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Abstract. Forecasting river discharge is essential for disaster risk reduction and water resource management, but forecasts of

the future river state often contain errors. Post-processing reduces forecast errors but is usually only applied at the locations

of river gauges, leaving the majority of the river network uncorrected. Here, we present a data-assimilation-inspired method

for error-correcting ensemble simulations across gauged and ungauged locations in a post-processing step. Our new method

employs state augmentation within the framework of the Localised Local Ensemble Transform Kalman Filter (LETKF)to5

estimate . Using the LETKF, an error vector representing the forecast residual is estimated for each ensemble member. The

LETKF uses ensemble error covariances to spread observational information from gauged to ungauged locations in a dynamic

and computationally efficent manner. To improve the efficiency of the LETKF we define new localisation, covariance inflation,

and initial ensemble generation techniques that can be easily transferred between modelling systems and river catchments.

We implement and evaluate our new error-correction method for the entire Rhine-Meuse catchment using forecasts from10

the Copernicus Emergency Management Service’s European Flood Awareness System (EFAS). The resulting river discharge

ensembles are error-corrected at every grid box but remain spatially and temporally consistent. The skill is evaluated at 89

proxy-ungauged locations A spatial cross-validation strategy is used to assess the ability of the method to spread the correction

along the river network to ungauged locations. The skill of the ensemble mean is improved at almost all locations including

stations both up- and downstream of the assimilated observations. Whilst the ensemble spread is improved at short lead-times, at15

longer lead-times the ensemble spread is too large leading to an underconfident ensemble. In summary, our method successfully

propagates error information along the river network, enabling error correction at ungauged locations. This technique can be

used for improved post-event analysis and can be developed further to post-process operational forecasts providing more

accurate knowledge about the future states of rivers.
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1 Introduction

River discharge forecasts are essential tools for taking effective preparatory actions for disaster mitigation and water resource

planning (UNDRR, 2015)(UNDRR, 2015). However, despite the increased sophistication of forecasting systems over the past

few decades, river discharge forecasts still contain uncertainty (Boelee et al., 2019). The uncertainty is introduced at several

stages of the forecasting system including the meteorological forcings, the initial conditions, and the hydrological model25

structure and parameters (Valdez et al., 2022)(Valdez et al., 2022). Ensemble river discharge forecasts typically aim to account

for the meteorological uncertainty by forcing a hydrological model with many meteorological forcings either from multiple

numerical weather prediction (NWP) systems or from an ensemble weather forecast created using multiple sets of initial

conditions (Cloke and Pappenberger, 2009; Wu et al., 2020). However, ensemble forecasts can still contain errors. Different

methods for correcting these errors have been developed including pre-processing of the meteorological forcings, calibration30

of the hydrological model, improving the initial conditions using data assimilation, and post-processing of the river discharge

forecast (Bourdin et al., 2012). Of these approaches post-processing is often considered the most computationally efficient and

its ability to correct for multiple sources of errors simultaneously is appealing.

In meteorological forecasting, post-processing at non-observed locations is common (see Vannitsem et al., 2021). However,

hydrological forecasting also requires consideration of the spatial heterogeneity introduced by the river network (e.g., Li et al.,35

2017; Woldemeskel et al., 2018; Ye et al., 2014; Xu et al., 2019; Liu et al., 2022; Lee and Ahn, 2024) and the application of

making hydrological post-processing methods at ungauged locations is still a difficult challenge. The lack of gauged locations

along river networks is a particular problem as is the lack of agreed data sharing practices for the areas that are gauged

(Lavers et al., 2019; Hannah et al., 2011), which means that global river gauge network is sparse (Krabbenhoft et al., 2022),

and even in regions where gauges exist, river discharge data are often not widely shared (Lavers et al., 2019; Hannah et al., 2011)40

. Therefore, the development of post-processing techniques for ungauged locations is essential. However, current techniques

are generally too computationally expensive for operational river flow forecasting applications (Emerton et al., 2016). For

example, defining a joint distribution between the river discharge at multiple locations would allow forecasts to be condi-

tioned on observations available at specific locations (Engeland and Steinsland, 2014)(Engeland and Steinsland, 2014). How-

ever, for large-scale distributed systems and multiple lead-times the size of the joint distribution quickly becomes too large.45

Alternatively, error-correction can be performed at a gauged location and the results interpolated to ungauged locations.

One such method used to interpolate error-correction parameters is top-kriging (Pugliese et al., 2018; Skøien et al., 2021)

(Pugliese et al., 2018; Skøien et al., 2021). Top-kriging takes into account the river network but the relationship between er-

rors at different locations is assumed static regardless of the hydrometeorological situation (Skøien et al., 2016, 2006). Another

option is to use a river routing model to propagate error-corrected river discharge forecasts between gauged locations using a50

river routing model (Bennett et al., 2022). Whilst this approach maintains spatial consistency between locations, the additional

run of the model could be computationally expensive for an operational application.

The aim of this paper is to present and evaluate a novel technique to spread for spreading observation information from

gauged to ungauged locations in a computationally efficient and temporally varying manner. The new method is based on
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data assimilation techniques, commonly used to improve the initial conditions of forecasts (Valdez et al., 2022), but applied as55

post-processing so that additional, computationally expensive executions of the hydrological model are not required. Data as-

similation is a mathematical technique that combines modelled predictions and observations to produce an improved modelled

state relative to the true state of the system (Nichols, 2003, 2010). Data assimilation is often used to improve the initial con-

ditions of forecasts (Valdez et al., 2022). However, in this paper we modify the techniques to apply them in a post-processing

environment such that additional, computationally expensive, executions of the hydrological model are not required. The er-60

ror correction method proposed in this study is based on state augmentation (Dee, 2005) and the Local Ensemble Transform

Kalman Filter (LETKF, Hunt et al., 2007)and state augmentation (Dee, 2005). State augmentation is a technique that allows the

estimation of the state and parameters/biases of a system simultaneously, and is often used for online bias-estimation in data

assimilation (Ridler et al., 2018; Gharamti and Hoteit, 2014; Smith et al., 2013, 2009; Martin et al., 2002). The LETKF is part

of the Kalman Filter family of methods and uses an ensemble of model states to estimate the state error covariances. Due to its65

their computational efficiency and ability to handle non-linear dynamics without an adjoint model, ensemble Kalman Filters

are common data assimilation methods for hydrological applications in hydrological research (Rouzies et al., 2024; Li et al.,

2023; Mason et al., 2020; Ridler et al., 2018; Khaki et al., 2017; Xie and Zhang, 2010; Clark et al., 2008). State augmentation

is a technique that allows the estimation of the state of a system and the parameters of the model used to simulate that system

simultaneously (Ridler et al., 2018; Gharamti and Hoteit, 2014; Smith et al., 2013, 2009; Martin et al., 2002)70

Whilst many studies have shown the benefits of data assimilation for hydrological forecasting (Tanguy et al., 2025; Valdez et al., 2022; Piazzi et al., 2021)

, the process is rare in operational systems (Pechlivanidis et al., 2025), particularly in large-scale systems (Wu et al., 2020).

This limited uptake is partly due to data latency issues (WMO, 2024), time constraints, and the potential impact on the in-

terpretation of the forecasts (e.g., thresholds based on model climatology may no longer be consistent; Emerton et al., 2016)

. Additionally, the benefit of data assimilation at longer lead-times is uncertain (e.g., Valdez et al., 2022). In this paper, we75

leverage key advantages of data assimilation—such as the ability to propagate observational information to ungauged loca-

tions—within a post-processing framework that is more readily integrated into operational systems.

The proposed method aims to improve the skill of the ensemble mean and the reliability of the ensemble spread by adjusting

each ensemble member, as will be discussed in more detail in Section 2. However, it is equally, if not more, important that the

ensembles are spatially and temporally consistent in order to aid with decision making (Bennett et al., 2022). This is particularly80

important for large scale systems that provide forecasts across administrative boundaries, such as the Copernicus Emergency

Management Service’s (CEMS) European Flood Awareness System (EFAS) used in this study (Matthews et al., 2025). The

specific research questions to be addressed in this study are therefore,

1. Can data assimilation techniques be used in a post-processing environment to spread propagate observation information

to ungauged locationsin a spatiotemporally consistent manner?85

2. Are the resulting ensemble predictions of river discharge more skillful than the raw ensemble?

This paper is organised as follows. In Section 2 we define the errors which we aim to correct and introduce some terminology

and notation. In Section 3 we formulate describe the data assimilation techniques used within this study. In Section 4 we outline
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the proposed error-correction method and detail how the ensemble is corrected. Section 5 provides some additional components

of the method that improve the efficacy of the method but which can be adjusted to suit the data availability of any system90

and/or domain. Section 6 outlines the strategy used to evaluate the efficacy of the proposed methodand . Section 7 presents

the results, first assessing the ability of the method to spread observational information to ungauged locations investigating

the impact of assimilating the observations, and then assessing the skill of the error-corrected ensembles. In Section 8 we

discuss key features of the proposed method and their impact on the error-corrected ensembles. In Section 9 we conclude

that the proposed method successfully improves the skill of the ensemble and maintains spatiotemporal consistencymean, and95

highlight priorities for future developments.

Please note that throughout the paper ‘hindcast ensemble’ refers to the ensembles of river discharge that we are error-

correcting. These ensembles are past operational EFAS forecasts (see Section 6.1); however, when we perform the error-

correction we use observations that are available within the forecast (hindcast) periodwhich . This would not be possible in an

operational system as these timesteps would be in the future. Therefore, we refer to these ensembles as hindcasts for clarity.100

2 Ensemble error-correction framework

Here, we define the errors which we aim to correct and provide some notation that is used throughout the paper. Where possible

we follow the standard data assimilation notation provided in Ide et al. (1997). Let the true state of the system at time k be

defined as xtrue
k ∈ Rn, where each element represents the true river discharge in one of the n grid boxes in the domain of

interest. Hydrological forecasts , including the EFAS forecasts used in this study (Section 6.1), generally estimate the true state105

of the system by using a modelled state, denoted xk, where the lack of superscript ‘true’ indicates it is a modelled estimate.

Hydrological In this study, the hydrological ensemble forecasts consist of N potential realizations of future river discharge,

referred to as ensemble members. We define the ensemble river discharge hindcasts used in this study as{
xk : x

(i)
k , for i= 1,2, . . . ,N and k = 0,1, . . . ,L

}
. (1)

where the superscript (i) indicates the i-th member of the ensemble, N is the ensemble size, the timestep k refers to the110

lead-time of the hindcast, and L is the maximum lead-time. The ensemble mean is defined as

xk =
1

N

N∑
i=1

x
(i)
k ∈ Rn. (2)

The ensemble perturbation matrix is defined as

Xk =
(

x
(1)
k −xk x

(2)
k −xk · · · x

(N)
k −xk

)
∈ Rn×N (3)

where the i-th column represents the i-th ensemble member’s departure from the ensemble mean at lead-time k. The pertur-115

bation matrix contains information about the spread of the ensemble and the spatial structure of the deviations from the mean

of each ensemble member from the mean. From the definition of the perturbation matrix, the ensemble covariance matrix is
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defined as

Pk =
1

N − 1
XkX

T
k ∈ Rn×n. (4)

where the superscript T indicates the matrix transpose.120

Hydrological ensembles may still contain errors, so a post-processing step is usually necessary within a hydrological

forecasting system. In this paper, we propose a method to spread an error-correction from gauged locations to every grid

box in the system domain. We assume that there is an additive relationship between each hindcast ensemble member and an

error vector such that

xtrue
k = x

(i)
k +b

(i)true
k ∈ Rn125

where b
(i)true
k is the error of the i-th domain. The proposed method estimates an additive error vector for each hindcast

ensemble member with respect to the true stateat each timestep. Each element of the error vector is represents the error

associated with a single grid box . The proposed method estimates the additive error vector, b(i)
k (where the lack of the

superscript true indicates it is an estimate) for each hindcast ensemble member at each timestep in the domain. Collectively,

these error vectors form an ensemble defined as,130 {
b
(i)
k ∈ Rn for i= 1,2, . . . ,N

}
(5)

where N is the same ensemble size as the river discharge hindcast, n is the number of grid-boxes in the hindcast domain, and

k such that the resulting hindcastdistribution, xnew
k , is defined by

xnew
k ∼N (xk +bk,Pk +Γk)

where xk ∈ Rn and Pk ∈ Rn×n are the ensemble mean is the timestep. The error ensemble mean, bk, and the ensem-135

ble covariance matrixof the raw ensemble, respectively, bk ∈ Rn is the ensemble mean of the estimated error vectors, and

Γk perturbation matrix, Bk, are calculated by substituting b
(i)
k in place of x

(i)
k in Eqs. (2) and (3), respectively. We as-

sume there is an additive spread correction matrix. Defining an error-corrected ensemble in terms of mean bias and spread

correction parameters is a common post-processing technique used, for example, in the Ensemble Model Output Statistics

(EMOS Gneiting et al., 2005; Skøien et al., 2021) methodrelationship between each hindcast ensemble member and the corre-140

sponding error vector such that the i-th error-corrected ensemble member, xnew,(i)
k , is defined as

x
new,(i)
k = x

(i)
k +b

(i)
k ∈ Rn. (6)

The estimation of the error ensemble at each timestep is described in Section 4.

To aid with the estimation of the error vectors, we assume that at each timestep the system is observed at pk river discharge

gaugessuch that we have a vector of river discharge observations, yk ∈ Rpk . We assume the observation vector, yk ∈ Rpk , is145

related to the true state of the system as

yk =Hk(x
true
k )+ ϵk (7)
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where ϵk ∈ Rpk is a vector of unbiased Gaussian noise with covariance matrix Rk ∈ Rpk×pk , such that ϵk ∼N (0,Rk), and

Hk ∈ Rpk×n is the linear observation operatorwhich . The observation operator maps the variables from the state space to

observation space. The observation operator used in this studyIn this study, the observation operator selects the grid boxes from150

within the modelled drainage network of the hydrological model that represent the location that correspond to the locations of

the river gauges.

3 Data Assimilation

As discussed in Section 1, the proposed method is based on common data assimilation techniques: state augmentation and the

Local Ensemble Transform Kalman Filter (LETKF). In this sectionwe present the formulations , we provide an overview of155

these techniques used in this studyand introduce the necessary equations. In Section 4, we adapt and apply these methods in a

non-standard way due to their application in a post-processing environment.

3.1 State augmentation

In the proposed method, an ensemble of augmented states is defined between the ensemble river discharge hindcast (see Section

2) and an ensemble of additive error vectors. We define this ensemble of error vectors at time k as160 {
b
(i)
k ∈ Rn for i= 1,2, . . . ,N

}
where N is State augmentation is a technique used for online bias-correction in data assimilation that allows the simultaneous

estimation of the same ensemble size as the river discharge hindcast and n is the number of grid-boxes in the hindcast domain.

The error ensemble mean, b, and the ensemble perturbation matrix, B, are calculated by substituting b
(i)
k in place of x(i)

k in

Eqs. (2) and (3), respectively. The generation of the initial error ensemble for timestep k = 1 is described in Section 5.3.165

The ensemble of augmented states is then defined such that the system state and biases. An augmented state is defined by

appending the biases to the state vector, allowing both to be updated by the data assimilation method. In this study, the i-th

ensemble member member of the augmented ensemble is defined as

w
(i)
k =

 x
(i)
k

b
(i)
k

 ∈ R2n. (8)

where x(i) ∈ Rn and b(i) ∈ Rn are the i-th hindcast and error ensemble members, respectively. The augmented ensemble mean170

and perturbation matrix are given by

wk =

 xk

bk

 ∈ R2n and Wk =

 Xk

Bk

 ∈ R2n×N (9)

where x and b are the ensemble means of the hindcast and error ensembles, respectively, and X and B are the perturbation

matrices of the hindcast and error ensembles, respectively.
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The next step of In this study, state augmentation is used within an LETKF (described in Section 3.2) and it is therefore neces-175

sary to define the evolution of the augmented states between timesteps. The hindcast is evolved by the evolution of the hindcast

and error ensembles determines the evolution of the augmented states. The hindcasts used in this study were generated using the

LISFLOOD hydrological model(the hydrological model used to create the EFAS forecasts; Van Der Knijff et al., 2010). For the

, which is used in the EFAS operational system (Van Der Knijff et al., 2010). As the true evolution of the error vectors at all

grid-boxes is unknown, we assume a simple persistence model, we adopt the common assumption that the error is constant180

between timesteps (Martin, 2001), such that

b
(i)
k = b

(i)
k−1.

Based on these independent evolution equations and b
(i)
k = b

(i)
k−1. This is a common assumption used in state augmenta-

tion (Pauwels et al., 2020; Ridler et al., 2018; Rasmussen et al., 2016; Martin, 2001). Based on the independent evolution of

the hindcast and error ensembles, and the additive relationship between the hindcast ensemble members and the error ensemble185

members (see their members (Eq. (6)), we define the propagation of the augmented ensemble members as

w
(i)
k =

 Mk−1 Ik−1

0k−1 Ik−1

 x
(i)
k−1

b
(i)
k−1

=

 x
(i)
k +b

(i)
k−1

b
(i)
k−1

 . (10)

where Mk−1 ∈ Rn×n is a linear evolution operator representing the LISFLOOD hydrological model , In×n
k−1 and Ik−1 ∈ Rn×n

is the identity matrixacting on the error component of the augmented state, and x
(i)
k ∈ Rn is the i-th member of the precomputed

the hindcast ensemble. Since we use precomputed hindcast ensembles the propagation of the hindcast ensemble members190

requires no additional computationand the . The full non-linear LISFLOOD hydrological model is also used without the need

to define a linear approximation.

3.2 Local Ensemble Transform Kalman Filter (LETKF)

The Local Ensemble Transform Kalman Filter (LETKF, Hunt et al. (2007)) (LETKF; Hunt et al., 2007) updates the mean state

and the square root of the covariance perturbation matrix of an ensemble (i.e., the perturbation matrix) by combining the195

modelled and observed data. As a sequential data assimilation method, the LETKF consists of a propagation step (also known

as a forecast step) and an update step (also known as an analysis step) that are iterated. We cycled. In this method, we use the

LETKF to update the ensemble of error vectors at each timestep but hindcast timestep for which observations are available.

However, we modify the propagation step to use precomputed hindcasts. The propagation step evolves the augmented states

forward in time from time k− 1 to k, as described in Eq. (10). Rather than evolve the hindcast ensemble explicitly (which200

would require the hydrological model)we instead substitute , we use the precomputed hindcast ensemble for at timestep kinto

the propagated augmented state. .

The update step of the LETKF calculates the optimal estimate of the state of the system at timestep k by combining the

modelled augmented states and observations, both . Both data are weighted by their respective uncertainties, represented by

7
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their covariance matrices. As the LETKF is a well documented method we only provide the key update equationsand . For205

more detailed derivations, we direct the reader to Hunt et al. (2007) and Livings et al. (2008) for more detailed derivations.

Livings et al. (2008). To apply the LETKF to the augmented ensemblewe extend the definition of the observation operator,

H ∈ Rp×n, given in Eq. (7) such that , we create a model-observation ensemble with an ensemble mean, yx
k , defined as

(i)yx
k = (Hk 0)wk =Hk

(i)xk +Hk
(i)bk−1 (11)

where Ĥ ∈ Rp×2n is the augmented observation operator . As discussed in Section 2, the observation operator maps state210

variables from state space to observation space by extracting data for the appropriate grid-boxes. Hk ∈ Rpk×2n is the observa-

tion operator defined in Eq. (7). The LETKF can then update the augmented ensemble mean, wk, such that,

wa
k =wf

k +

 Kxk

Kbk

(yk −yxf
k
f
k), (12)

where the subscripts superscripts f and a indicate the state before and after the update step, respectively; Kxk
∈ Rn×p and

Kbk
∈ Rn×p are the components of the Kalman gain matrix acting on the hindcast ensemble and the error ensemble respec-215

tively; and yk ∈ Rp is the observation vector defined in Eq. (7). The difference between the observations and the model state

in observation space (i.e., yk − Ĥkw
f
kyk −yxf

k ) is called the innovation vector. The Kalman gain matrix weights the prior

modelled state and the observations based on their respective uncertainties and determines the impact of the innovation vec-

tor in the update step. The respective uncertainties of the prior modelled state and the observations determine their weight

within the LETKF. Large observation uncertainties reduce the Kalman gain, while large uncertainties in the prior state increase220

the Kalman gain. Both the hindcast and the error components of the Kalman gain are functions of the covariance matrix of

the augmented ensemble (see Eqs. (8) and (9) in Bell et al., 2004)(see Appendix A; Bell et al., 2004). The covariance matrix

describes the state error covariances between grid-boxes allowing the Kalman gain to spread the observation information to

ungauged locations. To update the error component specifically, it is the cross-covariances between the error component and

the hindcast component that control the spread of the observation information to ungauged locations (see Eq. (9) in Bell et al.,225

2004). This ability to spread the observational information is key to the error-correction method presented in this study.

The LETKF updates the augmented ensemble perturbation matrix, Wk, such that,

Wa
k =Wf

kTk (13)

where Tk ∈ RN×N is the square root transform matrix (Livings et al., 2008). The square root transform matrix is derived

using the Kalman gain matrix which gives the weighting between the modelled state and the observations (Livings et al.,230

2008). Using an eigenvector decomposition, the square root transform matrix rescales and rotates the ensemble members such

that the updated perturbation matrix represents the uncertainty in the updated ensemble mean. The square root transform matrix

allows the covariance matrix of the ensemble to be updated without the need for the covariances to be explicitly calculated

which can be computationally expensive (Bishop et al., 2001; Hunt et al., 2007). These update equations are used to update the

error component only as will be discussed in Section 4.1.235
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4 Spatially consistent error-correction method for river discharge

In this section, we describe how we use the data assimilation techniques discussed in Section 3, namely state augmentation and

the LETKF, to correct to post-process the hindcasts across the domain, including at ungauged locations . (Fig. 1). The correction

is applied in a post-processing environment, avoiding the need for additional executions of the hydrological model which can

be computationally expensive. The proposed method consists of two steps: 1) updating In Section 3.1, we describe how the240

error ensemble (defined in is updated at every timestep. In Section 3.1), and 2) adjusting the hindcast ensemble members using

the , we describe how updated error ensemble (Fig. 1). is used to error-correct the hindcast ensemble. Specific experimental

design choices are discussed in Section 5.

Figure 1. Schematic of the new error-correction method for gauged and ungauged locations. Coloured boxes indicate different components

of the method. An initial error ensemble is created for timestep k=1 (green box). Then, the error ensemble is augmented to the hindcast

ensemble (purple box). At each timestep the covariance of the augmented ensemble is inflated (cyan box) before being updated using the

LETKF which uses localisation to improve the results of the update (collectively the orange box). The updated error ensemble is adjusted to

ensure non-negative discharge values (light grey box) before being used to error-correct the hindcast (yellow box). The non-negative error

ensemble is propagated to the next timestep (red arrowsarrow). More details are provided for each component in the section indicated in the

top left corner of the corresponding box.

4.1 Updating the error ensemble

At each timestep the error ensemble is updated to estimate the optimal set of error vectors to correct the hindcast at that245

timestep. The update is performed using the LETKF defined in Section 3.2. Equations (A2) and (13) are the Kalman update

equations for the augmented state. Using the definition of the augmented state (see in Eq. (8) ) the update equations for the
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error ensemble only are,

b
a

k = b
f

k +Kbk
(yk −yx

k
f
k) (14)

and250

Ba
k =Bf

kTk. (15)

As the hindcast component is not explicitly evolved(see Section 3.2), we assume that the raw hindcast is a good approxi-

mation for the hindcast analysis state were the component if the component were to be updated. This allows the substitution

of the precomputed hindcast in place of the propagated state at the next timestep. Thus, the updated mean of the augmented

ensemble can be defined as255

wa
k =

 xk

b
a

k

 ∈ R2n. (16)

where xk is the ensemble mean of the raw hindcast ensemble and b
a

k is the updated error ensemble mean (Eq. (14)). The

perturbation matrix of the updated augmented ensemble follows a similar pattern such that

Wa
k =

 Xk

Ba
k

 . (17)

where Xk is the ensemble perturbation matrix of the raw hindcast ensemble and Ba
k is the updated error ensemble perturbation260

matrix (Eq. (15)). The assumptions made in EqEqs. (16) and Eq. (17) make our system suboptimal. However, we provide sub-

optimal from a data assimilation perspective but are necessary to avoid rerunning the hydrological model. Importantly, we aim

to estimate the error of the precomputed model output at each lead time. Therefore, while the lack of state evolution makes the

hindcast component update sub-optimal, the update of the error ensemble remains mathematically consistent. In this study, we

provide proof-of-concept in this studythat the resulting error ensemble improves the skill of the hindcast (see Section 7.17.1).265

The Kalman filter is not constrained to enforce non-negativity of the analysis state, and therefore, could lead to negative

discharge values for some grid boxes if the cross-covariances are incorrectly defined. We enforce non-negativity by further

adjusting the error ensemble members after the LETKF update step(Fig 1). The adjustment is done separately for each grid

box and each ensemble member only if they result in a negative river discharge as follows:

If x
(i)
k [j] +b

(i)a
k [j]< 0, then b̂

(i)a
k [j] =−x

(i)
k [j] + ||ζk||270

where b̂
(i)
k is the adjusted error-ensemble member that results in non-negative discharge , j indicates the j-th grid box, i

indicates the i-th ensemble member, ||.|| indicates the modulus, and ζk a random noise value. For any ensemble member and

grid box where the sum of the hindcast discharge and the updated error is negative, we modify the error value so that the total

becomes a small positive value, mitigating the potential for instabilities caused by zero-values. This small positive value is

10
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sampled from a Gaussian distribution with mean 0 and a mean of zero and a standard deviation equal to 10% of the standard275

deviation of the updated error ensemble at the grid-box of interest.

The updated positive-definite augmented states are propagated to the next timestep as defined in Eq. (10). The updated

positive-definite augmented states are also used to error-correct the hindcast (Section 4.2).

4.2 Adjusting the forecast

After the error component of the augmented state has been updated using Eqs. (14) and (15), and non-negativity has been280

enforced (Section 4.1), the error ensemble members are added to the respective hindcast ensemble members such that

x
new,(i)
k = x

(i)
k + b̂

(i)a
k (18)

where x
new,(i)
k and x

(i)
k are the i-th ensemble members of the error-corrected and raw hindcast ensembles, respectively, and

b̂
(i)
k is the error vector associated with the i-th error ensemble member where the caret indicates a non-negativity check has

been applied. Consequently, the error-corrected hindcast ensemble mean and perturbation matrix are given by285

xnew
k = xk + b̂

a

k (19)

and

Xnew
k =Xk + B̂a

k. (20)

The This update results in an additive spread correction matrixdefined in Eq (??) is the result of calculating the covariance

matrix of the error-corrected hindcast ensemble as in Eq. (3). The form of the additive spread correction matrix is , Γk, with290

the form

Γk =XkB̂
aT
k + B̂a

kX
T
k + B̂a

kB̂
aT
k (21)

where Xk and B̂a
k are the perturbation matrices of the raw hindcast and error ensembles, respectively, and the superscript T

indicates the matrix transpose (Section 5.2 in Martin, 2001).

5 Experimental implementation295

In Section 4 we presented a new method of spreading observation information to ungauged locations in a post-processing envi-

ronment based on common data assimilation techniques. In this section, we describe three key components of the method—localisation,

covariance inflation, and the generation of the initial error ensemble—which are crucial for its performance but can be imple-

mented in various ways.

5.1 Localisation300

Localisation is used to reduce the effect of spurious correlations which can arise due to sampling errors caused by the small

ensemble size (Hamill et al., 2001; Hunt et al., 2007). The LETKF uses observation localisation which reduces the impact of

11



observations by multiplying the inverse of the observation-error covariance matrix by a localisation matrix, ρ ∈ Rpk×pk , such

that

R−1 = ρ ◦R−1
nl (22)305

where R ∈ Rpk×pk is the localised observation-error covariance matrix used in the LETKF (Section 3.2), Rnl ∈ Rpk×pk is the

non-localised observation-error covariance matrix, and the symbol ◦ indicates the Schur product (also known as the Hadamard

product) which is an element-wise matrix multiplication (Golub and Van Loan, 2013). We assume that Rnl and, by definition,

R are diagonal matrices. In this study we use distance-based localisation so the impact of the multiplication described in Eq.

(22) is to increase the effective uncertainty of distant observations and thus decrease their impact on the analysis state. The310

impact of the localisation on the spatial extent of the analysis increments is demonstrated in Section 7.1.

The localisation matrix is defined using the Gaspari-Cohn function which has a parameter called the localisation length scale

(Eq. 4.10 in Gaspari and Cohn (1999)). (Appendix ??; Gaspari and Cohn, 1999). The Gaspari-Cohn function smoothly de-

creases the weights assigned to an observation as the distance from the observation location increases, starting from a value of 1

at the observation location and reaching 0 for distances greater than twice the localization length scale (pink box, Fig. 1). In this315

study, the distance is calculated along the river network which has been shown to improve the analysis for fluvial applications

(García-Pintado et al., 2015; El Gharamti et al., 2021; Khaniya et al., 2022)(García-Pintado et al., 2015; El Gharamti et al., 2021; Khaniya et al., 2022)

. The distance between a grid-box and the location of an observation is calculated using the local drainage direction map and

the channel length used in the hydrological model (Choulga et al., 2023). As the distance is defined along the river network,

observations cannot impact grid-boxes in a different drainage basin.320

The localisation length scale is often a tuned parameter but the tuning process can be time and resource intensive. We

Sensitivity experiments conducted during the development of this method found that the optimal length scale varied by location,

lead-time, and tuning metric of choice, but overall, the differences were small for length scales from 65 km to 786 km (not

shown). Therefore, we propose instead for the localisation length scale to be defined as the maximum distance between any

grid point and its closest observation. This 1) ensures that all grid boxes are updated in the update step of the LETKF reducing325

the potential for discontinuities in the analysis state, 2) can adapt to changes in the availability of observations, and 3) can be

applied to different domains and hydrological model configurations without requiring a tuning experiment.

5.2 Covariance inflation

Small ensemble sizes can cause underestimation of the ensemble spread which in turn reduces reducing the impact of the

observations on the analysis (Furrer and Bengtsson, 2007). In addition to the issues caused by the small ensemble size, we330

also make the simplified assumption that the Additionally, we assume the error ensemble is constant between timesteps (Eq.

(??)) whichwhich, while simplifying implementation, could introduce model errors into the ensemble (Evensen et al., 2022).

Covariance inflation is an approach often used to To ameliorate these issues, although an inflation method that is optimal for

all situations has yet to be identified (Duc et al., 2020; Scheffler et al., 2022).
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We aim to inflate the ensemble perturbation matrix such that at time k+1 the spread better represents the true uncertainty of335

the mean error prior to the update step. Due to the unusual approach of using predefined ensembles, we propose a new method to

inflate the covariance of the error ensemble. various covariance inflation techniques are often used (Duc et al., 2020; Scheffler et al., 2022)

. We take inspiration from the ‘relaxation to prior perturbations’ technique (RTPP, Zhang et al., 2004; Kotsuki et al., 2017)

which blends the analysis perturbation matrix with the perturbation matrix prior to the analysis step. This results in both additive

and multiplicative inflation that is proportional to the impact of the assimilation of observations (Whitaker and Hamill, 2012)340

. Rather than accounting for errors introduced in the update step we want to account for errors introduced primarily in the

propagation step. We therefore adapt the RTPP method to blend the propagated analysis perturbation matrix , Wa
k defined in

Eq. (17), and an alternative estimate of the perturbation matrix at the next timesteps, West
k+1, such that

Winf
k+1 = (1−α)

 Mk In×n
k

0k In×n
k

Wa
k +αWest

k+1

implement a heuristic covariance inflation method inspired by the relaxation-to-prior perturbations technique (Zhang et al., 2004; Kotsuki et al., 2017)345

. However, as we are working within a post-processing context, we adapt the method for use with predefined ensembles (i.e.,

without evolving the inflated perturbations between timesteps).

We blend the prior perturbation matrix at k+1 with an estimated perturbation matrix West
k+1 similar to the use of a climato-

logical covariance matrix in Valler et al. (2019). The resulting perturbation matrix is given by

Winf
k+1 = (1−α)

 Mk Ik

0k Ik

Wa
k +αWest

k+1 (23)350

where α is an inflation parameter to be defined (and the definition of the matrices Mk and In×n
k are evolution matrices

introduced Ik are given in Section 3.1and α is an inflationparameter that must be defined. The estimation of ). This blending

of matrices introduces both additive and multiplicative inflation. We define West
k+1 could use an alternative model to evolve the

analysis perturbation matrix forward or be a climatological matrix (Valler et al., 2019). In this study we give West
k+1 the form

as355

West
k+1 =

 Xest
k+1 +Best

k+1

Best
k+1

 . (24)

where Xest
k+1 and Best

k+1 can be estimated separately. We assume the hindcast covariance matrix is correct such that Xest
k+1 =Xk+1,

and estimate the error covariance matrix at time k+1 as proportional to the state covariance matrix (Dee, 2005; Martin et al., 2002)

. We assume that the constant of proportionality is 1 such that Best
k+1 =Xk+1. When substituted into Eq. (23), this form of

West
k+1 maintains consistency between the error terms in the hindcast and error components of the augmented stateensemble.360

The inflation parameter, αk, controls the weighting of propagated analysis perturbation matrix and During development, it

was found that the estimated matrices must have spatial structures consistent with the river network and be forecast and lead-

time-dependent. For simplicity, and as the raw hindcast perturbations satisfy these requirements, we set both Xest
k+1 and Best

k+1
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equal to the raw hindcast perturbation matrix (Dee, 2005; Martin et al., 2002). In future studies, the estimated perturbation

matrix . Here, estimated perturbation matrices could be defined using alternative models to evolve the analysis perturbation365

matrix between timesteps or be climatological matrices (Valler et al., 2019).

The inflation parameter αk determines how much of the uncertainty at time k+1 is due to uncertainty at time k and how

much is not captured by the propagated matrix . We assume that the change in the variance of the hindcast ensemble between

timesteps is an indication of how much the spread of the error ensemble would change if the propagation model of the error

was correct. Thereforecontrols the weighting between the prior and estimated matrices. To account for changing uncertainty370

across lead-times and forecasts, we define the inflation parameter as the fractional change in the hindcast variance, αk using a

smoothed estimate of the relative change in hindcast ensemble variance

αk =
1

k

l=k∑
l=k−2

max

{∣∣Tr(Pl)−Tr(Pl+1)
∣∣

Tr(Pl)
,1

}
(25)

where k is the the current timesteps and Tr(Pl) current timestep and Tr(Pl) is the trace of the raw hindcast covariance matrix

at timesteps timestep l. A maximum value of 1 is set to avoid instabilities, particularly at short lead-times where the change in375

variance between timesteps can be large. The average over the past three timesteps is taken to ensure that alpha α is smoothly

changing between timesteps, again to avoid instabilities. An inflation value of 1 suggests the uncertainty of the modelled

state has changed so much between timesteps that the uncertainty at the previous timestep is no longer relevant. An inflation

values of 0 implies the uncertainty at the previous timesteps should be trusted. This approach of estimating α was selected

after sensitivity testing (not shown for brevity), which indicated that the inflation factor must be both lead-time dependent and380

forecast dependent. While α is not spatially varying, it is applied to perturbation matrices with spatial structures consistent

with the river network, ensuring physically plausible ensemble perturbations.

5.3 Initial Initialising the error ensemble for the first timestep

We must define an initial error ensemble to perform the state augmentation at the first timestep. Due to the application to a

In a forecast post-processing environment there is no “warm-up” period in which a state of equilibrium can be reached, and385

therefore the initial error ensemble must be physically plausible. Here, the initial error ensemble is defined using three sets of

river discharge data: in-situ observations, yk ∈ Rpk , simulations created by forcing a hydrological model with meteorological

observations, sk ∈ Rn, and the ensemble mean and ensemble perturbation matrix of a single lead-time from a previous hindcast,

xk ∈ Rn and Xk ∈ Rn×N . A single ensemble is generated for the full EFAS domain and then the elements associated with the

domain of interest (in this study the Rhine-Meuse catchment) are extracted.390

We define the initial error ensemble in two steps: 1) the error mean is estimated based on the errors due to the hydrological

model, and 2) ensemble perturbations are estimated based on the perturbations of hindcast members. The The estimation has

two main steps: estimating the mean of the initial error ensemble is estimated error and generating the perturbations around

that mean. The ensemble mean is intended to capture biases in the hydrological model at the initial time. It is computed as

follows:395

14



1. Calculate the errors at gauged locations: The For each river gauge location, we calculate the average relative error of

the simulation compared to the observations between observed and simulated river discharge over the past d days (here

10 days) at all pk stations with available observations, δ ∈ Rpk is calculated as

δ[j] =

k=−1∑
k=−d

yk[j]− sk[j]

sk[j]

where δ[j]. To limit the influence of outliers or representation errors, yk[j] and sk[j] are the relative error, the observation400

and the simulated value at station j at time k, respectively. If the value of δ[j] is greater than 1 (or less than -1) then

δ[j] is set to 1 (or -1). This reduces the impact of representation errorsdue to the mapping of stations, for example. these

errors are capped at ± 100

2. Interpolate the errors to ungauged locations: Inverse distance weighted interpolation is used to estimate the average

relative error at ungauged locationsensuring closer stations have a greater influence (Lu and Wong, 2008). The Euclidean405

distance, denoted dgj , is calculated between a grid-box, g, and each of the closest G stations (here Using inverse distance

weighting, we interpolate the errors from gauged to ungauged locations. The value at each grid-box is a weighted average

of relative errors from the 100 stations), and the average relative error weighted accordingly. The Euclidean distance is

used here to allow the method to be applied to all catchments. Therefore, the inverse distance weighted formula used to

calculate the relative error at grid-box g, denoted ∆[g], is410

∆[g] =

∑100
j=1 δ[j]/

√
dgj∑100

j=1 1/
√

dgj

nearest stations, with closer stations given more influence (Lu and Wong, 2008). All available stations, including those

outside the catchment of interest, are used in this calculation to capture spatial variability.

3. Impose the river network structure: The mean of the initial error ensemble is calculated by multiplying the field of

estimated relative errors, ∆, with the simulation at time t=−1, s−1, such that at grid-box g the initial error ensemble415

mean, b
f

1 [g] is calculated as

b
f

1 [g] =∆[g]×s−1

where the superscript f indicates the ensemble has not been updated by the LETKF (Section 3.2)interpolated error field

is then multiplied by the simulated river discharge values at each grid point. This enforces the spatial pattern structure of

the river networkby ensuring the value of the initial error mean is , ensuring errors are proportional to the magnitude of420

the discharge in the size of the river.

The perturbations from the ensemble mean are then defined as follows. Since the form of the covariance matrix of the

errors Since the true error covariance is unknown, we use a common technique of scaling the system state covariance matrix

(e.g. Martin et al., 2002). We use the ensemble members assume a reasonable estimate can be derived from a previous river

discharge ensemble forecast as follows:425
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1. Calculate the ensemble statistics: We calculate the ensemble mean and perturbation matrix from the second lead-time

of the hindcast from a hindcast issued two days prior. This choice avoids unrealistically low spread often seen at the first

lead-time was selected as the spread of the ensemble at due to a lead-time of one day can often be very narrow due to

the use of a single set of initial conditions(see 6.1). The steps to define the initial error perturbations are: .

2. Calculate the ensemble statistics: The ensemble mean and perturbation matrix of the the second lead-time of the430

hindcast from two days prior are calculated. The valid-time for these ensemble values is, t= 0 so they are denoted x0

and X0, respectively.

3. Inflate the covariance matrix: The spread of the hindcast ensemble should account for the uncertainty due to the

meteorological forcings. To ensure the variance is correct we scale the perturbation matrix by perturbation matrix is

adjusted by calculating the error of the ensemble mean compared to the hindcast ensemble mean at each grid-box relative435

to a simulation forced by meteorological observations. A vector This provides a set of scaling factors , f is defined such

that

f =

(
s0 [1]−x0 [1]

x0 [1]
,
s0 [2]−x0 [2]

x0 [2]
, . . . .,

s0 [n]−x0 [n]

x0 [n]

)T

where s0 [n] is the simulation at the n-th gridbox. These scaling factors can be very small so we set a requirement

that the scaled standard deviation at each grid-box must not go below used to inflate the perturbation matrix. To avoid440

underestimating uncertainty, we impose a minimum threshold of on the resulting standard deviation of 10% of the

simulated value, s0[j]/10. In practice this is done in two steps: i) scale the perturbation matrix by the vector f such that

Bf
1 = fX0

and then ii) reinflate the spread where necessary. By scaling the perturbation matrix in this way we relate the spatial

variability of the ensemble spread to the error due to the meteorological forcings.445

local simulated river discharge.

The error mean, b
f

1 , and the error perturbation matrix, Bf
1 are used to define the error ensembleat timesteps k = 1 where they

are

The resulting error ensemble mean and perturbations define the initial ensemble, which is then updated using the LETKF

with state augmentation, as described in Section 4.1.450

6 Evaluation strategy

6.1 European Flood Awareness System (EFAS)

The hindcasts used in this study were produced by the European Flood Awareness System (EFAS) as operational forecasts

(Barnard et al., 2020). EFAS is part of the Early Warning component of the European Commission’s Copernicus Emergency

16

gwyns
Cross-Out

gwyns
Cross-Out



Management Service (CEMS), and aims to provide complementary forecast information to hydro-meteorological services455

throughout Europe (Matthews et al., 2025). EFAS streamflow forecasts are produced by forcing a calibrated hydrological

model, LISFLOOD (De Roo et al., 2000; Van Der Knijff et al., 2010; Arnal et al., 2019)(De Roo et al., 2000; Van Der Knijff et al., 2010; Arnal et al., 2019)

, with the output from meteorological numerical weather prediction (NWP) systems. Whilst the operational EFAS system is a

multi-model system with four sets of meteorological forcings, in this study we focus only on the medium-range river discharge

forecasts generated with meteorological forcings from the 51-member medium-range ensemble from the European Center for460

Medium-range Weather Forecasts (ECMWF) due to its large ensemble size. The meteorological forcings are interpolated to the

EFAS grid. A single set of initial hydrological conditions are used for all ensemble members often leading to small ensemble

spreads at short lead-times. The spread then increases as the different meteorological forcings propagate through the system.

No data assimilation is performed in the generation of the initial hydrological conditions. Instead, the LISFLOOD hydrolog-

ical model is forced with meteorological observations (and meteorological forecasts when observations are not available) to465

generate the initial conditions (Smith et al., 2016).

As an operational system, EFAS is constantly evolving. For the evaluation presented here we use EFAS version 4 (operational

from 14 October 2020 to 20 September 2023) aggregated to daily timesteps with a maximum lead-time of 15 days. The

ensembles have 51 members and predict the average river discharge for each timestep for each grid-box within the domain(see

6.2). The hindcasts have a spatial resolution of 5km × 5km with a ETRS89 Lambert Azimuthal Equal Area Coordinate470

Reference System. Hindcast from the 00 UTC daily cycle are used resulting in a total of 365 hindcasts used in the evaluation.

6.2 Rhine-Meuse catchment

The Rhine-Meuse catchment has a drainage area 195,300 km2, a channel length of about 38,370 km in EFAS, and consists

of 7812 grid-boxes. It is the 5th largest catchment in EFAS. The Rhine river originates in the Swiss Alps, flows through the

Central Uplands and the North European Plain, before finally discharging into the North Sea. The Meuse river originates from475

the Langres Plateau in France, flows through the Ardennes Massif and the low-lying plains of the Netherlands, before merging

with the Rhine and entering the North Sea. The catchment consists of rivers of different sizes, topologies, and levels of human

influence, making it an ideal test catchment to see how the method deals with changes along the river network.

6.3 Observations

The Rhine-Meuse catchment has a dense river gauging station network. The main set of observations used in this study are480

daily river discharge observations from 89 stations across the Rhine-Meuse catchment for the time period from 21 December

2020 to 15 January 2022. The minimum value across the stations is 0.516 m3s−1 and the maximum value is 7662.917 m3s−1.

These observations were assimilated as part of the error-correction method to update error ensemble and used in the evaluation

of the corrected forecasts (Section 6.4 describes the cross-validation approach used). Whilst the error-correction method can

adapt to missing observations, these 89 stations were selected as they have no missing data for the time period of interest485

allowing this analysis to focus on the spread of observational information to ungauged locations. The maximum distance

between any grid-box and the closest of the 89 stations is 262 km which is set as our localisation length scale (cut-off distance

17



is therefore 524 km; see Section 5.1). In addition to these stations, all available observations from across Europe, were used to

generate the initial error ensembles (total 505 stations). All river discharge observations were provided by local and national

authorities and collated by the CEMS Hydrological Data Collection Centre (see https://confluence.ecmwf.int/display/CEMS/490

EFAS+contributors).

The construction of the non-localised observation error covariance matrix, Rnl
k , is a key component of all data assimila-

tion methods. The matrix describes the uncertainty associated with each observation and (defined in Eq. (7)). This uncer-

tainty arises due to instrument uncertainty, observation processing, observation operator error and scale mismatch between

the observations and the model resolution (Janjić et al., 2018). The matrix also describes the correlation between errors of495

different observations (Stewart et al., 2013; Fowler et al., 2018)(Stewart et al., 2013; Fowler et al., 2018). In this study, we as-

sume that the observation errors from different gauge stations are uncorrelated such that Rnl
k is a diagonal matrix with all

off-diagonal elements set to 0. We also assume that the standard Observation errors are also assumed to be uncorrelated

with the prior errors which is a standard assumption in data assimilation (Janjić et al., 2018). We estimate the standard devi-

ation of the observation errors is as 10% of the observation magnitude (Refsgaard et al., 2006; McMillan et al., 2018, 2012)500

(Refsgaard et al., 2006; McMillan et al., 2018, 2012).

In the leave-one-out verification experiments (see Section 6.4) we use the observations from the non-assimilated station as

validation data and assume they are the truth with no errors.

6.4 Experiments

We use three experimental schemes to investigate the effect that the error-correction scheme has on the ensemble hindcasts.505

1. Single station experiments: Only observations from one of the 89 station are assimilated when estimating the error-

vector. All available observations are used in the generation of the initial error ensemble. These experiments allow the

impact of an observation to be identified and allow the effects of localisation to be explored.

2. All station experiments: Observations from all stations are assimilated when estimating the error-vector and used in

the generation of the initial error ensemble. These experiments allow the complete method to be assessed and for any510

spatiotemporal inconsistencies to be identified.

3. Leave-one-out experiments: Observations are withheld from one of the 89 stations and are not assimilated when esti-

mating the error-vector nor used in the generation of the initial error ensemble. This cross-validation framework allows

the skill of the adjusted hindcasts to be assessed at the locations of stations as if they were ungauged locations.

Each experiment scheme is applied to all hindcasts from 1 January 2021 to 31 December 2021. However, for brevity, for the515

single station and all station experiments we only discuss two hindcasts: 7 July 2021 and 8 October 2021. These dates represent

high and normal flow conditions, respectively, allowing the ability of the method to be assessed for different circumstances.
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6.5 Evaluation metrics

The following metrics are used to investigate the skill of the error-corrected hindcast ensemble mean and the reliability of the

ensemble spread.520

For the ensemble mean, the three components of the modified Kling-Gupta Efficiency: correlation, mean bias, and vari-

ability bias are used to assess different types of errors within the ensemble mean (Kling et al. (2012); Gupta et al. (2009)

)(Kling et al., 2012; Gupta et al., 2009). Pearson’s correlation coefficient measures the linear relationship between the simu-

lated timeseries and the observations indicating timing errors (score range [−1,1]). The mean bias given by the ratio between

the mean of the simulated timeseries and mean of the observations indicates whether the flow is consistently over or under-525

estimated (score range (−∞,+∞)). The variability bias given by the ratio between the coefficient of variation of the simulation

and the coefficient of variation of the observations indicates whether the variability in the flow is consistently over or under-

estimated (score range (−∞,+∞)). All three components have a perfect score of 1. Additionally, to investigate whether the

magnitude of the error of the forecast mean is decreased by the proposed method we use the Normalised Mean Absolute Error

(NMAE Hodson, 2022; Jackson et al., 2019). The metric is normalised by dividing by the mean of the observations for that530

station. Normalising the metric makes the scores at different stations comparable. The NMAE has a perfect score of 0.

To analyse the reliability of the spread of the ensemble forecast we use the rank histogram (Harrison et al., 1995; Anderson,

1996; Hamill and Colucci, 1997; Talagrand, 1999). To generate the histogram the rank of the observation relative to the sorted

ensemble values is calculated for each hindcast. The frequencies with which the observation has a rank from 1 to M + 1 are

plotted as a histogram. The shape of the histogram provides information about the reliability of the ensemble spread and bias535

of the ensemble (Hamill, 2001).

7 Results

7.1 Impact of assimilating observations

In this sectionwe investigate the spatial and lead-time dependent impact of assimilating the observations. To assess the spatial

impact of these observations, we analyze the , we discuss the efficacy of the proposed error-correction method. In Section 7.1,540

we discuss how observation information is propagated along the river network and, in particular, we explore how the method

reacts to different flow scenarios, both spatially and across different lead-times. In Section 7.2, we evaluate the skill of the

resulting error-corrected ensembles in terms of their means and distributions.

7.1 How is observation information propagated along the river network?

7.1.1 Spatial propagation of the observation information545

Here, we investigate how the observation information is propagated spatially from gauged locations to ungauged locations. We

investigate the analysis increments of the mean — the difference between the ensemble mean before and after the update step
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(term 2 in Eq. (14)) — across the domain at a single lead-time for single station experiments and all station for single-station

and all-station experiments (Fig. 2). We focus on single station Specifically, we focus on the single-station experiments for the

Bonn station on the Rhine (left panels) and the Uckange station on the Moselle(middle panels) for . To investigate the impact550

of different flow scenarios, we study the hindcasts generated on 8 October 2021 (upper panels) and 7 July 2021 (lower panels),

which represent normal and high flow scenarios, respectively.

Figure 2. Analysis increments of the mean for a lead-time of 9 days for single station (a, b, d, and e) and all station (c and f) experiments

for the hindcasts generated on 8 October 2021 (upper panels) and 7 July 2021 (lower panels). Assimilated stations for the single station

experiments (cyan outline) are the Bonn station on the Rhine (a and d) and the Uckange station on the Moselle (b and e). The shaded region

of the catchment is outside the localisation length of the assimilated station. Markers show the innovation at all stations. Catchment area:

195,300 km2. Panel g shows the Rhine-Meuse catchment and highlights the rivers discussed within this section.

For 8 October 2021, the assimilation of an observation at Bonn results in the largest analysis increments near the observation

location, with the increments diminishing to zero at distances greater than 524 km due to localization (background color of

Fig. 2aIn Fig. 2, the shaded regions show the parts of the catchment that are outside the localisation region for the assimilated555

observation. The number of grid-boxes within the localization regions of the Bonn and Uckange stations differ because the

distance is calculated along the river network and the channel length within each grid box is not constant (4662 grid boxes and
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2451 grid boxes, respectively). Increasing (decreasing) the localisation length scale results in a more (less) gradual dampening

of the analysis increments and more (fewer) grid-boxes being impacted by a single observation (not shown). The number

of grid-boxes in the localization regions of the Bonn and Uckange stations differ (4662 grid boxes and 2451 grid boxes,560

respectively)because the distance is calculated along the river network and the channel length within each grid box is not

constant square markers indicate the innovation — the difference between the observation and the error-corrected ensemble

mean prior to the update step (Fig. 2). Ideally, the analysis increment (background colour in Fig. 2) should reflect similar

spatial behavior to the innovations within the localisation region. This would imply the ensemble is being adjusted towards the

observations at each station.565

For the October experiment, the innovation at Bonn is negative and results in negative analysis increments across the domain

(Fig. 2a). For the Uckange experiment, the innovation is positive and the analysis increments are also all positive (Fig. 2b)

indicating positive ensemble covariances. For both experiments, the analysis increments match the sign of the innovations at

neighbouring stations (Figs. 2a and 2b), but at greater distances this is not the case. For example, the innovations along the

Rhine in the Uckange experiment are negative whilst the analysis increments are positive.570

The localisation implemented in this study allows the assimilated observations to influence the error ensemble both up- and

downstream, although the influence is dampened at longer distances. We here discuss whether this choice of implementation

is useful by studying the spatial patterns of the innovations. Focusing first on the Bonn experiment for October (Fig. 2a), we

see that downstream (north) of the assimilated observations the innovations can be both positive and negative. Upstream of

the assimilated observation the innovations are negative, matching the innovation at the Bonn station. The assimilation of the575

observation at Bonn is therefore primarily beneficial upstream, with some benefit also seen at specific locations downstream.

For the Uckange experiment (Fig. 2b), the pattern is reversed with downstream innovations showing more consistency with the

innovation at the assimilated location. The inconsistent spatial patterns could be because, in the LETKF, we update the errors

rather than the river discharge directly. The errors are dependent not only on the observed hydrological conditions but also

the model structure and configuration. The spatial structure of the errors may therefore extend both up- and downstream. For580

example, if the drainage area within an upstream grid-box is overestimated due to the hydrological model spatial resolution, all

grid-boxes downstream will be impacted by that overestimation. The benefit, in terms of consistency between the innovations

and analysis increments, that is seen both up and downstream suggests that the localisation implementation is appropriate.

However, we note that there may be additional factors other than distance, that could be included in the localisation to better

modulate the observation influence (e.g., river confluences, regulation, or river size).585

In the July experiments, we see that the innovations both up and downstream of the assimilated observations are positive,

matching the innovations at the Bonn and Uckange stations, respectively. For the July experiment, the innovations are spatially

homogeneous for greater distances along the river network (Figs. 2a and 2b). d and 2e). This indicates a greater spatial corre-

lation length, likely due to the low-pressure system which covered large parts of the west of the catchment during this period

(Mohr et al., 2023). The different correlation scales suggest that an adaptive localisation length scale may be beneficial.590

The spatial heterogeneity for the October experiments suggests that assimilating a single observation cannot correct the

entire domain. However, when all observation are assimilated the analysis increments vary across the domain, demonstrating
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Figure 3. Ensemble correlations (upper panels) and cross-covariances (lower panels) between the error ensemble and the hindcast component

of the augmented state averaged across all all-station experiments. (a) Map of the correlation between the Uckange station and all other grid-

boxes and (c) the same for the cross-covariances. (b) Scatter plot of the correlation between the Uckange station and all other grid-boxes

and (d) the same for the cross-covariances. Grid-boxes on rivers discussed in the text are broadly indicated by the arrows. Dashed black line

shows the localisation length scale and the solid black line shows the effective cut-off point beyond which the observation has no impact.

the method’s ability to adapt to the errors on different stretches of the river. In both all-station experiments (Figs. 2c and 2f),

the analysis increments vary smoothly along the river network, which suggests the error-corrected ensemble will also change

gradually. This is important because it ensures the hindcasts remain spatially consistent, with no abrupt transitions between595

adjacent grid boxes.

In general, for the July experiment, small rivers exhibit larger increments than in the October experiment. This indicates

the assimilated observations have a greater impact across more of the domain. For October, the assimilation of an observation

at Bonn results in the largest analysis increments near the observation location, with the increments diminishing to zero at

distances greater than 524 km due to localization (Fig. 2a). Interestingly, in the Uckange experiment, the largest increments600

occur not near the station, but along the Rhine near the confluence with the Moselle (Fig. 2b). In both experiments, the

increments tend to be larger along bigger rivers, with smaller rivers showing smaller increments. This occurs due to large

ensemble covariances between the location of the assimilated observation and locations along the bigger rivers (Fig. 3).

The spreading of observational information along the river network is dictated by the cross-covariances between the error

component and the hindcast component of the augmented ensemble prior to the update step(Section 3.2). The magnitude of605
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the cross-covariance between two locations depends on the correlation at the two locations , the variance of the augmented

ensemble between the locations and the ensemble variance at both locations, and the dampening enforced by localisation. The

correlation between the location of the Uckange station and a any grid-box is highest along the same river stretch (the Moselle)

and decreases at longer distances from the station (Fig. 3a). Nearby grid boxes that are not on the same river stretch have

lower correlations in general . Comparing (Figs. 3a and 3d indicates that along-the-river localisation is appropriate for this610

application, as with other hydrological data assimilation systems (e.g., El Gharamti et al., 2021), as it results in the impact of

an observation being restricted to locations with higher, physically plausible, correlations.

Ensemble correlations (upper panels) and cross-covariances (lower panels) between the error component and the hindcast

component of the augmented state prior to the update step for all station experiments. Map of the correlation (a) and localised

cross-covariance (d) averaged across all lead-times and forecasts between the Uckange station (shown by black cross) and all615

grid-boxes. Scatter plot of the correlation (b), localised cross-covariance (e), and non-localised cross-covariance (f) averaged

across all lead-times and forecasts between the Uckange station and all grid boxes against distance from the Uckange station.

Grid-boxes on rivers discussed in the text are broadly indicated by the arrows. Dashed black line shows the localisation

length scale and the solid black line shows the effective cut-off point beyond which the observation has no impact (twice

the localisation length scale; see Section 5.1). Correlation (c) and localised cross-covariance (g) between the Uckange station620

on the Moselle and the Bonn station on the Rhine for all forecast and for each lead-time of the hindcast (365 values per

lead-time, one for each forecast).

The magnitude of the cross-covariances are similar b). Downstream from the Uckange station the correlation is highest

along the Moselle and for some parts of the Rhine despite lower correlations and the application of localisation the downstream

along the Rhine. On the other hand, the correlation upstream is more uniform across the grid-boxes (Fig. 3band 3e). Whilst625

the correlation initially decreases with increasing distance, the magnitude of the non-localised cross-covariances is primarily

dependent on the size of the river (note the horizontal bands of Strahler orders (a measure of stream size where larger orders indicate larger rivers Strahler, 1957)

in Fig. 3f). Localisation enforces a dependence on distance such that smaller rivers near the station have a larger localised

cross-covariance than large rivers very far from the station there are regions in the south of the catchment with which the corre-

lation is small, in general there is a correlation of around 0.3 even with distance locations (Fig. 3e). However, some grid-boxes630

on the Rhine (Strahler order of 6) still have larger cross-covariances than smaller rivers that are closer b). This is likely spurious

correlation and exemplifies the need for localisation. The correlations begins to rise again at longer distances due to grid-boxes

that are geographically close to the station but the distance along the river network is large, such as the Meuse (Fig. 3e). The

impact of this can be seen in Fig. 2b where the analysis increments along the Rhine are larger than those along parts of the

Moselle. b). Note that the similarity between the localisation length scale (dashed line) and the distance between the Uckange635

station and grid-boxes on the Rhine (change from a Strahler order of 5 to 6) is coincidental but does suggest that the method

for defining the localisation length scale (see Section 5.1) is capable of capturing the order of magnitude of the relevant spatial

scales for the Rhine catchment.

In Fig. 2, the square markers indicate the innovation — the difference between the observation and the error-corrected

ensemble mean prior to the update step. Ideally, the analysis increment (background colour in Fig. 2) should reflect similar640
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behavior to the innovations within the localisation region, implying that the ensemble is being adjusted towards the observations

at each station . For 8 October, at Bonn the innovation is negative and results in negative analysis increments across the domain

Despite lower correlations, the magnitude of the cross-covariances are larger along the Rhine than for grid-boxes closer to

the Uckange station on the Moselle (Fig. 2a). For the Uckange station the innovation is positive and the analysis increments

are also all positive (Fig. 2b) indicating positive ensemble covariances (Fig. 3d). For both of the 8 October experiments the645

analysis increments match the sign of the innovation vectors for neighbouring stations (Figs. 2a and 2b). At greater distances

the analysis increments do not follow the same behaviour as the innovations. For example, the innovations along the Rhine

in the Uckange experiment are negative whilst the analysis increments are positive (Fig. 2b) suggesting spurious ensemble

covariances between the Uckange station and locations on the Rhine. In the experiments for 7 July, the analysis increments show

a similar behaviour to the innovations for a much greater distance along the river network (Figs. 2dand 2e). In contrast to the 8650

October experiments (Fig. 2c), the innovations for the 7 July experiments are more spatially homogeneous indicating a greater

spatial correlation length. This is likely due to the low-pressure system which covered large parts of the West of the catchment

during the hindcast period of the 7 July experiments (Mohr et al., 2023). In Figure 3b, the average correlation 3c). Whilst the

correlation is dependent on distance, the magnitude of the cross-covariances is primarily dependent on the size of the river (note

the horizontal bands of Strahler orders (a measure of stream size where larger orders indicate larger rivers Strahler, 1957) in655

Fig. 3d). Larger cross-covariances can lead to larger analysis increments as can be seen to begin to increase again for larger

distances. This is due to grid boxes on different rivers (here, the Meuse and the Moselle; see rivers names in Fig. 2) being close

geographically but far apart along the river network. Geographically close locations may be impacted by the same weather

systems even if the water drains into different rivers as happened for the 7 July period.

Whilst the spatial heterogeneity for 8 October suggests that the assimilation of an observation from a single station cannot660

correct the entire domain (Figs. 2a and 2b ), when all observations are assimilated b where the analysis increments vary across

the domain (Fig. 2c). This heterogeneity of the analysis shows the ability of the method to vary the correction across the domain

adapting to the errors in different stretches of the river. The analysis increments are smoothly changing along a river stretch

therefore, the changes to the error-corrected ensemble will also be smoothly changing spatially. along the Rhine are larger than

those along parts of the Moselle. Localisation enforces a dependence on distance such that observations have less impact on665

large rivers very far from the station but this may not outweigh the larger cross-covariances.

Another difference between the 8 October and the 7 July experiments is that for the 7 July hindcast small rivers exhibit

larger increments, indicating a greater impact from the assimilated observation (Figs. 2c and 2f). Two factors contribute to

this increased influence. First, the increased spatial correlation length means the observation is more informative for longer

distances. However, the correlation between, for example, the locations of the Uckange and Bonn stations is higher at a670

lead-time of 9 days for the 8 October than for the 7 July (Fig. 3c). Therefore, the second factor, larger ensemble variances

in the 7 July period compared to the 8 October period, is likely the more dominant component (Figs. 4b, 4c, 4e, and 4f). The

increase in spread increases the cross-covariances (Fig. 3g) and allows the observation to have more influence.

Ensemble trajectories for a single station experiment for the hindcast generated on 7 July 2021 for the assimilated station

(Uckange station on the Moselle; panels a-c) and a non-assimilated station (Bonn station on the Rhine; panels d-f). The plots675
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show the trajectory of all members and the ensemble mean of the raw hindcast ensemble (left panels), the hindcast component

of the augmented state (middle panels), and the error ensemble members (right panels; different y-axis scale). Markers show

the river discharge observations (a, b, d, and e), and the error of the raw hindcast mean (c and f).

7.1.2 Lead-time dependence of the analysis increments

Here, we investigate how the impact of assimilating observations changes over different lead-times. Figure 4 shows the tra-680

jectories of the three intermediate ensembles used in the LETKF for the 7 July hindcast for a single station single-station

experiment where observations are assimilated at the Uckange station: the raw hindcast (left columns), the hindcast compo-

nent of the augmented ensemble (middle columns), and the error component of the augmented ensemble (right columns). The

evolution of the augmented ensemble are discussed in Sections 3.1-5It should be noted that none of these ensembles are the

final error-corrected ensemble but intermediate ensembles used in the LETKF. The lower panels show the trajectories at the685

Bonn stations for which no observations are assimilated during this experiment. By plotting the raw hindcast trajectories and

the observations we can visualise the errors to be estimated. We can see that for both stations the error of the hindcast mean

is negative (observations are smaller than the hindcast mean) for lead-times up to 8 days, and positive at longer lead-times.

Whilst this behaviour is similar for the Bonn station, the magnitude of the error is different by a factor of 10 at most lead-times.

The middle column of Fig. 4 shows the hindcast component of the augmented ensemble. We can see that using To propagate690

this component between timesteps without rerunning a hydrological model, we assume that the raw hindcast as an is a reason-

able approximation of the analysis state is not optimal. (discussed in Section 4.1). As expected, this assumption results in a

sub-optimal ensemble mean estimate. For example, at lead-times greater than lead times beyond 10 days at the Uckangestation

the update takes the ensemble further away Uckange, the update moves the ensemble mean further from the observations

(Fig. 4b). This occurs also at the Bonn station , and a similar effect is seen at Bonn (Fig. 4e). This is not unexpected as our695

approximation assumes Also by using the precomputed ensemble, the assimilated observations do not update the ensemble

perturbations; although, the perturbations do change between lead-times as the precomputed ensemble is lead-time dependent.

This assumption does ensure the analysis hindcast component is always physically plausible (e.g., the river discharge is al-

ways positive), and provides a reasonable estimate of the uncertainty as the raw hindcast is more accurate than the hindcast

corrected with the error ensemble members from the previous time step (Section 4.1). However, this assumption is necessary700

to propagate the hindcast to the next time step without the use of a hydrogical model (Section 3.1)generated using the output

from an ensemble NWP. Additionally, at each timestep we aim to correct the raw hindcast, therefore this assumption provides

consistency between the hindcast component and the error component of the augmented state.

It is the error ensemble that is most important to for our application (Figs. 4c and 4f). Despite the non-optimal formation

of the analysis augmented state, the error ensembles are updated beneficially, with the analysis error ensemble mean moving705

closer to the error of the raw hindcast mean at each lead-time for the assimilated location (Fig. 4c) and the non-assimilated

location (Fig. 4f). At short lead-times the updates to the error ensemble at the Bonn station do not appear to be beneficial

(Fig. 4f). However, as this experiment only assimilates observations from one station this discussion should be considered a

demonstration of how the method updates proxy-ungauged locations rather than an evaluation of the error-corrected ensemble

25



Figure 4. Ensemble trajectories for a single station experiment for the hindcast generated on 7 July 2021 for the location of the assimilated

observation (Uckange station on the Moselle; panels a-c) and a location where an observations is not assimilated (Bonn station on the Rhine;

panels d-f). The plots show the trajectory of all members and the ensemble mean of the raw hindcast ensemble (left panels), the hindcast

component of the augmented state (middle panels), and the error ensemble members (right panels; different y-axis scale). Markers show the

river discharge observations (a, b, d, and e), and the error of the raw hindcast mean (c and f).

(which is provided in Section 7.2). First we note, that the updates at the assimilated location do not result in the error ensemble710

mean (dark blue line) matching the error of the mean (markers). This is expected and is due to the consideration of the

observational uncertainty within the LETKF. This ensures spatial consistency across assimilated and non-assimilated locations,

and combines whilst combining the modelled and observed data to estimate the true state of the system across the domain.

The error-ensemble is narrow after the update step and it is the covariance inflation that increases the spread between

timesteps. The spread of the hindcast is due to meteorological forcings, predominantly precipitation. Therefore, in general,715

the hindcast spread is larger for longer lead-times as the precipitation forecasts become more uncertainand this uncertainty is

propagated along the river network, and higher river discharge values (when precipitation is above 0 mm). Since the covariance

inflation technique presented here results in the blending of the hindcast perturbation matrix with the error-ensemble from the

previous timestep, this behaviour in the hindcast spread is transferred to the error-ensemble. As demonstrated in Figs. 4c and

4f, this can result in the error ensemble spread being large for the rising limb of an event and smaller for the falling limb. This720

can result in the error not being updated sufficiently and the spread of the analysis state being too narrow, as seen after the peak

in Fig. 4c and discussed later along with Fig. 5b.
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7.2 Ensemble skillHow skillful are the error-corrected ensemble hindcasts?

In this sectionwe look at , we investigate whether the updated ensemble is more skillful than the raw hindcast ensemble. Using

leave-one-out experiments we evaluate the ensemble mean and ensemble spread at proxy-ungauged locations(Section 6.4). The725

hydrographs in Fig. 5 show the raw and error-corrected ensembles for three proxy-ungauged locations from the leave-one-out

experiments. The hydrographs are used to illustrate the method’s ability to correct the ensemble and some of the limitations.

7.2.1 Skill of the ensemble mean

To investigate the impact on different types of errors in skill of the ensemble mean we calculate the correlation, mean bias,

variability bias and the NMAE N-RMSE for each station and each lead-time(Section ??). Figure 6 compares the skill of the730

ensemble mean means of the raw and the error-corrected ensembles focusing on the overall change in skill (a, d, g, and i), the

the spatial dependency of the skill (b, e, h, and ka-d), and the lead-time dependency of the skill (c, f, i, and le-h).

The error-corrected ensemble means show a stronger correlation with observations than the raw hindcast ensemble means,

with an average increase from 0.82 to 0.92 , and an overall shift towards the perfect value of 1 (Fig. 6a(not shown). Figure

5a shows an example of how the error-corrected ensemble can better capture the dynamics of the observations improving the735

river discharge resulting in an increased correlation. It can be seen that the resulting ensemble is temporally consistent and

(i.e., does not have improbable changes between timesteps. However, at four stations the correlation worsens ). The correlation

is worsened compared to the raw hindcast ensemble at four stations (Fig. 6b). The a). Focusing on the two most southern of

these worsened stations, are near to confluences with larger rivers which have different correlation patterns in the raw hindcast

to those of the stations, we see that the correlation values of the raw ensembles at nearby stations are very different compared740

to the correlation at the two stations of interest (note the much lighter colours for nearby stations; Fig. 6a). The ensemble

covariances are not capturing this change in regime correctly so the observational information is not being advantageously

spread between these rivers. The remaining two stations that have degraded correlation are the most upstream stations on

their rivers. At these , stations the updates made to the error-corrected ensemble are dependent on observations assimilated

downstream. The assimilated observations are therefore providing information about a past state of the river upstream which745

could be the cause of the decreased correlation (a measure of timing errors) at these upstream stations. Whilst most upstream

stations are improved by the error-correction method, stations which have much smaller upstream areas that than their closest

downstream station tend to be improved less than those that have a similar upstream area, particularly if the distance to the

neighboring station is large.

The error-corrected ensemble generally has a lower mean bias than the raw hindcast ensemble, with the average mean bias750

shifting from 1.027 (overestimation) to 1.004 (less overestimation). However, there is a slight shift towards underestimation

(Fig. 6d). Just over half of the stations (47) show improvement in the mean bias averaged across all lead times (Fig. 6eb), but

no clear spatial pattern emerges, as most rivers have a mix of improved and worsened stations. This spatial heterogeneity is

also seen in the raw hindcast ensemble, with stations on the same river stretch often showing different biases. For example,

stations on the Neckar , and upstream of the Meuse show stations , that are under- and overestimated, as well as stations with755
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Figure 5. Raw and error-corrected hydrographs for proxy-ungauged locations in leave-one-out experiments at the Rees station on the Rhine

(upstream area: 159,320 km3) and the Mainleus station on the Main (upstream area: 1,164 km3). Catchment illustrations indicate the location

of the station (see Fig. 2 for rivernames river names and scale).
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very little bias. The heterogeneity suggests local factors, which are not fully captured in the modelling system hydrological

model, considerably influence flow bias. Stations showing the most improvement tend to have similar mean bias values to their

neighboring stations in the raw hindcast ensemble, such as on the middle stretch of the Meuse, where four stations with similar

biases show improvement (Fig. 6eb). Spatial patterns of errors that are related to domain-wide model structure rather than local

factors, such as weirs, are more likely to be portrayed by the ensemble covariances allowing observational information to be760

more helpfully spread along the river network.

The raw hindcast ensemble mean generally underestimates flow variability, with a variability bias below 1 (red in Fig.

6gc). The error-corrected ensemble improves this, increasing the mean variability bias from 0.82 to 0.95, although although

there is an increase in the frequency of overestimation of flow variability is also increased (Fig. 6g). the flow variability.

Stations where the error-corrected ensemble overestimates the variability are often the most upstream station on their rivers765

(e.g., Plochigen station on the Neckar) or are much closer to downstream than upstream neighbours (e.g., Chooz station on

the Meuse). This suggests the hindcast covariances between downstream stations and upstream locations are too large, causing

excessive adjustment at upstream locations. Ten stations show worsened variability bias, including two stations downstream

on the Rhine (Fig. 6h). The cause of the worsening of these two stations is For the two stations on the Rhine, the degradation

is caused by the forecasts of the adjustment for the falling limb of a flood peak in July (Fig. 5b). Here, the hindcast uncertainty770

was very small at short lead-times, causing the analysis to ignore observations and the error ensemble to remain relatively

unchanged, despite changes in the error behavior following the peak . behaviour after the peak (also shown in Fig. 4f).

Overall, the error-corrected ensemble reduces the absolute error, with the average NMAE decreasing from 0.33 to 0.23

(Fig. 6j). The 7 stations with worsened NMAE are typically (5/7) the most upstream on their N-RMSE but there are 14

stations where the skill is reduced. Typically, these stations are on the upstream reaches of their respective rivers (Fig. 6kd;775

see discussion about on correlation). Interestingly, the NMAE N-RMSE does not follow the same spatial pattern as the mean

bias. The decrease in absolute errorsN-RMSE, despite an increase in mean bias, suggests that the error-corrected ensembles

consistently underestimate flow, while the raw hindcast ensemble fluctuates more between under- and overestimation, which

can compensate for each other in the mean bias metric.

The raw and error-corrected ensemble means both decrease in skill in terms of correlation, variability bias, and NMAE N-780

RMSE with increasing lead-times. The raw hindcast ensemble loses skill more quickly in particular for lead-times longer than

5 days (Figs. 6c, 6i, and 6le-h). The uncertainty in the observations is not lead-time dependent. However, Fig. 3d shows that the

ensemble covariances do change across lead-times, increasing for longer lead-times. The reduction in skill as greater gain in

skill for longer lead-times increase suggest that the ensemble covariances are not able to spread the observational information

along the river network as accurately is likely due to larger covariances allowing the observations to have more influence (e.g.,785

in Fig. 5b). However, the decrease in skill of the error-corrected ensemble means at longer lead-times . This is likely due to an

over estimation of the variance suggests that the ensemble covariances are not as accurate at longer lead-times.
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Figure 7. Reliability of the ensemble. Histograms show the rank of the ensemble pooled over all forecasts and stations for lead-times of 1

day (a), 7 days (b), and 15 days (c).

7.2.2 Skill of the ensemble distribution

The reliability of the ensemble distribution is assessed using rank histograms at different lead times (Figs. 7a, 7b, and 7cFig.

7). At short lead times, the raw hindcast ensemble is underdispersed, likely due to the use of a single set of initial conditions790

(Fig. 7a). Although the error-corrected ensemble shows slight improvement, it remains overconfident with minimal correction

to the spread. Both the raw and error-corrected ensembles generally appear unbiased, with observations falling both above and

below the ensemble predictions at similar frequencies. However, some bias may be masked by the narrow ensemble spread and

as it is known that some stations are biased (Fig. 6b), likely contributing to the peaks at ranks 0 and 51 in the rank histograms.

As the lead-time increases, the spread of both ensembles becomes more reliable, and fewer observations fall outside the795

ensemble (Fig. 7b). However, even at a 15-day lead time, both ensembles show a tendency to overestimate observations,

leading to a peak at rank 0, mostly due to a few stations consistently overestimating flow (Fig. 6b). Up to 7-day lead times, the

rank histograms for both raw and error-corrected ensembles show similar shapes. Beyond 7 days, the raw hindcast ensemble’s

histogram flattens, suggesting a reliable ensemble, while the error-corrected ensemble shows a peak around ranks 25-35,

suggesting overdispersion (Fig. 7c). The left-skewness of the histograms is likely due to the inherent skewness in river discharge800

distributions. The LETKF update step seeks to minimise the difference between the ensemble mean and the true state of the

system. The ensemble mean is often larger than the ensemble median leading to the observations falling in ranks above 25 if

the adjustment method is successful and at minimising the error of the mean (Figs. 5a and 5c).

As discussed in Section 4.1, the Kalman filter is not restricted to ensure positive discharge and there is therefore a need

to adjusted adjust the error ensemble before correction of the hindcast. Enforcing non-negative discharge was necessary, for805

example, for the Mainleus station on the Main for the hindcast generated on the 22 March 2021 (Fig. 5c). Whilst the ensemble

mean is error-corrected at most lead-times, several members indicate river discharge values of 0 m3s−1. The river discharge
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is below 10 m3s−1 but a zero flow is unlikely in reality. This suggests the ensemble spread is not sufficiently corrected even

though the ensemble mean is improved as is also suggested by Fig. 7c.

8 Discussion810

In general, the proposed data-assimilation-inspired method successfully spreads observational information along the river

network improving the skill of the ensemble mean at ungauged locations. Locations downstream from assimilated observations

are improved most although locations upstream are usually improved as well, even if they are far from neighbouring stations.

This is likely due to two reasons: 1) constant biases in the river discharge estimates that are propagated downstream and

hence can be accounted for when a downstream observation is assimilated, and 2) the daily aggregation of the river discharge815

extending the time period for which a downstream observations provides relevant information. If the error patterns of the

ensemble mean at a location differ from those at nearby stations the method struggles to spread the observational information

correctly. At shorter lead-times the reliability of the ensemble is slightly improved due to the decrease in the error of the

ensemble mean. However, at longer lead-times the ensemble spread is often too large leading to an under-confident forecast.

Despite the method ’s ability to correct upstream, it could be beneficial to assimilate observations from as far upstream820

as possible. These observations do not necessarily need to be traditional in-situ observations but could come from Earth

Observation (EO; Durand et al., 2023), crowdsourced or community observations (Le Coz et al., 2016; Etter et al., 2020), or

camera based sensors (Vandaele et al., 2021). The key requirement is that an observation operator can be defined. Observation

operators map the state of the system from state space to observations space. In our study the observation operator selects

the grid-point that represents the location of the station on the modelled The ability of the method to correct the fore-825

casts typically depends on the consistency of the error vectors between nearby locations. The localisation method imple-

mented here depends only on the distance from the station along the river network. The mapping of the station locations

from the physical river networkto the modelled river network is not trivial and several studies have attempted to automate

this step (Isikdogan et al., 2017; Li et al., 2018). If this mapping is incorrect then representation errors can be introduced

(Janjić et al., 2018). For example, if a station on a bypass channel is incorrectly located on the main channel. Observations830

from the station will undoubtedly provide erroneous information in the update stepmethod does successfully correct the fore-

cast both up- and downstream; however, if the station is on a different river or if there is a confluence between the station

and the grid-box of interest, the errors are often not consistent for as long a distance along the river network. Therefore, it

could be beneficial to investigate the impact of including information about the river stretch into the localisation length scale.

Additionally, the errors were found to be more consistent when the catchment was impacted by large-scale weather systems. It835

may therefore be useful to incorporate information about the meteorological situation into the localisation function as well.

The covariance inflation method used here maintains consistency between the spread of the error ensemble and the spread

of the hindcast (Section 5.2). This successfully stops the error ensemble from collapsing such that the observations are not

ignored. However, in situations where the uncertainty of the hindcast ensemble is over- or under-estimated the covariance

inflation does not correct the error ensemble covariances correctly. This can lead to the observations being ignored as for short840
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lead-times in Fig. 5b, and could also . Additionally, if the hindcast perturbations do not provide an accurate estimate of the true

error ensemble perturbations, this method may introduce errors which could be the cause for the slight degradation in skill of

the ensemble mean with lead-time shown in Fig. 6c, 6ie, 6g, and 6lh. Correcting the spread of the hindcast before using it in

the inflation of the error covariances could solve this issue(Section 5.2). Covariance inflation techniques that use the innovation

statistics could be used to first adjust the hindcast ensemble (e.g., Kotsuki et al., 2017). Alternatively, a lower threshold for845

the variance of the ensemble could be set - say 10% of the ensemble mean similarly to the observation error covariance matrix

or the root mean square-error of the initial conditions. However, caution is needed not to artificially inflate the covariances too

much such that the analysis increments become too large, in particular at short lead-times when the correlation is small (Fig.

3). .

As discussed in Section 7.2.2, the resulting ensemble must be adjusted in some cases to avoid negative discharge values850

(Section 4.1). This does in some cases lead to ensemble members close to 0 m3s−1 when a zero flow value is unlikely (e.g., Fig.

5c). This occurs due to the analysis increment being larger in magnitude than the value of some of the raw ensemble members.

In general, this is due to the skewed distribution of discharge (Bogner et al., 2012). Future work could look into applying

anamorphosis, or normalising transformations, to make the ensemble distribution more Gaussian-like (Nguyen et al., 2023).

The (Nguyen et al., 2023; Bogner et al., 2012). This was not done in this proof-of-concept study for simplicity and to facilitate855

the interpretation of the errors. The results also showed that the covariances between grid boxes on larger rivers and the

station locations tend to be large even when the correlation is small. This is due to larger rivers having larger variances which

is partially due to their larger river discharge magnitudes. Localisation does enforce enforces a distance dependence on the

covariance magnitudesbut . However, transforming the river discharge values to be comparable across the domain may also

help minimise the impact of overestimated ensemble spreadhelp regulate the covariances based on river size. A transformation860

between river discharge and specific discharge (river discharge divided by upstream area) could be used to ensure that the

ensemble covariances more accurately represent the true relationship between locations.

In this study, the initial estimate of the error ensemble mean is defined using the observations and the simulation forced

with meteorological observations from the 10 days before the forecast. The average difference between the observations and

simulations is calculated at gauged locations and interpolated to every grid-box using inverse distance weighted interpolation.865

The aim is to provide a physically plausible first guess of the errors which is then updated at each timestep. By taking the

average over a 10-day period, we aim to capture the biases of the hydrological model but also to allow for seasonal/dynamic

variation in this bias. However, the choice of 10 days has not been tuned, and may be more applicable to larger catchments

with slowly changing errors than for smaller catchments (Matthews et al., 2022). Further research into the accuracy of the initial

error ensemble, and how it influences the skill of the error-corrected ensemble, is needed. It should be noted that this component870

of the method is an implementation choice and can be adjusted depending on system configuration and data availability. The

only requirement is that the initial error ensemble is physically plausible as there is no warm-up period within this application

(Kim et al., 2018).

We assume that the errors are sufficiently slowly changing such that a persistence model can be used to propagate the errors

between timesteps. It should be noted that the LETKF updates the errors at each timestep so the analysis errors used to correct875
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the hindcasts are not constant for all timesteps. However, the assumption that the errors are slowly changing is likely only true

for larger rivers that respond more slowly. Future studies could investigate the use of a simple time-varying evolution model.

The model would need to be simple enough that the calculations do not add too much computational time to the method.

Additionally, the error values at every grid-box would need to be evolved; therefore, the evolution model should either rely

only on the model output or must be spatially interpretable if using observations. For example, a model dependent on the880

hindcast river discharge magnitude could be used to evolve the errors between timesteps.

The leave-one-out approach used in this study allows the corrected ensembles to be assessed at proxy-ungauged locations.

However, only one station is omitted at a time. Future work could use a block cross-validation strategy whereby multiple

stations are omitted simultaneously (Roberts et al., 2017). This would allow the impact of the density of stations and their

specific locations along the river network to be investigated more thoroughly (Rakovec et al., 2012). The impact of not hav-885

ing any observations along a river stretch could also be more thoroughly investigated. One benefit of this method if that the

assimilated observations do not necessarily need to be traditional in-situ observations but could come from Earth Observa-

tion (EO; Durand et al., 2023), crowdsourced or community observations (Le Coz et al., 2016; Etter et al., 2020), or camera

based sensors (Vandaele et al., 2021). The key requirement is that an observation operator can be defined. Observation op-

erators map the state of the system from state space to observations space. In our study the observation operator selects890

the grid-point that represents the location of the station on the modelled river network. The mapping of the station loca-

tions from the physical river network to the modelled river network is not trivial and several studies have attempted to auto-

mate this step (Isikdogan et al., 2017; Li et al., 2018). If this mapping is incorrect then representation errors can be introduced

(Janjić et al., 2018). For example, if a station on a bypass channel is incorrectly located on the main channel, observations from

the station will undoubtedly provide erroneous information in the update step.895

The code developed for this study is designed to allow for research flexibility rather than operational efficiency. However,

the error-adjustment of a single forecast took on average 8.5 minutes for the whole of the Rhine-Meuse catchment - a large

catchment. This suggests that, with proper parallelization, the method could be operationalized and applied to all gauged

catchments in Europe. Before that, though, the method needs to be evaluated on additional catchments. The Rhine was selected

because it is highly gauged, but this also means that the raw ensemble’s skill is relatively high due to the effectiveness of the900

hydrological model calibration process. This could influence the method’s performance in two ways: 1) the error ensemble

may evolve more linearly than in less calibrated catchments, and 2) the hindcast ensemble’s covariance may better represent

the covariances between the estimated errors. The next step should be applying this method to a catchment with lower skill

than the Rhine.

The method presented in this study spreads observation information along the river network but cannot yet be used as a905

post-processing method because observations from the hindcast period (the future) are assimilated. We envisage the method

being developed further to make it applicable operationally as a hydrological forecast post-processing method. Nevertheless,

it may still be useful in certain situations, such as post-event analysis. After a flood event an assessment is often performed

estimating the severity of the event as well as potential causes and mitigating factors. However, in-situ river gauges only

present a snapshot of the event at specific locations and are often damaged during flood events, resulting in missing or incorrect910
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data. EO estimations of river discharge could fill in some of the gaps but this would depend on the satellite’s orbit and its

availability at the right time (Douben, 2006). Reanalysis is another option, but it requires additional hydrological model runs

and may contain errors due to the structure of the hydrological model or errors in the meteorological observations. The method

proposed here could offer a domain-wide estimate of observations without requiring additional model runs or a "warm-up"

period typically needed in hydrological simulations to stabilize antecedent water storage within the catchment.915

9 Conclusion

We present and evaluate a data-assimilation-inspired method for spreading observation information from gauged to ungauged

locations in a post-processing environment. This method enables the error-correction of an ensemble simulation at all grid

boxes. The method utilises state augmentation within an LETKF framework to estimate an ensemble of error vectors. The

error vectors are then used to correct each hindcast ensemble member separately.920

Overall, the method successfully reduces the errors of the ensemble mean at ungauged locations in leave-one-out experi-

ments. The adjusted ensemble mean has a higher correlation with the observed river discharge and is more able to capture the

variability of the river discharge at a point. Whilst the magnitude of the errors are reduced the ensemble spread is not adjusted

sufficiently resulting in an under-confident ensemble spread at longer lead-times. The adjusted ensembles are spatially and

temporally consistent with the river discharge predictions showing smooth evolution both between grid-boxes on the same925

river and between lead-times. The method is most limited in its applications to locations further upstream than the assimilated

observations and for hindcasts where the variance of the ensemble is incorrectly small which most often happens at shorter

lead-times. These limitations can be minimised by further investigation into the localisation approach, for example having a

different localisation length upstream and downstream from the assimilated observation, and the covariance inflation approach,

which may involve applying a spread-correction to the hindcast ensemble as well as the error-ensemble.930

Our method of spreading observation information could be used to improve post-event analysis. However, as the computa-

tional requirements and processing time are both small the method could also be developed further to allow for its application

to the post-processing of operational forecasts. The prediction of river discharge at ungauged locations is a crucial challenge

for hydrological research and once successfully achieved will allow for better preparedness for floods.

Code and data availability. The code used in this study for the error-correction method, evaluation of river discharge forecasts, and gen-935

eration of the figures presented in this manuscript is available upon request. The river discharge forecast used in this study are from

the Copernicus Emergency Management Service (CEMS)’s European Flood Awareness System (EFAS) and are available to download

from https://ewds.climate.copernicus.eu/datasets/efas-forecast. The local drainage direction and channel length data is available from https:

//data.jrc.ec.europa.eu/dataset/f572c443-7466-4adf-87aa-c0847a169f23.

Appendix A: Kalman gain matrix decomposition940
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The Kalman gain matrix has the following form for timestep k:

Kk =Pf
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where Pf
k is the prior ensemble covariance matrix, Rk is the error-covariance matrix of the observations, and Hk is the

observation operator (Livings, 2005; Hunt et al., 2007; Kalman, 1960). Substituting the definitions of the perturbation matrix

and the observation operator for the augmented state given in Eqs. (9) and (11) gives:945
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This can then be decomposed into the hindcast and error components as
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The analysis of the ensemble mean of the augmented states is therefore given by
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where xf
k and b

f

k are the ensembles mean of the raw hindcast and the prior error ensemble at timestep k, yk is the observation

vector, and yx
k is the model-observation ensemble mean.

Appendix B: Gaspari-Cohn function

The Gaspari-Cohn function is correlation function commonly used in data assimilation to define the localisation weights

(Gaspari and Cohn, 1999). It has the following form:955

ρ(r) =
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12r

5, 1< r ≤ 2

0, r > 2

where r = d/c where d is the physical distance between two points, and c is the localisation length scale. The function has a

value of 1 when r = 0 and a value of 0 when r > 2.
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