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Abstract. Forecasting river discharge is essential for disaster risk reduction and water resource management, but forecasts of
the future river state often contain errors. Post-processing reduces forecast errors but is usually only applied at the locations
of river gauges, leaving the majority of the river network uncorrected. Here, we present a data-assimilation-inspired method
for error-correcting ensemble simulations across gauged and ungauged locations in a post-processing step. Our new method
employs state augmentation within the framework of the Eecalised-Local Ensemble Transform Kalman Filter (LETKF)te
estimate-. Using the LETKEF, an error vector representing the forecast residual is estimated for each ensemble member. The
LETKF uses ensemble error covariances to spread observational information from gauged to ungauged locations in a dynamic
and computationally efficent manner. To improve the efficiency of the LETKF we define new localisation, covariance inflation,
and initial ensemble generation techniques that can be easily transferred between modelling systems and river catchments.
We implement and evaluate our new error-correction method for the entire Rhine-Meuse catchment using forecasts from
the Copernicus Emergency Management Service’s European Flood Awareness System (EFAS). The resulting river discharge
ensembles are error-corrected at every grid box but remain spatially and temporally consistent. The-skill-is-evaluated-at-89
proxy-ungaugedloeations-A spatial cross-validation strategy is used to assess the ability of the method to spread the correction
along the river network to ungauged locations. The skill of the ensemble mean is improved at almost all locations including
stations both up- and downstream of the assimilated observations. Whilst the ensemble spread is improved at short lead-times, at
longer lead-times the ensemble spread is too large leading to an underconfident ensemble. In summary, our method successfully
propagates error information along the river network, enabling error correction at ungauged locations. This technique can be
used for improved post-event analysis and can be developed further to post-process operational forecasts providing more

accurate knowledge about the future states of rivers.
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1 Introduction

River discharge forecasts are essential tools for taking effective preparatory actions for disaster mitigation and water resource
planning (NDRR;2045)(UNDRR, 2015). However, despite the increased sophistication of forecasting systems over the past
few decades, river discharge forecasts still contain uncertainty (Boelee et al., 2019). The uncertainty is introduced at several
stages of the forecasting system including the meteorological forcings, the initial conditions, and the hydrological model
structure and parameters (Valdezet-al52022)(Valdez et al., 2022). Ensemble river discharge forecasts typically aim to account
for the meteorological uncertainty by forcing a hydrological model with many meteorological forcings eitherfrom-multiple

- o on—(NWP etarme—o om—an—ensemble_weather forecas aatad no 1 nla cate o

eonditions—(Cloke and Pappenberger, 2009; Wu et al., 2020). However, ensemble forecasts can still contain errors. Different
methods for correcting these errors have been developed including pre-processing of the meteorological forcings, calibration
of the hydrological model, improving the initial conditions using data assimilation, and post-processing of the river discharge
forecast (Bourdin et al., 2012). Of these approaches post-processing is often considered the most computationally efficient and
its ability to correct for multiple sources of errors simultaneously is appealing.

In meteorological forecasting, post-processing at non-observed locations is common (see Vannitsem et al., 2021). However,
hydrological forecasting alse-requires consideration of the spatial heterogeneity introduced by the river network (e.g., Li et al.,
2017; Woldemeskel et al., 2018; Ye et al., 2014; Xu et al., 2019; Liu et al., 2022; Lee and Ahn, 2024) and-the-application-of
making hydrological post-processing methods-at ungauged locations is-still-a difficult challenge. The lack-of-gaugedlocations

global river gauge network is sparse (Krabbenhoft et al., 2022),
and even in regions where gauges exist, river discharge data are often not widely shared (Lavers et al., 2019; Hannah et al., 2011)
. Therefore, the development of post-processing techniques for ungauged locations is essential. However, current techniques
are generally too computationally expensive for operational river flow forecasting applications (Emerton et al., 2016). For
example, defining a joint distribution between the river discharge at multiple locations would allow forecasts to be condi-
tioned on observations available at specific locations (Engeland-and-Steinstand;204+4)(Engeland and Steinsland, 2014). How-
ever, for large-scale distributed systems and multiple lead-times the size of the joint distribution quickly becomes too large.
Alternatively, error-correction can be performed at a gauged location and the results interpolated to ungauged locations.
One such method used to interpolate error-correction parameters is top-kriging Pughese-et-al5;2018:Skeienet-al52021H
(Pugliese et al., 2018; Skgien et al., 2021). Top-kriging takes into account the river network but the relationship between er-
rors at different locations is assumed static regardless of the hydrometeorological situation (Skgien et al., 2016, 2006). Another
option is to use a river routing model to propagate error-corrected river discharge forecasts between gauged locations asing-a
riverrouting-medel-(Bennett et al., 2022). Whilst this approach maintains spatial consistency between locations, the additional
run of the model could be computationally expensive for an operational application.

The aim of this paper is to present and evaluate a novel technique to-spread-for spreading observation information from

gauged to ungauged locations in a computationally efficient and temporally varying manner. The new method is based on
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similation is a mathematical technique that combines modelled predictions and observations to produce an improved modelled

state relative to the true state of the system (Nichols, 2003, 2010). Data assimilation is often used to improve the initial con-
ditions of forecasts (Valdez et al., 2022). However, in this paper we modify the techniques to apply them in a post-processing
environment such that additional, computationally expensive, executions of the hydrological model are not required. The er-
ror correction method proposed in this study is based on state augmentation (Dee, 2005) and the Local Ensemble Transform
Kalman Filter (LETKF, Hunt et al., 2007 )and-state-augmentation{DPee;2005). State augmentation is a technique that allows the
estimation of the state and parameters/biases of a system simultaneously, and is often used for online bias-estimation in data
assimilation (Ridler et al., 2018; Gharamti and Hoteit, 2014; Smith et al., 2013, 2009; Martin et al., 2002). The LETKF is part
of the Kalman Filter family of methods and uses an ensemble of model states to estimate the state error covariances. Due to its
their computational efficiency and ability to handle non-linear dynamics without an adjoint model, ensemble Kalman Filters
are common data assimilation methods fer-hydrelegical-applieations-in hydrological research (Rouzies et al., 2024; Li et al.,
2023; Mason et al., 2020; Ridler et al., 2018; Khaki et al., 2017; Xie and Zhang, 2010; Clark et al., 2008). State-augmentation

Whilst many studies have shown the benefits of data assimilation for hydrological forecasting (Tanguy et al., 2025; Valdez et al., 2022; P;

, the process is rare in operational systems (Pechlivanidis et al., 2025), particularly in large-scale systems (Wu et al., 2020).
This limited uptake is partly due to data latency issues (WMO, 2024), time constraints, and the potential impact on the in-
terpretation of the forecasts (e.g., thresholds based on model climatology may no longer be consistent; Emerton et al., 2016)
. Additionally, the benefit of data assimilation at longer lead-times is uncertain (e.g., Valdez et al., 2022). In this paper, we
leverage key advantages of data assimilation—such as the ability to propagate observational information to ungauged loca-
tions—within a post-processing framework that is more readily integrated into operational systems.

The proposed method aims to improve the skill of the ensemble mean and the reliability of the ensemble spread by adjusting
each ensemble member, as will be discussed in more detail in Section 2. However, it is equally, if not more, important that the
ensembles are spatially and temporally consistent in order to aid with decision making (Bennett et al., 2022). This is particularly
important for large scale systems that provide forecasts across administrative boundaries, such as the Copernicus Emergency
Management Service’s (CEMS) European Flood Awareness System (EFAS) used in this study (Matthews et al., 2025). The

specific research questions to be addressed in this study are therefore,

1. Can data assimilation techniques be used in a post-processing environment to spread-propagate observation information

to ungauged locationsin-a-spatiotemporally-consistent-manner?

2. Are the resulting ensemble predictions of river discharge more skillful than the raw ensemble?

This paper is organised as follows. In Section 2 we define the errors which we aim to correct and introduce some terminology

and notation. In Section 3 we fermulate-describe the data assimilation techniques used within this study. In Section 4 we outline



90

95

100

105

110

115

the proposed error-correction method and detail how the ensemble is corrected. Section 5 provides some additional components
of the method that improve the efficacy of the method but which can be adjusted to suit the data availability of any system
and/or domain. Section 6 outlines the strategy used to evaluate the efficacy of the proposed methodand-. Section 7 presents

the results, first 4

investigating
the impact of assimilating the observations, and then assessing the skill of the error-corrected ensembles. In Section 8 we
discuss key features of the proposed method and their impact on the error-corrected ensembles. In Section 9 we conclude
that the proposed method successfully improves the skill of the ensemble and-maintains-spatiotemporal-consisteneymean, and
highlight priorities for future developments.

Please note that throughout the paper ‘hindcast ensemble’ refers to the ensembles of river discharge that we are error-
correcting. These ensembles are past operational EFAS forecasts (see Section 6.1); however, when we perform the error-
correction we use observations that are available within the forecast (hindcast) periodwhieh-. This would not be possible in an

operational system as these timesteps would be in the future. Therefore, we refer to these ensembles as hindcasts for clarity.

2 Ensemble error-correction framework

Here, we define the errors which we aim to correct and provide some notation that is used throughout the paper. Where possible
we follow the standard data assimilation notation provided in Ide et al. (1997). Let the true state of the system at time k be
defined as x}"“¢ € R", where each element represents the true river discharge in one of the n grid boxes in the domain of

interest. Hydrological forecasts -generally estimate the true state

of the system by-using a modelled state, denoted xy,, where the lack of superscript ‘true’ indicates it is a modelled estimate.
Hydroelegieal-In this study, the hydrological ensemble forecasts consist of N potential realizations of future river discharge,
referred to as ensemble members. We define the ensemble river discharge hindcasts used-in-thisstudy-as

{xk:xff),fori:1,2,...,Nandk::OJ,...,L}. (1)

where the superscript (i) indicates the i-th member of the ensemble, N is the ensemble size, the timestep k refers to the
lead-time of the hindcast, and L is the maximum lead-time. The ensemble mean is defined as

1
Xi =52 %, ER" @)

i=1

The ensemble perturbation matrix is defined as
Xk:( xW g xPox, o NV ox, )ER"XN (3)

where the i-th column represents the i-th ensemble member’s departure from the ensemble mean at lead-time k. The pertur-
bation matrix contains information about the spread of the ensemble and the spatial structure of the deviations frem-the-mean

of each ensemble member from the mean. From the definition of the perturbation matrix, the ensemble covariance matrix is
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defined as
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where the superscript T indicates the matrix transpose.

DI B O P n n y S YWV y &

foreeasting-system—In this paper, we propose a method to spread an error-correction from gauged locations to every grid
box in the = m—ssmanin— e dhoee e el e laslo e Bomeennn canl mioslan s sn s e e s e
error-veetor-such-that-

true __ ,l<—:) ]Gé@#% c Rﬁ
whefe—b%s—%h&eﬁ%ef—fhe%-&rdomain. The proposed method estimates an additive error vector for each hindcast
ensemble member with-respeet—to—the—true—stateat each timestep. Each element of the error vector is—represents the error
associated with a single grid box —Fhepropesed-method-—estimates—the—additive—error—veetor; ,@

in the domain. Collectively,

these error vectors form an ensemble defined as,

{b{) R fori=1,2,....N} (5)

where NN is the same ensemble size as the river discharge hindcast, n is the number of grid-boxes in the hindcast domain, and
k <

new 4

K aw Ny, + by Py + )
where—3c R and PR " are—the-ensemble—mean—is the timestep. The error ensemble mean, b, and the ensem-
ble eovariance-matrixof-theraw-ensemble—respeetively—b R 9s-the ensemble mean of the estimated-error vecto a

D > D

Fr—perturbation matrix, By, are calculated by substituting bl(f) in place of X,(f) in Egs. (2) and (3), respectively. We as-

sume there is an additive spread-correction-matrix—Defining-an-error-corrected-ensemble-in-terms-of-mean-bias-and-sprea

(EMOS-Gneitinget-al;2005;-Skeienetal; 202 -methedrelationship between each hindcast ensemble member and the corre-

sponding error vector such that the i-th error-corrected ensemble member, x}“*(*)

, is defined as
xp W = x4+ bl e R™ ©6)

The estimation of the error ensemble at each timestep is described in Section 4.

To aid with the estimation of the error vectors, we assume that at each timestep the system is observed at pj, river discharge

gaugessueh RPE We assume the observation vector, yi € RP*, is

related to the true state of the system as

vi = Hy(x[7"¢) + €y, @)
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where €5, € RP* is a vector of unbiased Gaussian noise with covariance matrix Ry, € RP* Pk such-that-€;~AN{0;Ry)-and

Hj, € RP=*"™ js the linear observation operatorwhich—. The observation operator maps the variables from the state space to

observation space. The-observation-operator-used-in-this-studyln this study, the observation operator selects the grid boxes from
within the modelled drainage network of-the-hydrelogicalmedel-thatrepresenttheloeation-that correspond to the locations of

the river gauges.

3 Data Assimilation

As discussed in Section 1, the proposed method is based on common data assimilation techniques: state augmentation and the
Local Ensemble Transform Kalman Filter (LETKF). In this sectionwe-present-the-formulations-, we provide an overview of
these techniques used-in-this-stadyand introduce the necessary equations. In Section 4, we adapt and apply these methods in a

non-standard way due to their application in a post-processing environment.

3.1 State augmentation

where-N-is-State augmentation is a technique used for online bias-correction in data assimilation that allows the simultaneous

estimation of the sam

The-ensemble-of-augmented-states-is-then-defined-such-that-the-system state and biases. An augmented state is defined by

appending the biases to the state vector, allowing both to be updated by the data assimilation method. In this study, the i-th
ensemble-member-member of the augmented ensemble is defined as

(0

wi) = b’(“i) cR?". 8)
k

where x(*) € R and b(*) € R™ are the i-th hindcast and error ensemble members, respectively. The augmented ensemble mean

and perturbation matrix are given by

X X

wi=| " | eR™ and W, = P e raxN 9)
bk Bk

where X and b are the ensemble means of the hindcast and error ensembles, respectively, and X and B are the perturbation

matrices of the hindcast and error ensembles, respectively.
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Thenextstep-ofn this study, state augmentation is used within an LETKF (described in Section 3.2) and it is therefore neces-
sary to define the evolution of the augmented states between timesteps. The hindeastis-evelved-by-the-evolution of the hindcast
and error ensembles determines the evolution of the augmented states. The hindcasts used in this study were generated using the
LISFLOOD hydrological model{the-hy
, which is used in the EFAS operational system (Van Der Knijff et al., 2010). As the true evolution of the error vectors at all
grid-boxes is unknown, we assume a simple persistence model, we-adopt-the-commen-assumption-that-the-error-is-constant
between-timesteps-(Martin; 200H;-such that

b7 =b{? .

Based—efrfhes&iﬂdepeﬁdeﬂ{—eve}uﬁefrequaﬁeﬂs—&néﬁb(?) = bgfll. This is a common assumption used in state augmenta-

tion (Pauwels et al., 2020; Ridler et al., 2018; Rasmussen et al., 2016; Martin, 2001). Based on the independent evolution of
the hindcast and error ensembles, and the additive relationship between the-hindeastensemble-members-and-the-errorensemble
members{see-their members (Eq. (6)), we define the propagation of the augmented ensemble members as

@ _ [ Mir I x|\ [ xV+b,
Wi = o |~ (i) : (10)
O0p—1 I bkfl bkfl

where M,_; € R"*™ is a linear evolution operator representing the LISFLOOD hydrological model - F={-and I;,_; € R"*"

is the identity matrixa

the-hindeast-ensemble. Since we use precomputed hindcast ensembles the propagation of the hindcast ensemble members
requires no additional computationand-the-. The full non-linear LISFLOOD hydrological model is also used without the need

to define a linear approximation.
3.2 Local Ensemble Transform Kalman Filter (LETKF)

The Local Ensemble Transform Kalman Filter (CETKE -Hunt-et-al-2007)-(LETKF; Hunt et al., 2007) updates the mean state
and the square-root-of-the-ecovarianee—perturbation matrix of an ensemble G-e—theperturbation—matrix)-by combining the
modelled and observed data. As a sequential data assimilation method, the LETKF consists of a propagation step (also known
as a forecast step) and an update step (also known as an analysis step) that are iterated—We-cycled. In this method, we use the
LETKEF to update the ensemble of error vectors at each timestep-but-hindcast timestep for which observations are available.
However, we modify the propagation step to use precomputed hindcasts. The propagation step evolves the augmented states
forward in time from time k£ — 1 to k, as described in Eq. (10). Rather than evolve the hindcast ensemble explicitly (which
would require the hydrological model)we-instead-substitute-, we use the precomputed hindcast ensemble-for-at timestep kinte
the-propagated-augmented-state—

The update step of the LETKF calculates the eptimal-estimate-of-the-state of the system at timestep k by combining the

modelled augmented states and observations;-beth-. Both data are weighted by their respective uncertainties, represented by
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their covariance matrices. As the LETKF is a well documented method we only provide the key update equationsand-. For
more detailed derivations, we direct the reader to Hunt et al. (2007) and i

Livings et al. (2008). To apply the LETKF to the augmented ensemblewe-extend-the-definition-of-the-observation-operator;
H-c R eiveninEq—(7-such-that, we create a model-observation ensemble with an ensemble mean, y3, defined as

Oy, = (Hy 0)W, = H,9%, + Hy by, (11)

Kx _ -
Wi =W + S KT Y OE (12)

where the subseripts-superscripts f and a indicate the state before and after the update step, respectively; Ky, € R"*P and
Ky, € R™*P are the components of the Kalman gain matrix acting on the hindcast ensemble and the error ensemble respec-
tively; and y, € RP is the observation vector defined in Eq. (7). The difference between the observations and the model state
in observation space (i.e., ﬁ—Hﬁ&Fyk — f ) is called the innovation vector. The Kalman gain matrix weights-theprior

determines the impact of the innovation vec-

tor in the update step. The respective uncertainties of the prior modelled state and the observations determine their weight
within the LETKF. Large observation uncertainties reduce the Kalman gain, while large uncertainties in the prior state increase
the Kalman gain. Both the hindcast and the error components of the Kalman gain are functions of the covariance matrix of
the augmented ensemble (see-Egs—8)-and(9)inBel-etal;2004)(see Appendix A; Bell et al., 2004). The covariance matrix
describes the state error covariances between grid-boxes allowing the Kalman gain to spread the observation information to
ungauged locations. To update the error component specifically, it is the cross-covariances between the error component and
the hindcast component that control the spread of the observation information to ungauged locations (see Eq. (9) in Bell et al.,
2004). This ability to spread the observational information is key to the error-correction method presented in this study.

The LETKF updates the augmented ensemble perturbation matrix, Wy, such that,
P =W[T, (13)

where T}, € RV*¥ is the square root transform matrix (Livings et al., 2008). The square root transform matrix is derived
using the Kalman gain matrix which gives the weighting between the modelled state and the observations (Livings et al.,
2008). Using an eigenvector decomposition, the square root transform matrix rescales and rotates the ensemble members such
that the updated perturbation matrix represents the uncertainty in the updated ensemble mean. The square root transform matrix
allows the covariance matrix of the ensemble to be updated without the need for the covariances to be explicitly calculated
which can be computationally expensive (Bishop et al., 2001; Hunt et al., 2007). These update equations are used to update the

error component only as will be discussed in Section 4.1.
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4 Spatially consistent error-correction method for river discharge

In this section, we describe how we use the data assimilation techniques discussed in Section 3, namely-state-augmentation-and
the EETKF toeerreetto post-process the hindcasts across the domain, including at ungauged locations —(Fig. 1). The correction
is applied in a post-processing environment, avoiding the need for additional executions of the hydrological model which can
be computationally expensive. The-proposed-method-consists-of-two-steps:—-updating-In Section 3.1, we describe how the
error ensemble (defined-in-is updated at every timestep. In Section 3.1);-and2)-adjusting-the-hindeastensemble-membersusing

the-, we describe how updated error ensemble (Fig——is used to error-correct the hindcast ensemble. Specific experimental

design choices are discussed in Section 5.

Step 1: Generate an | Step 2: Augment the error ensemble Step 3: Update the error ensemble at by assimilating Step 4: Correct hindcast ensemble members
initial error ensemble and the predetermined hindcast observations with the error vectors
5.3. Initial error 4.1. Updating the bias ensemble
ensemble :

Observatlon nd 5. Localisation 4.2. Adjusting the forecast

B 3.2. LETKF
3.1. State augmentation I Localisaion length
scale

uncertainty observation

1 N -
Augmented ’ (i) -
bl [0) : ensemble , ————— == £ / \\ J X X
1 X{= 3 before update, \, »»»»»» §’ / A\ (<4 g o ()
/ < °
Augmented
X E ensemble 0 A i (N L4
(i)
) E CLLATEE Distance from observation [ = - - b,
[ LN 5.2. Covariance inflation / x" \ X(k"
t;i)a b k-
=| k1
1 7 -

(4.1) Non-negative discharge

— Non-negative discharge
-~ Negative discharge

— Adjustment
v —» State propagation (Eq. 15)

[=m ]

F t

orecast
.

[} Forécast spread

%%%

Discharge

Error

o frorspread S,
4
[ Error spread after | <. —» Next step
nfation ’ —>» Augmentation
At k=1 only At every timestep ~ Step 5: Propagate the error ensemble to the next

timestep, k+1

Figure 1. Schematic of the new error-correction method for gauged and ungauged locations. Coloured boxes indicate different components
of the method. An initial error ensemble is created for timestep k=1 (green box). Then, the error ensemble is augmented to the hindcast
ensemble (purple box). At each timestep the covariance of the augmented ensemble is inflated (cyan box) before being updated using the
LETKEF which uses localisation to improve the results of the update (collectively the orange box). The updated error ensemble is adjusted to
ensure non-negative discharge values (light grey box) before being used to error-correct the hindcast (yellow box). The non-negative error

ensemble is propagated to the next timestep (red arrewsarrow). More details are provided for each component in the section indicated in the
top left corner of the corresponding box.

4.1 Updating the error ensemble

At each timestep the error ensemble is updated to estimate the optimal set of error vectors to correct the hindcast at that

timestep. The update is performed using the LETKF defined in Section 3.2. Equations{A2)-and-(13)-are-the Kalman-update
equations—for-the-augmented-state—Using the definition of the augmented state {see-in Eq. (8) )-the update equations for the
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error ensemble only are,

—a if —x f
by, = b}, + K, (yx — V1) (14)
and

¢ =B/ T, (15)

As the hindcast component is not explicitly evolved{see-Seetion-3-2), we assume that the raw hindcast is a good approxi-
mation for the hindcast analysis state were-the-eomponent-if the component were to be updated. This allows the substitution
of the precomputed hindcast in place of the propagated state at the next timestep. Thus, the updated mean of the augmented
ensemble can be defined as

X

T—a

k

Wi = € R?". (16)
where X, is the ensemble mean of the raw hindcast ensemble and BZ is the updated error ensemble mean (Eq. (14)). The
perturbation matrix of the updated augmented ensemble follows a similar pattern such that

Xk

Wy = . (17)
Bj.

where X, is the ensemble perturbation matrix of the raw hindcast ensemble and B¢, is the updated error ensemble perturbation
matrix (Eq. (15)). The assumptions made in EgEqs. (16) and Eg-—(17) make our system subeptimal-Hewever,weprovide-sub-
optimal from a data assimilation perspective but are necessary to avoid rerunning the hydrological model. Importantly, we aim
to estimate the error of the precomputed model output at each lead time. Therefore, while the lack of state evolution makes the
hindcast component update sub-optimal, the update of the error ensemble remains mathematically consistent. In this study, we
provide proof-of-concept in-this-studythat the resulting error ensemble improves the skill of the hindcast (see Section 7+7.1).
The Kalman filter is not constrained to enforce non-negativity of the analysis state, and therefore, could lead to negative
discharge values for some grid boxes if the cross-covariances are incorrectly defined. We enforce non-negativity by further
adjusting the error ensemble members after the LETKF update step(Fig)—The-adjustment-is-done-separatelyfor-eachgrid

N d a amble-member-on ha o o d ala
a a Y Y t a SathVv V a a W

grid box where the sum of the hindcast discharge and the updated error is negative, we modify the error value so that the total

becomes a small positive value, mitigating the potential for instabilities caused by zero-values. This small positive value is

10
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275 sampled from a Gaussian distribution with mean-0-and-a mean of zero and a standard deviation equal to 10% of the standard
deviation of the updated error ensemble at the grid-box of interest.
The updated positive-definite augmented states are propagated to the next timestep as defined in Eq. (10). The updated

positive-definite augmented states are also used to error-correct the hindcast (Section 4.2).
4.2 Adjusting the forecast

280 After the error component of the augmented state has been updated using Eqgs. (14) and (15), and non-negativity has been

enforced (Section 4.1), the error ensemble members are added to the respective hindcast ensemble members such that

x:ew7(i) _ X](;) + B](:)a (18)
where xzew’(i) and xg) are the ¢-th ensemble members of the error-corrected and raw hindcast ensembles, respectively, and

13,(;) is the error vector associated with the i-th error ensemble member where the caret indicates a non-negativity check has

285 been applied. Consequently, the error-corrected hindcast ensemble mean and perturbation matrix are given by

XY = %), + by (19)
and
Xpew = X, + BY. (20)

The-This update results in an additive spread correction matrix

290 is-, T's, with

the form

I = X;.B¢' + BiX? + BB 21)

where X, and Bz are the perturbation matrices of the raw hindcast and error ensembles, respectively, and the superscript T’

indicates the matrix transpose (Section 5.2 in Martin, 2001).

295 5 Experimental implementation

In Section 4 we presented a new method of spreading observation information to ungauged locations in a post-processing envi-
ronment based on common data assimilation techniques. In this section, we describe three key components of the method—Iocalisation,
covariance inflation, and the generation of the initial error ensemble—which are crucial for its performance but can be imple-

mented in various ways.
300 5.1 Localisation

Localisation is used to reduce the effect of spurious correlations which can arise due to sampling errors caused by the small

ensemble size (Hamill et al., 2001; Hunt et al., 2007). The LETKF uses observation localisation which reduces the impact of
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observations by multiplying the inverse of the observation-error covariance matrix by a localisation matrix, p € RP+*Pk such

that
305 R'=poR} (22)

where R € RP#*Pk jg the localised observation-error covariance matrix used in the LETKF (Section 3.2), R,,; € RP=*P* is the
non-localised observation-error covariance matrix, and the symbol o indicates the Schur product (also known as the Hadamard
product) which is an element-wise matrix multiplication (Golub and Van Loan, 2013). We assume that R,,; and, by definition,
R are diagonal matrices. In this study we use distance-based localisation so the impact of the multiplication described in Eq.

310 (22) is to increase the effective uncertainty of distant observations and thus decrease their impact on the analysis state. The
impact of the localisation on the spatial extent of the analysis increments is demonstrated in Section 7.1.

The localisation matrix is defined using the Gaspari-Cohn function which has a parameter called the localisation length scale
Egq—4-10-in-Gaspari-and-Cohn(1999)—(Appendix ??; Gaspari and Cohn, 1999). The Gaspari-Cohn function smoothly de-
creases the weights assigned to an observation as the distance from the observation location increases, starting from a value of 1

315 at the observation location and reaching O for distances greater than twice the localization length scale (pink box, Fig. 1). In this
study, the distance is calculated along the river network which has been shown to improve the analysis for fluvial applications
fa-P4 ; : i ; : i ; (Garcfa-Pintado et al., 2015; El Gharamti et al., 2021; Khaniy:

. The distance between a grid-box and the location of an observation is calculated using the local drainage direction map and
the channel length used in the hydrological model (Choulga et al., 2023). As the distance is defined along the river network,

320 observations cannot impact grid-boxes in a different drainage basin.

Sensitivity experiments conducted during the development of this method found that the optimal length scale varied by location,
lead-time, and tuning metric of choice, but overall, the differences were small for length scales from 65 km to 786 km (not
shown). Therefore, we propose instead for the localisation length scale to be defined as the maximum distance between any
325 grid point and its closest observation. This 1) ensures that all grid boxes are updated in the update step of the LETKF reducing
the potential for discontinuities in the analysis state, 2) can adapt to changes in the availability of observations, and 3) can be

applied to different domains and hydrological model configurations without requiring a tuning experiment.
5.2 Covariance inflation

Small ensemble sizes can cause underestimation of the ensemble spread which-in—turn—+reduees—reducing the impact of the

330 observations on the analysis (Furrer and Bengtsson, 2007).

also-make-the-simplified-assumption-thatthe-Additionally, we assume the error ensemble is constant between timesteps (Eg-

2)-whiehwhich, while simplifying implementation, could introduce model errors into the ensemble (Evensen et al., 2022).

Covariance-inflation-is-an-approach-eftenused-to-To ameliorate these issues, although-an-inflation-method-thatis-eptimal-for
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340

o M, I
W, = (1—a) o I”i“ WL+ e
k

345 implement a heuristic covariance inflation method inspired by the relaxation-to-prior perturbations technique (Zhang et al., 2004; Kotsuki «
. However, as we are working within a post-processing context, we adapt the method for use with predefined ensembles (i.e.,
without evolving the inflated perturbations between timesteps).
We blend the prior perturbation matrix at k£ + 1 with an estimated perturbation matrix We”1 similar to the use of a climato-

logical covariance matrix in Valler et al. (2019). The resulting perturbation matrix is given by

Mk Ik a €es
350 W'/ =(1-a) Wi+ aWesh (23)
Ok Ik
where « is an inflation parameter to be defined (and the definition of the matrices M} and Iwaf&eve}uﬁefrmafﬂees

introduced-I; are given in Section 3.1an ). This blending

of matrices introduces both additive and multiplicative inflation. We define W%, eould-use-an-alternative-model-to-evolve-the

355 as

est est
West — Xph + B

k+1 7 est
Bk—i—l

(24)

where X%, and B/, can be estimated separately.

—When substituted into Eq. (23), this form of

360 W/, maintains consistency between the error-terms-in-the-hindcast and error components of the augmented stateensemble.

During development, it
was found that the estimated matrices must have spatial structures consistent with the river network and be forecast and lead-

time-dependent. For simplicity, and as the raw hindcast perturbations satisfy these requirements, we set both X¢%', and Bszl
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395

equal to the raw hindcast perturbation matrix (Dee, 2005; Martin et al., 2002). In future studies, the estimated-pertarbation
matrix—Here;-estimated perturbation matrices could be defined using alternative models to evolve the analysis perturbation
matrix between timesteps or be climatological matrices (Valler et al., 2019).

The inflation parameter cy

was-correet—Thereforecontrols the weighting between the prior and estimated matrices. To account for changing uncertainty

across lead-times and forecasts, we define the-inflation-parameter-as-the fractional-change-in-the-hindeast-vartanee;«y, using a

smoothed estimate of the relative change in hindcast ensemble variance

I=k
ap = % Z mam{ [Tr(Be) = Tr(Prs)| , 1} (25)
= 2

ey T’I’(Pl)

where k is the the-eurrent-timesteps-and-Lr{Pcurrent timestep and Tr(P;) is the trace of the raw hindcast covariance matrix

at timesteps-timestep /. A maximum value of 1 is set to avoid instabilities, particularly at short lead-times where the change in

variance between timesteps can be large. The average over the past three timesteps is taken to ensure that alpha-« is smoothly

changing between timesteps, again to avoid instabilities. An-inflation—value-of1-suggests—theuneertainty-of-the-modeled

d d afngea—So t DCtW P a b

—This approach of estimating o was selected
after sensitivity testing (not shown for brevity), which indicated that the inflation factor must be both lead-time dependent and
forecast dependent. While « is not spatially varying, it is applied to perturbation matrices with spatial structures consistent

with the river network, ensuring physically plausible ensemble perturbations.
5.3 Imitial-Initialising the error ensemble for the first timestep

We must define an initial error ensemble to perform the state augmentation at the first timestep. Pue-te-the-applicationto-a
In a forecast post-processing environment there is no “warm-up” period in which a state of equilibrium can be reached, and
therefore the initial error ensemble must be physically plausible. Here, the initial error ensemble is defined using three sets of
river discharge data: in-situ observations, —cRP:-simulations created by forcing a hydrological model with meteorological
observations, sz—=JR"-and the ensemble mean and ensemble perturbation matrix of a single lead-time from a previous hindcast;
% Rand X< R A single ensemble is generated for the full EFAS domain and then the elements associated with the

domain of interest (in this study the Rhine-Meuse catchment) are extracted.

two main steps: estimating the mean of-the-initial-errorensemble-is-estimated-error and generating the perturbations around

that mean. The ensemble mean is intended to capture biases in the hydrological model at the initial time. It is computed as

follows:

14



1. Calculate the errors at gauged locations: The-For each river gauge location, we calculate the average relative error of

fh&ﬁmul&&e&eeﬁﬁaafedfe%ﬂbsewaﬂeﬁ%between observed and simulated river discharge over the past d-days-there
10 daysy-a

Z H}F siff]

400 where-6{5}. To limit the influence of outliers or representation errors, ¥4 }-and-s;i}-are-the relative-error - the-observation

405

Using inverse distance

weighting, we interpolate the errors from gauged to ungauged locations. The value at each grid-box is a weighted average

of relative errors from the 100

410 calculate-the relative error-at grid-box-¢. denoted-A’gl s

nearest stations, with closer stations given more influence (Lu and Wong, 2008). All available stations, including those

outside the catchment of interest, are used in this calculation to capture spatial variability.

415

interpolated error field

is then multiplied by the simulated river discharge values at each grid point. This enforces the spatial pattern-structure of

420 the river networkby-ensuring-the-value-of-the-initial-error-mean-is-, ensuring errors are proportional to the magnitade-of
the-diseharge-in-the-size of the river.

{&g—M&ﬁme%al—’&Q@Q&—We%se%h&eﬁsemb}&fﬁembef&assume a reasonable estimate can be derived from a previous river

425 discharge ensemble forecast as follows:
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1. Calculate the ensemble statistics: We calculate the ensemble mean and perturbation matrix from the second lead-time

of the-hindeastfrem-a hindcast issued two days prior. This choice avoids unrealistically low spread often seen at the first

lead-time was-selected-as-the-spread-of-the-ensemble-at-due to a lead-time-of-one-day-can-often-be-very-narrow-due-to
theuse-ofa-single set of initial conditions¢see-6-1)—Thesteps-to-define-the-initial-error pertarbations-are:-.

430 2
3.
y—perturbation matrix is
435 adjusted by calculating the error of the ensemble-mean-compared-to-the-hindcast ensemble mean at each grid-box relative
to a simulation forced by meteorological observations. A-veeter-This provides a set of scaling factors f-is-definedsuech
that-
- - - — 1 NT
£ _ (Se%xe%l% so [2l—o {2} Se%%%)
Xt =~ %} T Xefn
440 hat-the e i eviation-at-each-gri must-not-go-below-used to inflate the perturbation matrix. To avoid
underestimating uncertainty, we impose a minimum threshold of on the resulting standard deviation of 10% of the
445

The resulting error ensemble mean and perturbations define the initial ensemble, which is then updated using the LETKF

450 with state augmentation, as described in Section 4.1.

6 Evaluation strategy
6.1 European Flood Awareness System (EFAS)

The hindcasts used in this study were produced by the European Flood Awareness System (EFAS) as operational forecasts

(Barnard et al., 2020). EFAS is part of the Early Warning component of the European Commission’s Copernicus Emergency
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455 Management Service (CEMS), and aims to provide complementary forecast information to hydro-meteorological services
throughout Europe (Matthews et al., 2025). EFAS streamflow forecasts are produced by forcing a calibrated hydrological
model, LISFLOOD i (De Roo et al., 2000; Van Der Knijff et al., 2010; .

, with the output from meteorological numerical weather prediction (NWP) systems. Whilst the operational EFAS system is a
multi-model system with four sets of meteorological forcings, in this study we focus only on the medium-range river discharge

460 forecasts generated with meteorological forcings from the 51-member medium-range ensemble from the European Center for
Medium-range Weather Forecasts (ECMWF) due to its large ensemble size. The meteorological forcings are interpolated to the
EFAS grid. A single set of initial hydrological conditions are used for all ensemble members often leading to small ensemble
spreads at short lead-times. The spread then increases as the different meteorological forcings propagate through the system.
No data assimilation is performed in the generation of the initial hydrological conditions. Instead, the LISFLOOD hydrolog-

465 ical model is forced with meteorological observations (and meteorological forecasts when observations are not available) to
generate the initial conditions (Smith et al., 2016).

As an operational system, EFAS is constantly evolving. For the evaluation presented here we use EFAS version 4 (operational
from 14 October 2020 to 20 September 2023) aggregated to daily timesteps with a maximum lead-time of 15 days. The
ensembles have 51 members and predict the average river discharge for each timestep for each grid-box within the domain¢see

470 6:2). The hindcasts have a spatial resolution of Skm x Skm with a ETRS89 Lambert Azimuthal Equal Area Coordinate

Reference System. Hindcast from the 00 UTC daily cycle are used resulting in a total of 365 hindcasts used in the evaluation.
6.2 Rhine-Meuse catchment

The Rhine-Meuse catchment has a drainage area 195,300 km?, a channel length of about 38,370 km in EFAS, and consists
of 7812 grid-boxes. It is the 5th largest catchment in EFAS. The Rhine river originates in the Swiss Alps, flows through the
475 Central Uplands and the North European Plain, before finally discharging into the North Sea. The Meuse river originates from
the Langres Plateau in France, flows through the Ardennes Massif and the low-lying plains of the Netherlands, before merging
with the Rhine and entering the North Sea. The catchment consists of rivers of different sizes, topologies, and levels of human

influence, making it an ideal test catchment to see how the method deals with changes along the river network.
6.3 Observations

480 The Rhine-Meuse catchment has a dense river gauging station network. The main set of observations used in this study are
daily river discharge observations from 89 stations across the Rhine-Meuse catchment for the time period from 21 December
2020 to 15 January 2022. The minimum value across the stations is 0.516 m3s~! and the maximum value is 7662.917 m3s~1.
These observations were assimilated as part of the error-correction method to update error ensemble and used in the evaluation
of the corrected forecasts (Section 6.4 describes the cross-validation approach used). Whilst the error-correction method can
485 adapt to missing observations, these 89 stations were selected as they have no missing data for the time period of interest
allowing this analysis to focus on the spread of observational information to ungauged locations. The maximum distance

between any grid-box and the closest of the 89 stations is 262 km which is set as our localisation length scale (cut-off distance
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is therefore 524 km; see Section 5.1). In addition to these stations, all available observations from across Europe, were used to
generate the initial error ensembles (total 505 stations). All river discharge observations were provided by local and national
authorities and collated by the CEMS Hydrological Data Collection Centre (see https://confluence.ecmwf.int/display/CEMS/
EFAS+contributors).

The construction of the non-localised observation error covariance matrix, R, is a key component of all data assimila-
tion methods. The matrix describes the uncertainty associated with each observation and—-(defined in Eq. (7)). This uncer-
tainty arises due to instrument uncertainty, observation processing, observation operator error and scale mismatch between
the observations and the model resolution (Janji¢ et al., 2018). The matrix also describes the correlation between errors of
different observations (Stewart-et-al;2043; Fowleretal52048)(Stewart et al., 2013; Fowler et al., 2018). In this study, we as-
sume that the observation errors from different gauge stations are uncorrelated such that Rzl is a diagonal matrix with all
off-diagonal elements set to 0. We-also-assume-that-the-standard-Observation errors are also assumed to be uncorrelated
with the prior errors which is a standard assumption in data assimilation (Janji¢ et al., 2018). We estimate the standard devi-
ation of the observation errors is-as 10% of the observation magnitude
(Refsgaard et al., 2006; McMillan et al., 2018, 2012).

In the leave-one-out verification experiments (see Section 6.4) we use the observations from the non-assimilated station as

validation data and assume they are the truth with no errors.
6.4 Experiments

We use three experimental schemes to investigate the effect that the error-correction scheme has on the ensemble hindcasts.

1. Single station experiments: Only observations from one of the 89 station are assimilated when estimating the error-
vector. All available observations are used in the generation of the initial error ensemble. These experiments allow the

impact of an observation to be identified and allow the effects of localisation to be explored.

2. All station experiments: Observations from all stations are assimilated when estimating the error-vector and used in
the generation of the initial error ensemble. These experiments allow the complete method to be assessed and for any

spatiotemporal inconsistencies to be identified.

3. Leave-one-out experiments: Observations are withheld from one of the 89 stations and are not assimilated when esti-
mating the error-vector nor used in the generation of the initial error ensemble. This cross-validation framework allows

the skill of the adjusted hindcasts to be assessed at the locations of stations as if they were ungauged locations.

Each experiment scheme is applied to all hindcasts from 1 January 2021 to 31 December 2021. However, for brevity, for the
single station and all station experiments we only discuss two hindcasts: 7 July 2021 and 8 October 2021. These dates represent

high and normal flow conditions, respectively, allowing the ability of the method to be assessed for different circumstances.

18


https://confluence.ecmwf.int/display/CEMS/EFAS+contributors
https://confluence.ecmwf.int/display/CEMS/EFAS+contributors
https://confluence.ecmwf.int/display/CEMS/EFAS+contributors

520

525

530

535

540

545

6.5 Evaluation metrics

The following metrics are used to investigate the skill of the error-corrected hindcast ensemble mean and the reliability of the
ensemble spread.

For the ensemble mean, the three components of the modified Kling-Gupta Efficiency: correlation, mean bias, and vari-
ability bias are used to assess different types of errors within the ensemble mean (Klingetal+(2012);-Guptaet-al(2009)
¥Kling et al., 2012; Gupta et al., 2009). Pearson’s correlation coefficient measures the linear relationship between the simu-
lated timeseries and the observations indicating timing errors (score range [—1,1]). The mean bias given by the ratio between
the mean of the simulated timeseries and mean of the observations indicates whether the flow is consistently over or under-
estimated (score range (—o0,+00)). The variability bias given by the ratio between the coefficient of variation of the simulation
and the coefficient of variation of the observations indicates whether the variability in the flow is consistently over or under-
estimated (score range (—oo,+00)). All three components have a perfect score of 1. Additionally, to investigate whether the
magnitude of the error of the forecast mean is decreased by the proposed method we use the Normalised Mean Absolute Error
(NMAE Hodson, 2022; Jackson et al., 2019). The metric is normalised by dividing by the mean of the observations for that
station. Normalising the metric makes the scores at different stations comparable. The NMAE has a perfect score of 0.

To analyse the reliability of the spread of the ensemble forecast we use the rank histogram (Harrison et al., 1995; Anderson,
1996; Hamill and Colucci, 1997; Talagrand, 1999). To generate the histogram the rank of the observation relative to the sorted
ensemble values is calculated for each hindcast. The frequencies with which the observation has a rank from 1 to M + 1 are
plotted as a histogram. The shape of the histogram provides information about the reliability of the ensemble spread and bias

of the ensemble (Hamill, 2001).

7 Results

71 ¥ £ assimilating ol .

In this sectionwe-investigate-the-spatial-and-lead-time-dependentimpact-of-assimiating-the-observati

impact-of-these-observations,we-analyze-the-, we discuss the efficacy of the proposed error-correctio

we discuss how observation information is propagated along the river network and, in particular, we explore how the method

n method. In Section 7.1,

reacts to different flow scenarios, both spatially and across different lead-times. In Section 7.2, we evaluate the skill of the

resulting error-corrected ensembles in terms of their means and distributions.
7.1 How is observation information propagated along the river network?
7.1.1 Spatial propagation of the observation information

Here, we investigate how the observation information is propagated spatially from gauged locations to ungauged locations. We

investigate the analysis increments of the mean — the difference between the ensemble mean before and after the update step
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(term 2 in Eq. (14)) ton-for single-station
and all-station experiments (Fig. 2). We-foeus-on-single-station-Specifically, we focus on the single-station experiments for the
Bonn station on the Rhine {left-panels)-and the Uckange station on the Moselletmiddle-panels)-for-. To investigate the impact
of different flow scenarios, we study the hindcasts generated on 8 October 2021 (upper panels) and 7 July 2021 (lower panels),

which represent normal and high flow scenarios, respectively.
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Figure 2. Analysis increments of the mean for a lead-time of 9 days for single station (a, b, d, and e) and all station (c and f) experiments
for the hindcasts generated on 8 October 2021 (upper panels) and 7 July 2021 (lower panels). Assimilated stations for the single station
experiments (cyan outline) are the Bonn station on the Rhine (a and d) and the Uckange station on the Moselle (b and e). The shaded region
of the catchment is outside the localisation length of the assimilated station. Markers show the innovation at all stations. Catchment area:

195,300 km?. Panel g shows the Rhine-Meuse catchment and highlights the rivers discussed within this section.

Fig—2aln Fig. 2, the shaded regions show the parts of the catchment that are outside the localisation region for the assimilated

observation. The number of grid-boxes within the localization regions of the Bonn and Uckange stations differ because the

distance is calculated along the river network and the channel length within each grid box is not constant (4662 grid boxes and
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2451 grid boxes, respectively). Increasing (decreasing) the localisation length scale results in a more (less) gradual dampening

of the analysis increments and more (fewer) grid-boxes being impacted by a single observation (not shown). The number

eonstant-square markers indicate the innovation — the difference between the observation and the error-corrected ensemble

mean prior to the update step (Fig. 2). Ideally, the analysis increment (background colour in Fig. 2) should reflect similar
spatial behavior to the innovations within the localisation region. This would imply the ensemble is being adjusted towards the
observations at each station.

For the October experiment, the innovation at Bonn is negative and results in negative analysis increments across the domain
(Fig. 2a). For the Uckange experiment, the innovation is positive and the analysis increments are also all positive (Fig. 2b)
indicating positive ensemble covariances. For both experiments, the analysis increments match the sign of the innovations at
neighbouring stations (Figs. 2a and 2b), but at greater distances this is not the case. For example, the innovations along the
Rhine in the Uckange experiment are negative whilst the analysis increments are positive.

The localisation implemented in this study allows the assimilated observations to influence the error ensemble both up- and
downstream, although the influence is dampened at longer distances. We here discuss whether this choice of implementation
is useful by studying the spatial patterns of the innovations. Focusing first on the Bonn experiment for October (Fig. 2a), we
see that downstream (north) of the assimilated observations the innovations can be both positive and negative. Upstream of
the assimilated observation the innovations are negative, matching the innovation at the Bonn station. The assimilation of the
observation at Bonn is therefore primarily beneficial upstream, with some benefit also seen at specific locations downstream.
For the Uckange experiment (Fig. 2b), the pattern is reversed with downstream innovations showing more consistency with the
innovation at the assimilated location. The inconsistent spatial patterns could be because, in the LETKF, we update the errors
rather than the river discharge directly. The errors are dependent not only on the observed hydrological conditions but also
the model structure and configuration. The spatial structure of the errors may therefore extend both up- and downstream. For
example, if the drainage area within an upstream grid-box is overestimated due to the hydrological model spatial resolution, all
grid-boxes downstream will be impacted by that overestimation. The benefit, in terms of consistency between the innovations
and analysis increments, that is seen both up and downstream suggests that the localisation implementation is appropriate.
However, we note that there may be additional factors other than distance, that could be included in the localisation to better
modulate the observation influence (e.g., river confluences, regulation, or river size).

In the July experiments, we see that the innovations both up and downstream of the assimilated observations are positive,
matching the innovations at the Bonn and Uckange stations, respectively. For the July experiment, the innovations are spatially
homogeneous for greater distances along the river network (Figs. 2a-and-2b)—d and 2e). This indicates a greater spatial corre-
lation length, likely due to the low-pressure system which covered large parts of the west of the catchment during this period
(Mohr et al., 2023). The different correlation scales suggest that an adaptive localisation length scale may be beneficial.

The spatial heterogeneity for the October experiments suggests that assimilating a single observation cannot correct the

entire domain. However, when all observation are assimilated the analysis increments vary across the domain, demonstrating
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Figure 3. Ensemble correlations (upper panels) and cross-covariances (lower panels) between the error ensemble and the hindcast component
of the augmented state averaged across all all-station experiments. (a) Map of the correlation between the Uckange station and all other grid-
boxes and (c) the same for the cross-covariances. (b) Scatter plot of the correlation between the Uckange station and all other grid-boxes
and (d) the same for the cross-covariances. Grid-boxes on rivers discussed in the text are broadly indicated by the arrows. Dashed black line

shows the localisation length scale and the solid black line shows the effective cut-off point beyond which the observation has no impact.

the method’s ability to adapt to the errors on different stretches of the river. In both all-station experiments (Figs. 2c¢ and 2f),
the analysis increments vary smoothly along the river network, which suggests the error-corrected ensemble will also change
gradually. This is important because it ensures the hindcasts remain spatially consistent, with no abrupt transitions between
adjacent grid boxes.

In general, for the July experiment, small rivers exhibit larger increments than in the October experiment. This indicates
the assimilated observations have a greater impact across more of the domain. For October, the assimilation of an observation
at Bonn results in the largest analysis increments near the observation location, with the increments diminishing to zero at
distances greater than 524 km due to localization (Fig. 2a). Interestingly, in the Uckange experiment, the largest increments
occur not near the station, but along the Rhine near the confluence with the Moselle (Fig. 2b). In both experiments, the
increments tend to be larger along bigger rivers, with smaller rivers showing smaller increments. This occurs due to large
ensemble covariances between the location of the assimilated observation and locations along the bigger rivers (Fig. 3).

The spreading of observational information along the river network is dictated by the cross-covariances between-the-error

component-and-the-hindeast-compeonent-of the augmented ensemble prior to the update steptSeetion—3-2). The magnitude of
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the cross-covariance between two locations depends on the correlation at-the-twe-locations——the-variance-ofthe-augmented
ensemble-between the locations and the ensemble variance at both locations;-and-the-dampening-enforeed-by-localisation. The

correlation between the location of the Uckange station and a-any grid-box is highest along the same river stretch (the Moselle)

and decreases at longer distances from the station (Fig. 3a). Nearby grid boxes that are not on the same river stretch have

Theﬁagmwd&ef—ﬂwe%-eevaﬂaﬂees—afe—%mﬂaﬁb) Downstream from the Uckange station the correlation is highest

along the Moselle and torrthe downstream

along the Rhine. On the other hand, the correlation upstream is more uniform across the grid-boxes (Fig. 3band-3e). Whilst

efess-eevaﬂaﬂeefhaﬂ%fgefwefs—vefy—f&ﬁffeﬁﬁhesfaﬁe&there are regions in the south of the catchment with which the corre-
lation is small, in general there is a correlation of around 0.3 even with distance locations (Fig. 3e)~Hewever;-some-grid-boxes

b). This is likely spurious

correlation and exemplifies the need for localisation. The correlations begins to rise again at longer distances due to grid-boxes

that are geographically close to the station but the distance along the river network is large, such as the Meuse (Fig. 3e)—The

Moeselle-b). Note that the similarity between the localisation length scale (dashed line) and the distance between the Uckange
station and grid-boxes on the Rhine (change from a Strahler order of 5 to 6) is coincidental but does suggest that the method

for defining the localisation length scale {see-Section-5-1)is capable of capturing the order of magnitude of the relevant spatial

scales for the Rhine catchment.
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Despite lower correlations, the magnitude of the cross-covariances are larger along the Rhine than for grid-boxes closer to

the Uckange station on the Moselle (Fig.

correlation is dependent on distance, the magnitude of the cross-covariances is primarily dependent on the size of the river (note

the horizontal bands of Strahler orders (a measure of stream size where larger orders indicate larger rivers Strahler, 1957) in

Fig. 3d). Larger cross-covariances can lead to larger analysis increments as can be seen to-begin-te-inerease-againforlarger
istances—This-is-due-to-grid-boxes-on-differentrivers-there-the Meuse-and-the- MoseHe;seerivers-names-in Fig. 2)-being-close

v—along the Rhine are larger than
those along parts of the Moselle. Localisation enforces a dependence on distance such that observations have less impact on

large rivers very far from the station but this may not outweigh the larger cross-covariances.
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7.1.2 Lead-time dependence of the analysis increments

Here, we investigate how the impact of assimilating observations changes over different lead-times. Figure 4 shows the tra-
jectories of the three intermediate ensembles used in the LETKF for the 7 July hindcast for a single-statien-single-station
experiment where observations are assimilated at the Uckange station: the raw hindcast (left columns), the hindcast compo-
nent of the augmented ensemble (middle columns), and the error component of the augmented ensemble (right columns). Fhe

It should be noted that none of these ensembles are the

final error-corrected ensemble but intermediate ensembles used in the LETKF. The lower panels show the trajectories at the
Bonn stations for which no observations are assimilated during this experiment. By plotting the raw hindcast trajectories and
the observations we can visualise the errors to be estimated. We can see that for both stations the error of the hindcast mean
is negative (observations are smaller than the hindcast mean) for lead-times up to 8 days, and positive at longer lead-times.
Whilst this behaviour is similar for the Bonn station, the magnitude of the error is different by a factor of 10 at most lead-times.

The middle column of Fig. 4 shows the hindcast component of the augmented ensemble. We-can-see-thatusing-To propagate
this component between timesteps without rerunning a hydrological model, we assume that the raw hindcast as-an-is a reason-

able approximation of the analysis state isnoet-optimal—(discussed in Section 4.1). As expected, this assumption results in a

sub-optimal ensemble mean estimate. For example, at lead-times-greater-than-lead times beyond 10 days at the- Uekangestation

the-update-takes-the-ensemble-further-away-Uckange, the update moves the ensemble mean further from the observations
(Fig. 4b)—This-eceurs-also-at-the Bonn-station—, and a similar effect is seen at Bonn (Fig. 4e). This-is-netunexpected-as-our

approximation-assumes-Also by using the precomputed ensemble, the assimilated observations do not update the ensemble
perturbations; although, the perturbations do change between lead-times as the precomputed ensemble is lead-time dependent.
This assumption does ensure the analysis hindcast component is always physically plausible (e.g., the river discharge is al-

ways positive), and provides a reasonable estimate of the uncertainty as the raw hindcast is mere-accurate-than-the-hindeast

generated using the output
from an ensemble NWP. Additionally, at each timestep we aim to correct the raw hindcast, therefore this assumption provides
consistency between the hindcast component and the error component of the augmented state.

It is the error ensemble that is most important te-for our application (Figs. 4c and 4f). Despite the non-optimal formation
of the analysis augmented state, the error ensembles are updated beneficially, with the analysis error ensemble mean moving
closer to the error of the raw hindcast mean at each lead-time for the assimilated location (Fig. 4c) and the non-assimilated
location (Fig. 4f). At short lead-times the updates to the error ensemble at the Bonn station do not appear to be beneficial
(Fig. 4f). However, as this experiment only assimilates observations from one station this discussion should be considered a

demonstration of how the method updates proxy-ungauged locations rather than an evaluation of the error-corrected ensemble
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Figure 4. Ensemble trajectories for a single station experiment for the hindcast generated on 7 July 2021 for the location of the assimilated
observation (Uckange station on the Moselle; panels a-c) and a location where an observations is not assimilated (Bonn station on the Rhine;
panels d-f). The plots show the trajectory of all members and the ensemble mean of the raw hindcast ensemble (left panels), the hindcast
component of the augmented state (middle panels), and the error ensemble members (right panels; different y-axis scale). Markers show the

river discharge observations (a, b, d, and e), and the error of the raw hindcast mean (c and f).

(which is provided in Section 7.2). First we note, that the updates at the assimilated location do not result in the error ensemble
mean (dark blue line) matching the error of the mean (markers). This is expected and is due to the consideration of the
observational uncertainty within the LETKF. This ensures spatial consistency across assimilated and non-assimilated locations,
and-combines-whilst combining the modelled and observed data to estimate the true state of the system across the domain.
The error-ensemble is narrow after the update step and it is the covariance inflation that increases the spread between
timesteps. The spread of the hindcast is due to meteorological forcings, predominantly precipitation. Therefore, in general,
the hindcast spread is larger for longer lead-times as the precipitation forecasts become more uncertainand-this-uneertainty-is

ated-atong-therivernetworkand-higherriver discharge-values(when-preeipitationis-above-0-mm). Since the covariance

inflation technique presented here results in the blending of the hindcast perturbation matrix with the error-ensemble from the
previous timestep, this behaviour in the hindcast spread is transferred to the error-ensemble. As demonstrated in Figs. 4c and
4f, this can result in the error ensemble spread being large for the rising limb of an event and smaller for the falling limb. This
can result in the error not being updated sufficiently and the spread of the analysis state being too narrow, as seen after the peak

in Fig. 4c and discussed later along with Fig. 5b.
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7.2 EnsembleskillHow sKkillful are the error-corrected ensemble hindcasts?

In this sectionwe-look-at-, we investigate whether the updated ensemble is more skillful than the raw hindcast ensemble. Using
leave-one-out experiments we evaluate the ensemble mean and ensemble spread at proxy-ungauged locations(Seetion-6-4). The
hydrographs in Fig. 5 show the raw and error-corrected ensembles for three proxy-ungauged locations from the leave-one-out

experiments. The hydrographs are used to illustrate the method’s ability to correct the ensemble and some of the limitations.

7.2.1 SKkill of the ensemble mean

To investigate the impact-on-different-types-of-errors-in-skill of the ensemble mean we calculate the correlation, mean bias,
variability bias and the NMAE-N-RMSE for each station and each lead-time(Seetion-22). Figure 6 compares the skill of the

ensemble mean-means of the raw and the error-corrected ensembles focusing en-the-overall-change-in-skilt(a;-d5-gand-i);the
the spatial dependency of the skill (b;e;h;-andka-d), and the lead-time dependency of the skill (e;f4;-and-e-h).

The error-corrected ensemble means show a stronger correlation with observations than the raw hindcast ensemble means,
with an average increase from 0.82 to 0.92 ;-and-an-overall-shift-towards-theperfeet-value-of I-(Fig—6a(not shown). Figure
5a shows an example of how the error-corrected ensemble can better capture the dynamics of the ebservations-improving-the

river discharge resulting in an increased correlation. It can be seen that the resulting ensemble is temporally consistent and

(i.e., does not have improbable changes between timesteps- s-). The correlation

D

is worsened compared to the raw hindcast ensemble at four stations (Fig. 6b)—Fhe-a). Focusing on the two most southern of

these w

to-these-ofthe-stations, we see that the correlation values of the raw ensembles at nearby stations are very different compared
to the correlation at the two stations of interest (note the much lighter colours for nearby stations; Fig. 6a). The ensemble
covariances are not capturing this change in regime correctly so the observational information is not being advantageously
spread between these rivers. The remaining two stations that have degraded correlation are the most upstream stations on
their rivers. At these —stations the updates made to the error-corrected ensemble are dependent on observations assimilated
downstream. The assimilated observations are therefore providing information about a past state of the river upstream which
could be the cause of the decreased correlation (a measure of timing errors) at these upstream stations. Whilst most upstream
stations are improved by the error-correction method, stations which have much smaller upstream areas that-than their closest
downstream station tend to be improved less than those that have a similar upstream area, particularly if the distance to the

neighboring station is large.

{Fig—6d)—Just over half of the stations (47) show improvement in the mean bias averaged across all lead times (Fig. 6eb), but

no clear spatial pattern emerges, as most rivers have a mix of improved and worsened stations. This spatial heterogeneity is
also seen in the raw hindcast ensemble, with stations on the same river stretch often showing different biases. For example,

stations on the Neckar ;-and upstream of the Meuse show stations ;-that are under- and overestimated, as well as stations with
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Figure 5. Raw and error-corrected hydrographs for proxy-ungauged locations in leave-one-out experiments at the Rees station on the Rhine
(upstream area: 159,320 km?>) and the Mainleus station on the Main (upstream area: 1,164 km?). Catchment illustrations indicate the location

of the station (see Fig. 2 for rivernamesriver names and scale).
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very little bias. The heterogeneity suggests local factors, which are not fully captured in the medeHingsystem-hydrological
model, considerably influence flow bias. Stations showing the most improvement tend to have similar mean bias values to their
neighboring stations in the raw hindcast ensemble, such as on the middle stretch of the Meuse, where four stations with similar
biases show improvement (Fig. 6eb). Spatial patterns of errors that are related to domain-wide model structure rather than local
factors, such as weirs, are more likely to be portrayed by the ensemble covariances allowing observational information to be
more helpfully spread along the river network.

The raw hindcast ensemble mean generally underestimates flow variability, with a variability bias below 1 (red in Fig.

6gc). The error-corrected ensemble improves this, mefeasmgfhe—meafkvaﬂabthfyhbﬂ&fmfﬂ%%{e%—a}fhm%although

—the flow variability.

there is an increase in the frequency of overestimation of
Stations where the error-corrected ensemble overestimates the variability are often the most upstream station on their rivers
(e.g., Plochigen station on the Neckar) or are much-—closer to downstream thanupstream-neighbours (e.g., Chooz station on
the Meuse). This suggests the hindcast covariances between downstream stations and upstream locations are too large, causing
excessive adjustment at upstream locations. Ten stations show worsened variability bias, including two stations downstream
on the Rhine (Fig. 6h). The-cause-of-the-wersening-of-these-twe-stationsis-For the two stations on the Rhine, the degradation
is caused by the forecasts of the adjustmentfor-the-falling limb of a flood peak in July (Fig. 5b). Here, the hindcast uncertainty
was very small at short lead-times, causing the analysis to ignore observations and the error ensemble to remain relatively
unchanged, despite changes in the error behawer—feﬂewmgﬁe—peak—behawour after the peak (also shown in Fig. 4f).

Overall, the error-corrected ensemble reduces the abs

stations where the skill is reduced. Typically, these stations are on the upstream reaches of their respective rivers (Fig. 6kd;

see discussion abeut-on correlation). Interestingly, the NMAE-N-RMSE does not follow the same spatial pattern as the mean
bias. The decrease in abselute-errorsN-RMSE, despite an increase in mean bias, suggests that the error-corrected ensembles
consistently underestimate flow, while the raw hindcast ensemble fluctuates more between under- and overestimation, which
can compensate for each other in the mean bias metric.

The raw and error-corrected ensemble means both decrease in skill in terms of correlation, variability bias, and NMAE-N-
RMSE with increasing lead-times. The raw hindcast ensemble loses skill more quickly in particular for lead-times longer than
5 days (Figs. 6e;-6i;-and-6le-h). The uncertainty in the observations is not lead-time dependent. However, Fig. 3d shows that the
ensemble covariances do change across lead-times, increasing for longer lead-times. The reduetion-in-skill-as-greater gain in
skill for longer lead-times in
along-therivernetwork-as-aeeurately-is likely due to larger covariances allowing the observations to have more influence (e.g.,
in Fig. 5b). However, the decrease in skill of the error-corrected ensemble means at longer lead-times —Fhis-istikely-due-to-an
over-estimation-of-the-varianee-suggests that the ensemble covariances are not as accurate at longer lead-times.
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Figure 7. Reliability of the ensemble. Histograms show the rank of the ensemble pooled over all forecasts and stations for lead-times of 1

day (a), 7 days (b), and 15 days (c).

7.2.2 SKill of the ensemble distribution

The reliability of the ensemble distribution is assessed using rank histograms at different lead times (Figs—7a;7b;-and-7eFig.
7). At short lead times, the raw hindcast ensemble is underdispersed, tikely-due to the use of a single set of initial conditions
(Fig. 7a). Although the error-corrected ensemble shows slight improvement, it remains overconfident with minimal correction
to the spread. Both the raw and error-corrected ensembles generally appear unbiased, with observations falling both above and
below the ensemble predictions at similar frequencies. However, some bias may be masked by the narrow ensemble spread and
as it is known that some stations are biased (Fig. 6b), likely contributing to the peaks at ranks 0 and 51 in the rank histograms.

As the lead-time increases, the spread of both ensembles becomes more reliable, and fewer observations fall outside the
ensemble (Fig. 7b). However, even at a 15-day lead time, both ensembles show a tendency to overestimate observations,
leading to a peak at rank 0, mostly due to a few stations consistently overestimating flow (Fig. 6b). Up to 7-day lead times, the
rank histograms for both raw and error-corrected ensembles show similar shapes. Beyond 7 days, the raw hindcast ensemble’s
histogram flattens, suggesting a reliable ensemble, while the error-corrected ensemble shows a peak around ranks 25-35,
suggesting overdispersion (Fig. 7¢). The left-skewness of the histograms is likely due to the inherent skewness in river discharge
distributions. The LETKF update step seeks to minimise the difference between the ensemble mean and the true state of the
system. The ensemble mean is often larger than the ensemble median leading to the observations falling in ranks above 25 if
the adjustment method is successful and-at minimising the error of the mean (Figs. 5a and 5c).

As discussed in Section 4.1, the Kalman filter is not restricted to ensure positive discharge and there is therefore a need
to adjusted-adjust the error ensemble before correction of the hindcast. Enforcing non-negative discharge was necessary, for
example, for the Mainleus station on the Main for the hindcast generated on the 22 March 2021 (Fig. 5c). Whilst the ensemble

mean is error-corrected at most lead-times, several members indicate river discharge values of 0 m3s~!. The river discharge

31



810

815

820

825

830

835

840

is below 10 m3s~! but a zero flow is unlikely in reality. This suggests the ensemble spread is not sufficiently corrected even

though the ensemble mean is improved as is also suggested by Fig. 7c.

8 Discussion

In general, the proposed data-assimilation-inspired method successfully spreads observational information along the river
network improving the skill of the ensemble mean at ungauged locations. Locations downstream from assimilated observations
are improved most although locations upstream are usually improved as well, even if they are far from neighbouring stations.
This is likely due to two reasons: 1) constant biases in the river discharge estimates that are propagated downstream and
hence can be accounted for when a downstream observation is assimilated, and 2) the daily aggregation of the river discharge
extending the time period for which a downstream observations provides relevant information. If the error patterns of the
ensemble mean at a location differ from those at nearby stations the method struggles to spread the observational information

correctly. At shorter lead-times the reliability of the ensemble is slightly improved due to the decrease in the error of the

ensemble mean. However, at longer lead-times the ensemble spread is often too large leading to an under-confident forecast.

The ability of the method to correct the fore-
casts typically depends on the consistency of the error vectors between nearby locations. The localisation method imple-

mented here depends only on the distance from the station along the river network. The mapping-of-thestation-locations

method does successfully correct the fore-
cast both up- and downstream; however, if the station is on a different river or if there is a confluence between the station
and the grid-box of interest, the errors are often not consistent for as long a distance along the river network. Therefore, it
could be beneficial to investigate the impact of including information about the river stretch into the localisation length scale.
Additionally, the errors were found to be more consistent when the catchment was impacted by large-scale weather systems. It
may therefore be useful to incorporate information about the meteorological situation into the localisation function as well.
The covariance inflation method used here maintains consistency between the spread of the error ensemble and the spread
of the hindcast (Section 5.2). This successfully stops the error ensemble from collapsing such that the observations are not
ignored. However, in situations where the uncertainty of the hindcast ensemble is over- or under-estimated the covariance

inflation does not correct the error ensemble covariances correctly. This can lead to the observations being ignored as for short
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lead-times in Fig. Sb;-and-eeuld-alse-. Additionally, if the hindcast perturbations do not provide an accurate estimate of the true
error ensemble perturbations, this method may introduce errors which could be the cause for the slight degradation in skill of
the ensemble mean with lead-time shown in Fig. 6e;-6te, 6g, and 6th. Correcting the spread of the hindcast before using it in
the inflation of the error covariances could solve this issuetSeetion-5-2). Covariance inflation techniques that use the innovation
statistics could be used to first adjust the hindcast ensemble (e.g., Kotsuki et al., 2017). Alternatively, a lower threshold for
the variance of the ensemble could be set - say 10% of the ensemble mean similarly to the observation error covariance matrix
or the root mean square-error of the initial conditions. However, caution is needed not to artificially inflate the covariances too
much such that the analysis increments become too largein-partiealar-at-shortlead-times-when-the-correlation-is-smal-(Fig:

As discussed in Section 7.2.2, the resulting ensemble must be adjusted in some cases to avoid negative discharge values
(Section 4.1). This does in some cases lead to ensemble members close to 0 m3s~! when a zero flow value is unlikely (e.g., Fig.
5c¢). This occurs due to the analysis increment being larger in magnitude than the value of some of the raw ensemble members.
In general, this is due to the skewed distribution of discharge (Bogner et al., 2012). Future work could look into applying
anamorphosis, or normalising transformations, to make the ensemble distribution more Gaussian-like (Neguyen-et-al52023)-
TFhe-(Nguyen et al., 2023; Bogner et al., 2012). This was not done in this proof-of-concept study for simplicity and to facilitate
the interpretation of the errors. The results also showed that the covariances between grid boxes on larger rivers and the
station locations tend to be large even when the correlation is small. This is due to larger rivers having larger variances which
is partially due to their larger river discharge magnitudes. Localisation dees-enferece-enforces a distance dependence on the
covariance magnitudesbut-. However, transforming the river discharge values to be comparable across the domain may alse
help-minimise-theimpaet-of-overestimated-ensemble-spreadhelp regulate the covariances based on river size. A transformation
between river discharge and specific discharge (river discharge divided by upstream area) could be used to ensure that the
ensemble covariances more accurately represent the true relationship between locations.

In this study, the initial estimate of the error ensemble mean is defined using the observations and the simulation forced
with meteorological observations from the 10 days before the forecast. The average difference between the observations and
simulations is calculated at gauged locations and interpolated to every grid-box using inverse distance weighted interpolation.
The aim is to provide a physically plausible first guess of the errors which is then updated at each timestep. By taking the
average over a 10-day period, we aim to capture the biases of the hydrological model but also to allow for seasonal/dynamic
variation in this bias. However, the choice of 10 days has not been tuned, and may be more applicable to larger catchments
with slowly changing errors than for smaller catchments (Matthews et al., 2022). Further research into the accuracy of the initial
error ensemble, and how it influences the skill of the error-corrected ensemble, is needed. It should be noted that this component
of the method is an implementation choice and can be adjusted depending on system configuration and data availability. The
only requirement is that the initial error ensemble is physically plausible as there is no warm-up period within this application
(Kim et al., 2018).

We assume that the errors are sufficiently slowly changing such that a persistence model can be used to propagate the errors

between timesteps. It should be noted that the LETKF updates the errors at each timestep so the analysis errors used to correct
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the hindcasts are not constant for all timesteps. However, the assumption that the errors are slowly changing is likely only true
for larger rivers that respond more slowly. Future studies could investigate the use of a simple time-varying evolution model.
The model would need to be simple enough that the calculations do not add too much computational time to the method.
Additionally, the error values at every grid-box would need to be evolved; therefore, the evolution model should either rely
only on the model output or must be spatially interpretable if using observations. For example, a model dependent on the
hindcast river discharge magnitude could be used to evolve the errors between timesteps.

The leave-one-out approach used in this study allows the corrected ensembles to be assessed at proxy-ungauged locations.
However, only one station is omitted at a time. Future work could use a block cross-validation strategy whereby multiple
stations are omitted simultaneously (Roberts et al., 2017). This would allow the impact of the density of stations and their
specific locations along the river network to be investigated more thoroughly (Rakovec et al., 2012). The impact of not hav-
ing any observations along a river stretch could also be more thoroughly investigated. One benefit of this method if that the
assimilated observations do not necessarily need to be traditional in-situ observations but could come from Earth Observa-
tion (EO; Durand et al., 2023), crowdsourced or community observations (Le Coz et al., 2016; Etter et al., 2020), or camera
based sensors (Vandaele et al., 2021). The key requirement is that an observation operator can be defined. Observation op-
erators map the state of the system from state space to observations space. In our study the observation operator selects
the grid-point that represents the location of the station on the modelled river network. The mapping of the station loca-
tions from the physical river network to the modelled river network is not trivial and several studies have attempted to auto-
mate this step (Isikdogan et al., 2017; Li et al., 2018). If this mapping is incorrect then representation errors can be introduced
(Janji¢ et al., 2018). For example, if a station on a bypass channel is incorrectly located on the main channel, observations from
the station will undoubtedly provide erroneous information in the update step.

The code developed for this study is designed to allow for research flexibility rather than operational efficiency. However,
the error-adjustment of a single forecast took on average 8.5 minutes for the whole of the Rhine-Meuse catchment - a large
catchment. This suggests that, with proper parallelization, the method could be operationalized and applied to all gauged
catchments in Europe. Before that, though, the method needs to be evaluated on additional catchments. The Rhine was selected
because it is highly gauged, but this also means that the raw ensemble’s skill is relatively high due to the effectiveness of the
hydrological model calibration process. This could influence the method’s performance in two ways: 1) the error ensemble
may evolve more linearly than in less calibrated catchments, and 2) the hindcast ensemble’s covariance may better represent
the covariances between the estimated errors. The next step should be applying this method to a catchment with lower skill
than the Rhine.

The method presented in this study spreads observation information along the river network but cannot yet be used as a
post-processing method because observations from the hindcast period (the future) are assimilated. We envisage the method
being developed further to make it applicable operationally as a hydrological forecast post-processing method. Nevertheless,
it may still be useful in certain situations, such as post-event analysis. After a flood event an assessment is often performed
estimating the severity of the event as well as potential causes and mitigating factors. However, in-situ river gauges only

present a snapshot of the event at specific locations and are often damaged during flood events, resulting in missing or incorrect
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data. EO estimations of river discharge could fill in some of the gaps but this would depend on the satellite’s orbit and its
availability at the right time (Douben, 2006). Reanalysis is another option, but it requires additional hydrological model runs
and may contain errors due to the structure of the hydrological model or errors in the meteorological observations. The method
proposed here could offer a domain-wide estimate of observations without requiring additional model runs or a "warm-up"

period typically needed in hydrological simulations to stabilize antecedent water storage within the catchment.

9 Conclusion

We present and evaluate a data-assimilation-inspired method for spreading observation information from gauged to ungauged
locations in a post-processing environment. This method enables the error-correction of an ensemble simulation at all grid
boxes. The method utilises state augmentation within an LETKF framework to estimate an ensemble of error vectors. The
error vectors are then used to correct each hindcast ensemble member separately.

Overall, the method successfully reduces the errors of the ensemble mean at ungauged locations in leave-one-out experi-
ments. The adjusted ensemble mean has a higher correlation with the observed river discharge and is more able to capture the
variability of the river discharge at a point. Whilst the magnitude of the errors are reduced the ensemble spread is not adjusted
sufficiently resulting in an under-confident ensemble spread at longer lead-times. The adjusted ensembles are spatially and
temporally consistent with the river discharge predictions showing smooth evolution both between grid-boxes on the same
river and between lead-times. The method is most limited in its applications to locations further upstream than the assimilated
observations and for hindcasts where the variance of the ensemble is incorrectly small which most often happens at shorter
lead-times. These limitations can be minimised by further investigation into the localisation approach, for example having a
different localisation length upstream and downstream from the assimilated observation, and the covariance inflation approach,
which may involve applying a spread-correction to the hindcast ensemble as well as the error-ensemble.

Our method of spreading observation information could be used to improve post-event analysis. However, as the computa-
tional requirements and processing time are both small the method could also be developed further to allow for its application
to the post-processing of operational forecasts. The prediction of river discharge at ungauged locations is a crucial challenge

for hydrological research and once successfully achieved will allow for better preparedness for floods.

Code and data availability. The code used in this study for the error-correction method, evaluation of river discharge forecasts, and gen-
eration of the figures presented in this manuscript is available upon request. The river discharge forecast used in this study are from
the Copernicus Emergency Management Service (CEMS)’s European Flood Awareness System (EFAS) and are available to download
from https://ewds.climate.copernicus.eu/datasets/efas-forecast. The local drainage direction and channel length data is available from https:

//data.jrc.ec.europa.eu/dataset/f572c443-7466-4adf-87aa-c0847a169f23.

Appendix A: Kalman gain matrix decomposition

35


https://ewds.climate.copernicus.eu/datasets/efas-forecast
https://data.jrc.ec.europa.eu/dataset/f572c443-7466-4adf-87aa-c0847a169f23
https://data.jrc.ec.europa.eu/dataset/f572c443-7466-4adf-87aa-c0847a169f23
https://data.jrc.ec.europa.eu/dataset/f572c443-7466-4adf-87aa-c0847a169f23

945

950

955

960

The Kalman gain matrix has the following form for timestep k:
_plHT FHT !
Kk*Pk.Hk HkPka + R

where P£ is the prior ensemble covariance matrix, Ry is the error-covariance matrix of the observations, and Hy, is the
observation operator (Livings, 2005; Hunt et al., 2007; Kalman, 1960). Substituting the definitions of the perturbation matrix

and the observation operator for the augmented state given in Eqs. (9) and (11) gives:
-1

Ky = WiW/{"H] (I,W{W["H] +R,) .

This can then be decomposed into the hindcast and error components as

Ky | [ X[+B]

K, = = ;
Kb, B/

(H,X] +H,B])" (H,X{ + H;B]) (H,X{ + H;B])” + Ry,) ™ (A1)

The analysis of the ensemble mean of the augmented states is therefore given by

—f
7(1 X;. +b K, -
wi=| " |+ o ke =3, (A2)
bk: Kbk

where ii and B£ are the ensembles mean of the raw hindcast and the prior error ensemble at timestep k, y, is the observation
vector, and ¥7 is the model-observation ensemble mean.
Appendix B: Gaspari-Cohn function

The Gaspari-Cohn function is correlation function commonly used in data assimilation to define the localisation weights

(Gaspari and Cohn, 1999). It has the following form:

1—§T2—|—§r3—|—%r4—ir57 0<r<1
p(r) = —%r’1+4—5r+%7’2+%r3f%r4+%7’5, 1<r<2
0, r>2

where r = d/c where d is the physical distance between two points, and ¢ is the localisation length scale. The function has a

value of 1 when » = 0 and a value of O when r > 2.
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