

1 Dynamic and Thermal Analysis of Sandstorm 2 Processes Based on Vertical Observation Data

3 Yifei Wang^{1,2,3,4,5}, Wen Huo^{1,3,4,5}, Yongqiang Liu^{1,2,3,4,5}, Mayibaier Maihamut^{1,2,3,4,5}, Fan Yang^{1,3,4,5},
4 Chenglong Zhou^{1,3,4,5}, Xinghua Yang^{1,3,4,5,6}, Ali Mamtimin^{1,3,4,5}
5 1.Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China
6 2.College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
7 3.National Observation and Research Station of Desert Meteorology, Taklimakan Desert of Xinjiang, Urumqi 830002, China
8 4.Taklimakan Desert Meteorology Field Experiment Station, China Meteorological Administration, Urumqi 830002, China
9 5.Xinjiang Key Laboratory of Desert Meteorology and Sandstorm, Urumqi 830002, China
10 6.School of Geographical Sciences, Shanxi Normal University, Taiyuan 030032, China

11
12 **Corresponding Author:** Wen Huo huowenpet@idm.cn orcid:0000-0002-7861-2424

13 **Abstract:** The Taklamakan Desert (TD) is a key source of dust storms in East Asia, frequently impacting
14 China and neighboring countries. Based on dual-gradient observational experiments in the central and
15 peripheral regions of the TD, combined with ERA5 data and HYSPLIT analysis, eight dust storms from
16 April to June 2024 were studied. The findings include:(1)Dust storm trajectories in the TD fall into three
17 types: (a) east-to-west movement, (b) transport across the Tianshan and Pamir Mountains, and (c)
18 west-to-east movement driven by thermal factors in summer.(2)Spring dust storms (March–April) are
19 dominated by dynamic factors, while summer storms (May–June) are influenced by thermal factors.
20 Significant pressure and temperature changes 12–6 hours before a storm provide a critical prediction
21 window.(3)Horizontal dust flux (Q) at XiaoTang (peripheral region) follows a parabolic pattern, while at
22 TaZhong (central region), terrain plays a key role. High Q values result in larger fluctuations, while low Q
23 values show relative stability. Seasonal temperature differences, convective intensity, and flat terrain drive
24 alternating wind speed trends at XiaoTang before storms, with stronger fluctuations observed in summer
25 due to rising temperatures.
26

27 **Keywords:** Dust Storms, Backward Trajectory Analysis, Causation Analysis, Horizontal And Vertical
28 Dust Flux Analysis

29 1 Introduction

30 Dust storms are one of East Asia's most severe natural disasters, occurring frequently in arid
31 and semi-arid regions such as the Taklamakan Desert in China and the Gobi Desert bordering
32 Mongolia. These events are widespread in spring, impacting millions(Bao & Fang, 2007; Shao &
33 Dong, 2006). Dust storms are often accompanied by air pollution, strong winds, and significant
34 reductions in visibility, severely affecting human life and production activities. These disasters
35 disrupt agriculture, transportation, and infrastructure and pose threats to public health, particularly
36 by significantly increasing the incidence of respiratory diseases(Achakulwisut et al., 2018;
37 Manalisidis et al., 2020; Mohebbi et al., 2019; Tong et al., 2023; Wen et al., 2024).In addition,
38 dust storms negatively impact ecosystems by causing soil degradation and water source

39 contamination, further exacerbating the ecological vulnerability of affected regions (Ma et al.,
40 2020; Perez et al., 2008).

41 Meanwhile, the frequent occurrence of dust storms may also intensify global climate change
42 and exacerbate challenges in cross-regional environmental governance(Prospero, 1999; Zong et al.,
43 2021). The Taklamakan Desert is in Asia's arid and semi-arid regions, characterized by scarce
44 precipitation, vast sandy terrain, and dry climatic conditions. Combined with the influence of
45 Mongolian cyclones, these factors make the region prone to frequent dust storms in spring,
46 establishing it as one of the primary dust sources in East Asia (Shao & Dong, 2006; Xu et al.,
47 2020).

48 The formation of dust storms is a complex physical process driven by interactions between
49 the atmosphere and surface soil, where dust source materials, dynamic conditions, and thermal
50 factors play critical roles in influencing their occurrence. The characteristics and quantity of dust
51 source materials determine the generation and intensity of dust. As the dynamic condition, wind is
52 the primary direct factor triggering dust storms, while thermal factors provide strong supportive
53 conditions for their occurrence(Iversen & White, 1982). The formation of dust storms is also
54 influenced by various factors related to surface dust source materials, including dust particle size,
55 soil moisture, and vegetation cover. When soil particle size exceeds 60–70 μm , the threshold for
56 dust emission increases gradually with particle size due to the gravitational influence of the
57 particles themselves. Conversely, when particle size is less than 60–70 μm , the increased cohesive
58 forces between particles significantly raise the dust emission threshold as particle size decreases
59 (Iversen & White, 1982; Marticorena & Bergametti, 1995).In addition, soil particle size affects
60 dust emission flux during dust storm events(Yang et al., 2016). Soil moisture is likewise a crucial
61 influencing factor. On one hand, higher moisture levels enhance the adhesive forces between
62 particles; conversely, they promote the aggregation of fine particles, thereby suppressing sand
63 mobilization and reducing dust fluxes(Iversen & White, 1982; Shao & Dong, 2006). The increase
64 in vegetation effectively suppresses the occurrence of dust storms or mitigates their intensity by
65 reducing the supply of sand sources and dissipating wind energy(MacKinnon et al., 2004;
66 Raupach, 1992).

67 In East Asia during spring, there is a significant positive correlation between strong winds
68 and the frequency of dust storms (Xu et al., 2020).In East Asia, Mongolian cyclones frequently
69 generate strong winds, which in turn lead to the formation of dust storms. These cyclones exhibit
70 pronounced seasonality (March to May) and are typically accompanied by weather conditions
71 such as strong winds, temperature drops, dust emissions, and significant reductions in
72 visibility.Their impact is not confined to Mongolia and northern China but can extend across the
73 entire East Asian region. Through upper-atmosphere circulation, these effects may even spread to
74 more distant areas, such as Korea, Japan, and the western Pacific coast(Liu et al., 2004; X. Wang
75 et al., 2009)

76 Horizontal and vertical dust fluxes jointly determine the spatial extent of dust dispersion,
77 which is critical in shaping global dust transport pathways. High vertical dust fluxes can transport
78 dust to more distant regions, thereby influencing atmospheric chemical composition, climate
79 systems, and ecological environments. Accurately understanding dust flux is crucial for improving
80 dust storm forecasting, particularly within climate models, as it aids in better predicting the
81 impacts of dust on air quality and ecosystems(S. Chen et al., 2023b). Recent studies have focused
82 on this field, revealing several significant findings. Research by (Kai & Huiwang, 2007) identified

83 three primary transport pathways for East Asian dust storms:1) Passing through China and
84 depositing in the Bohai Sea, Korea Strait, Sea of Japan, and Yellow Sea;2) Extending westward
85 into Central Asia;3) Reaching as far as the western Pacific under the influence of strong
86 northwesterly winds. Additionally, many researchers have utilized the WRF-Chem model to
87 analyze dust emissions from different regions, thereby improving the numerical prediction of dust
88 storms, particularly in terms of transport and deposition calculations(DeMeester & Johnson, 1975;
89 Hosseini Dehshiri & Firoozabadi, 2024; Rizza et al., 2017; Y. Zeng et al., 2020). For the
90 Taklamakan Desert, observational data from (Aili et al., 2023)indicate a significant decreasing
91 trend in deposition rates across different underlying surfaces in the northeastern desert-oasis
92 transitional zone. The order is as follows: mobile sand desert > semi-mobile sand desert > desert
93 vegetation > shelterbelt forest > farmland. This demonstrates the effectiveness of increased
94 vegetation in suppressing dust storms. Improved WRF-Chem simulation results by (Y. Chen et al.,
95 2023) indicate that in the Taklamakan Desert, the formation of summer dust storms is primarily
96 influenced by thermal factors. In contrast, spring dust storms are dominated by dynamic
97 factors.(Huo et al., 2022), based on dual-gradient observational experiments in the central and
98 peripheral regions of the desert, found that in flat areas, horizontal dust flux (Q) and vertical dust
99 flux (F) exhibit a linear relationship and an exponential variation with height. However, no
100 significant changes were observed over undulating terrain.(H. Wang et al., 2015), through field
101 observations, measured the horizontal wind erosion flux and dust emissions during windblown
102 sand/dust processes across arid and semi-arid regions in northern China. Their findings revealed
103 that the Taklamakan Desert exhibits significantly stronger horizontal dust flux than other studied
104 regions, thus identifying it as a significant source of dust emissions.

105 In summary, due to observational methods' limitations, most studies rely on remote sensing
106 data to calculate horizontal and vertical dust fluxes (Q and F) or analyze observational data. Few
107 studies have successfully integrated both approaches. Research that integrates multiple data
108 sources to comprehensively analyze the variations in Q and F and the underlying driving factors is
109 relatively scarce and remains an area for further exploration. In this context, the present study
110 conducted dual-point gradient synchronous dust storm observational experiments in the
111 Taklamakan Desert, obtaining multiple key parameters and their differences under various
112 topographical conditions. It also incorporated reanalysis data and backward trajectory analysis.
113 This approach further enhanced the ability to analyze the dynamic characteristics of dust storms.
114 Remote sensing data strongly supports the spatial distribution and diffusion of dust storms on a
115 large scale. At the same time, backward trajectory analysis effectively traces dust storms' origins
116 and transport pathways. Combining multiple data sources, this approach overcomes the limitations
117 of single observational methods and offers a more comprehensive analytical perspective.

118 Through the comprehensive analysis of these data, the study provides an in-depth
119 understanding of how different topographical features in the Taklamakan Desert influence key
120 parameters of dust storms. It also offers strong technical support for investigating, monitoring, and
121 predicting dust storm formation. This deepens the understanding of dust storm characteristics and
122 their evolution and enhances the recognition of the Taklamakan Desert's influence on dust
123 emissions and transport in Asia and globally. This provides valuable reference points for future
124 related research and lays a solid scientific foundation for preventing and managing dust storms.

125 Section 2 of this paper describes the study area, the data used, and the methodology. Section
126 3 analyzes dust trajectories, the meteorological background of dust storms, and their dynamic and

127 thermal factors. It also examines the horizontal and vertical fluxes and temperature and wind
128 speed variations across different desert topographies based on observational data. The discussion
129 and conclusions are presented in Sections 4 and 5, respectively.

130 **2 Study Area, Data, and Methodology**

131 **2.1 Study Area**

132 The Taklamakan Desert (TD) is located within the Tarim Basin in the southwestern part of
133 the Xinjiang Uyghur Autonomous Region in China. It is the second-largest shifting sand desert in
134 the world. Surrounded by mountain ranges such as the Tianshan and Kunlun Mountains, the
135 region experiences a highly arid climate. Key characteristics of the desert include its remoteness
136 from the ocean, sparse vegetation, diverse dune types with high mobility, extensive and thick
137 shifting sand areas, and fine sand particles. This region is subject to frequent dust storms
138 year-round and is one of the significant sources of dust storms in East Asia(Sun & Liu, 2006).

139
140 **Fig. 1 Location and topography of the Taklimakan Desert, and the TZ and XT observation towers (maps and site photos)**

141 **2.2 Observational Data**

142 The observational data were obtained from two stations: X Station, located on the northern
143 edge of the Taklamakan Desert, representing flat terrain, and TZ Station, situated in the desert
144 interior, representing undulating terrain. TZ Station is at an elevation of 80 meters, while X Station
145 is at 100 meters. Both stations are equipped with gradient observation systems and collection
146 systems. The gradient layers at TZ Station are at 1 m, 2 m, 5 m, 8 m, 16 m, 24 m, 32 m, 47 m, 63
147 m, and 80 m. At XT Station, they are at 1 m, 2 m, 5 m, 10 m, 24 m, 32 m, 47 m, 63 m, 80 m, and
148 100 m.

149 The gradient observation system records climate parameters at each layer, including hourly
150 and minute-based measurements of temperature, humidity, wind speed, wind direction, and
151 atmospheric pressure. The gradient collection system gathers dust samples during dust storms
152 using BSNE (Big Spring Number Eight) dust collectors installed at each layer, which are used to
153 determine the horizontal dust flux at different heights.

154 Nine dust storm events were observed between April 3 and July 10, 2024 (as detailed in Table
155 1). However, during the second observation, data from the TZ Station were missing, preventing a
156 complete record. Therefore, the remaining eight observations became the primary samples for this
157 study.

158 **Tab. 1 Sample details**

	Station Name	Start time of dust storm	Duration time(h)	Sample collection time
1	TZ	2024.3.31	22	2024.4.3
	XT	2024.3.31	17.3	2024.4.4
2	XT	2024.4.5	5	2024.4.6
	TZ	2024.4.12	24	2024.4.16
3	XT(2024.4.12	7.5	2024.4.15
	TZ	2024.4.17	36	2024.4.20
4	XT	2024.4.17	23	2024.4.21
	TZ	2024.4.26	17.5	2024.5.12
5	XT	2024.4.26	42.5	2024.5.12
	TZ	2024.5.12	24	2024.5.16
6	XT	2024.5.12	55	2024.5.17
	TZ	2024.5.20	40	2024.6.3
7	XT	2024.5.20	27.5	2024.5.30
	TZ	2024.6.4	12	2024.6.10
8	XT	2024.6.4	7	2024.6.10
	TZ	2024.6.18	58	2024.7.9
9	XT)	2024.6.18	22	2024.7.10
	TZ)			

159 **2.3 Remote Sensing Data**

160 To further investigate the causes of dust storms, the study analyzed relevant meteorological
161 conditions using the ERA5 reanalysis dataset. ERA5, provided by the European Centre for
162 Medium-Range Weather Forecasts (ECMWF), is the fifth generation of global climate and
163 weather reanalysis data. It has a spatial resolution of $0.25^\circ \times 0.25^\circ$ and a temporal resolution of 1
164 hour.

165 The ERA5 reanalysis dataset has demonstrated high accuracy in East Asia and desert regions.
166 (Y. Wang et al., 2023) compared observational meteorological parameters from the Gurbantünggüt
167 Desert with ERA5, MERRA2, JRA-55, and NCEP-FNL data and found that ERA5 had the most
168 minor error. To assess their reliability and accuracy, (Y. Wang et al., 2023) compared reanalysis
169 data from NCEP/NCAR, NCEP/DOE, NCEP/CFSR, JRA-25, ERA-Interim, and MERRA (with
170 observational data. The results showed that the mean values of geopotential height and
171 temperature from these reanalysis datasets were generally consistent with the observational data.
172 However, regarding specific humidity, the performance of NCEP/NCAR, NCEP/DOE, and
173 NCEP/CFSR was inferior to that of the JRA-25, ERA-Interim, and MERRA products.

174 **2.4 HYSPLIT model**

175 The study used the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
176 model to analyze the transport pathways of each dust storm event. This model utilizes grid data
177 from the Global Data Assimilation System (GDAS) dataset to compute backward trajectories
178 (Stein et al., 2015). The method assumes that the trajectory of a particle moving within the wind

179 field is the integral of the particle's changes over time and space, with its vector velocity
180 determined by linear interpolation in both space and time. The final position of the air mass is
181 calculated using the following equation:

$$P_1(t + \Delta t) = P(t) + V(P, t)\Delta t$$
$$P(t + \Delta t) = P(t) + 0.5[V(P, t) + V(P_1, t + \Delta t)]\Delta t$$

182 In this equation, P represents the initial position, P_1 is the first guessed position, Δt is the time
183 interval, and V is the velocity of the air mass or particle. The simulation can be conducted online
184 at the following link: https://www.ready.noaa.gov/HYSPLIT_traj.php.

185 2.5 The calculation of horizontal dust flux (Q) and vertical dust flux (F)

186 There are two primary methods for obtaining Q: the first is direct measurement in the field
187 using various dust collection instruments; the second involves wind tunnel simulation experiments,
188 where empirical equations are established between Q and wind speed u or friction velocity u^* , and
189 Q is then inferred based on observed u or u^* values. In this experiment, direct measurement was
190 employed. Professional personnel were hired to check the BSNE dust collectors daily to ensure
191 they were clean and dust-free. After each dust storm, dust samples were collected and weighed
192 on-site.

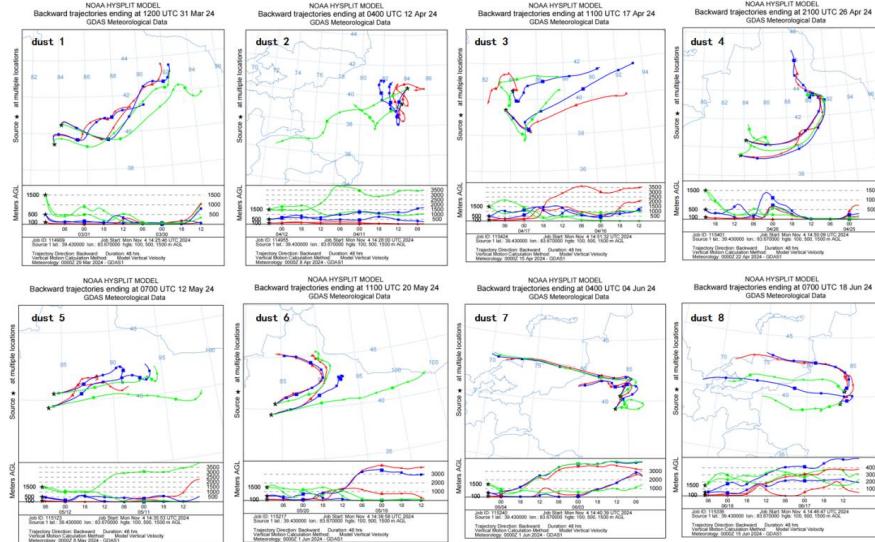
193 Both domestic and international dust mobilization experiments commonly use the two-layer
194 dust concentration gradient method to calculate F(Gillette & Passi, 1988; X. Zeng & Dickinson,
195 1998; Zhang et al., 2017). The formula is as follows:

$$F = ku_* \frac{(c_1 - c_2)}{\ln(z_2/z_1)}$$

196 In the formula, F represents the vertical dust flux ($\text{kg}/\text{m}^2/\text{s}$); z_1 and z_2 are the measurement
197 heights (m); u^* is the friction velocity (cm/s); c_1 and c_2 are the dust concentrations at the two
198 heights (kg/m^3); and k is a constant (0.4). The dust concentration ccc can be obtained by
199 converting the dust transport data measured by the dust collectors:

$$c = \frac{M}{utA}$$

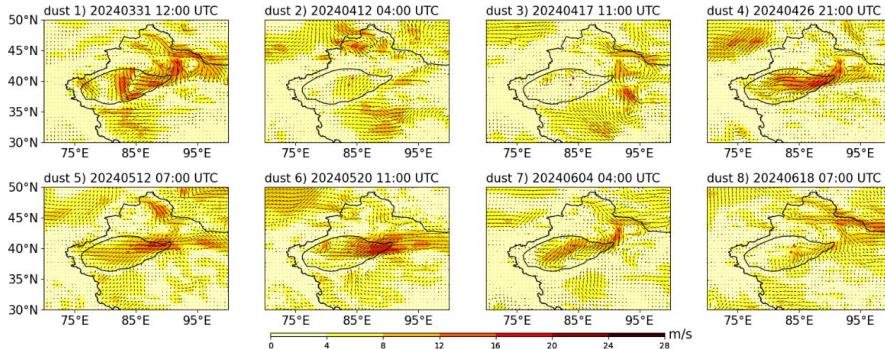
200 In the formula, c represents the dust concentration at the measurement height ($\text{kg}/\text{m}^3/\text{s}$); M is
201 the dust mass collected by the BSNE dust collector at the measurement height (kg); u is the
202 average wind speed during the sampling period at the measurement height (m/s); t is the sampling
203 time (s); and A is the inlet area of the BSNE dust collector (m^2).


204 The formula for calculating friction velocity is as follows:

$$u(z) = \frac{u_*}{k} \ln \frac{z}{z_0}$$

205 In the formula, u represents the wind speed at the observation height (cm/s); u^* is the friction
206 velocity (cm/s); z is the observation height (cm); z_0 is the surface roughness length (cm); and k is a
207 constant (0.4).

208 3 Results and Analysis


209 3.1 Dust Storm Trajectory Analysis

210

211

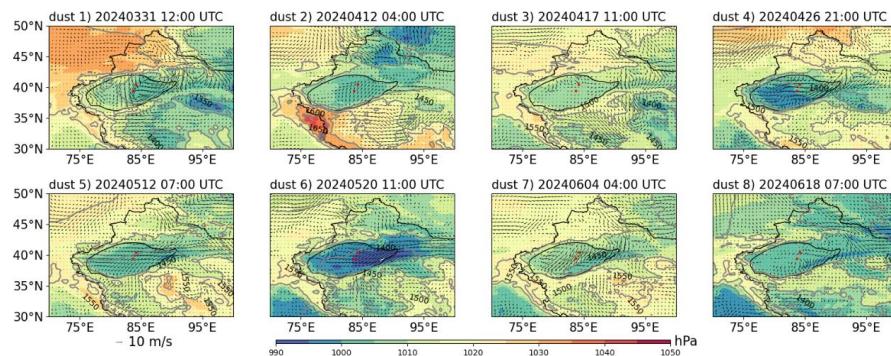
Fig. 2 Schematic diagram of the backward trajectory of these dust storms

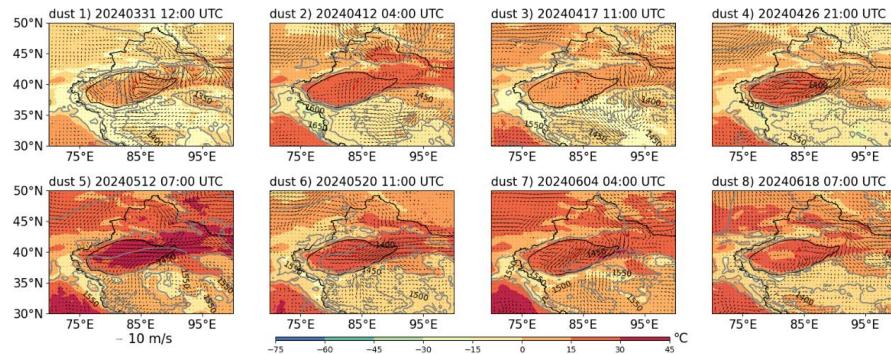
212

213

Fig. 3 10m wind vector plume field diagram

214 As shown in Figure 2, the eight dust storm events are labeled Dust1 through Dust8, and
215 backward trajectory simulations were conducted using the HYSPLIT model. The results show that
216 the dust trajectories can be classified into three types: Dust1, Dust3, Dust4, Dust5, and Dust6
217 move from east to west, passing through a gap in the northeastern Tarim Basin before entering the
218 desert; Dust2 originates from the Indian subcontinent, crossing the Tibetan Plateau to enter the
219 desert; Dust7 and Dust8 are from airflow originating in southern Russia and eastern Uzbekistan,
220 and after long-distance transport, they cross the Tianshan Mountains before reaching the desert.


221 The TD covers the surface with loose materials such as gravel, and strong winds carry large
222 dust particles. The anomalous variation in wind speed is closely related to the occurrence of dust
223 storms. Therefore, wind speed anomaly trajectories can reflect the transport paths of dust storms.
224 Using the 10m wind components u and v from ERA5's "single-level hourly data since 1940," wind
225 field maps were generated (Fig. 3). The figure shows that for Dust1, Dust4, Dust5, Dust6, Dust7,
226 and Dust8, strong winds primarily enter the desert through a gap on the eastern side of the Tarim
227 Basin, with Dust1, Dust4, Dust5, and Dust6 experiencing powerful winds. Some strong winds in


228 Dust1, Dust3, Dust4, Dust6, Dust7, and Dust8 exhibit a north-to-south trend, crossing the
229 Tianshan Mountains. In contrast, the strong winds, Dust2, blow from south to north from Tibet
230 towards southern Xinjiang, consistent with the results from the backward trajectory model.

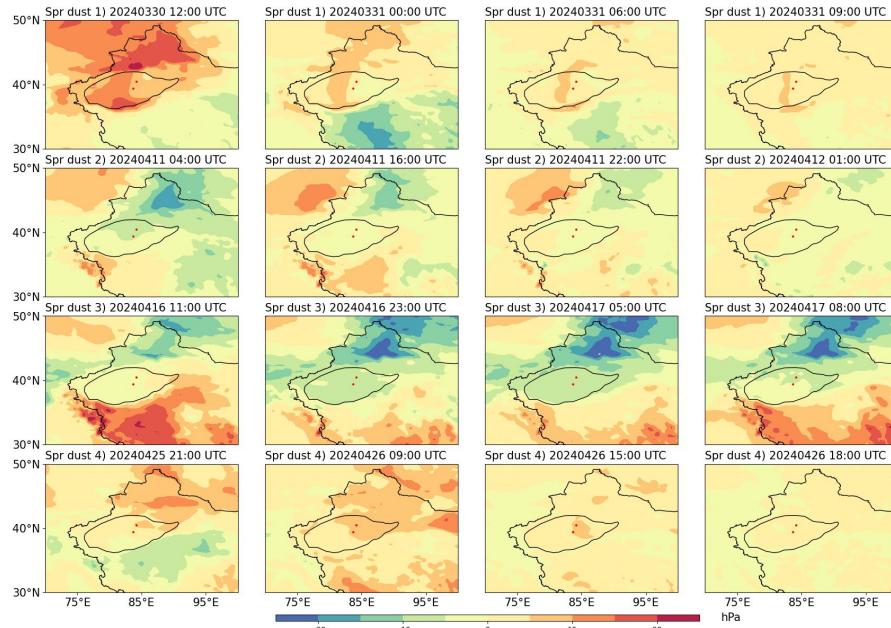
231 In summary, the backward trajectory analysis conducted using the HYSPLIT model based on
232 the observation station coordinates effectively reveals the dust source trajectories passing through
233 the stations before the occurrence of dust storms. However, it cannot fully reflect the direction of
234 the wind and its sources across the desert region. In contrast, ERA5 reanalysis data reveal the
235 anomalous wind speeds corresponding to the HYSPLIT model and provide wind speed
236 information for the Tarim Basin region, offering more comprehensive data for dust trajectory
237 analysis. Based on the combined analysis of both datasets, the conclusion can be drawn that the
238 dust storm trajectories in the TD are complex, with no single directional input, but rather a
239 composite result of multiple directions. Most dust trajectories move from east to west, entering the
240 desert through a gap on the eastern side of the Tarim Basin. The subsequent most common
241 trajectories involve dust moving from north to south over the Tianshan Mountains. In contrast,
242 fewer trajectories are observed moving from south to north across the Tibetan Plateau and over the
243 Kunlun Mountains.

244 **3.2 Dust Storm Dynamic and Thermal Meteorological Background**

245
246 **Fig.4 Mean sea level pressure, 10m wind vector, 850Phm altitude field**

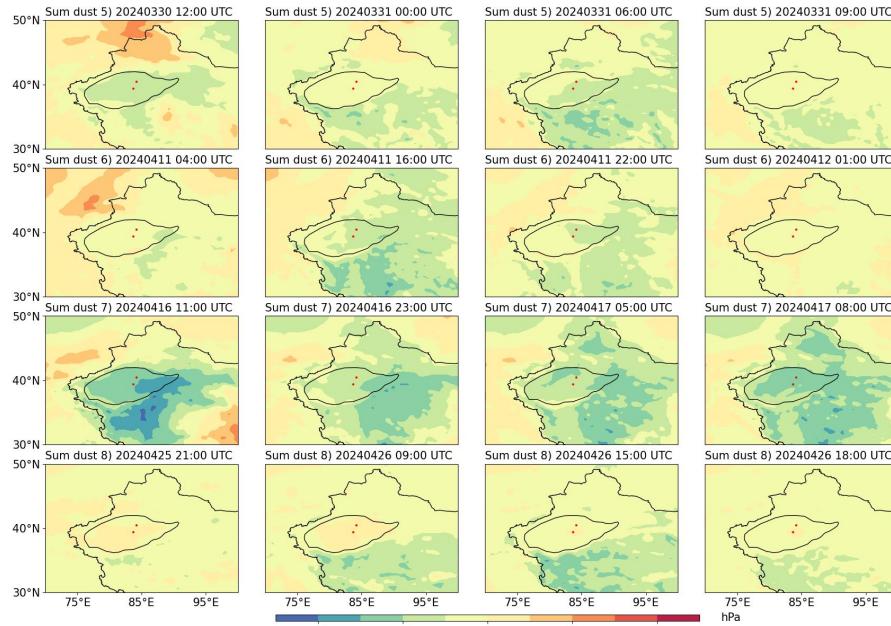
247
248 **Fig.5 2m temperature, 10m wind vector, 850Phm altitude field**

249 Figure 4 shows the average sea-level pressure (hPa), 850 hPa geopotential height (m), and 10
250 m horizontal wind ($m \cdot s^{-1}$) for the periods leading up to Dust1-8. In all eight events, the north, west,
251 and southwest regions of the Taklamakan Desert (TD) exhibited higher-than-average sea-level



252 pressure and geopotential height than the TD area. In the cases of Dust1, Dust3, Dust4, Dust5, and
253 Dust6, there was a significant pressure difference between eastern Kazakhstan, southern Russia,
254 northern Xinjiang, and the Taklamakan Desert (TD) region. This pressure gradient caused most
255 airflow trajectories to enter the TD through the gap in the eastern Tianshan Mountains. However,
256 some airflows crossed the western and central Tianshan Mountains before reaching the desert. For
257 Dust2, the average sea-level pressure in the southwestern region, near the northern border of
258 Pakistan and northern India, was 1050 hPa, with a geopotential height of 1065 m. In contrast, the
259 pressure in the Tarim Basin region was between 1000 and 1010 hPa, with a geopotential height of
260 1450 m. This climatic background led to strong upper-level winds crossing the Pamir and Kunlun
261 Mountains, ultimately entering the Taklamakan Desert (TD). In the cases of Dust7 and Dust8, the
262 pressure gradient in the TD region was not as significant as in the surrounding areas, and it was
263 not easy to indicate the direction of the strong winds. Additionally, all three dust storms occurred
264 around noon local time during the summer. It is hypothesized that the temperature difference
265 between the land and the atmosphere caused warm air to rise, prompting the surrounding air to
266 flow toward the TD, generating strong winds and triggering dust storms.

267 Fig.5 shows the 2m temperature ($^{\circ}\text{C}$), 850 hPa geopotential height (m), and 10 m horizontal
268 wind ($\text{m}\cdot\text{s}^{-1}$) during the 8 dust storm events. Dust1-8 shows that the surface temperature in the
269 Taklamakan Desert (TD) consistently exhibits high and evenly distributed temperatures. However,
270 for Dust5, Dust7, and Dust8, the temperature in the TD region is notably higher than in other
271 events. This increase in temperature can be attributed to the onset of May, which led to higher
272 surface temperatures. Additionally, these three events occurred around noon, when solar radiation
273 is strongest. The desert surface's higher specific heat capacity than the air resulted in a temperature
274 difference between the surface and the atmosphere, creating an unstable atmospheric condition.
275 This instability led to atmospheric convection, which generated strong winds and triggered dust
276 storms.


277 In summary, the pressure gradient before dust storms in March and April is significantly
278 greater than in May and June, while the surface temperature shows a marked increase from April
279 to May. Therefore, dust storms occurring from March to June were categorized into two periods
280 for analysis: spring (March and April) and summer (May and June).

281 **3.3 Analysis of Dynamic and Thermodynamic Factors**

282
283

Fig.6 Spring sandstorm Δ 24h, Δ 12h, Δ 6h, Δ 3h pressure difference

284
285

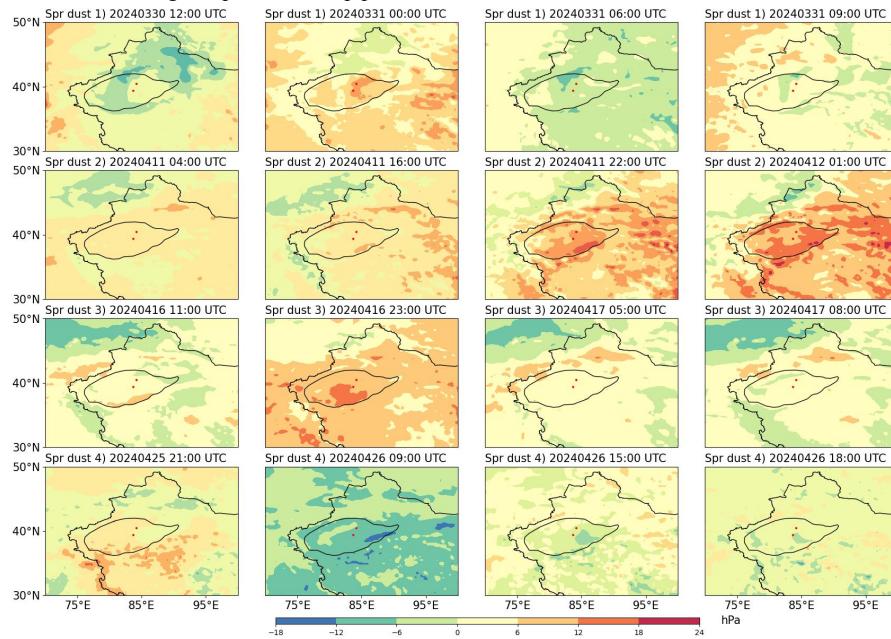
Fig.7 Summer sandstorm Δ P24h, Δ P12h, Δ P6h, Δ P3h pressure difference

286 Fig.6 and Fig.7 show the changes in average sea-level pressure over the 3, 6, 12, and 24
 287 hours preceding the dust storms in the spring and summer periods, respectively. The calculation
 288 method involves subtracting the sea-level pressure at the specified times (3, 6, 12, and 24 hours
 289 before the dust storm) from the average sea-level pressure at the time of the dust storm. In the

290 figures, higher values indicate a greater increase in pressure, while lower values reflect a larger
291 decrease in pressure.

292 In ΔP_{24h} , during Dust1-7, the average sea-level pressure in the northern part of the
293 Taklamakan Desert (TD) was lower than at the time of the dust storm. Additionally, for Dust2 and
294 Dust3, the southwestern region also showed a lower pressure than that at the time of the storm.
295 However, in ΔP_{12h} , during Dust1-4, the pressure in the northern and southwestern parts of the
296 Taklamakan Desert (TD) gradually increased but remained lower than the pressure at the time of
297 the dust storm. In contrast, for Dust5-8, the pressure approached that at the time of the storm, and
298 there were no significant changes in the subsequent ΔP_{6h} and ΔP_{3h} periods. For Dust1-4, there
299 was little change in pressure from ΔP_{6h} to ΔP_{3h} , but it still differed significantly from the
300 pressure at the time of the dust storm, especially for Dust3.

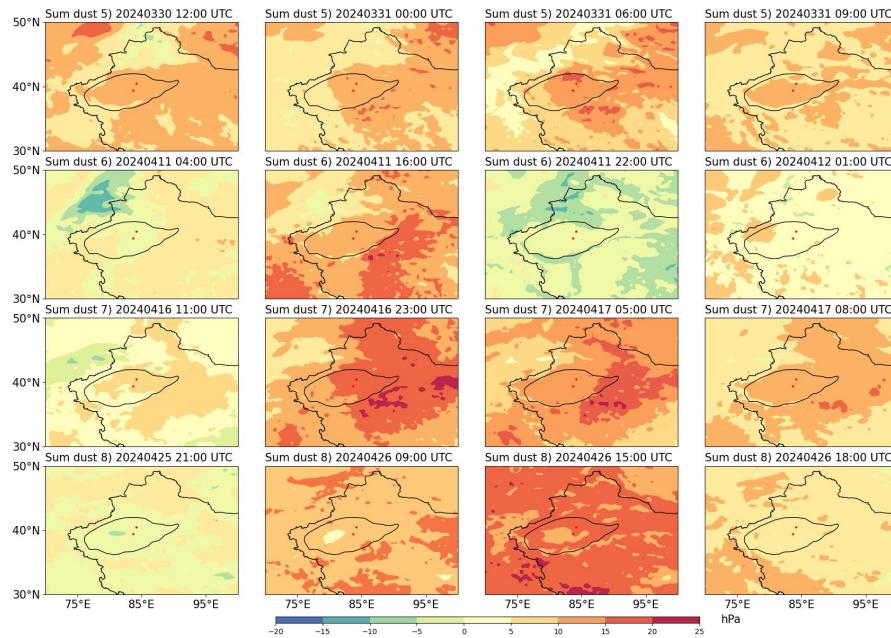
301 In summary, there is a clear difference in the pressure changes before dust storms in the
302 spring and summer in the Taklamakan Desert (TD). In the spring, the pressure changes in the
303 northern or southern parts of TD are significantly larger in ΔP_{24h} compared to the summer, with a
304 gradual increase in pressure in these areas leading up to the storm, forming a noticeable pressure
305 gradient. This is consistent with the pressure difference observed during the dust storm. In the
306 summer, the pressure at TD already approaches that at the time of the storm by ΔP_{12h} , with little
307 change afterward. Therefore, it can be inferred that pressure changes play a more direct and
308 important role in the formation and development of dust storms in spring, while in summer, other
309 factors may have a greater influence on dust storm occurrence.


310 **Tab. 2 Variance and range $\Delta P_{24h}, \Delta P_{12h}, \Delta P_{6h}, \Delta P_{3h}$ before the dust storm**

	Variance of ΔP_{24h}	Range of variation	Variance of ΔP_{12h}	Range of variation	Variance of ΔP_{6h}	Range of variation	Variance of ΔP_{3h}	Range of variation
dust1	49.91	(-10.66, 24.99)	35.37	(-17.82, 9.58)	11.55	(-11.37, 10.59)	3.76	(-5.75, 8.31)
dust2	34.9	(-19.23, 17.15)	28.06	(-14.77, 19.90)	16.01	(-14.64, 16.75)	7.27	(-15.91, 9.53)
dust3	71.14	(-17.23, 28.38)	59.21	(-25.17, 22.88)	67.81	(-25.47, 17.85)	83.14	(-24.15, 23.38)
dust4	26.18	(-14.89, 14.47)	12.95	(-6.59, 15.37)	4.24	(-4.99, 9.05)	1.24	(-2.84, 6.86)
dust5	19.22	(-10.14, 12.81)	10.29	(-12.25, 6.52)	11.73	(-16.05, 6.41)	3.36	(-8.55, 3.61)
dust6	11.47	(-8.78, 10.89)	19.8	(-16.58, 7.53)	8.25	(-11.44, 6.05)	2.66	(-6.79, 5.68)
dust7	45.82	(-21.66, 14.83)	21.26	(-16.02, 6.48)	21.45	(-17.80, 6.35)	23.27	(-19.91, 5.88)
dust8	2.82	(-7.51, 4.75)	10.48	(-13.80, 4.47)	11.32	(-17.07, 1.61)	3.26	(-9.90, 2.63)

311 Table 2 presents the variance and range of ΔP_{24h} , ΔP_{12h} , ΔP_{6h} , and ΔP_{3h} for the dust
312 storms. Since the pressure difference effectively characterizes pressure changes, its variance
313 reflects the intensity of pressure fluctuations. The analysis reveals that the range and variance in
314 the spring (Dust1-4) are generally larger than in the summer (Dust5-8), indicating that pressure
315 changes before dust storms in the spring are more intense. Notably, the pressure difference

316 between ΔP_{12h} and ΔP_{6h} for Dust1-4 shows significant variation, suggesting that the 12-hour to
317 6-hour period is when pressure fluctuations are most pronounced. Therefore, ΔP_{12h} and ΔP_{6h}
318 could represent key windows for spring dust storm prediction. Closely monitoring pressure
319 fluctuations during this phase can help predict the occurrence of dust storms in advance.



320

321

322

Fig.8 Spring sandstorm $\Delta 3, \Delta 6, \Delta 12, \Delta 24$ temperature difference

323

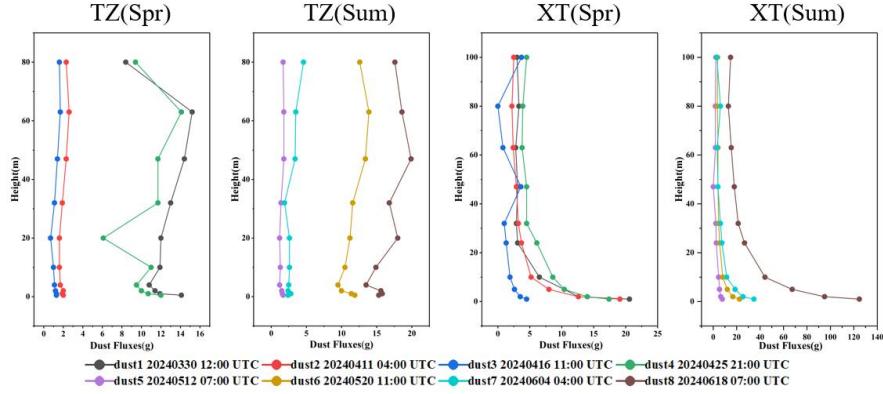
324

Fig.9 Summer sandstorm $\Delta 3, \Delta 6, \Delta 12, \Delta 24$ temperature difference

325 In desert regions or inland plateaus, the surface temperature increases dramatically, causing
326 the near-surface air to expand and rise, leading to the formation of upward air currents. Upward air
327 currents can trigger convection in specific areas or create strong winds that stir up surface dust,
328 leading to dust storms. Figures 8 and 9 show the temperature changes 3, 6, 12, and 24 hours before
329 the dust storms in spring and summer. Similar to the calculation of the average sea-level pressure,
330 the larger the value, the lower the current temperature compared to the time of the dust storm,
331 indicating more intense upward movement.

332 Both in spring and summer, the temperature changes in the Taklamakan Desert (TD) and
333 surrounding areas are influenced by multiple factors, such as time of day and climate conditions,
334 making the temperature variation complex. In spring, there is no clear trend in temperature
335 changes, whereas in summer, most of the time is characterized by warming, particularly in the
336 final three hours. In spring, only Dust2 shows a warming trend, whereas in summer, all processes
337 exhibit a warming trend. Therefore, it can be inferred that temperature changes have a more
338 significant impact on summer dust storms.

339

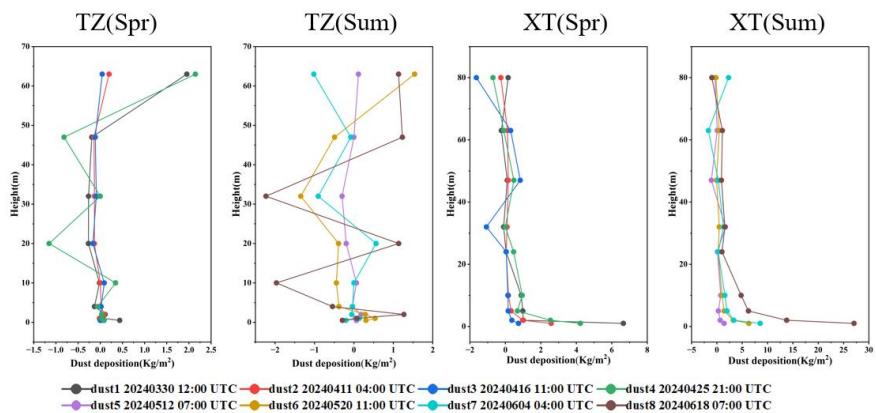

Tab. 3 Variance and range 24h, 12h, 6h, and 3h before the dust storm

		Variance of	Range of	Variance of	Range of	Variance of	Range of	Variance of
		AP24h	variation	AP12h	variation	AP6h	variation	AP3h
	dust1	14.75	(-14.72, 11.67)	16.53	(-7.04, 20.38)	8.23	(-11.52, 6.52)	3.7
	dust2	10.23	(-11.71, 8.58)	16.8	(-12.25, 14.16)	14.79	(-7.21, 17.02)	11.9
	dust3	21.84	(-21.57, 4.40)	18.35	(-12.53, 16.39)	22.47	(-21.32, 8.41)	25.81
	dust4	11.57	(-12.32, 11.02)	11.68	(-20.77, 0.23)	5.12	(-14.30, 3.57)	1.44
	dust5	12.75	(-14.40, 8.30)	21.95	(-3.87, 22.52)	13.07	(-0.63, 20.23)	1.74
	dust6	11	(-13.92, 6.40)	16.46	(-5.59, 20.28)	4.76	(-7.99, 7.40)	1.8
	dust7	19.82	(-11.55, 16.01)	29.84	(-10.43, 22.44)	22.69	(-4.06, 27.81)	21.14
	dust8	3.71	(-9.98, 6.68)	5.36	(-3.26, 14.72)	5.32	(-2.25, 15.46)	1.99
								8.42)

340

341 Table 3 shows the variance and range of temperature differences (ΔT) 24h, 12h, 6h, and 3h
342 before the dust storm. Similar to the variance in pressure differences, the variance rapidly
343 decreases between $\Delta T12h$ and $\Delta T6h$, indicating a swift transition from a stable temperature state
344 to an unstable state right before the dust storm occurs. This suggests that the $\Delta T12h$ - $\Delta T6h$ period
345 is crucial for predicting summer dust storms.

346 **3.4 Dust Flux Analysis**


347

348

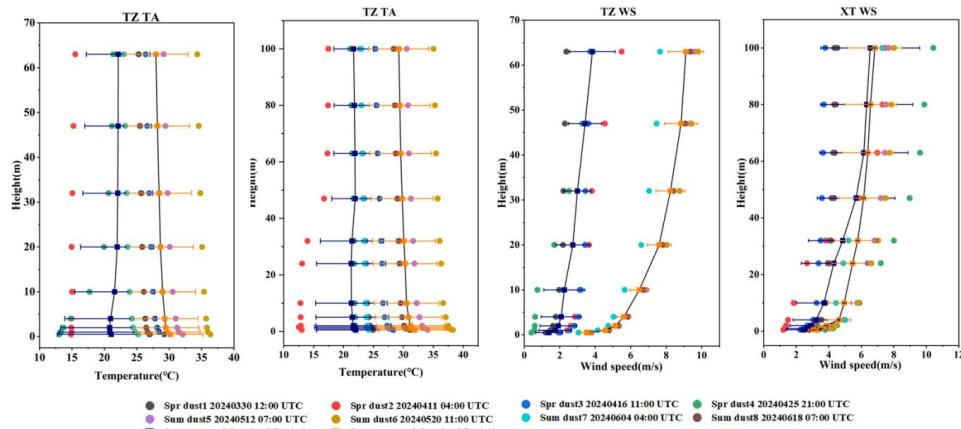
Fig.10 Schematic Diagram of Horizontal Dust Flux during Sandstorms (Left: TZ, Right: XT)

349 Fig.10 shows the horizontal dust flux (Q) at TZ and XT during spring and summer. The Q at
 350 TZ is mainly concentrated between 2g and 10-14g. When Q is low, the dust flux changes smoothly
 351 with height, showing no significant fluctuations. However, as Q increases, a noticeable upward
 352 trend appears between 47-63 cm, followed by a gradual decline, with a rapid increase in Q below
 353 2m. According to Huo W (2022), the terrain at TZ is more undulating than XT and is influenced
 354 by natural dunes. As a result, the dust flux in this area shows an abnormal increase, highlighting
 355 the significant impact of topography on dust flux, especially in regions with strong winds or
 356 frequent dust activity. In such areas, topography plays a crucial role in dust transport.

357 The dust flux (Q) at XT exhibits a pattern similar to that of a parabolic function during spring
 358 and summer, gradually increasing as the height decreases. Q remains relatively stable between 100
 359 and 24 meters, with slight fluctuation. However, once the height drops below 24 meters, the Q
 360 value rises significantly, especially in the near-surface layer (0 to 2 meters), where dust flux
 361 rapidly increases as the height decreases. This is due to the gravitational effect on dust particles,
 362 which tend to accumulate near the surface and are more easily lifted by the wind at lower
 363 altitudes.

364

365

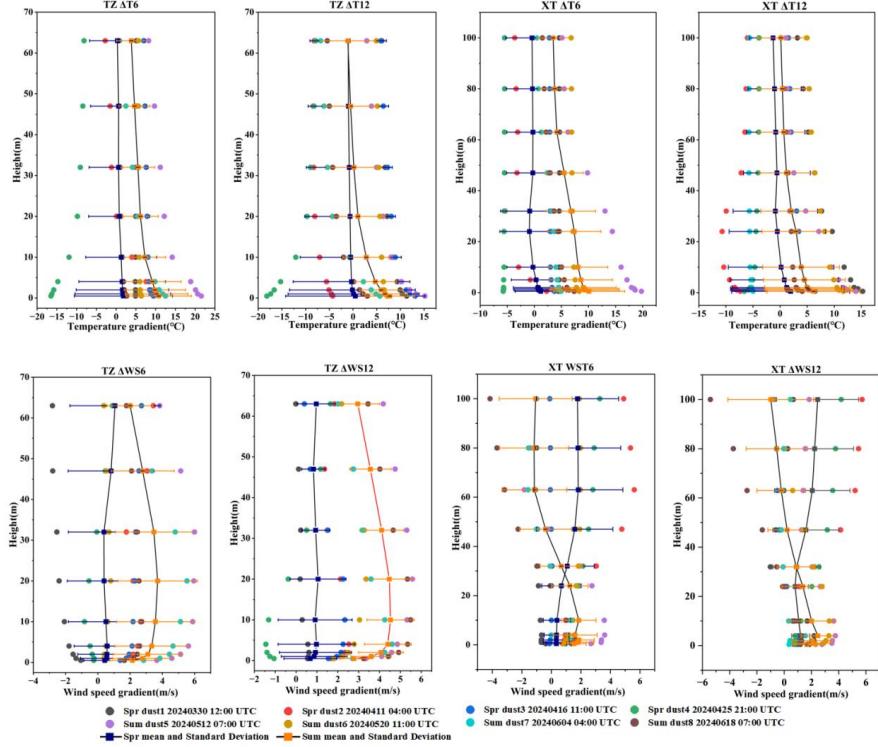

Fig.11 Schematic Diagram of Vertical Dust Flux during Sandstorms (Left: TZ, Right: XT)

366 Fig.11 illustrates the vertical dust flux (F) at TZ and XT during spring and summer. In

367 summer at TZ, the F values fluctuate more significantly. For example, in Dust 8, the F values
368 oscillate between -2 and 1.5 kg/m², showing clear fluctuations. In contrast, the spring F values are
369 more stable, with relatively minor changes; for Dust 1-3, the F values are mainly close to 0,
370 indicating minimal vertical dust movement in the spring at TZ. On the other hand, during the
371 summer, rapid surface temperature rise generates updrafts, causing more pronounced fluctuations
372 in the F values. This suggests that temperature changes strongly influence dust storms at TZ in the
373 summer.

374 The F curve at XT shows a similar trend to that of Q, exhibiting a pattern resembling a
375 "bell-shaped curve," which suggests that the wind more easily lifts dust as height decreases.
376 Additionally, the F values at XT show a similar trend in spring and summer, without the
377 pronounced influence of temperature rise in TZ. This could be because TZ's more variable
378 topography makes it more susceptible to temperature-induced updrafts. In contrast, XT's relatively
379 flatter terrain may not experience such significant temperature effects, thus leading to more stable
380 vertical dust flux behavior.

381
382 **Fig.12 Schematic Diagram of Wind Speed and Temperature during Sandstorms (Left: TZ, Right: XT)**


383 Fig.12 shows the temperature and wind speed variations during sandstorm events at the TZ
384 and XT stations. The figure shows that the average temperature during summer sandstorms is
385 5-10°C higher than the normal summer temperature. Additionally, during summer sandstorms, the
386 temperature at the lower levels of the stations is significantly higher than at higher levels. In
387 contrast, lower temperatures are lower or comparable to those at higher levels during spring
388 sandstorms.

389 At both TZ and XT, wind speed decreases with height. Comparing the wind speed variations
390 between spring and summer, the amplitude of the wind speed change in spring is smaller than in
391 summer. This phenomenon is likely related to the higher surface temperatures in summer, which
392 increase the temperature difference between the surface and the atmosphere, making wind speed
393 changes near the surface more intense. At TZ, the wind speed during summer sandstorms at higher
394 levels is significantly higher than in spring, while the wind speed at lower levels is similar to that
395 of spring. This is likely because spring sandstorms are dominated by horizontal winds, which are
396 influenced by the undulating dunes, resulting in lower wind speeds at higher levels. In contrast,
397 summer sandstorms are dominated by vertical winds and are less influenced by the terrain, thus

398 showing a larger wind speed difference at higher levels. The terrain near the XT station is
399 relatively flat, so the differences in wind speed variations between spring and summer are minor.

400

401

402

Fig.13 Schematic Diagram of Wind Speed and Temperature Changes ($\Delta 6$, $\Delta 12$) during Sandstorms (Left: TZ, Right: XT)

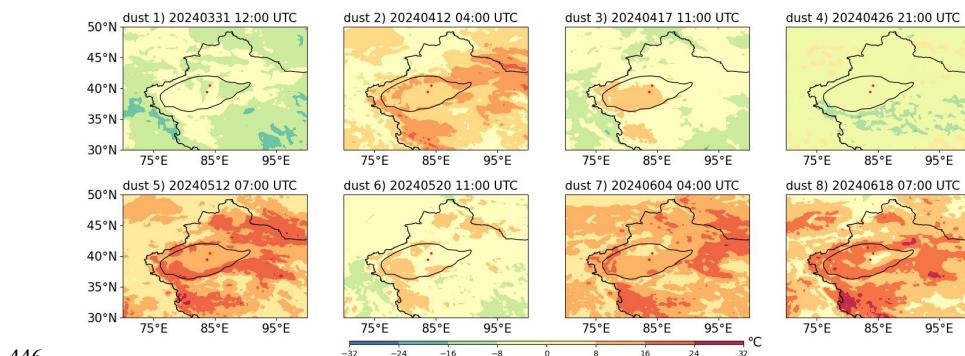
403 Figure 13 shows the temperature and wind speed changes 6 and 12 hours before the
404 sandstorm event. It can be observed that, at both TZ and XT, the average $\Delta T6$ and $\Delta T12$ in
405 summer are higher than those in spring, and the gap between them increases as the height
406 decreases. This indicates that the temperature increase in summer is significantly higher near the
407 surface than in spring, and as the height decreases, the temperature rise becomes more intense.

408 The wind speed variation chart for summer at XT shows a decrease in wind speed at higher
409 levels, while wind speed at lower levels increases. In contrast, in spring, wind speed at higher
410 levels increases, and wind speed at lower levels either remains unchanged or slightly increases.
411 This phenomenon may be related to the fact that the XT station is located on the northern edge of
412 TD, where the terrain is flat and not influenced by complex features such as dunes. The reasons
413 for this will be discussed in the discussion section.

414 4 Discussion

415 4.1 Dust Trajectory Analysis

416 This study analyzes eight dust storm events in TD from March to June. Through trajectory
417 analysis, it was found that the paths of dust storms entering the desert interior exhibit significant



418 diversity, but can be summarized into three main types.

419 The first type is the "East-Inflow" path, where most dust storms move from northeast to
420 southwest. This path's formation is likely closely related to the topography surrounding TD: the
421 northern and western parts of the desert are surrounded by high mountain ranges, while the eastern
422 area has lower terrain, including the low-lying Lop Nur region. When a strong high-pressure
423 system occurs in the northern regions, strong winds enter the desert through the lower terrain gaps,
424 thus forming the East-Inflow path. The second type is the "Mountain-Crossing" path, where some
425 strong winds enter the desert by crossing the western Tianshan Mountains or the Pamir Plateau.
426 However, winds along this path are typically concentrated in the upper atmospheric layers, and
427 their intensity is limited. The topographical barrier effect weakens the surface wind speed, with
428 more of the driving force concentrated in the middle and upper levels of the atmosphere. The third
429 type is the "Westward" path, primarily occurring during the two dust storms after June, with the
430 trajectories moving from west to east. This path is likely related to the climatic characteristics of
431 Central Asia. As summer arrives, the surface heating in the inland areas of Central Asia becomes
432 more pronounced, leading to higher surface air temperatures around the desert. This temperature
433 contrast affects the direction of air flow. When the dust storm approaches the desert, the larger
434 surface-to-atmosphere temperature difference may cause a change in the direction of the airflow.

435 **4.2 Discussion of Dynamic and Thermal Factors**

436 This study further reveals the impact of dynamic and thermal mechanisms on dust storm
437 processes. Analysis of the ERA5 data shows that from March to April, the TD region and its
438 surroundings exhibit stronger pressure gradients, which favor the formation of strong winds.
439 Additionally, within 24 hours before the dust storm event, spring sees significantly more dramatic
440 pressure changes, aligning with the dynamic-dominated mechanism during this period. From May
441 to June, the temperature at the desert surface rises significantly, increasing the temperature
442 difference between the surface and the atmosphere. Furthermore, 24 hours before the dust storm,
443 surface temperatures tend to increase in summer; in spring, temperatures either decrease or remain
444 constant. This indicates that thermal factors dominate the formation of dust storms during the
445 summer months.

446
447 **Fig.14 Temperature Difference in Dust Storms (Dust1-8)**

448 To better explore the impact of temperature on dust storms, Figure 14 shows the
449 surface-atmosphere temperature difference for Dust1-8. It can be observed that, except for Dust6,
450 which occurred in the afternoon, the surface-atmosphere temperature difference in summer around
451 TD and its surrounding areas is significantly higher than in spring. Additionally, from the

452 periphery to the interior of TD, the temperature difference gradually decreases, indicating a
453 transition from an unstable to a stable atmosphere, which suggests that dust is moving from the
454 periphery of TD toward the desert interior.

455 Analysis of observational data reveals that in summer, both TZ and XT experience higher
456 temperatures than in spring, with the temperature rise before dust storms being significantly
457 greater in summer. Moreover, as height decreases, the temperature change becomes more intense.
458 In contrast, the temperature difference in spring remains roughly around 0°C with height changes.
459 This suggests that in the TD region, the overall temperature is higher in summer. However, the
460 temperature increase is also significantly larger than in spring, especially in the lower altitude
461 areas. Therefore, it can be inferred that spring temperature has a relatively minor impact on dust
462 storms, while temperature in summer has a significantly larger effect.

463 For XT, the wind speed difference between spring and summer shows two distinctly different
464 patterns. In summer, the wind speed at higher levels decreases, while at lower levels, it increases.
465 In spring, the wind speed at higher levels increases, while the wind speed at lower levels remains
466 constant or slightly increases. This could be due to the higher surface temperatures in summer,
467 which increase the temperature difference and lead to intense convection, promoting updrafts and
468 intensifying low-level wind speeds. At higher levels, the wind speed slightly decreases due to air
469 sinking and a more stable atmosphere. In spring, with lower surface temperatures and smaller
470 temperature differences, convection is weakened, and high-level wind speeds increase due to
471 enhanced vertical stability. In contrast, low-level wind speeds remain relatively unchanged.

472 A comprehensive analysis from point to area was conducted by combining reanalysis data
473 and observational data, further proving the seasonal differences in dust storm formation in the TD
474 region. In spring, the primary driving force of dust storms is the pressure gradient, where the
475 significant horizontal pressure difference leads to strong wind processes, triggering dust storms. In
476 contrast, dust storms are mainly influenced by the difference in surface-atmosphere temperature in
477 summer. The significant temperature contrast between the surface and the atmosphere creates
478 intense instability, promoting enhanced convective activity and thereby intensifying the
479 occurrence of dust storms. This multi-angle verification, from localized observations to regional
480 reanalysis, further clarifies the dominant roles of dynamic and thermal factors in different seasons.
481

482 **4.3 Key parameters are influenced by the terrain.**

483 At the XT station (representing flat terrain), the dust flux (Q) exhibits a clear power-law
484 function characteristic. In contrast, at the TZ station (representing undulating terrain), the dust flux
485 (Q) shows a phased variation pattern. When Q values are high, an initial upward trend is followed
486 by a decline, and then another increase. This variation may be attributed to secondary dust sources
487 from the surrounding dunes, particularly influencing the mid-layer observational data, which
488 causes an increase in dust flux within a specific altitude range. F exhibits a pattern similar to that
489 of Q, but with more significant terrain differences. At the XT station, F remains relatively stable,
490 whereas at the TZ station, F stabilizes around 0 kg/m² in spring. However, the variation increases
491 in summer, oscillating between -2 and 1.5 kg/m². This phenomenon is likely due to the dominant
492 influence of summer temperatures on vertical air currents.

493 **5 Conclusion**

494 The study is based on a dual-gradient observational experiment conducted in the central and
495 peripheral regions of the Taklamakan Desert (TD), with eight observational samples obtained from
496 April to June. Combined with ERA5 reanalysis data and the HYSPLIT backward trajectory model,
497 the following conclusions were drawn:

498 The dust storm trajectories in the Taklamakan Desert (TD) can be classified into three types:
499 first, dust storms travel from east to west, passing through the gaps in the Tianshan Mountains;
500 second, they traverse the western Tianshan and the Pamir Plateau; and finally, after the onset of
501 summer in June, the dust storm trajectories are dominated by thermal factors, initially moving
502 from west to east, and then shifting from the northeast to the southwest into the desert.

503 Dynamic factors primarily drive dust storms in the TD in March and April, where strong
504 winds caused by pressure gradients lead to dust storms. In May and June, thermal factors
505 dominate, with temperature differences between the surface and the atmosphere triggering
506 convection that results in dust storms. Additionally, the period 12 to 6 hours before the dust storm
507 is characterized by significant changes in atmospheric pressure and temperature, which can be
508 used as a key time window for predicting the occurrence of dust storms.

509 At the XT station, representing flat terrain, Q and F rapidly increase near the surface,
510 following a power-law function pattern. At the TZ station, representing undulating terrain, Q
511 shows a similar power-law function-like curve when values are high. However, fluctuations in
512 mid-level Q are caused by secondary dust sources from dunes. On the other hand, F is influenced
513 by both terrain and thermal factors, with minor fluctuations in spring and larger fluctuations in
514 summer. During summer, both stations experience significantly higher temperatures and more
515 pronounced temperature changes compared to spring, highlighting the more decisive influence of
516 summer temperatures on dust storms. Additionally, the variability in wind speed at the XT station
517 during summer indicates that wind speed changes are primarily influenced by seasonal
518 temperature differences, convective intensity, and the flat terrain of the area.

519 520 **Acknowledgements**

521 We gratefully acknowledge the National Earth System Science Data Center
522 (<http://www.geodata.cn>) and the Institute of Desert Meteorology (China Meteorological
523 Administration, Urumqi) for providing essential datasets. We also extend our thanks to the College
524 of Geography and Remote Sensing Science, Xinjiang University (Urumqi), for their technical
525 support.

526 527 **Author Contributions**

528 Y.W. : Conceptualization , Writing – original draft , Formal Analysis.

529 WH.:Methodology, Supervision, Writing - review. & editing.

530 YL.:Validation.

531 M.M : Investigation, Data Curation.

532 F.Y: Experimental Design, Supervision.

533 C.Z..X.Y.A.M.: Investigation , Data Curation.

534

535

536

537 **Funding**

538 This work was supported by the Tianshan Talent Project of Xinjiang (Grant No.
539 2023TSYCCX0075), the China Meteorological Administration Youth Innovation Team Project
540 (Grant No. CMA2024QN13), the National Natural Science Foundation of China (42207134), and
541 the Xinjiang Science and Technology Innovation Team (Tianshan Innovation Team) Project (Grant
542 No. 2022TSYCTD0007).

543

544 **Data availability**

545 The meteorological observational data used in this study are maintained and owned by the
546 Institute of Desert Meteorology, China Meteorological Administration, located in Urumqi,
547 Xinjiang, China, and are subject to institutional regulations and access restrictions. ERA5
548 reanalysis datasets were obtained from the European Centre for Medium-Range Weather Forecasts
549 (ECMWF) through the Copernicus Climate Data Store (<https://cds.climate.copernicus.eu>).
550 Researchers or interested parties who wish to obtain access to the observational datasets may
551 submit a formal request to the Institute of Desert Meteorology, outlining the purpose and scope of
552 their intended use. Approval of such requests will be at the discretion of the institute, in
553 accordance with its data-sharing policies.

554

555 **Competing Interests**

556 The authors declare no competing interests.

557

558

559

560

561

562 **References**

563 Achakulwisut, P., Mickley, L. J., & Anenberg, S. C. (2018). Drought-sensitivity of
564 fine dust in the US Southwest: Implications for air quality and public health under
565 future climate change. *Environmental Research Letters*, 13(5), 054025.
566 <https://doi.org/10.1088/1748-9326/aabf20>

567 Aili, A., Xu, H., Xu, Q., & Liu, K. (2023). Aeolian dust movement and deposition
568 under local atmospheric circulation in a desert-oasis transition zone of the
569 northeastern Taklimakan desert. *Ecological Indicators*, 157, 111289.
570 <https://doi.org/10.1016/j.ecolind.2023.111289>

571 Bao, C., & Fang, C. (2007). Water resources constraint force on urbanization in water
572 deficient regions: A case study of the Hexi Corridor, arid area of NW China.
573 *Ecological Economics*, 62(3–4), 508–517.
574 <https://doi.org/10.1016/j.ecolecon.2006.07.013>

575 Chen, S., Zhao, D., Huang, J., He, J., Chen, Y., Chen, J., Bi, H., Lou, G., Du, S.,
576 Zhang, Y., & Yang, F. (2023a). Mongolia Contributed More than 42% of the Dust
577 Concentrations in Northern China in March and April 2023. *Advances in Atmospheric*

578 *Sciences*, 40(9), 1549–1557. <https://doi.org/10.1007/s00376-023-3062-1>

579 Chen, S., Zhao, D., Huang, J., He, J., Chen, Y., Chen, J., Bi, H., Lou, G., Du, S.,
580 Zhang, Y., & Yang, F. (2023b). Mongolia Contributed More than 42% of the Dust
581 Concentrations in Northern China in March and April 2023. *Advances in Atmospheric
582 Sciences*, 40(9), 1549–1557. <https://doi.org/10.1007/s00376-023-3062-1>

583 Chen, Y., An, J., Qu, Y., Xie, F., & Ma, S. (2023). Dust radiation effect on the weather
584 and dust transport over the Taklimakan Desert, China. *Atmospheric Research*, 284,
585 106600. <https://doi.org/10.1016/j.atmosres.2022.106600>

586 DeMeester, T. R., & Johnson, L. F. (1975). Evaluation of the Nissen antireflux
587 procedure by esophageal manometry and twenty-four hour pH monitoring. *American
588 Journal of Surgery*, 129(1), 94–100. [https://doi.org/10.1016/0002-9610\(75\)90174-9](https://doi.org/10.1016/0002-9610(75)90174-9)

589 Gillette, D. A., & Passi, R. (1988). Modeling dust emission caused by wind erosion.
590 *Journal of Geophysical Research: Atmospheres*, 93(D11), 14233–14242.
591 <https://doi.org/10.1029/JD093iD11p14233>

592 Hosseini Dehshiri, S. S., & Firoozabadi, B. (2024). Dust emission, transport, and
593 deposition in central Iran and their radiative forcing effects: A numerical simulation.
594 *Atmospheric Pollution Research*, 15(11), 102267.
595 <https://doi.org/10.1016/j.apr.2024.102267>

596 Huo, W., Song, M., Wu, Y., Zhi, X., Yang, F., Ma, M., Zhou, C., Yang, X., Mamtimin,
597 A., & He, Q. (2022). Relationships between Near-Surface Horizontal Dust Fluxes and
598 Dust Depositions at the Centre and Edge of the Taklamakan Desert. *Land*, 11(7), 959.
599 <https://doi.org/10.3390/land11070959>

600 Iversen, J. D., & White, B. R. (1982). Saltation threshold on Earth, Mars and Venus.
601 *Sedimentology*, 29(1), 111–119. <https://doi.org/10.1111/j.1365-3091.1982.tb01713.x>

602 Kai, Z., & Huiwang, G. (2007). The characteristics of Asian-dust storms during
603 2000–2002: From the source to the sea. *Atmospheric Environment*, 41(39),
604 9136–9145. <https://doi.org/10.1016/j.atmosenv.2007.08.007>

605 Liu, J.-T., Jiang, X.-G., Zheng, X.-J., Kang, L., & Qi, F.-Y. (2004). An Intensive
606 Mongolian Cyclone Genesis Induced Severe Dust Storm. *Terrestrial, Atmospheric
607 and Oceanic Sciences*, 15(5), 1019.
608 [https://doi.org/10.3319/TAO.2004.15.5.1019\(ADSE\)](https://doi.org/10.3319/TAO.2004.15.5.1019(ADSE))

609 Ma, M., Yang, X., He, Q., Zhou, C., Mamtimin, A., Huo, W., & Yang, F. (2020).
610 Characteristics of dust devil and its dust emission in northern margin of the
611 Taklimakan Desert. *Aeolian Research*, 44, 100579.
612 <https://doi.org/10.1016/j.aeolia.2020.100579>

613 MacKinnon, D. J., Clow, G. D., Tigges, R. K., Reynolds, R. L., & Chavez, P. S.
614 (2004). Comparison of aerodynamically and model-derived roughness lengths (zo)
615 over diverse surfaces, central Mojave Desert, California, USA. *Geomorphology*,
616 63(1–2), 103–113. <https://doi.org/10.1016/j.geomorph.2004.03.009>

617 Manosalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020).
618 Environmental and Health Impacts of Air Pollution: A Review. *Frontiers in Public
619 Health*, 8, 14. <https://doi.org/10.3389/fpubh.2020.00014>

620 Marticorena, B., & Bergametti, G. (1995). Modeling the atmospheric dust cycle: 1.
621 Design of a soil-derived dust emission scheme. *Journal of Geophysical Research:*

622 *Atmospheres*, 100(D8), 16415–16430. <https://doi.org/10.1029/95JD00690>

623 Mohebbi, A., Green, G. T., Akbariye, S., Yu, F., Russo, B. J., & Smaglik, E. J. (2019).

624 Development of Dust Storm Modeling for Use in Freeway Safety and Operations

625 Management: An Arizona Case Study. *Transportation Research Record: Journal of*

626 *the Transportation Research Board*, 2673(5), 175–187.

627 <https://doi.org/10.1177/0361198119839978>

628 Perez, L., Tobias, A., Querol, X., Künzli, N., Pey, J., Alastuey, A., Viana, M., Valero,

629 N., González-Cabré, M., & Sunyer, J. (2008). Coarse Particles From Saharan Dust

630 and Daily Mortality. *Epidemiology*, 19(6), 800–807.

631 <https://doi.org/10.1097/EDE.0b013e31818131cf>

632 Prospero, J. M. (1999). Long-range transport of mineral dust in the global atmosphere:

633 Impact of African dust on the environment of the southeastern United States.

634 *Proceedings of the National Academy of Sciences*, 96(7), 3396–3403.

635 <https://doi.org/10.1073/pnas.96.7.3396>

636 Raupach, M. R. (1992). Drag and drag partition on rough surfaces. *Boundary-Layer*

637 *Meteorology*, 60(4), 375–395. <https://doi.org/10.1007/BF00155203>

638 Rizza, U., Barnaba, F., Miglietta, M. M., Mangia, C., Di Liberto, L., Dionisi, D.,

639 Costabile, F., Grasso, F., & Gobbi, G. P. (2017). WRF-Chem model simulations of a

640 dust outbreak over the central Mediterranean and comparison with multi-sensor desert

641 dust observations. *Atmospheric Chemistry and Physics*, 17(1), 93–115.

642 <https://doi.org/10.5194/acp-17-93-2017>

643 Shao, Y., & Dong, C. H. (2006). A review on East Asian dust storm climate,

644 modelling and monitoring. *Global and Planetary Change*, 52(1–4), 1–22.

645 <https://doi.org/10.1016/j.gloplacha.2006.02.011>

646 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F.

647 (2015). NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System.

648 *Bulletin of the American Meteorological Society*, 96(12), 2059–2077.

649 <https://doi.org/10.1175/BAMS-D-14-00110.1>

650 Sun, J., & Liu, T. (2006). The Age of the Taklimakan Desert. *Science*, 312(5780),

651 1621–1621. <https://doi.org/10.1126/science.1124616>

652 Tong, D., Feng, I., Gill, T. E., Schepanski, K., & Wang, J. (2023). How Many People

653 Were Killed by Windblown Dust Events in the United States? *Bulletin of the*

654 *American Meteorological Society*, 104(5), E1067–E1084.

655 <https://doi.org/10.1175/BAMS-D-22-0186.1>

656 Wang, H., Jia, X., Li, K., & Li, Y. (2015). Horizontal wind erosion flux and potential

657 dust emission in arid and semiarid regions of China: A major source area for East Asia

658 dust storms. *CATENA*, 133, 373–384. <https://doi.org/10.1016/j.catena.2015.06.011>

659 Wang, X., Zhai, P., & Wang, C. (2009). Variations in extratropical cyclone activity in

660 northern East Asia. *Advances in Atmospheric Sciences*, 26(3), 471–479.

661 <https://doi.org/10.1007/s00376-009-0471-8>

662 Wang, Y., Gao, J., Mamtimin, A., Sayit, H., Zhou, C., Li, R., Dawut, M., Yang, F.,

663 Huo, W., Wen, C., Song, M., & Aihaiti, A. (2023). Evolution law of atmospheric

664 boundary layer in Gurbantünggüt Desert based on reanalysis dataset and in situ

665 observation data. *Heliyon*, 9(3), e14147.

666 <https://doi.org/10.1016/j.heliyon.2023.e14147>
667 Wen, H.-J., Wang, S.-L., Wu, C.-D., & Liang, M.-C. (2024). Association of Asian dust
668 storms and PM2.5 with clinical visits for respiratory diseases in children. *Atmospheric*
669 *Environment*, 333, 120631. <https://doi.org/10.1016/j.atmosenv.2024.120631>
670 Xu, C., Guan, Q., Lin, J., Luo, H., Yang, L., Tan, Z., Wang, Q., Wang, N., & Tian, J.
671 (2020). Spatiotemporal variations and driving factors of dust storm events in northern
672 China based on high-temporal-resolution analysis of meteorological data (1960–2007).
673 *Environmental Pollution*, 260, 114084. <https://doi.org/10.1016/j.envpol.2020.114084>
674 Yang, X., Shen, S., Yang, F., He, Q., Ali, M., Huo, W., & Liu, X. (2016). Spatial and
675 temporal variations of blowing dust events in the Taklimakan Desert. *Theoretical and*
676 *Applied Climatology*, 125(3–4), 669–677. <https://doi.org/10.1007/s00704-015-1537-4>
677 Zeng, X., & Dickinson, R. E. (1998). Effect of Surface Sublayer on Surface Skin
678 Temperature and Fluxes. *Journal of Climate*, 11(4), 537–550.
679 [https://doi.org/10.1175/1520-0442\(1998\)011<0537:EOSSOS>2.0.CO;2](https://doi.org/10.1175/1520-0442(1998)011<0537:EOSSOS>2.0.CO;2)
680 Zeng, Y., Wang, M., Zhao, C., Chen, S., Liu, Z., Huang, X., & Gao, Y. (2020).
681 WRF-Chem v3.9 simulations of the East Asian dust storm in May 2017: Modeling
682 sensitivities to dust emission and dry deposition schemes. *Geoscientific Model*
683 *Development*, 13(4), 2125–2147. <https://doi.org/10.5194/gmd-13-2125-2020>
684 Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). *mixup: Beyond*
685 *Empirical Risk Minimization* (Version 2). arXiv.
686 <https://doi.org/10.48550/ARXIV.1710.09412>
687 Zong, Q., Mao, R., Gong, D.-Y., Wu, C., Pu, B., Feng, X., & Sun, Y. (2021). Changes
688 in Dust Activity in Spring over East Asia under a Global Warming Scenario.
689 *Asia-Pacific Journal of Atmospheric Sciences*, 57(4), 839–850.
690 <https://doi.org/10.1007/s13143-021-00224-7>
691