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Abstract. Advancements in near-explicit chemical reaction mechanisms, such as the Master Chemical Mechanism (MCM) or

the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A), have enabled highly detailed

simulations of atmospheric chemistry. Such simulations offer a bottom-up approach to accompany and inform laboratory cham-

ber experiments of organic aerosol formation or to model the complex chemistry of mixtures of volatile aerosol precursors for

specific tropospheric conditions. These chemical reaction mechanisms, while comprehensive, generate hundreds to millions of5

organic components, creating computational challenges for subsequent applications in multiphase equilibrium gas–particle par-

titioning models to predict secondary organic aerosol (SOA) mass concentrations, phase compositions, and hygroscopicity. The

wealth of simulated reactions and components also requires substantial simplifications for reduced-complexity representations

in large-scale atmospheric models. This study introduces a suite of software tools to automate relevant pure-component prop-

erty predictions as well as a 2-dimensional (2D) polarity–volatility lumping framework to systematically reduce the complexity10

of chemical mechanism outputs. We introduce a new polarity metric for use in the 2D framework, a ratio of a component’s

activity coefficients in water and an organic solvent (hexanediol). This ratio is computed using the Aerosol Inorganic–Organic

Mixtures Functional groups Activity Coefficients (AIOMFAC) model. The 2D framework offers grid-based and cluster-based

methods to select an adjustable number of surrogate species and offers flexibility in the choice of polarity axis. Our methods

utilize the Simplified Molecular Input Line Entry System (SMILES) description of molecular structures. A new tool, SMILES15

to AIOMFAC subgroups (S2AS), is introduced to automatically generate AIOMFAC-model input files and to handle exception

cases consistently. We demonstrate the application of our framework using systems of hundreds to thousands of components

generated by near-explicit chemical mechanisms. The new framework enables tailored reduced-complexity representations of

gas–particle systems.

1 Introduction20

Secondary organic aerosol material (SOA) is formed through chemical processing and gas–particle partitioning of volatile

organic precursors. SOA can consist of hundreds to millions of distinct kinds of molecules, stemming from biogenic and

anthropogenic emission sources (Hallquist et al., 2009; Lannuque et al., 2021). In addition, atmospheric aerosols frequently

contain primary organic aerosol material (POA), water and dissolved electrolytes, as well as insoluble species. The complexities
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in sources, chemical and physical transformations and resulting gas- and particle-phase mixtures, introduces computational25

challenges when attempting to predict component properties and the partitioning behaviour of such organic–inorganic aerosol

systems. Atmospheric chemical transport models often resort to the use of highly simplified volatility binning or approaches

relying on surrogate components for gas–particle partitioning predictions of organics. Those models often also assume ideal

condensed phase mixing behaviour, in part due to computational time considerations and in part due to a lack of efficient

thermodynamic mixing models (Byun et al., 1999; Semeniuk and Dastoor, 2020).30

Laboratory experiments, field studies and theory suggest that nonideal mixing in condensed particulate matter (PM) phases

impacts the gas–particle partitioning process and influences the physicochemical properties of the condensed phase, often

leading to liquid–liquid phase separation over a wide range of environmental conditions (Pankow, 2003; Erdakos and Pankow,

2004; Smith et al., 2011; Bertram et al., 2011; Zuend et al., 2010; Huang et al., 2021; Schervish and Shiraiwa, 2023). Models

have been developed to predict SOA formation based on the thermodynamic equilibrium partitioning of semivolatile organic35

oxidation products, including versions for application in atmospheric large-scale models (Pun et al., 2002; Griffin et al., 2003;

Chang and Pankow, 2006; Tulet et al., 2006; Pankow and Chang, 2008; Wang et al., 2022). The model by Griffin et al. (2003)

allows for gas–particle equilibrium of organic and inorganic compounds considering an organic and an inorganic phase, but it

does not allow organics and salts to partition between the two PM phases. A gas–particle partitioning approach using the activity

coefficient model X-UNIFAC proposed by (Chang and Pankow, 2006), an extension of the UNIquac Functional group Activity40

Coefficients (UNIFAC) model (Fredenslund et al., 1975), enabled equilibrium of all species between all phases present yet

restricted to single electrolyte components. Since then, improved thermodynamic multiphase modelling frameworks have been

introduced (e.g. Zuend et al., 2010) for applications in box models, yet all such models reach computational limitations, such

as excessive memory requirements, when applied to highly complex aerosol systems containing many hundreds to thousands

of interacting components.45

Based on theory, the equilibrium gas–particle partitioning of a certain semi-volatile (organic) compound is mainly governed

by three key properties: (1) the pure-component saturation vapour pressure, (2) the effective activity coefficient in the absorbing

aerosol phase and (3) the total mass concentration of all the material in the absorbing condensed phase (e.g., Pankow, 2003;

Donahue et al., 2006; Zuend et al., 2010). Thus, the pure-component saturation vapour pressure is a critical input for equilibrium

partitioning models, including for box models based on the Aerosol Inorganic–Organic Mixtures Functional group Activity50

Coefficients (AIOMFAC) model (Zuend et al., 2008, 2011), X-UNIFAC and other UNIFAC variants (Hansen et al., 1991;

Pankow and Asher, 2008b; Chang and Pankow, 2010; Compernolle et al., 2011).

One way to generate the chemical composition of an air parcel is by predicting the gas- and/or particle-phase composition

by means of integrating a chemical reaction scheme over time. In this study, we focus on the development and discussion of

necessary tools for handling the output of detailed reaction mechanisms. The aim is to process such output for subsequent55

equilibrium gas–particle partitioning computations, which in turn predict the composition, PM mass concentration and other

SOA properties.
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1.1 Near-explicit chemical mechanisms

The Master Chemical Mechanism (MCM, v3.3.1) is a near-explicit reaction scheme of the gas-phase chemistry, covering a

substantial set of (volatile) aliphatic and aromatic hydrocarbon compounds in atmospheric chemistry models (Jenkin et al.,60

1997; Saunders et al., 2003). Oxidation products of volatile or intermediate-volatility compounds may be of sufficiently low

volatility to contribute to condensed aerosol mass. In past work, molecular concentrations of a subset of oxidized compounds

simulated by MCM have been used as input composition information in the gas–particle partitioning model by (Zuend and

Seinfeld, 2012) to predict SOA mass concentrations at varying levels of relative humidity (RH). Another state-of-the-art, near-

explicit model is the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) by Aumont65

et al. (2005); Mouchel-Vallon et al. (2020). GECKO-A is a chemical mechanism generator, which automates the creation

of thousands of reactions and thousands to millions of oxidation and fragmentation products from a single precursor or a

mixture of precursors (depending on the structural complexity of the precursors). GECKO-A achieves this by algorithmically

generating the likely chemical products and related kinetic rate constants for multiple generations of reactions of a precursor

and its derivatives (Aumont et al., 2005; Mouchel-Vallon et al., 2020). A box model (as part of GECKO-A) can then be70

run under given conditions of temperature, RH, reaction time and oxidant concentrations to generate the molecular output

concentrations at specified times of interest (Aumont et al., 2005; Mouchel-Vallon et al., 2020). The processing of the wealth

of component information from such near-explicit methods and related box model simulations requires the use of automated

compound classification tools – the motivation for this study.

1.2 Cheminformatics tools75

Mapping molecular information from near-explicit chemical mechanisms onto a lower-dimensional parameter space enables

representations of large data sets at customized resolution and allows for running equilibrium thermodynamic models within

their computational feasibility range. Therefore, such mappings aid in achieving adjustable-resolution model–measurement

comparisons of aerosol properties. One approach for achieving this dimensionality reduction involves representing molecular

structures using methods that capture essential features in a compact format. Molecular structures can be represented using80

the Simplified Molecular Input Line Entry System (SMILES) (Weininger, 1988; Toropov et al., 2008), a linear ASCII text

string convertible to 2D (or 3D) molecular drawings and related internal representations by cheminformatics packages such

as OpenBabel (O’Boyle Jr et al., 2011), and RDKit (Landrum, 2013). Additionally, the SMiles ARbitrary Target Specification

(SMARTS) language allows specifying substructure patterns in molecules using pattern matching relations. The SMARTS

notation enables the development of customized algorithms to extract targeted molecular structure information of interest for a85

variety of applications, including to identify functional (sub)groups used to describe molecular structures within the AIOMFAC

model.

Cheminformatics toolboxes such as the free Open Babel chemistry toolbox (O’Boyle Jr et al., 2011), the Chemistry De-

velopment Kit (Steinbeck et al., 2003), the OEChem (OpenEye Scientific) software (OEChem, 2012), and the open-source

RDKit software (Landrum, 2013), are capable of converting and managing chemical molecular data and can be utilized to90
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apply existing or newly developed tools for substructure pattern matching (Allen et al., 2016; Ehrlich and Rarey, 2012). These

tools can match the substructures of given functional groups by parsing molecular structures that are internally stored as assem-

blies of atoms and associated bonds using SMARTS strings for queries (Ruggeri et al., 2016). Since several AIOMFAC-based

functional groups differ from the UNIFAC-based functional groups, an AIOMFAC-specific SMARTS-based pattern match-

ing algorithm was developed (see Sect. 2.1.1) based on the open-source cheminformatics API from the epam Indigo toolkit95

(Pavlov et al., 2011), which builds on the Open Babel toolbox and offers an efficient and user-friendly option for customizing

SMILES–SMARTS applications.

1.3 Need for reduced-complexity frameworks

Coupled liquid–liquid phase separation and gas–particle partitioning calculations, such as with the AIOMFAC-based model,

are limited to systems containing less than∼ 1,000 components for reasons of computational speed and limited random access100

memory – and in many practical applications to systems of less than ∼ 50 components. Therefore, output from near-explicit

chemical mechanism simulations need to be drastically reduced in complexity. To address this at the system level, a two-

dimensional (2D) structure–property space and related component lumping framework is introduced in this study. The main

purpose of our framework is to effectively lump the hundreds to millions of system components into a manageable set of

representative surrogate components while retaining an overall similar gas–particle partitioning behaviour. Furthermore, the105

method is designed to select surrogate components in an objective, automated manner, offering applications beyond the main

use case discussed in this study.

Our scheme builds on related prior work by Pankow and Barsanti (2009), who introduced similar 2D carbon-number–

polarity grid and the work by Jimenez et al. (2009); Donahue et al. (2011); Kroll et al. (2011) and Donahue et al. (2012), who

introduced so-called volatility basis set spaces to characterize chemical compound evolution and/or thermodynamic mixing110

behaviour of organic aerosol systems. In contrast to a 1-dimensional (1D) volatility basis set (VBS) (e.g., Donahue et al.,

2006; Sommers et al., 2022), a 2D scheme allows for a more nuanced representation of complex organic aerosol systems by

considering both volatility and polarity (hygroscopicity) characteristics of individual components. The 2D space also offers a

visual representation of the chemical diversity within organic aerosol systems, enabling researchers to identify patterns and

time evolution trends in component behaviour. This approach facilitates a more intuitive understanding of complex aerosol115

systems and aids in the development of simplified models that retain essential physicochemical characteristics. Our approach

introduces a new polarity metric and offers a flexible framework that can be adapted to various levels of detail required for

different modelling scenarios. The restriction to two dimensions is both related to the theoretical basis of the dominant factors

of volatility and polarity (and related nonideal mixing) on SOA gas–particle partitioning, as well as to account for the trade-off

between computational cost and resolved details.120

Section 2 describes our chain of tools developed for automatic characterization of the relevant pure-component properties as

well as the use of different polarity axis choices and surrogate selection methods in our new 2D lumping framework. Section 3

shows applications to example systems generated by MCM or GECKO-A and discusses the performance of the new tools.
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2 Methods and Data

The equilibrium gas–particle partitioning model applied in this study has been introduced in previous work (Zuend et al., 2010;125

Zuend and Seinfeld, 2012). Briefly, this thermodynamic equilibrium model is built around the AIOMFAC thermodynamic

model of nonideal mixing (Zuend et al., 2008, 2011). AIOMFAC predicts the mixing behaviour of organic–inorganic solutions

by calculating the activity coefficients of electrolytes, water, and organics for any given (liquid or amorphous) mixture com-

position. The gas–particle partitioning calculations include the simultaneous consideration of liquid–liquid phase separation

while treating the gas phase as an ideal gas mixture.130

Figure 1 provides a schematic overview of the set of methods used to automate the processing of molecular-level data for

gas–particle partitioning calculations and component property characterization. The different pure-component or system-level

tools (blue and yellow boxes) will be discussed in separate subsections in the following. The gas-phase chemical mechanisms

targeted in our work provide outputs at a selected time in the form of lists of components whose structures are expressed in (or

converted to) SMILES format, alongside with the corresponding molecular amounts per unit volume of air, usually provided135

in units of molec cm−3 or mol m−3. These lists form the inputs to our multi-model toolchain (Fig. 1). In terms of aerosol

applications, one key question concerns how much of the organic mass remains in the gas phase and how much of it contributes

to the condensed PM mass concentration under equilibrium conditions. Additional questions concern the hygroscopicity, the

potential multi-phase structure of the aerosol material, and related morphology and surface properties. The methods introduced

here support answering such questions quantitatively and systematically, even for cases of highly complex chemical mechanism140

outputs. As indicated in Fig. 1, other temperature-dependent pure-component properties could be determined via existing or

new SMILES- and SMARTS-based methods. Such examples include predictions of pure-component surface tension of interest

for cloud droplet activation and liquid–liquid interfacial tension (Schmedding et al., 2025; Topping et al., 2007; Schmedding

and Zuend, 2025), the solid- and liquid-state densities of organic compounds (Topping et al., 2016b; Girolami, 1994), and

the glass transition temperature and related pure-component viscosity of interest for molecular diffusion and aerosol mixing145

timescale modelling (Galeazzo and Shiraiwa, 2022; Armeli et al., 2023; DeRieux et al., 2018).

As mentioned in Sect. 1.2, the SMILES format is a plain-text notation for describing a component’s chemical structure in

great detail. SMILES data can be processed by many existing chemical informatics tools. In this work, we make use of the tools

based on the Open Babel project, the related Python bindings (via pybel) and/or the application processing interface (API) from

the Indigo cheminformatics library (toolkit version 1.7.0) (Pavlov et al., 2011). These third-party libraries can be imported into150

Python programs. They offer a straightforward means to processing SMILES input, including molecule completeness verifica-

tion, conversion of generic SMILES into unique SMILES, and the application of customized SMARTS pattern matching. Of

note, the Indigo cheminformatics library, even when accessed via its Python library, is running performance-critical computa-

tions using an efficient, compiled version of the Open Babel code and Indigo features written in the C++ language.
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Figure 1. Schematic overview of the procedures for automatically handling detailed molecular-level data of the numerous components of

an organic gas–aerosol system. Component inputs include SMILES for molecular structure, temperature T , and the system’s overall (gas

plus particle) composition in terms of mass or molar species concentrations. At the pure-component level (blue boxes), SMARTS libraries

are employed for estimating pure-component vapour pressure at T and AIOMFAC (functional) subgroup characteristics of each molecule.

At the system and/or mixture composition level (yellow boxes), 2D product lumping and surrogate selection is performed based on the

volatility, polarity and mass concentrations of the system’s organic compounds. Thermodynamic equilibrium partitioning computations are

then performed using the selected surrogate system.

2.1 Tools for pure-component property predictions155

2.1.1 SMILES to AIOMFAC subgroups (S2AS) tool

The SMILES to AIOMFAC subgroups (S2AS) tool is a new, automated algorithm written in Python. It is designed to iden-

tify and classify functional groups comprising organic aerosol components in the input format required by the AIOMFAC

model. Details of AIOMFAC’s representation of molecular structures by a so-called subgroup notation are provided elsewhere

(Zuend et al., 2008, 2011); see also examples at https://aiomfac.lab.mcgill.ca/about.html. Briefly, the notation of aromatic and160

aliphatic organic compounds in AIOMFAC is based on that of UNIFAC; e.g. a molecule like ferulic acid (SMILES code:

COc1cc(ccc1O)/C=C/C(=O)O), is comprised of the following AIOMFAC subgroups: 1 × (CH=CH), 3 × (ACH), 2 × (AC),

1 × (ACOH), 1 × (CH3O), 1 × (COOH), where AC denotes aromatic carbon (lower-case c in SMILES). Unlike in SMILES

notation, the subgroup input format for AIOMFAC explicitly states the hydrogen atoms, yet the subgroup notation does not

contain information about how the subgroups are connected to each other (because AIOMFAC does not require that informa-165

tion).

We note that the existing list of subgroups in AIOMFAC (about 60 subgroups supported for organic compounds plus special

subgroups for inorganics) has limitations when it comes to representing rather exotic, highly functionalized compounds, which
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may not allow for a perfect mapping by the S2AS tool. Consequently, we implemented a mechanism for detecting and handling

exceptions, in most cases by introduction of additional SMARTS patterns to cover these cases. Encountering an exception typ-170

ically means either that not all atoms can be uniquely associated with only one AIOMFAC subgroup, that a functionality needs

to be approximated by an imperfect combination of existing subgroups, e.g. in the case of secondary ozonide functionalities,

or that after parsing all existing SMARTS patterns, one or several unmatched atoms remain. Treating such exceptions by an

algorithm allows for a consistent, user-independent approximation of the suboptimal mapping. Furthermore, encountered ex-

ception cases can be flagged to indicate the potential need for an additional SMARTS pattern to recognize a special case and/or175

to motivate future improvements by introducing new subgroups into AIOMFAC. To this end, based on our tests with tens of

thousands of compounds generated by GECKO-A or MCM (see Sect. 3), unhandled exception cases are a rare occurrence.

The S2AS program carries out the following key steps: (i) parsing of each SMILES string from an input list to determine

whether the SMILES input is valid and whether the component falls into the special category of being a pure alcohol or polyol

according to the definition used by AIOMFAC; (ii) rendering of molecules for structure visualization as portable network180

graphics (.png) or scalable vector graphics (.svg) files (this step is optional); (iii) matching substructures to related AIOMFAC

subgroups by iterating over a list of SMARTS as outlined in the flowchart of Fig. 2. During step (i), a character string filter

is also applied to remove chirality information from input SMILES, which is unnecessary for AIOMFAC subgroups, and

to replace radical atoms in a SMILES string by the corresponding non-radical atom (e.g., [O.] by O). The latter is done

since AIOMFAC does not support radicals. The pure-component properties and thermodynamic mixing behaviour of such a185

compound is then approximated by that of a similar non-radical molecule.

Our implemented SMARTS pattern matching process follows a hierarchical, priority-based querying approach, with rela-

tively large subgroups, such as peroxy acyl nitrate (SMARTS: [CH0;X3](=O)OO[NX3;0,+1](=O)-,=[O;0,-1]), assigned one of

the highest matching priorities, while the SMARTS pattern for a single aliphatic carbon bonded to two non-hydrogen atoms

and two hydrogens (SMARTS: [CH2]), is among the last patterns applied. The query list and order of SMARTS patterns is190

provided in Table 1. The company Daylight Chemical Information Systems, Inc., provides manuals, examples and tutorials for

understanding and customizing the SMARTS and SMILES languages on their website (https://www.daylight.com, last access:

16 June 2025).

Figures 3 and 4 provide examples of the individual mappings of AIOMFAC subgroups by SMARTS. Alkyl groups, having

the lowest matching priority, are matched after all other groups. Pure aliphatic alcohols and polyols are initially detected as195

such and treated in a separate code branch based on a distinct list of SMARTS, as demonstrated in the example of Fig. 4. Based

on the polyol-specific subgroups and nomenclature introduced into a variant of UNIFAC by Marcolli and Peter (2005), which

is also supported in AIOMFAC, the alcohols and polyols make use of a set of special alkyl subgroups for added specificity

and better accuracy of AIOMFAC water uptake and liquid–liquid equilibrium predictions for this class of compounds. A key

strength of the S2AS tool is its ability to systematically and efficiently account for the special alkyl groups in a wide variety200

of straight-chain, branched and cyclical aliphatic alcohols/polyols. For these compounds, the algorithm in S2AS follows a

three-step procedure. In step (1) we determine and count the CHn (n = 0, 1, 2, 3) directly bonded to OH groups as well as the

associated OH groups, which are separate subgroups. In step (2), we match all alkyl groups belonging to hydrophobic tails by
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input: list of SMILES (System components) 
 

SMARTS rules tor AIOMFAC subgroups 

parse structure using SMARTS rule

load next SMILES from list

mark atoms & count number of 
subgroups matched 

ignore matched atoms

check for match?

 
unmatched atoms?

load next SMARTS rule 
for non-alcohols

end of  SMILES?
yes

no

valid SMILES?

pure alcohol / polyol?

load next SMARTS rule 
for alcohols

report issue

output file of system components 
displayed as subgroups (used as AIOMFAC input file)

no

no

no

no

yes

yes

yes

yes

Figure 2. Flowchart illustrating the substructure pattern matching algorithm incorporated in the S2AS tool. SMARTS rules corresponding to

all available AIOMFAC functional groups (subgroups) have been formulated in a priority-ordered list; see Table 1.
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Example 1:  multifunctional compound:
SMILES  O=CCC1CC(C(=O)CO)C1(C)C

SMARTS  [CH1;X3;+0,+1](=O)
1 match:  AIOMFAC subgroup 20, (CHO), aldehyde

2  

SMARTS  [C;H2,H1;X4][CH0;X3](=[OX1])
1 match:  AIOMFAC subgroup 19, (CH2CO), ketone

1  

SMARTS  [$([CX4;H2]([OH1X2]))]
1 match:  AIOMFAC subgroup 150, (CH2

[OH]), alkyl bonded to OH
3  

SMARTS  [OH1;X2;A]
1 match:  AIOMFAC subgroup 153, (OH), hydroxl

4  

SMARTS  [CX4;H3,H4]
2 matches:  AIOMFAC subgroup 1, (CH3), standard alkyl

5  

SMARTS  [CH2]
2 matches:  AIOMFAC subgroup 2, (CH2), standard alkyl

6  

SMARTS  [CH1]
1 match:  AIOMFAC subgroup 3, (CH), standard alkyl

7  

SMARTS  [CH0]
1 match:  AIOMFAC subgroup 4, (C), standard alkyl

8  

Figure 3. Example of AIOMFAC subgroup determination. Sequences 1–8 show the selection of SMARTS patterns for which at least one

match was found, while the structure is probed sequentially by SMARTS from the list (ordered from high to low priority; see Table 1).

Atoms matched by a stated SMARTS pattern are highlighted in orange, e.g. the ketone group in panel 1, and subsequently ignored. Light

grey colouring denotes ignored atoms/bonds at a certain SMARTS parsing stage.
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first marking alkyl chains that terminate in −CHn−CH3 (where n = 0, 1, 2) as tails and then iteratively following along those

alkyl chains one CHn group at a time. An alkyl group is part of a hydrophobic tail if, and only if, it connects to at least one other205

alkyl group known to be part of a hydrophobic tail, while not being bonded to an OH group (those were already determined in

step 1). In step (3) all thus far unassigned alkyl groups are detected and classified as being of “alkyl within alcohols” CHn (n

= 0, 1, 2, 3) subgroup type.

In general, the implementation of a hierarchical order and processing of the list of SMARTS is highly advantageous. It

allows one to write the SMARTS codes for subgroups of lower priority in a far simpler notation than when each SMARTS210

code were required to work correctly regardless of the order of execution. For example, if [CH2] were applied as one of the

first SMARTS pattern tested, it would likely result in several unwanted matches, such as matching the CH2 atoms associated

with a ketone subgroup (e.g., CH2CO in AIOMFAC notation); subsequently, the > C=O of the remaining atoms of the ketone

group would not be detected as being part of a full ketone subgroup (clearly a mistake). To avoid this, the SMARTS pattern for

only detecting intended CH2 groups would need to be much more complicated, such that it would avoid matching atoms that215

could be matched as part of a bigger substructure. When a SMARTS match is found for the molecule under consideration, the

corresponding matched atoms are marked and excluded from further parsing if unmatched atoms remain in the component; the

Indigo toolkit provides “ignore atom” and “highlight atom” functions that conveniently aid in avoiding any unwanted double-

matching of atoms. A numerical counter corresponding to the key of the matched SMARTS rule and associated subgroup is

incremented for each successful pattern match and added to the subgroup-array representation of the compound for later S2AS220

output. After all atoms have been matched or when the end of the list of SMARTS is reached, a check is performed to determine

whether any unmatched atoms remain in a given molecule, potentially indicating an exception case (very rare). After, the next

molecule from the SMILES list is processed. Once all SMILES have been processed, the S2AS program outputs a text file in

the format of AIOMFAC-web input files (see examples at https://aiomfac.lab.mcgill.ca/about.html).

To validate the S2AS tool and associated SMARTS patterns, we used a comprehensive data set of aerosol-relevant organic225

compounds, including those produced by MCM v3.3.1 simulations for monoterpenes and alkanes, an excerpt is shown in Fig. 5.

These tests serve as proof of concept of the tool’s ability to extract and convert detailed molecular information from a diverse

range of compounds commonly encountered in atmospheric chemistry simulations.

2.1.2 Pure-component vapour pressure estimation

The UManSysProp project developed by Topping et al. (2016a) is an open-source facility that employs cheminformatics tools230

for molecular and mixture property predictions. This facility allows users to input molecular information in the SMILES for-

mat, from which the relevant information for aerosol property calculations are extracted (Topping et al., 2016a). This tool

utilizes the Open Babel and pybel cheminformatics libraries for the parsing of molecules using tool-specific SMARTS pattern

matching, similar to the AIOMFAC-specific S2AS procedure described in Sect. 2.1.1. Of most relevance for this study, the

pure-component, liquid-state saturation vapour pressure tool, available as part of the UManSysProp facility, provides several235

methods for estimating temperature-dependent vapour pressures. It uses method-specific SMARTS pattern matching to calcu-

late the pure-component vapour pressures using predictive models, including the Estimation of VApour Pressure of ORganics,
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SMARTS  [CH1][OX2H1]
1 match:  AIOMFAC subgroup 151, (CH[OH]), alkyl bonded to hydroxyl group
                          and subgroup 153, (OH), hydroxyl

2  

Example 2:  pure aliphatic alcohol/polyol compound:
SMILES  CC(O)CC(C)CCO

Step 1:  detect hydroxyl groups and the CHn groups directly bonded to them;
SMARTS  [CH2][OX2H1]
1 match:  AIOMFAC subgroup 150, (CH2

[OH]), alkyl bonded to OH 
                          and subgroup 153, (OH), hydroxyl

1  

Step 2a:  determine end groups of hydrophobic tail chains terminating in ‒CHn‒CH3;
SMARTS  [CH3][CH1]
1 match:  AIOMFAC subgroup 145, (CH3

[alc-tail]), alkyl in hydrophobic tail
                          and subgroup 147, (CH[alc-tail]), alkyl in hydrophobic tail

3  

Step 2b:  determine all ‒CHn‒ groups within hydrophobic tail chains; 
SMARTS  [CX4], additional condition: must be neighbor of another hydrophobic tail group;
2 matches:  AIOMFAC subgroup 146, (CH2

[alc-tail]), alkyl in hydrophobic tail

4  

5  Step 3:  assign "alkyl within alcohols" type to all remaining ‒CHn‒ groups.
SMARTS  [CH3]
1 match:  AIOMFAC subgroup no. 141, (CH2

[alc]), alkyl in alcohols

Figure 4. Example of the distinct AIOMFAC subgroup pattern matching applied to pure aliphatic alcohols or polyols, following the distinc-

tion of several alkyl group types introduced by (Marcolli and Peter, 2005). The figure illustrates our three-step algorithm to correctly identify

alkyl groups in structures qualifying as pure aliphatic alcohols/polyols. Highlighted SMARTS matches follow the colour scheme of Marcolli

and Peter (2005).

11

https://doi.org/10.5194/egusphere-2025-4673
Preprint. Discussion started: 30 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Table 1. Priority-ordered SMARTS query list for the parsing of non-polyol aliphatic and aromatic organic component SMILES and associated

matching to the corresponding AIOMFAC subgroups. The key value indicates the corresponding AIOMFAC subgroup identifier a pattern

will be mapped to – or, in exception cases (values > 300), an index for exception handling by the S2AS program.

Key SMARTS Description and remarks

172 [CH0;X3](=O)OO[NX3;0,+1](=O)-,=[O;0,-1] peroxy acyl nitrate C(=O)OONO2 subgroup
155 [C;H2,H3][OH0X2][NX3;+0,+1](=O)-,=[O;0,-1] organonitrate CH2ONO2 subgroup (also map CH3ONO2 as exception

case)
156 [CH1][OH0X2][NX3;+0,+1](=O)-,=[O;0,-1] organonitrate CHONO2 subgroup
157 [CH0][OH0X2][NX3;+0,+1](=O)-,=[O;0,-1] organonitrate CONO2 subgroup
157 [OH0;X2][OH0X2][NX3;+0,+1](=O)-,=[O;0,-1] exception: peroxide organonitrate -O-ONO2 subgroup mapped as

CONO2 group due to lack of a specific subgroup;
1550 [OH0X2][NX3;+0,+1](=O)-,=[O;0,-1] exception: special organonitrate -ONO2 subgroup without the CH2

group (remove one CHn later if possible);
54 [CH3;X4][NX3;+0,+1](=O)-,=[O;0,-1] CH3NO2 nitro group
55 [CH2;X4][NX3;+0,+1](=O)-,=[O;0,-1] CH2NO2 nitro group
56 [C;H1,H0][NX3;+0,+1](=O)-,=[O;0,-1] CHNO2 nitro group (or as exception: CNO2)
57 [cH0][NX3;+0,+1](=O)-,=[O;0,-1] aromatic nitro group ACNO2
560 [NX3;+0,+1](=O)-,=[O;0,-1] pure nitro group; exception for one carbon having two such groups
28 [CH3;X4]-[NH2;X3] primary amine CH3NH2 subgroup
29 [CH2;X4]-[NH2;X3] primary amine CH2NH2 subgroup
30 [C;H1,H0;X4]-[NH2;X3] primary amine CHNH2 subgroup; as exception also for C-NH2
31 [CH3;X4]-[NH1;X3] secondary amine CH3NH subgroup
32 [CH2;X4]-[NH1;X3] secondary amine CH2NH subgroup
33 [C;H1,H0;X4]-[NH1;X3] secondary amine CHNH subgroup; as exception also for CH-NH
1027 [c]1:[c;H0;X3]:[o]:[c]:[c]1 furfural variant, mapped as 2 AC + 1 ACH + 1 ether subgroup
1026 [c;H0;X3]1:[c]:[o]:[c]:[c]1 furfural, mapped as 2 AC + 1 ACH + 1 ether subgroup
926 [c]1:[c]:[o]:[c]:[c]1 furan, mapped as 3 ACH subgroups + 1 ether subgroup
161 [CX3](=[OH0])[OH0;X2][OH1;X2] peroxy acid C(=O)OOH subgroup
158 [C;H2,H3][OH0;X2][OH1] hydroperoxide CH2OOH subgroup; (as exception also CH3OOH)
159 [CH1][OH0;X2][OH1] hydroperoxide CHOOH subgroup
160 [CH0,cH0][OH0;X2][OH1] hydroperoxide COOH subgroup (or as exception also aromatic hy-

droperoxide cOOH)
1580 [$([OH0;X2]-[C])][OH1] exception: CHn-ignored hydroperoxide -O-OH subgroup, mapped as -

CH2-O-OH subgroup minus 1 alkyl subgroup (CH2, if possible)
43 [CH1;X3](=O)[OH1;X2] formic acid HC(=O)OH subgroup/molecule
137 [CH0;X3](=O)[OH1;X2] carboxylic acid C(=O)OH subgroup
2224 [CX4][CH0;X3](=O)[OH0;X2]-[OH0;X2;A] exception: perester group CHnC(=O)-O-O- as exception to ester group;

mapped as CH3COO + CH3O subgroups minus CH3 subgroup to ac-
count for correct number of C and O atoms

2220 [CX3;H0,H1](=O)[CH0;X3](=O)[OH0;X2]-
[OH0;X2;A]

exception: perester + carbonyl group CHn(=O)C(=O)-O-O- mapped in
part by using aldehyde group and deducting CHn group

2022 [CX4]-[CH0;X3](=O)[CH0;X3](=O)[OH0;X2] exception: ester + aldehyde group for CH0COO + CHn=O combination
of subgroups
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Table 1. Continued.

Key SMARTS Description and remarks

2022 [CH1;X3](=O)[CH0;X3](=O)[OH0;X2]-[C] exception: ester + aldehyde group for CH1COO + CHn=O variant com-
bination of subgroups

21 [CX4;H3][CH0;X3](=O)[OH0;X2] ester CH3COO subgroup
22 [CX4;H2][CH0;X3](=O)[OH0;X2] ester CH2COO subgroup
22 [C;H1,H0][CH0;X3](=O)[OH0;X2] exception: ester CH2COO subgroup also used for CH1COO and

CH0COO
18 [CH3;X4][CH0;X3](=[OX1]) ketone CH3C(=O) subgroup
19 [C;H2,H1;X4][CH0;X3](=[OX1]) ketone CH2C(=O) subgroup (also for CH1C(=O) as exception case)
20 [CH1;X3;+0,+1](=O) aldehyde -CH(=O) subgroup
20 [CH0;X3](=O) exception: aldehyde subgroup if ketone group cannot be used for a car-

bonyl in multifunctional structure
20 [CH2]=O formaldehyde; special CH2=O subgroup mapped to subgroup 20
162 [CH3][OH0;X2][OH0;X2][CH3] peroxide CH3OOCH3 subgroup
163 [CH3][OH0;X2][OH0;X2][CH2] peroxide CH3OOCH2 subgroup
164 [CH3][OH0;X2][OH0;X2][CH1] peroxide CH3OOCH subgroup
165 [CH3][OH0;X2][OH0;X2][CH0] peroxide CH3OOC subgroup
166 [CH2][OH0;X2][OH0;X2][CH2] peroxide CH2OOCH2 subgroup
167 [CH2][OH0;X2][OH0;X2][CH1] peroxide CH2OOCH subgroup
168 [CH2][OH0;X2][OH0;X2][CH0] peroxide CH2OOC subgroup
169 [CH1][OH0;X2][OH0;X2][CH1] peroxide CHOOCH subgroup
170 [CH1][OH0;X2][OH0;X2][CH0] peroxide CHOOC subgroup
171 [CH0][OH0;X2][OH0;X2][CH0] peroxide COOC subgroup
1700 [C;H0,H1,H2][OH0;X2][OH0;X2] exception: special peroxide CHn-O-O- subgroup when second carbon

atom at end is already matched to another group; in this case we map
CHnOO group to the CHOOC subgroup and deduct one alkyl (CHn)
group detected later (if possible)

1710 [OH0;X2;A]-[OH0;X2;A] exception: peroxide -O-O- subgroup when both carbon atoms at ends
are already matched to other groups; in this case we map -O-O- to the
COOC subgroup and deduct two alkyl (CHn) groups detected later (if
possible)

1120 [CX4;H2]([OX2;H1])[OX2;H1] geminal diol case (CH2 aliphatic)
1121 [CX4;H1]([OX2;H1])[OX2;H1] geminal diol case (CH1 aliphatic)
1122 [CX4;H0]([OX2;H1])[OX2;H1] geminal diol case (C aliphatic)
154 [CH2;X4;R0][OH0;X2;R0][CH2;X4;R0;$([CH2]

[OH0][CH2][CH2][OH0][CH2])]
oxyethylene group (-CH2-O-CH2-) in oligomers like Poly(ethylene
glycol), PEG; has to have at least two of these groups in succession

27 [CX4;H2;r5;R1;$([CH2;R1][CH2;R1][CH2;R1])]
[OH0;r5;R1]

tetrahydrofuran (oxolane), special ether group: THF[CH2O]

24 [CX4;H3][OH0;X2] ether CH3O-
25 [$([CX4;H2]([A!O]))][OH0;X2] ether -CH2O-; first prefer a matching option where the C is not bonded

to an OH group
25 [CX4;H2][OH0;X2] ether -CH2O-
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Table 1. Continued.

Key SMARTS Description and remarks

26 [$([CX4;H1]([A!O])[A!O])][OH0;X2] ether CHO-; first prefer a matching option where the C is not bonded to
an OH group

26 [CX4;H1,H0][OH0;X2] ether CHO-, as exception also for ether C-O- (with zero H)
5 [CH2]=[CH1] alkene CH2=CH subgroup
6 [CH1]=[CH1] alkene CH=CH subgroup
7 [CH2]=[CH0] alkene CH2=C subgroup
8 [CH1]=[CH0] alkene CH=C subgroup
70 [CH0]=[CH0] alkene C=C subgroup
149 [$([CX4;H3]([OH1X2]))] CH3 alkyl attached to OH (while not counting OH)
150 [$([CX4;H2]([OH1X2]))] CH2 alkyl attached to OH (while not counting OH)
151 [$([CX4;H1]([OH1X2]))] CH1 alkyl attached to OH (while not counting OH)
152 [$([CX4;H0]([OH1X2]))] C alkyl attached to OH (while not counting OH)
17 [cX3][OH1;X2] aromatic carbon alcohol ACH subgroup (phenol)
153 [OH1;X2;A] OH group; must always be attached to aliphatic carbon
9 [cH1] aromatic hydrocarbon ACH subgroup
10 [cH0] aromatic hydrocarbon AC subgroup
1 [CX4;H3,H4] CH3 standard alkyl; as exception also for CH4
2 [CH2] CH2 standard alkyl
3 [CH1] CH1 standard alkyl
4 [CH0] C standard alkyl
2502 [OH0;X2] exception: map ether oxygen without carbon as ether -CH2O- minus

CHn
2501 [oH0;X2] exception: map aromatic oxygen without carbon as ether -CH2O- minus

CHn
2002 [OX1;H0] exception: map carbonyl =O as aldehyde group minus the CHn group

Accounting for Temperature, Intramolecular, and Non-additivity effects (EVAPORATION) model (Compernolle et al., 2011),

the model by Nannoolal et al. (2008), hereafter called Nanoolal method, and the SIMPOL method (Pankow and Asher, 2008a).

The source code for the original and subsequent releases of UManSysProp is available from an online repository (see Sect. 4.240

We note that UManSysProp also includes a few tools for aerosol mixture predictions, including a version of the AIOMFAC

model and related SMARTS patterns for generating AIOMFAC input data. However, the list of SMARTS patterns for AIOM-

FAC in UManSysProp differs in several ways from the more extensive SMARTS list and related S2AS program introduced in

this study. Specifically, Topping et al. (2016a) do not follow the same SMARTS priority order, use a different, less comprehen-

sive approach for handling matching exceptions, and the way pure alcohol compounds are detected and mapped may differ as245

well for more complex polyols. Hence, SMARTS codes from their study are not directly transferrable for use in the S2AS tool.

Several studies have compared liquid-state pure-component vapour pressure prediction methods suitable for SOA systems

alongside with critical evaluations of existing experimental data for the particularly relevant semi-volatile and low-volatility

compounds. It has been shown that, when applicable, the EVAPORATION method and the Nanoolal method are among the
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Figure 5. A sample subset of input SMILES strings on the left hand side and their corresponding output functional subgroups generated

by the S2AS tool on the right hand side. The generated text file can serve as input file for the AIOMFAC model alongside with mixture

composition information.

best performing options in those volatility ranges of particular importance for the gas–particle partitioning of SOA (e.g.,250

Barley and McFiggans, 2010; O’Meara et al., 2014; Bilde et al., 2015). The Nanoolal method is more versatile in terms of the

variety of functional groups and chemical elements covered, while the EVAPORATION method is constrained to compounds

containing the elements C,H,O,N. However, these are also the main elements supported in AIOMFAC and we opted to use

the EVAPORATION method as our first choice for the lumping framework and the gas–particle partitioning calculations.

The parameterization of the temperature-dependence of pure-component vapour pressures used in our work is identical to255

the two-parameter relation introduced for the EVAPORATION model (Compernolle et al., 2011):

log10

[
p◦j
pref

]
= Aj +

Bj

Tκ
. (1)

Here, p◦j denotes the pure-component, liquid-state (saturation) vapour pressure of component j in units of atmospheres (atm)

and pref = 1 atm is the unit reference pressure. T is the temperature (K), and Aj and Bj are two component-specific param-

eters. A common value of κ = 1.5 was adopted based on optimization tests by Compernolle et al. (2011). It was shown to be260

appropriate for estimating vapour pressure of hydrocarbons with or without heteroatoms across a wide temperature range. The

Aj and Bj values are directly predicted by the EVAPORATION model. Alternatively, they can be determined by running any

pure-component vapour pressure prediction method at two sufficiently distinct temperatures (typically ∆T > 30K), including

the temperature interval of interest, followed by solving the system of two linear equations for Aj and Bj . The use of Eq. (1)

enables the flexibility of p◦j estimation at any reasonable temperature for the given set of input molecules, serving as a key265

input to the gas–particle partitioning model. Computing the Aj , Bj parameters for all organic aerosol system components

once eliminates the need for calling the EVAPORATION model repeatedly when the temperature changes, thus improving

computational efficiency.
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This approach streamlines the application of distinct SMILES-based tools for (any) pure-component properties and enhances

the flexibility of the gas–particle partitioning model in terms of its readiness for computations being carried out over a range270

of temperatures. In summary, the UManSysProp pure-component property models (written in Python) are run for a given list

of SMILES characterizing a system. The Aj and Bj parameters and corresponding SMILES of all organic system components

are then written to a text file for read-access by other tools. In particular, the list of parameters is read by the Fortran code of

the AIOMFAC equilibrium model, which makes subsequent use of Eq. (1) to obtain the p◦j at a temperature of interest. The

pure-component vapour pressure files are also used in the 2D lumping framework described next.275

2.2 2D lumping framework

We implemented a new variant of a two-dimensional product lumping framework with the aim to (1) categorize and visualize

a representation of all oxidation and fragmentation products from an organic aerosol system at a given point in time and (2) to

enable an objective, yet adjustable, selection of surrogate species for a reduced-complexity representation of the system. We

constructed a 2D space for mapping the entire aerosol component system using the logarithm of the pure-component vapour280

pressure, log10

[
p◦j/(1Pa)

]
, as the volatility dimension (x-axis). This choice is similar to that of 1D VBS models and several

2D VBS variants, which typically either use the pure-component saturation vapour concentration (C◦j in units of µg m−3)

or the effective saturation concentration (C⋆
j in units of µg m−3) on a logarithmic scale as volatility dimension (Donahue

et al., 2006, 2011). Assuming the ideal gas law to apply, pure-component vapour pressures and pure-component saturation

concentrations can be inter-converted via (Zuend and Seinfeld, 2012)285

C◦j = p◦j
Mj

RT
· 109

[
µg kg−1

]
. (2)

Here, Mj is the molar mass (kg mol−1) and R the universal gas constant (J mol−1 K−1). Several metrics exist for representa-

tions of an organic molecule’s effective polarity, including the elemental O:C ratio and the average oxidation state of carbon ,

denoted by OSC (Kroll et al., 2011). In the case of atmospheric organics consisting of the elements carbon, hydrogen, nitrogen

and oxygen, typically the approximation OSC ≈ 2 · (O : C)−H : C− 5 · (N : C) applies (Kroll et al., 2011). Our framework290

offers those metrics as optional choices, yet our preferred choice for the polarity axis (y-axis) of the lumping framework is to

use a metric based on the logarithm of an activity coefficient ratio (ACR) (as detailed in Sect. 2.2.1 and defined by Eq. 5).

In the context of gas–particle partitioning in aerosol systems as a main application of the 2D lumping framework, one way

to guide appropriate choices for the two dimensions of the framework is to consider the main factors governing absorptive

gas–particle partitioning (Pankow, 2003). Zuend et al. (2010) derived that for equilibrium gas–particle partitioning involving295

an ideal gas phase and a single (liquid) condensed phase, the following relationship must hold for K
PM,(n)
j , the equilibrium

partitioning coefficient on a molar basis:

K
PM,(n)
j =

xPM
j

pj
RT =

1

γ
(x)
j p◦j

RT. (3)

Here, xPM
j is the mole fraction of component j in the liquid particulate matter (PM) phase, pj is the partial pressure in the gas

phase (ideal gas assumption), and γ
(x)
j is the activity coefficient in the liquid phase (superscript (x) denotes mole-fraction-300
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based quantities). While p◦j indicates the importance of a component’s saturation vapour pressure, γ
(x)
j indicates the influence

of nonideal mixing in the liquid phase. The degree of nonideal mixing depends both on the molecular properties of j as

well as its interactions with all other molecules in solution. In this context, a polar organic compound present in an aqueous

phase will exhibit a lower activity coefficient than a nonpolar compound. Hence, activity coefficients offer a way to express

a component’s affinity for less or more polar liquid media. This supports the choice of proxies for polarity as the second305

dimension of our 2D framework. We note that for aerosol systems undergoing liquid–liquid phase separation (LLPS), Eq. (3)

holds when appropriately modified, such as by introducing a phase-abundance-weighted effective activity coefficient (Zhang

et al., 2024).

2.2.1 Activity coefficient ratio as polarity metric

The idea of using an activity coefficient ratio (ACR) as a polarity metric is inspired by liquid–liquid equilibrium (LLE) ther-310

modynamics. In a macroscopic LLE state, the chemical potential of a component present in both coexisting phases must be

identical. Consequently, the way a component j partitions between two liquid phases, α and β, can be described using an

equilibrium partitioning constant K
(x)
j (Zuend and Seinfeld, 2013; Topping and Bane, 2022):

K
(x)
j =

xα
j

xβ
j

LLE=
γ

β,(x)
j

γ
α,(x)
j

. (4)

Here, xα
j and xβ

j are mole fractions in phases α and β; γ
α,(x)
j and γ

β,(x)
j are the activity coefficients in those phases under315

LLE conditions. Equation (4) indicates that knowledge of the γ
β,(x)
j /γ

α,(x)
j ratio provides an accurate representation of the

thermodynamic phase preference of organic components by quantifying the relative enrichment or depletion of a component

via the equivalent mole fraction ratio, with a value greater than 1 indicating enrichment in phase α. Since activity coefficients

depend on a phase’s mixture composition established by all components, the values are sensitive to various forms of molecular

interactions (e.g., dipol–dipol, dispersion) and reflect the chemical affinity for a phase. That is, activity coefficients are influ-320

enced by molecular structure properties, such as whether an oxygen-bearing functional group is more polar (e.g., hydroxyl,

carboxyl) or less polar (e.g., ether, ester) and how it interacts with other organic and inorganic components present. Thus, the

ACR encompasses more detailed functional group characteristics than simpler metrics like the O:C ratio.

In this work, the ACR of a component j is based on a prediction of the component’s activity coefficient when present as a

dilute solute in a weakly polar organic reference solvent, here we use 1,2-hexanediol, relative to that of being a dilute solute325

in a strongly polar reference solvent, here water. Figure S1 illustrates the binary solution setup used to calculate the activity

coefficient ratio (ACR) as a polarity metric. The figure depicts two scenarios: an organic solute dissolved in water (left) and the

same solute dissolved in 1,2-hexanediol (right), representing polar and less polar solvents, respectively. This metric is therefore

similar to the well-established octanol–water partitioning coefficient (e.g., Kamlet et al., 1988; Wienke et al., 1998), but our

choice of organic reference solvent differs. We elected to use a slightly more polar organic than octanol, with 1,2-hexanediol330

serving as a more typical representation of an organic-rich phase medium in aerosols.
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While inspired by the LLE isoactivity condition (Eq. 4), the procedure of obtaining our ACR metric differs from that of

solving a ternary solute–solvent-1–solvent-2 LLE problem. This is because in the ternary LLE system the present solvents

may be partially miscible, while we choose to compute the activity coefficients of each component independently based on

evaluating two binary solute–solvent mixtures. Using binary systems as a gauge is computationally simpler and substantially335

faster. Specifically, our polarity metric ACR is defined by the following dimensionless quantity:

log10

[
γ

(x)
j,hex

γ
(x)
j,w

]
. (5)

Here, γ
(x)
j,hex is the (predicted) mole-fraction-based activity coefficient of solute j in a binary mixture with the solvent 1,2-

hexanediol, in which the mass fraction of j is wj = 0.01 (therefore, whex = 0.99). Analogously, for γ
(x)
j,w , except for the solvent

being water. These activity coefficients are typically evaluated at a reference temperature of 298.15 K. Given this definition,340

one can think of these two separate activity coefficients, as well as their ratio, as pure-component properties. In principle, those

values would only need to be computed once for each component (each SMILES code) and could then be saved and retrieved

from a look-up table.

The selection of the two reference solvents provides a robust basis for characterizing the behaviour of organic components

across a wide range of polarities spanning several orders of magnitude (see Sect. 3). Water represents a highly polar solution345

environment, typical of that in aqueous aerosol phases, while 1,2-hexanediol (O:C ratio of 0.333) serves as a proxy for moder-

ately oxidized organic aerosol components. The latter would preferentially partition into an organic-rich phase in the presence

of LLPS. In our framework, the AIOMFAC model is employed to compute activity coefficients for Eq. (5). Since AIOMFAC

is run only for binary, single-phase systems, the calculations are fast; they are comparable or faster than the pure-component

vapour pressure predictions with UManSysProp. Of note, for a system consisting of tens of thousands of organic components,350

computing activity coefficients of using the related multicomponent mixtures (containing as many components) with AIOM-

FAC, is prohibitively slow due to the many functional groups present, all the possible group–group and molecule–molecule

interactions that need to be summed over and the associated computer memory requirements. In contrast, computing the ACR

values based on the binary solute–solvent mixtures for all those components is fast and small in memory footprint.

2.2.2 Methods for surrogate selection355

We implemented four distinct methods to analyze organic aerosol data in the 2D lumping framework and to objectively select a

set of surrogate components. These methods are designed to reduce the complexity of the gas–aerosol system while preserving

important physicochemical aspects, such as the conservation of total mass concentration and the consideration of the system’s

diversity in terms of volatility and polarity ranges. The four methods are: (a) the grid cell midpoint method, (b) the grid cell

medoid method, (c) the grid cell mass-weighted medoid method, and (d) the k-means-based medoids method. The latter is a360

grid-independent 2D clustering method.

The pure-component property prediction tools described in Sect. 2.1 provide high-fidelity estimates of the necessary values

for positioning components in the 2D space. This 2D space is then subdivided into a number of grid cells (or clusters) based
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on the desired level of system resolution and the related targeted reduction in complexity, allowing for flexible adaptation to

different research questions and computational resources. The 2D space division is accomplished by specifying the targeted365

number of rows and columns, followed by identification of the component coordinates that set the upper and lower coordinate

limits within the range that should be gridded (see use of a volatility threshold below). The grid resolution is adjustable, but

typical choices range from 2× 1 to 20× 10 in terms of setting the number of grid subdivisions and associated nx×my grid

cells.

A crucial aspect of our methodology is the primary focus of the gridded domain on the compound volatility ranges of370

interest for substantial partitioning of organics to the particle phase. These volatility ranges includes semi-volatile (SVOC),

low-volatility (LVOC) and extremely low-volatility (ELVOC) organic compounds, while intermediate volatility (IVOC) and

volatile organic compounds (VOC) are too volatile under typical tropospheric aerosol mass loading conditions (Donahue et al.,

2012; Zuend and Seinfeld, 2012). As such, an adjustable high-volatility vapour pressure threshold (phigh) is introduced, typically

set to log10 (phigh/[1Pa]) >−1. Regardless of the polarity range, all compounds with p◦j > phigh are identified and lumped into375

a single high-volatility surrogate component using the mass-weighted medoid method defined below. Examples for this are

shown in Sect. 3, e.g., Figs. 7 and 8. Since the phigh threshold value is an input parameter, this special VOC lumping step can

also be avoided entirely by setting a very high threshold value. Similarly, a low-volatility threshold and related lumping of

LVOC and ELVOC compounds into a single (or a few), quasi-nonvolatile surrogate could be introduced to focus the majority

of surrogates on representing the SVOC range at comparably higher resolution. However, in this work we have not included a380

low-volatility threshold since we are interested in a diverse surrogate-based representation of all PM-relevant volatility ranges

to better resolve potential trends in polarity with decreasing volatility accross the SVOC, LVOC, and ELVOC ranges.

Our lumping process adheres to the principle of mass conservation for the entire system. This is achieved by aggregating

the mass concentrations of components within each grid cell or cluster into the selected surrogate component. This approach

differs from methods that choose to conserve the number of carbon atoms during lumping. The surrogate component selection385

process for each of the four methods is visually depicted in Fig. 6. The shown examples illustrate how one surrogate component

is chosen within a single grid cell (or cluster in case of k-means).

2.2.3 Grid cell midpoint method

The midpoint method operates on the simple principle that the component closest to a grid cell’s midpoint coordinates should be

a reasonable choice representing all other components within the same cell. This method involves determining the normalized390

distance of each grid cell component’s location to the grid cell midpoint. The squared Euclidean distance, D2
mid,i, of each

component i within a grid cell is calculated by

D2
mid,i =

[
xmid−xi

xrange
·χ

]2

+
[
ymid− yi

yrange

]2

. (6)

Here, xmid and ymid denote the midpoint coordinates of the grid cell, xi and yi are the coordinates of component i, and xrange

and yrange denote the magnitudes of the x and y axes ranges of the 2D space over which the lumping grid was placed. They395

normalize the distances expressed along the two axes. The x-to-y aspect ratio χ is introduced to scale the normalized length
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Figure 6. Illustration of the four introduced methods for selecting a single surrogate component (marked in red) within a specific grid cell or

cluster of the 2D space. xl and xu indicate the lower and upper x-axis values of the grid cell; analogously for yl and yu. (a) The midpoint

method selects a surrogate based on the component closest to the geometric centre of the grid cell, denoted by the dotted lines. (b) The

medoid method selects the component with the smallest cumulative Euclidean distance from all other components. (c) The mass-weighted

medoid method prioritizes components with higher mass concentrations. It determines the most representative surrogate as the one closest to

the centre of mass established by the components in the cell. (d) The k-means-based medoid method is independent of a grid. It iteratively

assigns components to clusters, then identifies a cluster’s optimal surrogate as the nonzero-mass component closest to the cluster centre

(indicated by the blue× symbol). Individual clusters are not confined to predetermined grid cells (in (d) denoted by dotted outline); here, the

four points are assumed to form a specific cluster n.
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scales of the grid space. That is, χ is the (prescribed) multiplying factor of the normalized, dimensionless value range along

the x-axis that is regarded as equivalent to the normalized, dimensionless range along the y-axis. To express the importance of

volatility in gas–particle partitioning, we elected to set a 2:1 aspect ratio as the default choice. If the number of grid lines along

the x-dimension is already set as twice that of the y-dimension (e.g., 8 by 4), then χ will account for this (χ = 1 in that case).400

In this study, the x-coordinate refers to the logarithm of the pure-component vapour pressure (log10 (p◦i /[1Pa])), while the

y-coordinate corresponds to one of the proxies for polarity (ACR, O:C ratio, OSC). The value ranges of the components along

the x and y coordinates may differ substantially, possibly by several orders of magnitude. Therefore, we chose to normalize

and scale the magnitudes of the x and y axes ranges relative to each other, as shown by Eq. (6). The xrange (= |xmax−xmin|) is

determined by the maximum and minimum x-coordinates from the set of all system components that contribute nonzero mass405

concentration and belong to the regular lumping space, i.e., those not lumped to the single high-volatility surrogate compound.

The yrange is determined analogously. Finally, within each grid cell containing at least one component, the component of

minimum D2
mid is selected as surrogate and the mass concentrations of all other grid cell members are lumped (additively) into

the surrogate. Except for the method-specific expressions for computing a component’s distance metric within a grid cell, the

variable definitions and steps outlined for this method also apply to the other methods described in the following sub-sections.410

The grid cell midpoint method is straightforward to understand and implement. It has the advantage of providing unbiased

coverage of the 2D space by ensuring that surrogate components are nearly evenly distributed across the grid domain. The

approach demonstrates scalability, as it can be easily applied to systems with a large number of components, making it suitable

for complex mixture analyses. Additionally, the method offers computational efficiency since the calculation of midpoints and

distances is relatively fast, even for large datasets. However, this method may not always select the most representative com-415

ponent, especially when a low-resolution grid is applied in which the few cells may exhibit unevenly distributed components

(e.g., all components clustered around the lower left corner of a cell). This method is visualized in Fig. 6a.

2.2.4 Grid cell medoid method

The grid cell medoid method operates by selecting the medoid component of each grid cell as the surrogate. The medoid

member is the component in closest cumulative proximity to all other components of the same cell. Therefore, the main step420

involves calculating the cumulative squared Euclidean distance of each component from all other components of the grid cell,

as follows:

ΣD2
med,i =

m∑

j=1

[
xj −xi

xrange
·χ

]2

+
[
yj − yi

yrange

]2

. (7)

Here, index j covers the 1, . . . ,m components of the grid cell, with other variables as defined for Eq. (6).

The medoid method offers potential advantages over the midpoint method. First, it may provide better representation by425

selecting a surrogate that is located close to most other components, which is especially of importance in the case of a grid space

with only a few large cells filled with geometrically uneven component distribution. Second, the medoid method demonstrates

robustness to outliers, being less influenced by extreme values or uneven clustering of points within a cell compared to the

midpoint. In comparison to the midpoint method, the medoid method is computationally more costly, especially for cells that
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contain a large number of components. However, in practice this is rarely a concern. Figure 6b illustrates the grid cell medoid430

method.

2.2.5 Grid cell mass-weighted medoid method

The mass-weighted medoid method prioritizes surrogate selection based on a combination of a component’s importance, as

measured by its mass concentration, and the cumulative distance from other components of a grid cell, as in the unweighted

medoid method. Using such a mass-weighted approach is particularly useful in the case of systems consisting of many com-435

ponents, yet with the majority of the mass contributed by a small minority of molecules. The mass-weighting ensures that

the important components are more likely to be selected as surrogates, so that their particular molecular properties are then

also more appropriately considered in subsequent equilibrium partitioning computations. The core of this method lies in the

calculation of the squared distance between a component and the coordinates of the centre of mass of the cell, D2
wmed,i, as

follows:440

D2
wmed,i =

[
xmc−xi

xrange
·χ

]2

+
[
ymc− yi

yrange

]2

, (8)

with

xmc =
m∑

j=1

wj ·xj , ymc =
m∑

j=1

wj · yj , and wi =
Ci∑m

j=1 Cj
. (9)

Here, xmc and ymc are the coordinates of the centre of mass of the grid cell under consideration. These coordinates are deter-

mined by computing the mass-weighted average coordinates of the j = 1, . . . ,m grid cell components, as shown by Eq. (9),445

only requiring information about the cell’s components of nonzero mass concentration. wj and Cj represent a component’s

grid-cell mass fraction and mass concentration, respectively. Components of large mass concentration relative to others in

a grid cell have the effect of “pulling” the centre of mass toward their location, thereby benefiting from a smaller D2
wmed,i.

Among the grid cell components of nonzero mass concentration, the component of minimum D2
wmed,i value is identified as the

surrogate. Components of zero mass concentration are excluded from the calculation and from being selected as surrogate.450

This method strongly favours the selected surrogate components to be from the subset of most abundant species in the gas–

aerosol system. The mass-weighted medoid method offers several advantages. The method provides improved representation

of dominant components. The resulting lumped system is likely to reflect bulk aerosol properties more accurately, especially

when only a low-resolution grid is applied. To aid in understanding the interplay between mass concentration and spatial

distribution in the surrogate selection process, Fig. 6c exemplifies how the component of highest mass concentration, which is455

also closest to the centre of mass within the grid cell, is selected as the surrogate component.

2.2.6 k-means-based clustering method

The mass-weighted, k-means-based medoid clustering method, for brevity hereafter referred to as the k-means method, is

employed to generate a predefined number of centroids (k clusters) in the 2D space. The clustering process is implemented
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using a variant of the weighted k-means clustering algorithm; specifically, subroutine kmeans_w_01, from the Fortran 90460

implementation provided by Burkardt (2008). The Fortran code is based on the theory, algorithm and existing code from the

works by Sparks (1973) and Hartigan and Wong (1979). This algorithm iteratively reassigns points (here chemical components)

to clusters, minimizing the total energy of the system. Refer to Sparks (1973) and Hartigan and Wong (1979) for a detailed

description of the k-means method and its variants.

In our approach for surrogate selection with the k-means method, we combine the mass-weighted clustering with a final,465

distance-based surrogate component selection process. Figure 6d visualizes an example cluster’s surrogate selection. Specifi-

cally, k-means returns the coordinates of a predefined number of cluster centres, which usually do not coincide with any actual

component’s coordinates. Among each cluster’s population, we then select the component of nonzero mass concentration that

is located closest to the cluster centre coordinates as the cluster’s surrogate. Similar to the mass-weighted medoid approach,

the distance of each cluster component to the centre is determined by the squared Euclidean distance based on normalized470

coordinates. In outcome, this is therefore akin to (but algorithmically not identical with) the method of k-medoids clustering.

By selecting surrogate species that are typically centrally located within their clusters and of significant mass concentration,

this approach ensures that the set of surrogate components represents the overall physicochemical characteristics of the system

well. This approach is particularly valuable in atmospheric chemistry, where reducing the complexity of chemical mechanisms

while retaining properties of the most abundant components is crucial, since mass or number concentration of components is a475

critical factor in understanding subsequent partitioning or chemical reaction behaviour.

In our implementation, the clustering process begins by setting the desired number of k clusters. The initial cluster centre

coordinates are then set based on the grid cell midpoints (since in our code the grid-based methods are run prior to running

k-means). For comparison with the grid-based methods, we typically chose the cluster numbers as being equal to the number

of populated grid cells. However, the k-means clustering method can also be run independently from the gridded approaches. If480

a higher number of clusters is set as target than the number of populated grid cells, additional initial cluster centre coordinates

are generated using pseudo-random coordinates within the scaled 2D space. This initialization step ensures a broad distribution

of initial cluster centres across the normalized 2D space. Components associated with the special high-volatility surrogate are

filtered out, since they are marked as being part of a special cluster; these are not considered during the k-means clustering.

An innovation of the weighted k-means variant is the incorporation of, in our case, mass-concentration-based weighting485

during the algorithm’s assignment of components to clusters. When k-means computes each cluster’s “energy” and iteratively

assigns components to a certain cluster, the weights are factored in. As discussed in Sect. 3, actual example cases indicate

that the mass concentrations of components may range over several orders of magnitude. Therefore, the weighting aids in

prioritizing components with relatively high mass concentrations as potential cluster surrogates, ensuring that the clustering

process is not solely based on spatial proximity. The algorithm considers the entire dataset simultaneously and can effectively490

handle cases in which data points are not uniformly distributed in a 2D space. While we favour weighted k-means clustering,

if desired, one can assign each component the same weight, thereby returning to the non-weighted k-means method.

Overall, the k-means method offers several advantages. The method can identify natural groupings in the data, independent

of the arbitrary limits of an imposed grid, potentially leading to more meaningful, unbiased surrogate selection. However, this
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method is computationally the most costly of the four outlined in this study. Users can adjust the targeted number of k-means495

clusters to strike a balance between model simplicity and resolution of the original data. We note that the computational cost

of this method is relatively insensitive to the number of clusters targeted.

3 Results and Discussion

The primary goals of this study were to develop efficient and practical tools for calculating pure-component properties, activity

coefficients and the gas–particle partitioning for complex systems containing a large number of organic species. To this end,500

we implemented and evaluated a 2D lumping framework to reduce system complexity while maintaining an adjustable level of

accuracy. Additionally, we sought to compare the effectiveness of different lumping methods. These objectives were pursued to

advance our understanding of organic species behaviour and improve computational efficiency in geoscientific modelling. The

S2AS pure-component property prediction tool was implemented in Python. The 2D lumping framework was implemented in

modern Fortran. The generated computer programs are a main product of this work. Related code and data are provided via505

code repositories and related archives, see Sect. 4.

3.1 Example systems: α-pinene and toluene oxidation products

To demonstrate the application of the new chain of software tools, we introduce two example systems showcasing a multitude

of chemical components and related properties derived from simulations of (1) an α-pinene ozonolysis system simulated using

the MCM (v3.3.1) model and (2) a toluene photo-oxidation system simulated based on a near-explicit GECKO-A mechanism of510

its gas phase chemistry. The input parameters used for these simulations are listed in Tables S1 and S2. The system component

structures were either directly output or subsequently converted to the SMILES format and the component concentrations

retrieved from a selected output time of the simulations.

The GECKO-A toluene photolysis system comprises an extensive array of ∼ 68,000 distinct organic components. Figure 7

provides a visual representation of the obtained system of oxidation and fragmentation products in the 2D polarity versus515

volatility space. The complete set of components is shown in Fig. 7a (ordered by mass concentration to show the most abun-

dant components on top), while panels (b)–(d) show the application of a 10× 5 volatility × polarity (here using ACR) grid to

select surrogate components by the three grid-based methods. Figure 8 shows the corresponding data clustered by the k-means

method and the pertaining selection of surrogate components. The comparison of the full system and the various surrogate

representations demonstrate visually the framework’s ability to simplify complex chemical systems. Despite the massive re-520

duction in the number of species, our lumping framework successfully preserves key physicochemical characteristics of the

system of relevance for SOA formation predictions.

The 2D representation of the α-pinene-derived components is shown in Fig. 9, with panel (a) showing the full set of MCM-

derived system components. Panels (b)–(d) of Fig. 9 show the surrogate selections based on a 10×5 grid. Since several grid

cells are empty in this example, only 36 surrogates are determined at the chosen grid resolution. Figure 10 demonstrates the525

application of the k-means method to this system when using ACR as the polarity axis.

24

https://doi.org/10.5194/egusphere-2025-4673
Preprint. Discussion started: 30 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Figure 7. The toluene SOA system shown in the 2D space of activity coefficient ratio versus vapour pressure at 298 K. (a) The full set of

∼68,000 components derived from a simulation based on the GECKO-A mechanism with an overlaid 10×5 grid (dotted) which is used

by the different selection methods to determine grid cell surrogates. (b–d) Surrogates selected by (b) the medoid method, (c) the midpoint

method and (d) the weighted medoid method.

3.2 Performance of Automated Property Prediction Tools

3.2.1 Functional Group Identification (S2AS Tool)

The S2AS tool demonstrated high accuracy in identifying AIOMFAC functional groups for the α-pinene and toluene oxi-

dation products. The 174 α-pinene-derived products were mapped to AIOMFAC subgroups without needing any exception530

treatments, while an average of 0.5 exceptions (special SMARTS mappings) per molecule were encountered in case of the

∼68,000 toluene-derived products. The latter exhibited a higher level of nitrogen-containing functional groups, some of which

were responsible for most of the exception cases triggered. Given the systematic handling of exception cases, the S2AS tool

was successful in mapping all carbon, oxygen and nitrogen atoms to relevant subgroups. This is particularly noteworthy given

the structural complexity of many of the oxidation products, which often contain multiple functional groups, branched func-535

tionalized chains and ring structures. The S2AS tool is also more reliable than manual classification in cases involving complex
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Figure 8. 2D space representations of the toluene-derived SOA system at 298 K using the k-means clustering and surrogate selection method.

(a) 49 clusters plus 1 high-volatility cluster (pink data points) are shown with individual cluster members identified by the same colour. The

cluster centres are denoted by × and the corresponding selected cluster surrogates by the ⋄ symbols. (b) The lumped mass concentrations of

the surrogate components selected by the mass-weighted k-means method.
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Figure 9. The α-pinene SOA system components shown in the 2D space of activity coefficient ratio versus vapour pressure at 298 K. (a)

The full MCM-derived 174 components with an overlaid 10×5 grid (dotted) that is used by the different selection methods to determine grid

cell surrogates. (b–d) Surrogates selected by (b) the medoid method, (c) the midpoint method and (d) the weighted medoid method.

molecular structures, for which human experts may occasionally overlook less prominent functional groups or perform incon-

sistent exception treatments when an imperfect mapping to the available set of AIOMFAC subgroups is present.

The S2AS tool showed high computational efficiency in processing large datasets. It successfully processed the list of 174

α-pinene oxidation product SMILES in less than 0.8 seconds, and the ∼68,000 SMILES from the toluene system in ∼ 5540

minutes – a processing rate of∼ 13,800 SMILES per minute on a single laptop processor core (1 thread, Intel Core i7-10710U

CPU). This automatic classification rate represents a tremendous advance over manually assigning AIOMFAC subgroups

for each component, which would be an infeasible task for systems containing thousands of components. The S2AS tool’s

processing speed scales linearly with dataset size. Further speedup via parallelization on multi-core computers is possible, but

such enhancements have not been attempted in the current version of the source code.545

3.2.2 Vapour pressure estimation

The UManSysProp pure-component vapour pressure estimation tool demonstrated robust performance across the wide range

of molecular structures present in the α-pinene and toluene oxidation systems. It successfully parsed the list of SMILES and
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Figure 10. 2D space representations of the α-pinene SOA system at 298 K using the k-means clustering and surrogate selection method.

(a) 36 clusters are shown with individual cluster members identified by the same colour. The cluster centres are denoted by × and the

corresponding selected cluster surrogates by the ⋄ symbols. Data points coloured pink are members of the special high-volatility cluster. (b)

The lumped mass concentrations of the surrogate components selected by k-means.
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Figure 11. 2D space representations of the α-pinene SOA system at 298 K using (a, c) the O:C ratio or (b, d) the mean carbon oxidation

state as polarity axis. A 10× 5 grid is shown in case of the full SOA system (panels a, b) as well as its use for the surrogate selection by the

weighted medoid method (panels c and d).

predicted the vapour pressures for all molecules. For the examples shown in this study, we used the output from the EVAPO-

RATION method, yet the seven other pure-component vapour pressure prediction methods available from UManSysProp were550

also completed successfully.

The version of UManSysProp we employed in this work includes a new module we developed to determine a two-parameter

temperature dependence parameterization of pure-component vapour pressures using the form of Eq. (1) for each of the vapour

pressure methods included (not just EVAPORATION). In a first step, a component’s vapour pressure is predicted by each

method at seven temperatures equally spaced between 260 and 320 K. In a second step, the two parameters of Eq. (1) are fitted555

to these data for each method. In the case of EVAPORATION, no fitting is required since one can solve for parameters Aj and

Bj using the output from the end points of the temperature range (two equations, two unknowns). If speed is of the essence,

the parameter fitting step can also be bypassed for all other methods by solving for the parameters in the same way, usually

yielding similar parameter values to those obtained from a more elaborate fit. The single-thread processing of the ∼68,000

toluene-derived product SMILES took 482 s on a Intel Core i7-10710U CPU (one thread) for the vapour pressure data creation560

plus 83 s for determining the parameters Aj and Bj pertaining to each method when bypassing the parameter fitting step.
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This amounts to a SMILES processing rate of ∼ 120 s−1 or ∼ 7200 SMILES per minute (including the parameter fitting step

reduces the rate to ∼ 1650 SMILES per minute). As in the case of the S2AS tool, further speed-up is possible by introducing

parallel processing (with good scaling potential) in the case of extensive lists of SMILES.

Together with the introduced S2AS, these two pure-component property prediction tools enable automated and efficient565

processing of SMILES data for atmospheric and environmental chemistry applications.

3.3 Evaluation metrics for the 2D lumping framework

To facilitate an evaluation of the 2D lumping framework in terms of impacts of polarity axis choices and grid resolutions, we

performed 2D lumping at several grid resolutions, each followed by AIOMFAC-based equilibrium gas–particle partitioning

computations to generate aerosol properties of interest for a quantitative comparison. Specifically, we calculated the mean570

absolute percentage error (MAPE) and mean percentage error (MPE) for the resulting SOA mass concentrations as well as

the aerosol hygroscopicity parameter κ. Aerosol mass concentration and hygroscopicity are two (among several) insightful

characteristics of the (gas–)aerosol partitioning behavior and water uptake potential. The MAPE and MPE are relative deviation

metrics defined as follows:

MAPE =
1
n

n∑

i=1

∣∣∣∣
Fi−Ai

Ai

∣∣∣∣× 100%, (10)575

MPE =
1
n

n∑

i=1

(
Fi−Ai

Ai

)
× 100%. (11)

Here, Ai represents the actual (observed or reference) value, Fi the predicted value, and n is the number of observations. MAPE

is scale-independent, making it useful for comparing overall prediction precision across different datasets (especially datasets

free of extreme outliers). MPE measures the average bias in the predictions relative to the reference data. By considering the580

direction of errors, MPE complements MAPE by highlighting any systematic high or low biases in the model’s predictions,

which can be crucial for understanding the limitations and potential improvements of each method.

MAPE and MPE were calculated for a selection of grid resolutions (4×2, 6×3, 8×4, 10×5) and polarity axis metrics for

both α-pinene-derived SOA and toluene-derived SOA. In order to calculate the evaluation metrics for the toluene SOA system,

for which a full-system calculation was not feasible with the AIOMFAC equilibrium partitioning model, the mass-weighted585

k-means method with the ACR polarity axis and a higher 25×10 grid resolution was used as the reference (benchmark case) for

all relative deviation evaluations. A validation check was also carried out using the k-means method for a 40×20 grid resolution

(also with ACR as polarity axis) to verify whether the MAPE and MPE values across different (higher) grid resolutions and

associated numbers of k-means clusters, were consistent with the reference case. The predicted reference mass concentration

at the 25×10 grid resolution (219 surrogates) agrees with that from the 40×20 (612 surrogates) case within a MAPE of 0.1%,590

confirming it to be an appropriate reference.

Table 2 compares the relative deviations of different surrogate selection methods for predicting SOA mass concentrations

using the selected surrogate species from the α-pinene SOA system. The table lists the MAPE and MPE for the four surrogate
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selection methods (midpoint, medoid, mass-weighted medoid, mass-weighted k-means) combined with three polarity axis

options across different grid resolutions. The corresponding absolute SOA mass concentrations and κ values predicted for this595

system are listed in Table S3. The weighted k-means method generally performs best, with lowest errors across most grid sizes.

Table 3 presents similar MAPE and MPE data but for the predictions of the hygroscopicity parameter κ for the same α-pinene

SOA system. Again, the weighted k-means method tends to show the smallest errors overall compared to other surrogate

selection approaches. A more detailed discussion of different axis choices and impacts follows in Sect. 3.3.1.

Table 4 provides MAPE and MPE values for SOA predictions from the toluene oxidation system, comparing the same600

surrogate selection methods and polarity metrics across five grid resolutions. Table 5 shows the corresponding evaluation of

the hygroscopicity parameter predictions for the toluene-derived SOA. The corresponding absolute SOA mass concentrations

and κ values predicted for this system are listed in Table S4. Deviations from the reference case at lower grid resolutions

are generally higher than for SOA mass predictions, but the mass-weighted k-means method still performs relatively well at

most resolutions. The larger variability in κ predictions stems in part also from the relatively low absolute values (Table 7).605

Additionally, the relatively small modelled SOA mass concentrations of ∼ 1.2 µgm−3 from AIOMFAC for the toluene SOA

and of ∼ 1.9 µgm−3 for the α-pinene SOA contribute to the observed metric fluctuations, as minor absolute differences can

result in larger relative errors.

Table 6 compares the predicted aerosol mass concentrations for the toluene and α-pinene SOA systems at different water

activities, using the weighted k-means method or, in case of α-pinene SOA the full system, for the model calculations. In both610

cases, the predicted SOA mass concentrations are relatively low (< 2 or < 4 µg m−3), yet in a realistic range for relatively clean

air quality conditions. These absolute SOA mass concentrations may contribute to the observed fluctuations in MAPE and MPE

for different resolutions and polarity axis choices, since minor absolute differences can result in larger relative deviations.

Table 7 compares predicted κ values for toluene and α-pinene systems at two water activity levels often used in the estimation

of diameter growth factors and hygroscopicity parameters from field observations. The α-pinene SOA exhibits higher κ values,615

indicating greater hygroscopicity than toluene SOA, yet both SOA types are relatively low in hygroscopicity with κ values of

less than 0.1, a value often assumed as representative of the organic aerosol fraction in aged tropospheric particles (e.g., Rastak

et al., 2017). As an example, Fig. S2 shows the speciated SOA mass concentrations predicted for the toluene SOA system at

different water activities when using surrogate components derived from the mass-weighted medoid method for a 10×5 grid

resolution. The water activity (or equilibrium RH) has only a weak influence on the predicted total SOA mass concentration620

since the hygroscopicity of the SOA is relatively low, leading to a weak feedback on the partitioning of semivolatile organics

due to water uptake.

3.3.1 Analysis of the polarity axes and surrogate selection methods

We compare three choices for the polarity axis of our 2D lumping framework: ACR, O:C ratio, and OSC. These polarity

metrics show a surprisingly large degree of variation in representing the polarity-related molecular properties, as demonstrated625

in Fig. 12 for the components from the toluene SOA system. While O:C ratio and OSC serve as well-established polarity

proxies, the ACR captures additional functional-group-level information, resulting in a wide spread of ACR values for a given
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Table 2. Comparison of relative deviations in predicted SOA mass concentrations at 298 K for the α-pinene-derived SOA system. The

MAPE and MPE values are listed for the four different surrogate selection methods combined with three choices for the polarity axis (y-axis)

and for several grid/cluster resolutions. The reference values are from the partitioning computation based on the full system (174 organic

components). For a comparison of related absolute quantities, see Table S3.

Surrogate selection y-axis 4× 2 6× 3 8× 4 10× 5

MAPE MPE MAPE MPE MAPE MPE MAPE MPE

Midpoint log10

[
γ

(x)
j,hex/γ

(x)
j,w

]
13.6% 12.6% 25.9% -25.9% 2.1% -2.6% 20.1% 20.1%

Medoid 4.1% 3.7% 24.8% -24.8% 24.2% -24.2% 17.6% 17.6%

Weighted medoid 20.4% -20.4% 2.2% 2.2% 3.2% 3.2% 5.0% 5.0%

Weighted k-means 2.0% 2.0% 1.9% 0.2% 0.4% -0.4% 0.1% -0.1%

Midpoint O:C 51.2% 51.2% 6.6% 2.5% 17.4% 17.4% 24.3% 24.3%

Medoid 16.0% -8.8% 8.0% 8.0% 6.9% 4.4% 39.8% 39.8%

Weighted medoid 6.1% 0.9% 18.0% 18.0% 7.1% -0.8% 6.6% 6.6%

Weighted k-means 6.7% 3.9% 2.9% 2.9% 0.9% -0.9% 0.2% -0.2%

Midpoint OSC 71.4% 71.4% 9.2% 8.4% 22.9% 22.9% 1.5% 1.1%

Medoid 16.4% -1.8% 25.6% -25.6% 25.6% -25.6% 20.3% 19.0%

Weighted medoid 23.8% -23.8% 2.2% -0.1% 1.6% -0.8% 3.0% 3.0%

Weighted k-means 1.7% 1.0% 1.6% 0.7% 1.2% 1.0% 0.9% 0.6%

O:C ratio or OSC, e.g. compare the spread at OSC = 1 in Fig. 12. This demonstrates that compounds with similar OSC can

have distinctly different relative affinities for water, as expressed by their predicted ACR.

The accuracy of the grid-based and clustering approaches, as measured by MPE and MAPE, varies notably depending on630

the surrogate selection method and grid resolution chosen; refer to Tables 2–5. This variability underscores the importance of

selecting appropriate methods for specific modelling objectives. At high resolutions, e.g. 10× 5, the polarity axis choice has

a modest impact, while it can be substantial at lower resolutions, especially in terms of predicted κ values when using the

O:C polarity axis paired with one of the non-weighted gridded surrogate selection methods, in which case MAPE > 50% can

occur.635

In the case of the α-pinene system (Tables 2 and 3), the grid-based methods generally exhibit higher MAPE compared to the

clustering-based k-means approach, especially at lower resolutions. This trend is consistent across the evaluated metrics and

resolutions, highlighting the potential limitations of the simpler grid-based techniques in accurately reducing and representing

complex chemical systems. Higher resolutions typically yield lower MAPE, especially in case of the two mass-weighted

surrogate selection methods, indicating improved accuracy and preference in applications.640

Overall, the activity coefficient ratio as polarity metric choice slightly outperformed the O:C ratio and the OSC in case of

the systems studied, demonstrating its ability in representing polarity in the context of subsequent gas–particle partitioning
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Table 3. Similar to Table 2 but for the MAPE and MPE of the predicted hygroscopicity parameter κ (evaluated at water activities of 85%

and 90%) relative to the full α-pinene SOA system prediction used as benchmark.

Surrogate selection y-axis 4× 2 6× 3 8× 4 10× 5

MAPE MPE MAPE MPE MAPE MPE MAPE MPE

Midpoint log10

[
γ

(x)
j,hex/γ

(x)
j,w

]
3.3% -3.3% 16.0% 16.0% 3.5% 3.5% 9.3% -9.3%

Medoid 16.1% 16.1% 11.5% 11.5% 8.2% 8.2% 6.5% -6.5%

Weighted medoid 3.6% 3.6% 3.0% -3.0% 3.0% -3.0% 1.8% -1.8%

Weighted k-means 3.5% -3.5% 3.6% -3.6% 2.1% -2.1% 0.0% -0.0%

Midpoint O:C 73.3% 73.3% 13.9% 13.9% 19.2% 19.2% 1.5% 1.5%

Medoid 89.1% 89.1% 39.8% 39.8% 36.4% 36.4% 14.6% 14.6%

Weighted medoid 11.7% 11.7% 1.3% 0.5% 14.4% 14.4% 15.9% 15.9%

Weighted k-means 14.9% 14.9% 5.2% -5.2% 2.1% -2.1% 0.3% -0.3%

Midpoint OSC 35.8% 35.8% 26.2% 26.2% 5.9% -5.9% 5.9% -5.9%

Medoid 32.8% 32.8% 1.6% 1.6% 21.4% 21.4% 7.5% -7.5%

Weighted medoid 12.9% 12.9% 5.0% -5.0% 5.8% -5.8% 7.8% -7.8%

Weighted k-means 8.2% -8.2% 7.1% -7.1% 4.5% -4.5% 2.5% -2.5%

impacts on aerosol mass and hygroscopicity. In the case of the α-pinene system, the mass-weighted k-means approach using

ACR achieved impressively low MAPE values, ranging from 2.0 % (4×2 resolution) to 0.1% (10×5 resolution). The toluene

system also showed good performance of the mass-weighted k-means approach with ACR, with MAPE values ranging from645

6.0 % (4×2 resolution) to 4.3 % (10×5 resolution).

In a comparison of the different surrogate selection methods, the mass-weighted k-means method consistently scored as the

most consistent and accurate across both systems. This is evident in case of the α-pinene SOA system when using the O:C ratio

for polarity. The mass-weighted k-means method demonstrated superior performance with low MAPE values (0.2 % to 6.7 %)

for predicted SOA mass concentrations across various system resolutions. In contrast, the midpoint method showed significant650

variability, with the MAPE ranging from 6.6 % to 51.2 %. The medoid and weighted medoid methods also displayed lower

consistency with the MAPE reaching up to 39.8 %. In terms of the predicted hygroscopicity parameter of the α-pinene SOA,

MAPE values spanned from 0.0 % (high resolution, ACR, k-means method) to 89.1 % (low resolution, O:C ratio, medoid

method).

In the case of the toluene SOA system using the O:C ratio, k-means performed again well and consistently accros different655

resolutions in terms of predicted SOA mass concentrations, with MAPE values ranging from 1.3 % to 4.9 %. The other surrogate

selection methods showed higher variability, with MAPE values of up to 13 % in case of the midpoint method at 4×2 grid

resolution. Although, we note that a MAPE of 13 % could still be considered a good performance compared to uncertainties in

field measurements of mass concentrations and aerosol composition. The predicted κ values for the toluene system showed a
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Table 4. Comparison of relative deviations in predicted SOA mass concentrations at 298 K for the toluene-derived SOA system. The MAPE

and MPE values are listed for the four different surrogate selection methods combined with three choices for the polarity axis and for several

grid/cluster resolutions. The computation with the mass-weighted k-means method using the ACR polarity proxy at 25× 10 resolution (219

surrogate components) is used as reference for MAPE and MPE calculations. For related absolute quantities, see Table S4.

Surrogate selection y-axis 4× 2 6× 3 8× 4 10× 5 25× 10

MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

Midpoint log10

[
γ

(x)
j,hex/γ

(x)
j,w

]
5.1% 5.1% 2.7% -2.7% 6.8% 6.8% 1.3% 1.3% 3.4% 3.4%

Medoid 8.2% 8.2% 5.0% -5.0% 1.9% 1.5% 1.2% 0.6% 2.9% 2.9%

Weighted medoid 12% 12% 6.4% 6.4% 2.0% 2.0% 2.4% 2.4% 3.6% 3.6%

Weighted k-means 6.0% 6.0% 2.4% 2.4% 3.9% 3.9% 4.3% 4.3% 0.0% 0.0%

Midpoint O:C 13% 13% 10% -10% 1.4% 1.4% 2.1% -2.1% 2.5% -2.5%

Medoid 6.7% 6.7% 1.2% -0.3% 8.3% 8.3% 4.7% -4.7% 2.2% -2.2%

Weighted medoid 8.9% 8.9% 2.0% 2.0% 4.5% 4.5% 4.4% 4.4% 0.7% -0.7%

Weighted k-means 2.4% 2.4% 1.3% 0.3% 4.9% -4.9% 4.1% -4.1% 1.8% 1.8%

Midpoint OSC 10% 10% 6.7% -6.7% 7.8% 7.8% 0.8% -0.5% 5.1% 5.1%

Medoid 1.8% -1.8% 4.2% -4.2% 7.6% 7.6% 0.9% 0.4% 5.1% 5.1%

Weighted medoid 11% 11% 2.0% -0.9% 1.0% -0.9% 1.8% -1.8% 6.3% 6.3%

Weighted k-means 4.7% 3.4% 2.1% 2.1% 0.8% -0.1% 2.9% 2.9% 2.1% 2.1%

broader range of MAPE values, in the case of the O:C ratio axis ranging from 1.0 % (weighted medoid, highest resolution) to660

143 % (midpoint method, lowest resolution) and substantial MPE variability (-143 % to +131 %), indicating significant over-

and under-predictions by different methods at the lowest grid resolution studied (4×2).

When using the OSC metric, the mass-weighted k-means method again outperformed alternative approaches at most res-

olutions. In case of the α-pinene SOA system, k-means resulted in MAPE values ranging from 0.9 % to 1.7 % for predicted

SOA mass concentrations across various grid resolutions, approximately as accurate as with the ACR polarity axis. The other665

surrogate selection methods exhibited higher variability, with the midpoint method showing MAPE values as high as 71.4 %

for the 4×2 grid resolution. For the predicted κ values, MAPE ranges from 2.5 % (k-means) to 36 % (midpoint method).

In the case of the toluene SOA system, using OSC, the k-means method continued to perform well and consistently, with

a MAPE between 0.8 % and 4.7% for predicted SOA mass concentrations. The other methods showed relatively good perfor-

mance as well, with a maximum MAPE of 11 % (weighted medoid method, 4×2 grid resolution). In terms of the predicted670

SOA κ, MAPE values ranged from 8.5 % to 90 %, and MPE values spanned from -49 % (k-means, 6×3 resolution) to 90 %

(medoid, 8×4 resolution), again showing higher variability in case of this metric, even when using the mass-weighted k-means

method (MAPE from 10 % to 70 %). In comparison, when using ACR as polarity axis, the k-means method achieves a worst

MAPE for κ of 31 % for the 4×2 resolution – approximately equivalent to the MAPE of 30 % for an 8×4 resolution when
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Table 5. Similar to Table 4 but for the MAPE and MPE of the predicted hygroscopicity parameter κ of the predicted toluene-derived SOA

(evaluated at water activities of 85% and 90%). The mass-concentration-weighted k-means method at 25×10 resolution is used as reference

case.

Surrogate selection y-axis 4× 2 6× 3 8× 4 10× 5 25× 10

MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

Midpoint log10

[
γ

(x)
j,hex/γ

(x)
j,w

]
1.4% 0.9% 26% -26% 27% 27% 21% -21% 2.9% -2.9%

Medoid 9.4% -9.4% 47% 47% 27% 27% 6.3% -6.3% 5.0% 5.0%

Weighted medoid 10% 10% 53% 53% 6.5% 6.5% 6.3% -6.3% 9.8% -9.8%

Weighted k-means 31% -31% 8.1% -8.1% 9.0% -9.0% 13% -13% 0.0% 0.0%

Midpoint O:C 143% -143% 38% 38% 25% -25% 7.5% 7.5% 45% -45%

Medoid 131% 131% 38% 38% 35% -35% 40% 40% 18% -18%

Weighted medoid 46% 46% 8.5% 8.5% 51% 51% 42% -42% 1.0% 1.0%

Weighted k-means 18% -18% 45% 45% 26% -26% 11% -11% 10% -10%

Midpoint OSC 34% -34% 49% 49% 30% -30% 25% 25% 12% 12%

Medoid 24% -24% 23% -23% 90% 90% 42% -42% 30% 30%

Weighted medoid 70% 70% 8.5% -8.5% 44% -44% 42% -42% 14% 14%

Weighted k-means 70% 70% 49% -49% 30% -30% 25% 25% 10% 10%

Table 6. Comparison of predicted SOA mass concentrations at selected water activities (equilibrium RH) for the toluene and α-pinene SOA

systems. For the toluene SOA system, the data are based on ACR as the polarity axis, 25× 10 resolution and k-means surrogate selection.

The full set of MCM-derived system components is used for the α-pinene SOA case.

Water activity Toluene SOA α-Pinene SOA

(–) (µg m−3) (µg m−3)

0.95 1.981 3.505

0.85 1.786 3.232

0.75 1.640 2.997

0.65 1.523 2.791

0.50 1.382 2.524

0.40 1.305 2.368

0.30 1.237 2.225

using OSC for polarity. This is also consistent with ACR leading to better k-means performance compared to OSC in case of675

the α-pinene SOA system.
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Table 7. Comparison of predicted SOA hygroscopicity parameters for the toluene SOA system (κTol) and the α-pinene SOA system (καP)

at two water activity levels. Surrogate selection and resolutions are as for Table 6.

Water activity κTol καP

0.90 0.038 0.061

0.85 0.049 0.072

Figure 12. Comparison of three polarity axis metrics: OSC, ACR and O:C ratio for all components of the toluene SOA system. Both OSC

and ACR account for the impact of nitrogen-containing functionalities in a molecule on the respective metric, while the O:C ratio does not.

4 Conclusions

This study introduces a novel chain of computational tools to advance the prediction of organic aerosol formation, which can

be applied to chemical product evolution predictions from near-explicit gas phase mechanisms. This will allow the community

to approach atmospheric chemistry modelling of organics and related aerosol composition and mass concentrations at a highly680

detailed level. A level that is only accessible with the aid of automatic product classification methods. By integrating structure-

and system-level tools, our work paves the way for gas–particle partitioning modelling involving large numbers of aerosol

components, a challenge that has long hindered highly detailed system studies on SOA formation and composition.
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The developed suite of automated tools, including the SMILES to AIOMFAC Subgroups tool (S2AS), enhances processing

capabilities for complex chemical systems, as demonstrated for compounds resulting from α-pinene ozonolysis or toluene oxi-685

dation. The introduction of a scalable 2D framework with grid-based and cluster-based surrogate selection methods, represents

a major advancement in simplifying complex chemical systems while maintaining controllable accuracy in SOA partitioning

predictions and retaining structural information (of the surrogates).

The evaluation of the framework’s applications to two SOA systems provided information about the effects of polarity axis

choices and system resolution. We examined the impact of choosing relatively low to moderate grid resolutions (4×2, 6×3,690

8×4, 10×5) in surrogate representations of gas–particle systems. As expected, higher grid resolutions (or higher number of

k-means clusters) generally yield better accuracy at the cost of increased computational cost for the gas–particle partitioning

computation step. By reducing the number of species from hundreds or thousands to just ∼ 32 surrogate components, sub-

stantial computational efficiency gains were achieved without compromising accuracy in SOA mass predictions substantially.

Based on the two example systems discussed, we recommend grid resolutions of at least 8×4 to maintain expected prediction695

errors within a 10 % threshold. More generally, for reference offline gas–particle partitioning computations, in which compu-

tational costs are secondary concern, we recommend choosing the highest grid or cluster resolution feasible for the use case,

up to about 200 surrogate components. Beyond 200 surrogate components, the cost versus accuracy trade-off will likely result

in diminishing returns in terms of improvements in predicted (aerosol) system properties.

Our quantitative analysis highlights the effectiveness of the mass-weighted k-means method. When it is applied with the700

ACR polarity representation, good performance is achieved even at relatively coarse resolutions of an organic aerosol system.

The choice of polarity axis metric impacted the accuracy and consistency of SOA system representation. Compared to the

O:C ratio and OSC proxies for polarity, the ACR metric is particularly effective since it encodes more information about a

components structure and mixing properties in aqueous SOA. The k-means based medoid approach paired with the ACR metric

emerged as the most effective 2D lumping and surrogate selection method among those evaluated. While it may be possible to705

improve the grid-based surrogate selection methods, e.g. by introducing variable-resolution grids, with higher resolution in the

semivolatile range, the strong performance of the k-means method renders such improvements unnecessary.

The new computational framework will aid in bridging the wide gap between detailed, molecular-level reaction and simula-

tion mechanisms and the computationally constrained, much simpler aerosol schemes of regional and large-scale atmospheric

models. It provides automated tools and lumping techniques for generating reduced-complexity representations of aerosol710

properties and gas–particle partitioning inputs in a systematic and objective manner. Furthermore, the scalability of the 2D

framework allows researchers to adjust the level of detail based on specific research needs while being mindful of compu-

tational constraints. Alongside with detailed chemical mechanisms, such as GECKO-A, future work could make use of the

introduced tools in simulations of specific environmental chamber studies on aerosol formation from known precursors – and

to represent related gas–particle systems by a tuneable selection of structure-resolved surrogates.715

Moreover, this work opens new avenues for interdisciplinary research, combining atmospheric chemistry with data science

and environmental engineering. As the scientific community adopts and further develops such frameworks, it has the potential
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to drive progress in our understanding of atmospheric processes and our ability to study complex multiphase gas–particle

systems via simulation.

Code and data availability. The Python code of the S2AS model (v1.0) and related documentation are available via an online code repository720

(https://github.com/andizuend/S2AS__SMILES_to_AIOMFAC). The Fortran code of the 2D polarity–volatility framework (v1.0) as well

as an associated plotting program and documentation are available via an online repository (https://github.com/andizuend/2D_Polarity_

Volatility_lumping). The UManSysProp code (v1.0) by Topping et al. (2016a) is available via an online code repository (https://github.

com/loftytopping/UManSysProp_public; last access: 18 September 2025). The specific version of the used UManSysProp code including

the adaptations for temperature-dependent pure-component vapour pressure parameterizations used in this work, has been archived as a725

Zenodo repository at https://doi.org/10.5281/zenodo.17172675 (Zuend et al., 2025). The Master Chemical Mechanism (v3.3.1) and the

related AtChem online box model are available online via https://mcm.york.ac.uk/MCM/ (last access: 18 September 2025). Predicted SOA

mass concentrations and hygroscopicity parameters for various surrogate methods and polarity metrics are summarized in the electronic

Supplement. The data underlying the shown figures and tables, as well as related output from the property prediction tools and the 2D

lumping framework, have been archived as a Zenodo repository at https://doi.org/10.5281/zenodo.17088391 (Amaladhasan et al., 2025).730
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