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Abstract. Forecasting river discharge is essential for disaster risk reduction and water resource management, but forecasts

of future river state often contain errors. Post-processing reduces forecast errors but is usually only applied at the locations

of river gauges, leaving the majority of the river network uncorrected. Here, we present a data-assimilation-inspired method

for error-correcting ensemble simulations across gauged and ungauged locations in a post-processing step. Our new method

employs state augmentation within the framework of the Localised Ensemble Transform Kalman Filter (LETKF) to estimate an5

error vector for each ensemble member. The LETKF uses ensemble error covariances to spread observational information from

gauged to ungauged locations in a dynamic and computationally efficent manner. To improve the efficiency of the LETKF we

define new localisation, covariance inflation, and initial ensemble generation techniques that can be easily transferred between

modelling systems and river catchments. We implement and evaluate our new error-correction method for the entire Rhine-

Meuse catchment using forecasts from the Copernicus Emergency Management Service’s European Flood Awareness System10

(EFAS). The resulting river discharge ensembles are error-corrected at every grid box but remain spatially and temporally

consistent. The skill is evaluated at 89 proxy-ungauged locations to assess the ability of the method to spread the correction

along the river network. The skill of the ensemble mean is improved at almost all locations including stations both up- and

downstream of the assimilated observations. Whilst the ensemble spread is improved at short lead-times, at longer lead-times

the ensemble spread is too large leading to an underconfident ensemble. In summary, our method successfully propagates error15

information along the river network, enabling error correction at ungauged locations. This technique can be used for improved

post-event analysis and can be developed further to post-process operational forecasts providing more accurate knowledge

about the future states of rivers.
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1 Introduction20

River discharge forecasts are essential tools for taking effective preparatory actions for disaster mitigation and water resource

planning (World Meteorological Organisation (WMO), 2015). However, despite the increased sophistication of forecasting

systems over the past few decades, river discharge forecasts still contain uncertainty (Boelee et al., 2019). The uncertainty

is introduced at several stages of the forecasting system including the meteorological forcings, the initial conditions, and

the hydrological model structure and parameters (Valdez et al., 2022). Ensemble river discharge forecasts aim to account25

for the meteorological uncertainty by forcing a hydrological model with many meteorological forcings either from multiple

numerical weather prediction (NWP) systems or from an ensemble weather forecast created using multiple sets of initial

conditions (Cloke and Pappenberger, 2009; Wu et al., 2020). However, ensemble forecasts can still contain errors. Different

methods for correcting these errors have been developed including pre-processing of the meteorological forcings, calibration

of the hydrological model, improving the initial conditions using data assimilation, and post-processing of the river discharge30

forecast (Bourdin et al., 2012). Of these approaches post-processing is often considered the most computationally efficient and

its ability to correct for multiple sources of errors simultaneously is appealing.

In meteorological forecasting, post-processing at non-observed locations is common (see Vannitsem et al., 2021). However,

hydrological forecasting also requires consideration of the spatial heterogeneity introduced by the river network (e.g., Li et al.,

2017; Woldemeskel et al., 2018; Ye et al., 2014; Xu et al., 2019; Liu et al., 2022; Lee and Ahn, 2024) and the application of35

post-processing methods at ungauged locations is still a difficult challenge. The lack of gauged locations along river networks

is a particular problem as is the lack of agreed data sharing practices for the areas that are gauged (Lavers et al., 2019;

Hannah et al., 2011), which means that the development of post-processing techniques for ungauged locations is essential.

However, current techniques are generally too computationally expensive for operational river flow forecasting applications

(Emerton et al., 2016). For example, defining a joint distribution between the river discharge at multiple locations would allow40

forecasts to be conditioned on observations available at specific locations (Engeland and Steinsland, 2014). However, for large-

scale distributed systems and multiple lead-times the size of the joint distribution quickly becomes too large. Alternatively,

error-correction can be performed at gauged location and the results interpolated to ungauged locations. One such method

used to interpolate error-correction parameters is top-kriging (Pugliese et al., 2018; Skøien et al., 2021). Top-kriging takes

into account the river network but the relationship between errors at different locations is assumed static regardless of the45

hydrometeorological situation (Skøien et al., 2016, 2006). Another option is to use a river routing model to propagate error-

corrected river discharge forecasts between gauged locations using a river routing model (Bennett et al., 2022). Whilst this

approach maintains spatial consistency between locations, the additional run of the model could be computationally expensive

for an operational application.

The aim of this paper is to present and evaluate a novel technique to spread observation information from gauged to un-50

gauged locations in a computationally efficient and temporally varying manner. The new method is based on data assimilation

techniques, commonly used to improve the initial conditions of forecasts (Valdez et al., 2022), but applied as post-processing

so that additional, computationally expensive executions of the hydrological model are not required. Data assimilation is a
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mathematical technique that combines modelled predictions and observations to produce an improved modelled state relative

to the true state of the system (Nichols, 2003, 2010). The error correction method proposed in this study is based on the Local55

Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007) and state augmentation (Dee, 2005). The LETKF is part of

the Kalman Filter family of methods and uses an ensemble of model states to estimate the state error covariances. Due to its

computational efficiency and ability to handle non-linear dynamics without an adjoint model, ensemble Kalman Filters are

common data assimilation methods for hydrological applications (Rouzies et al., 2024; Li et al., 2023; Mason et al., 2020;

Ridler et al., 2018; Khaki et al., 2017; Xie and Zhang, 2010; Clark et al., 2008). State augmentation is a technique that allows60

the estimation of the state of a system and the parameters of the model used to simulate that system simultaneously (Ridler

et al., 2018; Gharamti and Hoteit, 2014; Smith et al., 2013, 2009; Martin et al., 2002).

The proposed method aims to improve the skill of the ensemble mean and the reliability of the ensemble spread by adjusting

each ensemble member, as will be discussed in more detail in Section 2. However, it is equally if not more important that the

ensembles are spatially and temporally consistent in order to aid with decision making (Bennett et al., 2022). This is particularly65

important for large scale systems that provide forecasts across administrative boundaries, such as the Copernicus Emergency

Management Service’s (CEMS) European Flood Awareness System (EFAS) used in this study (Matthews et al., 2025). The

specific research questions to be addressed in this study are therefore,

1. Can data assimilation techniques be used in a post-processing environment to spread observation information to un-

gauged locations in a spatiotemporally consistent manner?70

2. Are the resulting ensemble predictions of river discharge more skillful than the raw ensemble?

This paper is organised as follows. In Section 2 we define the errors which we aim to correct and introduce some terminology

and notation. In Section 3 we formulate the data assimilation techniques used within this study. In Section 4 we outline the

proposed error-correction method and detail how the ensemble is corrected. Section 5 provides some additional components of

the method that improve the efficacy of the method but can be adjusted to suit the data availability of any system and/or domain.75

Section 6 outlines the strategy used to evaluate the efficacy of the proposed method and Section 7 presents the results, first

assessing the ability of the method to spread observational information to ungauged locations and then assessing the skill of the

error-corrected ensembles. In Section 8 we discuss key features of the proposed method and their impact on the error-corrected

ensembles. In Section 9 we conclude that the proposed method successfully improves the skill of the ensemble and maintains

spatiotemporal consistency, and highlight priorities for future developments.80

Please note that throughout the paper ‘hindcast ensemble’ refers to the ensembles of river discharge that we are error-

correcting. These ensembles are past operational EFAS forecasts (see Section 6.1); however, when we perform the error-

correction we use observations that are available within the forecast (hindcast) period which would not be possible in an

operational system as these timesteps would be in the future. Therefore, we refer to these ensembles as hindcasts for clarity.
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2 Ensemble error-correction framework85

Here, we define the errors which we aim to correct and provide some notation that is used throughout the paper. Let the true

state of the system at time k be defined as xtrue
k ∈ Rn, where each element represents the true river discharge in one of the

n grid boxes in the domain of interest. Hydrological forecasts, including the EFAS forecasts used in this study (Section 6.1),

generally estimate the true state of the system by a modelled state, denoted xk where the lack of superscript ‘true’ indicates it

is a modelled estimate. Hydrological ensemble forecasts consist of N potential realizations referred to as ensemble members.90

We define the ensemble river discharge hindcasts used in this study as

{
xk : x(i)

k , for i = 1,2, . . . ,N and k = 0,1, . . . ,L
}

. (1)

where the superscript (i) indicates the i-th member of the ensemble, N is the ensemble size, the timestep k refers to the

lead-time of the hindcast, and L is the maximum lead-time. The ensemble mean is defined as

xk =
1
N

N∑

i=1

x(i)
k ∈ Rn. (2)95

The ensemble perturbation matrix is defined as

Xk =
(

x(1)
k −xk x(2)

k −xk · · · x(N)
k −xk

)
∈ Rn×N (3)

where the i-th column represents the i-th ensemble member’s departure from the ensemble mean at lead-time k. The perturba-

tion matrix contains information about the spread of the ensemble and the spatial structure of the deviations from the mean of

each ensemble member. From the definition of the perturbation matrix, the ensemble covariance matrix is defined as100

Pk =
1

N − 1
XkXT

k ∈ Rn×n. (4)

where the superscript T indicates the matrix transpose.

Hydrological ensembles may still contain errors, so a post-processing step is usually necessary within a hydrological fore-

casting system. In this paper, we propose a method to spread an error-correction from gauged locations to every grid box in the

system domain. We assume that there is an additive relationship between each hindcast ensemble member and an error vector105

such that

xtrue
k = x(i)

k +b(i)true
k ∈ Rn (5)

where b(i)true
k is the error of the i-th hindcast ensemble member with respect to the true state. Each element of the error vector

is the error associated with a single grid box. The proposed method estimates the additive error vector, b(i)
k (where the lack of

the superscript true indicates it is an estimate) for each hindcast ensemble member at each timestep k such that the resulting110

hindcast distribution, xnew
k , is defined by

xnew
k ∼N (xk +bk,Pk +Γk) (6)
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where xk ∈ Rn and Pk ∈ Rn×n are the ensemble mean and the ensemble covariance matrix of the raw ensemble, respectively,

bk ∈ Rn is the ensemble mean of the estimated error vectors, and Γk is an additive spread correction matrix. Defining an

error-corrected ensemble in terms of mean bias and spread correction parameters is a common post-processing technique used,115

for example, in the Ensemble Model Output Statistics (EMOS Gneiting et al., 2005; Skøien et al., 2021) method.

To aid with the estimation of the error vectors, we assume that at each timestep the system is observed at pk river discharge

gauges such that we have a vector of river discharge observations, yk ∈ Rpk . We assume the observation vector is related to

the true state of the system as

yk = Hk(xtrue
k ) + ϵk (7)120

where ϵk ∈ Rpk is a vector of unbiased Gaussian noise with covariance matrix Rk ∈ Rpk×pk , such that ϵk ∼N (0,Rk), and

Hk ∈ Rpk×n is the linear observation operator which maps the variables from the state space to observation space. The obser-

vation operator used in this study selects the grid boxes from the modelled drainage network of the hydrological model that

represent the location of the river gauges.

3 Data Assimilation125

As discussed in Section 1, the proposed method is based on common data assimilation techniques: state augmentation and the

Local Ensemble Transform Kalman Filter (LETKF). In this section we present the formulations of these techniques used in

this study.

3.1 State augmentation

In the proposed method, an ensemble of augmented states is defined between the ensemble river discharge hindcast (see Section130

2) and an ensemble of additive error vectors. We define this ensemble of error vectors at time k as
{
b(i)

k ∈ Rn for i = 1,2, . . . ,N
}

(8)

where N is the same ensemble size as the river discharge hindcast and n is the number of grid-boxes in the hindcast domain.

The error ensemble mean, b, and the ensemble perturbation matrix, B, are calculated by substituting b(i)
k in place of x(i)

k in

Eqs. (2) and (3), respectively. The generation of the initial error ensemble for timestep k = 1 is described in Section 5.3.135

The ensemble of augmented states is then defined such that the i-th ensemble member is defined as

w(i)
k =


 x(i)

k

b(i)
k


 ∈ R2n. (9)

where x(i) ∈ Rn and b(i) ∈ Rn are the i-th hindcast and error ensemble members, respectively. The augmented ensemble mean

and perturbation matrix are given by

wk =


 xk

bk


 ∈ R2n and Wk =


 Xk

Bk


 ∈ R2n×N (10)140
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where x and b are the ensemble means of the hindcast and error ensembles, respectively, and X and B are the perturbation

matrices of the hindcast and error ensembles, respectively.

The next step of state augmentation is to define the evolution of the augmented states between timesteps. The hindcast is

evolved by the LISFLOOD hydrological model (the hydrological model used to create the EFAS forecasts; Van Der Knijff

et al., 2010). For the evolution of the error vectors, we adopt the common assumption that the error is constant between145

timesteps (Martin, 2001), such that

b(i)
k = b(i)

k−1. (11)

Based on these independent evolution equations and the additive relationship between the hindcast ensemble members and the

error ensemble members (see Eq. (5)), we define the propagation of the augmented ensemble members as

w(i)
k =


 Mk−1 In×n

k−1

0k−1 In×n
k−1





 x(i)

k−1

b(i)
k−1


 =


 x(i)

k +b(i)
k−1

b(i)
k−1


 . (12)150

where Mk−1 ∈ Rn×n is a linear evolution operator representing the LISFLOOD hydrological model, In×n
k−1 is the identity

matrix acting on the error component of the augmented state, and x(i)
k ∈ Rn is the i-th member of the precomputed the hindcast

ensemble. Since we use precomputed hindcast ensembles the propagation of the hindcast ensemble members requires no

additional computation and the full non-linear LISFLOOD hydrological model is used without the need to define a linear

approximation.155

3.2 Local Ensemble Transform Kalman Filter (LETKF)

The Local Ensemble Transform Kalman Filter (LETKF, Hunt et al. (2007)) updates the mean state and the square root of the

covariance matrix of an ensemble (i.e., the perturbation matrix) by combining the modelled and observed data. As a sequential

data assimilation method, the LETKF consists of a propagation step (also known as a forecast step) and an update step (also

known as an analysis step) that are iterated. We use the LETKF to update the ensemble of error vectors at each timestep but we160

modify the propagation step to use precomputed hindcasts. The propagation step evolves the augmented states forward in time

from time k− 1 to k, as described in Eq. (12). Rather than evolve the hindcast ensemble explicitly (which would require the

hydrological model) we instead substitute the precomputed hindcast ensemble for timestep k into the propagated augmented

state. The update step of the LETKF calculates the optimal estimate of the state of the system at timestep k by combining the

modelled augmented states and observations, both weighted by their respective uncertainties represented by their covariance165

matrices. As the LETKF is a well documented method we only provide the key update equations and direct the reader to Hunt

et al. (2007) and Livings et al. (2008) for more detailed derivations.

To apply the LETKF to the augmented ensemble we extend the definition of the observation operator, H ∈ Rp×n, given in

Eq. (7) such that

Ĥw(i)
k = (Hk 0)


 x(i)

k +b(i)
k−1

b(i)
k−1


 = Hkx

(i)
k +Hkb

(i)
k−1 (13)170
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where Ĥ ∈ Rp×2n is the augmented observation operator. As discussed in Section 2, the observation operator maps state

variables from state space to observation space by extracting data for the appropriate grid-boxes. The LETKF can then update

the augmented ensemble mean, wk, such that,

wa
k = wf

k +


 Kxk

Kbk


(yk − Ĥkw

f
k), (14)

where the subscripts f and a indicate the state before and after the update step, respectively; Kxk
∈ Rn×p and Kbk

∈ Rn×p are175

the components of the Kalman gain matrix acting on the hindcast ensemble and the error ensemble respectively; and yk ∈ Rp

is the observation vector defined in Eq. (7). The difference between the observations and the model state in observation space

(i.e., yk−Ĥkw
f
k) is called the innovation vector. The Kalman gain matrix weights the prior modelled state and the observations

based on their respective uncertainties and determines the impact of the innovation vector in the update step. Large observation

uncertainties reduce the Kalman gain, while large uncertainties in the prior state increase the Kalman gain. Both the hindcast180

and the error components of the Kalman gain are functions of the covariance matrix of the augmented ensemble (see Eqs.

(8) and (9) in Bell et al., 2004). The covariance matrix describes the state error covariances between grid-boxes allowing the

Kalman gain to spread the observation information to ungauged locations. To update the error component specifically, it is

the cross-covariances between the error component and the hindcast component that control the spread of the observation

information to ungauged locations (see Eq. (9) in Bell et al., 2004). This ability to spread the observational information is key185

to the error-correction method presented in this study.

The LETKF updates the augmented ensemble perturbation matrix, Wk, such that,

Wa
k = Wf

kTk (15)

where Tk ∈ RN×N is the square root transform matrix (Livings et al., 2008). The square root transform matrix is derived

using the Kalman gain matrix which gives the weighting between the modelled state and the observations (Livings et al.,190

2008). Using an eigenvector decomposition, the square root transform matrix rescales and rotates the ensemble members such

that the updated perturbation matrix represents the uncertainty in the updated ensemble mean. The square root transform matrix

allows the covariance matrix of the ensemble to be updated without the need for the covariances to be explicitly calculated

which can be computationally expensive (Bishop et al., 2001; Hunt et al., 2007). These update equations are used to update the

error component only as will be discussed in Section 4.1.195

4 Spatially consistent error-correction method for river discharge

In this section we describe how we use the data assimilation techniques discussed in Section 3, namely state augmentation and

the LETKF, to correct the hindcasts across the domain including at ungauged locations. The correction is applied in a post-

processing environment, avoiding the need for additional executions of the hydrological model which can be computationally

expensive. The proposed method consists of two steps: 1) updating the error ensemble (defined in Section 3.1), and 2) adjusting200
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the hindcast ensemble members using the updated error ensemble (Fig. 1). Specific experimental design choices are discussed

in Section 5.

Figure 1. Schematic of the new error-correction method for gauged and ungauged locations. Coloured boxes indicate different components

of the method. An initial error ensemble is created for timestep k=1 (green box). Then, the error ensemble is augmented to the hindcast

ensemble (purple box). At each timestep the covariance of the augmented ensemble is inflated (cyan box) before being updated using the

LETKF which uses localisation to improve the results of the update (collectively the orange box). The updated error ensemble is adjusted to

ensure non-negative discharge values (light grey box) before being used to error-correct the hindcast (yellow box). The non-negative error

ensemble is propagated to the next timestep (red arrows). More details are provided for each component in the section indicated in the top

left corner of the corresponding box.

4.1 Updating the error ensemble

At each timestep the error ensemble is updated to estimate the optimal set of error vectors to correct the hindcast at that

timestep. The update is performed using the LETKF defined in Section 3.2. Equations (14) and (15) are the Kalman update205
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equations for the augmented state. Using the definition of the augmented state (see Eq. (9)) the update equations for the error

ensemble only are,

b
a

k = b
f

k +Kbk
(yk − Ĥkw

f
k) (16)

and

Ba
k = Bf

kTk. (17)210

As the hindcast component is not explicitly evolved (see Section 3.2), we assume that the raw hindcast is a good approxi-

mation for the hindcast analysis state were the component updated. This allows the substitution of the precomputed hindcast

in place of the propagated state at the next timestep. Thus, the updated mean of the augmented ensemble can be defined as

wa
k =


 xk

b
a

k


 ∈ R2n. (18)

where xk is the ensemble mean of the raw hindcast ensemble and b
a

k is the updated error ensemble mean (Eq. (16)). The215

perturbation matrix of the updated augmented ensemble follows a similar pattern such that

Wa
k =


 Xk

Ba
k


 . (19)

where Xk is the ensemble perturbation matrix of the raw hindcast ensemble and Ba
k is the updated error ensemble perturbation

matrix (Eq. (17)). The assumptions made in Eq. (18) and Eq. (19) make our system suboptimal. However, we provide proof-

of-concept in this study that the resulting error ensemble improves the skill of the hindcast (see Section 7.1).220

The Kalman filter is not constrained to enforce non-negativity of the analysis state, and therefore, could lead to negative

discharge values for some grid boxes if the cross-covariances are incorrectly defined. We enforce non-negativity by further

adjusting the error ensemble members after the LETKF update step (Fig 1). The adjustment is done separately for each grid

box and each ensemble member only if they result in a negative river discharge as follows:

If x(i)
k [j] +b(i)a

k [j] < 0, then b̂(i)a
k [j] =−x(i)

k [j] + ||ζk|| (20)225

where b̂(i)
k is the adjusted error-ensemble member that results in non-negative discharge, j indicates the j-th grid box, i indi-

cates the i-th ensemble member, ||.|| indicates the modulus, and ζk a random noise value sampled from a Gaussian distribution

with mean 0 and standard deviation equal to 10% of the standard deviation of the updated error ensemble at the grid-box of

interest.

The updated positive-definite augmented states are propagated to the next timestep as defined in Eq. (12). The updated230

positive-definite augmented states are also used to error-correct the hindcast (Section 4.2).
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4.2 Adjusting the forecast

After the error component of the augmented state has been updated using Eqs. (16) and (17), and non-negativity has been

enforced (Section 4.1), the error ensemble members are added to the respective hindcast ensemble members such that

xnew,(i)
k = x(i)

k + b̂(i)a
k (21)235

where xnew,(i)
k and x(i)

k are the i-th ensemble members of the error-corrected and raw hindcast ensembles, respectively, and

b̂(i)
k is the error vector associated with the i-th error ensemble member where the caret indicates a non-negativity check has

been applied. Consequently, the error-corrected hindcast ensemble mean and perturbation matrix are given by

xnew
k = xk + b̂

a

k (22)

and240

Xnew
k = Xk + B̂a

k. (23)

The additive spread correction matrix defined in Eq (6) is the result of calculating the covariance matrix of the error-corrected

hindcast ensemble as in Eq. (3). The form of the additive spread correction matrix is

Γk = XkB̂aT
k + B̂a

kX
T
k + B̂a

kB̂
aT
k (24)

where Xk and B̂a
k are the perturbation matrices of the raw hindcast and error ensembles, respectively, and the superscript T245

indicates the matrix transpose (Section 5.2 in Martin, 2001).

5 Experimental implementation

In Section 4 we presented a new method of spreading observation information to ungauged locations in a post-processing envi-

ronment based on common data assimilation techniques. In this section, we describe three key components of the method—localisation,

covariance inflation, and the generation of the initial error ensemble—which are crucial for its performance but can be imple-250

mented in various ways.

5.1 Localisation

Localisation is used to reduce the effect of spurious correlations which can arise due to sampling errors caused by the small

ensemble size (Hamill et al., 2001; Hunt et al., 2007). The LETKF uses observation localisation which reduces the impact of

observations by multiplying the inverse of the observation-error covariance matrix by a localisation matrix, ρ ∈ Rpk×pk , such255

that

R−1 = ρ ◦R−1
nl (25)

10
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where R ∈ Rpk×pk is the localised observation-error covariance matrix used in the LETKF (Section 3.2), Rnl ∈ Rpk×pk is the

non-localised observation-error covariance matrix, and the symbol ◦ indicates the Schur product (also known as the Hadamard

product) which is an element-wise matrix multiplication (Golub and Van Loan, 2013). We assume that Rnl and, by definition,260

R are diagonal matrices. In this study we use distance-based localisation so the impact of the multiplication described in Eq.

(25) is to increase the effective uncertainty of distant observations and thus decrease their impact on the analysis state. The

impact of the localisation on the spatial extent of the analysis increments is demonstrated in Section 7.1.

The localisation matrix is defined using the Gaspari-Cohn function which has a parameter called the localisation length scale

(Eq. 4.10 in Gaspari and Cohn (1999)). The Gaspari-Cohn function smoothly decreases the weights assigned to an observation265

as the distance from the observation location increases, starting from a value of 1 at the observation location and reaching 0 for

distances greater than twice the localization length scale (pink box, Fig. 1). In this study, the distance is calculated along the

river network which has been shown to improve the analysis for fluvial applications (García-Pintado et al., 2015; El Gharamti

et al., 2021; Khaniya et al., 2022). The distance between a grid-box and the location of an observation is calculated using the

local drainage direction map and the channel length used in the hydrological model (Choulga et al., 2023). As the distance is270

defined along the river network, observations cannot impact grid-boxes in a different drainage basin.

The localisation length scale is often a tuned parameter but the tuning process can be time and resource intensive. We pro-

pose instead for the localisation length scale to be defined as the maximum distance between any grid point and its closest

observation. This 1) ensures that all grid boxes are updated in the update step of the LETKF reducing the potential for dis-

continuities in the analysis state, 2) can adapt to changes in the availability of observations, and 3) can be applied to different275

domains and hydrological model configurations without requiring a tuning experiment.

5.2 Covariance inflation

Small ensemble sizes can cause underestimation of the ensemble spread which in turn reduces the impact of the observations

on the analysis (Furrer and Bengtsson, 2007). In addition to the issues caused by the small ensemble size, we also make the

simplified assumption that the error ensemble is constant between timesteps (Eq. (11)) which could introduce model errors280

into the ensemble (Evensen et al., 2022). Covariance inflation is an approach often used to ameliorate these issues, although an

inflation method that is optimal for all situations has yet to be identified (Duc et al., 2020; Scheffler et al., 2022).

We aim to inflate the ensemble perturbation matrix such that at time k+1 the spread better represents the true uncertainty of

the mean error prior to the update step. Due to the unusual approach of using predefined ensembles, we propose a new method

to inflate the covariance of the error ensemble. We take inspiration from the ‘relaxation to prior perturbations’ technique (RTPP,285

Zhang et al., 2004; Kotsuki et al., 2017) which blends the analysis perturbation matrix with the perturbation matrix prior to the

analysis step. This results in both additive and multiplicative inflation that is proportional to the impact of the assimilation of

observations (Whitaker and Hamill, 2012). Rather than accounting for errors introduced in the update step we want to account

for errors introduced primarily in the propagation step. We therefore adapt the RTPP method to blend the propagated analysis

perturbation matrix, Wa
k defined in Eq. (19), and an alternative estimate of the perturbation matrix at the next timesteps, West

k+1,290

such that
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Winf
k+1 = (1−α)


 Mk In×n

k

0k In×n
k


Wa

k + αWest
k+1 (26)

where Mk and In×n
k are evolution matrices introduced in Section 3.1 and α is an inflation parameter that must be defined. The

estimation of West
k+1 could use an alternative model to evolve the analysis perturbation matrix forward or be a climatological

matrix (Valler et al., 2019). In this study we give West
k+1 the form295

West
k+1 =


 Xest

k+1 +Best
k+1

Best
k+1


 . (27)

where Xest
k+1 and Best

k+1 can be estimated separately. We assume the hindcast covariance matrix is correct such that Xest
k+1 =

Xk+1, and estimate the error covariance matrix at time k +1 as proportional to the state covariance matrix (Dee, 2005; Martin

et al., 2002). We assume that the constant of proportionality is 1 such that Best
k+1 = Xk+1. When substituted into Eq. (26), this

form of West
k+1 maintains consistency between the error terms in the hindcast and error components of the augmented state.300

The inflation parameter, αk, controls the weighting of propagated analysis perturbation matrix and the estimated perturbation

matrix. Here, αk determines how much of the uncertainty at time k + 1 is due to uncertainty at time k and how much is not

captured by the propagated matrix. We assume that the change in the variance of the hindcast ensemble between timesteps is

an indication of how much the spread of the error ensemble would change if the propagation model of the error was correct.

Therefore, we define the inflation parameter as the fractional change in the hindcast variance,305

αk =
1
k

l=k∑

l=k−2

max

{∣∣Tr(Pl)−Tr(Pl+1)
∣∣

Tr(Pl)
,1

}
(28)

where k is the the current timesteps and Tr(Pl) is the trace of the raw hindcast covariance matrix at timesteps l. A maximum

value of 1 is set to avoid instabilities, particularly at short lead-times where the change in variance between timesteps can be

large. The average over the past three timesteps is taken to ensure that alpha is smoothly changing between timesteps, again

to avoid instabilities. An inflation value of 1 suggests the uncertainty of the modelled state has changed so much between310

timesteps that the uncertainty at the previous timestep is no longer relevant. An inflation values of 0 implies the uncertainty at

the previous timesteps should be trusted.

5.3 Initial error ensemble

We must define an initial error ensemble to perform the state augmentation at the first timestep. Due to the application to

a post-processing environment there is no “warm-up” period in which a state of equilibrium can be reached, and therefore315

the initial error must be physically plausible. Here, the initial error ensemble is defined using three sets of river discharge

data: in-situ observations, yk ∈ Rpk , simulations created by forcing a hydrological model with meteorological observations,

sk ∈ Rn, and the ensemble mean and ensemble perturbation matrix of a single lead-time from a previous hindcast, xk ∈ Rn

12

https://doi.org/10.5194/hess-2024-3989
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



and Xk ∈ Rn×N . A single ensemble is generated for the full EFAS domain and then the elements associated with the domain

of interest (in this study the Rhine-Meuse catchment) are extracted.320

We define the initial error ensemble in two steps: 1) the error mean is estimated based on the errors due to the hydrological

model, and 2) ensemble perturbations are estimated based on the perturbations of hindcast members. The mean of the initial

error ensemble is estimated as follows:

1. Calculate the errors at gauged locations: The average relative error of the simulation compared to the observations

over the past d days (here 10 days) at all pk stations with available observations, δ ∈ Rpk is calculated as325

δ[j] =
k=−1∑

k=−d

yk[j]− sk[j]
sk[j]

(29)

where δ[j], yk[j] and sk[j] are the relative error, the observation and the simulated value at station j at time k, respec-

tively. If the value of δ[j] is greater than 1 (or less than -1) then δ[j] is set to 1 (or -1). This reduces the impact of

representation errors due to the mapping of stations, for example.

2. Interpolate the errors to ungauged locations: Inverse distance weighted interpolation is used to estimate the average330

relative error at ungauged locations ensuring closer stations have a greater influence (Lu and Wong, 2008). The Euclidean

distance, denoted dgj , is calculated between a grid-box, g, and each of the closest G stations (here 100 stations), and the

average relative error weighted accordingly. The Euclidean distance is used here to allow the method to be applied to all

catchments. Therefore, the inverse distance weighted formula used to calculate the relative error at grid-box g, denoted

∆[g], is335

∆[g] =

∑100
j=1 δ[j]/

√
dgj∑100

j=1 1/
√

dgj

(30)

3. Impose the river network structure: The mean of the initial error ensemble is calculated by multiplying the field of

estimated relative errors, ∆, with the simulation at time t =−1, s−1, such that at grid-box g the initial error ensemble

mean, b
f

1 [g] is calculated as

b
f

1 [g] = ∆[g]× s−1 (31)340

where the superscript f indicates the ensemble has not been updated by the LETKF (Section 3.2).This enforces the

spatial pattern of the river network by ensuring the value of the initial error mean is proportional to the magnitude of the

discharge in the river.

The perturbations from the ensemble mean are then defined as follows. Since the form of the covariance matrix of the errors

is unknown, we use a common technique of scaling the system state covariance matrix (e.g. Martin et al., 2002). We use the345

ensemble members from the second lead-time of the hindcast from two days prior. This lead-time was selected as the spread

of the ensemble at a lead-time of one day can often be very narrow due to the use of a single set of initial conditions (see 6.1).

The steps to define the initial error perturbations are:
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1. Calculate the ensemble statistics: The ensemble mean and perturbation matrix of the the second lead-time of the

hindcast from two days prior are calculated. The valid-time for these ensemble values is, t = 0 so they are denoted x0350

and X0, respectively.

2. Inflate the covariance matrix: The spread of the hindcast ensemble should account for the uncertainty due to the

meteorological forcings. To ensure the variance is correct we scale the perturbation matrix by the error of the ensemble

mean compared to the simulation forced by meteorological observations. A vector of scaling factors, f is defined such

that355

f =
(

s0 [1]−x0 [1]
x0 [1]

,
s0 [2]−x0 [2]

x0 [2]
, . . . .,

s0 [n]−x0 [n]
x0 [n]

)T

(32)

where s0 [n] is the simulation at the n-th gridbox. These scaling factors can be very small so we set a requirement that

the scaled standard deviation at each grid-box must not go below 10% of the simulated value, s0[j]/10. In practice this

is done in two steps: i) scale the perturbation matrix by the vector f such that

Bf
1 = fX0 (33)360

and then ii) reinflate the spread where necessary. By scaling the perturbation matrix in this way we relate the spatial

variability of the ensemble spread to the error due to the meteorological forcings.

The error mean, b
f

1 , and the error perturbation matrix, Bf
1 are used to define the error ensemble at timesteps k = 1 where they

are updated using the LETKF with state augmentation as described in Section 4.1.

6 Evaluation strategy365

6.1 European Flood Awareness System (EFAS)

The hindcasts used in this study were produced by the European Flood Awareness System (EFAS) as operational forecasts

(Barnard et al., 2020). EFAS is part of the Early Warning component of the European Commission’s Copernicus Emergency

Management Service (CEMS), and aims to provide complementary forecast information to hydro-meteorological services

throughout Europe (Matthews et al., 2025). EFAS streamflow forecasts are produced by forcing a calibrated hydrological370

model, LISFLOOD (De Roo et al., 2000; Van Der Knijff et al., 2010; Arnal et al., 2019), with the output from meteorological

numerical weather prediction (NWP) systems. Whilst the operational EFAS system is a multi-model system with four sets of

meteorological forcings, in this study we focus only on the medium-range river discharge forecasts generated with meteoro-

logical forcings from the 51-member medium-range ensemble from the European Center for Medium-range Weather Forecasts

(ECMWF) due to its large ensemble size. The meteorological forcings are interpolated to the EFAS grid. A single set of initial375

hydrological conditions are used for all ensemble members often leading to small ensemble spreads at short lead-times. The

spread then increases as the different meteorological forcings propagate through the system. No data assimilation is performed
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in the generation of the initial hydrological conditions. Instead, the LISFLOOD hydrological model is forced with meteorolog-

ical observations (and meteorological forecasts when observations are not available) to generate the initial conditions (Smith

et al., 2016).380

As an operational system, EFAS is constantly evolving. For the evaluation presented here we use EFAS version 4 (operational

from 14 October 2020 to 20 September 2023) aggregated to daily timesteps with a maximum lead-time of 15 days. The

ensembles have 51 members and predict the average river discharge for each timestep for each grid-box within the domain

(see 6.2). The hindcasts have a spatial resolution of 5km × 5km with a ETRS89 Lambert Azimuthal Equal Area Coordinate

Reference System. Hindcast from the 00 UTC daily cycle are used resulting in a total of 365 hindcasts used in the evaluation.385

6.2 Rhine-Meuse catchment

The Rhine-Meuse catchment has a drainage area 195,300 km2, a channel length of about 38,370 km in EFAS, and consists

of 7812 grid-boxes. It is the 5th largest catchment in EFAS. The Rhine river originates in the Swiss Alps, flows through the

Central Uplands and the North European Plain, before finally discharging into the North Sea. The Meuse river originates from

the Langres Plateau in France, flows through the Ardennes Massif and the low-lying plains of the Netherlands, before merging390

with the Rhine and entering the North Sea. The catchment consists of rivers of different sizes, topologies, and levels of human

influence, making it an ideal test catchment to see how the method deals with changes along the river network.

6.3 Observations

The Rhine-Meuse catchment has a dense river gauging station network. The main set of observations used in this study are

daily river discharge observations from 89 stations across the Rhine-Meuse catchment for the time period from 21 December395

2020 to 15 January 2022. The minimum value across the stations is 0.516 m3s−1 and the maximum value is 7662.917 m3s−1.

These observations were assimilated as part of the error-correction method to update error ensemble and used in the evaluation

of the corrected forecasts (Section 6.4 describes the cross-validation approach used). Whilst the error-correction method can

adapt to missing observations, these 89 stations were selected as they have no missing data for the time period of interest

allowing this analysis to focus on the spread of observational information to ungauged locations. The maximum distance400

between any grid-box and the closest of the 89 stations is 262 km which is set as our localisation length scale (cut-off distance

is therefore 524 km; see Section 5.1). In addition to these stations, all available observations from across Europe, were used to

generate the initial error ensembles (total 505 stations). All river discharge observations were provided by local and national

authorities and collated by the CEMS Hydrological Data Collection Centre (see https://confluence.ecmwf.int/display/CEMS/

EFAS+contributors).405

The construction of the non-localised observation error covariance matrix, Rnl
k , is a key component of all data assimilation

methods. The matrix describes the uncertainty associated with each observation and describes the correlation between errors

of different observations (Stewart et al., 2013; Fowler et al., 2018). In this study, we assume that the observation errors from

different gauge stations are uncorrelated such that Rnl
k is a diagonal matrix with all off-diagonal elements set to 0. We also
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assume that the standard deviation of the observation errors is 10% of the observation magnitude (Refsgaard et al., 2006;410

McMillan et al., 2018, 2012).

In the leave-one-out verification experiments (see Section 6.4) we use the observations from the non-assimilated station as

validation data and assume they are the truth with no errors.

6.4 Experiments

We use three experimental schemes to investigate the effect that the error-correction scheme has on the ensemble hindcasts.415

1. Single station experiments: Only observations from one of the 89 station are assimilated when estimating the error-

vector. All available observations are used in the generation of the initial error ensemble. These experiments allow the

impact of an observation to be identified and allow the effects of localisation to be explored.

2. All station experiments: Observations from all stations are assimilated when estimating the error-vector and used in

the generation of the initial error ensemble. These experiments allow the complete method to be assessed and for any420

spatiotemporal inconsistencies to be identified.

3. Leave-one-out experiments: Observations are withheld from one of the 89 stations and are not assimilated when esti-

mating the error-vector nor used in the generation of the initial error ensemble. This cross-validation framework allows

the skill of the adjusted hindcasts to be assessed at the locations of stations as if they were ungauged locations.

Each experiment scheme is applied to all hindcasts from 1 January 2021 to 31 December 2021. However, for brevity, for the425

single station and all station experiments we only discuss two hindcasts: 7 July 2021 and 8 October 2021. These dates represent

high and normal flow conditions, respectively, allowing the ability of the method to be assessed for different circumstances.

6.5 Evaluation metrics

The following metrics are used to investigate the skill of the error-corrected hindcast ensemble mean and the reliability of the

ensemble spread.430

For the ensemble mean, the three components of the modified Kling-Gupta Efficiency: correlation, mean bias, and variability

bias are used to assess different types of errors within the ensemble mean (Kling et al. (2012); Gupta et al. (2009)). Pearson’s

correlation coefficient measures the linear relationship between the simulated timeseries and the observations indicating timing

errors (score range [−1,1]). The mean bias given by the ratio between the mean of the simulated timeseries and mean of the

observations indicates whether the flow is consistently over or under-estimated (score range (−∞,+∞)). The variability bias435

given by the ratio between the coefficient of variation of the simulation and the coefficient of variation of the observations indi-

cates whether the variability in the flow is consistently over or under-estimated (score range (−∞,+∞)). All three components

have a perfect score of 1. Additionally, to investigate whether the magnitude of the error of the forecast mean is decreased by

the proposed method we use the Normalised Mean Absolute Error (NMAE Hodson, 2022; Jackson et al., 2019). The metric is
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normalised by dividing by the mean of the observations for that station. Normalising the metric makes the scores at different440

stations comparable. The NMAE has a perfect score of 0.

To analyse the reliability of the spread of the ensemble forecast we use the rank histogram (Harrison et al., 1995; Anderson,

1996; Hamill and Colucci, 1997; Talagrand, 1999). To generate the histogram the rank of the observation relative to the sorted

ensemble values is calculated for each hindcast. The frequencies with which the observation has a rank from 1 to M + 1 are

plotted as a histogram. The shape of the histogram provides information about the reliability of the ensemble spread and bias445

of the ensemble (Hamill, 2001).

7 Results

7.1 Impact of assimilating observations

In this section we investigate the spatial and lead-time dependent impact of assimilating the observations. To assess the spatial

impact of these observations, we analyze the analysis increments of the mean — the difference between the ensemble mean450

before and after the update step (term 2 in Eq. (16)) — across the domain at a single lead-time for single station experiments

and all station experiments (Fig. 2). We focus on single station experiments for the Bonn station on the Rhine (left panels) and

the Uckange station on the Moselle (middle panels) for hindcasts generated on 8 October 2021 (upper panels) and 7 July 2021

(lower panels), which represent normal and high flow scenarios, respectively.

For 8 October 2021, the assimilation of an observation at Bonn results in the largest analysis increments near the observation455

location, with the increments diminishing to zero at distances greater than 524 km due to localization (background color

of Fig. 2a). Increasing (decreasing) the localisation length scale results in a more (less) gradual dampening of the analysis

increments and more (fewer) grid-boxes being impacted by a single observation (not shown). The number of grid-boxes in the

localization regions of the Bonn and Uckange stations differ (4662 grid boxes and 2451 grid boxes, respectively) because the

distance is calculated along the river network and the channel length within each grid box is not constant (e.g., Figs. 2a and460

2b). Interestingly, in the Uckange experiment, the largest increments occur not near the station, but along the Rhine near the

confluence with the Moselle (Fig. 2b). In both experiments, the increments tend to be larger along bigger rivers, with smaller

rivers showing smaller increments. This occurs due to large ensemble covariances between the location of the assimilated

observation and locations along the bigger rivers (Fig. 3).

The spreading of observational information along the river network is dictated by the cross-covariances between the error465

component and the hindcast component of the augmented ensemble prior to the update step (Section 3.2). The magnitude of

the cross-covariance between two locations depends on the correlation at the two locations, the variance of the augmented

ensemble at both locations, and the dampening enforced by localisation. The correlation between the location of the Uckange

station and a grid-box is highest along the same river stretch (the Moselle) and decreases at longer distances from the station

(Fig. 3a). Nearby grid boxes that are not on the same river stretch have lower correlations in general. Comparing Figs. 3a and470

3d indicates that along-the-river localisation is appropriate for this application, as with other hydrological data assimilation
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Figure 2. Analysis increments of the mean for a lead-time of 9 days for single station (a, b, d, and e) and all station (c and f) experiments

for the hindcasts generated on 8 October 2021 (upper panels) and 7 July 2021 (lower panels). Assimilated stations for the single station

experiments (cyan outline) are the Bonn station on the Rhine (a and d) and the Uckange station on the Moselle (b and e). The shaded region

of the catchment is outside the localisation length of the assimilated station. Markers show the innovation at all stations. Catchment area:

195,300 km2.

systems (e.g., El Gharamti et al., 2021), as it results in the impact of an observation being restricted to locations with higher,

physically plausible, correlations.

The magnitude of the cross-covariances are similar along the Moselle and for some parts of the Rhine despite lower corre-

lations and the application of localisation (Fig. 3b and 3e). Whilst the correlation initially decreases with increasing distance,475

the magnitude of the non-localised cross-covariances is primarily dependent on the size of the river (note the horizontal bands

of Strahler orders (a measure of stream size where larger orders indicate larger rivers Strahler, 1957) in Fig. 3f). Localisa-

tion enforces a dependence on distance such that smaller rivers near the station have a larger localised cross-covariance than

large rivers very far from the station (Fig. 3e). However, some grid-boxes on the Rhine (Strahler order of 6) still have larger

cross-covariances than smaller rivers that are closer to the station (Fig. 3e). The impact of this can be seen in Fig. 2b where480

the analysis increments along the Rhine are larger than those along parts of the Moselle. Note that the similarity between the
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Figure 3. Ensemble correlations (upper panels) and cross-covariances (lower panels) between the error component and the hindcast com-

ponent of the augmented state prior to the update step for all station experiments. Map of the correlation (a) and localised cross-covariance

(d) averaged across all lead-times and forecasts between the Uckange station (shown by black cross) and all grid-boxes. Scatter plot of the

correlation (b), localised cross-covariance (e), and non-localised cross-covariance (f) averaged across all lead-times and forecasts between

the Uckange station and all grid boxes against distance from the Uckange station. Grid-boxes on rivers discussed in the text are broadly in-

dicated by the arrows. Dashed black line shows the localisation length scale and the solid black line shows the effective cut-off point beyond

which the observation has no impact (twice the localisation length scale; see Section 5.1). Correlation (c) and localised cross-covariance (g)

between the Uckange station on the Moselle and the Bonn station on the Rhine for all forecast and for each lead-time of the hindcast (365

values per lead-time, one for each forecast).

localisation length scale (dashed line) and the distance between the Uckange station and grid-boxes on the Rhine (change from

a Strahler order of 5 to 6) is coincidental but does suggest that the method for defining the localisation length scale (see Section

5.1) is capable of capturing the order of magnitude of the relevant spatial scales for the Rhine catchment.

In Fig. 2, the square markers indicate the innovation — the difference between the observation and the error-corrected485

ensemble mean prior to the update step. Ideally, the analysis increment (background colour in Fig. 2) should reflect similar

behavior to the innovations within the localisation region, implying that the ensemble is being adjusted towards the observations

at each station. For 8 October, at Bonn the innovation is negative and results in negative analysis increments across the domain

(Fig. 2a). For the Uckange station the innovation is positive and the analysis increments are also all positive (Fig. 2b) indicating

positive ensemble covariances (Fig. 3d). For both of the 8 October experiments the analysis increments match the sign of the490
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innovation vectors for neighbouring stations (Figs. 2a and 2b). At greater distances the analysis increments do not follow the

same behaviour as the innovations. For example, the innovations along the Rhine in the Uckange experiment are negative

whilst the analysis increments are positive (Fig. 2b) suggesting spurious ensemble covariances between the Uckange station

and locations on the Rhine. In the experiments for 7 July, the analysis increments show a similar behaviour to the innovations

for a much greater distance along the river network (Figs. 2d and 2e). In contrast to the 8 October experiments (Fig. 2c), the495

innovations for the 7 July experiments are more spatially homogeneous indicating a greater spatial correlation length. This is

likely due to the low-pressure system which covered large parts of the West of the catchment during the hindcast period of the

7 July experiments (Mohr et al., 2023). In Figure 3b, the average correlation can be seen to begin to increase again for larger

distances. This is due to grid boxes on different rivers (here, the Meuse and the Moselle; see rivers names in Fig. 2) being close

geographically but far apart along the river network. Geographically close locations may be impacted by the same weather500

systems even if the water drains into different rivers as happened for the 7 July period.

Whilst the spatial heterogeneity for 8 October suggests that the assimilation of an observation from a single station cannot

correct the entire domain (Figs. 2a and 2b), when all observations are assimilated the analysis increments vary across the

domain (Fig. 2c). This heterogeneity of the analysis shows the ability of the method to vary the correction across the domain

adapting to the errors in different stretches of the river. The analysis increments are smoothly changing along a river stretch505

therefore, the changes to the error-corrected ensemble will also be smoothly changing spatially.

Another difference between the 8 October and the 7 July experiments is that for the 7 July hindcast small rivers exhibit

larger increments, indicating a greater impact from the assimilated observation (Figs. 2c and 2f). Two factors contribute to

this increased influence. First, the increased spatial correlation length means the observation is more informative for longer

distances. However, the correlation between, for example, the locations of the Uckange and Bonn stations is higher at a lead-510

time of 9 days for the 8 October than for the 7 July (Fig. 3c). Therefore, the second factor, larger ensemble variances in the 7

July period compared to the 8 October period, is likely the more dominant component (Figs. 4b, 4c, 4e, and 4f). The increase

in spread increases the cross-covariances (Fig. 3g) and allows the observation to have more influence.

Figure 4 shows the trajectories of the three ensembles used in the LETKF for the 7 July hindcast for a single station

experiment where observations are assimilated at the Uckange station: the raw hindcast (left columns), the hindcast component515

of the augmented ensemble (middle columns), and the error component of the augmented ensemble (right columns). The

evolution of the augmented ensemble are discussed in Sections 3.1-5. The lower panels show the trajectories at the Bonn

stations for which no observations are assimilated during this experiment. By plotting the raw hindcast trajectories and the

observations we can visualise the errors to be estimated. We can see that for both stations the error of the hindcast mean is

negative (observations are smaller than the hindcast mean) for lead-times up to 8 days, and positive at longer lead-times. Whilst520

this behaviour is similar for the Bonn station, the magnitude of the error is different by a factor of 10 at most lead-times.

The middle column shows the hindcast component of the augmented ensemble. We can see that using the raw hindcast as

an approximation of the analysis state is not optimal. For example, at lead-times greater than 10 days at the Uckange station

the update takes the ensemble further away from the observations (Fig. 4b). This occurs also at the Bonn station (Fig. 4e). This

is not unexpected as our approximation assumes the raw hindcast is more accurate than the hindcast corrected with the error525
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Figure 4. Ensemble trajectories for a single station experiment for the hindcast generated on 7 July 2021 for the assimilated station (Uckange

station on the Moselle; panels a-c) and a non-assimilated station (Bonn station on the Rhine; panels d-f). The plots show the trajectory of all

members and the ensemble mean of the raw hindcast ensemble (left panels), the hindcast component of the augmented state (middle panels),

and the error ensemble members (right panels; different y-axis scale). Markers show the river discharge observations (a, b, d, and e), and the

error of the raw hindcast mean (c and f).

ensemble members from the previous time step (Section 4.1). However, this assumption is necessary to propagate the hindcast

to the next time step without the use of a hydrogical model (Section 3.1).

It is the error ensemble that is most important to our application (Figs. 4c and 4f). Despite the non-optimal formation of the

analysis augmented state, the error ensembles are updated beneficially, with the analysis error ensemble mean moving closer to

the error of the raw hindcast mean at each lead-time for the assimilated location (Fig. 4c) and the non-assimilated location (Fig.530

4f). At short lead-times the updates to the error ensemble at the Bonn station do not appear to be beneficial (Fig. 4f). However,

as this experiment only assimilates observations from one station this discussion should be considered a demonstration of how

the method updates proxy-ungauged locations rather than an evaluation of the error-corrected ensemble (which is provided

in Section 7.2). First we note, that the updates at the assimilated location do not result in the error ensemble mean (dark

blue line) matching the error of the mean (markers). This is expected and is due to the consideration of the observational535

uncertainty within the LETKF. This ensures spatial consistency across assimilated and non-assimilated locations, and combines

the modelled and observed data to estimate the true state of the system across the domain.

The error-ensemble is narrow after the update step and it is the covariance inflation that increases the spread between

timesteps. The spread of the hindcast is due to meteorological forcings, predominantly precipitation. Therefore, in general,
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the hindcast spread is larger for longer lead-times as the precipitation forecasts become more uncertain and this uncertainty is540

propagated along the river network, and higher river discharge values (when precipitation is above 0 mm). Since the covariance

inflation technique presented here results in the blending of the hindcast perturbation matrix with the error-ensemble from the

previous timestep, this behaviour in the hindcast spread is transferred to the error-ensemble. As demonstrated in Figs. 4c and

4f, this can result in the error ensemble spread being large for the rising limb of an event and smaller for the falling limb. This

can result in the error not being updated sufficiently, as seen after the peak in Fig. 4c and discussed later along with Fig. 5b.545

7.2 Ensemble skill

In this section we look at whether the updated ensemble is more skillful than the raw hindcast ensemble. Using leave-one-out

experiments we evaluate the ensemble mean and ensemble spread at proxy-ungauged locations (Section 6.4). The hydrographs

in Fig. 5 show the raw and error-corrected ensembles for three proxy-ungauged locations from the leave-one-out experiments.

The hydrographs are used to illustrate the method’s ability to correct the ensemble and some of the limitations.550

7.2.1 Skill of the ensemble mean

To investigate the impact on different types of errors in the ensemble mean we calculate the correlation, mean bias, variability

bias and the NMAE for each station and each lead-time (Section 6.5). Figure 6 compares the skill of the ensemble mean of the

raw and the error-corrected ensembles focusing on the overall change in skill (a, d, g, and i), the spatial dependency of the skill

(b, e, h, and k), and the lead-time dependency of the skill (c, f, i, and l).555

The error-corrected ensemble means show a stronger correlation with observations than the raw hindcast ensemble means,

with an average increase from 0.82 to 0.92, and an overall shift towards the perfect value of 1 (Fig. 6a). Figure 5a shows an

example of how the error-corrected ensemble can better capture the dynamics of the observations improving the correlation.

It can be seen that the resulting ensemble is temporally consistent and does not have improbable changes between timesteps.

However, at four stations the correlation worsens compared to the raw hindcast ensemble (Fig. 6b). The two most southern of560

these worsened stations, are near to confluences with larger rivers which have different correlation patterns in the raw hindcast

to those of the two stations of interest (note the much lighter colours for nearby stations; Fig. 6a). The ensemble covariances

are not capturing this change in regime correctly so the observational information is not being advantageously spread between

these rivers. The remaining two stations are the most upstream stations on their rivers. At these, stations the updates made to the

error-corrected ensemble are dependent on observations assimilated downstream. The assimilated observations are therefore565

providing information about a past state of the river upstream which could be the cause of the decreased correlation (a measure

of timing errors) at these upstream stations. Whilst most upstream stations are improved by the error-correction method, stations

which have much smaller upstream areas that their closest downstream station tend to be improved less than those that have a

similar upstream area, particularly if the distance to the neighboring station is large.

The error-corrected ensemble generally has a lower mean bias than the raw hindcast ensemble, with the average mean bias570

shifting from 1.027 (overestimation) to 1.004 (less overestimation). However, there is a slight shift towards underestimation

(Fig. 6d). Just over half of the stations (47) show improvement in mean bias averaged across all lead times (Fig. 6e), but no
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Figure 5. Raw and error-corrected hydrographs for proxy-ungauged locations in leave-one-out experiments at the Rees station on the Rhine

(upstream area: 159,320 km3) and the Mainleus station on the Main (upstream area: 1,164 km3). Catchment illustrations indicate the location

of the station (see Fig. 2 for rivernames and scale).
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clear spatial pattern emerges, as most rivers have a mix of improved and worsened stations. This spatial heterogeneity is also

seen in the raw hindcast ensemble, with stations on the same river stretch often showing different biases. For example, stations

on the Neckar, and upstream of the Meuse show stations, that are under- and overestimated, as well as stations with very little575

bias. The heterogeneity suggests local factors which are not fully captured in the modelling system considerably influence flow

bias. Stations showing the most improvement tend to have similar mean bias values to their neighboring stations in the raw

hindcast ensemble, such as on the middle stretch of the Meuse, where four stations with similar biases show improvement (Fig.

6e). Spatial patterns of errors that are related to domain-wide model structure rather than local factors, such as weirs, are more

likely to be portrayed by the ensemble covariances allowing observational information to be more helpfully spread along the580

river network.

The raw hindcast ensemble mean generally underestimates flow variability, with a variability bias below 1 (Fig. 6g). The

error-corrected ensemble improves this, increasing the mean variability bias from 0.82 to 0.95, although the frequency of

overestimation of flow variability is also increased (Fig. 6g). Stations where the error-corrected ensemble overestimates the

variability are often the most upstream station on their rivers (e.g., Plochigen station on the Neckar) or are much closer to585

downstream than upstream neighbours (e.g., Chooz station on the Meuse). This suggests the hindcast covariances between

downstream stations and upstream locations are too large, causing excessive adjustment at upstream locations. Ten stations

show worsened variability bias, including two stations downstream on the Rhine (Fig. 6h). The cause of the worsening of these

two stations is the adjustment for the falling limb of a flood peak in July (Fig. 5b). Here, the hindcast uncertainty was very

small at short lead-times, causing the analysis to ignore observations and the error ensemble to remain relatively unchanged,590

despite changes in the error behavior following the peak.

Overall, the error-corrected ensemble reduces the absolute error, with the average NMAE decreasing from 0.33 to 0.23 (Fig.

6j). The 7 stations with worsened NMAE are typically (5/7) the most upstream on their rivers (Fig. 6k; see discussion about

correlation). Interestingly, the NMAE does not follow the same spatial pattern as the mean bias. The decrease in absolute

errors, despite an increase in mean bias, suggests that the error-corrected ensembles consistently underestimate flow, while the595

raw hindcast ensemble fluctuates more between under- and overestimation, which can compensate for each other in the mean

bias metric.

The raw and error-corrected ensemble means both decrease in skill in terms of correlation, variability bias, and NMAE with

increasing lead-times. The raw hindcast ensemble loses skill more quickly in particular for lead-times longer than 5 days (Figs.

6c, 6i, and 6l). The uncertainty in the observations is not lead-time dependent. However, Fig. 3d shows that the ensemble600

covariances do change across lead-times, increasing for longer lead-times. The reduction in skill as lead-times increase suggest

that the ensemble covariances are not able to spread the observational information along the river network as accurately at

longer lead-times. This is likely due to an over estimation of the variance at longer lead-times.

7.2.2 Skill of the ensemble distribution

The reliability of the ensemble distribution is assessed using rank histograms at different lead times (Figs. 7a, 7b, and 7c). At605

short lead times, the raw hindcast ensemble is underdispersed, likely due to the use of a single set of initial conditions (Fig.
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Figure 7. Reliability of the ensemble. Histograms show the rank of the ensemble pooled over all forecasts and stations for lead-times of 1

day (a), 7 days (b), and 15 days (c).

7a). Although the error-corrected ensemble shows slight improvement, it remains overconfident with minimal correction to the

spread. Both the raw and error-corrected ensembles generally appear unbiased, with observations falling both above and below

the ensemble predictions at similar frequencies. However, some bias may be masked by the narrow ensemble spread and it is

known that some stations are biased (Fig. 6b), likely contributing to the peaks at ranks 0 and 51 in the rank histograms.610

As the lead-time increases, the spread of both ensembles becomes more reliable, and fewer observations fall outside the

ensemble (Fig. 7b). However, even at a 15-day lead time, both ensembles show a tendency to overestimate observations,

leading to a peak at rank 0, mostly due to a few stations consistently overestimating flow (Fig. 6b). Up to 7-day lead times, the

rank histograms for both raw and error-corrected ensembles show similar shapes. Beyond 7 days, the raw hindcast ensemble’s

histogram flattens, suggesting a reliable ensemble, while the error-corrected ensemble shows a peak around ranks 25-35,615

suggesting overdispersion (Fig. 7c). The left-skewness of the histograms is likely due to the inherent skewness in river discharge

distributions. The LETKF update step seeks to minimise the difference between the ensemble mean and the true state of the

system. The ensemble mean is often larger than the ensemble median leading to the observations falling in ranks above 25 if

the adjustment method is successful and minimising the error of the mean (Figs. 5a and 5c).

As discussed in Section 4.1, the Kalman filter is not restricted to ensure positive discharge and there is therefore a need to620

adjusted the error ensemble before correction of the hindcast. Enforcing non-negative discharge was necessary, for example,

for the Mainleus station on the Main for the hindcast generated on the 22 March 2021 (Fig. 5c). Whilst the ensemble mean is

error-corrected at most lead-times, several members indicate river discharge values of 0 m3s−1. The river discharge is below

10 m3s−1 but a zero flow is unlikely in reality. This suggests the ensemble spread is not sufficiently corrected even though the

ensemble mean is improved as is also suggested by Fig. 7c.625

26

https://doi.org/10.5194/hess-2024-3989
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



8 Discussion

In general, the proposed data-assimilation-inspired method successfully spreads observational information along the river

network improving the skill of the ensemble mean at ungauged locations. Locations downstream from assimilated observations

are improved most although locations upstream are usually improved as well, even if they are far from neighbouring stations.

This is likely due to two reasons: 1) constant biases in the river discharge estimates that are propagated downstream and630

hence can be accounted for when a downstream observation is assimilated, and 2) the daily aggregation of the river discharge

extending the time period for which a downstream observations provides relevant information. If the error patterns of the

ensemble mean at a location differ from those at nearby stations the method struggles to spread the observational information

correctly. At shorter lead-times the reliability of the ensemble is slightly improved due to the decrease in the error of the

ensemble mean. However, at longer lead-times the ensemble spread is often too large leading to an under-confident forecast.635

Despite the method’s ability to correct upstream, it could be beneficial to assimilate observations from as far upstream

as possible. These observations do not necessarily need to be traditional in-situ observations but could come from Earth

Observation (EO; Durand et al., 2023), crowdsourced or community observations (Le Coz et al., 2016; Etter et al., 2020), or

camera based sensors (Vandaele et al., 2021). The key requirement is that an observation operator can be defined. Observation

operators map the state of the system from state space to observations space. In our study the observation operator selects the640

grid-point that represents the location of the station on the modelled river network. The mapping of the station locations from

the physical river network to the modelled river network is not trivial and several studies have attempted to automate this step

(Isikdogan et al., 2017; Li et al., 2018). If this mapping is incorrect then representation errors can be introduced (Janjić et al.,

2018). For example, if a station on a bypass channel is incorrectly located on the main channel. Observations from the station

will undoubtedly provide erroneous information in the update step.645

The covariance inflation method used here maintains consistency between the spread of the error ensemble and the spread

of the hindcast (Section 5.2). This successfully stops the error ensemble from collapsing such that the observations are not

ignored. However, in situations where the uncertainty of the hindcast ensemble is over- or under-estimated the covariance

inflation does not correct the error ensemble covariances correctly. This can lead to the observations being ignored as for short

lead-times in Fig. 5b, and could also be the cause for the slight degradation in skill of the ensemble mean in Fig. 6c, 6i, and650

6l. Correcting the spread of the hindcast before using it in the inflation of the error covariances could solve this issue (Section

5.2). Covariance inflation techniques that use the innovation statistics could be used to first adjust the hindcast ensemble (e.g.,

Kotsuki et al., 2017). Alternatively, a lower threshold for the variance of the ensemble could be set - say 10% of the ensemble

mean similarly to the observation error covariance matrix or the root mean square-error of the initial conditions. However,

caution is needed not to artificially inflate the covariances too much such that the analysis increments become too large, in655

particular at short lead-times when the correlation is small (Fig. 3).

As discussed in Section 7.2.2, the resulting ensemble must be adjusted in some cases to avoid negative discharge values

(Section 4.1). This does in some cases lead to ensemble members close to 0 m3s−1 when a zero flow value is unlikely (Fig.

5c). This occurs due to the analysis increment being larger in magnitude than the value of some of the raw ensemble members.
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In general, this is due to the skewed distribution of discharge (Bogner et al., 2012). Future work could look into applying660

anamorphosis to make the ensemble distribution more Gaussian-like (Nguyen et al., 2023). The covariances between grid

boxes on larger rivers and station locations tend to be large even when the correlation is small. This is due to larger rivers

having larger variances which is partially due to their larger river discharge magnitudes. Localisation does enforce a distance

dependence on the covariance magnitudes but transforming the river discharge values to be comparable across the domain

may also help minimise the impact of overestimated ensemble spread. A transformation between river discharge and specific665

discharge (river discharge divided by upstream area) could be used to ensure that the ensemble covariances more accurately

represent the true relationship between locations.

The code developed for this study is designed to allow for research flexibility rather than operational efficiency. However,

the error-adjustment of a single forecast took on average 8.5 minutes for the whole of the Rhine-Meuse catchment - a large

catchment. This suggests that, with proper parallelization, the method could be operationalized and applied to all gauged670

catchments in Europe. Before that, though, the method needs to be evaluated on additional catchments. The Rhine was selected

because it is highly gauged, but this also means that the raw ensemble’s skill is relatively high due to the effectiveness of the

hydrological model calibration process. This could influence the method’s performance in two ways: 1) the error ensemble

may evolve more linearly than in less calibrated catchments, and 2) the hindcast ensemble’s covariance may better represent

the covariances between the estimated errors. The next step should be applying this method to a catchment with lower skill675

than the Rhine.

The method presented in this study spreads observation information along the river network but cannot yet be used as a

post-processing method because observations from the hindcast period (the future) are assimilated. We envisage the method

being developed further to make it applicable operationally as a hydrological forecast post-processing method. Nevertheless,

it may still be useful in certain situations, such as post-event analysis. After a flood event an assessment is often performed680

estimating the severity of the event as well as potential causes and mitigating factors. However, in-situ river gauges only

present a snapshot of the event at specific locations and are often damaged during flood events, resulting in missing or incorrect

data. EO estimations of river discharge could fill in some of the gaps but this would depend on the satellite’s orbit and its

availability at the right time (Douben, 2006). Reanalysis is another option, but it requires additional hydrological model runs

and may contain errors due to the structure of the hydrological model or errors in the meteorological observations. The method685

proposed here could offer a domain-wide estimate of observations without requiring additional model runs or a "warm-up"

period typically needed in hydrological simulations to stabilize antecedent water storage within the catchment.

9 Conclusion

We present and evaluate a data-assimilation-inspired method for spreading observation information from gauged to ungauged

locations in a post-processing environment. This method enables the error-correction of an ensemble simulation at all grid690

boxes. The method utilises state augmentation within an LETKF framework to estimate an ensemble of error vectors. The

error vectors are then used to correct each hindcast ensemble member separately.
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Overall, the method successfully reduces the errors of the ensemble mean at ungauged locations in leave-one-out experi-

ments. The adjusted ensemble mean has a higher correlation with the observed river discharge and is more able to capture the

variability of the river discharge at a point. Whilst the magnitude of the errors are reduced the ensemble spread is not adjusted695

sufficiently resulting in an under-confident ensemble spread at longer lead-times. The adjusted ensembles are spatially and

temporally consistent with the river discharge predictions showing smooth evolution both between grid-boxes on the same

river and between lead-times. The method is most limited in its applications to locations further upstream than the assimilated

observations and for hindcasts where the variance of the ensemble is incorrectly small which most often happens at shorter

lead-times. These limitations can be minimised by further investigation into the localisation approach, for example having a700

different localisation length upstream and downstream from the assimilated observation, and the covariance inflation approach,

which may involve applying a spread-correction to the hindcast ensemble as well as the error-ensemble.

Our method of spreading observation information could be used to improve post-event analysis. However, as the computa-

tional requirements and processing time are both small the method could also be developed further to allow for its application

to the post-processing of operational forecasts. The prediction of river discharge at ungauged locations is a crucial challenge705

for hydrological research and once successfully achieved will allow for better preparedness for floods.
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Janjić, T., Bormann, N., Bocquet, M., Carton, J., Cohn, S. E., Dance, S. L., Losa, S. N., Nichols, N. K., Potthast, R., Waller, J. A., et al.: On

the representation error in data assimilation, Quarterly Journal of the Royal Meteorological Society, 144, 1257–1278, 2018.

Khaki, M., Hoteit, I., Kuhn, M., Awange, J., Forootan, E., Van Dijk, A. I., Schumacher, M., and Pattiaratchi, C.: Assessing sequential data

assimilation techniques for integrating GRACE data into a hydrological model, Advances in Water Resources, 107, 301–316, 2017.805

Khaniya, M., Tachikawa, Y., Ichikawa, Y., and Yorozu, K.: Impact of assimilating dam outflow measurements to update distributed

hydrological model states: Localization for improving ensemble Kalman filter performance, Journal of Hydrology, 608, 127 651,

https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127651, 2022.

Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, Journal

of Hydrology, 424, 264–277, 2012.810

Kotsuki, S., Ota, Y., and Miyoshi, T.: Adaptive covariance relaxation methods for ensemble data assimilation: Experiments in the real

atmosphere, Quarterly Journal of the Royal Meteorological Society, 143, 2001–2015, 2017.

Lavers, D. A., Harrigan, S., Andersson, E., Richardson, D. S., Prudhomme, C., and Pappenberger, F.: A vision for improving global flood

forecasting, Environmental Research Letters, 14, 121 002, https://doi.org/10.1088/1748-9326/ab52b2, 2019.

Le Coz, J., Patalano, A., Collins, D., Guillén, N. F., García, C. M., Smart, G. M., Bind, J., Chiaverini, A., Le Boursicaud, R., Dramais, G.,815

et al.: Crowdsourced data for flood hydrology: Feedback from recent citizen science projects in Argentina, France and New Zealand,

Journal of Hydrology, 541, 766–777, 2016.

Lee, D.-G. and Ahn, K.-H.: Improving medium-range streamflow forecasts over South Korea with a dual-encoder transformer model, Journal

of Environmental Management, 368, 122 114, 2024.

Li, J., Li, T., Liu, S., and Shi, H.: An Efficient Method for Mapping High-Resolution Global River Discharge Based on the Algorithms of820

Drainage Network Extraction, Water, 10, https://doi.org/10.3390/w10040533, 2018.

Li, W., Duan, Q., Miao, C., Ye, A., Gong, W., and Di, Z.: A review on statistical postprocessing methods for hydrometeorological ensemble

forecasting, Wiley Interdisciplinary Reviews: Water, 4, e1246, 2017.

Li, Y., Cong, Z., and Yang, D.: Remotely sensed soil moisture assimilation in the distributed hydrological model based on the error subspace

transform Kalman filter, Remote Sensing, 15, 1852, 2023.825

Liu, S., Wang, J., Wang, H., and Wu, Y.: Post-processing of hydrological model simulations using the convolutional neural network and

support vector regression, Hydrology Research, 53, 605–621, 2022.

Livings, D. M., Dance, S. L., and Nichols, N. K.: Unbiased ensemble square root filters, Physica D: Nonlinear Phenomena, 237, 1021–1028,

2008.

32

https://doi.org/10.5194/hess-2024-3989
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Lu, G. Y. and Wong, D. W.: An adaptive inverse-distance weighting spatial interpolation technique, Computers & Geosciences, 34, 1044–830

1055, https://doi.org/https://doi.org/10.1016/j.cageo.2007.07.010, 2008.

Martin, M., Bell, M., and Nichols, N. K.: Estimation of systematic error in an equatorial ocean model using data assimilation, International

Journal for Numerical Methods in Fluids, 40, 435–444, 2002.

Martin, M. J.: Data assimilation in ocean circulation models with systematic errors., Ph.D. thesis, University of Reading, 2001.

Mason, D., Garcia Pintado, J., Cloke, H. L., Dance, S., and Munoz-Sabater, J.: Assimilating high resolution remotely sensed soil moisture835

into a distributed hydrologic model to improve runoff prediction, ECMWF Technical Memorandum, 2020.

Matthews, G., Baugh, C., Barnard, C., De Wiart, C. C., Colonese, J., Decremer, D., Grimaldi, S., Hansford, E., Mazzetti, C., O‘Regan, K.,

Pappenberger, F., Ramos, A., Salamon, P., Tasev, D., and Prudhomme, C.: Chapter 14 - On the operational implementation of the European

Flood Awareness System (EFAS), in: Flood Forecasting (Second Edition), edited by Adams, T. E., Gangodagamage, C., and Pagano, T. C.,

pp. 251–298, Academic Press, second edition edn., ISBN 978-0-443-14009-9, https://doi.org/https://doi.org/10.1016/B978-0-443-14009-840

9.00005-5, 2025.

McMillan, H., Krueger, T., and Freer, J.: Benchmarking observational uncertainties for hydrology: rainfall, river discharge and water quality,

Hydrological Processes, 26, 4078–4111, 2012.

McMillan, H. K., Westerberg, I. K., and Krueger, T.: Hydrological data uncertainty and its implications, WIREs Water, 5, e1319,

https://doi.org/https://doi.org/10.1002/wat2.1319, 2018.845

Mohr, S., Ehret, U., Kunz, M., Ludwig, P., Caldas-Alvarez, A., Daniell, J. E., Ehmele, F., Feldmann, H., Franca, M. J., Gattke, C., Hund-

hausen, M., Knippertz, P., Küpfer, K., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Scheibel, M., Seidel, F., and Wisotzky, C.: A

multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis, Natural

Hazards and Earth System Sciences, 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, 2023.

Nguyen, T. H., Ricci, S., Piacentini, A., Simon, E., Rodriguez-Suquet, R., and Luque, S. P.: Gaussian anamorphosis for ensemble kalman850

filter analysis of SAR-derived wet surface ratio observations, IEEE Transactions on Geoscience and Remote Sensing, 2023.

Nichols, N. K.: Data Assimilation: Aims and Basic Concepts, in: Data Assimilation for the Earth System, edited by Swinbank, R., Shutyaev,

V., and Lahoz, W. A., pp. 9–20, Springer Netherlands, Dordrecht, ISBN 978-94-010-0029-1, 2003.

Nichols, N. K.: Mathematical concepts of data assimilation, Data assimilation: making sense of observations, pp. 13–39, 2010.

Pugliese, A., Persiano, S., Bagli, S., Mazzoli, P., Parajka, J., Arheimer, B., Capell, R., Montanari, A., Blöschl, G., and Castellarin, A.: A855

geostatistical data-assimilation technique for enhancing macro-scale rainfall–runoff simulations, Hydrology and Earth System Sciences,

22, 4633–4648, 2018.

Refsgaard, J., Van der Keur, P., Nilsson, B., Müller-Wohlfeil, D.-I., and Brown, J.: Uncertainties in river basin data at various support

scales–Example from Odense Pilot River Basin, Hydrology and Earth System Sciences Discussions, 3, 1943–1985, 2006.

Ridler, M.-E., Zhang, D., Madsen, H., Kidmose, J., Refsgaard, J. C., and Jensen, K. H.: Bias-aware data assimilation in integrated hydrolog-860

ical modelling, Hydrology Research, 49, 989–1004, 2018.

Rouzies, E., Lauvernet, C., and Vidard, A.: Comparison of different ensemble assimilation methods in a modular hydrological model dedi-

cated to water quality management, Hydrology and Earth System Sciences Discussions, 2024, 1–33, 2024.

Scheffler, G., Carrassi, A., Ruiz, J., and Pulido, M.: Dynamical effects of inflation in ensemble-based data assimilation under the presence

of model error, Quarterly Journal of the Royal Meteorological Society, 148, 2368–2383, https://doi.org/https://doi.org/10.1002/qj.4307,865

2022.

33

https://doi.org/10.5194/hess-2024-3989
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Skøien, J. O., Merz, R., and Blöschl, G.: Top-kriging-geostatistics on stream networks, Hydrology and Earth System Sciences, 10, 277–287,

2006.

Skøien, J. O., Bogner, K., Salamon, P., Smith, P., and Pappenberger, F.: Regionalization of post-processed ensemble runoff forecasts, Pro-

ceedings of the International Association of Hydrological Sciences, 373, 109–114, 2016.870

Skøien, J. O., Bogner, K., Salamon, P., and Wetterhall, F.: On the Implementation of Postprocessing of Runoff Forecast Ensembles, Journal

of Hydrometeorology, 22, 2731 – 2749, https://doi.org/10.1175/JHM-D-21-0008.1, 2021.

Smith, P., Thornhill, G., Dance, S., Lawless, A., Mason, D., and Nichols, N.: Data assimilation for state and parameter estimation: application

to morphodynamic modelling, Quarterly Journal of the Royal Meteorological Society, 139, 314–327, 2013.

Smith, P., Pappenberger, F., Wetterhall, F., Del Pozo, J. T., Krzeminski, B., Salamon, P., Muraro, D., Kalas, M., and Baugh, C.: On the875

operational implementation of the European Flood Awareness System (EFAS), in: Flood forecasting, pp. 313–348, Elsevier, 2016.

Smith, P. J., Dance, S. L., Baines, M. J., Nichols, N. K., and Scott, T. R.: Variational data assimilation for parameter estimation: application

to a simple morphodynamic model, Ocean Dynamics, 59, 697–708, 2009.

Stewart, L. M., Dance, S. L., and Nichols, N. K.: Data assimilation with correlated observation errors: experiments with a 1-D shallow water

model, Tellus A: Dynamic Meteorology and Oceanography, 65, 19 546, https://doi.org/10.3402/tellusa.v65i0.19546, 2013.880

Strahler, A. N.: Quantitative analysis of watershed geomorphology, Eos, Transactions American Geophysical Union, 38, 913–920, 1957.

Talagrand, O.: Evaluation of probabilistic prediction systems, in: Workshop Proceedings" Workshop on Predictability", 20-22 October 1997,

ECMWF, Reading, UK, 1999.

Valdez, E. S., Anctil, F., and Ramos, M.-H.: Choosing between post-processing precipitation forecasts or chaining several uncertainty quan-

tification tools in hydrological forecasting systems, Hydrology and Earth System Sciences, 26, 197–220, 2022.885

Valler, V., Franke, J., and Brönnimann, S.: Impact of different estimations of the background-error covariance matrix on climate reconstruc-

tions based on data assimilation, Climate of the Past, 15, 1427–1441, 2019.

Van Der Knijff, J., Younis, J., and De Roo, A.: LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood

simulation, International Journal of Geographical Information Science, 24, 189–212, 2010.

Vandaele, R., Dance, S. L., and Ojha, V.: Deep learning for automated river-level monitoring through river-camera images: an approach based890

on water segmentation and transfer learning, Hydrology and Earth System Sciences, 25, 4435–4453, 2021.

Vannitsem, S., Bremnes, J. B., Demaeyer, J., Evans, G. R., Flowerdew, J., Hemri, S., Lerch, S., Roberts, N., Theis, S., Atencia, A.,

BouallÃ¨gue, Z. B., Bhend, J., Dabernig, M., Cruz, L. D., Hieta, L., Mestre, O., Moret, L., PlenkoviÄ‡, I. O., Schmeits, M., Taillardat,

M., den Bergh, J. V., Schaeybroeck, B. V., Whan, K., and Ylhaisi, J.: Statistical Postprocessing for Weather Forecasts: Review, Challenges,

and Avenues in a Big Data World, Bulletin of the American Meteorological Society, 102, E681 – E699, https://doi.org/10.1175/BAMS-895

D-19-0308.1, 2021.

Whitaker, J. S. and Hamill, T. M.: Evaluating Methods to Account for System Errors in Ensemble Data Assimilation, Monthly Weather

Review, 140, 3078 – 3089, https://doi.org/10.1175/MWR-D-11-00276.1, 2012.

Woldemeskel, F., McInerney, D., Lerat, J., Thyer, M., Kavetski, D., Shin, D., Tuteja, N., and Kuczera, G.: Evaluating post-processing

approaches for monthly and seasonal streamflow forecasts, Hydrology and Earth System Sciences, 22, 6257–6278, 2018.900

World Meteorological Organisation (WMO): Disaster Risk Reduction (DRR) Programme, https://www.wmo.int/pages/prog/drr/projects/

Thematic/MHEWS/MHEWS_en.html, accessed: 2024-09-20, 2015.

Wu, W., Emerton, R., Duan, Q., Wood, A. W., Wetterhall, F., and Robertson, D. E.: Ensemble flood forecasting: Current status and future

opportunities, Wiley Interdisciplinary Reviews: Water, 7, e1432, 2020.

34

https://doi.org/10.5194/hess-2024-3989
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Xie, X. and Zhang, D.: Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter, Advances in Water905

Resources, 33, 678–690, https://doi.org/https://doi.org/10.1016/j.advwatres.2010.03.012, 2010.

Xu, J., Anctil, F., and Boucher, M.-A.: Hydrological post-processing of streamflow forecasts issued from multimodel ensemble prediction

systems, Journal of Hydrology, 578, 124 002, 2019.

Ye, A., Duan, Q., Yuan, X., Wood, E. F., and Schaake, J.: Hydrologic post-processing of MOPEX streamflow simulations, Journal of hydrol-

ogy, 508, 147–156, 2014.910

Zhang, F., Snyder, C., and Sun, J.: Impacts of Initial Estimate and Observation Availability on Convective-Scale Data As-

similation with an Ensemble Kalman Filter, Monthly Weather Review, 132, 1238 – 1253, https://doi.org/10.1175/1520-

0493(2004)132<1238:IOIEAO>2.0.CO;2, 2004.

35

https://doi.org/10.5194/hess-2024-3989
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.


