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Abstract. Forecasting river discharge is essential for disaster risk reduction and water resource management, but forecasts of
the future river state often contain errors. Post-processing reduces forecast errors but is usually only applied at the locations of
river gauges, leaving the majority of the river network uncorrected. Here, we present a data-assimilation-inspired method for
error-correcting ensemble simulations across gauged and ungauged locations in a post-processing step. Our new method em-
ploys state augmentation within the framework of the Local Ensemble Transform Kalman Filter (LETKF). Using the LETKEF,
an error vector representing the forecast residual is estimated for each ensemble member. The LETKF uses ensemble error co-
variances to spread observational information from gauged to ungauged locations in a dynamic and computationally efficient
manner. To improve the efficiency of the LETKF we define new localisation, covariance inflation, and initial ensemble gener-
ation techniques that can be easily transferred between modelling systems and river catchments. We implement and evaluate
our new error-correction method for the entire Rhine-Meuse catchment using forecasts from the Copernicus Emergency Man-
agement Service’s European Flood Awareness System (EFAS). The resulting river discharge ensembles are error-corrected at
every grid box but remain spatially and temporally consistent. A spatial cross-validation strategy is used to assess the ability of
the method to spread the correction along the river network to ungauged locations. The skill of the ensemble mean is improved
at almost all locations including stations both up- and downstream of the assimilated observations. Whilst the ensemble spread
is improved at short lead-times, at longer lead-times the ensemble spread is too large leading to an underconfident ensemble. In
summary, our method successfully propagates error information along the river network, enabling error correction at ungauged
locations. This technique can be used for improved post-event analysis and can be developed further to post-process operational

forecasts providing more accurate knowledge about the future states of rivers.

Copyright statement.



20

25

30

35

40

45

50

1 Introduction

River discharge forecasts are essential tools for taking effective preparatory actions for disaster mitigation and water resource
planning (UNDRR, 2015). However, despite the increased sophistication of forecasting systems over the past few decades,
river discharge forecasts still contain uncertainty (Boelee et al., 2019). The uncertainty is introduced at several stages of
the forecasting system including the meteorological forcings, the initial conditions, and the hydrological model structure and
parameters (Valdez et al., 2022). Ensemble river discharge forecasts typically aim to account for the meteorological uncertainty
by forcing a hydrological model with many meteorological forcings (Cloke and Pappenberger, 2009; Wu et al., 2020). However,
ensemble forecasts can still contain biases and errors in the representation of uncertainty. Different methods for correcting these
errors have been developed including pre-processing of the meteorological forcings, calibration of the hydrological model,
improving the initial conditions using data assimilation, and post-processing of the river discharge forecast (Bourdin et al.,
2012). Of these approaches post-processing is often considered the most computationally efficient and its ability to correct for
multiple sources of errors simultaneously is appealing.

In meteorological forecasting, post-processing at non-observed locations is common (see Vannitsem et al., 2021). However,
hydrological forecasting requires consideration of the spatial heterogeneity introduced by the river network (e.g., Li et al., 2017,
Woldemeskel et al., 2018; Ye et al., 2014; Xu et al., 2019; Liu et al., 2022; Lee and Ahn, 2024) making hydrological post-
processing at ungauged locations a difficult challenge. The global river gauge network is sparse (Krabbenhoft et al., 2022), and
even in regions where gauges exist, river discharge data are often not widely shared (Lavers et al., 2019; Hannah et al., 2011).
Therefore, the development of post-processing techniques for ungauged locations is essential. However, current techniques are
generally too computationally expensive for operational river flow forecasting applications (Emerton et al., 2016). For example,
defining a joint distribution between the river discharge at multiple locations would allow forecasts to be conditioned on
observations available at specific locations (Engeland and Steinsland, 2014). However, for large-scale distributed systems and
multiple lead-times the size of the joint distribution quickly becomes too large. Alternatively, error-correction can be performed
at a gauged location and the results interpolated to ungauged locations. One such method used to interpolate error-correction
parameters is top-kriging (Pugliese et al., 2018; Skgien et al., 2021). Top-kriging takes into account the river network but
the relationship between errors at different locations is assumed static regardless of the hydrometeorological situation (Skgien
et al., 2016, 2006). Another option is to use a river routing model to propagate error-corrected river discharge forecasts between
gauged locations (Bennett et al., 2022). Whilst this approach maintains spatial consistency between locations, the additional
run of the model could be computationally expensive for an operational application.

The aim of this paper is to present and evaluate a novel technique for spreading observation information from gauged to
ungauged locations in a computationally efficient and temporally varying manner. The new method is based on data assimilation
techniques. Data assimilation is a mathematical technique that combines modelled predictions and observations to produce asn
improved-modeHed staterelative-to-a better estimate of the true state of the systemriver (Nichols, 2003, 2010). Data assimilation
is often used to improve the initial conditions of forecasts (Valdez et al., 2022). However, in this paper we modify the techniques

to apply them in a post-processing environment such that additional, computationally expensive, executions of the hydrological
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model are not required. The error correction method proposed in this study is based on state augmentation (Dee, 2005) and
the Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007). State augmentation is a technique that allows the
estimation of the state and parameters/biases of a system simultaneously, and is often used for online bias-estimation in data
assimilation (Ridler et al., 2018; Gharamti and Hoteit, 2014; Smith et al., 2013, 2009; Martin et al., 2002). The LETKF is part
of the Kalman Filterfilter family of methods and uses an ensemble of model states to estimate the state error covariances. Due
to their computational efficiency and ability to handle non-linear dynamics without an adjoint model, ensemble Kalman Fiters
filters are common data assimilation methods in hydrological research (Rouzies et al., 2024; Li et al., 2023; Mason et al., 2020;
Ridler et al., 2018; Khaki et al., 2017; Xie and Zhang, 2010; Clark et al., 2008).

Whilst many studies have shown the benefits of data assimilation for hydrological forecasting (Tanguy et al., 2025; Valdez
et al., 2022; Piazzi et al., 2021), the process is rare in operational systems (Pechlivanidis et al., 2025), particularly in large-
scale systems (Wu et al., 2020). This limited uptake is partly due to data latency issues (WMO, 2024), time constraints, and the
potential impact on the interpretation of the forecasts (e.g., thresholds based on model climatology may no longer be consistent;
Emerton et al., 2016). Additionally, the benefit of data assimilation at longer lead-times is uncertain (e.g., Valdez et al., 2022).
In this paper, we leverage key advantages of data assimilation—such as the ability to propagate observational information to
ungauged locations—within a post-processing framework that is more readily integrated into operational systems.

The proposed method aims to improve the skill of the ensemble mean and the reliability of the ensemble spread by adjusting
each ensemble member, as will be discussed in more detail in Section 2. However, it is equally, if not more, important that the
ensembles are spatially and temporally consistent in order to aid with decision making (Bennett et al., 2022). This is particularly
important for large scale systems that provide forecasts across administrative boundaries, such as the Copernicus Emergency
Management Service’s (CEMS) European Flood Awareness System (EFAS) used in this study (Matthews et al., 2025). The

specific research questions to be addressed in this study are therefore,

1. Can data assimilation techniques be used in a post-processing environment to propagate observation information to

ungauged locations?
2. Are the resulting ensemble predictions of river discharge more skillful than the raw ensemble?

This paper is organised as follows. In Section 2 we define the errors which we aim to correct and introduce some terminology
and notation. In Section 3 we describe the data assimilation techniques used within this study. In Section 4 we outline the
proposed error-correction method and detail how the ensemble is corrected. Section 5 provides some additional components of
the method that improve the efficacy of the method but which can be adjusted to suit the data availability of any system and/or
domain. Section 6 outlines the strategy used to evaluate the efficacy of the proposed method. Section 7 presents the results,
first investigating the impact of assimilating the observations, and then assessing the skill of the error-corrected ensembles. In
Section 8 we discuss key features of the proposed method and their impact on the error-corrected ensembles. In Section 9 we
conclude that the proposed method successfully improves the skill of the ensemble mean, and highlight priorities for future

developments.
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Please note that throughout the paper ‘hindcast ensemble’ refers to the ensembles of river discharge that we are error-
correcting. Fhese-In this paper, these ensembles are past operational EFAS forecasts (see Section 6.1):-hewever. However,
when we perform the error-correction we use observations that are available within the forecast (hindcast) period. This-would
net-be-possible-Observations are not available during the forecast period in an operational systemas-these-timesteps-would-be-,
since these timesteps are in the future. Therefore, we refer to these river discharge ensembles as hindcasts foerelarityto indicate

that the ensembles are not valid forecasts.

2 Ensemble error-correction framework

Here, we define the errors which we aim to correct and provide some notation that is used throughout the paper. Where possible
we follow the standard data assimilation notation provided in Ide et al. (1997). Let the true state of the system at time & be
defined as x}"“¢ € R", where each element represents the true river discharge in one of the n grid boxes in the domain of
interest. Hydrological forecasts generally estimate the true state of the system using a modelled state, denoted xj, where
the lack of superscript ‘true’ indicates it is a modelled estimate. In this study, the hydrological ensemble forecasts consist of
N potential realizations of future river discharge, referred to as ensemble members. We define the ensemble river discharge

hindcasts as
{xk:x,(j),fori:1,2,...,Nandk:0,1,...,L}. 1)

where the superscript (i) indicates the i-th member of the ensemble, N is the ensemble size, the timestep k refers to the

lead-time of the hindcast, and L is the maximum lead-time. The ensemble mean is defined as

Lo )
%, = NZ;x; eR™. @)
The ensemble perturbation matrix is defined as

Xk:(x,(j)—ik xP g, x(kNLik)eR"XN 3)

where the i-th column represents the i-th ensemble member’s departure from the ensemble mean at lead-time k. The perturba-
tion matrix contains information about the spread of the ensemble and the spatial structure of the deviations of each ensemble
member from the mean. From the definition of the perturbation matrix, the ensemble covariance matrix is defined as

1

P P—
FTN -1

X X1 e R™*™, )

where the superscript 7" indicates the matrix transpose.
In this paper, we propose a method to spread an error-correction from gauged locations to every grid box in the domain.
The proposed method estimates an additive error vector for each hindcast ensemble member at each timestep. Each element of

the error vector represents the error associated with a single grid box in the domain. Collectively, these error vectors form an
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ensemble defined as,
{bff)e]R” fom‘:1,2,...,N} (5)

where [V is the same ensemble size as the river discharge hindcast, n is the number of grid-boxes in the hindcast domain, and
k is the timestep. The error ensemble mean, by, and the ensemble perturbation matrix, By, are calculated by substituting b,(f)
in place of x,(f) in Egs. (2) and (3), respectively. We assume there is an additive relationship between each hindcast ensemble

new, (i)

member and the corresponding error vector such that the i-th error-corrected ensemble member, x;, , is defined as

xp D = x4+ bl e R™. ©6)

The estimation of the error ensemble at each timestep is described in Section 4.
To aid with the estimation of the error vectors, we assume that at each timestep the system is observed at py, river discharge

gauges. We assume the observation vector, y; € RP*_ is related to the true state of the system as
i =Hi(x") + € (7

where €, € RP* is a vector of unbiased Gaussian noise with covariance matrix Ry, € RP**Px and H;, € RP=*"™ is the linear
observation operator. The observation operator maps the variables from the state space to observation space. In this study, the
observation operator selects the grid boxes within the modelled drainage network that correspond to the locations of the river

gauges.

3 Data Assimilation

As discussed in Section 1, the proposed method is based on common data assimilation techniques: state augmentation and the
Local Ensemble Transform Kalman Filter (LETKF). In this section, we provide an overview of these techniques and introduce
the necessary equations. In Section 4, we adapt and apply these methods in a non-standard way due to their application in a

post-processing environment.
3.1 State augmentation

State augmentation is a technique used for online bias-correction in data assimilation that allows the simultaneous estimation
of the system state and biases. An augmented state is defined by appending the biases to the state vector, allowing both to be

updated by the data assimilation method. In this study, the i-th member of the augmented ensemble is defined as

(4)

. X,
wil=| k| er™ ®)

(i

bk
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where x(*) € R™ and b(*) € R™ are the i-th hindcast and error ensemble members, respectively. The augmented ensemble mean
and perturbation matrix are given by

X
ER? and Wy = Bl e r2N 9)

by By,
where X and b are the ensemble means of the hindcast and error ensembles, respectively, and X and B are the perturbation
matrices of the hindcast and error ensembles, respectively.

In this study, state augmentation is used within an LETKF (described in Section 3.2) and it is therefore necessary to define
the evolution of the augmented states between timesteps. The evolution of the hindcast and error ensembles determines the
evolution of the augmented states. The hindcasts used in this study were generated using the LISFLOOD hydrological model,
which is used in the EFAS operational system (Van Der Knijff et al., 2010). As the true evolution of the error vectors at all
grid-boxes is unknown, we assume a simple persistence model, such that bg) = b}ﬁl. This is a common assumption used in
state augmentation (Pauwels et al., 2020; Ridler et al., 2018; Rasmussen et al., 2016; Martin, 2001). Based on the independent
evolution of the hindcast and error ensembles, and the additive relationship between their members (Eq. (6)), we define the

propagation of the augmented ensemble members as

0) My—1 Tr X x4+ b
Wi = ON (i) ' (10)
0p—1 T b~ b,

where M, € R™*" is a linear evolution operator representing the LISFLOOD hydrological model and I,_; € R"*" is the
identity matrix. Since we use precomputed hindcast ensembles the propagation of the hindcast ensemble members requires no
additional computation. The full non-linear LISFLOOD hydrological model is also used without the need to define a linear

approximation.
3.2 Local Ensemble Transform Kalman Filter (LETKF)

The Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007) updates the mean state and the perturbation matrix
of an ensemble by combining the modelled and observed data. As a sequential data assimilation method, the LETKF consists
of a propagation step (also known as a forecast step) and an update step (also known as an analysis step) that are cycled. In
this method, we use the LETKF to update the ensemble of error vectors at each hindcast timestep for which observations are
available. However, we modify the propagation step to use precomputed hindcasts. The propagation step evolves the augmented
states forward in time from time k —1 to k, as described in Eq. (10). Rather than evolve the hindcast ensemble explicitly (which
would require the hydrological model), we use the precomputed hindcast at timestep k.

The update step of the LETKF calculates the state of the system at timestep k£ by combining the modelled augmented states
and observations. Both data are weighted by their respective uncertainties, represented by their covariance matrices. As the
LETKEF is a well documented method we only provide the key update equations. For more detailed derivations, we direct the

reader to Hunt et al. (2007) and Livings et al. (2008). To apply the LETKF to the augmented ensemble, we create a model-
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observation ensemble with an ensemble mean, y5, defined as
i = (Hy 0)W), = H; %), + Hybj_4 (11)

where Hj, € RP=*2" is the observation operator defined in Eq. (7). The LETKF can then update the augmented ensemble
mean, W, such that,
wi=wlt| | v, (12)
by
where the superscripts f and a indicate the state before and after the update step, respectively; Ky, € R"*P and K}, € R"*P
are the components of the Kalman gain matrix acting on the hindcast ensemble and the error ensemble respectively; and
Y& € RP is the observation vector defined in Eq. (7). The difference between the observations and the model state in observation
space (i.e., yx —yjjf ) is called the innovation vector. The Kalman gain matrix determines the impact of the innovation vector in
the update step. The respective uncertainties of the prior modelled state and the observations determine their weight within the
LETKEF. Large observation uncertainties reduce the Kalman gain, while large uncertainties in the prior state increase the Kalman
gain. Both the hindcast and the error components of the Kalman gain are functions of the covariance matrix of the augmented
ensemble (see Appendix A; Bell et al., 2004). The covariance matrix describes the state error covariances between grid-
boxes allowing the Kalman gain to spread the observation information to ungauged locations. To update the error component
specifically, it is the cross-covariances between the error component and the hindcast component that control the spread of
the observation information to ungauged locations (see Eq. (9) in Bell et al., 2004). This ability to spread the observational
information is key to the error-correction method presented in this study.

The LETKF updates the augmented ensemble perturbation matrix, Wy, such that,
Wi =wW/T, (13)

where T), € RV*V is the square root transform matrix (Livings et al., 2008). The square root transform matrix is derived
using the Kalman gain matrix which gives the weighting between the modelled state and the observations (Livings et al.,
2008). Using an eigenvector decomposition, the square root transform matrix rescales and rotates the ensemble members such
that the updated perturbation matrix represents the uncertainty in the updated ensemble mean. The square root transform matrix
allows the covariance matrix of the ensemble to be updated without the need for the covariances to be explicitly calculated
which can be computationally expensive (Bishop et al., 2001; Hunt et al., 2007). These update equations are used to update the

error component only, as will be discussed in Section 4.1.

4 Spatially consistent error-correction method for river discharge

In this section, we describe how we use the data assimilation techniques discussed in Section 3, to post-process the hindcasts
across the domain, including at ungauged locations (Fig. 1). The correction is applied in a post-processing environment, avoid-

ing the need for additional executions of the hydrological model which can be computationally expensive. In Section 3-44.1, we



200 describe how the error ensemble is updated at every timestep. In Section 3-14.2, we describe how the updated error ensemble

is used to error-correct the hindcast ensemble. Specific experimental design choices are discussed in Section 5.
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Figure 1. Schematic of the new error-correction method for gauged and ungauged locations. Coloured boxes indicate different components
of the method. An initial error ensemble is created for timestep k=1 (green box). Then, the error ensemble is augmented to the hindcast
ensemble (purple box). At each timestep the covariance of the augmented ensemble is inflated (cyan box) before being updated using the
LETKF, which uses localisation to improve the results of the update (collectively the orange box). The updated error ensemble is adjusted
to ensure non-negative discharge values (light grey box) before being used to error-correct the hindcast (yellow box). The non-negative error

ensemble is propagated to the next timestep (red arrow). More details are provided for each component in the section indicated in the top left

corner of the corresponding box.

4.1 Updating the error ensemble

At each timestep the error ensemble is updated to estimate the optimal set of error vectors to correct the hindcast at that
timestep. The update is performed using the LETKF defined in Section 3.2. Using the definition of the augmented state in Eq.

205 (8) the update equations for the error ensemble only are,

— —f —x
by, = by, + Kb, (yi — %) (14)
and

=BTy (15)

As the hindcast component is not explicitly evolved, we assume that the raw hindcast is a good approximation for the

210 hindcast analysis state if the component were to be updated. This allows the substitution of the precomputed hindcast in place
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of the propagated state at the next timestep. Thus, the updated mean of the augmented ensemble can be defined as

Xk
T—a
by,

Wi = e R (16)
where X, is the ensemble mean of the raw hindcast ensemble and BZ is the updated error ensemble mean (Eq. (14)). The
perturbation matrix of the updated augmented ensemble follows a similar pattern such that

weo [ X ). (a7)

Bi

where X, is the ensemble perturbation matrix of the raw hindcast ensemble and B¢, is the updated error ensemble perturba-
tion matrix (Eq. (15)). The assumptions made in Eqgs. (16) and (17) make our system sub-optimal from a data assimilation
perspective but are necessary to avoid rerunning the hydrological model. Importantly, we aim to estimate the error of the pre-
computed model output at each lead time. Therefore, while the lack of state evolution makes the hindcast component update
sub-optimal, the update of the error ensemble remains mathematically consistent. In this study, we provide proof-of-concept
that the resulting error ensemble improves the skill of the hindcast (see Section 7).

The Kalman filter is not constrained to enforce non-negativity of the analysis state, and therefore, could lead to negative
discharge values for some grid boxes if the cross-covariances are incorrectly defined. We enforce non-negativity by further
adjusting the error ensemble members after the LETKF update step. For any ensemble member and grid box where the sum of
the hindcast discharge and the updated error is negative, we modify the error value so that the total becomes a small positive
value, mitigating the potential for instabilities caused by zero-values. This small positive value is sampled from a Gaussian
distribution with a mean of zero and a standard deviation equal to 10% of the standard deviation of the updated error ensemble
at the grid-box of interest.

The updated positive-definite augmented states are propagated to the next timestep as defined in Eq. (10). The updated

positive-definite augmented states are also used to error-correct the hindcast (Section 4.2).
4.2 Adjusting the forecast

After the error component of the augmented state has been updated using Eqgs. (14) and (15), and non-negativity has been

enforced (Section 4.1), the error ensemble members are added to the respective hindcast ensemble members such that

X:ew,(i) _ Xéz) + B](Ci)a (18)
where xzew’(i) and XS) are the ¢-th ensemble members of the error-corrected and raw hindcast ensembles, respectively, and

B%BS)G is the error vector associated with the i-th error ensemble member where the caret indicates a non-negativity check
has been applied. Consequently, the error-corrected hindcast ensemble mean and perturbation matrix are given by

=a

P =% + by, (19)
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240 Xpev =X, + BY. (20)
This update results in an additive spread correction matrix, I'y,, with the form
I, =X;.B¢' + BiX? + BBy 21)

where X, and EZ are the perturbation matrices of the raw hindcast and error ensembles, respectively, and the superscript T’

indicates the matrix transpose (Section 5.2 in Martin, 2001).

245 5 Experimental implementation

In Section 4 we presented a new method of spreading observation information to ungauged locations in a post-processing envi-
ronment based on common data assimilation techniques. In this section, we describe three key components of the method—Iocalisation,
covariance inflation, and the generation of the initial error ensemble—which are crucial for its performance but can be imple-

mented in various ways.
250 5.1 Localisation

Localisation is used to reduce the effect of spurious correlations which can arise due to sampling errors caused by the small
ensemble size (Hamill et al., 2001; Hunt et al., 2007). The LETKF uses observation localisation which reduces the impact of
observations by multiplying the inverse of the observation-error covariance matrix by a localisation matrix, p € RP=*Pr_such

that
255 R '=poR} (22)

where R € RP#*Pk ig the localised observation-error covariance matrix used in the LETKF (Section 3.2), R,,; € RPx*Pk js the
non-localised observation-error covariance matrix, and the symbol o indicates the Schur product (also known as the Hadamard
product) which is an element-wise matrix multiplication (Golub and Van Loan, 2013). We assume that R.,,; and, by definition,
R are diagonal matrices. In this study we use distance-based localisation so the impact of the multiplication described in Eq.

260 (22) is to increase the effective uncertainty of distant observations and thus decrease their impact on the analysis state. The
impact of the localisation on the spatial extent of the analysis increments is demonstrated in Section 7.1.

The localisation matrix is defined using the Gaspari-Cohn function which has a parameter called the localisation length
scale (Appendix B; Gaspari and Cohn, 1999). The Gaspari-Cohn function smoothly decreases the weights assigned to an
observation as the distance from the observation location increases, starting from a value of 1 at the observation location and

265 reaching O for distances greater than twice the leealization-localisation length scale (pink box, Fig. 1). In this study, the distance
is calculated along the river network which has been shown to improve the analysis for fluvial applications (Garcia-Pintado

et al., 2015; El Gharamti et al., 2021; Khaniya et al., 2022). The distance between a grid-box and the location of an observation

10
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is calculated using the local drainage direction map and the channel length used-in-of the hydrological model (Choulga et al.,
2023). As the distance is defined along the river network, observations cannot impact grid-boxes in a different drainage basin.

Sensitivity experiments conducted during the development of this method found that the optimal length scale varied by
location, lead-time, and tuning metric of choice, but overall, the differences were small for length scales from 65 km to 786 km
(not shown). Therefore, we propose instead for the localisation length scale to be defined as the maximum distance between
any grid point and its closest observation. This 1) ensures that all grid boxes are updated in the update step of the LETKF
reducing the potential for discontinuities in the analysis state, 2) can adapt to changes in the availability of observations, and

3) can be applied to different domains and hydrological model configurations without requiring a tuning experiment.
5.2 Covariance inflation

Small ensemble sizes can cause underestimation of the ensemble spread, reducing the impact of the observations on the anal-
ysis (Furrer and Bengtsson, 2007). Additionally, we assume the error ensemble is constant between timesteps which, while
simplifying implementation, could introduce model errors into the ensemble (Evensen et al., 2022). To ameliorate these issues,
various covariance inflation techniques are often used (Duc et al., 2020; Scheffler et al., 2022). We implement a heuristic co-
variance inflation method inspired by the relaxation-to-prior perturbations technique (Zhang et al., 2004; Kotsuki et al., 2017).
However, as we are working within a post-processing context, we adapt the method for use with predefined ensembles (i.e.,
without evolving the inflated perturbations between timesteps).

‘We blend the prior perturbation matrix at k 4- 1 with an estimated perturbation matrix W,ﬁifl similar to the use of a climato-

logical covariance matrix in Valler et al. (2019). The resulting perturbation matrix is given by
in Mk Ik a es
Wih=01-o F oW (23)
0r I

where « is an inflation parameter to be defined (and the definition of the matrices M, and I, are given in Section 3.1). This

blending of matrices introduces both additive and multiplicative inflation. We define W,if:l as

est est
X3 + B

est
Bk+1

Wit = (24)
where Xzifl and Bzifl can be estimated separately. When substituted into Eq. (23), this form of W,ﬁifl maintains consistency
between the hindcast and error components of the augmented ensemble.

During development, it was found that the estimated matrices must have spatial structures consistent with the river network
and be forecast and lead-time-dependent. For simplicity, and as the raw hindcast perturbations satisfy these requirements, we
set both Xifﬁl and BZﬁfl equal to the raw hindcast perturbation matrix (Dee, 2005; Martin et al., 2002). In future studies, the
estimated perturbation matrices could be defined using alternative models to evolve the analysis perturbation matrix between
timesteps or be climatological matrices (Valler et al., 2019).

The inflation parameter «; controls the weighting between the prior and estimated matrices. To account for changing un-

certainty across lead-times and forecasts, we define oy, using a smoothed estimate of the relative change in hindcast ensemble
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where k is the current timestep and Tr(P;) is the trace of the raw hindcast covariance matrix at timestep . A maximum value
of 1 is set to avoid instabilities, particularly at short lead-times where the change in variance between timesteps can be large.
The average over the past three timesteps is taken to ensure that « is smoothly changing between timesteps, again to avoid
instabilities. This approach of estimating o was selected after sensitivity testing (not shown for brevity), which indicated that
the inflation factor must be both lead-time dependent and forecast dependent. While « is not spatially varying, it is applied to
perturbation matrices with spatial structures consistent with the river network, ensuring physically plausible ensemble pertur-

bations.
5.3 Initialising the error ensemble for the first timestep

We must define an initial error ensemble to perform the state augmentation at the first timestep. In a forecast post-processing
environment there is no “warm-up” period in which a state of equilibrium can be reached, and therefore the initial error
ensemble must be physically plausible. Here, the initial error ensemble is defined using three sets of river discharge data:
in-situ observations, simulations created by forcing a hydrological model with meteorological observations, and the ensemble
mean and ensemble perturbation matrix of a single lead-time from a previous hindcast. A single ensemble is generated for the
full EFAS domainand-then-, from which the elements associated with the domain of interest (in this study the Rhine-Meuse
catchment) are extracted.

The estimation has two main steps: estimating the mean error and generating the perturbations around that mean. The

ensemble mean is intended to capture biases in the hydrological model at the initial time. It is computed as follows:

1. Calculate the errors at gauged locations: For each river gauge location, we calculate the average relative error between
observed and simulated river discharge over the past 10 days. To limit the influence of outliers or representation errors,

these errors are capped at & 100

2. Interpolate the errors to ungauged locations: Using inverse distance weighting, we interpolate the errors from gauged
to ungauged locations. The value at each grid-box is a weighted average of relative errors from the 100 nearest sta-
tions, with closer stations given more influence (Lu and Wong, 2008). All available stations, including those outside the

catchment of interest, are used in this calculation to capture spatial variability.

3. Impose the river network structure: The interpolated error field is then multiplied by the simulated river discharge
values at each grid point. This enforces the spatial structure of the river network, ensuring errors are proportional to the

size of the river.

Since the true error covariance is unknown, we assume a reasonable estimate can be derived from a previous river discharge

ensemble forecast as follows:
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1. Calculate the ensemble statistics: We calculate the ensemble mean and perturbation matrix from the second lead-time
of a hindcast issued two days prior. This choice avoids unrealistically low spread often seen at the first lead-time due to

a single set of initial conditions.

2. Inflate the covariance matrix: The perturbation matrix is adjusted by calculating the error of the hindcast ensemble
mean at each grid-box relative to a simulation forced by meteorological observations. This provides a set of scaling
factors used to inflate the perturbation matrix. To avoid underestimating uncertainty, we impose a minimum threshold of

on the resulting standard deviation of 10% of the local simulated river discharge.

The resulting error ensemble mean and perturbations define the initial ensemble, which is then updated using the LETKF

with state augmentation, as described in Section 4.1.

6 Evaluation strategy
6.1 European Flood Awareness System (EFAS)

The hindcasts used in this study were produced by the European Flood Awareness System (EFAS) as operational forecasts
(Barnard et al., 2020). EFAS is part of the Early Warning component of the European Commission’s Copernicus Emergency
Management Service (CEMS), and aims to provide complementary forecast information to hydro-meteorological services
throughout Europe (Matthews et al., 2025). EFAS streamflow forecasts are produced by forcing a calibrated hydrological
model, LISFLOOD (De Roo et al., 2000; Van Der Knijff et al., 2010; Arnal et al., 2019), with the output from meteorological
numerical weather prediction (NWP) systems. Whilst the operational EFAS system is a multi-model system with four sets of
meteorological forcings, in this study we focus only on the medium-range river discharge forecasts generated with meteoro-
logical forcings from the 51-member medium-range ensemble from the European Center for Medium-range Weather Forecasts
(ECMWEF) due to its large ensemble size. The meteorological forcings are interpolated to the EFAS grid. A single set of initial
hydrological conditions are-is used for all ensemble members often leading to small ensemble spreads at short lead-times. The
spread then increases as the different meteorological forcings propagate through the system. No data assimilation is performed
in the generation of the initial hydrological conditions. Instead, the LISFLOOD hydrological model is forced with meteorolog-
ical observations (and meteorological forecasts when observations are not available) to generate the initial conditions (Smith
etal., 2016).

As an operational system, EFAS is constantly evolving. For the evaluation presented here we use EFAS version 4 (operational
from 14 October 2020 to 20 September 2023) aggregated to daily timesteps with a maximum lead-time of 15 days. The
ensembles have 51 members and predict the average river discharge for each timestep for each grid-box within the domain.
The hindcasts have a spatial resolution of Skm x S5km with a ETRS89 Lambert Azimuthal Equal Area Coordinate Reference
System. Hindeast-Hindcasts from the 00 UTC daily cycle are used resulting in a total of 365 hindcasts used in the evaluation.
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6.2 Rhine-Meuse catchment

The Rhine-Meuse catchment has a drainage area of 195,300 km?2, a channel length of about 38,370 km in EFAS, and consists
of 7812 grid-boxes. It is the 5th largest catchment in EFAS. The Rhine river originates in the Swiss Alps, flows through the
Central Uplands and the North European Plain, before finally discharging into the North Sea. The Meuse river originates from
the Langres Plateau in France, flows through the Ardennes Massif and the low-lying plains of the Netherlands, before merging
with the Rhine and entering the North Sea. The catchment consists of rivers of different sizes, topologies, and levels of human

influence, making it an ideal test catchment to see how the method deals with changes along the river network.
6.3 Observations

The Rhine-Meuse catchment has a dense river gauging station network. The main set of observations used in this study are
daily river discharge observations from 89 stations across the Rhine-Meuse catchment for the time period from 21 December
2020 to 15 January 2022. The minimum value across the stations is 6:5+6< 1 m?s~! and the maximum value is 7662:917-7663
m3s~!. These observations were assimilated as part of the error-correction method to update the error ensemble and used in
the evaluation of the corrected forecasts (Section 6.4 describes the cross-validation approach used). Whilst the error-correction
method can adapt to missing observations, these 89 stations were selected as they have no missing data for the time period
of interest allowing this analysis to focus on the spread of observational information to ungauged locations. The maximum
distance between any grid-box and the closest of the 89 stations is 262 km which is set as our localisation length scale (cut-off
distance is therefore 524 km; see Section 5.1). In addition to these stations, all available observations from across Europe ;
were used to generate the initial error ensembles (total 505 stations). All river discharge observations were provided by local
and national authorities and collated by the CEMS Hydrological Data Collection Centre (see https://confluence.ecmwf.int/
display/CEMS/EFAS+contributors).

The construction of the non-localised observation error covariance matrix, R7!, is a key component of all data assimilation
methods. The matrix describes the uncertainty associated with each observation (defined in Eq. (7)). This uncertainty arises
due to instrument uncertainty, observation processing, observation operator error and scale mismatch between the observations
and the model resolution (Janji¢ et al., 2018). The matrix also describes the correlation between errors of different observations
(Stewart et al., 2013; Fowler et al., 2018). In this study, we assume that the observation errors from different gauge stations are
uncorrelated such that R’k?l is a diagonal matrix with all off-diagonal elements set to 0. Observation errors are also assumed
to be uncorrelated with the prior errors, which is a standard assumption in data assimilation (Janji¢ et al., 2018). We estimate
the standard deviation of the observation errors as 10% of the observation magnitude (Refsgaard et al., 2006; McMillan et al.,
2018, 2012).

In the leave-one-out verification experiments (see Section 6.4) we use the observations from the non-assimilated station as

validation data and assume they are the truth with no errors.
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6.4 Experiments

We use three experimental schemes to investigate the effect that the error-correction scheme has on the ensemble hindcasts.

1. Single station experiments: Only observations from one of the 89 station-stations are assimilated when estimating the
error-vector. All available observations are used in the generation of the initial error ensemble. These experiments allow

the impact of an observation to be identified and allow the effects of localisation to be explored.

2. All station experiments: Observations from all stations are assimilated when estimating the error-vector and used in
the generation of the initial error ensemble. These experiments allow the complete method to be assessed and for any

spatiotemporal inconsistencies to be identified.

3. Leave-one-out experiments: Observations are withheld from one of the 89 stations and are not assimilated when esti-
mating the error-vector nor used in the generation of the initial error ensemble. This cross-validation framework allows

the skill of the adjusted hindcasts to be assessed at the locations of stations as if they were ungauged locations.

Each experiment-experimental scheme is applied to all hindcasts from 1 January 2021 to 31 December 2021. However, for
brevity, for the single station and all station experiments we only discuss two hindcasts: 7 July 2021 and 8 October 2021. These
dates represent high and normal flow conditions, respectively, allowing the ability of the method to be assessed for different

circumstances.
6.5 Evaluation metrics

The following metrics are used to investigate the skill of the error-corrected hindcast ensemble mean and the reliability of the
ensemble spread.

For the ensemble mean, the three components of the modified Kling-Gupta Efficiency: correlation, mean bias, and vari-
ability bias are used to assess different types of errors within the ensemble mean (Kling et al., 2012; Gupta et al., 2009).
Pearson’s correlation coefficient measures the linear relationship between the simulated timeseries and the observations indi-
cating timing errors (score range [—1,1]). The mean bias given by the ratio between the mean of the simulated timeseries and
mean of the observations indicates whether the flow is consistently over or under-estimated (score range (—o0o,+00)). The
variability bias given by the ratio between the coefficient of variation of the simulation and the coefficient of variation of the
observations indicates whether the variability in the flow is consistently over or under-estimated (score range (—oo, +00)). All
three components have a perfect score of 1. Additionally, to investigate whether the magnitude of the error-of-theforecast
mean—is—deereased-forecast mean error is reduced by the proposed method we use the Normalised Mean-AbselateError
NMAEHeodson;2022; Jacksonetal;2049)Root Mean Square Error (N-RMSE Hodson, 2022; Jackson et al., 2019). The met-
ric is normalised by dividing the RMSE by the mean of the observations for that station. Normalising the metric makes the
scores at different stations comparable. The NMAE-N-RMSE has a perfect score of 0.

To analyse the reliability of the spread of the ensemble forecast we use the rank histogram (Harrison et al., 1995; Anderson,

1996; Hamill and Colucci, 1997; Talagrand, 1999). To generate the histogram the rank of the observation relative to the sorted
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ensemble values is calculated for each hindcast. The frequencies with which the observation has a rank from 1 to M + 1 are
plotted as a histogram. The shape of the histogram provides information about the reliability of the ensemble spread and bias

of the ensemble (Hamill, 2001).

7 Results

In this section, we discuss the efficacy of the proposed error-correction method. In Section 7.1, we discuss how observation
information is propagated along the river network and, in particular, we explore how the method reacts to different flow
scenarios, both spatially and across different lead-times. In Section 7.2, we evaluate the skill of the resulting error-corrected

ensembles in terms of their means and distributions.
7.1 How is observation information propagated along the river network?
7.1.1 Spatial propagation of the observation information

Here, we investigate how the observation information is propagated spatially from gauged locations to ungauged locations.
We investigate the analysis increments of the mean — the difference between the ensemble mean before and after the update
step (term 2 in Eq. (14)) — for single-station and all-station experiments (Fig. 2). Specifically, we focus on the single-station
experiments for the Bonn station on the Rhine and the Uckange station on the Moselle. To investigate the impact of different
flow scenarios, we study the hindcasts generated on 8 October 2021 (upper panels) and 7 July 2021 (lower panels), which
represent normal and high flow scenarios, respectively.

In Fig. 2, the shaded regions show the parts of the catchment that are outside the localisation region for the assimilated
observation. The number of grid-boxes within the leealizatien-localisation regions of the Bonn and Uckange stations differ
because the distance is calculated along the river network and the channel length within each grid box is not constant (4662 grid
boxes and 2451 grid boxes, respectively). Increasing (decreasing) the localisation length scale results in a more (less) gradual
dampening of the analysis increments and more (fewer) grid-boxes being impacted by a single observation (not shown). The
square markers indicate the innovation — the difference between the observation and the error-corrected ensemble mean prior
to the update step (Fig. 2). Ideally, the analysis increment (background colour in Fig. 2) should reflect similar spatial behavior
to the innovations within the localisation region. This would imply the ensemble is being adjusted towards the observations at
each station.

For the October experiment, the innovation at Bonn is negative and results in negative analysis increments across the domain
(Fig. 2a). For the Uckange experiment, the innovation is positive and the analysis increments are also all positive (Fig. 2b)
indicating positive ensemble covariances. For both experiments, the analysis increments match the sign of the innovations at
neighbouring stations (Figs. 2a and 2b), but at greater distances this is not the case. For example, the innovations along the

Rhine in the Uckange experiment are negative whilst the analysis increments are positive.
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Figure 2. Analysis increments of the mean for a lead-time of 9 days for single station (a, b, d, and e) and all station (c and f) experiments
for the hindcasts generated on 8 October 2021 (upper panels) and 7 July 2021 (lower panels). Assimilated stations for the single station
experiments (cyan outline) are the Bonn station on the Rhine (a and d) and the Uckange station on the Moselle (b and e). The shaded region
of the catchment is outside the localisation length of the assimilated station. Markers show the innovation at all stations. Catchment area:

195,300 km?. Panel g shows the Rhine-Meuse catchment and highlights the rivers and stations discussed within this section.

The localisation implemented in this study allows the assimilated observations to influence the error ensemble both up- and
downstream, although the influence is dampened at longer distances. We here discuss whether this choice of implementation
is useful by studying the spatial patterns of the innovations. Focusing first on the Bonn experiment for October (Fig. 2a), we
see that downstream (north) of the assimilated observations the innovations can be both positive and negative. Upstream of
the assimilated observation the innovations are negative, matching the innovation at the Bonn station. The assimilation of the
observation at Bonn is therefore primarily beneficial upstream, with some benefit also seen at specific locations downstream.
For the Uckange experiment (Fig. 2b), the pattern is reversed with downstream innovations showing more consistency with the
innovation at the assimilated location. The inconsistent spatial patterns could be because, in the LETKF, we update the errors
rather than the river discharge directly. The errors are dependent not only on the observed hydrological conditions but also

the model structure and configuration. The spatial structure of the errors may therefore extend both up- and downstream. For
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example, if the drainage area within an upstream grid-box is overestimated due to the hydrological model spatial resolution, all
grid-boxes downstream will be impacted by that overestimation. The benefit, in terms of consistency between the innovations
and analysis increments, that is seen both up and downstream suggests that the localisation implementation is appropriate.
However, we note that there may be additional factors other than distance, that could be included in the localisation to better
modulate the observation influence (e.g., river confluences, regulation, or river size).

In the July experiments, we see that the innovations both up and downstream of the assimilated observations are positive,
matching the innovations at the Bonn and Uckange stations, respectively. For the July experiment, the innovations are spatially
homogeneous for greater distances along the river network (Figs. 2d and 2e). This indicates a greater spatial correlation length,
likely due to the low-pressure system which covered large parts of the west of the catchment during this period (Mohr et al.,
2023). The different correlation scales suggest that an adaptive localisation length scale may be beneficial.

The spatial heterogeneity for the October experiments suggests that assimilating a single observation cannot correct the
entire domain. However, when all observation are assimilated the analysis increments vary across the domain, demonstrating
the method’s ability to adapt to the errors on different stretches of the river. In both all-station experiments (Figs. 2c and 2f),
the analysis increments vary smoothly along the river network, which suggests the error-corrected ensemble will also change
gradually. This is important because it ensures the hindcasts remain spatially consistent, with no abrupt transitions between
adjacent grid boxes.

In general, for the July experiment, small rivers exhibit larger increments than in the October experiment. This indicates
the assimilated observations have a greater impact across more of the domain. For October, the assimilation of an observation
at Bonn results in the largest analysis increments near the observation location, with the increments diminishing to zero at
distances greater than 524 km due to lecalizatien-localisation (Fig. 2a). Interestingly, in the Uckange experiment, the largest
increments occur not near the station, but along the Rhine near the confluence with the Moselle (Fig. 2b). In both experiments,
the increments tend to be larger along bigger rivers, with smaller rivers showing smaller increments. This occurs due to large
ensemble covariances between the location of the assimilated observation and locations along the bigger rivers (Fig. 3).

The spreading of observational information along the river network is dictated by the cross-covariances of the augmented
ensemble prior to the update step. The magnitude of the cross-covariance between two locations depends on the correlation
between the locations and the ensemble variance at both locations. The correlation between the location of the Uckange station
and any grid-box is highest along the same river stretch (the Moselle) and decreases at longer distances from the station (Fig.
3a). Nearby grid boxes that are not on the same river stretch have lower correlations in general (Figs. 3a and 3b). Downstream
from the Uckange station the correlation is highest along the Moselle and the-downstream along the Rhine. On the other hand,
the correlation upstream is more uniform across the grid-boxes (Fig. 3b). Whilst there are regions in the south of the catchment
with-for which the correlation is small, in general there is a correlation of around 0.3 even with distanee-distant locations (Fig.
3b). This is likely spurious correlation and exemplifies the need for localisation. The correlations begins-begin to rise again
at longer distances due to grid-boxes that are geographically close to the station but the distance along the river network is
large, such as the Meuse (Fig. 3b). Note that the similarity between the localisation length scale (dashed line) and the distance

between the Uckange station and grid-boxes on the Rhine (change from a Strahler order of 5 to 6) is coincidental but does
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Figure 3. Ensemble correlations (upper panels) and cross-covariances (lower panels) between the error ensemble and the hindcast component
of the augmented state-ensemble averaged across all all-station experiments. (a) Map of the correlation between the Uckange station and
all other grid-boxes and (c) the same for the cross-covariances. (b) Scatter plot of the correlation between the Uckange station and all other
grid-boxes and (d) the same for the cross-covariances. Grid-boxes on rivers discussed in the text are broadly indicated by the arrows. Dashed
black line shows the localisation length scale and the solid black line shows the effective cut-off point beyond which the observation has no

impact.

suggest that the method for defining the localisation length scale is capable of capturing the order of magnitude of the relevant
spatial scales for the Rhine catchment.

Despite lower correlations, the magnitude of the cross-covariances are larger along the Rhine than for grid-boxes closer to
the Uckange station on the Moselle (Fig. 3c). Whilst the correlation is dependent on distance, the magnitude of the cross-
covariances is primarily dependent on the size of the river (note the horizontal bands of Strahler orders (a measure of stream
size where larger orders indicate larger rivers Strahler, 1957) in Fig. 3d). Larger cross-covariances can lead to larger analysis
increments as can be seen in Fig. 2b where the analysis increments along the Rhine are larger than those along parts of the
Moselle. Localisation enforces a dependence on distance such that observations have less impact on large rivers very far from

the station but this may not outweigh the larger cross-covariances.
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Figure 4. Ensemble trajectories for a single station experiment for the hindcast generated on 7 July 2021 for the location of the assimilated
observation (Uckange station on the Moselle; panels a-c) and a location where an observations is not assimilated (Bonn station on the Rhine;
panels d-f). The plots show the trajectory of all members and the ensemble mean of the raw hindcast ensemble (left panels), the hindcast
component of the augmented state-ensemble (middle panels), and the error ensemble members (right panels; different y-axis scale). Markers

show the river discharge observations (a, b, d, and e), and the error of the raw hindcast mean (c and f).

7.1.2 Lead-time dependence of the analysis increments

Here, we investigate how the impact of assimilating observations changes over different lead-times. Figure 4 shows the tra-
jectories of the three intermediate ensembles used in the LETKF for the 7 July hindcast for a single-station experiment where
observations are assimilated at the Uckange station: the raw hindcast (left columns), the hindcast component of the augmented
ensemble (middle columns), and the error component of the augmented ensemble (right columns). It should be noted that none
of these ensembles are the final error-corrected ensemble but intermediate ensembles used in the LETKF. The lower panels
show the trajectories at the Bonn statiens-station for which no observations are assimilated during this experiment. By plotting
the raw hindcast trajectories and the observations we can visualise the errors to be estimated. We can see that for both stations
the error of the hindcast mean is negative (observations are smaller than the hindcast mean) for lead-times up to 8 days, and
positive at longer lead-times. Whilst this behaviour is similar for the Bonn station, the magnitude of the error is different by a
factor of 10 at most lead-times.

The middle column of Fig. 4 shows the hindcast component of the augmented ensemble. To propagate this component

between timesteps-time steps without rerunning a hydrological model, we assume that the raw hindcast is a reasonable ap-
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proximation of the analysis state (discussed in Section 4.1). As expected, this assumption results in a sub-optimal ensemble
mean estimate. For example, at lead times beyond 10 days at Uckange, the update moves the ensemble mean further from the
observations (Fig. 4b), and a similar effect is seen at Bonn (Fig. 4e). Also by using the precomputed ensemble, the assim-
ilated observations do not update the ensemble perturbations; although ;-the perturbations do change between lead-times as
the precomputed ensemble is lead-time dependent. This assumption dees-ensare-ensures the analysis hindcast component is
always physically plausible (e.g., the river discharge is always positive as this is a constraint within LISFLOOD), and provides
a reasonable estimate of the uncertainty as the raw hindcast is generated using the output from an ensemble NWP. Addition-
ally, at each timestep we aim to correct the raw hindcast, therefore this assumption provides consistency between the hindcast
component and the error component of the augmented stateensemble.

It is the error ensemble that is most important for our application (Figs. 4c and 4f). Despite the non-optimal formation of the
analysis augmented stateensemble, the error ensembles are updated beneficially, with the analysis error ensemble mean moving
closer to the error of the raw hindcast mean (i.e., the difference between observations and the hindcast mean) at each lead-time
for the assimilated location (Fig. 4c) and the non-assimilated location (Fig. 4f). At short lead-times, the updates to the error
ensemble at the Bonn station do not appear to be beneficial (Fig. 4f). However, as this experiment only assimilates observations
from one station this discussion should be considered a demonstration of how the method updates proxy-ungauged locations
rather than an evaluation of the error-corrected ensemble (which is provided in Section 7.2). First we note -that the updates at
the assimilated location do not result in the error ensemble mean (dark blue line) matching the error of the mean (markers). This
is expected and is due to the consideration of the observational uncertainty within the LETKF. This ensures spatial consistency
across assimilated and non-assimilated locations, whilst combining the modelled and observed data to estimate the true state
of the system across the domain.

The errer-ensemble—error ensemble is narrow after the update step and it is the covariance inflation that increases the
spread between timestepstime steps. The spread of the hindcast is due to meteorological forcings, predominantly precipi-
tation. Therefore, in general, the hindcast spread is larger for longer lead-times as the precipitation forecasts become more
uncertain. Since the covariance inflation technique presented here results in the blending of the hindcast perturbation matrix
with the errer-ensemble-error ensemble from the previous timestep, this behaviour in the hindcast spread is transferred to the
error-ensembleerror ensemble. As demonstrated in Figs. 4c and 4f, this can result in the error ensemble spread being large for
the rising limb of an event and smaller for the falling limb. This can result in the error not being updated sufficiently and the

spread of the analysis state being too narrow, as seen after the peak in Fig. 4c and discussed later along with Fig. 5b.
7.2 How skillful are the error-corrected ensemble hindcasts?

In this section, we investigate whether the updated ensemble is more skillful than the raw hindcast ensemble. Using leave-one-
out experiments we evaluate the ensemble mean and ensemble spread at proxy-ungauged locations. The hydrographs in Fig.
5 show the raw and error-corrected ensembles for three proxy-ungauged locations from the leave-one-out experiments. The

hydrographs are used to illustrate the method’s ability to correct the ensemble and some of the limitations.
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Figure 5. Raw and error-corrected hydrographs for proxy-ungauged locations in leave-one-out experiments at the Rees station on the Rhine
(upstream area: 159,320 km?>) and the Mainleus station on the Main (upstream area: 1,164 km?). Catchment illustrations indicate the location

of the station (see Fig. 2 for river names and scale).
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7.2.1 SKill of the ensemble mean

To investigate the skill of the ensemble mean we calculate the correlation, mean bias, variability bias and the N-RMSE for each
station and each lead-time. Figure 6 compares the skill of the ensemble means of the raw and the error-corrected ensembles
focusing on the spatial dependency of the skill (a-d), and the lead-time dependency of the skill (e-h).

The error-corrected ensemble means show a stronger correlation with observations than the raw hindcast ensemble means,
with an average increase from 0.82 to 0.92 (not shown). Figure 5a shows an example of how the error-corrected ensemble
can better capture the dynamics of the river discharge resulting in an increased correlation. It can be seen that the resulting
ensemble is temporally consistent (i.e., does not have improbable changes between timestepstime steps). The correlation is
worsened compared to the raw hindcast ensemble at four stations (Fig. 6a). Focusing on the two most southern of these stations,
we see that the correlation values of the raw ensembles at nearby stations are very different compared to the correlation at the
two stations of interest (note the much lighter colours for nearby stations; Fig. 6a). The ensemble covariances are not capturing
this change in regime correctly so the observational information is not being advantageously spread between these rivers.
The remaining two stations that have degraded correlation are the most upstream stations on their rivers. At these stations
the updates made to the error-corrected ensemble are dependent on observations assimilated downstream. The assimilated
observations are therefore providing information about a past state of the river upstream which could be the cause of the
decreased correlation (a measure of timing errors) at these upstream stations. Whilst most upstream stations are improved by
the error-correction method, stations which have much smaller upstream areas than their closest downstream station tend to be
improved less than those that have a similar upstream area, particularly if the distance to the neighboring station is large.

Just over half of the stations (47) show improvement in the mean bias averaged across all lead times (Fig. 6b), but no clear
spatial pattern emerges, as most rivers have a mix of improved and worsened stations. This spatial heterogeneity is also seen
in the raw hindcast ensemble, with stations on the same river stretch often showing different biases. For example, stations on
the Neckar and upstream of the Meuse show stations that are under- and overestimated, as well as stations with very little bias.
The heterogeneity suggests local factors, which are not fully captured in the hydrological model, considerably influence flow
bias. Stations showing the most improvement tend to have similar mean bias values to their neighboring stations in the raw
hindcast ensemble, such as on the middle stretch of the Meuse, where four stations with similar biases show improvement (Fig.
6b). Spatial patterns of errors that are related to domain-wide model structure rather than local factors, such as weirs, are more
likely to be portrayed by the ensemble covariances allowing observational information to be more helpfully spread along the
river network.

The raw hindcast ensemble mean generally underestimates flow variability, with a variability bias below 1 (red in Fig.
6¢). The error-corrected ensemble improves this, although there is an increase in the frequency of overestimation of the flow
variability. Stations where the error-corrected ensemble overestimates the variability are often the most upstream station on
their rivers (e.g., Plochigen-Plochingen station on the Neckar) or are closer to downstream neighbours (e.g., Chooz station on
the Meuse). This suggests the hindcast covariances between downstream stations and upstream locations are too large, causing

excessive adjustment at upstream locations. Ten stations show worsened variability bias, including two stations downstream

23



"quI] or[q paysep Y} £q UMOYS ST OLIOW Y} I0J I09S J09f1ed v oot o Jo (YOI)
93ues onenbisiur oy} SMOYS UOIFAI papeys Ay} pue JLIJAW JY) JO dN[BA URIPIUW AY) SMOYS UI] PI[Os Y], "(Y-9) sojquiasu (9[dind) pa10a1109-10119 pue (a3urI0o) mel
9y} J0J oWIN-PEI YOLa JOJ SUONEIS 6§ [[& I10A0 pajood dmmow Y Jo uonnqrnsip ay) moys sjofd aury "(68/41 ‘HASINY-N ‘68/01 :Se1q AN[IQELIBA ‘G8/C{ :SeIq UBIIA
‘68/f ‘UOTIR[QII0))) J[QUIASUD ISEOPUTY MBI AY) URY) [[IS 9SIOM SBY 9[qQUIasud pajepdn ) YoIym JOJ SUOTIR)S BIIPUI SAUIINO NOv[g O[qQUIASUD (PIIIII0I-IOLID)
MBI U} JOJ [[D[S 2Y) MOUS SIoNIew Y} Jo Jey (WYSLI) [ YL ‘(p-8) suonels 68 [[e Je sown-ped] [[e SSoIde paSeroae daw Yy moys sdew juawyoled ayJ, “(4 ‘p

‘GSINY-N) 10110 drenbs ueow joolx pasijewIou pue (3 ‘0) seirq ANIqeLIeA ‘(J ‘q) SBIq UBSUW ‘(9 ‘B) UONB[ALIOD 9} JO SULIO) UI SUBSUWI S[qUIASUD Y} JO [[IS "9 danJL

Yol uelpsjy ——  19949d —— IS uopels 3seJpUlY Pa3daliod 1seopuly mey
[p] swn-pesT [p] swn-pea [p] swn-pea [p] swn-pea
ST o1 S 0o I o1 S 0o < ST o1 S 0o <l o1 S 0e
_ _ _ to ! ! , o & _ , te _ , , 20
=2 w. = o
©x bt c -/  _— | o =) M
% < =2 =4
o L = @00 |r©0
(U)) (B) f)) (®)
JSINY-N selq Ajljiqelen se|q uesap uoine|aliod
90 ¥0 zZo 00 0T GT 99°0 S0 0Z ST 0T 990 S0 0T 80 90 ¥0 zo
[

&
D B<
.

AN
ol

selq ueap (a)

S

ISIWY-N (P) selq AjiqeLien () uone|a110 (e)

24



590

595

600

605

610

615

620

on the Rhine (Fig. 6h). For the two stations on the Rhine, the degradation is caused by the forecasts of the falling limb of a
flood peak in July (Fig. 5b). Here, the hindcast uncertainty was very small at short lead-times, causing the analysis to ignore
observationsand-, leaving the error ensemble to-remain-relatively unchanged, despite changes in the error behaviour after the
peak (also shown in Fig. 4f).

Overall, the error-corrected ensemble reduces the N-RMSE but there are 14 stations where the skill is reduced. Typically,

these stations are on the upstream reaches of their respective rivers (Fig. 6d; see discussion on correlation). Interestingly, the

N-RMSE does not follow the same spatial pattern as the mean bias. The-deerease-in-N-RMSE -despite-an-inerease-in-mean

n-This divergence indicates that the correction
method is more effective at reducing large errors than at addressing systematic biases. One possible explanation is that the error
vectors adjust too slowly to changes in forecast errors between time steps. This slow adjustment is particularly problematic

when errors fluctuate around 0 m3s—1

, since alternating positive and negative deviations may not be corrected quickly enough
and can accumulate into a worsening mean bias. When the error magnitude is large, the mean-btas-metriegradual adjustment is
less detrimental because the sign of the error is usually captured correctly even if its magnitude is not. However, at upstream
stations, where rivers are smaller and respond more quickly to rainfall, large errors often persist for shorter durations, making
the slow adjustment of the error vectors more detrimental. This likely contributes to the increase in N-RMSE observed at
these upstream stations. Further development of the method—for example, allowing the error vectors to evolve during the
propagation step of the LETKF in addition to the update step—could enable faster adaptation to changing forecast errors.

The raw and error-corrected ensemble means both decrease in skill in terms of correlation, variability bias, and N-RMSE
with increasing lead-times. The raw hindcast ensemble loses skill more quickly in particular for lead-times longer than 5
days (Figs. 6e-h). The uncertainty in the observations is not lead-time dependent. However, Fig. 3d shows that the ensemble
covariances do change across lead-times, increasing for longer lead-times. The greater gain in skill for longer lead-times is
likely due to larger covariances allowing the observations to have more influence (e.g., in Fig. 5b). However, the decrease in
skill of the error-corrected ensemble means at longer lead-times suggests that the ensemble covariances are not as accurate at

longer lead-times.
7.2.2 SKill of the ensemble distribution

The reliability of the ensemble distribution is assessed using rank histograms at different lead times (Fig. 7). At short lead
times, the raw hindcast ensemble is underdispersed, due to the use of a single set of initial conditions (Fig. 7a). Although the
error-corrected ensemble shows slight improvement, it remains overconfident with minimal correction to the spread. Both the
raw and error-corrected ensembles generally appear unbiased, with observations falling both above and below the ensemble
predictions at similar frequencies. However, some bias may be masked by the narrow ensemble spread as it is known that some
stations are biased (Fig. 6b), likely contributing to the peaks at ranks 0 and 51 in the rank histograms.

As the lead-time increases, the spread of both ensembles becomes more reliable, and fewer observations fall outside the

ensemble (Fig. 7b). However, even at a 15-day lead time, both ensembles show a tendency to overestimate observations,
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Figure 7. Reliability of the ensemble. Histograms show the rank of the ensemble pooled over all forecasts and stations for lead-times of 1

day (a), 7 days (b), and 15 days (c).

leading to a peak at rank 0, mostly due to a few stations consistently overestimating flow (Fig. 6b). Up to 7-day lead times, the
rank histograms for both raw and error-corrected ensembles show similar shapes. Beyond 7 days, the raw hindcast ensemble’s
histogram flattens, suggesting a reliable ensemble, while the error-corrected ensemble shows a peak around ranks 25-35,
suggesting overdispersion (Fig. 7¢). The left-skewness of the histograms is likely due to the inherent skewness in river discharge
distributions. The LETKF update step seeks to minimise the difference between the ensemble mean and the true state of the
system. The ensemble mean is often larger than the ensemble median leading to the observations falling in ranks above 25 if
the adjustment method is successful at minimising the error of the mean (Figs. 5a and 5c).

As discussed in Section 4.1, the Kalman filter is not restricted to ensure positive discharge and there is therefore a need to
adjust the error ensemble before correction of the hindcast. Enforcing non-negative discharge was necessary, for example, for
the Mainleus station on the Main for the hindcast generated on the 22 March 2021 (Fig. 5¢). Whilst the ensemble mean is
error-corrected at most lead-times, several members indicate river discharge values of 0 m3s~1. The river discharge is below
10 m3s~! but a zero flow is unlikely in reality. This suggests the ensemble spread is not sufficiently corrected even though the

ensemble mean is improved as is also suggested by Fig. 7c.

8 Discussion

In general, the proposed data-assimilation-inspired method successfully spreads observational information along the river
network improving the skill of the ensemble mean at ungauged locations. Locations downstream from assimilated observations
are improved most although locations upstream are usually improved as well, even if they are far from neighbouring stations.

This is likely due to two reasons: 1) constant biases in the river discharge estimates that are propagated downstream and
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hence can be accounted for when a downstream observation is assimilated, and 2) the daily aggregation of the river discharge
extending the time period for which a downstream ebservations-observation provides relevant information. If the error patterns
of the ensemble mean at a location differ from those at nearby stations the method struggles to spread the observational
information correctly. At shorter lead-times the reliability of the ensemble is slightly improved due to the decrease in the error
of the ensemble mean. However, at longer lead-times the ensemble spread is often too large leading to an under-confident
forecast.

The ability of the method to correct the forecasts typically depends on the consistency of the error vectors between nearby
locations. The localisation method implemented here depends only on the distance from the station along the river network.
The method does successfully correct the forecast both up- and downstream; however, if the station is on a different river,
or if there is a confluence between the station and the grid-box of interest, the errors are often not consistent for as long a
distance along the river network. Therefore, it could be beneficial to investigate the impact of including information about the
river stretch into the localisation length scale. Additionally, the errors were found to be more consistent when the catchment
was impacted by large-scale weather systems. It may therefore be useful to incorporate information about the meteorological
situation into the localisation function as well.

The covariance inflation method used here maintains consistency between the spread of the error ensemble and the spread
of the hindcast (Section 5.2). This successfully stops the error ensemble from collapsing such that the observations are not
ignored. However, in situations where the uncertainty of the hindcast ensemble is over- or under-estimated the covariance
inflation does not correct the error ensemble covariances correctly. This can lead to the observations being ignored as for short
lead-times in Fig. 5b. Additionally, if the hindcast perturbations do not provide an accurate estimate of the true error ensemble
perturbations, this method may introduce errors which could be the cause for the slight degradation in skill of the ensemble
mean with lead-time shown in Fig. 6e, 6g, and 6h. Correcting the spread of the hindcast before using it in the inflation of the
error covariances could solve this issue. Covariance inflation techniques that use the innovation statistics could be used to first
adjust the hindcast ensemble (e.g., Kotsuki et al., 2017). Alternatively, a lower threshold for the variance of the ensemble
could be set - say 10% of the ensemble meansimilarly-, similar to the observation error covariance matrix, or the root mean
square-error of the initial conditions. However, caution is needed not to artificially inflate the covariances too much such that
the analysis increments become too large.

As discussed in Section 7.2.2, the resulting ensemble must be adjusted in some cases to avoid negative discharge values
(Section 4.1). This does in some cases lead to ensemble members close to 0 m3s~! when a zero flow value is unlikely (e.g.,
Fig. 5¢). This occurs due to the analysis increment being larger in magnitude than the value of some of the raw ensemble
members. In general, this is due to the skewed distribution of discharge (Bogner et al., 2012). Future work could look into
applying anamorphosis, or normalising transformations, to make the ensemble distribution more Gaussian-like (Nguyen et al.,
2023; Bogner et al., 2012). This was not done in this proof-of-concept study for simplicity and to facilitate the interpretation
of the errors. The results also showed that the covariances between grid boxes on larger rivers and the station locations tend
to be large even when the correlation is small. This is due to larger rivers having larger variances which is partially due to

their larger river discharge magnitudes. Localisation enforces a distance dependence on the covariance magnitudes. However,
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transforming the river discharge values to be comparable across the domain may help regulate the covariances based on river
size. A transformation between river discharge and specific discharge (river discharge divided by upstream area) could be used
to ensure that the ensemble covariances more accurately represent the true relationship between locations.

In this study, the initial estimate of the error ensemble mean is defined using the observations and the simulation forced
with meteorological observations from the 10 days before the forecast. The average difference between the observations and
simulations is calculated at gauged locations and interpolated to every grid-box using inverse distance weighted interpolation.
The aim is to provide a physically plausible first guess of the errors which is then updated at each timestep. By taking the
average over a 10-day period, we aim to capture the biases of the hydrological model but also to allow for seasonal/dynamic
variation in this bias. However, the choice of 10 days has not been tuned, and may be more applicable to larger catchments with
slowly changing errors than for smaller catchments (Matthews et al., 2022). Further research into the accuracy of the initial
error ensemble, and how it influences the skill of the error-corrected ensemble, is needed. It should be noted that this component
of the method is an implementation choice and can be adjusted depending on system configuration and data availability. The
only requirement is that the initial error ensemble is physically plausible as there is no warm-up period within this application
(Kim et al., 2018).

We assume that the errors are sufficiently slowly changing such that a persistence model can be used to propagate the errors
between timesteps. It should be noted that the LETKF updates the errors at each timestep so the analysis errors used to correct
the hindcasts are not constant for all timesteps. However, the assumption that the errors are slowly changing is likely only true
for larger rivers that respond more slowly. Future studies could investigate the use of a simple time-varying evolution model.
The model would need to be simple enough that the calculations do not add too much computational time to the method.
Additionally, the error values at every grid-box would need to be evolved; therefore, the evolution model should either rely
only on the model output or must be spatially interpretable if using observations. For example, a model dependent on the
hindcast river discharge magnitude could be used to evolve the errors between timesteps.

The leave-one-out approach used in this study allows the corrected ensembles to be assessed at proxy-ungauged locations.
However, only one station is omitted at a time. Future work could use a block cross-validation strategy whereby multiple
stations are omitted simultaneously (Roberts et al., 2017). This would allow the impact of the density of stations and their
specific locations along the river network to be investigated more thoroughly (Rakovec et al., 2012). The impact of not having
any observations along a river stretch could also be more thoroughly investigated. One benefit of this method #-is that the
assimilated observations do not necessarily need to be traditional in-situ observations but could come from Earth Observation
(EO; Durand et al., 2023), crowdsourced or community observations (Le Coz et al., 2016; Etter et al., 2020), or eamera-based
camera-based sensors (Vandaele et al., 2021). The key requirement is that an observation operator can be defined. Observation
operators map the state of the system from state space to observations space. In our study the observation operator selects the
erid-peint-grid box that represents the location of the station on the modelled river network. The mapping of the station locations
from the physical river network to the modelled river network is not trivial and several studies have attempted to automate this

step (Isikdogan et al., 2017; Li et al., 2018). If this mapping is incorrect then representation errors can be introduced (Janji¢
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et al., 2018). For example, if a station on a bypass channel is incorrectly located on the main channel, observations from the
station will undoubtedly provide erroneous information in the update step.

The code developed for this study is designed to allow for research flexibility rather than operational efficiency. However,
the error-adjustment of a single forecast took on average 8.5 minutes for the whole of the Rhine-Meuse catchment - a large
catchment. This suggests that, with proper parallelizatienparallelisation, the method could be operationalized and applied to all
gauged catchments in Europe. Before that, though, the method needs to be evaluated on additional catchments. The Rhine was
selected because it is highly gauged, but this also means that the raw ensemble’s skill is relatively high due to the effectiveness of
the hydrological model calibration process. This could influence the method’s performance in two ways: 1) the error ensemble
may evolve more linearly than in less calibrated catchments, and 2) the hindcast ensemble’s covariance may better represent
the covariances between the estimated errors. The next step should be applying this method to a catchment with lower skill
than the Rhine.

The method presented in this study spreads observation information along the river network but cannot yet be used as a
post-processing method because observations from the hindcast period (the future) are assimilated. We envisage the method
being developed further to make it applicable operationally as a hydrological forecast post-processing method. Nevertheless,
it may still be useful in certain situations, such as post-event analysis. After a flood event an assessment is often performed
estimating the severity of the event as well as potential causes and mitigating factors. However, in-situ river gauges only
present a snapshot of the event at specific locations and are often damaged during flood events, resulting in missing or incorrect
data. EO estimations of river discharge could fill in some of the gaps but this would depend on the satellite’s orbit and its
availability at the right time (Douben, 2006). Reanalysis is another option, but it requires additional hydrological model runs
and may contain errors due to the structure of the hydrological model or errors in the meteorological observations. The method
proposed here could offer a domain-wide estimate of observations without requiring additional model runs or a "warm-up"

period typically needed in hydrological simulations to stabilize antecedent water storage within the catchment.

9 Conclusion

We present and evaluate a data-assimilation-inspired method for spreading observation information from gauged to ungauged
locations in a post-processing environment. This method enables the error-correction-of-an-ensemble-simulation-error correction
of ensemble simulations at all grid boxes. The method utilises state augmentation within an LETKF framework to estimate an
ensemble of error vectors. The error vectors are then used to correct each hindcast ensemble member separately.

Overall, the method successfully reduces the errors of the ensemble mean at ungauged locations in leave-one-out experi-
ments. The adjusted ensemble mean has a higher correlation with the observed river discharge and is more able to capture
the variability of the river discharge at a point. Whilst the magnitude of the errors are-is reduced the ensemble spread is not
adjusted sufficiently resulting in an under-confident ensemble spread at longer lead-times. The adjusted ensembles are spa-
tially and temporally consistent with the river discharge predictions showing smooth evolution both between grid-boxes on

the same river and between lead-times. The method is most limited in-its-applications—te-at locations further upstream than
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the assimilated observations and for hindcasts where-the—variance-of-the-ensemble-is—inecorreetlysmall-with unrealistically
small ensemble variance, which most often happens-at-shorterlead-timesoccurs at shorter lead times. These limitations ean-be

minimised-could be reduced by further investigation into the localisation approach, for example having a different localisation
length upstream and downstream from the assimilated observation, and the covariance inflation approach, which may involve
applying a spread-correction to the hindcast ensemble as well as the error-ensembleerror ensemble.

Our method of spreading observation information could be used to improve post-event analysis. However, as the computa-
tional requirements and processing time are both small the method could also be developed further to allow for its application
to the post-processing of operational forecasts. The prediction of river discharge at ungauged locations is a crucial challenge

for hydrological research and once successfully achieved will allow for better preparedness for floods.

Code and data availability. The code used in this study for the error-correction method, evaluation of river discharge forecasts, and gen-
eration of the figures presented in this manuscript is available upon request. The river discharge forecast used in this study are from
the Copernicus Emergency Management Service (CEMS)’s European Flood Awareness System (EFAS) and are available to download
from https://ewds.climate.copernicus.eu/datasets/efas-forecast. The local drainage direction and channel length data is available from https:

/ldata.jrc.ec.europa.eu/dataset/f572c443-7466-4adf-87aa-c0847a16923.

Appendix A: Kalman gain matrix decomposition

The Kalman gain matrix has the following form for timestep k:
_piHT THT !

K, = Pka HkPka + R

where P£ is the prior ensemble covariance matrix, Ry is the error-covariance matrix of the observations, and Hy, is the
observation operator (Livings, 2005; Hunt et al., 2007; Kalman, 1960). Substituting the definitions of the perturbation matrix

and the observation operator for the augmented state given in Egs. (9) and (11) gives:
-1

Ky = WiW{"H] (H,W{W["H] +R;) .

This can then be decomposed into the hindcast and error components as

K, X/ +Bj f T ! ! f AT 1
K, = | = ; (HpX;, +H,B;)" (H, Xy, + HyBy) (Hy X, + H;B;)" +Ry)~ (A1)
Kbk Bk‘

The analysis of the ensemble mean of the augmented states is therefore given by

—f =
X, +b Ky x
bk Kbk

7

Wk}:
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where i£ and B£ are the ensembles mean of the raw hindcast and the prior error ensemble at timestep k, y, is the observation
vector, and ¥5 is the model-observation ensemble mean.
Appendix B: Gaspari-Cohn function

The Gaspari-Cohn function is correlation function commonly used in data assimilation to define the localisation weights

(Gaspari and Cohn, 1999). It has the following form:

1f%r2+§r3+%r4f%r5, 0<r<i1
p(r) = —%r‘l+4—5r+%r2+%r3—%r4+%r5, l<r<2
0, r>2

where r = d/c where d is the physical distance between two points, and ¢ is the localisation length scale. The function has a

value of 1 when r = 0 and a value of O when r > 2.
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