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Abstract. An abundant amount of different data is required to calibrate soil organic carbon (SOC) models to

10 represent ecosystems at large-scale. However, due to challenges related to model state projections, this

11 calibration becomes very computationally heavy with traditional calibration methods. In this work, we test 4-
12 Dimensional Ensemble Variational data assimilation (4DEnVar) method to parameterize the MEMS v1 SOC

13 model using data from the LUCAS soil sampling network and compare its performance against MCMC

14 calibration. Comparing the total SOC projections from both parameterizations and validation datasets showed
15 similar improvements even though the produced parameter sets differed. A thorough analysis revealed that the
16 detailed SOC states were not similar to a meaningful degree, but we also lacked information to determine which
17 parameter set was closer to the truth. Our results here establish 4DEnVar as an applicable calibration method for
18 SOC models but also highlight the need for more nuanced validation methods, as well careful examination how
19 different data sets affect the model calibration.

21 1 Introduction

22 Soil organic carbon (SOC) stocks are a major component of the global carbon cycle (Scharlemann et al., 2014)
23 and are inherently linked to surface vegetation, as the long-term SOC compounds forming them are produced by
24 decomposition of plant litter (Cornwell et al., 2008). Due to the importance of those stocks, they are a central

25 part of national carbon budgets (van den Berg et al., 2020) and targeted by climate related policy (e.g. LULUCF,
26 CRCF; Schlamadinger et a., 2007) aiming at enhancing carbon accumulation into the soils and improve

27 terrestrial carbon sinks (Rumpel et al., 2020). All of this has also highlighted the need to improve the current

28 soil related Monitoring, Reporting and Verification (MRV) systems (Bellassen et al., 2015).

29 Soil inventory and numerous measurement campaigns, both temporary and continuous, have been set up to

30 actively observe the soil carbon states within given regions and/or ecosystems (Smith et al., 2020). While these
31 provide valuable information about the SOC stocks in that time window, also utilizing faster sample collections
32 and analysis (Loria ef al., 2024), they generally provide only information on the total SOC stocks. Indeed,

33 current understanding of SOC cycling has been recently advanced separating the bulk soil into SOC fractions
34 (Lavallee et al., 2019; Yu et al., 2022), notably the mineral-associated (MAOM) and the particulate organic

35 matter carbon (POM). Though there are different methods to measure these short- and long-lived SOC fractions
36 (Delahaie et al., 2024), they require considerable resources to be applicable on a large spatial scale. Thus,

37 models are a crucial tool in both providing more cost-effective estimates of SOC states across landscapes, as

38 well as their responses to both climate and environmental changes.

39 To this purpose, numerous models have been developed from simple first-order dynamic models such as RothC
40 (Coleman and Jenkins, 1996) to more complicated non-linear models such as MIMICS (Wieder et al., 2014) and
41 Millennial (Abramoff et al., 2022). However, the lack of detailed information both regarding the SOC state and
42 drivers, such as litter and soil moisture, does affect the ability to reliably constrain the various processes

43 included into the models. Therefore, it is necessary to calibrate the model with more measurements from

44 different pedo-climatic and land cover conditions, in order to capture how they affect the SOC state. This,

45 though, increases the computational cost of the calibration.
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46 Additionally complicating matters is that even when using spatially diverse data for calibration, there are

47 numerous assumptions regarding how that driver data is applied within the model that will affect not just model
48 forward projections, but also the calibration process itself. For example, NPP is commonly used as a proxy for
49 litterfall in SOC models (e.g. Abramoff et al., 2022; Pierson et al., 2022), with empirical work showing that the
50 approach is justified (Matthews, 1997). How this NPP should be divided between above- and belowground

51 biomass and, consequently between different model pools, depends on the ecosystem (Jevon et al., 2022; Cao et
52 al., 2024) and is critical for determining the soil litter input. Without much more detailed information than is
53 often available, these NPP/litter related parameter cannot be simultaneously calibrated with the SOC model

54  parameters because of how fundamentally those values are connected; increasing/decreasing the amount of soil
55 litter will simply result in an increase/decrease in decomposition rates to fit the measured SOC values. This is
56  just one example of driver associated assumptions and a quick nimble calibration method is needed to assess
57 how these uncertainties impact the calibration results.

58 The traditional grand standard for model calibration is the Monte Carlo Markov Chain Metropolis Hastings

59 algorithm (MCMC; Geyer, 1992). This is a very computationally heavy approach with multiple variants having
60 been developed over the years to make it more efficient in exploring the parameter space and avoid local

61 likelihood maximas in its search for the most likely parameter sets (e.g Papaioannou et al., 2015; Vrugt, 2016).
62 Due to the challenges discussed before, only computationally light SOC models can be calibrated within a

63 practical time frame using large scale data (for example Tuomi et al., 2009). There have been workarounds

64  presented, making assumptions about the initial state (Nemo, 2017; Mathers et al., 2023), using simpler

65 calibration methods (Gurung et al, 2020) or taking advantage of machine learning approaches (Heuvelink et al.,
66 2021). However, there remains a need for a fast and trustworthy calibration method for SOC models that would
67 allow for easy experimentation on how different datasets affect the calibration or constraining new model

68 dynamics being included.

69 Similarly to MCMC, in the Four-dimensional Variational data assimilation (4DVar; Le Dimet and Talagrand,
70 1986), a model projection is compared with observations and the new initial state for the next iteration is

71 generated from this information. A key difference between MCMC and 4D Var is that the latter uses gradient
72 descent methods to determine the next state instead of randomly sampling. While this method has initially been
73 used more commonly for state data assimilation, for example, in weather forecast (Huang et al., 2009), it has
74 also been successfully applied to calibrate ecosystem models (e.g. Raoult et al., 2016; Peylin et al., 2016;

75 Pinnington et al. 2016). However, to implement 4Dvar with observations from multiple different times, an
76 adjoint version of the model is needed which imposes its own challenges and limitations on the application
77 (Thepaut and Courtier, 1991). Four-dimensional ensemble variational data assimilation (4DEnVar; Liu et al.,
78 2008) is a novel data assimilation approach, where an ensemble is used to sidestep the need for the model

79 adjoint. It has already been used for parameter calibration (Douglas et al., 2025; Pinnington et al. 2020) and is
80 much faster than the traditional MCMC methods as it requires far fewer model iterations.

81 In the work presented here, we calibrated the MEMS v1 SOC model (Robertson et al., 2019) with both MCMC
82 and 4DEnVar parameterization methods. Soil data from the Land Use/Land Cover Area Frame Survey

83 (LUCAS) measurement network (Orgiazzi et al., 2018) were used for calibration and validation against

84 estimated model parameters, assessing their performances relative to each other and the default parameters. Our
85 hypothesis is that the 4DEnVar improves the model fit to the same degree as the MCMC, with much less

86 computational cost.

87 Specifically, there are two objectives for the work presented here: the first is to test if 4DEnVar calibration

88 performs as well as the MCMC calibration and examine if there are any meaningful differences in the resulting
89 parameter sets; the second is to conduct a simple experiment where we made a change on how the NPP litter
90 input was calculated. The intent here is to see both how this will affect the calibration and if the two methods
91 respond similarly to the change.

92
93 2. Methods and data

94 2.1 LUCAS measurements
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95 For the MEMS model calibration, we used the LUCAS points from a field campaign conducted in 2009 as

96 reported in (Cotrufo et al., 2019; Lugato et al., 2021). This dataset comprises; 1) the main physico-chemical

97 characteristic of topsoil (0-20 cm), including total SOC content for about 20.000 samples distributed across

98 different land covers in the EU and UK 2) a size-fraction of the bulk SOC into mineral-associated (MAOM)

99 and particulate organic matter carbon (POM) in a representative sub-set of 350 samples. Both the calibration and
100  total dataset are similarly distributed across ecosystems with approximately 73 % being grass- or croplands with
101 the rest being various forest types. Figure 1 shows the LUCAS data points across Europe and the calculated
102 SOC stock at each measurement site.

SOC [t C ha-1]
<50
50 to 100
100 to 150
® 150 to 200
® 200 to 250

103

104 Figure 1: The LUCAS 2009 sampling point across Europe and their SOC stock.

105 For the calibration, the 348 LUCAS measurements from the 2009 campaign containing POM/MAOM fractions
106 are used. The remaining 19 476 total SOC measurements were set aside for validation. In both allocations,

107 measurements which were not classified as agricultural, grassland or forest were removed as well as all the
108 sampling points where the driver data was not available. As a result, 322 datapoints are used for calibration and
109 17 430 for validation.

110
111 2.2 MEMS/Parameters chosen for calibration

112 The Microbial Efficiency-Matrix Stabilization (MEMS; Robertson et al., 2019) model is a novel soil organic
113 carbon (SOC) model framework, which is built around the scientific understanding that the soil microbial pool
114  modulates the SOC stocks. In the model, both surface vegetation and SOC decomposition are represented by
115 multiple pools defined by their physical properties. There are several paths for carbon fluxes to transfer from
116 one pool to another or lost as CO2, with the rate of change calculated on a daily timestep.

3
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117 Since the calibration, here, focuses on the SOC stock, only the model equations affecting MEMS pools C5

118 (Heavy particulate organic matter), C8 (Dissolved organic matter), C9 (Mineral associated organic matter

119 (MAOM)) and C10 (Light particulate organic matter) were considered in this work. While the surface

120 vegetation decomposition pools do determine the litter input entering to soil C pools, those mechanics were not
121 included in the calibration as the type of data required to constrain them was not available. Therefore, we used
122 the default parameters values established in Robertson et al. (2019) for the surface processes.

123 The equations that govern the change in the relevant pools in MEMS are:

dcC:

124 d_: = Csz,in + 653,in + Cs4,in - TmodkSCS (1)
dac

125 = Ciin+ Coin + Cafn — 501p = DOCicn Cg — TrnoaksCs )

126 “2 = 50rp — TpoaksC 3)
dCio 2 3

127 2 = Cioin t Ciom — Tmoak10C1o 4)

128 Where C; is the amount of carbon stored in pool i, Clj in 1s the carbon input to pool i from pool j as a result of the
129 decomposition process and k; is the decomposition rate for pool i. The leaching coefficient DOC,., represents
130 the dissolution of SOC to deeper soil layers and the temperature coefficient T)y,,q4 reflects how soil temperature
131 affects the decomposition rate. In this work, Ty, is the same for all pools and follows the STANDCARB 2.0
132 model (Harmon et al., 2009).

133 The sorption coefficient sorp controls the flow of carbon between the microbial pool and the mineral associated
134 carbon pool as determined by the equation

KimQmaxCs _
1+K 1 Cs

135 sorp = Cg o (%)
136 Qmax = d * Psoir * (1 = Prock) * SCconc (6)
137 SCconc = SCsiope * 1- psand) + SCint @)

138 In which K;,, is the langmuir isotherm term that depends on the soil pH, Q 4, is the maximum absorption

139 capacity of the soil, ps,;; is the soil bulk density, p,ocr 1s the rock percentage of the soil and pg4,4 is the sand
140 percentage of the soil. The maximum concentration of fine fraction, sc.on., is governed by the two coefficients
141 SCint and SCgope. Consequently, those two parameters effectively control the saturation ratio for the MAOM
142 pool.

143 The decomposition rate parameters ks, kg, kg and k,, were the central parameters chosen for calibration as well
144 as SCin¢ and SCgope. As the primary focus of this work is to compare the calibration methods, these parameters
145 were simply chosen as a straight-forward test case. The boundary values are presented in Table 1. As prior

146 values for our calibration, we also set randomly drawn and rounded values for the parameters near the middle of
147 the set of the boundary conditions after testing that the model runs remained stable with these parameter values.

Name Symbol Prior Minimum value Maximum value
Decomposition rate | ks 0.0008 0.0001 0.002
for Pool C5
Decomposition rate | kg 0.001 0.0001 0.01
for pool C8
Decomposition rate | ko 0.000025 0.00001 0.00004
for pool C9
Decomposition rate | kio 0.0005 0.0001 0.0004
for pool C10
Saturation intercept | SCieept 10.0 5 20
Saturation slope SCsiope 0.25 0.1 0.4

148

149 Table 1: The calibrated parameters chosen for calibration, their baseline values as well as boundaries.
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150

151 To determine how we divide the litter input to MEMS model pools, the site ecosystem type was assigned by the
152 Corine Land Cover (Buttner, 2014). Following that, NPP is split into the MEMS model pools according to the
153 following framework established in Robertson et al. (2019):

154 Cinpue(©) = (1 — fio ) fso T¢* NPP(¢) ®)
155 CZ,input(t) = (1 - S%Clo - fllego)recoNPP(t) (9)
156 C3,input(t) = ﬁ?gDTECDNPP(t) (10)
157 Coinpuc(O) = fso!’ foc T*“* NPP(2) an

158 Where C; jnpye (t) is the carbon input to pool i from NPP at a given time ¢ and eco refers to the ecosystem for the
159 LUCAS point. Then, f;,,; is the hot water extractable fraction of the litter input, f, is the cold-water

160 extractable fraction of the water extractable fraction and f;;, is the acid-insoluble fraction of the of the litter

161 input. It is important to note that these fractions are not the totality of the litter input and, while equations from
162 17 to 20 do sum up to the total NPP, the fractions presented here do not sum up to 1.

163 The coefficient values based on Campbell et al. (2016) are presented in Table 2. It is important to make two
164  notes regarding these values. First, we are using a single fraction here and do not account for the uncertainty
165 range provided in the work referenced. Second, only f;,; and f;;, fraction ranges are presented in Campbell et
166 al., (2016). For f,4,. we used a constant value across land covers in line with the work Robertson et al. (2019).

NPP fraction Tyl fi; faoc
Woody grassland 0.67 0.35 0.15 0.15
Pure grass 0.51 0.35 0.15 0.15
Sporadic grassland 0.59 0.35 0.15 0.15
Cropland 0.43 0.35 0.15 0.15
Mixture 0.77 0.375 0.295 0.15
Broadleaf 0.68 0.4 0.27 0.15
Conifer 0.78 0.35 0.32 0.15

167

168 Table 2: The fraction of NPP that is used for litter input and how it is divided into different litter
169 compounds

170
171
172 2.3 MCMC

173 Markov Chain Monte Carlo (MCMC; Geyer, 1992) is a widely used Bayesian model parameterization method.
174  The basis of this approach is straightforward: First values for the parameters chosen for calibration are drawn by
175 randomly perturbing accepted parameter values and the model is run for given locations with these parameters.
176 Assuming that the uncertainties are normally distributed, the total likelihood F of these projections, given

177 observations that correspond to model predictions, is calculated with

2
1 _lzNobs(xr;Vz)z . 11 Npar(6k—Okprior)_
178 F = H;ijs(Znalz)E e 275t o [P (2mod,)? e 2T 76,k (12)
179 Where / is the observation index, N, is the number of observations, o is the associated uncertainty, x; is the
180  model projection with parameter set 6 and y, is the observation for index /. Furthermore, £ is the parameter
181 index, Np,q, is the number of parameters being estimated and ©,,, is the prior estimate of parameters.

182 Once the likelihood is determined, it is compared to the likelihood of the previously accepted parameter set. If
183 the new likelihood is higher, then that parameter set is automatically accepted and used as the parameters for the
184  next iteration. However, if the new likelihood is lower than the previous one, there is still a probability that the
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185 new parameter set will still be accepted depending on how close the new likelihood is to the previous accepted
186 likelihood.

187 By allowing the lower likelihoods to be possibly accepted, MCMC also provides an acceptable parameter range,
188 which can be used to represent the parameter uncertainties. This iterative process is repeated until a given
189  convergence goal is satisfied (Roy, 2020).

190 For the study here, we used the MCMC framework established in Viskari et al. (2022), which utilizes the
191 BayesianTools R-library (Hartig et al., 2019). The chosen MCMC algorithm is the Differential evolution
192 Markov Chain with snooker updater (DEzs; ter Braak and Vrugt, 2008), where multiple calibration chains
193 progress concurrently from different starting point with information shared between the chains at given
194 intervals. This should lead to a more efficient and faster convergence of the calibration, especially as this
195 approach makes it possible to parallelize the different chains.

196 Six chains were used for the calibration with the initial values for each chain randomly drawn from the prior
197 parameter range. The MCMC was run for 100 000 accepted iterations with the convergence test and statistical
198  values calculated from the last 10 000 iterations.

199
200 2.4 4-Dimensional Ensemble Variational assimilation

201 The foundational theory for 4-Dimensional Ensemble Variational data assimilation (4DEnVar) method is
202 explained in Liu et al. (2008). The formulation established in Pinnington et al. (2020) was used as the basis for
203 this work. In this section, we will provide a simplified description of the method as it applies to our purposes.

204 In traditional baseline 4-Dimensional Variational data assimilation (4DVar; Le Dimet and Talagrand, 1986),
205 similarly to MCMC, the most likely state, i.e. the model parameter set, is solved by determining the minimum of
206 the cost function J

T
207 ] = i((e - eprior) B_l(e - eprior) + Z{(=1(M0—>t(ej X()) - y}()TRt_l(MO—w(ev XO) - Yk) (13)

208 In which @ and 0,,,, are, respectively, the suggested and prior parameter value vectors, B is the prior

209 parameter error covariance matrix and R, is the observation error covariance matrix at the measurement time ¢.
210 The model operator M,,_,; calculates from the given parameters and the initial state X, the output comparable to
211 the observation vector y,. The measurement times in the chosen time window is represented by K.

212 Two brief notes on this formulation. First, it is essentially the same as exponent component in Eq 8, except that
213 is written it in vector form. Second, in an effort to simplify the equations, we did not include anobservation

214 operator component in the equations. All our observations are point measurements that can be directly compared
215 with the model output, hence a separate observation operator was unnecessary for our purposes.

216 4DVar, like MCMC, is also an iterative approach that calculates the cost function with different state vectors to
217 test if the cost function value decreases. However, with 4DVar, the iterations suggested after the first attempt are
218 not randomly drawn, but rather determined by the gradient function

219 V] =B7H(8 — 8prir) + 1ilq MER: " (Mo (8, X0) — yio) (14)
220 Where M{_, is the adjoint of the tangent-linear version Mg_, of the model operator M.

221 The benefit of the gradient use is that it results in a value of zero for the state vector that produces the cost
222 function minimum. Thus, gradient descent techniques (Ruder, 2016) are able to use the information from the
223 gradient to efficiently locate the cost function minimum and the optimal state vector.

224 Naturally, there are challenges in applying this method. The core hurdle is the adjoint operator in equation Eq.
225 10, which is the transpose of the tangent-linear version of process model. Creating these model versions, though,
226 is not a simple task and imposes a linearity assumption on the driving processes. Furthermore, since background
227 error covariance matrix B can have non-diagonal terms representing error covariances, the inverse matrix can
228 become computationally implausible to be calculated for larger systems.
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229 In 4DEnVar, these issues are approached by expanding on the square root transform framework established in
230 Tippett et al, 2003. Let us have an ensemble of model runs where, in our case, every ensemble has a different
231 parameter set randomly drawn from the same baseline prior distribution. In the 4DEnVar formulation, this prior
232 distribution is assumed normally distributed. For each ensemble member, we can then determine how its output
233 differs from the prior parameter set output. These perturbations from the mean across the ensemble can be

234 written in matrix format @y, as follows

235 0 (15)

L-1

236 Where L is the ensemble size, 8% is the ith vector of the perturbation matrix, and 8”is the average over the
237 perturbations. In our case, the average over the perturbations is the same as the prior parameter vector 0,0y

238 Since this matrix essentially represents the uncertainty related to the parameter values, the prior error covariance
239 matrix B can be approximated as

240 B=~0,0;" (16)

241 We admit that in this formulation we ignore model structural error and assume the dominant error is from the
242 parameter uncertainty.

243 Furthermore, we can define a vector w with the length of L that satisfies the equation

244 w= 0{;_1(9 - eprinr) a7
245 With these formulations and assumptions, the cost and gradient functions can be written as

246 J(w) = w.wT +2 3K (Mo_ 04w + Mo_(8,X0) — i) Ry ! (Mo_.: Oy + Mo_.¢(8,%0) — i) (18)

247 V(w) =w+3K, OL'TM?,'%RZI(MO%O{,W + Mo~ (0,X0) — ¥i) (19)
248 With this new formulation, we can further approximate
249 V/(w) = w+ X (Moo®p) TRy (Mo, O, w + Mo_(6,Xo) — ¥i) (20)

250 This formulation removes the need for the adjoint version of the model. An additional benefit of the 4DEnVar
251  method is that the gradient function value can be calculated for each ensemble member, since we are already
252 running an ensemble to approximate the prior error covariance matrix. This information, then, makes

253 straightforward determining the state estimate.

254 Compared to filter-based data assimilation methods (for example the Ensemble Kalman Filter; Evensen, 2003),
255 the variational methods do not estimate the posterior uncertainty directly. However, we used the method
256 established in Pinnington et al. (2021) to calculate the posterior distributions.

257 For the study here, we used the 4DEnVar algorithm provided in Quaife (2023). The gradient approach method
258 used there is BFGS2 (Saito and Nakano, 1997) from the GNU Scientific Library (GSL).

259 The 4DEnVar methodology holds crucial benefits for our model calibration even beyond the reduction in

260 computational cost compared to MCMC. Even though all the measurements used for calibration in this work are
261 from the same year, the model outputs are steady state products that take hundreds of simulated years to

262 produce. Hence, a 3-dimensional variational data assimilation (3DVar; Lorenc et al., 2000) cannot be applied
263 and the adjoint of the model would be required, as the gradient function needs to be calculated at the start of the
264 simulation. To complicate things further, the validity of the tangent-linear assumption would be questionable
265  due to the length of the simulation in this situation.

266
267 2.5 Calibration setup and uncertainty attribution

268  After having set up the algorithmic framework for both calibration methods for the selected LUCAS data points,
269 the first task was to complete a twin experiment, where we generated synthetic observations from with the
270 model using a parameter set perturbed from the baseline parameters. Then, we performed the calibration with

7
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271  these synthetic observations with their associated uncertainties set to be 1 % of those synthetic observations.
272 This allows us to check if both methods were able to find the correct parameter sets in a situation where the true
273 answer was known. For the 4dEnVar, the additional importance of these tests is to assess the ensemble size
274 dimension required to consistently estimate the correct parameter set.

275 After the twin experiments have been conducted, the calibration itself is performed with the calibration dataset,
276 before the validation runs are done for the validation dataset locations. In both situations the SOC is assumed to
277 reflect a steady state. These runs were completed separately with two different f,;,. values as a simple test

278 regarding how NPP assumptions impact the MEMS model calibration.

279 For our test case study on the impact of the NPP assumptions on the parameterization, we repeated the

280 calibrations with a small adjustment. We changed the f;,. value of grass- and croplands from 0.15 to 0.35. This
281 increases the amount of the litter that is directly deposited to the soi and consequently adsorbed by the mineral
282 matrix] instead of being lost during the transition between the surface and soil carbon pools. The logic behind
283 this is that, in our expert opinion, it is likely that there will be the proportion of exudates and root litter inputted
284 to the topsoil in grasslands and herbaceous crops to the litter pools compared to forests.. When calculating the
285 steady state, the MEMS model is simulated over the period of 700 years from an initial state vector of (0.35,
286 0.35,0.15,0.,0.,0.15, 0., 0., 3000., 0., 0.) for the MEMS C1 to C9 pools, respectively. The values in pools C1,
287 C2, C3 as well as C6 are used to ensure that there are no numerical errors at the start of the simulation and do no
288 impact the steady state at all. For the MAOM pool C9, though, we initialised the model with some carbon

289 already accumulated in order to reduce the number of simulated years required for steady state. Here, during
290 calibration each LUCAS point is simulated for 700 years with the last output values compared to the

291 measurements. At some sites, the MEMS model did not reach full steady state during this time, but the

292 difference was within fractions of a percentage of the final steady state. As the change was so marginal already
293 at this point, the shorter time period was chosen for computational efficiency.

294 As driver data at the European level, the model uses daily air temperature extracted from the E-OBS grid

295 (Cornes et al., 2018). For each day of the year, an average temperature is calculated from a time series that spans
296 from 2009-2018, with the temperature cycle then repeated for each year when calculating the steady state.

297  Furthermore, the clay, sand and rock content of the soil as well as the soil bulk density and pH from LUCAS are
298 used to determine soil properties driving SOC processes.

299 For Net Primary Production (NPP), first the average annual NPP over the decade 2000-2010 is extracted from
300 the MODIS (Running et al., 2004) grid cell overlaying each LUCAS point. Then, a standard sine function is
301 used to distribute the NPP across the year in order to produce the daily litter input. This approach was used
302 instead of an averaged MODIS NPP annual time series as the NPP reflects the time when the atmospheric

303 carbon is allocated into vegetation, not when the vegetation becomes litter input. Hence, we simplified the time
304 series here, although it is not expected to meaningfully affect the modelling results.

305 The total SOC measurement uncertainties from the LUCAS dataset are used as the uncertainties in this

306 application. Since LUCAS protocol requires to take a composite soil sample (out of 5 samples), the uncertainty
307 was estimated propagating the error associated to all variables for calculating SOC stock (i.e. SOC content,

308 depth, rock fragment). We run a Monte Carlo simulation with 5000 draws, using a standard deviation derived
309 from the coefficient of variation reported in Goidts et al., 2009 for the microsite scale, with a similar sampling
310 scheme of LUCAS. It is important to note, though, that these values are calculated from mixed samples. Thus, it
311 may be an underestimation of the real uncertainty for several reasons as, for example, how LUCAS samples are
312 overall representative of the field conditions. However, we do not have more information concerning the SOC
313 measurement uncertainties available.

314  Regarding the MAOM fraction, there is no established uncertainty estimate to utilize. Because of that, we

315 assigned an uncertainty where the standard deviation was 5 percent of the measured MAOM value. This choice
316 was driven by both a discussion with the data collection team about the reliability of the data and to ensure an
317 appropriate weight during the calibration process. When the initial cost function is calculated using the baseline
318 MEMS parameter set with this uncertainty, the total SOC values account for approximately two thirds of the
319 cost function value, with the MAOM fraction being responsible for the remainder.

320 The prior uncertainty assigned to the parameters introduced challenges in this work. With MCMC, because we
321 only use the prior parameter value range for the initial sampling, we were able to apply a uniform uncertainty
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322 distribution that was used to approximate the baseline parameter set in Robertson et al., 2019. For those

323 parameters where the uncertainty was not provided, we approximated a wide enough uniform distribution

324 around the assigned parameter value. The 4DEnVar method, though, requires a Gaussian uncertainty

325 distribution as explained in section 2.4. As there is no prior information available, we used the baseline

326 parameter values as the expected values, with the uncertainty represented by a standard deviation of 10 % of the
327 parameter value. This uncertainty range, deliberately imposing a larger uncertainty, resulted in 4DEnVar

328 calibration producing negative parameter values, which are naturally unrealistic. We will discuss the reasons
329 and implications of this behaviour later.

330 In some studies, for example, uncertainty has also been a parameter estimated with MCMC (Cailleret et al.,

331 2020). Considering the meaningful unknowns regarding the uncertainty approximations, this would be a valid
332 approach to be applied here. We did not estimate uncertainties for the initial MCMC/4DEnVar comparison, as
333 varying the uncertainties might cause issues with the gradient approach methods and, consequently, would make
334 it difficult to interpret the differences between the two. After the comparison, though, we did perform a MCMC
335 calibration of MEMS, where we also estimated a scaling parameter for both total SOC and MAOM fraction

336 uncertainties. However, these results are not shown here, as the calibration did not result in a successful

337 convergence.

338
339 3  Results

340 The twin experiments (not shown) established that both methods were able to produce the true parameters when
341 calibrating against synthetic observations. For 4DEnVar, the experiments established that an ensemble size of
342 250 members consistently produced the parameters used to generate the synthetic observations and, thus, we
343 chose to this ensemble size for the 4DEnVar consequents.
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345 Figure 2: Estimated parameter distributions for both MCMC (orange) and 4DEnVar (green) calibrations with f,.
346 set to 0.15 (solid) and 0.35 (dashed). The p indicates a multiplier of 10,

347 The parameter distributions estimated by the MCMC and 4DEnVar calibration for both f;,. scenarios are
348 presented in Figure 2. For clarity, the expected values from all the calibrations are in Table 3. From these, we
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349  see that MCMC and 4DEnVar parameter sets differ meaningfully from each other in their value, but remain
350 within the same range even when changing the NPP assumption. Furthermore, with the higher f;,. value, the
351 uncertainty estimates with both methods end up being narrower, with the exception of ks for the MCMC

352 calibration. It is also apparent that with three parameters (ks, ko and Scsiope), the MCMC produces expected
353 values that are very close to the set boundaries when f;, is set to 0.15 while, when set to 0.35, those

354 distributions are clearly within the given parameter ranges. This indicates that with the lower f,., the MCMC
355 calibration struggles to find an acceptable parameter set within the accepted range. Similarly, the uncertainties
356 with the 4DEnVar are quite wide, which implies that it also cannot effectively locate an ideal parameter set.

357 The uncertainty distributions for 4DEnVar are generally wider than for MCMC in both cases. With 4DEnVar,
358 we repeated the calibration multiple times to ascertain that the randomness associated with the ensemble

359 selection did not result in meaningfully different parameter sets. While there was variance in the expected

360 values, the standard deviation of the produced estimates was smaller than the standard uncertainty projection for
361  any single estimation.

362
4DEnVar MCMC
ks 0.0006/0.00043 0.0019/0.0019
ks 0.00078/0.00053 0.0001/0.0001
ko 0.000038/0.000055 0.00001/0.000037
kio 0.00013/0.00021 0.00047/0.0006
SClcept 7.14/7.16 4.15/3.7
SCslope 0.51/0.54 0.144/0.197
363

364 Table 3: The expected parameter values produced by the different calibration methods and the baseline parameters.
365 The first value is for fioc 0.15, the second for fuoc 0.3s5.

366 To examine the impact of the new parameter sets, Figure 3 presents the differences between the measurements
367 and model projections across all the validation sites. While the 4DEnVar parameter sets produces a somewhat
368 symmetric error distribution around zero in both calibrations, with the lower f;,. there is a slight tendency

369 towards negative errors. In contrast, the MCMC error distribution shows a notable lean towards positive errors
370 for the lower f,., which largely disappears when the increasing direct litter input. Since the SOC errors here
371 are calculated as the measurement minus the model projection, this means that positive errors reflect the

372 parameter set systematically underestimating the SOC projections. It is notable that with the higher f;,, the two
373 error distributions are nearly identical.

374
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376 Figure 3: The validation dataset error distributions for both MCMC (orange) and 4DEnVar (green) calibrations with
377  faoc set to 0.15 (solid) and 0.35 (dashed).

378 To better comprehend what is causing these systematic errors when f,, is lower, we further examined the

379 actual calibration fit with both approaches in this scenario. Figure 4a shows how well the model SOC

380 projections follow the measurements and in Figure 4b the fit of the MAOM fraction with the 322 data points
381 used for calibration. From these comparisons, it is evident that, while the 4DEnVar parameter set follows the
382 measurement trend more closely than the MCMC, the latter calibration in turn replicates the MAOM:SOC

383 fraction much better. We also note that there are also clear biases as the 4DEnVar parameters constantly

384 underestimate the MAOM:SOC fraction, while there is a similar systemic underestimation of the total SOC with
385 the MCMC parameters. When comparing the calibration fits for the higher f;,. (Not shown), the behaviour
386 remains similar with calibration methods, although the differences between the measured and modelled values
387 become smaller.
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389 Figure 4: For the calibration dataset, comparison between the modelled and measured a) Total SOC value and b)
390 MAOM:SOC fraction for both the MCMC and 4DEnVar calibrations
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391 Figure 5 shows the spatial distribution of the errors in Europe for both the MCMC and 4DEnVar parameter sets.
392 In the case of the lower f,., the MCMC underestimation is evident across Europe and, while the 4DEnVar map
393 is more evenly distributed, there are also clearly more local overestimations than when f,. is set higher. In the
394 latter case, decrease in error can be seen across the whole Europe, with only a few clear areas, such as Nordic
395 countries and the Iberian Peninsula, with consistent bias in the error. However, what is intriguing is that across
396 central Europe, the prominent error points mirror each other. Where the MCMC parameter set produces

397 overestimations, the 4DEnVar parameter set conversely results in underestimations.

398
A MCMC, fyo. 0.15 B 4DEnVar, fy, 0.15
vy ¥ 1.
C MCMC, fy, 0.35 D 4DEnVar, fyo 0.35
SOC [t C ha-1]
® <-150 4100 to 50 25100 251050 1000 150
D -150t0-100 -50t0-25 0t025 5010100 @ >150
399
400

401 Figure 5: Spatial error distributions across the LUCAS validation sites for a) MCMC with f 4, value of 0.15, b)
402 4DEnVar with f 4, value of 0.15, ¢) MCMC with f ;,. value of 0.35, and d) 4DEnVar with f4,. value of 0.35
403 parameter sets

404  Because of the pronounced errors when f;, is set to the lower value, we further examined the relationship of
405 the SOC error with the NPP used as an approximation of the total litter input (Figure 6). During this

406 examination, it becomes evident that especially the MCMC parameter set projected a SOC underestimation
407 clustered around low NPP values. When doing a further split into various ecosystems (Not shown), we see that
408 the biases become much more pronounced with forest ecosystems.
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411 Figure 6: Relationship between NPP and SOC projection error for both calibrated parameter sets

412 Finally, we examined the POM, MAOM and MAOM:SOC fractions in relation to the total projected SOC stock
413 for the validation dataset with all calibrated parameter sets. Because of the systematic error when using the

414 lower f4,. and, due to the general behaviour remaining similar between the two scenarios, we are only

415  presenting the higher f;,. parameter set results here in Figure 7 for clarity. With the POM (Fig 7a) and MAOM
416 (Fig 7b), we can see a similar differences between the two calibrations resulting from the initial calibrations.
417 The MCMC parameterization still produces much higher MAOM stocks than 4DEnVar, and the latter

418  parameterization contrastingly results in higher POM stocks. Additionally, POM with MCMC parameters

419 remains at lower values than with the 4DEnVar parameters while, for the 4DEnVar parameters, MAOM hits a
420 ceiling sooner than for the MCMC parameters. To further examine the impact of these behaviours on the

421 projections, Figure 7c illustrated the relationship between the MAOM fraction and model error across all the
422 validation data points. Analysing the results further, we found that the very high SOC projections with both
423 MCMC and baseline parameters occurred in specific circumstances, where both NPP and annual temperatures
424 were low (not shown), and hence we attribute this to a structural issue within the model that arises in specific
425 conditions rather than the parameterization per se.
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427 Figure 7: The model projected a) POM, b) MAOM stocks in relation to the total modelled SOC stocks as well as c)
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429 0.35.
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431 4 Discussion
432 4.1 Comparison between the performances of MCMC and 4DEnVar calibration methods

433 As seen in the results, the 4DEnVar approach is a straightforward tool for calibrating the MEMS v1 model with
434  LUCAS data, as valid as the MCMC approach. Both had issues with the first parameterization attempt when it
435 came to the validation dataset, but performed similarly when the direct litter fraction to soil was increased.

436 Hence, the central problem with the first calibration attempt was not due to the calibration method itself. This
437 supports 4DEnVar as a meaningful approach for initial calibration of soil carbon models, especially considering
438 the massive difference in the required computational costs. For MCMC, the 100 000 iterations used here took
439 over a month to compute on our HPC server while, simulating the 250 ensemble members without using

440 parallelization, took approximately four hours. It should be noted that the MCMC calibration did begin to

441 converge to the final values already after 40 000 iterations, but there is a risk in accepting the first stable

442 parameter set after such a relatively short calibration cycle. The computational cost for calibration from having
443 to spin-up to steady state is a known issue with land system models in general (Raoult et al., 2025).

444 What is striking, though, is that the parameter sets produced by the two calibration methods in both litter

445  distribution scenarios differ from each to a meaningful extent, even when they perform equally well with the
446 validation dataset. In further analysis of the cost function (J) for each estimated parameter set, the MCMC

447 calibration resulted in a meaningfully lower J with the initial fz, while, with the increased fao. (i.e. from 0.15 to
448 0.35), the difference in J between the two approached becomes marginal. However, when further looking at
449 both total SOC and MAOM fractions measurements in both cases, the 4DEnVar produces a better match with
450 total SOC while, conversely, the MCMC parameter set results in a closer fit with the MAOM fraction (MAOM:
451 SOC) data. If we tighten the prior uncertainty used in the calibration, the 4DEnVar produces a different

452 parameter set, though even those new parameters do still result in lower MAOM fractions in the validation

453 dataset projections.

454  While we are not certain of what is driving these systematic differences between calibration sets, we

455 hypothesize that one crucial component is that the total SOC and MAOM fraction measurements appear to
456 incentivize contradicting model behaviours. This is especially evident when the fy, is lower and there is less
457  litter to distribute between the SOC pools. In that situation, MCMC is still able to find a solution by forcing a
458  reduction in the decomposition rate for the MAOM pool and increasing the decomposition rate for the POM
459 pool. This leads to a high MAOM fraction but at the cost of lower POM pool values and, consequently, a

460 tendency to project lower SOC values. Meanwhile, this conflict between the two measurement types does seem
461 to cause issues with the gradient approach method applied by 4DEnVar to determine the ideal parameter set.
462  This could be because the disagreement between the data sources will create such a degree of noise in the

463 likelihood space that determining a correct gradient descent from a collection of ensembles will become much
464 more challenging. Simultaneously, though, this vulnerability in the 4DEnVar could be exploited in future work
465 to quickly test if different measurement types and drivers are compatible within the model framework.

466 These results further highlight the fundamental impact of the priors on the calibration results, especially with the
467 4DEnVar approach, that has been recognized as a larger challenge in ecosystem modelling (Dietze, 2017).

468 While experimenting with the initial setup, we found that the 4dEnVar calibration produced unrealistic

469 parameter values with negative decomposition rates, if prior was set to be too loose. This remained true even
470 when increasing the fa. value, although then the uncertainty could be loosened slightly more. Our hypothesis is
471 that, while the MCMC iterative approach allows setting boundaries for the region where the values are sampled,
472 such hard constraints are not present with the 4DEnVar. Additionally, the 4DEnVar does rely on the first order
473 Taylor expansion, making it vulnerable to non-linear behaviours. Thus, incongruities resulting from missing
474 model processes such as soil moisture, for example, can drive the parameterization beyond acceptable values if
475 there is not a sufficient prior constrain implemented. A further limitation is that the 4DEnVar algorithm used
476 here draws the ensemble members by sampling the prior distribution. While this is a logical approach when
477 those distributions are reliably approximated, here we do not know what the prior distributions are and must use
478 a tight uncertainty range in order to avoid unrealistic estimations. Consequently, our application of 4DEnVar
479 samples the parameter space in a more limited manner than would be preferable.

480 The lack of knowledge on prior distributions for the parameters is an obstacle that is further hindered by the lack
481 of reliable measurement uncertainty estimates. An important aspect of Bayesian statistics is that the weight of an
482 individual information source depends on how accurate it is in comparison to the other available information

16



https://doi.org/10.5194/egusphere-2025-4999
Preprint. Discussion started: 26 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

483 sources. Hence, the width of the prior uncertainty that we can assign to constrain the parameter estimate to

484 remain in a reasonable range is dependent on the measurement uncertainty. In this work, those uncertainties
485 were so low that we had to use a relatively narrow prior parameter range for the 4DEnVar approach.

486 Furthermore, as detailed in the Methods section, we do not have reliable approximations of the measured

487 MAOC:SOC fraction uncertainties. Their uncertainty here is, thus, defined by how much weight we wished to
488 give them in relation to the total SOC measurements. When we tested a larger measurement error, which in turn
489 allowed us to increase the prior parameter distribution for the 4DEnVar without producing unrealistic estimates,
490 the 4DEnVar ensembles also changed with the new values moving farther away from the baseline values. The
491 implication is that the 4DEnVar is much more sensitive to the measurement uncertainty representation than
492 MCMC, due to how the prior constraint is applied.

493 4.2 The impact of the NPP assumption on the calibrated parameter set performance

494 Our results clearly underline how the fundamental assumptions regarding the NPP, as a litter proxy, impact the
495 model calibration results. The lower fa. resulted in a noticeable bias on total SOC predictions, especially with
496 regard to the MCMC calibration. Another encouraging aspect of the work is that the differences between the
497 two calibration methods results remain consistent even when changing the litter input assumption. This supports
498 the capability of using the quicker 4DEnVar calibration to explore the impact of the NPP assumptions on the
499 parameterization as any signal noted there should be reflected also in MCMC results.

500 What complicates future work is that coefficients associated with litter input are challenging to calibrate

501 simultaneously with parameters associated with SOC decomposition, as their influence on the SOC overlap too
502 much. In addition, even attempting to calibrate the NPP/litter coefficients would first necessitate determining
503 which exact coefficients would be calibrated. For example, in our case, there is first the question how well the
504  MODIS NPP product represents reality for different systems. Then, part of that NPP is removed to represent
505 economic activity before it is distributed to the four MEMS initial pools based on the three coefficients. Any of
506 these three parts can be altered to change the final NPP input to the soil in different ways, but there is really no
507 certainty at the moment what is the correct manner to better regulate the NPP based litter input. This

508 complicated relationship in the surface vegetation driving litterfall and the SOC state has been shown in prior
509 work such as in Raczka et al. (2021). There when they used remote sensing data to constrain their model state,
510 while this improved their modelled aboveground biomass and carbon exchange accuracy, it also caused their
511 modelled SOC accuracy to decrease because they were only using the aboveground data for both systems.

512 Naturally this is not to questioning the use of NPP as a litter input for soil carbon models. Rather it is another
513 reminder on how important it is to be aware of the various assumptions related to the NPP and remain consistent
514  with them while running the calibrated model in various systems. Additionally, when doing future SOC

515 projections, the uncertainties related to the various NPP/litter assumptions should be considered during analysis.

516 The error distributions for both calibration methods when applying the higher litter input is in itself worthy of
517 analysis. The MEMSv1 model used is lacking several dynamics that are known to impact soil carbon stock, such
518 as soil moisture (Falloon et al., 2011), various nutrient cycles (Gardenas, et al., 2011; Feng et al., 2023) and

519 mycorrhiza abundance (Hawkins et al., 2023). However, when considering the multitude of simplifications

520 made to calculate the steady state approximations using parameters calibrated with data from 322 sites, the error
521 distribution for the 17 000+ validation sites is remarkably narrow. Which raises question how much of a further
522 performance issue could be expected with addition of new processes? And, consequently, how can this limited
523 data be used to evaluate which processes are most important for future projections?

524  Notably, while the spatial presentation of the model error under the higher fi. shows only few regions where the
525 differences between the two model errors are consistently larger than 10 tons of carbon per hectare, such as the
526 Nordic countries, the MAOM fraction projections by the two model calibrations differ systematically to a

527 meaningful degree. For instance, 4DEnVar calibration resulted in a higher turnover rate of the MAOM pool,
528 which in turn causes lower MAOM stocks. Both calibration methods are adjusting the parameters to produce
529 lower total SOC, as the baseline parameters tend to overestimate the SOC stocks, but they solve the issue with
530 very different representations of the internal SOC state that would have a major impact on future projections.
531 With the current available information, it is not possible to evaluate which of the two states is more realistic;
532 while the MCMC modelled MAOM fractions are on average high for all ecosystems (Georgiou et al., 2022), the
533 LUCAS dataset leans towards arable soils where the MAOM fraction is expected to be larger in the top layer
534  than for forests (Schrumpf et al, 2013; Sokol et al, 2022).
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535 These outcomes emphasise the importance of carefully considering how model performance improvements are
536 assessed with large-scale datasets such as the LUCAS measurement data, since the total SOC seems not

537 sufficient. This is especially relevant as the model validation should be a crucial aspect of model choice

538 regarding different SOC sequestration projects (Garsia et al., 2023). New measurement analysis methods allow
539 for more efficient POM/MAOM fractioning of SOC samples (Delahaie et al., 2023), thus providing more

540 detailed measurements to use during validation. However, as our results show, the SOC fractions might not be
541 compatible with the total SOC measurements within the model context and indicate that there are missing

542 processes within our model framework. Consequently, their value might be rather to evaluate what missing
543 processes are needed within the model than validate existing parameterizations. Another approach for evaluation
544 could be to examine the model performance within sub-regions or individual ecosystems instead of weighing it
545 against the total dataset at once. A more nuanced approach to do this would be to use a hierarchical Bayesian
546 approach (Gelman and Hill, 2007), but that requires more research on the applicability of that approach in

547 solving the challenges highlighted by our results.

548
549 5 Conclusions

550 Calibrating soil organic carbon (SOC) models with large scale data sets is always a challenge due to the

551 computational cost involved. Furthermore, numerous assumptions are made regarding model drivers that can
552 potentially deeply affect the parameterization. In our work presented in this article, we have shown that

553 4DEnVar parameterization produces as good validation performance as the traditional and more cumbersome
554  MCMC DEzs algorithm. However, the parameter sets produced by the calibration methods meaningfully

555 differed from each other as did the model states they projected. Even though the total SOCs were similar, the
556 difference between shorter lived POM and longer lived MAOM compounds was large enough to notably impact
557 future projections. We also conducted a simple experiment to assess the impact of a slight change in how the
558 soil litter input was calculated. From those results, we did see that this change did result in meaningfully

559 different parameterizations, but also that the comparisons between the two methods remained similar. The work
560 here highlights how further consideration is required how to evaluate the model performances, especially on a
561 larger scale. However, they also establish the fast 4DEnVar as a valid exploration tool that allows testing

562  various scenarios with much more ease than the traditional MCMC approach.
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