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Abstract. Stream temperature prediction is crucial for assessing the health of river ecosystems. In the task of predicting river
water temperatures across different river basins (particularly across distinct climatic zones), water temperature datasets are
often inconsistently supplied. Concurrently, the spatial heterogeneity within different river basins significantly complicates
water temperature forecasting, making it challenging to establish a water temperature prediction model that exhibits strong
generalization capabilities and stable predictive outcomes. To address this issue, moving average encoding and DOY
encoding of time series data into the temporal convolutional network model are incorporated, thereby constructing a
temporal convolutional network model for time series data encoding (TimENC-TCN). This model effectively captures the
multimodal characteristics of complex random time series dynamic water temperature data, subsequently yielding stable
prediction results across different river basins. Thirteen hydrological stations across four inter-basin rivers (Thames,
Colorado, Mississippi, and Sacramento) are used to test the proposed improved TimENC-TCN model and compare its
performance with that of reference models (Air2stream, NARX, GRU, and GBOOST). The results indicate that the enhanced
features perform well in rivers with minimal human intervention, and that air temperature and DOY are important variables
influencing water temperature prediction. The proposed improved model demonstrates more stable and accurate prediction
performance in cross-basin water temperature prediction tasks (with an average RMSE on the test set at least 8.7% better
than the comparison models). Considering the features and model performance, the proposed model should be a promising

approach for stream temperature reconstruction in data-scarce regions across diverse river basins.

1 Introduction

Stream temperature is a key factor influencing the quality of aquatic ecosystems. Stream temperature directly affects the
concentration of important substances in rivers as well as the growth and distribution of organisms (Haase, et al., 2023; Zhi,
et al., 2023a; Zhi, et al., 2023b). Additionally, stream temperature has a significant impact on urban economies, such as
fisheries, thermal power generation, and the entertainment industry (Bonacina, et al., 2023; Noyes and Lema, 2015).
Currently, the long-term rise in stream temperature and short-term fluctuations are being observed more frequently (Briciu,

et al., 2023; Knez, et al., 2022), and human activities may be a potential factor contributing to these phenomena (Fang, et al.,
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2021; Ficklin, et al., 2023). To assess river environmental quality and the impacts of human behaviour, accurate and
sufficient stream temperature data are required.

To reconstruct or predict water temperature, process-based models and data-driven models have often been developed in past
researches. Process-based models typically require multiple environmental variables as inputs (Michel, et al., 2022), which
limits their application across different geographical scales. Improved models such as Air2stream further control
computational complexity to seek broader application, yet they remain based on process-based models. Recently, some deep
learning models have been shown to have advantages over traditional physical models in stream temperature prediction tasks
(Qiu, et al., 2021; Sun, et al., 2024). These models typically require fewer types of variables and demonstrate better accuracy
and stability. Among them, air temperature and DOY are two common variables (Almeida and Coelho, 2023; Zhu and
Piotrowski, 2020). The former is generally considered an important predictive factor and is widely used. The latter is easily
obtainable and can serve as an alternative to some hard-to-obtain variables, thereby influencing model performance.
However, current prediction models (including machine learning and deep learning models) do not perform consistently
when dealing with spatial heterogeneity. This results in insufficient predictive stability for the same model across different
river basins. Piotrowski et al. (2021) found that the four models exhibited significant differences in their predicted stream
temperatures across five basins. And multi-layer perceptron neural network (MLP) model showed the lowest and highest
mean squared errors of 0.403°C and 3.109°C, respectively. The Air2stream model also demonstrated varying performance in
stream temperature predictions across different basins (Callahan and Moore, 2025; Piotrowski and Napiorkowski, 2018; Zhu
et al., 2024), and this phenomenon is widespread. These findings highlight the importance of developing a model that can
reliably address spatial heterogeneity. Additionally, many hydrological stations lack long-term stream temperature
observation data or have gaps in existing observation data. Therefore, the stability performance of the predictive model
requires further validation (Almeida and Coelho, 2023).

Given the challenges posed by spatial heterogeneity and low data availability to model performance, stream temperature
prediction models need to extract as much information as possible from limited datasets. Compared to the process-based
models, it is also noted that end-to-end (Data2data) learning models contribute to addressing spatial heterogeneity. Moreover,
making full use of historical time-series data can effectively mitigate the limitations posed by low data availability in water
temperature forecasting. Therefore, in model construction, deep learning network based on time series data can be
considered for incorporation. This approach can effectively capture the multimodal characteristics of complex random time
series dynamic water temperature data, thereby yielding stable prediction results across different river basins. Compared to
traditional models, temporal convolutional network (TCN) possesses significant advantages in terms of long-range
dependency modelling capabilities, stability, and flexible receptive fields. Therefore, TCN has great development potential
in stream temperature data prediction tasks. In terms of feature extraction and selection, to improve the model's prediction
accuracy, generalization ability, and training efficiency, the multi-input-output time series encoding (including DOY

encoding and time moving average encoding) for deep learning models should be incorporated. In time series data prediction
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tasks, these features are easily obtainable and validated, which helps strengthen the model's ability to capture temporal
changes.

This study addresses challenges such as insufficient water temperature data availability and spatial heterogeneity interference
in river water temperature forecasting across diverse river basins. By integrating moving average coding of time series data,
DOY coding, and TCN model, it constructs a stable water temperature TImENC-TCN prediction model suitable for various
river basins, particularly across different climatic zones. The results show that the model can handle water temperature
prediction across river basins using historical temperature data and improved DOY encoding features, and it performs well in
mitigating spatial heterogeneity. Even in low-data-availability environments, the TIimENC-TCN model demonstrates high
predictive stability and accuracy. Therefore, the TImENC-TCN model is beneficial for reconstructing water temperature data
across river basins (including those with missing observational data) and provides a reference for water temperature model

selection and feature selection.

2 Model calibration and validation data
2.1 Research Area and Dataset

To evaluate the performance of the TImENC-TCN model and other benchmark models (Air2stream, NARX, GBOOST,
GRU), 13 hydrological stations on four rivers (Thames, Colorado, Mississippi, and Sacramento) were selected as sources of
stream temperature data (Table 1). The four rivers exhibit distinct basin characteristics, and the 13 stations are located in
diverse geographical contexts, facilitating the assessment of spatial heterogeneity (Latitude: from 30°26'44.4" to 51°32'
26.0916", Longitude: from -121°49'25"0° to 15'2.4552"). Moreover, the total data volume (ranging from 2100 to 11277) at
each water temperature station varies considerably, enabling an assessment of the model's performance under different data
volumes and in the presence of missing data. Additionally, air temperature data and DOY data were extracted from nearby
meteorological stations. If meteorological stations were unable to provide data, air temperature data were sourced from the
NASA Power Project. During calibration, the dataset was divided into training, validation, and test sets in an 8:1:1 ratio
based on temporal order.

Table 1: River hydrological station information

No River Station station number Latitude Longitude Megsurement Total data
Period volume
1 Colorado Cameo a (09095500) 39°1421" -108°15'56" 1994/1/1 - 11277
2025/6/29
Catamount S " . " 2016/10/21 -
2 Colorado bridge b (09060799) 39°53'27.96 -106°49'54.10 2025/6/29 6822
. oAorron o1 A 2006/8/26 -
3 Colorado Cisco ¢ (09180500) 38°48'38 -109°17'34 2025/6/29 2100
Glenwood or AN o1 mnan 1995/10/1 -
4 Colorado springs d (09071750) 39°33'32 -107°17'25 2025/6/29 10707
oA A A oA 2017/1/23 -
5 Colorado Yuma e (09522005) 32°42'44 -114°43'20 2025/6/29 3057
N o gr " o111 " 2004/10/1 -
6 Mississippi Baton Rouge f(07374000) 30°26'44.4 -91°11"29.6 2025/2/9 6761
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7 Mississippi Cape Girardeau g (07020850) 37°18'06.8" -89°31'04.8" ggé‘s‘gg“ T 3694
8 Sacramento Freeport h (11447650) 389272039 -121°30105.82" LT 60as
9 Sacramento Verona i (11425500) 38°46128" -121°35'50" gg?gggg T 3361
10 Sacramento Wilkins Slough j (11390500) 39°00'36" -121°49125" S 10867
11 Thames g;‘;gteﬂ)rd k (BREPON) 51°28'47.3196" 0°18'11.1744" %gg?‘ﬁ% . 5045
12 Thames Purflect 1 (E03036A) 51°28'13.368" 0°152.4552" SO 5718
13 Thames Taplow m (MO1023A) 5193226.0916" -0°41'40.6068" SO 2450

2.2 Verification Data and Variables Introduction

When predicting daily water temperature, daily air temperature ( ), 7-day moving average air temperature (), and
DOY encoding are used as input variables, with the output variables being daily stream temperature ( ) and 7-day
moving average stream temperature ( ). In the model, the 7-day moving average air temperature/stream temperature is
used to smooth out abnormal data and enhance the capture of temporal features. The DOY feature is included to capture the
temporal variation characteristics of air temperature and water temperature. To further enhance this feature, DOY is encoded
using cosine/sine functions encoding. Cosine/sine functions encoding maps each location to a unique vector using a series of
sine and cosine functions of different frequencies. The encoding for different locations is distinct and changes smoothly with
location. Relative spatial relationships can be reflected through the dot product or distance between codes. This encoding

possesses a certain linear relationship, facilitating the model to learn its displacement invariance law.

3 Method

The algorithm flowchart for this study is shown in Figure 1. After obtaining the raw data and performing preprocessing such
as data denoising, the air temperature, stream temperature, and corresponding date data are extracted. Then, the date data
encoding is converted to DOY and DOY encoding. Subsequently, a 4-layer TCN model and a comparison model are used to
predict the water temperature and evaluate the model performance. In addition, to assess performances of DOY and DOY
encoding etc., ablation experiments are conducted. Finally, the robustness of the model under varying data availability was

further evaluated through robustness experiments involving the gradual removal of samples.
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Figure 1: The algorithm flowchart of TImMENC-TCN model.

RMSE MAE NSE

3.1 Features selection and extraction

In feature engineering, to optimize model performance, reduce redundancy, and improve interpretability, the correlation
between air temperature, DOY, and stream temperature needs to be tested. As shown in Figure 2 and Table 2, there is a
strong linear relationship between the input variable air temperature and the output variable water temperature (Fig.1), and
the Pearson correlation coefficient ~ (Eq.1) adequately reflects the strength of the association (Table 2). In contrast, the
relationship between the input feature DOY and the output variable stream temperature exhibits strong non-linear
characteristics (Fig.2), and the Pearson correlation coefficient may underestimate the true dependency relationship. In such
cases, the distance correlation coefficient dCor (Eq.2) provides a more reliable measure of association (Table 2). Correlation

analysis indicates that air temperature has significant predictive power through a linear dependency relationship, while the
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seasonal or periodic patterns reflected by DOY are better captured using non-linear indicators. Therefore, combining linear

and non-linear features is crucial for more accurate river temperature prediction.

—_ G
- , M
CO=r—r7 @
Where , are input variables, ( , ) is the covariance of variables and and , is the standard deviation of the
variables, ( , ) is the distance covariance of the variables, and ( . ) is the distance variance of the
corresponding variables.
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Figure 2: Feature correlation diagram.
Table 2: Feature Pearson coefficients and distance correlations. (Note: above 0.7 are considered to indicate strong linear

correlation. values above 0.6 are interpreted as moderate nonlinear dependencies.)

Input feature

Output feature

=0.931 =0.971 =0.626

=0.910 =0.958 =0.649

To further enhance the model's expressive and generalization capabilities, it is necessary to further enhance the feature

temperature and DOY. Considering the noise and short-term fluctuations in temperature data, which affect the model's ability

6
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to capture the air-stream temperatures relationship, a 7-day moving average temperature is introduced to smooth the data and
remove noise. Then, considering that when DOY is directly input into the model as a numerical sequence, the periodic
characteristics of the data may not be fully expressed. Using trigonometric functions to represent the periodicity of DOY
(Eq.3 and Eq.4) helps preserve periodic features, avoid the misleading effects of linear assumptions, and improve the model's

predictive performance. In summary, the input features are set as daily air temperature (), 7-day moving average air

temperature (), and the encoded form of DOY (  _ , ).
2 X
_ = ( ), 3)
2 x
= ()
4

Where D is the number of days in a year.

3.2 Model construction

Deep learning networks can extract complex features from large amounts of raw data and learn to make predictions. This
makes deep learning networks a powerful tool for prediction, optimization, and understanding in the increasingly complex
and data-rich environment of stream temperature prediction. Through literature research, Air2stream, NARX, GBOOOST

and GRU were found to be widely used in stream temperature prediction and were therefore selected as comparison models.

3.2.1 TimENC-TCN model

TimENC-TCN is a convolution-based sequence modelling method for handling time series data, which uses temporal
convolution operations instead of ordinary convolution for sequence modelling. Its core pipeline is to construct a deep
network by stacking multiple TImENC-TCN Blocks to model the long-term dependencies of time series data, and finally
output the final results through a fully connected layer. The network includes causal convolution, dilated convolution, and
residual connections. It can ensure that each time step in the TImENC-TCN input does not depend on future inputs but only
on the current time step t and its preceding inputs, thereby preserving temporal causality. Additionally, to expand the
receptive field without increasing parameter input, holes are introduced into the convolution kernels; Finally, to address the
challenges of training deep neural networks and the vanishing gradient problem, residual connections are incorporated into
the network structure.

The TimENC-TCN Block (Fig. 3) is the basic unit that constitutes the entire model. Its core objective is to extract multi-
scale features from sequences while maintaining temporal causality, ensuring the stability and effectiveness of deep network
training. As shown in Figure 3, the Block includes Convld, BatchNormld, ReLU, Dropout, and Residual Connection.
Among these, Convld is used to extract temporal features and learn relationships between adjacent time steps. BatchNorm1d

standardizes all channels, mitigating gradient explosion issues and reducing dependence on initialization. ReLU is used to

7
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introduce non-linear expression relationships. Dropout enhances the model's generalization ability and prevents overfitting.

Finally, the Residual Connection addresses the challenges of training deep networks, such as gradient vanishing and decay.

. Batch " Batch Residual
Convid H Normld H ReLU H Dropout H Convid H Normld }‘ Connection

Figure 3: TImENC-TCN block.

The TimENC-TCN network used in this study consists of four convolutional layers (Fig. 4), with zero-padding used to
maintain the length of the time series. Each convolutional layer sequentially extracts features at different time scales, with
the final output used to predict the target variable. TImENC-TCN captures dependencies across multiple time scales through
inter-layer residual structures and dilated causal convolutions, without relying on recursive mechanisms, thereby avoiding
gradient issues during training with long sequences. In the architecture, 1D causal convolutions ensure that the output
depends only on the current and past time steps. In dilated convolutions, the receptive field grows exponentially with the
layer number, with a dilation factor of 2 (where is the layer), effectively capturing long-range dependencies. To
address the vanishing gradient problem, a residual module is used, which includes two layers of dilated causal convolutions
(ReLU and dropout) and residual skip connections. In this model, the input sequence length for the TImENC-TCN is set to 7,

meaning the model uses the past 7-time steps for each prediction.
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Figure 4: TImENC-TCN framework.
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To enhance the stability and generalization capability of model training, this study employed multiple optimization strategies
during the training process of the TImENC-TCN model. First, the Adam optimizer was selected. Its adaptive learning rate
mechanism effectively accelerates the convergence process, and by setting a larger parameter beta=0.98, it reinforces the
smooth estimation of the second-order momentum of the gradient. Additionally, weight decay (weight decay=0.01) was
introduced to control model complexity and prevent overfitting. Second, the cosine annealing learning rate scheduler was
adopted to dynamically adjust the learning rate during training. This strategy gradually reduces the learning rate within
training epochs and ultimately converges to the minimum learning rate, thereby maintaining the model's fine-grained
optimisation capability in the later training stages. Additionally, the training loss and validation loss for each round are

tracked during training to monitor model performance and assist in subsequent parameter tuning.

3.2.2 Air2stream model

The Air2stream model is a modified version of the Taylor series expansion based on the concentrated heat balance exchange
in rivers (Eq. 5). In this model, water temperature and flow rate are used as inputs, and heat exchange between rivers,
tributaries, and the atmosphere is considered, with the final output being stream temperature. The basic air2stream model has

eight parameters (Eq. 6), which are expressed as follows:

—= + ( ), ®)
1
— =1+ 2 — 3 +6 @(—— 72— s ), (6)
Where represents time, represents the density of the water body, represents the specific heat capacity at constant

pressure, represents the surface area of the river segment, represents the net heat flux at the river-atmosphere interface,
represents the flow rate of the downstream river segment, and  represent the flow rate and temperature of the

contributing water flux (tributary, possibly including groundwater), respectively, represents the total volume responding to

the heat flux. is the dimensionless flow rate, is the time over an entire year, and ; — g are model parameters.

By adjusting the pulsatile flow parameter settings, the Air2stream model can be controlled to use only temperature time

series as input, which is useful for evaluating the model's performance under the same input parameters. Ignoring the effect

of pulsatile flow yields a 5-parameter model version (Eq. 7).
—=a1%t 2 — 3 +6 @2(=— 7)), (7

Furthermore, assuming that the flow rate is constant, Air2stream can be further simplified to a 3-parameter version (Eq. 8).
—=1%t 2 — 3 , (®)
In this study, since the effect of flow on water temperature was not considered, two models (Eq. 7- 8) of the 3/5 parameter

version were selected for testing on all hydrological station data, and the optimal value was marked as Air2stream_best. For
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more detailed information, please refer to the work of Toffolon and Piccolroaz (2015) and the link to the model

(https://github.com/spiccolroaz/air2stream).

3.2.3 NARX model

NARX is a specific category of recurrent neural networks (RNN), consisting of interconnected nodes inspired by biological
neural systems. Each node receives one or more inputs, processes them through a nonlinear function, and produces an output.
This model combines the system's own historical outputs (autoregressive) and external input signals (exogenous variables) to
predict future outputs. NARX has a strong ability to capture nonlinear relationships and clearly incorporates lagged outputs
and external inputs, making it highly interpretable. The basic equation for the NARX network used in time series forecasting
can be expressed as in Eq. 9:
O=(C-D, (=2, , (= ) (- (-2 .= ) ©

Where () is the system output at time (i.e., the value to be predicted), () is the external input to the system at time

is the order of the output delay (the maximum lag number used for historical outputs),  is the order of the input delay (the

maximum lag number used for historical inputs), and () is a nonlinear function.

3.2.4 GBOOST model

GBOOST is a powerful ensemble learning algorithm. It starts with a set of simple models and, at each step, models the
error of the previous model (the ‘gradient’ direction), ultimately combining the results of multiple weak learners
through weighted summation. It is suitable for various structured data and can capture non-linear relationships and
handle missing values and categorical variables. GBOOST often demonstrates high accuracy and strong generalisation

capabilities. A standard GBOOST model can be represented as in Eq. 10:

)= () (10)
Where () refers to the model's final prediction for input , is the total number of weak learners, () refers to the
weak learner (usually a regression tree), and  is the learning rate or step size for the round (which can be a

fixed constant or calculated through row minimisation).

3.2.5 GRU model

As a variant of recurrent neural networks (RNN), gated recurrent units (GRU) introduce update gates and reset gates to
control the retention and forgetting of information, effectively alleviating the vanishing gradient problem faced by traditional
RNN when processing long sequences. Compared with long short-term memory networks (LSTM), GRUs have the
advantages of lightweight structure and fast training convergence speed. A standard GRU model can be represented as
follows:

= ( + i+ ), (11)

10
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= ( + 1+ ), (12)
240 = tanh( + o+ ), (13)
=Q-) -1, (14)

Where s the input vector at time step ,  is the hidden state at time step (i.e., the output of the GRU), _, is the

hidden state at the previous time step,  is the update gate vector (determining how much old information to retain), and
is the reset gate vector (determining how much of the old state to forget). is the candidate hidden state (new memory), and
245 /| arelearnable parameters (weight matrices and biases).

3.3 Model Performance Comparison

To evaluate the performance of the model, three widely used metrics, RMSE, MAE and NSE (Eq. 15-Eq. 17) were used.

1
— J_ . ( — )2’ (15)
1
== ] - | (16)
T - )
250 =1-—— (17)
- :1( - )
Where  and  are the model and observation data of the water temperature of the  river,  is the average value of

and is the number of samples.

4 Results
4.1 Feature-related results

255 To identify the optimal feature inputs for model prediction performance, ablation experiments were conducted on all rivers
using the TIMmENC-TCN model. During water temperature prediction, ablation experiments were conducted on the input
features to further analyse the contribution of air temperature, DOY, and DOY time series to model performance. The

ablation experiments were divided into three groups.

Option Feature input Feature output
#1
#2 :
#3 v : :
The results in Table 3 indicate that Option 3 (#3) generally improves model performance compared to Option 1 (#1) and 2

260 (#2) with the average RMSE improving by up to 4.7%. Among the three options, Option 1's model prediction performance
was significantly worse (average RMSE: training set 1.447°C, validation set 1.583°C, test set 1.55°C) than Option 2, which
incorporates DOY (average RMSE: training set 0.974°C, validation set 1.144°C, test set 1.118°C) and Option 3 (average
RMSE: training set 0.94° C, validation set 1.095°C, test set 1.066°C). This indicates that DOY is an important factor

11
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influencing the performance of water temperature prediction models. It is noted that at the Baton Rouge, Cape and Purfleet
stations (station f, g and 1), Option 3 (average RMSE of the test set across the three stations: 1.159°C) showed a significant
improvement in TImENC-TCN prediction performance compared to Option 2 (average RMSE of the test set across the three
stations: 1.17°C). As described in Sect. 3.1, the enhanced features used in Option 3 (7-day moving average temperature,
DOY cosine encoding) strengthen the model's ability to capture the temporal variation characteristics of water temperature.
Therefore, the results of Option 3 indicate that capturing temporal variation relationships is crucial in water temperature
prediction tasks, especially at stations where temporal variations are not fully captured. It is also worth noting that at stations
Yuma, Verona and Wilkins (station e, i and j), the model performance of Option 3 is slightly lower than that of Option 2. At
the Verona station (station 1), the performance decline is most pronounced. This station is located on the Sacramento River,
which is managed for water allocation by the Central Valley Project. The temperature at this station is influenced by human

factors. Therefore, it is reasonable to infer that at these stations where performance has declined, human factors have masked

the effects of natural factors, thereby weakening the direct explanatory power of temperature, DOY, or DOY encoding.
Table 3: RMSE results of the ablation experiments.

Option 1 Option 2 Option 3
Station

Trainng Validation Test Training Validation Test Training Validation  Test
a 1.685 1.85 1.808 1.063 1.336 1.069 1.045 1.333 1.04
b 1.306 1.423 1.268 1.005 1.23 1.225 0.962 1.12 1.189
c 1.675 1.863 1.781 1.202 1.296 1.136 1.165 1.289 1.065
d 1.504 1.575 1.569 0.923 1.08 0.868 0.903 1.075 0.845
€ 1.021 1.128 1.111 0.699 0.905 0.675 0.677 0.876 0.679
f 2.715 3.103 2.775 1.243 1.178 1.246 1.127 1.068 1.137
g 1.781 1.963 1.627 1.08 1.423 1.111 0.989 1.313 0.987
h 1.3 1.666 1.396 1.172 1.447 1.319 1.163 1.419 1.29
i 1.451 1.008 1.723 1.104 1.222 1.835 1.066 1.225 1.862
] 1.265 1.128 1.297 1.032 0.904 0.967 1.03 0.904 0.969
k 1.139 1.074 1.113 0.875 0.903 0.812 0.879 0.84 0.786
1 1.201 1.201 1.143 0.701 0.64 0.79 0.589 0.468 0.543
m 0.943 1.044 0.938 0.515 0.668 0.691 0.541 0.626 0.641

4.2 Model-related results

In 100 repeated experiments across all tested stations, the proposed TImENC-TCN model demonstrated superior predictive
accuracy and stability compared to other models. The RMSE values for the TimENC-TCN validation set (Table 4) ranged
from 0.468°C to 1.419°C (average: 1.043°C), the MAE values (Fig. 5) ranged from 0.5°C to 1.1°C (average: 0.872°C), and
all NSE values (Fig. 5) exceeded 0.93 (range: 0.931-0.991, average: 0.963). Except for the Catamount Bridge, Cape, and

Verona stations, the TImENC-TCN demonstrated the best predictive performance across all models. In the test set, the

12



285

290

295

https://doi.org/10.5194/egusphere-2025-4550
Preprint. Discussion started: 15 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

RMSE of the TimENC-TCN model ranged from 0.543°C to 1.862°C (average: 1.003°C), the MAE fluctuated between
0.527°C and 1.408°C (average: 0.865°C), and the NSE (excluding Verona) 0.925 and 0.989 (average: 0.968). The TIimENC-
TCN model achieved the best prediction results at 12 out of 13 test stations. Notably, overfitting was evident at the Verona
station on the Sacramento River (Table 4). As described in Sect. 4.1, this indicates that the TImENC-TCN model using DOY
and air temperature as inputs has a better ability to handle spatial heterogeneity in basins influenced by natural
environmental factors, while stations influenced by human factors require additional feature learning.

Table 4: RMSE of validation sets and test sets for each model.

Stati gjis;z:‘;est) NARX | GBOOST GRU TimENC-TCN
on

Test Test Validation Test Validation Test Validation Test
a | 1937 1954 | 1.437 1121 | 1514 1174 | 1.333 1.04
b | 1.547 1923 | 117 1266 | 1.147 1319 | 112 1.189
¢ [1761 2217 | 1413 1164 | 1.343 1300 | 1.289 1.065
d [1.703 2066 | 1.188 0913 | 1.293 1027 | 1075 0.845
e | 1198 1663 | 0.934 0782 | 1.334 1059 | 0.876 0.679
£ 1349 1561 | 1.227 1314 | 1.244 1217 | 1.068 1137
g | 0.888 1729 | 1515 1192 | 1.558 1211 | 1313 0.987
h | 1.655 2220 | 1.444 1361 | 1.702 1505 | 1.419 1.29
i | 147 25 1.279 1915 | 1.163 1.646 | 1.025 1.862
i 1315 1676 | 0.921 1003 | 0.979 1068 | 0.904 0.969
k| 1.085 1766 | 0.881 0.832 | 1.168 0903 | 0.84 0.786
I o742 1246 | 0.675 0.761 | 0.644 0705 | 0.468 0.543
m | 0903 1112|073 0.786 | 0.843 0.834 | 0.626 0.641

Box plots (Fig. 5) further illustrate the variability in the performance of different water temperature prediction models
across various geographical contexts. Among these, the NARX model exhibits significant variability in prediction
performance across different stations (RMSE: 1.112°C-2.5°C, MAE: 0.8°C-2.056°C, NSE: 0.638-0.965), indicating
its inability to effectively address water temperature prediction tasks under diverse geographical conditions. Although
the Air2stream model has a lower RMSE in some cases, its box size is large, indicating significant performance
variability and poor performance at certain stations. Among models with smaller box sizes (GBOOST, GRU and
TimENC-TCN), TImENC-TCN has the highest average evaluation metrics, meaning its results not only exhibit low
variability and high-performance stability but also achieve the best overall performance.
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Figure 5: Performances of different models in validation and test sets (a) RMSE (b) MAE (c) NSE.

Without losing generality, the Purfleet station (Station 1) is taken as an example. Figure 6 shows the predicted and observed
water temperatures in the Purfleet station. As shown in the figure 6, although the TIimENC-TCN model exhibited some
305 fluctuations during the training phase, the overall absolute error remained stable and at a low level (average absolute error:
training set 0.406°C, validation set 0.364°C, test set 0.440°C). Figure 7 shows that the predicted water temperature values in
the TimENC-TCN model's observed-predicted scatter plot are close to the 1:1 line, further indicating that the TImENC-TCN

model has excellent water temperature prediction performance.
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To test the generalisation performance of the TImENC-TCN model, a gradual sample removal experiment was conducted. In
this experiment, 5% of non-repeated samples were randomly removed from the training set in each round until the training
samples were reduced to 40% of the initial dataset. Taking the Purfleet station as an example, the various evaluation metrics

of the TImENC-TCN model in each round of the removal experiment are shown in Figure 8.
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Figure 8: Line chart of RMSE performance analysis with sample removal at Purfleet station

The experimental results indicate that as the removal rate gradually increases, the predictive performance of the TImENC-
TCN model remains stable. In the training, validation, and test sets, the RMSE variation does not exceed £0.056°C, the
MAE variation does not exceed £0.033°C, and 8the NSE variation does not exceed +£0.002. As shown in the line chart
(Figure 8), the data remains relatively stable across all change rates, with small fluctuations and no significant upward or
downward trends, indicating that the indicator is in a stable state. This suggests that the model possesses good temporal

generalization capability and exhibits low sensitivity to sample structure, demonstrating high robustness and reliability.

5 Discussions and conclusions
5.1 The impact of characteristics on models

Under all tested geographical conditions, air temperature and DOY are important predictive variables for stream temperature.
The results of feature correlation analysis and ablation experiments indicate that the inclusion of DOY can improve the
model's ability to capture nonlinear relationships in stream temperature predictions. DOY can be extracted from stream
temperature or air temperature datasets with low difficulty, so it is recommended to apply this feature in more water
temperature prediction models to achieve better performance. DOY-encoded features and air temperature seven-day average
moving features indicate that time series relationships may be important in stream temperature prediction. In ablation
experiments, time series-related features were enhanced. Results show that, under general conditions, enhancing the model's
capture of time series relationships can improve model performance. Meanwhile, the case of the Verona station and
experiments on the drivers of stream temperature changes (Alger et al., 2021; Wade, et al., 2023) indicate that introducing

other features is necessary at stations with significant human interference.
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5.2 Spatial heterogeneity

The selected hydrological stations exhibit differences in geographical environment and spatial-temporal scales. However, the
TimENC-TCN model demonstrates commendable predictive performance across diverse geographical contexts and
outperforms other comparison models (Air2stream, NARX, GRU, GBOOST) in terms of stability and accuracy. In stepwise
sample removal experiments, the TIMENC-TCN model maintains stable predictive performance across all removal rates.
This indicates that the TImENC-TCN model does not rely on specific samples and can still achieve good results in small-
sample tests. The results also show that in stream temperature prediction tasks, TImENC-TCN does not require complete
stream temperature data as input, which is advantageous for TImENC-TCN in handling prediction tasks with different data
structures. However, the performance of TImENC-TCN in water temperature prediction tasks at special stations such as
dams (Shi, et al., 2021; Soomro, et al., 2023) needs further testing. Additionally, the test data were obtained from
hydrological stations in four large and medium-sized river basins, and complex internal hydrological changes exist in rivers
of different grades (Jackson et al., 2017; Tomkins et al., 2024). In summary, although TimENC-TCN has demonstrated its
potential for stable stream temperature prediction across different geographical contexts, further testing and improvement in

more diverse water temperature prediction tasks are necessary.

5.3 Model applications

This study proposes a method combining feature enhancement with the TCN model for stream temperature reconstruction
tasks in regions with limited data availability. Under conditions where only air temperature, DOY, and enhanced features are
available, the TImENC-TCN model can reliably predict water temperature. Platforms such as EURO-CORDEX (Jacob, et
al.,2014) provide access to future air temperature time series data, which meet the feature input requirements of the
TimENC-TCN method, thereby enabling the prediction of long-term stream temperature changes in the future. TImENC-
TCN also demonstrates its performance stability in cross-basin water temperature prediction tasks primarily influenced by
natural factors. This makes TImENC-TCN a promising candidate for reconstructing water temperature data or serving as a
reference model in numerous data-scarce regions with diverse geographical and climatic conditions, thereby providing
foundational data for related research (hydrological forecasting, climate analysis, etc.) and water resource management (Van,

et al., 2023), ecological conservation (Zhao, et al., 2023), and health monitoring (Yu, et al., 2023).

5.4 Conclusions

At 13 hydrological stations in four river basins, the TimENC-TCN, Air2stream, NARX, GRU, and GBOOST models were
used to reconstruct daily stream temperature data and compare their predictive performance. Subsequently, ablation
experiments and stepwise sample removal experiments were conducted to test the optimal feature inputs and model
performance under low data availability conditions. The results are as follows:

(1) In rivers primarily influenced by natural factors, incorporating DOY Sine-Cosine encoding and 7-day average
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temperature is an effective method to enhance model performance.

(2) TImENC-TCN demonstrates stable and excellent model prediction performance. In general, TImENC-TCN outperforms
other models in terms of validation set and test set performance. Therefore, there is reason to test or apply the TImENC-TCN
model in more diverse water temperature prediction tasks.

(3) TImENC-TCN's performance under low data availability and cross-basin testing demonstrates its potential to assist in

water temperature prediction in regions with inadequate data collection and monitoring infrastructure.

6 Data and model availability

The dataset and code for the TImMENC-TCN model are available via Zenodo: https://doi.org/10.5281/zenodo.17185045
(Su, 2025).
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