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Abstract. Gas fluxes passing through an eddy-covariance (EC) system’s measurement volume reflect the outgassing rate of 

these molecules from an upwind area known as the “flux footprint”. While sources/sinks of these molecules may be uniform 

over a flat field, their spatial contribution to the measured fluxes is not. Thus, understanding the contribution to measured 

fluxes and the spatial quantification of sources/sinks from the measured fluxes requires footprint analysis. Such analysis 

yields flux footprint characteristics, which commonly include upwind maximum footprint location, upwind fetch containing 20 

certain percentages of measured flux (70%, 80%, 90%), and the percent of flux from a user-defined upwind fetch of interest. 

These characteristics are included in the datasets of flux networks such as ChinaFlux, AmeriFlux, and FluxNet. Ideally, the 

characteristics are calculated in real-time and on-site by EC systems in the field, but this has often not been the case due to 

the calculations being computationally challenging. For field applications, this study develops the equations and algorithms 

for these characteristics from analytical crosswind-integrated flux footprint equations. The development shows that in-field 25 

computation is made feasible by the following means: using time-efficient algorithms, taking advantage of the 

nondimensional nature of the footprint equations of Kljun et al. (2015), implementing practical limits on numerical 

integration, and developing a differential-based estimation of boundary layer height for each EC interval.  Accuracy of in-

field calculations is maintained by the selection of footprint equations based on boundary-layer conditions and 

considerations of integration methods and computation techniques. This computational approach may also be applied to 30 

footprint analyses over complex terrain, nonuniform sources/sinks, or in cases where other footprint equations are used. The 

most popular application of footprint analysis is to optimize the EC sensor height for maximization of measured fluxes from 

an area of interest. This optimization using the nondimensional footprint equations is discussed, which leads to a practical 
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methodology. This work serves as a technical reference for users or developers of EasyFlux programs, widely used in 

Campbell Scientific EC systems globally. 35 

1 Introduction  

An eddy-covariance system for flux measurements, including a gas analyzer (e.g., an infrared CO2‒H2O analyzer) and 

three-dimensional (3D) sonic anemometer, is mounted at its measurement height zm on a field tower (Munger et al., 2012). 

The gas analyzer and sonic anemometer are configured for their sensing surfaces to enclose the outmost boundary of the 

“measurement volume” (see IRGASON in Fig. 1a), through which passive gas, sensible heat, and momentum fluxes are 40 

measured. These measured passive gas fluxes (e.g., CO2) through the measurement volume are stochastically transferred by 

boundary-layer turbulent flows (Horst and Weil, 1992) from their sources or to their sinks over an area called the flux 

footprint. As such, atmospheric conditions and the spatial relation of the measurement volume to the sources/sinks determine 

the molecular number of a measured passive gas flux from or to a particular unit area over the flux footprint field.  In other 

words, the flux contribution varies spatially (Fig. 1a).  This is the case even when the rate of source emission or sink 45 

absorption is spatially uniform (Hsieh et al., 2000). However, given that in common instances this rate may be spatially 

nonuniform, for practical cases over heterogeneous or sporadic sources/sinks, flux footprint equations are needed for 

evaluation of sources/sinks (Leclerc and Foken, 2014).  

In a boundary-layer turbulent flow field, a flux footprint equation f(x, y) is spatially defined in a wind coordinate system, 

with x in a direction against streamwise wind, y horizontally across streamwise wind, and z orthogonal to x and y (Fig. 1 in 50 

Schmid, 1994). To easily relate a wind coordinate (x, y) to its ground location, the horizontal coordinate of a flux tower base 

is assigned as the origin (0, 0) in both the wind and ground coordinate systems. In this way, given a wind direction in 

reference to the ground location of a flux tower, any location at (x, y) can be trigonometrically related to its ground location. 

In the wind coordinate system, f(x, y) is understood to be a probability distribution of contributions (Kormann and Meixner, 

2001) from the spatially uniform sources/sinks of a passive gas over a topographically flat field to its turbulent flux passing 55 

through the “measurement volume” of an eddy-covariance flux system. Thus, for uniform sources/sinks of a passive gas over 

a flat fetch, a footprint value at a particular ground location indicates a relative contribution of passive gas from this location 

to the measurement volume centered at (0, 0, z), where z is the aerodynamic height equal to zm minus d (zero-plane 

displacement height). The greater the footprint value, the more contribution from that location.    

 The flux footprint f(x, y) can be integrated across wind (i.e., along y) to yield a crosswind-integrated flux footprint fy(x), 60 

resulting in a skewed bell-shape curve along the x-axis only (Fig. 1a). The curve represents a probability distribution. A 

common convention in literature is to present flux footprints for positive fluxes, where a gas is emitted from its upwind 

sources.  However, footprints apply to negative fluxes with sinks as well.  Regardless of the flux direction, all gas molecules 

in boundary-layer turbulent flows are transported through a stochastic process (Lumley and Panofsky, 1964; Horst, 1979),   

and accordingly, the flux footprint curve for measured flux from upwind sources along the positive x (Fig. 1) should be  65 
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Figure 1: A flux footprint equation is displayed as a crosswind-integrated flux footprint, where the curve along the x-axis shows the 

contribution of molecules originating at a particular value of x and for all values of y.   a. Crosswind-integrated flux footprint in a case 

where CO2 flux sources are known to be uniform and emitted at a rate of 10 CO2 molecules m−2 s−1 under convective conditions. The 

shape of the curve is affected by changes in sensor aerodynamic height z (i.e., height of center of measurement volume minus the zero-70 
plane displacement height (panel b) and by changes in atmospheric boundary-layer stability, as determined from the Monin-Obukhov 

length L and friction velocity *u (panel c). All curves in this figure are computed using Eq. (22) in Kormann and Meixner (2001). For these 

curves, unless noted inside panels, z is 6 m, L is −650 m, wind speed is 5 m s−1, *u is 0.3 m s−1, and the van Karman constant is 0.41.      
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symmetric with its counterpart for measured fluxes to downwind sinks along the negative x. This symmetry should be true 

around the z-axis in the x and y domain, too (Schmid, 1997). Because of this symmetry and for simplification, only the cases 75 

of upwind flux footprint for a positive flux from its upwind sources are conventionally presented in literature (e.g., Schmid, 

2002). Such a conventional presentation is followed by this study for figures, equations, and algorithms.   

As shown in Fig. 1 for upwind flux footprint curves, even in cases where gas flux over a vast flat field is uniform, the 

flux footprint varies with upwind distance away from the measurement volume. It is also shaped by the aerodynamic height 

of the measurement volume (Fig. 1b, Hsieh et al., 2000; Raupach et al., 1991) and by boundary-layer conditions related to 80 

thermodynamic stratifications in air flows (Fig. 1c, Kormann and Meixner, 2001).   

As a probability distribution, f(x, y) can be used to derive a mean of passive gas sources/sinks Q(x, y) over a 2-

dimensional (2D) field (Snedecor and Cochran, 1989) because both are related to the flux through the measurement volume 

F(0, 0, z) (Kormann and Meixner, 2001):     

(0,0, ) ( , ) ( , )F z Q x y f x y dxdy


=       (1, model) 85 

where denotes an integration domain. Indeed, f(x, y) may be thought of as a transfer function of the gas flux of Q(x, y) 

over an extended 2D field to the flux at the measurement volume F(0, 0, z) (Kljun et al., 2015). Accordingly, although 

developed based on horizontally uniform sources/sinks of a passive gas, f(x, y) is also applicable to the description of the 

transfer process of passive gas flux signals from nonuniform sources/sinks, represented by Q(x, y) (see Chapter 8 in Leclerc 

and Foken, 2014; Göckede et al., 2004).  90 

The ultimate objective from a measured flux F(0, 0, z) is to evaluate Q(x, y) over the ecosystems targeted for 

measurement. For horizontally nonuniform sources/sinks over flat terrain, Q(x, y) varies with x and y. In this case, f(x, y) is 

imperative for Q(x, y) to be evaluated from F(0, 0, z), which is an advanced application of f(x, y) still under development 

(Leclerc and Foken, 2014). In cases where Q(x, y) is constant for horizontally uniform sources/sinks of measured gas over 

flat terrain, F(0, 0, z) must be representative to this constant due to the right side of model (1) to be this constant because the 95 

integration of f(x, y) alone over its full domain is equal to a unit (Snedecor and Cochran, 1989). For most flux measurements, 

this scenario is assumed, thus, for scenarios where Q(x, y) is constant, f(x, y) is less significant.  

However, modern flux network datasets, most of which are from sites of assumed horizontally uniform 

sources/sinks over flat terrain, report footprint characteristics including the upwind maximum footprint location 

(FETCH_MAX, i.e., distance at which the sources/sinks contribute most to the measured flux) and the upwind fetch within 100 

which the sources/sinks contribute a given percentage to the measured flux (e.g., FETCH_70 for 70%, FETCH_80 for 80%, 

and FETCH_90 for 90%). Additionally, EasyFlux outputs the interest fetch (FP_FETCH_INTRST, i.e., the integrated flux 

contribution from a defined fetch of interest). These footprint characteristics are increasingly becoming essential variables in 

many datasets from international networks (e.g., AsiaFlux, https://www.asiaflux.net; FLUXNET, http://fluxnet.org; and 
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ICOS, www.icos-infrastructure.eu), national networks (e.g., AmeriFlux, http://ameriflux.lbl.gov and ChinaFlux, 105 

http://www.chinaflux.org), regional networks (e.g., NYS Mesonet, https://www.nysmesonet.org/), and individual eddy-

covariance flux stations. In these networks and stations, thousands of Campbell Scientific eddy-covariance flux systems have 

been deployed based on instruments such as the IRGASON (integrated open-path infrared CO2‒H2O analyzer and 3D sonic 

anemometer), CPEC300 series (EC155 closed-path infrared CO2‒H2O analyzer with CSAT3A), and TGA (Trace Gas 

Analyzer) with CSAT3B (Campbell Scientific Inc., UT, USA). Each of these systems is controlled and measured by a 110 

datalogger (e.g., CR6, CR1000X, or Granite9, Campbell Scientific Inc., UT. USA), which also processes, transfers, and 

stores data.     

Each datalogger operates a program from the EasyFlux series, which handles instructions for system control, field 

measurements, and data transfers (e.g., to FTP site or Campbell Cloud).  And most importantly, the EasyFlux program 

processes raw high-frequency (e.g., up to 20 Hz) measurements into fully corrected fluxes every user-specified output 115 

interval (e.g., 30 min).  Other required variables, including footprint characteristics from the analytical crosswind-integrated 

flux footprint equations of Kormann and Meixner (2001) or Kljun et al. (2004; 2015), are also output each interval. The 

recent implementation of the equations from Kljun et al. (2015) is a new update, as previously the equations from Kljun et al. 

(2004) were used.  The applicability of this update is important because of its consideration of various boundary-layer 

stabilities. Due to this advancement, EasyFlux series programs released hereafter are programmed Kljun et al. (2015) as its 120 

default option for flux footprint characteristics, although Kormann and Meixner (2001) for these is still available as an 

alternative.  

 The primary goal of this study is to develop efficient algorithms for applying Kljun et al. (2015) in a datalogger, 

thus allowing for in-field computations of footprint characteristics every output interval. And since the resulting algorithms 

have been implemented in recent versions of EasyFlux datalogger programs, this paper also serves as a reference for the 125 

users and developers of Campbell Scientific eddy-covariance flux stations who wish to know technical details about the flux 

footprint characteristic outputs. But first, to comprehend the algorithms related to Kljun et al. (2015), we briefly summarize 

the development of their flux footprint equations.    

2 Brief the development of flux footprint equations by Kljun et al. (2015) 

Using the backward Lagrangian stochastic particle dispersion model (LPDM-B), Kljun et al. (2015) simulated the flux 130 

footprint for a vast range of values for z, going between 1 and 1,000 m in boundary-layer conditions ranging from strongly 

convective through neutral to strongly stable, and a large range of values for roughness length z0, including values for sparse 

forest canopies (Fig. 1 in Kljun et al., 2015). The vast range in flux footprint sizes (e.g., up to 270 km for only 80% footprint) 

manifests that it is not practical for a limited number of analytical f(x, y) equations to meet the needs for all boundary-layer 

flow fields at field scales. However, if the variables in f(x, y) are made dimensionless, f(x, y) could be independent of the 135 

dimensions of boundary-layer flow fields.  
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Ideally, f(x, y) contours for all flow fields converge to a single shape or narrow ensemble, regardless of the magnitude of 

the field dimensions or the boundary-layer conditions.  Thus, the single shape may be regarded as dimensionless and 

applicable to any field size and in any condition of atmospheric stability.  With this aim, Buckingham П dimensional 

analysis (Stull, 1988) is an approach of Kljun et al. (2015) to formulate the universal model for this contour. The data from 140 

the LPDM-B simulations include a vast range of boundary-layer flows, as characterized by the combinations of z, z0, and 

boundary-layer stabilities, and thus are a good source of statistical samples for determination of the model parameters.  

2.1 Buckingham II dimensional analysis of flux footprint  

In a case where is infinitely small, model (1) can be written as  

(0,0, ) ( , ) ( , )F z f x y Q x y x y=   ,      (2) 145 

which is equivalent to  

 
(0,0, )

( , )
( , )

F z
f x y

Q x y x y 
,       (3) 

where F and Q have the same units given in mass/molecules m-2 s-1.  Accordingly, f(x, y) has units of m-2 since that would be 

the units of 1/∆x∆y if x and y are in m  

 The flux footprint characteristics in AmeriFlux (2018) datasets include FETCH_MAX, FETCH_70, FETCH_80, and 150 

FETCH_90, which are all measured in terms of an upwind fetch in m. Within a fetch, the relative contribution to the 

measured gas flux from horizontally uniform sources/sinks of a passive gas over a flat field is an accumulation of f(x, y) after 

integration across wind, defined as fy(x). For the computations of flux footprint characteristics, as addressed in this study, 

only fy(x) is needed, although f(x, y) may still be desired for flux footprint maps in two dimensions (Kormann and Meixner, 

2001; Kljun et al., 2004; 2015). If the independent dispersion of a passive gas across wind is described by D(y), fy(x) forms a 155 

2D flux footprint f(x, y) given as (Horst and Weil, 1992):      

( ) ( ) ( , )yD y f x f x y= .          (4) 

Although the explicit equation of D(y) is omitted here, it is a probability distribution (Pasquill and Smith, 1983) whose 

integration over y is equal to a unit. Because fy(x) is not dependent on y, the integration of Eq. (4) with respect to y yields     

 ( ) ( , )yf x f x y dy



−

=         (5) 160 

Thus fy(x) has the same dimension as f(x, y)dy, which is m-1. Its dimension is fundamental to nondimensionalization of fy(x) 

using Buckingham П dimensional analysis (Stull, 1988).    

2.2 Buckingham П dimensionless combinations  

 fy(x) is a function of upwind fetch (x in m), varying with z in m, mean wind speed ( )u z in m s-1, friction velocity
*u in 
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 m s-1, z0 in m, and the planetary boundary layer height h in m. In sections 3 and 4 of Kljun et al. (2015), these dimensional 165 

variables are used for their Eq. (4) to (14) to formulate each dimensionless combination П that will be used to 

nondimensionalize fy(x), as briefed below.    

 The first choice is z because both the extent and magnitude of the footprint are most strongly dependent on it (Hsieh et 

al., 2000). The higher the measurement volume at z, the farther the footprint stretches along the upwind fetch (Fig 1b). 

Accordingly, the independent fetch variable x of fy(x) should be inversely nondimensionalized by z as combination П1:  170 

  
1

x

z
 =  .         (6)     

Another effect is that the fy(x) curve on average has a lower value when z is higher and the footprint is stretched along the 

upwind fetch, (Schmid, 1997). Therefore, fy(x) should be positively nondimensionalized by z as combination П2: 

2 ( )yzf x = .         (7) 

 According to a common finding that turbulent fluxes decline approximately linearly through the planetary boundary 175 

layer from surface value to zero at h (e.g., Stull 1988), z and h can be nondimensionalized as combination П3: 

3 1
z

h
 = − .        (8) 

 As a transfer function in turbulent boundary layer flows, the flux footprint is directly affected by ( )u z ,
*u , and z0. Well-

known nondimensional wind shear ϕm explicitly and implicitly includes these three variables (Kaimal and Finnigan, 1994), 

given by: 180 

  
*

( )
m

kz u z

u z



=


,         (9)  

where k is the von Karman constant (0.41). If the derivative is replaced by its approximation at z, ϕm becomes  

  
( )

0

* 0 *

( ) ( ) ( )
m

u z u z dkz u z
k

u z z d u


− +
 

− +
.      (10)  

From Kaimal and Finnigan (1994) and Hӧgstrӧm (1996), ϕm is influenced by z0 because:    

  
* 0

( )
ln m

u z z d
k

u z


 −
= − 

 
       (11) 185 

where ψm is the integrated form of nondimensional wind shear (Kaimal and Finnigan, 1994), which accounts for the effects 

of stability (z/L, where L is Monin-Obukhov length). If ϕm is thought of as nondimensional wind speed at z, reflecting a 

combined effect of u, 
*u , and z0, it follows to use it as combination П4: 

  4

*

( )u z
k

u
 =         (12) 

Unlike Kljun et al. (2004) which uses z0 explicitly, combination П4 here includes z0 implicitly.   190 
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2.3 Nondimensional upwind fetch (X*) 

      The footprint of the measurement volume of an eddy0covariance flux systems at a given z extends farther when h is 

higher (i.e., positively proportional to П3) and shrinks when wind is stronger (i.e., inversely proportional to П4). Accordingly, 

Kljun et al. (2015) formed nondimensional upwind fetch as:  

( )
1

* 1

1 3 4

*

1
u zx z

X k
z h u

−

−
  

=    = −   
  

     (13) 195 

2.4 Nondimensional crosswind-integrated flux footprint (Fy
*) 

Because the integration of the flux footprint over its full range is always equal to 1, individual footprint values are on 

average lower when the footprint has a longer range, and higher when the footprint has a shorter one. Therefore, П3 and П4 

interact inversely. Accordingly, the nondimensional crosswind-integrated flux footprint can be formulated as:    

( )1

* 1

2 3 4

*

( ) 1y y

u zz
F f x z k

h u

−

−
  

=    = −   
   

.    (14) 200 

Even when fy(x) extends to very long ranges as shown in Fig. 1 of Kljun et al. (2015), Fy
* versus X* converges to an 

ensemble of nondimensionalized crosswind-integrated flux footprints very similar in curve shape, peak location, and fetch 

extent (see Fig. 2 of Kljun et al. 2015).  

2.5 Formulation and parameterization for Fy
*   

For a given range of boundary-layer stabilities, the convergence of Fy
* versus X* to a narrow ensemble provides the basis 205 

to formulate a universal model fitted to the ensemble of LPDM-B results.  Additionally, Kljun et al. (2015) chose to describe 

the relationship of Fy
* to X* using the product of a power function of X* and an exponential function of X* (see their Fig. 2). 

The product formulates a universal model for the non-dimensional crosswind-integrated flux footprint:     

( )* * *

0 *

0

( ) exp
b

y

c
F X a X d

X d

 
= − − 

− 
,     (15, model) 

where a, b, c, and d0 are parameters, and the subscript 0 is used to avoid confusion between the fourth parameter and the 210 

zero-plane displacement height, conventionally denoted by a d in boundary-layer meteorology. Because model (15) is a 

probability distribution, its four parameters satisfy a constraint where the integral of Fy
*(X*) over the X* domain must be 

unity:  

00 0

* * *lim ( ) 1y
d

F X dX


+

→
= ,        (16) 

where δ0 is the lower limit of integration. Using an alternative variable, 215 
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  *

0

c
t

X d
=

−
,        (17) 

the integral of the right side of model (15) can be related to the Gamma function (Nemes, 2010) as    

1 2 1

0
exp( ) ( 1) 1b b bac t t dt ac b

+
+ − − +− =  − − =      (18) 

With this constraint, the parameters in model (15) were statistically estimated using the data from LPDM-B simulations after 

nondimensionalization. With a set of estimated parameters, model (15) was developed into a non-dimensional crosswind-220 

integrated flux footprint equation.  

As shown in Fig. 2 of Kljun et al. (2015), this equation represents the flux footprint across all field scales, with 

model (15) shown as the universal framework. The goodness-of-fit of this single Fy
* equation for the ensemble of 

nondimensionalized flux footprints for all simulated measurement heights, stability conditions, and roughness lengths is 

evidenced from the model performance metrics in Table 3 of Kljun et al. (2015). The fit can be improved even more if model 225 

parameters are optimized as two sets as shown in Table A1 of Kljun et al. (2015), each of which represent Fy
* under 

convective (z/L < 0) or neutral/stable (z/L ≥ 0) boundary-layer conditions. Thus, a pair of equations are formulated as a set 

for Fy
*: 

( )

( )

2.285 *
*

* *

1.996 *
*

2.930 2.127
exp 0

0.1070.107

( )

1.472 1.480
exp 0

0.1690.169

y

z

LXX

F X

z

LXX

  
−  

+ +


= 


  −  
−  −



  (19)  

This set of analytical crosswind-integrated flux footprint equations are adopted into the EasyFlux series of programs.  230 

3 Applications of nondimensional crosswind-integrated flux footprint equations  

In the EasyFlux series, the nondimensional crosswind-integrated flux footprint equations for Fy
*(X*) as shown in Eq. (19) 

are adopted to estimate the footprint characteristics over a flat field with horizontally uniform sources/sinks of passive gases. 

For example, FETCH_70 is found by integrating Eq. (19) from a starting limit to 
*

70X , It is the upper integration limit that 

results in a cumulative footprint probability of 0.7. 
*

70X is converted to field scale units (e.g., meters) using Eq. (13).  235 

Similarly, FETCH_80 and FETCH_90 may be found.  For FT_FETCH_INTRST, which is the percentage of measured flux 

attributable to the area within a user-defined fetch distance, fetch_intrst. Also, through Eq. (13), this field distance is 

converted to
*

intrstX , to which Eq. (19) is integrated from its starting limit, yielding FT_FETCH_INTRST.  
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Since the integrations described above can be computationally intensive and difficult to do in the field, the following 

sections discuss approaches for calculating the footprint characteristics that eliminate or reduce in-field numerical integration. 240 

3.1 FETCH_MAX  

( )* *

yF X  yields skewed bell-shaped curves with respect to X* (Fig. 2). The location of the maximum in terms of 

nondimensional upwind fetch
*

maxX is given by Eq. (20) of Kljun et al. 2015 (see derivation in Appendix A): 

*

max 0

c
X d

b
= −         (20) 

Its values for two ranges of atmospheric conditions are computed and shown in Table 1.  245 

  

Figure 2: Nondimensional crosswind-integrated flux footprint * *( )yF X as a function of nondimensional upwind fetch X*. A vertical bar at 

*

pX , where subscript p indicates the percent of 70, 80, or 90, is the boundary at which the integration of * *( )yF X , as shown in Eq. (19), 

from its starting limit *

SX is equal to p%. *

maxX is the location of the maximum value of *( )yF X . * *

1 2andF FX X are the 1st and 2nd inflections 

on a *( )yF X curve.    250 
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Table 1. The 1st inflection *

1FX , maximum *

maxX , and 2nd inflection *

2FX  on a nondimensional crosswind-integrated flux footprint curve

*( )yF X  along the nondimensional upwind fetch X.* (z is aerodynamic height for flux measurements and L is Monin-Obukhov length.) 

Atmospheric stability 
*

F1X  
*

maxX  
*

F2X  

Convective 

z/L < 0 

0.31026689a 0.82385339 1.3374399 

Neutral/stable 

z/L ≥ 0 

0.48210189 0.91048297 1.3388640 

a For each number, at least eight digits are kept for computations in single precision.   

In Eq. (13), when X* equals *

maxX , x becomes FETCH_MAX and is given by: 

( ) 1

*

max

*

_ 1
u z z

FETCH MAX kX z
u h

−

 
= − 

 
.     (21) 255 

Over an averaging interval (e.g., 30 min) in a field eddy-covariance flux system, ( )u z and
*u are derived from its wind 

measurements, h can be either directly measured using a Lidar Ceilometer (e.g., SkyVue Pro, Campbell Scientific Inc., 2025) 

or alternatively estimated from its measurements using the algorithms in Appendix B, and z is the aerodynamic height which 

is calculated from zm minus d, where d in a field eddy-covariance flux system can be entered by the system user as the first 

choice whereas it is automatically estimated inside the system from the height of canopies around the flux tower (Rosenberg 260 

et al., 1983; Oke, 1987; Kaimal and Finnigan, 1994). The sensor measurement height zm and canopy height are also included 

among the station variables whose values are set by the system user onto an EasyFlux program before or while an eddy-

covariance system is running (Campbell Scientific Inc., 2022).     

3.2 FP_FETCH_INTRST 

FP_FETCH_INTRST is the cumulative footprint probability within a specified upwind fetch, fetch_intrst. In EasyFlux 265 

series, fetch_intrst is one of the so-called station variables that are entered by a system user into the EasyFlux program 

before or while the station is running. Using Eq. (13), it can be used to compute its corresponding nondimensional form

*

intrstX . In this equation, at x equal to fetch_intrst, X* is *

intrstX  and given by: 

1

*

intrst

*

_ ( )
1

fetch intrst z u z
X k

z h u

−

  
= −   

  
.     (22) 

Accordingly, the footprint percentage of measured passive gas flux within fetch_intrst around a flux tower is an integration 270 

of
* *( )yF X with respect to X* from its starting limit *

SX (near the flux tower) to *

intrstX :   

( )
*
intrst

*

* * *_ _ 100
S

X

y
X

FP FETCH INTRST F X dX=  ，     (23) 
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where *

SX can be set to 7

0 10d −+ because * *( )yF X is valid only when X* is greater than d0 and, in the 7th significant digit after 

decimal (i.e., single precision expression), 7

0 10d −+ is a number near the smallest precise number greater than d0.      

3.2.1 Computation considerations    275 

As explicitly expressed in Eqs. (19) and (23), 
* *( )yF X may be numerically integrated at discrete, incremental values of 

X*, starting at *

SX and increasing until *

intrstX is reached. The accuracy of numerical integration depends on the resolution of 

increments in X*. The smaller the increment, the higher resolution and greater accuracy the result (Burden et. al., 2016).  

However, for a given range of X*, smaller increments increase the number of iterations for numerical integration, which adds 

more computational loads to a microprocessor of an in-field computation module, such as a CR6 or CR1000X datalogger 280 

(Campbell Scientific Inc. UT, USA), commonly used inside of an eddy-covariance flux system. Thus, the integration for 

field applications must be optimized to ensure integration accuracy with a minimized computational load.      

As shown in Fig. 2 for Eq. (19), 
* *( )yF X has four identified turning points: the starting limit at *

SX , the maximum at

*

maxX , and the bilateral inflection points at *

1FF and *

2FX  as well. Since the flux footprint curve changes more rapidly around 

these points, the accuracy of numerical integration would include less uncertainties if these points were located at the 285 

boundaries for segments or zones of integration (Burden et. al., 2016). Additionally, as compared to the right tail of the flux 

footprint curve, the curve across the three zones from *

SX to *

1FF , *

1FF to *

maxX , and *

maxX to *

2FX is steeper in slope or changes 

more dramatically. Since one of the two end points of each zone is an inflection point, these zones will be called inflection 

zones for the purposes of this study.   

Within a zone, an increment for numerical integration should be small for greater accuracy, and *

SX , *

1FF , *

maxX , and *

2FX290 

are used as boundaries. Beyond *

2FX , an integration increment may be extended, creating lower resolution but reducing 

computations. As previously noted, *

SX is defined based on d0, which is a parameter in model (15) and used as a constant in 

Eq. (19). *

maxX is given by Eq. (20). Derived in Appendix A, the first inflection point is located at  

( )
1

2

*

F1 0

1 1c b
X d

b

− − − −
 

= +       (24)    

and the second one is located at    295 

( )
1

2

*

F2 0

1 1c b
X d

b

− − + −
 

= +        (25) 

For *

1FF and *

2FX , their computed values are shown in Table 1, and their locations on the footprint curve are shown in Fig. 2.  
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3.2.2 Algorithm    

As discussed previously, Eq. (22) is used to nondimensionalize the upwind fetch of interest to *

intrstX and the numerical 

integration of Eq. (23) to *

intrstX yields the footprint fraction of measured flux sourced from the upwind fetch of interest. For 300 

the integration, we choose the Composite Simpson’s Rule (Burden et al., 2016). Depending on *

intrstX , the integration can 

cover, from left to right as shown in Fig. 2, one to three full inflection zones unless * *

intrst 1FX X . To reduce the uncertainties 

in the accuracy over the range of integration, 
* *( )yF X in Eq. (23) should be integrated at higher resolution with smaller 

increments over these zones, but beyond them (i.e., * *

2FX X ), the integration can be performed at lower resolution with an 

increased size of increments.  305 

One thousand increments of X* within an inflection zone are considered adequate, with increments smaller than 5.14 

×10-4 (Table 2). For the inflection zone in which 𝑋intrst
∗  is located, only the portion of the zone up to *

intrstX is numerically 

integrated in the field. In this way, the computational load for FP_FETCH_INTRST can be controlled to its minimum so that 

in-situ outputs are possible while the full infection zones within *

intrstX are numerically integrated in a lab at high resolution as 

shown in Table 2.  310 

Within an inflection zone that *

intrstX is located and up to the value of *

intrstX the resolution in Table 2 is used.  For 

inflection zones lower than the zone in which *

intrstX is located, no integration is required, as calculated constants for 

cumulative footprint in each zone may be used (see Table 2).  In cases where 𝑋intrst
∗  is beyond the second inflection point, the 

integration increment between *

2FX and *

intrstX is determined by ( )* *

int rst 2FX X n−  where 𝑛 is typically 1000 or less in order to 

limit the time needed for computation. The number of increments n for the lower resolution depends on the computation 315 

capacity of the microprocessor in a field eddy-covariance flux system.  It should be noted that the numerical integration 

calculations also rely on inputs from real-time eddy-covariance sensor measurements, because as shown by Eq. (22), the 

evaluation of *

intrstX requires ( )u z , 
*u , and h, which are calculated from in-field high-frequency measurements.  

3.2.3 Example  

Given that an upwind fetch of interest is 500 m, z equals 5 m, and the conditions for scenario 3 in Table 1 of Kljun et al 320 

(2015) (L=-650 m, 
*u = 0.30 m s-1, and h = 1,200 m) with (5)u equal to 4.00 m s-1, *

int rstX from Eq. (22) is 18.216463. 

Because *

int rstX is greater than *

2FX (Table 1), using Eq. (23), the flux footprint percentage within this upwind fetch to the flux 

tower can be evaluated by:  

( ) ( )
* *
F2 intrst

* *
2

* * * * * *_ _ 100 100
S F

X X

y y
X X

FP FETCH INTRST F X dX F X dX= +    (26) 

 325 
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Table 2. The flux footprint values in inflection zones (Fig. 2) and their cumulative flux footprint values from the starting value of 

nondimensional upwind fetch X*, denoted by * 7

0 10SX d −= + where d0 is a parameter of nondimensional crosswind-integrated flux footprint 

equation * *( )yF X as shown in Model (15) and Eq. (19). The flux footprint values are numerically integrated for each inflection zone using 

the Composite Simpson’s Rule on a * *( )yF X curve (Fig. 2). *

1FX is the 1st inflection ahead of *

maxX  (the maximum location) and *

2FX is the 

2nd inflection behind *

maxX . L is Monin-Obukhov length and z is the aerodynamic height for measurements.  330 

Atmospheric 

stability 
Zone  

Ending 
*

1FX  *

maxX  *

2FX  

Range 
* *

1~S FX X  * *

1 max~FX X  * *

max 2~ FX X  

Convective 

z/L < 0 

Integration resolution 4.1726699 × 10-4 a 5.1358650 × 10-4 

Zone footprint % 
1.1321783 

14.605774 16.788529 

Cumulative footprint % b  15.737952 32.526482 

Neutral/stable 

z/L ≥ 0 

Integration resolution 3.1310199 × 10-4 4.2838107 × 10-4 

Zone footprint % 

0.87452260 

12.597578 14.546249 

Cumulative footprint % 13.472100 28.018350 

a For each number, eight digits are kept for significance of computations in single precision at least.   
b Cumulative footprint in each zone column is the integration of * *( )yF X from d0 + 10-7 to the ending boundary of this zone.   

The 1st term on the right side of this equation was evaluated in Table 2 as a constant 32.526482 %. For field applications, Eq. 

(26) for this case can be expressed as: 

 
*

2

18.216463
* * *_ _ 32.526482% 100 ( )

F
y

X
FP FETCH INTRST F X dX= +    (27)  335 

Thus, in the field, numerical integration is required only on the 2nd term on the right side. If n is 1,000, the size of increments 

in X* for numerical integration is given by:    

* * *

* 2intrst F2 F2
18.216463

1.6879023 10

1000

X X X
X

n

−
− −

 = = = 
   (28) 

Appendix C shows the algorithms used for numerical integrations of Eqs. (27) and (28) using the Composite Simpson’s Rule. 

In this example, after integration FP_FETCH_INTRST is found to be 94.86%. By using the calculated cumulative footprints 340 

in Table 2 for full inflection zones to the left of *

int rstX , by beginning numerical integration in the zone in which *

int rstX is 

located, and by only performing integration up to the value of *

int rstX , the number of iterations is confined to be no greater 

than n (Appendix C). 

 

 345 
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3.3 FETCH_70, FETCH_80, and FETCH_90 

FETCH_p, where suffix p can be 70, 80, or 90, is the conversion of the corresponding nondimensional form *

pX to its 

field scale, or dimensional form, using Eq. (13). Therefore, similarly to the derivation of Eq. (21), the conversion of 

FETCH_p from
*

pX  is given by: 

( ) 1

*

*

_ 1p

u z z
FETCH p kX z

u h

−

 
= − 

 
.      (29) 350 

Since the values of k, z, ( )u z , 
*u , and h can be acquired in the same way as for Eq. (21), 

*

pX is additionally needed. 

Whereas
*

pX is the nondimensional upwind fetch within which the horizontal uniform sources of gas flux contribute p% of 

the measured flux, it is mathematically expressed as:  

( )
*

*

* * *100
p

S

X

y
X

F X dX p= .       (30) 

The data in Table 2 indicate
* *

2p FX X while 32.53%p  . For p equal to 70, 80, or 90, the left side of Eq. (30) can 355 

therefore be expressed in two terms:   

( ) ( ) ( )
* *
F2

* * *
S F2

* * * * * * * * *100 100 100
p

S

p X X

y y y
X X X

F X dX F X dX F X dX= +   ,  (31)  

where the 1st term on the right side of this equation is a constant, given in Table 2 for the two ranges of boundary-layer 

stabilities. If this constant is denoted by *
2FX

P , the range over which to integrate can be made smaller, beginning at *

2FX , 

instead of *

SX , and extending to
*

pX :  360 

 ( )
*

* *
F2 F2

* * *100
pX

yX X
p F X dX p+ = .      (32) 

In the integration term of this equation, 25 may be used as an upper limit for X* because 90% of fluxes will always be below 

25, which is also why Fig. 2 of Kljun et al. (2015) only extends to 25. Thus, an increment in X* can be evaluated by      

*

* F 2
25

1000

X
X

−
 =

       (33) 

To find
*

pX from Eq. (32), 
*

pX  needs to be expressed explicitly. 365 
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Although an integer m rarely exists that satisfies * * *

2F pX m X X+  = , it can easily hold that * * *

2F pX m X X+   , 

from which an explicit equation for
*

pX can be derived. In this case, the inequality 
* * *

2F pX m X X+   can lead to: 

( )
* *
F2

* *
F2 F2

* * *100
X m X

yX X
p F X dX p p

+ 

++ =  ,      (34) 

where m can be between 1 and 1000 as long as X* < 25 (Eq. 33). Since Eq. (34) integrates to an upper limit that is slightly 

greater than
*

pX and the result is slightly greater than p, we should also find the upper limit and result that is barely less than370 

*

pX and p, respectively.  This limit must be ( )* * *

2 1F pX m X X+ −   , which yields:   

( )
( )* *

F2

* *
F2 F2

1
* * *100

X m X

yX X
p F X dX p p

+ − 

−+ =  .     (35)  

Now
*

pX is a value bounded by ( )* *

2 1FX m X+ −  and * *

2FX m X+  . In the process of numerical integration, the values of p+, 

p-, and m can be easily identified (Appendix C). The following section shows how Eqs. (32) to (35) may be used to find a 

solution to
*

pX .  375 

3.3.1 Solution to
*

pX  

Equation (34) minus (32) leads to: 

( )
* *

F 2

*

* * *
100

p

X m X

y
X

F X dX p p
+ 

+
= − .      (36)  

The Intermediate Value Theorem reforms this equation as    

( ) ( )* * * * *

F2
100

p y
X m X X F X p p

 +
+  − = − ,     (37) 380 

where
*X is an intermediate value in the range from

*

pX to * *

2FX m X+  and makes ( )* *

yF X equal to the average of 
* *( )yF X

over the range. Similarly, Eq. (32) minus (35) leads to: 

 ( ) ( )* * * * *

F2
100 1

p y
X X m X F X p p

 −
− − −  = −   ,      (38)  

where
*X  is an intermediate value in the range from ( )* *

2 1FX m X+ −  to
*

pX and makes ( )* *

yF X equal to the average of 

( )* *

yF X over this range. Because both
*X and

*X are very close, in fact within a range as small as the size of ∆X*, and 385 

whereas ( )* *

yF X is a continuous function and both ( )* *

yF X and ( )* *

yF X can be considered almost equal, their ratio tends to 

be 1. As a result, the ratio of Eq. (37) to (38) leads to:  
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( )

* * *

F2

* * *

F2
1

p

p

X m X X p p

p pX X m X

+

−

+  − −


−− − − 
.      (39)  

If this equation is solved for
*

pX , the result is an interpolation equation: 

* * *

F2p

p p
X X m X

p p

+

+ −

−
 + − 

−

 
 
 

      (40) 390 

Now
*

pX may be calculated, and its result used in Eq. (29) to calculate FETCH_p.  

3.3.2 Example  

In order to acquire FETCH_70 for the same conditions as described in section 3.2.3, we use numerical integration 

as shown in Eqs. (34) and (35) (see Appendix C for application of integration) to find the inputs needed for the interpolation 

in Eq. (40), which results in *

70X (i.e., 
*

pX at subscript p = 70). Given the value of *

2FX from Table 1, ∆X* can be computed 395 

from Eq. (33) to be 2.3662560×10-2.  At m = 102, p+ = 70.114313 from Eq. (34), and p- = 69.868805 from Eq. (35). Next, 

*

70X can be computed from Eq. (40) as   

* * *

70 F2

70
3.7400033

p
X X m X

p p

+

+ −

−
 + −  =

−

 
 
 

     (41) 

Using this value, Eq. (29) generates the following result:   

( ) 1

*

70

*

_ 70 1 102.65 m
u z z

FETCH kX z
u h

−

= − =
 
 
 

    (42)  400 

This example illustrates that instead of extensive numerical integrations in the field, Eqs. (34) and (35) may be solved 

beforehand for * * *

70 80 70, ,andX X X (Table 3) due to
*

pX being independent of field measurements. Then, these values, along 

with field measurements, may be used in Eq. (29) to find their final field scale values. 

Table 3 Nondimensional upwind fetch
*

pX , where subscript p indicates 70, 80, or 90.  At a nondimensional scale, a p% portion of the 

measured flux is contributed by its footprint area within
*

pX , assuming the sources/sinks of passive gas are uniform over a flat field. (z is 405 

aerodynamic height for measurements and L is Monin-Obukhov length.) 

Atmospheric stability 
*

70X  
*

80X  
*

90X  

Convective 

z/L < 0 

3.7400033a 5.5734341 10.371083 

Neutral/stable 

z/L ≥ 0 

4.3702906 6.9142010 14.612024 

a For each number, at least eight digits are kept for significance of computations in single precision.    
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4 Discussion  

This study details the application of Kljun et al’s. (2015) flux footprint equations (Eq. 19) into eddy-covariance flux 

systems so that footprint characteristics of measured flux can be computed every interval of flux data output in the field. 410 

These computed flux footprint characteristics are those required by datasets documented in AmeriFlux (2018) and adopted 

by regional, national, and international flux networks (e.g., NYS Mesonet, ChinaFlux, and FluxNet). Previously, these 

characteristics have been evaluated only through computationally laborious numerical integration (Kormann and Meixner, 

2001; Kljun et al., 2002; 2025), not suitable for the limited computation capacity typically found in field computer 

processors. Therefore, the development in this study focuses on field computation-saving methodologies, now adopted into 415 

the EasyFlux series programs (Campbell Scientific Inc, 2022). Indeed, the nondimensional forms of fetch (Eq. 13) and 

footprint equations (Eq. 19) from Eqs. (6) to (14) in Kljun et al. (2015) make field computation-saving methodologies 

applicable (Appendix C). 

It should be noted that the naming and selected footprint variables in this study were chosen to be in conformity with the 

2018 AmeriFlux data variable format.  Furthermore, data precision was optimized to match the computation precision inside 420 

field eddy-covariance flux systems.  And lastly, the algorithm for the estimation of planetary boundary layer height h from 

measured variables in an eddy-covariance flux system was a major consideration for this study, and details concerning it are 

described in Appendix B. Beyond the immediate applications in this study, the developed equations found herein and in  

Kljun et al. (2015) have important implications for the optimization of eddy-covariance measurement height in order to 

maximize the proportion of measured flux from the footprint area of most interest. In the following sections, more discussion 425 

is given to the merits of Eq. (19), the expression of variables, the optimization of data precision, the algorithm for h, and 

more applications of equations.   

4.1 Merits of Kljun et al’s. (2015) flux footprint equations   

Computing flux footprint characteristics such as FETCH_p, where subscript p is 70, 80, or 90, and FP_FETCH_INTRST, 

has typically been challenging in the field because approaches like Hsieh et al (2000) or Kormann and Meixner (2001) 430 

require computationally laborious numerical integrations.  The use of nondimensional flux footprint equations found in 

Kljun et al. (2015) can reduce or fully avoid numerical integration. For FETCH_p, given Table 3, only an analytical equation 

(Eq. 29) is needed, requiring a simple algebraic calculation. For FP_FETCH_INTRST, given Table 2, Eqs. (22), and (26), the 

numerical integration is reduced to a fractional zone, as shown in Fig 2, from one turning point to *

intrstX .   

4.2 Variable expressions  435 

The names of some variables in this study, such as FP_FETCH_INTRST, FETCH_MAX, FETCH_70, FETCH_80, and 

FETCH_90 and FP_FETCH_INTRST, are lengthy but used for the sake of consistency with the data variable format 

documented in AmeriFlux (2018).  

4.3 Data precision  
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Unlike a desktop or laptop computer, a computation module like a CR6 or CR1000X datalogger is smaller in size, lower 440 

in power consumption, and more durable in rugged environment conditions, plus it has multiple functionalities for control, 

measurement, communication, computation, and data storage. As such, the performance of a microprocessor inside the 

computation module is optimized for all mentioned functionalities through balancing its size, power consumption, and 

durability. For optimization, single precision is used for data processing inside the microprocessor. Accordingly, eight 

significant digits in single precision are kept for the data shown in the three data tables and Eqs. (27), (28), and (41) of this 445 

paper.  However, it should be noted that these data were computed from Eq (19) using double precision processing on a 

desktop computer, even though the precision of data from Eq. (19) is hardly warranted because it depends on the precision of 

equation parameters that were statistically estimated (section 2.5). Nonetheless, considering Eq. (19) as an exact equation, 

this study carefully warrants the accuracy of numerical integrations and the precision of data for computations of flux 

footprint characteristics.  450 

4.4 Algorithm for planetary boundary layer height 

The planetary boundary-layer height (h) is one of the required variables in the flux footprint equations of Kljun et al. 

(2015), (see Eqs. 21, 22, 29, and 42). Unlike other variables, it is not directly measured or commonly computed from 

measured data in eddy-covariance systems. And while it can be directly measured using a ceilometer (e.g., SkyVUE Pro, 

Campbell Scientific Inc. 2025), it is often cost prohibitive. As shown in Eqs. (B1) and (B3), h is theoretically related to other 455 

commonly measured variables in an eddy-covariance system. Since the main body of this paper focuses on computations of 

flux footprint characteristics, this algorithm is developed in Appendix B, although the algorithm is still a key finding from 

this study. 

4.5 Applications of equations developed in this study 

Equation (33) is used to calculate a ∆X* value for use in Eqs. (34) to (40). In reference to Fig. 2 of Kljun et al. (2015), an 460 

assumed top limit of 25 for X* is used for this calculation. Between *

SX  and 25, the integration of Eq. (19) is equal to 96.50% 

and 93.98% for convective and neutral/stable atmospheric stabilities, respectively. Accordingly, in Eqs. (34) to (40), the p 

value should be ≤ 96.50% under convective atmospheric stability or ≤ 93.98% under neutral/stable atmospheric stability. In 

the case that p is above these ranges, the value from Eq. (33) is still applicable because it has a higher resolution than if 25 

were replaced with a higher value in Eq. (33). Alternatively, ∆X* also can be extended or narrowed, depending on the 465 

accuracy required for FETCH_p.  

       Although Eq. (40) was developed for cases of p equal to 70, 80, or 90 to compute FETCH_70, FETCH _80, or FETCH 

_90, it can be used for any p value. In reference to the cumulative footprint values in Table 2, *

2FX in this equation can be 

replaced with *

1FX , *

maxX , or *

SX , depending on the p value under different atmospheric stabilities. In reference to the 

integration resolution values also in Table 2, the integration resolution for the corresponding zone can be used as a value of 470 

∆X*.   
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       For example (Table 2), *

2FX in Eq. (40) should be replaced with *

SX under convective atmospheric stability if p < 

1.1321783 or under neutral/stable atmospheric stability if p < 0.87452260, in which case ∆X* would be 4.1726699 × 10-4 and 

3.1310199 × 10-4 , respectively. 

4.6 Optimize measurement height   475 

Perhaps the most significant application of flux footprint equations is the optimization of measurement height of eddy-

covariance sensors (i.e., zm, the height of measurement volume center above the ground), such as a sonic anemometer and a 

gas analyzer (Horst and Weil, 1994). Over a flat field with uniform flux sources/sinks, the higher the measurement volume, 

the farther the flux footprint can extend away from the flux tower whereas the lower the measurement volume, the closer the 

flux footprint converges to the flux tower (Fig. 1). Over a flat field, zm is generally optimized for an expected percentage p of 480 

measured flux from a given upwind fetch or for maximization of measured flux contribution from a targeted area covered by 

an ecosystem of interest.  

4.6.1 Optimization of zm for an expected percentage of measured flux within a given upwind fetch 

Given an upwind fetch, FETCH_p, from which a p% measured flux is expected, Eq. (29) can be rearranged and solved 

for the optimized height, zmp: 485 

( )
*

mp *

*

_

_
p

u hFETCH p
z d

khu z X u FETCH p
=

+
+ ,     (43)  

where zmp is chosen for the prevailing atmospheric stability at a site (e.g., the case in section 3.2.3) since the height of system 

sensors is typically inconvenient to adjust after installation.  As an example, given FETCH_90 to be 500 m, atmospheric 

stability as described in section 3.2.3, d to be 0.25 m, and *

90X from Table 3 for z/L < 0, Eq. (43) generates zmp to be 9.00 m. 

 Equation (43) describes zmp essentially as a function of FETCH_p because the other aerodynamic variables in the 490 

equation are given for a site’s prevailing atmospheric stability. Using * * *

70 80 90, ,andX X X values from Table 3, zm70, zm80, and 

zm90 corresponding to FETCH_70, FETCH_80, and FETCH_90 under the prevailing atmospheric stability can be generated 

from Eq. (43). For any percentage of measured gas flux from a given upwind fetch FETCH_p, 
*

pX value needed by Eq. (43) 

can be numerically computed from Eq. (40).  

4.6.2 Optimization of zm to maximize measured flux from the targeted area of an ecosystem of interest   495 

A common practice in eddy-covariance system installation is to optimize zm. The optimization aims to  maximize 

the measured fluxes from the targeted area covered by an ecosystem of interest while minimizing the influence of fluxes 

from the area covered by undesirable ecosystems outside the target area and from the fenced area disturbed by station 

facilities (e.g., supporting structure), instruments for other micrometeorological variables (e.g., radiation, soil moisture, and 

rain), and solar panels for power supply to the system (Fig. 3). The degree of influence depends on many factors such as the 500 

type and area of undesirable ecosystems, the size of fenced areas, the volume of facilities, the surface of solar panels. 

Although the fluxes from the undesirable ecosystems and the disturbed area will unavoidably contaminate the measurement 
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volume, it can be minimized through the optimization of zm (Kormann and Meixner, 2001). Depending on surface roughness 

mostly accounted by d along with ( )u z  gradient and atmospheric boundary-layer stability accounted by h (Rebmann et al., 

2018), for the optimization of zm, the fraction of measured flux from the targeted area can be evaluated from flux footprint 505 

equations. 

 

 

Figure 3: A drone view of field situation in a case that a closed-path eddy-covariance system (i.e., CPEC310, Campbell Scientific, Inc., 

UT, USA) was used to measure the CO2 and H2O fluxes over Haloxylon ammodendron plantation near bare sand land (farther top area) in 510 
Minqin, China. As view, the installation height of CPEC310 sensors should be optimized to maximize the measured fluxes from the area 

inside the external and outside the inner circles while minimizing the measured fluxes from both the bare sand land area outside the 

external circle and the fenced area covered by flux tower, weather station, solar panel, ceilometer (SkyVue), and instrument for soil 

moisture and soil temperature. This view is not scaled.  

 515 

The targeted area is generally in the shape of an annulus centered at the flux tower (Fig. 3) with its external radius R, 

outside which the area is covered by undesirable ecosystems, and with its inner radius r, inside of which a fenced portion is 
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the disturbed area. The optimization of zm is to find a height at which the portion of measured flux from the annulus footprint 

area is maximized. This portion denoted by Fpa, where subscript a indicates annulus, is given from Eq. (19) as    

*

*

* * *( )
R

r

X

pa y
X

F F X dX=              (44)   520 

where *

rX is the nondimensional fetch corresponding to the inner annulus radius r at field scale and is given from Eq. (13) as    

        
( )

1

*

*

1r

u zr z
X k

z h u

−

  
= −   

  
        (45)  

and *

RX is the nondimensional fetch corresponding to the outer annulus radius R at field scale, given also from Eq. (13) as   

( )
1

*

*

1R

u zR z
X k

z h u

−

  
= −   

  
.     (46) 

Given r and R under a specified boundary-layer condition, both *

rX and *

RX change with z. For a prevailing boundary layer 525 

condition with given h, u*, and u(z), Fpa is a function of z [i.e., Fpa(z)], with the integration limits of Eq. (44) varying with z. 

The z value at which Fpa(z) reaches its maximum is the optimum aerodynamic height, denoted by zmax. This height is the 

solution to 

max

( )
0

pa

z z

dF z

dz
=

=        (47)  

At zmax, the measurement volume of an eddy-covariance system will receive the largest possible portion of fluxes from the 530 

annulus area of interest. For the solution of zmax, we find the derivative of Fp(z) with respect to z:     

* * * **

2

( )
( ) ( )

( )

pa

y R y r

dF z u
RF X rF X

dz ku z z
 = − −      (48)  

Given r and R values, * *andr RX X can be computed from Eqs. (45) and (46), respectively. In reference to Eq. (19), an 

analytical solution to zmax for Eq. (47) from Eq. (48) is unavailable, but it can be found graphically, as shown in Fig. 4 for a 

case of r = 15 m and R = 300 under the same boundary-layer conditions as in section 3.2.3.  The result is accurate to within a 535 

centimeter, plenty for sensor installation. In Fig. 4, the ( )padF z dz curve crosses the z-axis at zmax, which is 5.71 m. At zmax, 

Fpa(z) exactly reaches its maximum of 84.42% (see dashed line in Fig. 4). Given that d is 0.25 m, zm can be optimized as 5.96 

m (i.e., zm = zmax + d). This optimization methodology was developed by the authors while specifying installation of eddy-

covariance sensors at Moorefield, Wellfleet, and Benkelman in Nebraska, USA.     

 540 
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Figure 4: Graphical optimization of the aerodynamic height of the eddy-covariance measurement volume zmax to maximize the portion of 

measured flux from the annular area centered at the flux tower (e.g., from its inner radius 15 to its external radius 300 m). Fpa(z) values are 

computed from Eq. (19) for z/L < 0, where L is Monin-Obukhov length, and from Eqs. (44) to (46). Values for ( )padF z dz are computed 545 

from Eq (48). The optimized aerodynamic height zmax is 5.71 m when Fpa(z) reaches its maximum of 84.42% and where its derivative with 

respect to z is zero (see dashed line).  Given the zero-plane displacement height d to be 0.25 m, the measurement height zm can be 

optimized as 5.96 m (i.e., zm = zmax + d). Wind speed is 4.00 m s-1, friction velocity is 0.30 ms-1, and planetary boundary layer height is 

1200 m.  

5 Summary remarks  550 

Flux datasets are increasingly requiring the inclusion of flux footprint fetch characteristics, specifically the upwind 

maximum footprint location and the upwind percentage fetches (AmeriFlux, 2018). An additional flux footprint fetch 

characteristic included in many ChinaFlux datasets is the percentage of measured fluxes attributable to an area of interest. In 

a field eddy-covariance flux system, these characteristics are ideally evaluated simultaneously with the computations of the 

flux data every interval of these data output (e.g., 30 min).  In order for such evaluations to be time-efficient inside the 555 

microprocessor of a field datalogger, time-saving algorithms that retain accuracy through every step are developed from the 

well-accepted flux footprint equations of Kljun et al. (2015) (i.e., Eq. 19).  

As a merit of Kljun et al. (2015), the upwind maximum footprint location, inflection locations, and upwind percentage 

fetches from their flux footprint equations are in the nondimensional domain, are invariant (Fig. 2, Tables 1 and 3), and can 

be precisely computed beforehand in a laboratory. Similarly, by using analytical Eqs. (21) and (29), the maximum footprint 560 

location and upwind percentage fetches can be converted from their non-dimensional data in Table 3 to field scale units and 
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then stored inside the microprocessor for immediate use (Appendix C), thus avoiding the use of numerical integration in the 

field. And finally, because of this merit, the data in Table 3 also reduces the computation load for the interest footprint to a 

limited amount less than an inflection zone (Eq. 27).  

The accuracy of the computed footprint characteristics is considered through the division of the footprint equation curve 565 

into four inflection zones for integration (Fig. 2, Tables 1 and 2). According to the comments in Appendix A of Kljun et al. 

(2015), better accuracy in the flux footprint characteristics leads to us adopting the equations with parameters from their 

Table A1 for convection and neutral/stable atmospheric boundary layer stabilities (Eq. 19, Fig. 2), instead of using their 

universal flux footprint Eqs. (14) and (17) of Kljun et al. (2015). Where possible, eight significant digits of data (Tables 1, 2, 

and 3; Eqs. 27, 28, and 41) are kept for all computations at single precision, which is an additional consideration to warrant 570 

the accuracy in the flux footprint characteristics.  

As shown in all application equations in this study (e.g., Eq. 21), the planetary boundary-layer height is needed as a 

scaling variable for flux footprint equations of Kljun et al. (2015), but it is not commonly directly measured with field eddy-

covariance systems. For this variable to be acquired every data output interval from other variables measured by eddy-

covariance flux systems in the field, the applicable algorithm is developed in Appendix B.  575 

As shown in Model (15), nondimensional upwind fetch (X*) is the independent variable of flux footprint equations. An 

explicit expression for this fetch or for nondimensional upwind percentage fetch is not available.  Thus, a numerical equation 

for nondimensional upwind percentage fetch is theoretically derived (Eqs. 29 to 40) and a conversion into field scale is 

shown.   

Our discussions go beyond the focus of this study for the most practical and significant application of flux footprint 580 

equations in eddy-covariance flux measurements, that is to optimize the installation height of eddy-covariance sensors. 

Optimization means 1) to ensure an expected percentage of measured flux from a targeted upwind fetch and 2) to maximize 

the contribution of measured fluxes from the footprint area of interest. The methodology for this optimization is additionally 

discussed (Figs. 3 and 4, Eqs. 43 to 48). With this addition, this study more fully documents the common applications of 

Kljun et al. (2015) to field eddy-covariance flux systems. This document is intended to be a reference source for flux 585 

footprint equation applications, especially for users and developers of EasyFlux series programs found in many Campbell 

Scientific eddy-covariance flux systems globally.   

Code and data availability: 

         The program code related to the methods and algorithms that were developed in this manuscript is available from 

https://doi.org/10.5281/zenodo.18143076 under (CC-BY-4.0) license, as are input data to produce the plots for all the 590 

simulations presented in this paper (Zhou and Chen, 2025). 
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Appendix A: Maximum and inflection locations on the crosswind-integrated footprint curve 

At the maximum of the nondimensional crosswind-integrated footprint ( )* *

yF X , its 1st order derivative with respect to 

nondimensional upwind fetch X* should satisfy 

* *

max

* *

*

( )
0

y

X X

dF X

dX
=

= ,       (A1)  

where *

maxX is its maximum location. From Model (15), this 1st order derivative is given by      600 

( ) ( )
* *

1 2
* *

0 0* *

0

( )
exp

b bydF X c
a b X d c X d

dX X d

− −   = − + − −    − 
.  (A2)  

Following Eq. (A1), setting this equal to zero leads to:  

( ) ( )
1 2

* *

max 0 max 0 0
b b

b X d c X d
− −

− + − = ,     (A3)  

and solving for *

maxX leads to Eq. (20).    

At an inflection point of ( )* *

yF X , its 2nd order derivative with respect to X* must satisfy 605 

 
* *

I

* *

* *

( )
0

y

X X

dF Xd

dX dX
=

 
= 

 
 

,      (A4) 

where *

IX  is the nondimensional upwind inflection location on the curve of ( )* *

yF X and its subscript I indicates inflection. 

This subscript can be F1 or F2 for the 1st or 2nd inflection locations (Fig. 2). Equation (A4) is a further derivative of Eq. (A2), 

given by: 

( )( ) ( )( ) ( )
* *

2 3 4
* * 2 *

0 0 0* * *

0

( )
exp 1 2 1 .

b b bydF Xd c
a b b X d c b X d c X d

dX dX X d

− − −     = − − − + − − + −        −  

 (A5) 610 

To satisfy Eq. (A4),   

( ) ( )
2

2
* *

0 02 0
1

I I

c
b X d c X d

b
− + − + =

−
.     (A6) 

The solutions to *

IX from this equation are the two inflection locations in terms of nondimensional upwind fetch * *

1 1andF FX X

given in Eqs. (24) and (25), respectively, and shown in Fig. 2.  
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Appendix B: Estimation of planetary boundary layer height from measured variables in eddy-covariance flux 615 

systems  

In order to compute the footprint characteristics using equations of Kljun et al. (2015), the planetary boundary layer 

height (h) is required by Eqs. (21), (22), (29), (42), (45), and (46). Fortunately, it may be estimated using commonly 

measured variables in eddy-covariance systems. Appendix B in Kljun et al. (2015) summarizes the equations for h under 

different atmospheric boundary-layer stratifications and recommends theoretical equations of h for use in eddy-covariance 620 

flux systems.  

B1 Equations of h for use in eddy-covariance flux systems  

For neutral to stable conditions, Kljun et al. (2015) summarized four equations. One is the primary equation, while 

the other three are the simplified versions for extreme cases of free atmosphere or strongly stable boundary-layer conditions. 

The primary equation is an interpolation formula proposed by Nieuwstadt (1981):     625 

*1 2.28 1
3.8

uL
h

fL
= + −

 
 
 

,        (B1) 

where L is Monin-Obukhov length, 
*u is friction velocity, and f is the Coriolis parameter. In eddy-covariance flux systems, 

mean values of L and
*u  (Rebmann et al., 2012) are computed every data output interval (e.g., 30 min), while f can be 

computed at any time from (Wallace and Hobbs, 2006)   

2 sinf =  ,                  (B2) 630 

where Ω is the angular velocity of Earth’s rotation (7.2924621e-5 rad s-1) and ϕ is the latitude of an eddy-covariance flux 

station.  As a station variable, ϕ is entered by a user into an eddy-covariance flux system before or while an EasyFlux series 

program is running.  

 For convective atmospheric conditions, an equation explicit to h is not available, however its differential equation 

with respect to time t is defined by Batchvarova and Cryning (1991) as 635 

( ) ( )

22

' '*

0
1 2 2 1

Cu Tdh h
w

dt A h BkL g A h gBkL


+ = 

+ − + −

 
 
 

,   (B3)  

where γ is dry adiabatic lapse rate (commonly 9.8×10-3 K m-1),  A, B, and C are parameters, k is the von Karman constant 

(0.41), g is acceleration due to gravity (9.81 m s-2 at sea level), w’ is vertical wind fluctuation, Θ’ is potential air temperature 

fluctuation, and
' '

0w is the covariance of w with Θ, which drives the sensible heat flux over the interface between 

ecosystems and the atmosphere. Over this interface,
' '

0w  can be substituted with the covariance of w with air temperature 640 
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(T), denoted by ' 'wT , where T’ is air temperature fluctuation. This covariance is available in eddy-covariance flux systems. 

At present, an exact solution to h from Eq. (B3) is not available, but a numerical solution may be expressed as a divided 

difference form.       

B2 The divided difference form of h terms in Eq. (B3)     

In eddy-covariance flux systems, the aerodynamic and thermodynamic variables used for Eq. (B3), such as
*u , L, T, 645 

and ' 'wT , are computed from measured data averaged over a data output interval, denoted by ∆t. As such, h can be derived 

only on a temporal scale of ∆t. Given hb to be a h value at the beginning of ∆t, and he at the end, the derivative term can be 

expressed as  

  

,e bh hdh

dt t

−
=


        (B4)    650 

where, under continuous measurements, hb over current ∆t is he over a previous one. While the boundary layer is developing, 

hb and he are rarely equal, and over a short period of ∆t the change from hb to he can be reasonably assumed to be linear. 

Accordingly, a h value can be approximated from 

2

e bh h
h

+
= ,       (B5) 

Apparently, h value can be acquired if he value is estimated at the end of current ∆t. In Eq. (B3), substitution of dh dt and h 655 

with their corresponding divided difference forms (i.e., Eqs. B4 and B5) leads to 

( )

( )

2 ' '
4 3 2*

2' '
3 2 ' ' *
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4 3
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(1 ) (1 )

8 4 4 2 2
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3 4 )
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22 ' '* *21 2

(1 ) 3 4 2 .
2 2 2

b b
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A h BkL A h BkL wT

tg tg

   +
+ + − + + +   

       

.  (B6) 

After the parameters A, B, and C in this equation are replaced with their corresponding values 0.2, 2.5, and 8.0 from 

Appendix B in Kljun et al. (2015), the equation becomes    
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(B7) 660 

Inside this equation, the only unknown variable is he, and since the equation is its 4th order polynomial, there are four possible 

solutions. One of the positive root values  b bh h   , where δ > 0, must be the solution to he. Unfortunately, an explicit 

solution to he from this equation is not available, so a numerical method must be used.  

B3 Numerical solution to he   

If he on the right side of Eq. (B7) is replaced with hx and represents a value  b bh h   , and 0 on the left side is replaced 665 

with f(hx) but still equals zero in the case of hx = he, then f(hx) is a continuous differentiable function with a non-zero 1st order 

derivative. Therefore, the Newton-Raphson numerical method is applicable to the solution of f(hx) at zero for he (Burden et. 

al., 2016).  

Suppose that  4( )ef h C h    and let  b bh h   be an initial approximation to he value such that ( )
0

' 0
x

x h h
f h

=


and
e bh h−  is sufficiently “small”. Then, the 2nd order Taylor polynomial for f(hx) about hb is given by:  670 

2

' ''( )
( ) ( ) ( ) ( ) ( )

2

x b

x b x b b

h h
f h f h h h f h f h

−
= + − + ,    (B8)  

where hξ lies between hb and hx. Since f(he) = 0, this equation becomes  

2

' ''( )
( ) ( ) ( ) ( ) 0

2

e b

b e b b

h h
f h h h f h f h

−
+ − + = .    (B9) 

Because hξ is unknown, he cannot be resolved from this equation, but after the 2nd order term with "( )f  is dropped, Eq. (B9) 

is commonly written as   675 

'

( )

( )

b

e b

b

f h
h h

f h
 − .        (B10)  

The right side of this equation is the hx-intercept of the tangent line of f(hx) at [hb, f(hb)]. The value of this intercept can be 

denoted by
1eh and is a first approximation for he. In Eq. (B10), the approximation sign can become an equal sign if

1eh is used 

to replace he:  
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h h

f h
= − ,        (B11) 680 

where 

( )2 2 2 ' '( ) 1.68 9.5 12.5b b bf h h kLh k L wT= − + − ,     (B12) 

and  
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.  (B13) 

If we return to Eqs. (B9) and (B11), we see that the difference between he1 and he is small but unknown. Following the 685 

Newton-Rapson method, he1 from Eq. (B11) is used to replace hb, and
1eh on the left side is replaced with a new variable 

2eh , 

with its subscript 2 indicating that it is the 2nd approximation for he. In such a way, he can be iteratively approached by
1neh
+

, 

mathematically described as 

1 '

( )

( )

n

n

n

e

e en

e

f h
h h

f h+
= −        (B14) 

where subscript n is a positive integer indicating the nth approximation for he while ( )
nef h and

' ( )
nef h can be derived in the 690 

same way as for Eqs. (B12) and (B13) from f(hx). Until 
1 1

1.96
n ne eh h 
− −
−  , and as long as ( )

nef h and
' ( )

nef h are valid, he 

can be acquired by   

 
1
,

ne eh h
+

         (B15)  

where σ is the published precision of direct measurements from a ceilometer, and 1.96σ is the accuracy in he from the 

solution procedure above. In this study the precision of the SkyVUETM PRO Ceilometer is used for σ (5 m, Campbell 695 

Scientific Inc., 2025). Alternatively, if during the iteration process, f(hen) and/or ' ( )enf h become invalid, he can be acquired 

backwards by 

 
ne eh h         (B16)  

And with the value of he, h value can be calculated from Eq. (B5).   

While an eddy-covariance flux system is running into a new ∆t, the he value becomes hb value of current ∆t. 700 

However, he from a previous ∆t does not exist in the first ∆t immediately after an eddy-covariance system starts, or in the 

case data variables such as
*u , L, T, and/or ' 'wT are not available due to a system restart, power outage, or heavy 

precipitation/dust interfering with measurements from the sonic anemometer or gas analyzer. In such a case, for quick 
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starting or resuming the continuity of data, an alternative approach described in the next section can be used to approximate 

h for such a “first” output interval.          705 

B4 Approximation to h for the “first” output interval  

     For any “first” ∆t under neutral to stable conditions, h can be computed from Eq. (B1), and under convective conditions, 

it can be approximated from the 2nd order Lagrange interpolation polynomial:  

( ) ( ) ( ) ( )( )
80 5 12

30 15 650 15 30
381 31 3937

h L L L L L= + − + + + + +
 
  

,   (B16) 

which is developed based on the data from Table 1 in Kljun et al. (2015).  Even after a first h value is obtained, if convective 710 

conditions persist, Eqs. (B7) and (B11) cannot be used until a trend (e.g., at least two values) of h are known.  Once a trend 

is established, then the current he can be estimated, which can then be substituted for hb in the next ∆t over which Eq. (B3) 

theory can be applied to estimate h under convective conditions.        

B5 Estimation of hb every ∆t    

To establish the trend for h, at least one more value for h must be acquired in the same way as the “first” ∆t. Once 715 

known, these values provide an estimate of he for current ∆t: 

2

p

e

h h
h h

−
= + ,        (B17) 

where subscript p indicates a previous interval.  The estimate becomes hb value for next ∆t (i.e., the 3rd ∆t). This hb will then 

be used to compute he from Eqs. (B7) to (B16) under convective boundary layer conditions.  If conditions become neutral to 

stable, h is once again directly computed from Eq. (B1) without using hb.  720 

B6 Summary   

 The algorithm developed above was implemented into EasyFlux series (Campbell Scientific Inc. UT, USA) for 

computing h. The h value is used for the applications of flux footprint equations from Kljun et al. (2015). This value is stored 

in flux datasets as the variable name PBLH_F, following the Ameriflux variable naming convention (AmeriFlux, 2018).                

Appendix C: Subroutine in EasyFlux for footprint characteristics from Kljun et al. (2015) 725 
C1 Variable notation 

Subroutine           main program 

U_star            USTAR                   Friction velocity 

h_aerodynamic     z                       Aerodynamic height 

Obukhov           MO_LENGTH              Monin-Obukhov length 730 
h_PBL             PBLH_F                  Planetary boundary layer height 

u_z               U                       Mean wind speed at height of z in the streamwise direction 

range_intrst      FETCH_INTRST           Upwind fetch of interest (measurement targeted range) 

FP_range_intrst   FP_FETCH_INTRST        Percentage of measured scalar flux from upwind fetch of interest 

range(1)          fetch(1) = FETCH_MAX   Upwind location of sources/sinks that contribute most to measured flux 735 
range(2)          fetch(2) = FETCH_70    Upwind fetch within which the sources/sinks contribute 70% to measured flux 

range(3)          fetch(3) = FETCH_80    Upwind fetch within which the sources/sinks contribute 80% to measured flux 

range(4)          fetch(4) = FETCH_90    Upwind range within which the sources/sinks contribute 90% to measured flux 
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C2 Subroutine 

Sub Footprnt_Charctrstcs_Kljun_etal2015 (U_star, h_aerodynamic, Obukhov, h_PBL, _ 740 
                                                                           u_z, range_intrst, FP_range_intrst, rang(4)) 

C2.1 Declaration of variables used inside this subroutine 

          In the two-dimensional matrixes below, the 1st row for convective stratifications and the 2nd row for neutral/stable stratifications. 

The matrixes below symbols are used for code readability.  

a. Equation parameters (a, b, c, and d0) in Table A1 of Kljun et al. (2015) 745 
                                              '  a         b          c         d0 

Dim paramtr_valus(2, 4) = {2.930, -2.285, 2.127, -0.107, _  'Convective boundary layer stratifications.    

                                              1.472, -1.996, 1.480, 0.169}     'Neutral/stable boundary layer stratifications.   

Dim   paramtr_symbls(4)                                                        ‘Parameter symbols in the model of Kljun et al. (2015). 

Alias paramtr_symbls(1) = a                                       750 
Alias paramtr_symbls(2) = b    

Alias paramtr_symbls(3) = c    

Alias paramtr_symbls(4) = d0    

b. Index 

Dim stablty_index As Long                                  'Stratification index: 1 for Obukhov < 0 and 2 for Obukhov >= 0. 755 
Dim i_fp          As Long                                         'Iteration index for computation.   

c. Matrix for the 1st inflection *

1FX ,  maximum *

maxX , and 2nd inflection *

1FX locations on footprint curves (Table 1) 

                                                               * * *

1 max 2' F FX X X   

Dim x_star_infl_max_valus(2, 3) = {0.31026689, 0.82385339, 1.3374399, _   'Convective boundary layer stratifications.    

                                                            0.48210189, 0.91048297, 1.3388640}     'Neutral/stable boundary layer stratifications.   760 
Dim  x_star_infl_max_symbls(3)                                                                        'Symbols for X* at the inflection and max points.  

Alias x_star_infl_max_symbls(1) = x_f1 

Alias x_star_infl_max_symbls(2) = x_max  

Alias x_star_infl_max_symbls(3) = x_f2 

d. Matrix for cumulative footprint (%) to the end of each characteristic zone (Table 2) 765 
                                                               * * *

1 max 2' F FX X X   

Dim cumul_fp_segmnt_valus(2, 3) = {1.1321783,  15.737952,  32.526482, _  'Convective boundary layer stratifications.    

                                                              0.87452260, 13.472100, 28.018350}     'Neutral/stable boundary layer stratifications. 

Dim   cumul_fp_segmnt_symbls(3)                                                                      'Symbols for the cumulative footprint.     

Alias cumul_fp_segmnt_symbls(1) = cumul_x_f1  770 
Alias cumul_fp_segmnt_symbls(2) = cumul_x_max 

Alias cumul_fp_segmnt_symbls(3) = cumul_x_f2 

e. Matrix for nondimensional upwind fetches of sources/sinks contributing 70, 80, or 90% to fluxes  

                                                * * *

70 80 90' X X X                'A subscript indicates percent.    

Dim x_star_p_valus(2, 3) = {3.7400033, 5.5734341, 10.371083, _                  'Convective boundary layer stratifications.  775 
                                               4.3702906, 6.9142010, 14.612024}                     'Neutral/stable boundary layer stratifications. 

Dim   x_star_p_symbls(3)                                                                                   'Symbols for the fetches.  

Alias x_star_p_symbls(1) = x_70 

Alias x_star_p_symbls(2) = x_80 

Alias x_star_p_symbls(3) = x_90  780 

f. Working variables 

Variables for computations of FP_FETCH_INTRST 

Dim x_star_intrst       'Nondimensional upwind fetch of interest for measurements 

Dim fp_segmnt_ahead     'Cumulative footprint 

Dim x_star               'X* nondimensional upwind distance to an eddy covariance flux station   785 
Dim integrtn_incrmnt    'Increment for the numerical integration 

 

Variables for use in Composite Simpson's Rule for numerical integrations 

Dim FP_start            'Footprint value at the starting X* of integration section  

Dim FP_odd             'Summed values of footprint at X* on the right boundary of sequentially odd increment  790 
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Dim FP_even           'Summed values of footprint at X* on the right boundary of sequentially even increment 

Dim FP_end            'Footprint at the ending X* of integration section  

  

C2.2 Computations 

a. Variable Preparation 795 
Select Case Obukhov 

     Case Is < 0 

         stablty_index = 1 

         Move (paramtr_symbls(1),                 4,  paramtr_valus(1, 1),                  4) 

         Move (x_star_infl_max_symbls(1),   3,  x_star_infl_max_valus(1, 1),    3)  800 
         Move (cumul_fp_segmnt_symbls(1), 3,  cumul_fp_segmnt_valus(1, 1), 3) 

         Move (x_star_p_symbls(1),                3,  x_star_p_valus(1, 1),                3)   

    Case Is >= 0 

         stablty_index = 2 

         Move (paramtr_symbls(1),           4,  paramtr_valus(2, 1),                4) 805 
         Move (x_star_infl_max_symbls(1),   3,  x_star_infl_max_valus(2, 1),   3)  

         Move (cumul_fp_segmnt_symbls(1), 3, cumul_fp_segmnt_valus(1, 1), 3) 

         Move (x_star_p_symbls(1),                3, x_star_p_valus(2, 1),                 3)      

EndSelect 'Obukhov 

 810 
 b. FETCH_MAX 

 rang(1) = (k*x_max*h_aerodynamic*u_z)/(U_star*(1-h_aerodynamic/h_PBL))   'k is van Karman constant, given in main program 

  c. FETCH_70, FETCH_80, and FETCH_90 

 rang(2) = (k*x_70*h_aerodynamic*u_z)/(U_star*(1-h_aerodynamic/h_PBL)) 

 rang(3) = (k*x_80*h_aerodynamic*u_z)/(U_star*(1-h_aerodynamic/h_PBL)) 815 
 rang(4) = (k*x_90*h_aerodynamic*u_z)/(U_star*(1-h_aerodynamic/h_PBL)) 

d. Footprint portion of measured flux within an upwind fetch of interest for measurements in real-scale fields 

 Preparation for numerical integration  

 x_star_intrst = (range_intrst/h_aerodynamic)*(1-h_aerodynamic/h_PBL)*(U_star/(k*u_z)) 

 Select Case x_star_intrst  820 
     Case Is <= x_f1    

        integrtn_incrmnt   = (x_star_intrst - d0*(1+1e-7))/1000  

        fp_segmnt_ahead  = 0  

        x_star                    = d0*(1+1e-7) 

     Case Is > x_f1 AND Is <= x_max 825 
        integrtn_incrmnt  = (x_star_intrst - x_f1)/1000 

        fp_segmnt_ahead = cumul_x_f1 

        x_star = x_f1    

     Case Is > x_max AND Is <= x_f2 

        integrtn_incrmnt  = (x_star_intrst - x_max)/1000 830 
        fp_segmnt_ahead = cumul_x_max 

        x_star = x_max  

     Case Is > x_f2 

        integrtn_incrmnt  = (x_star_intrst - x_f2)/1000  

        fp_segmnt_ahead = cumul_x_f2  835 
        x_star = x_f2  

 EndSelect 'x_star_intrst  

 Preliminary values of FP_start, FP_odd, FP_even for use inside an iteration 

 FP_start = (a*(x_star - d0)^b)*EXP(-c/(x_star - d0))     'Footprint at the starting X* of integration section 

 FP_odd  = 0  840 
 FP_even = 0 

https://doi.org/10.5194/egusphere-2025-4576
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



33 

 

For i_fp = 1 To 499 

      x_star   = x_star + integrtn_incrmnt 

      FP_odd = FP_odd + (a*(x_star - d0)^b)*EXP(-c/(x_star - d0)) 

         845 
      x_star     = x_star + integrtn_incrmnt 

      FP_even = FP_even + (a*(x_star - d0)^b)*EXP(-c/(x_star - d0)) 

        

Next i_fp 

FP_end   = (a*(x_star - d0)^b)*EXP(-c/(x_star - d0))  850 
FP_even = FP_even - FP_end 

 

Composite Simpson's Rule for numerical integrations (below, the 2nd term on the right) 

FP_range_intrst = fp_segmnt_ahead + 100*(integrtn_incrmnt/3)*(FP_start + 4*FP_odd + 2*FP_even + FP_end)  

  855 
EndSub 'Footprnt_Charctrstcs_Kljun_etal2015 

 

C3 The use of subroutine in the main program of EasyFlux series (Campbell Scientific Inc., UT, USA)  

      The Subroutine to compute the footprint characteristics from Kljun et al. (2015) is used in EasyFlux series through a Call instruction:  

Call Footprnt_Charctrstcs_Kljun_etal2015(USTAR, z, MO_LENGTH, PBLH_F,  860 
                                                      U, FETCH_INTRST, FP_FETCH_INTRST, fetch(1)) 

For every averaging interval in eddy-covariance systems, USTAR, z, MO_LENGTH, and U have their values available from measurements, 

PBLH_F is computed using the algorithm from Appendix B, FETCH_INTRST is entered by a user before or while EasyFlux is running, 

and the values of flux footprint characteristics are output from this subroutine above that is executable as long as a prime is put ahead of 

each line of text.    865 
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