the model performances, especially on a 560 
larger scale. However, they also establish the fast 4DEnVar as a valid exploration tool that allows testing 561 
various scenarios with much more ease than the traditional MCMC approach. 562 
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