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Abstract. Understanding the fate of gas seeping from the seafloor is crucial for assessing the environmental impact of
::::::
impacts

::
of

::::
both

:
natural and anthropogenic seep systems, such as CH4 cold seepsor leaks from gas wellsor

:
,
::::::
leaking

::::
gas

:::::
wells,

::::
and

future carbon capture projects. We present a comprehensive modelling
::::::::
modeling framework that integrates physical, biological

and chemical
:::::::
chemical,

::::
and

::::::::
biological

:
processes to estimate the 3-dimensional dissolved concentration and total atmospheric

flux of gas
:::::
water

::::::
column

:::::::::
dissolved

:::
gas

:::::::::::
concentration

:::::
field

:::
and

::::::::::::
2-dimensional

:::::::::::
atmospheric

:::
flux

:::::
field

:::::::
resulting

:
from seafloor5

seeps. The framework consists of two main steps
::::::::::
components: 1) A gas phase model that estimates

:
a
::::::::
gas-phase

::::::
model

::::
that

::::::::
calculates

:
free gas dissolution and direct atmospheric flux

::::::
release

:
at the seep site, and 2) a concentration model that com-

bines particle dispersion modelling,
:::::::
modeling

:::::
with an adaptive-bandwidth kernel density estimator , and customizable pro-

cess modules. Using this framework, we successfully modeled the concentration field and atmospheric flux of
::::::::
Applying

:::
the

:::::::::
framework

::
to

:
a
::::::
natural

:
CH4 between

::::
seep

::
at

::::
200

::
m

:::::
depth

:::::::
offshore

:::::::::::
northwestern

:::::::
Norway

:
(May 20 and

:
- June 20, 2018, from10

a natural seep site located at 200 meters depth offshore Northwestern Norway. Results show that dissolved gas is primarily
:
),

::
we

::::::
found

:::
that

::::::::
dissolved

:::::::
methane

::::
was

:
advected northeastward along the coast, spreading effectively across the

:::::
across shelves,

reefs, and entering open
:::
into

:
fjord systems. Within a few days, the vertical CH4 concentration profile is

:::
was

:
near inverted,

with peak concentrations close to the sea surface –
::::::::::
near-surface

:::::::
maxima,

:
facilitating atmospheric exchange. Diffusive emis-

sions are spread out over
:::::::
covered large areas (>105 km2) and exceeds

:::
was

::::::
almost

::
3
:::::
times

:
the local free gas fluxby more15

than threefold (∼0.76% ) during the modeling period
:
.
::::::
Around

:::::
0.7%

:::
of

::::::::
dissolved

::::
CH4:::::::

reached
:::

the
::::::::::

atmosphere
::::::

during
::

a
::
4

::::
week

:::::::
period,

::::::::
microbial

::::::::
oxidation

::::::::
removed

::::::
around

:::::
65%,

:
while ∼40% of the CH4 remains

:::
34%

::::::::
remained

:
in the water col-

umn. Although high uncertainties remains regarding microbial oxidation rates, microbes represent the main sink of CH4,

converting ∼60% of dissolved CH4 to CO2 during the modeling period.These findings highlight the importance of accounting

for dissolved gas from seeps when evaluating their impact on atmospheric emissions and ecosystem interactions
:::::::::::
Uncertainties20

:::::
caused

:::
by

:
a
:::::
range

::
of
::::::

model
:::::::::
framework

::::::::
elements

::::::
remain

:::::::::
substantial,

::::
e.g.

:::
can

::::::::
estimates

::
of

::::::::
microbial

:::::::::
oxidation

:::::::
removal

::::::
change

::::
from

::::
65%

:::
to

::
as

::::
low

::
as

:::::
5.5%

:::
or

::
as

:::::
high

::
as

::::::
91.4%

:::::::::
depending

:::
on

::::
rate

:::::::::
coefficient

:::::::::::
assumptions. Our framework provides a

globally applicable tool that incorporates
::::::::
integrates free and dissolved gas dynamics and flexible inclusion of chemical and
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biological processes, supporting improved understanding and ability to quantify environmental impacts of seabed gas seeps in

the future
::::::::::::
accommodates

::::::::
advanced

::::::::::::
hydrodynamic

:::::::::
modeling.

::
Its

::::::
ability

::
to

::::::::
explicitly

:::::::
resolve

::::::::::::
spatiotemporal

:::::
fields

:::::::
enables

:::
the25

:::::::
inclusion

:::
of

:::::::
complex

:::::::
physical

::::
and

:::::::::::::
biogeochemical

:::::::
process

:::::::
modules

::::
and

:::::::
supports

:::
not

::::
only

:::
the

::::::::::::
quantification

::
of

:::::::::::
atmospheric

:::::
fluxes

:::
but

:::
also

:::::::::::
applications

:::
that

::::::
require

:::::::
explicit

::::
field

:::::::::::::
representations,

::::
such

::
as

::::::::
assessing

:::::::
impacts

::
on

:::::
local

:::::::::
ecosystems.

1 Introduction

Estimates of the contribution of seafloor gas seepage to atmospheric emissions and its impact on ocean environments are

highly uncertain due to limited data and understanding of gas transformation and transport mechanisms in the water column.30

Atmospheric measurements are currently the only approach for estimating total atmospheric
:::::::::
Estimation

::
of

::::
total

:::::::::::
atmospheric

:::
gas emissions from seep areas (e.g. Myhre et al., 2016) . These typically rely

:::
rely

::::::
largely

:
on either ship measurements or

large-scale atmospheric inversion models, where the former only gives in situ flux , and
:
.
:::
The

::::::
former

:::
of

::::
these

::::::::::
approaches

::::
only

::::
gives

::::::::::
information

:::
on

::
the

:::::
local

:::
flux

::::
and

:::::::
requires

::::
some

::::
sort

::
of

:::::::::
up-scaling,

:::::
while

:
the latter is unable to estimate dispersed sources

and/or weaker point sources precisely due to its rough scale and inability to completely decouple atmospheric sources from35

sinks (Thompson and Stohl, 2014). Quantifying dissolved gas in the water column usually involves measuring dissolved gas

via water samples (e.g. Silyakova et al., 2020) or using in situ sensors (e.g. Gentz et al., 2014) which can be time-consuming

and often result in poor data coverage. New modeling tools for constraining the environmental impacts of current and future

seabed gas seepage from both natural and man made sources are therefore needed.

Gas released at the seabed can enter the atmosphere directly as free gas (bubbles) or via diffusive equilibrium of dis-40

solved gas that has reached the sea surface. To estimate the total atmospheric emissions from a seabed seep and its dis-

solved distribution in the water column, one must be able to model both pathways simultaneously. Gas contained in bubbles

can dissolve rapidly in ambient water and be exchanged with alien gases
::::::
content

::
in

:::::::
bubbles

::
is

:::::::::
constantly

::::::::
changing

:::
due

:::
to

:::::::::
dissolution

:::::
(gases

::
in
:::

the
::::::

bubble
::::::::

dissolve
::
in

:::
the

::::::
liquid)

:::
and

:::::::::
exsolution

::::::
(gases

::::::
already

::::::::
dissolved

::
in

:::
the

:::::
liquid

:::::
enter

:::
the

:::::::
bubble)

:::::
driven

:::
by

::::::
partial

:::::::
pressure

::::::::
gradients

:
across the bubble rim. Additionally, chemical and biological processes can modify lo-45

cal dissolved gas content. Estimating the gas distribution in the water column and total atmospheric flux therefore requires

a flexible framework which can integrate processes governing the gas phase dynamics and the hydrodynamics, accommo-

date atmospheric exchange
:
, and other phenomena that modify water column gas content. Previous modeling efforts have

focused on modeling either of the pathways and have been constrained in terms of dimensionality and /or integration of

processes, such as regional hydrodynamics (e.g McGinnis et al., 2006; Graves et al., 2015; Silyakova et al., 2020). Our aim50

is to provide a
::::::::
modelling

::::::
efforts

::::
have

::::::::
typically

:::::::
focused

::
on

::::::
single

:::
gas

::::::
phase

::::::::::
frameworks

::::::::
including

::::
only

:::::::
selected

:::::::::
processes

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g McGinnis et al., 2006; Graves et al., 2015; Silyakova et al., 2020),

::::::::
however,

:::
key

:::::
steps

::::::
towards

::::::::
modeling

:::
the

::::::::
complete

::::::
system

::::
have

::::
been

:::::
made

::::::
recently

::
in
::::::::::::::::::::::
Dissanayake et al. (2023)

:::
and

:::::::::::::::::
Nordam et al. (2025).

:::
We

::::
aim

::
to

:::::
further

:::::::
expand

::
on

::::
these

::::::
studies

:::::
from

:
a
:::::::::::::
methodological

:::::::::
perspective

::::
and

::::::
provide

:
a
:::::
pilot framework which can integrate all key processes governing free and dissolved

transport and transformation of seeped gas to provide a full 3-d concentration field in the water column and total atmospheric55
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release estimates
:::
and

::::
give

:
a
:::::::
realistic

::::::::
estimate

::
of

:::
the

::::
time

:::::::
varying

::::::::::::
3-dimensional

:::::
(3D)

:::::
water

::::::
column

::::::::::::
concentration

::::
field

::::
and

:::::::::::
2-dimensional

:::::
(2D)

::::::::::
atmospheric

::::::
release

::::
field.

Our approach uses in situ seabed seepage data and integrates a gas phase model with a hydrodynamic model using particle

dispersion modeling . This enables simultaneous estimation the total free and diffusive atmospheric gas release caused by

the observed seeps and the three-dimensional (
::::::
(similar

::
to
:::::::::::

Dissanayake
::
et
:::
al.,

::::::
2023).

::
It

::::::::
estimates

:::
the

:
3D ) distribution of gas60

in the water column . The approach also offers
:::
and

:::
the

::::
total

:::::
(free

:::
and

:::::::::
diffusive)

::::::::::
atmospheric

:::
2D

:::
gas

:::::::
release

:::::::
resulting

:::::
from

:::::::
observed

::::::
seabed

::::::::
seepage.

::::
This

::::::::
approach

:::::
offer

:
flexible inclusion of atmospheric flux and chemical and biological process

modules affecting dissolved gas content in the water column. Explicit concentrations (molecules per volume) are obtained

using kernel density estimationand atmospheric flux estimations
:
.
:::::::::::
Atmospheric

::::::::
dissolved

::::
flux

::::::::
estimates

:::
are obtained using a

bulk model
::
and

:::::::::::
atmospheric

:::
free

::::
gas

:::
flux

:::
via

::
a

:::
gas

:::::
phase

:::::
model. We tested the framework by quantifying direct and diffusive65

atmospheric fluxes as well as 3D dissolved gas distribution between May 20 and June 20, 2018 for a methane (CH4) seep area

offshore Northwestern Norway.

2 Method

Our goals are two-fold: i) Calculate the combined total amount of seep-derived gas that reaches the atmosphere - both direct free

gas release and ventilation of dissolved gas, and ii) Estimate the impact of seeped gas on the scalar dissolved gas concentration70

field, i.e.,
:
we seek the anomaly Φ′(x,y,z, t)=Φ(x,y,z, t)−Φo(x,y,z, t)::::::::::::::::::::::

Φ(x,y,z, t)−Φ0(x,y,z, t)::::::
caused

::
by

:::
the

:::::
seeps, where

Φ(x,y,z, t) denotes the total concentration and Φo(x,y,z, t) is the
::::::::::
Φ0(x,y,z, t)::

is
:
a background concentration.

The outlined goals are achieved by adapting and integrating existing and new models, of which output from one model

serves as a
::::
final

:
result or feeds another model. We first use seabed gas volume flux data and a two-phase gas model to calculate

the gas dissolution rates and direct atmospheric gas (bubble) release. Dissolved injection rate output from the gas phase model75

then feeds a concentration model that combines an existing dispersion modeling framework with an adaptive kernel density

estimator, including an atmospheric flux module and options for water column process modules. Figure 1 shows the complete

framework, with input data in the left column, the modeling steps in the center column, and the final results in the right column.

Each modeling section is detailed in the corresponding subsection.

2.1 Gas phase modeling80

Free atmospheric gas fluxes and dissolved gas profiles injected to the water column are initially modeled for each observed

seep using the seabed free gas flux data and the M2PG1 gas phase model (Jansson et al., 2019). M2PG1 provides an integrated

solution of dissolved and free gas in a 1-dimensional water column, with sources and sinks at both horizontal and vertical

model boundaries. It simultaneously models gas exchange, dissolution, and associated dissolved gas concentration of five gas

species (methane
:
(CH4 :

),
::::::
Argon

::::
(Ar), Argon Ar, Carbon dioxide (CO2, Nitrogen

:
),
::::::::
Nitrogen

:
(N2), and Oxygen (O2)

:
)
:
across85

a user-defined initial spectrum of bubble sizes. The bubble size spectrum and gas distribution across this spectrum freely

vary
::::
vary

:::::
freely across the spatio-temporal model domain. The model includes several bubble shape and rising speed models,
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Figure 1. Model framework flowchart. The emboldened modeling steps and associated numbers refer to the four subsections of the Methods

section. The "D" in the results column refers to spatial dimensions.

microbial oxidation of CH4 using first order kinetics (Griffiths et al., 1982; Chan et al., 2019), diffusive exchange with the

atmosphere, dissolved transport due to vertical turbulent exchange of water masses, as well as loss due to advection across the

model boundary (Jansson et al., 2019). While dynamic solutions are permissible in M2PG1, we have opted for a steady state90

solution in our modeling framework.

The input parameters include seabed gas flux, bubble characteristics (size distribution, rising speed, dirtiness, flatness),

temperature, salinity, microbial CH4 oxidation rate coefficients (MOx), ambient dissolved gas concentrations (for all five

gases), vertical mixing (turbulent) and local ocean currents. Seabed free gas flux data can in theory be obtained by any means

available, although hydroacoustics has
::::
have been used extensively due to its simple use

:::::::
relatively

:::::::::::::
straightforward

:::::::::::
deployability95

and large coverage (e.g. Ferré et al., 2020).

In our implementation of M2PG1 we used an
:
a
::::
new

:
estimation technique to determine the horizontal model domain size ,

which was previously ambiguous in the initial
:
in

:
M2PG1model

:
.
:::::::::
Horizontal

:::::::
domain

:::
size

::::
was

:::::::::
previously

::::::
chosen

:::::::::::
ambiguously

::
in

:::::::
M2PG1 (Jansson et al., 2019) and could cause significant exchange rate errors. Our method removes this ambiguity by

estimating the horizontal bubble plume extent based on local conditions. Details are provided in Appendix A.100

The steady-state output from the M2PG1 simulation provides two key results: i) direct atmospheric gas flux and ii) injection

rates of dissolved gas to the surrounding water column. The former is a direct output in M2PG1 and the latter, which are key

input for the concentration modeling steps (Sect
:::::::
Sections

:
2.3 -2-4

:
–
:::
2-4), can be derived from the dissolved gas concentration

profiles by calculating the dissolved gas loss q [mol s−1] to the water column at the downstream boundary of each M2PG1 grid
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cell. The steady-state mass flux assumption gives:105

q =A⊥
MU(φM −φb), (1)

where A⊥
M [m2] is the vertical grid cell area (Appendix A), U [m s−1] the current speed, φM [mol m−3] the estimated concen-

tration within the grid cell and φb [mol m−3] the assumed concentration at the upstream boundary.

2.2 Particle dispersion modeling

To estimate the dissolved gas field
::::::::::
unobservable

::::::::
dissolved

::::
gas

:::::::::::
concentration

::::
field

::::::::
anomaly

:::::::::::
Φ′(x,y,z, t), we must model the110

advection and spread of the dissolved gas from the release site
:::::
seeps. We chose to simulate the transport and dispersion of the

gas from the release site using OpenDrift, which is a Lagrangian particle trajectory modeling software (Dagestad et al., 2018).

In practice, this means that we divide
:::::::
distribute

:::::::::
(virtually)

:
the released CH4 over a discrete number of

:::::
virtual particles,

and update the particle positions at discrete time steps
:::::
times tn for time-steps n= 1,2,3, ...,N

::::::::
according

::
to
::::

the
:::::
output

:::::
from

:
a
::::::::::::
hydrodynamic

::::::
model. Each timestep is separated by a time interval ∆t. Furthermore, we let

::
We

::::
then

::::::
define S[n] be

::
as the115

number of virtual particles seeded at predefined locations (the relase sites )
::
the

::::::::
modeled

::::
seep

::::
sites

:
at each time step. This

generates a total of Z =
∑N

n=1S[n] particles indexed by ζ = 1,2,3, ...,Z.
::::
Note

:::
that

:::
we

::::::::::
throughout

:::
this

::::::::::
manuscript

:::
will

::::
use

:::::
square

::::
"[·]"

::::::
versus

:::::
round

::::
"(·)"

:::::::
brackets

::
to

:::::::::
distinguish

:::::::
between

:::::::
discrete

:::
and

::::::::::
continuous

::::::::::::
spatiotemporal

:::::::::
arguments,

:::::::::::
respectively.

::::
Once

::::::::
particles

:::
are

::::::
seeded,

:
OpenDrift calculates the trajectory of each particle individually by solving the Lagrangian form120

::::::::::
numerically

::::::
solving

:
a
:::::::::
stochastic

:::::::::
differential

:::::::
equation

::::::
which

::
is

::::::::
consistent

::::
with

:::
the

::::::::::
Lagrangian

::::::::::::
representation of the advection-

diffusion equation
:::
(see

::::
e.g.

::::::::::::::::::::::
Spivakovskaya et al. (2007)

::
).

:::
The

::::
drift

::
in

:::::::
particle

:::::::
position

:
η
::::
can

::
be

::::::::
expressed

:::
as

∂η

∂t
d
:
η =UUµ(η, t)dt: +UsB(η, t),d

:
W (t)

::
(2)

where η is the particle position and Uµ and Us are advective
:::::::
Uµ(η, t):::::::::

represents
:::::::::::
displacement

::::::::
produced

::
by

:::
the

::::::::::
underlying

(mean) and diffusive (stochastic) velocity vectors, respectively
::::::
velocity

::::
field

::::
and

:::
the

::::::
second

::::
term

::::::::
represents

:::::::::::
displacement

:::::
from125

:::::::
random,

:::::::
diffusive

::::::::
processes

::::
and

::
is

::::::::
composed

::
of

::
a
:::::::::
diffusivity

:::::
matrix

:::::::
B(η, t)

:::
and

::::::::::
increments

::
of

:
a
:::::::
Wiener

::::::
process

:::::::
dW (t). The

advective term (Uµ (η, t)) is determined by velocity fields obtained from a
:::
the hydrodynamic model. Diffusivity coefficients

from the hydrodynamic model can be used to calculate the diffusive term (Us(η, t)), however
:::::::::
OpenDrift

::::::::
represents

::::
the

::::::::
diffusivity

:::::::
B(η, t)

:::
as

:
a
::::::::
diagonal

::::::
matrix

::::
with

::
a
:::::::::
horizontal

:::
and

::
a
:::::::
vertical

:::::::::
diffusivity.

::
If

::::::::
available,

:::::
these

:::::::::::
diffusivities

:::
can

:::
be

::::::
directly

::::
read

:::::
from

:::
the

::::::::::::
hydrodynamic

:::::
model

::::::
output.

::::::::::
Otherwise, OpenDrift can also estimate the diffiusivity coefficients using130

in-built parametrizationswhen the coefficients are not avaiable in the ocean model output
::::::::
diffusivity

::::::::::
coefficients

:::::
using

:::
one

:::
of

::::::
several

::::::
built-in

::::::::::::::
parametrizations. Finally, OpenDrift returns individual (traceable) positions ηζ [n] for each seeded particle at

each time-step they spend in the model domain.
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2.2.1 Particle mass

To associate the particle distribution with dissolved gas content, we latch a particle mass Γζ to each seeded particle, which135

explicitly corresponds to the number of moles each particle represents (this mass has no influence on the particle buoyancy).

Each particle is thus interpreted as a virtual single-point representation of some local spatial distribution of Γζ moles of

dissolved gas molecules. Particle mass can be modified at each time-step to simulate processes affecting gas content. Each

particle therefore has a successively constructed mass time-series, where the current mass Γζ [n] is determined by the previous

mass Γζ [n− 1] and one or more mass modification functions γζ [n− 1].140

The initial mass, i.e. mass at release, of an arbitrary particle ζ seeded at time-step n is scaled such that the total released

particle mass
::::
from

:::
all

:::::::
modeled

:::::
seeps

::::::::
combined

::
at
::::::::
timestep

:
n
:
approximates the total number of moles of gas dissolved in the

water column during a
::
the time interval ∆t centered on tn. In practice, we distribute the integrated sum of modeled (using the

gas phase model) injected gas molecules from tn−∆t/2 to tn+∆t/2 evenly over the seeded particles. Assuming seabed flux

is stationary within the time interval tn ±∆t/2, we get the initial mass
:::
The

:::::
mass

::
of

::::::
particle

:::
Γζ::::::

seeded
::
at

::::::::
time-step

::
n

::
is

::::
then145

:::::::
obtained

::
by

:

Γζ [n] =
∆t
∑P

p=0Υp[n]

S[n]
(3)

where Υ1[n],Υ2[n], . . . ,ΥP [n] [mol s−1] are total injected dissolved gas from all P modeled seeps.
::::::::::::
Approximation

:::
to

:::
the

:::::::
modeled

::::::::
dissolved

:::
gas

::::::
release

:::::::
profiles

::
at

::::
each

::::::::
modeled

::::
seep

::
is

:::::::
achieved

:::
by

:::::::
seeding

:::::::
different

:::::::
amount

::
of

:::::::
particles

::
at
::::::::
different

::::::
depths.

:::::::
Particle

::::::
masses

:::
are

:::::
then

:::::::::::
subsequently

::::::::::
individually

::::::::
adjusted

::
at

:::::
each

::::::::
time-step

::
to

::::::::
simulate

::::::::
processes

::::::::
affecting

::::
gas150

::::::
content.

:::::
Each

:::::::
particle

::::
thus

:::
has

::
a

::::::::::
successively

::::::::::
constructed

:::::
mass

::::::::::
time-series,

:::::
where

:::
the

:::::::
current

::::
mass

:::::
Γζ [n]::

is
::::::::::

determined
:::
by

::
the

::::::::
previous

::::
mass

::::::::
Γζ [n− 1]

::::
and

:::::::
selected

::::
mass

:::::::::::
modification

::::::::
functions.

:

2.2.2 Particle count

Our framework must be able to model an extensive 3-dimensional domain (e.g. larger ocean regions), making computational

complexity a challenge. Both computational
::::::::::
computation

:
time and estimation quality (of "real" conditions) increase with the155

number of active particles present in the domain. This makes it crucial to be able to strike a decent compromise between the

two, which typically involves removal of particles that have been present in the domain for a certain number of time-steps,

referred to as particle death. Total particle count Λ[n] in the domain can then be expressed as

Λ[n] = Λ[n− 1]+S[n]−L[n]−℘[n], (4)

where L[n] is the number of particles leaving the model
::::::::
modelled

:::::::::::
geographical domain, and ℘[n] the number of dying

:::::::
removed160

particles. A constant particle count is obtained when S[n]∼ L[n] +℘[n]. Since ℘[n] represents non-physical loss of gas, the

model simulation would ideally run with a spin-up time that ensures S[n]∼ L[n]. Unfortunately, this typically results in

unreasonable computation times and/or spin-up periods, making particle death
:::::::
removal necessary. To limit errors caused by

dying
:::::::
removed

:
particles, we implemented

:::::
apply a function that redistributes mass from all dying

:::::::
removed

:
particles to nearby

6



living
:::::::::::
non-removed particles. The redistribution is weighted according to the inverse distance from the dying

:::::::
removed

:
particle165

within a user defined distance limit dmax, giving a surviving particle s
::::::::::
non-removed

:::::::
particle

:
τ
:
an added mass of

γsτ = Γθ
||ητ −ηθ||−1

2∑
ζ∈T ||ηζ −ηθ||−1

2

(5)

from the dying
:::::::
removed particle θ. Here, τ ∈ T and T is the set of surviging particle

::::::::::
non-removed

::::::::
particles

::::
with indices ζ

satisfying ∥ηζ −ηθ∥2 ≤ dmax, and ∥ · ∥2 denotes the Euclidean norm. This solution changes the problem of non-physical loss

of dissolved gas to one of non-physical redistribution, which is generally considerably less problematic .
::::
This

:::
can

:::::
affect

::::::
model170

:::::
results

:::
by

:::::::
shifting

::::::
particle

:::::
mass

:::::::
towards

:::
the

::::
seed

::::::::
location,

:::::
since

:::
the

::::::
density

:::
of

:::::::
particles

:::
are

:::
in

::::::
general

::::::
higher

:::::
closer

:::
to

:::
the

::::::
release

:::::
point.

::::::::
However,

:::
we

:::::::
consider

:::
this

::::::
artifact

::::
less

::::::::::
problematic

::::
than

::::
mass

::::::
simply

:::::::::::
disappearing.

2.3 Grid Projected Adaptive-bandwidth Kernel Density Estimator

Having an explicit relationship between dissolved gas content (of seep origin) and particle mass Γζ allows us to infer gas

concentrations by evaluating the particle mass per unit volume, which we refer to as the particle density. Let us assume that175

the particles ζ = 0,1,2, ...,Z are scaled/weighted (by
::::::
samples

::::::
(using their mass Γζ) samples from an unknown, smooth, un-

derlying particle density field ϕ(x,y,z, t) which approximates the seep-induced gas concentration anomaly field Φ′(x,y,z, t).

Estimation of Φ′(x,y,z, t) can then be done via the estimate ϕ̂ of ϕ(x,y,z, t) using the particle data set.

To get ϕ̂, we employ a discrete spatiotemporal grid [i, j,k,n], where i= 1,2, .., I, j = 1,2, ..,J, k = 1,2, ..K, n= 0,1,2, ..,N ,

and I,J,K,N denote the number of grid cells in east, north, vertical and temporal dimensions, respectively. Grid cell center180

positions are given by [xi,yj ,zk, tn], with horizontal resolution ∆λ (in both directions), vertical resolution ∆z, and temporal

resolution ∆t. We then bin all mass in the temporal and vertical domains and obtain separate estimates ϕ̂[i, j] of ϕ(xi,yj)

for each resulting depth layer k and time-step n to form the final estimate ϕ̂[i, j,k,n]. Obtaining ϕ̂[i, j,k,n] thus translates to

solving a series of 2-dimensional density estimation problems (see e.g. Silverman, 1986).

Due to the extensive model domain and the fact that we
::::
need

::
to obtain one estimate for every depth layer and time-step185

(K ×N estimates), our density estimator needs to be fast and allow reliable density estimates from limited particle counts.

The histogram estimator is a simple and extensively used solution in similar situations, however, we found it unsuitable

for our application because of its wasteful information exploitation and improper handling of low concentration regions
:
It

::::
must

::::
also

::::::
handle

::::::
regions

:::::
with

:::
low

::::
and

::::
high

::::::::::::
concentrations

::::
and

:::::::::::
concentration

::::::::
gradients

:::
as

::::
well

::
as

::::::::
complex

:::::::::
boundaries

::::
like

:::::
fjords

:::
and

:::::::
islands.

::
A

:::::::::
commonly

:::::
used

::::::
density

::::::::
estimator

:::
in

::::::
similar

:::::::
contexts

::
is
:::
the

:::::::::
histogram

:::::::::
estimator,

:::::
which

::::::::::::
unfortunately190

:::
has

::::::
several

::::::::::
well-known

:::::::::
limitations

::
in

:::::
these

::::::::::
applications

:
(the histogram estimator and its drawbacks are detailed in Appendix

B). Instead, we
:::::::
Previous

:::::::
studies

::
on

::::::::::::
concentration

:::::::::
estimation

:::::
from

:::::::
particle

:::::::::
dispersion

:::::
model

::::
data

:::::
have

::::::
shown

::::
that

::::::
Kernel

::::::
Density

:::::::::
Estimators

:::::::
(KDEs)

:::
can

::::
offer

:::
far

:::::::
superior

::::::::::
information

::::::::::
exploitation

::::
than

:::
the

::::::::
histogram

::::::::
estimator

:::
and

:::::::::
overcome

:::::
many

::
of

::
its

:::::::::
drawbacks

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see e.g De Haan, 1999; Vitali et al., 2006; Björnham et al., 2015; Barbero et al., 2024; Yang et al., 2026)

:
.
::::
One

::::::::
remaining

::::::::
challenge

::
in
::::

our
::::::
specific

::::::::::
application,

::::::::
however,

::
is

:::
the

::::
lack

::
of

::::::::
available

:::::
KDEs

:::::::
tailored

::
to

::::::
coastal

::::::
ocean

::::::
regions

::::
that195

:::::::::::
appropriately

:::::
adapt

::
to

::::::
spatial

::::::
density

:::::::::
variability

::::::::
(adaptive

::::::::::
bandwidth)

::::
and

:::::::
complex

::::::::
boundary

::::::::::
geometries

:::::::::::
(bathymetry).

::::
We
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:::::::
therefore

:
formulated a new 2-dimensional adaptive Kernel Density Estimator (KDE )

:::::::::::::::
adaptive-bandwidth

:::::
KDE to provide our

density estimates.

Kernel density estimation is a standard non-parametric way to estimate the density of a random variable using kernel func-

tions (Silverman, 1986). This offers a density estimate that is
::::::
density

::::::::
estimates

::::
that

::
are

:
differentiable, grid cell size independent200

and often more realistic compared to the histogram estimator
:::::::
generally

:::::
more

:::::::
realistic

:::
than

:::::::::
histogram

:::::::::
estimators, without lower

density limitations. For particle dispersion model output data, this
:
In

::::
our

::::
case,

::
a
::::::
kernel

::::::
density

:::::::
estimate

:
involves placing a

symmetric, smooth, and , in our case, weighted kernel function at each particle position. By summing up the functions
:::::
kernel

:::::::::::
contributions, the density field ϕ̂ at position r0 can then

:::::
located

::::::
within

:::
the

:::::::
volume

::
V

:::
can

:
be estimated via the general kernel

density estimator formula :205

ϕ̂(r0) =
1

V

Z∑
ζ=1

ΓζKh

(
||r0 −ηζ ||2

)
. (6)

Here, Kh(ξ)≡ (1/h)K(ξ/h), where K(ξ) is a non-negative, normalized, and symmetric kernel function, h a bandwidth

(smoothing) parameter, and r0 the estimate position.

It is well established that the choice of kernel shape K(ξ) is of less importance, as long as it adheres to the kernel function

requirements. We define the base kernel K(ξ) as a standardized 2-dimensional Gaussian, i.e. K(ξ) = exp
(
−ξ2/2

)
/2π. This210

kernel choice is consistent with our interpretation of particles representing a host of CH4 molecules and the macroscopic

outcome of the diffusive term in the trajectory generator (Eq. (2)).

Selecting an appropriate bandwidth h is crucial, as a poor choice can cause large errors (De Haan, 1999), particularly

due to over-smoothing (Larsen et al., 2002). Several methods exist for selecting h by evaluating the statistical properties

of the collected data, but they typically rely on strict assumptions on the underlying field. Additionally, for heterogeneous215

fields(as in our case) where the
:::
For

::::::::::::
heterogeneous

::::::
fields,

::::
such

:::
as

::::
ours,

::::::
where statistical properties vary across the domain,

local adaptation of h is necessary to give realistic density estimates in both high and low particle count areas. Our domain

also includes
::::::::::
Furthermore,

:::
the

::::::::
presence

::
of

:
complex boundaries in the form of bathymetry and coastlines . These aspects also

pose a challenge with
::::::::
introduces

:::::::::
additional

::::::::::
challenges,

::::
both

:::
for

::::::::
providing

::::
valid

::::::::
estimates

::::
and

:::
for computational complexity.

Our proposed KDE
::
To

::::::
handle

:::::
these

:::::::::
challenges,

:::
we

::::
have

::::::::
proposed

::
a
::::
KDE

::::
that is bathymetry bounded and estimates a locally220

adapted
:::::
kernel

:::::::::
bandwidth h using an expanded version of Silverman’s rule (Silverman, 1986) which accommodates correlated,

weighted dataand handles computational complexity
:
.
::::::::::::
Computational

::::::::::
complexity

::
is

::::::::::
constrained via grid-projection and pre-

computation of kernels. Testing and validation of the estimator were done using synthetic simulations (see Appendix C).

2.3.1 Grid projection and pre-computed kernels

To improve computational times, we have implemented a grid-projected estimator (Sole-Mari et al., 2019). This involves225

obtaining a preliminary density ϕ̃[i, j] using the histogram estimator via Eq. (B1), i.e. calculate the accumulated particle mass

of all particles within each grid cell. All mass now
:::
then

:
belongs to a discrete grid, where any difference in position r between

two locations of interest [i, j] and [i0, j0] can be expressed as (i− i0, j− j0)∆λ.
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Furthermore, we pre-compute a set
:
of

:
normalized kernels with fixed, discrete bandwidths given by:

h[ω] =
ω∆λ

3
, where ω = 0,1,2, ...Ω. (7)230

Each initial non-discrete bandwidth estimate h′ from the data-driven bandwidth algorithm is then mapped to the nearest candi-

date in h[ω]. Kernel support is set to ±ω∆λ beyond which the kernel contribution is set to zero. Leaked kernel mass is added

back across the kernel domain using the Kernel function. These simplifications make complexity scale with particle containing

:::::::::::::::
particle-containing

:
cells instead of particles. It also allows for fast vectorized operations which drastically reduce computation

time and results in
:::::
while

:::::
giving

:
negligible errors for large grids (Sole-Mari et al., 2019).235

2.3.2 Data-driven adaptive bandwidth selector

The conventional Silverman’s rule of thumb (Silverman, 1986) selects the optimal bandwidth h that minimizes the integrated

mean square error under the assumption of Gaussian distributed data with variance σ2. For a d-dimensional Gaussian kernel,

one obtains

h=

(
4

d+2

) 1
d+4

N− 1
d+4σ, (8)240

where N is the number of data samples, i.e., the number of particles. For d= 2, the expression simplifies to

h=N− 1
6σ. (9)

Here we modify Silverman’s rule to yield reasonable estimates for our multi-modal, correlated, non-homogeneous, weighted

data set by: i) adapting h locally for a square shaped horizontal "adaptation" grid of size P ×P surrounding each particle

containing grid cell ,
:::::
where

:::
we

:::::::
assume

::::
near

:::::::
normal,

::::::::
unimodal

::::::::::
distribution,

:
ii) estimating the effective (uncorrelated) sample245

size Neff::::
Neff and iii) implementing bias corrections to a σ-estimator for weighted data-sets. The size P is determined by an

integral length scale estimate (as outlined below) of the entire I × J 2-d grid. For an arbitrary cell [i, j], the adaptation grid

is defined by letting l and m be discrete indices on the grid such that 1≤ l,m≤ P with step size ∆λ in both directions. The

number of particles contained in the local grid (prior to grid projection) is denoted as Ng , and the pre-computed histogram

density ϕ̃ serves as the underlying data for obtaining estimates of the local h. We will now describe the procedure of obtaining250

estimates of Neff :::
Neff:

and σ to get the local h for an arbitrary adaptation grid.

Spatial correlations present in environmental data decrease the effective degrees of freedom in the sample set and we must

therefore estimate and use the effective sample size Neff to obtain a reasonable h for the local grid (e.g. Larsen et al., 2002).

To estimate the effective number of spatially uncorrelated samples, a measure of correlation length is employed. We use the

so-called integral length scale known from turbulence theory and statistical physics, see e.g., (Yaglom, 1987; Frisch, 1995;255

Pécseli, 2000) as our objective measure of the correlation length. The correlation length Lc in terms of the integral length scale

is formally defined by Frisch (1995)

Lc =

∞∫
0

|R(ϱ)|dϱ

R(0)
, (10)

9



where R(ϱ) = E{ϕ(x)ϕ(x+ ϱ)} is the spatial autocorrelation function (ACF) of a continuous univariate spatial random pro-

cess ϕ(x), ϱ is a spatial lag coordinate, and E{·} is the statistical expectation operator.260

We now proceed by defining a local integral length scale Lc for the binned adaptation window. First, we estimate the local

one-dimensional ACF of ϕ̃ along each row l and column m of the square grid by using the standard unbiased ACF estimator

(e.g., Percival & Walden, 1993)

R̂row
l [λ] =

1

P −λ

P−λ∑
m=1

ϕ̃l,mϕ̃l,m+λ for l = 1,2, ...,P (11)

R̂col
m [λ] =

1

P −λ

P−λ∑
l=1

ϕ̃l,mϕ̃l+λ,m for m= 1,2, ...,P (12)265

where ϕ̃l,m is the binned particle density in grid cell [l,m] and λ= 0,1, , ...,P − 1 is the discrete horizontal spatial lag in-

dex. Assuming local spatial homogeneity, we then arithmetically average the ACF estimates over all P rows and columns,

respectively, to yield two one-dimensional ACF estimates as

R̂row[λ] =
1

P

P∑
l=1

R̂row
l [λ] and R̂col[λ] =

1

P

P∑
m=1

R̂col
m [λ]. (13)

We now assume local spatial isotropy and let the arithmetic average of the two perpendicular ACFs serve as a representative270

single ACF for the adaptation window

R̂[λ] =
1

2

(
R̂row[λ] + R̂col[λ]

)
. (14)

Using the estimated ACF, we can finally estimate the local one-dimensional integral length scale L̂c for the adaptation window

by discretizing Eq. (10) as

L̂c =

∑P−1
λ=0 |R̂[λ]|∆λ

R̂[0]
. (15)275

We now express the correlation length in terms of the associated number of samples as Nc = L̂c/∆λ. It is easy to show that

1≤Nc ≤ P . We then define the number of effectively uncorrelated particles Neff as

Neff =
Ng

Nc
, (16)

and it directly follows that Ng/P ≤Neff ≤Ng . The interpretation of Neff is straightforward: if all particles are spatially

uncorrelated, then Neff =Ng , and if all particles are fully correlated (e.g., if they are all trapped in a coherent structure), then280

Neff attains its lower limit Neff =Ng/P .

To obtain an estimate σ̂2 of the variance σ2 in the two-dimensional binned data, we need to account for the loss of degrees

of freedom due to shortening of the residual vector (Bessel’s correction) and weighting as well as increased variance due to the

binning process itself. The estimate of variance for the binned particle density ϕ̃l,m, can then be expressed as

σ̂2 =

(∑
l,m ϕ̃l,m∥rl,m −µ∥22∑

l,m ϕ̃l,m

)(
1

1−B

)
+σ2

b , (17)285
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where rl,m denotes the grid cell center point position vectors,
∑

l,m ≡
∑P

l=1

∑P
m=1, and

µ=

∑
l,m ϕ̃l,mrl,m∑

l,m ϕ̃l,m

(18)

is the weighted mean position vector, and
(

1
1−B

)
, where

B =

∑
l,m ϕ̃2

l,m(∑
l,m ϕ̃l,m

)2 , (19)

is a bias correction term that accounts for Bessel’s correction and the reduced degrees of freedom due to uneven sample weights290

(Kish, 1965, pp 86-88). The variance increase due to the binning process (Sheppard’s correction, see e.g. Vardeman, 2005) is

included through the correction term σ2
b =∆λ2/12.

The final local bandwidth estimate
:::
(for

::::
each

::::::::::::::::
particle-containing

::::
grid

::::
cell) then follows from Eq. (9):

ĥ=N
− 1

6

eff σ̂. (20)

2.3.3 Boundary solution295

We establish a boundary solution for the density estimator by interpolating bathymetry data onto the model grid across all

predefined depth layers, creating a matrix of "permissible" and "impermissible" cells for gas. The boundary control is imposed

at the kernel estimation stage before summation, by directly modifying kernels whose support contains impermissible cells (see

Figure 2). While being computationally intensive, this greatly simplifies the boundary control and entirely omits the difficulties

of finding a reliable boundary solution that handles the complex bathymetry and physical processes appropriately.300

Impermissible cells are treated as impenetrable obstacles, and any
::::::::
reflecting

:::
that

::::::::
dissolved

:::
gas

::::::
cannot

:::::
cross

::::
land

::
or

:::::::
shallow

::::::::::
bathymetric

:::::::::
boundaries.

::::
Any

:
density within, or "blocked" by impermissible cells, is considered misplaced. A cell is defined

as blocked if it lacks a clear line of sight to the kernel center. We determine line of sight using Bresenham’s line algorithm

(Bresenham, 1965). This is an efficient incremental algorithm relying solely on integer arithmetics that identify grid cells

located between an origin cell (x0,y0) and a target cell (x1,y1) (Figure 2). The algorithm is implemented on a normalized305

grid with unit cell lengths and initialized by first defining the direction, or step coefficients sx and sy in the x and y directions,

respectively:

sx =

1, if x0 < x1

−1, if x0 > x1

, sy =

1, if y0 < y1,

−1, if y0 > y1.
, (21)

and an error term ε= dx−dy, where dx = |x1−x0| and dy = |y1−y0|. The algorithm then iteratively updates (x0,y0), using

ε to determine whether to step in x or y direction (sx, sy are not updated) via the following criteria:310

2ε >−dy : x0 ⇒ x0 + sx and 2ε < dx : y0 ⇒ y0 + sy. (22)

At each time step, (x0,y0) is added to the list of grid cells, thereby iteratively forming the line of sight to the target cell. Density

in blocked or impermissible cells are redistributed to permissible cells according to the kernel function.
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Figure 2. Sample kernel with support i, j = 0,1, ...,10, containing impermissible cells in its kernel support. Density is indicated by blue

shading and impermissible cells (Bathymetry/land) and blocked cells where mass from the shown kernel is not permitted to access are shown

as black and yellow colored cells, respectively. Cells identified as being in the line of sight between the kernel center (green dot) and cell

[1,8], according to Bresenham’s line algorithm, are grayed out (although there is nothing particular about this line).

2.4 Atmospheric flux and mass modification functions

Changes in dissolved gas content due to processes within or at the boundaries of the water column are included by modifying315

the particle mass
::::::
masses. Total mass change is estimated for

::
of

:
a
::::::
particle

::
ζ
::
is

::::::::
estimated

::
at each time-step n and particle ζ using

predefined mass modification functions
:::
that

:::::
couple

:::::::
particle

::::::::
properties

::
to

:::
the

:::::::
gridded

::::
field

::::::::
processes. Here, our modeling frame-

work is relatively flexible, and can even accommodate models where it is necessary to keep track of higher order parameters,

such as microbe stocks (e.g. a Monod model). This is made possible since we can model any parameter explicitly across the

domain(although this will increase computation time). We will only describe mass modification due to dissolved atmospheric320

exchange of gas here, but a mass modification function for microbial oxidation of CH4 is presented in the application section

(Sect 3).
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Atmospheric flux can be implemented following any theory using the surface layer concentration as input data. Here we

propose a simple solution by applying the bulk equation from Wanninkhof (2014):

F = κ(Φatm −Φsw) , (23)325

where F [mol m−2 s−1] is the gas flux across the sea-air interface, κ [m s−1] is the gas transfer velocity, and Φatm and Φsw

[mol m−3] are atmospheric and surface water concentrations, respectively. The gas transfer velocity κ can be expressed as

κ(Ua,Ts) = CκU
2
a

(
Sc(Ts)

660

)−1/2

, (24)

where Sc(Ts) and Cκ are empirically derived constants and Ua is the surface wind speed
::::
wind

:::::
speed

:::
10

::
m

:::::
above

:::
the

::::
sea

::::::
surface. The Schmidt number Sc(Ts) is an

:::
the empirically derived, gas-specific temperature-dependent dimensionless constant330

describing the fractional relationship of
:::
ratio

::::::::
between

::
sea

:::::
water

:
kinematic water viscosity to

::
and

:
the diffusion coefficient of the

gas. The Cκ coefficient lumps together a set of various processes that govern sea/air exchange and was
:::
has

::::
been

:
determined

for CO2 only, using inverse modeling for global estimates and a wind speed range of 4< ua < 15
::::::::::
4< Ua < 15

:
m s−1

:::::
using

::::::
inverse

::::::::
modeling

:::
for

:::::
global

::::::::
estimates. Validity for other gases and wind ranges is not fully known.

Let the gridded estimate of the 2-d
:::
2D spatiotemporal atmospheric flux field β(x,y, t) be denoted β̂[i, j,n], using the same335

horizontal and temporal grid cells as ϕ̂[i, j,k,n]. We then assume an initial equilibrium between the atmospheric concentration

and background surface concentration, which is disturbed by the (modeled) seep-derived dissolved gas. The difference between

surface water and atmospheric concentration in Eq. (23) is then simply the surface layer (k = 0) concentration ϕ̂[i, j,0,n]. To

obtain an estimate of the gas transfer coefficient κ, we project re-analysis atmospheric wind
::
10

::::::
meters

::::::
above

:::
sea

::::
level

:::::
wind

:::::
speed and sea surface temperature data onto all i, j, and ns, delivering the gridded gas transfer coefficient field estimate κ̂[i, j,n]340

.
::::
using

::::
Eq.

::::
(24). The gridded atmospheric dissolved flux field estimate is then given by

β̂[i, j,n] = κ̂[i, j,n] ϕ̂[i, j,0,n] ∆λ2∆t, (25)

where β̂[i, j,n] is the integrated atmospheric flux from grid cell [i, j,n].

Loss of gas due to atmospheric flux is implemented by modifying the particle mass of all particles present in the surface layer.

Since the atmospheric flux function varies linearly with the dissolved gas content, the mass adjustment can be implemented345

by distributing loss (at any given time-step) according to the contribution from each particle to the total atmospheric flux .

This is done via a weighted mean calculation,
::
To

::::::
ensure

:::::::
efficient

:::::::::::
computation

:::
and

:::::
mass

:::::::::::
conservation,

:::
we

:::::::
assume

::::
that

:::
the

:::::
entire

::::::::::
contribution

::
to

:::
the

::::::::::
atmospheric

::::
flux

::::
from

::
a
::::::
surface

:::::
layer

::::::
particle

::::::
occurs

:::::
within

:::
the

::::
grid

::::
cell

:::::
where

::::
that

::::::
particle

:::::::
resides,

::::::::::
disregarding

:::
the

::::::
effects

::
of

:::::
mass

:::::::::
distribution

:::::::
through

:::
the

:::::::
density

::::::
kernels.

::::::
Errors

:::::::::
associated

::::
with

:::
this

::::::::::
assumption

:::
are

::::::::
expected

::
to

::
be

:::::
small,

:::::
since

::::
wind

::::
and

::::::::::
temperature

:::::
fields

:::
and

::::::::::::
consequently,

:::
gas

::::::
transfer

::::::::
velocities

:::
are

::::::::
generally

:::::::
smooth

::
on

::::::
typical

::::::
kernel350

::::::::
bandwidth

::::::
scales.

::
It
::
is

::::
also

:::::
mass

:::::::::
conserving,

:::::::
because

:::::::::::
atmospheric

::::
flux

:::::
varies

:::::::
linearly

::::
with

::::::::
dissolved

:::
gas

::::::::::::
concentration

::::
(Eq.

::::
(25)).

::::::::::::
Furthermore,

::::
since

::::
grid

:::
cell

::::::::::::
concentration

:::::::
depends

:::::::
linearly

::
on

:::
the

::::
total

::::
cell

:::
gas

::::::
content

:
(i.e.the mass modification term

for atmospheric loss at time-step n for a particular ,
:::

the
::::

sum
:::

of
::
all

:::::::
particle

::::::
masses

:::
in

:::
that

::::
cell)

::::
and

:::
the

:::::::
gridded

:::
gas

:::::::
transfer

:::::::
velocity,

::::::
relative

::::
flux

::::::::::::
contributions

::::
from

::::::::
particles

:::
can

:::
be

::::::::
estimated

:::::
using

::::::::
products

::
of

:::::::
particle

::::::
masses

::::
and

::::
cell

::::::
specific

::::
gas
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::::::
transfer

:::::::::
velocities.

::::
The

::::
mass

::::
loss

:::
due

::
to
:::::::::::
atmospheric

::::::::
exchange

:::
for

:
a
:
surface layer particle a is given by

::
α

::
at

::::::::
time-step

:
n
::::
can355

:::
then

:::
be

::::::::
expressed

::
as

:

γa[n]α[n]
:::

=
Γa[n]∑
ζ∈AΓζ [n]

Γα[n]κ̂[c(α),n]∑
ζ∈AΓζ [n]κ̂[c(ζ),n]

::::::::::::::::::

I∑
i=1

∑
j=1

Jβ[i, j,n]J
:
β̂[i, j,n], (26)

where a ∈ A
:::::
α ∈ A

:
and A denotes the set of indices for all particles in the surface layer and γa[n] is mass loss to the

atmosphere.
::
all

:::::::::::
surface-layer

::::::::
particles,

:::
and

:::::
c(α)

::::::
denotes

:::
the

::::::
indices

:::
i, j

::::::
where

::::::
particle

::
α

::::::
resides.

:

3 Application360

We applied the modeling framework to a well documented natural CH4 seep site offshore northwestern Norway located in

the Hola trough (Figure 3), where coral reefs and CH4 seeps coexist (Chand et al., 2008). These seeps were studied not

only for assessing and investigating mechanisms governing atmospheric fluxes
::::::::::
investigated

:::
not

::::
only

::
to

:::::
assess

:::
the

:::::::::::
mechanisms

::::::::
governing

::::
CH4:::::

fluxes
::
to

:::
the

::::::::::
atmosphere, but also for

:
to
:::::::
evaluate

:
their potential impact on local cold water coral reefs

:::::::::
ecosystems

::::::::::::::::::::::::::::::::
(Sert et al., 2025; Argentino et al., 2025). A thorough description of the data,

::
site

:::::::::::::
characteristics,

:
environmental conditions,365

and the seabed flux estimation
::::::
seabed

::::
flux

::::::::
estimates are presented in Ferré et al. (2024). In essence, the

:::::
short,

:::
the

::::::::
observed

seeps are weak, hence we focus here on examining the
::
and

::::
our

::::
focus

::
is
::::::::
therefore

::
on

:::::::::
examining

::::::
system

:
dynamics and fractional

distribution of the gasrather than actual environmental impact of the current conditions in the area
:::
gas,

:::::
rather

::::
than

::
on

::::::::::
quantifying

:::::::::::
environmental

:::::::
impacts

::
or

:::::::::::
contributions

::
to
:::
the

:::::::::::
atmospheric

::::
CH4::::::

budget.

We modeled the 45 CH4 seeps observed at this site and the resulting direct and diffusive atmospheric gas release,
:

as well370

as 3D concentration fields
::::
from

:::
45

::::::::
observed

::::
CH4:::::

seeps for the period between May 20 and June 20, 2018. A 1-month period

was chosen since it captures a relatively wide range of periodic variability in both ocean and atmospheric circulation patterns

and yields relatively modest computation times. The OpenDrift simulation required 2-3 days on a supercomputer and the

concentration modeling 5-6 hours on a workstation laptop.

3.1 Seep gas phase modeling375

Steady state free
:::
Free

:
and dissolved gas profiles and direct free atmospheric gas flux were modeled individually for each of the

45 seeps using M2PG1 (see Sect. 2.1) to steady state, using observed and inferred input data and settings, as outlined in the

following sections.

3.1.1 Gas phase modeling input data and settings

Temperature and salinity data were extracted from a Conductivity Temperature Depth (CTD) cast performed in May 20, 2018380

(Figure 3 and 4a). Seabed gas fluxes for each of the P = 45 individual seeps were
:::
flux

:::
for

::::
each

::::
seep

::::
was estimated using single

beam echosounder data (Simrad EK-60 scientific SBE splitbeam echosounder) obtained between May 20 and May 22 2018 as

14



Figure 3. Bathymetric map of the application area and location of Conductivity Temperature Depth (CTD) station, observed seep-associated

flares indicated by yellow and pink dots during the May 20-22, 2018 survey. Seeding locations (where particles in the particle trajectory

model is released), estimated as the flux weighted average position of the incorporated seeps, are indicated by the yellow and pink triangle

(see chapter 3.2). Coloring reflects which seeding location each seep observation is pooled into.
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Figure 4. Input parameters used in the M2PG1 model runs. a) Conservative temperature and absolute salinity (at the CTD station obtained

in May 20, 2018 b) Bubble size distribution (Veloso et al., 2015) and bubble rising speed (Fan and Tsuchiya, 1990) for different bubble sizes

as a function of effective radius rE = (a2b)1/3 c) Bubble flatness and surface area for various bubble sizes as function of effective radius for

Jansson et al. (2019), Leblond et al. (2014), and Spherical flatness parametrization. Note that the linear flatness (Jansson flatness) appears

non-linear in the figure since its linearity is with major spheroid axis and not effective radius.

:::
and

:::
are

:
presented in Ferré et al., 2024. All other input parameters had to be inferred as outlined in the following paragraphs

since we lack observations.

M2PG1 requires an initial bubble size distribution, and we used the polynomial fit to visual observations
:
of

:::::::
bubbles

:
as385

presented in (Veloso et al., 2015). Note that since M2PG1 takes into account the non-spherical shape of bubbles, the bubble

size distribution is given using the effective radius rE = (a2b)1/3, where a and b are the major and minor axis of the spheroid,

respectively (Figure 4b). We used the bubble rising speed model from Fan & Tsuchiya, (1990) using their recommendation for

bubble contamination
:
, and the linear flatness parametrization from Jansson et al., (2019) (see Figure 4 b and c). We describe

and discuss the bubble rising speed model and deformation parametrization selection in Appendix D.390

Horizontal
:::
The

:::::::::
horizontal

:
domain size was determined using

::::::::
Appendix

:
A and an assumed barotropic current of U = 0.1

m s−1, horizontal diffusivity Dh = 0.01 m2 s−1, rising speed ⟨w⟩= 0.25 m s−1 and a H = 200 m deep water column. We

estimated σw using the bubble rise spectrum (Figure 5) to σw = 0.025 m s−1. This resulted in an estimated model area of AM ∼
88 m2 and grid cell side-lengths 9.4 m. Vertical and temporal resolution does not affect grid cell concentrations

:::::::::::
concentration

but must obey the Courant-Friedrichs-Lewy
::::::::
numerical

:::::::
stability

:
condition. Here we use a grid cell height of 1 m to obtain395
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Figure 5. Probability density for bubble rising speed of bubbles in the bubble plume using the bubble rising speed model from Fan and

Tsuchiya (1990) and bubble size distribution from Veloso et al. (2015).

A⊥
M = 9.4 m2 and a time-step of 0.0625 s. In addition to the assumptions outlined above, we

::
We

:
assumed a constant vertical

mixing coefficient of Dv = 0.001 m2 s−1 and background dissolved gas concentrations were set to the default values from

Jansson et al., (2019)
:
at

:
6.8 · 10−4mol l−1,2.5 · 10−4mol l−1,2.5 · 10−5 mol l−1,2 · 10−9 mol l−1 and 1.5 · 10−8 mol l−1 for

N2, O2, CO2, CH4, and Ar, respectively.

We provide an overview of microbial oxidation rate coefficient (kox) used in the
::::::::::
observations

::::::::
presented

::
in

:
literature and400

their associated uncertainty in Appendix E and Figure 6. Herewe use an average rate coefficient of ,
:::
we

:::
use

:::
the

::::::
simple

:::::::
average

kox = 3.6 · 10−7 s−1 based on the compiled dataset (Table E1 ), which includes observations from
::
of

::
the

::::
full

::::::::
compiled

::::::
dataset

::
in

::::
Table

:::
E1

::::::
which

::::::
include

::::
cold seep environments, hydrothermal vents, and human-made releases.

3.1.2 Gas phase modeling results

Most
:
of

:::
the

:
CH4 gas is dissolved in the water column, with concentration exponentially decreasing

::::::::
appearing

::
to
::::::::
decrease

::::
near405

:::::::::::
exponentially towards the sea surface (Figure 7a). Hourly seabed gas flow rate was ∼ 97 moles of which 93% dissolved below

100 m depth and only ∼ 0.28% reaching the atmosphere. Integrated atmospheric release from free gas over the 1-month period

was 183.1 moles. Free CH4 gas content closely follows the total free gas content throughout the water column (Figure 7a)

and loss of total free gas volume (bubble shrinkage, collapse, and dissolution) dominates over other gases replacing CH4 in

bubbles. The resulting change in dissolved gas profiles for the four other gases (N2, O2, CO2 and Ar) due to bubble transit,410

i.e. the transport of gas molecules by entering bubbles, rising, and subsequently dissolving at shallower depths, was therefore

negligible (never exceeding 0.1% of background values). Atmospheric flux from the 45 seeps varied considerably from < 10−7
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Figure 6. Maximum CH4 oxidation rate coefficients (kox) obtained from datasets found in literature and detailed in E and Table E1. The

x-axis is logarithmic, meaning that the bars cover different ranges, i.e. the histogram bars are narrower at smaller scales.
::::::
Vertical

:::::
dashed

::::
lines

::::::
indicate

:::::
simple

::::::
average

:::
and

::::::
median

::
of

::
the

:::::
values

::
in
:::
the

::::
table.

:::
For

:::
the

::::::::
application

:::::::
offshore

::::::::::
Northwestern

:::::::
Norway,

::
we

::::
used

:::
the

::::::
average

:
of
:::

all

:::::::
compiled

:::::
values.

to ∼ 10−5 [
:::
mol

:::
s−1] (Figure 7c), mostly due to large variations in seabed fluxes (Ferré et al., 2024). Dissolved gas injection

rates, which is
:::
are needed as input in the particle dispersion modeling step, were calculated using the

:::::::
modeled

:::
(by

::::::::
M2PG1)

dissolved gas profiles (not shown) and Eq. (1) and are shown for the 45 seeps in Figure 8a.415

3.2 Particle data set

Using OpenDrift, we simulated a particle data set of ζ = 1,2,3,N
::
N particles with associated 4D-positions (3D space and

time) for the 1-month period, as described in Sect. 2.2.

The advective and diffusive components for the drift model (Eq. 2) were determined using velocity vectors and diffusivity

coefficients (throughout the water column) obtained from the NorKyst-800 hydrodynamic modeling system. NorKyst-800 is420

based on the Regional Ocean Modeling System (ROMS, Shchepetkin & McWilliams, (2005)) framework . It
:::
and

:
is a terrain-

following, free-surface, primitive equations model with 35 terrain-following vertical layers and a horizontal resolution of

800m (Albretsen et al., 2011). The model is eddy-permitting and can resolve major fjord systems and other coastal bathymetric

features such as troughs. Vertical turbulent exchange is computed using the General Length Scale closure scheme (Umlauf

and Burchard, 2003). NorKyst is the primary ocean model used by Norwegian authorities for search and rescue and oil spill425

response planning and is, therefore, the best available ocean model covering our study area (Albretsen et al., 2011). OpenDrift

has an option to automatically check if diffusivity coefficients are reasonable from a physical perspective, and we used a non-
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Figure 7. a) Vertical profiles of total free gas content for the 5 gases (colored axes) and the total free gas (black, lower x-axis) in the water

column for all seeps combined b) Distribution of gas content on bubble sizes for all seeps and gases combined at different depths (note power

in scale) c) Free atmospheric gas flux at the sea surface for the 45 seeps (logarithmic color scale).
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Figure 8. a) Dissolved CH4 release rate profiles (qm) for all observed seeps on a logarithmic scale for the two cluster groups (see Figure 3

for seep/group locations, group west in yellow and group East in pink), and b) Resulting accumulated dissolved CH4 release rate from each

groups (lines, upper x-axis) and histogram of released particles at each modeling time-step (hourly). The smaller bottom bar at the western

cluster reflects the slightly shallower depth in this area.

zero fallback value of D = 0.2 m2s−1 when OpenDrift deemed the input data unphysical. OpenDrift did not excessively use

the fallback value, and from tests where we increased and decreased the value, we found that our
::
the

:
choice of fallback value

had negligible impact on the results.430

We seeded 500 particles every time-step , and set the particle lifetime to
:::
with

::
a
::::::
particle

:::::::
lifetime

::
of

:
4 weeks . OpenDrift then

simulated the
:::
and

:::::::::
simulated particle trajectories by updating their positions every 5 minutes. The effect of vertical mixing on

the particle trajectory was modelled
:::::::
modeled using a sub-timestep of 30 seconds. We configured OpenDrift to store the particle

positions every full hour during the simulation.

The initial particle mass was calculated using seabed gas flux data and Eq. (3). To saturate the particle field prior to the study435

period, the simulation and seeding were
:::
was initiated on April 20 (1-month spin-up time). With this setup, total particle mass

in the domain would increase in the first 10-15 days of the study period due to the re-distribution of dying
:::::::
removed

:
particle

mass. However, particle count would remain approximately constant, with Λ∼ 330 000 particles present at each time-step.

Due to the large
:::
wide

:
range in seep intensity and relatively closely clustered seep positions (Figure 7) , combined with the

limitation of 500
::::::
release

:
particles each time-step, we chose to aggregate all the seeps into two seeding locations . This was440

done to promote smooth release profiles and reduce round-off effects. Grouping was done based on visual inspection of the
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seep positions (Figure 3) and seed locations were calculated using the flux-weighted average position of each group, given by:

r=

∑
g∈GΥgrg∑
g∈GΥg

, (27)

where G denotes the set of all seep indices included in the seed position. The seed locations and their associated seeps are

indicated by matching colored triangles and dots in Figure 3. The 500 particles were then distributed according to the injection445

rate profiles for each seed location with a 1 m vertical resolution, resulting in the profiles/histograms shown in Figure 8b.

3.3 Concentration and atmospheric flux estimation

Concentration and atmospheric fluxes were estimated on a [i, j,k,n] grid with cell sizes ∆λ= 800 m, ∆z = 25 m, and ∆t=

3600 s, covering the time period between May 20 and June 20 and geographical region between (12.5oE, 68.5oN), (12.0oE,

72.1oN), (21oE, 72oN), and (20.1oE, 68.45oN). Although particle data were technically available outside of this region, we450

chose this boundary to avoid potential edge effects in the hydrodynamic model and to reduce
:::::::
constrain

:
computation time.

Kernel bandwidths were estimated for every depth layer
:::
each

::::
cell

:::::::
location

::
in

:::
the

:::
4D

::::
grid

:::::
(each [

::::
i,j,k,n]

:
) using a P ×P sized

adaptation grid where we determined P using an integral length scale estimate of every 2-D
::
2D

:
(i, j) layer of the particle

data. The size of P
:
P, typically varying between ∼ 7000 and ∼ 20000

:::::
∼7000

::::
and

:::::::
∼20000

:
m, agreed reasonably well with

observations and theory on meso-scale eddy sizes in the region (Dugstad et al., 2021). Boundary conditions were implemented455

as described in Sect. 2.3.3 using [i, j]- interpolated IBCAO v. 4 bathymetry data (Jakobsson et al., 2012). Spatiotemporal gas

transfer velocities κ̂[i, j,n] were estimated from
:::
grid

::::::::::
interpolated

:
ERA V reanalysis wind and sea surface temperature data

(Hersbach et al., 2023) which, together with the surface layer concentration estimates ϕ̂[i, j,0,n], gave the atmospheric flux

field estimates β̂[i, j,n] using Eq. (25).

Particle mass was adjusted at each time-step using the mass modification terms (γ) for atmospheric flux (Eq. 26
::::
(26)) and460

redistribution from dying
:::::::
removed

:
particles (Eq. 5

:::
(5)). We also added a mass modification term for microbial oxidation, a

crucial process when simulating the evolution of dissolved CH4 content in the ocean (Appendix E). We used a simple first

order kinetics formula (Eq. E1), with the same rate coefficient kox = 3.6 · 10−7
:::
s−1

:
as in the gas phase model (see Appendix

E and Figure 6 for the determination of kox). Microbial oxidation was then included by imposing a mass modification term

γox = kox∆tΓζ [n− 1]
:::
loss

::::::::::::::::
γox = kox∆tΓζ [n]:at each time-step(individually for every active particle ζ). In principle, this465

corresponds to discretization of Eq. (E1) using a standard first order forward finite difference scheme.
:::::
Mass

::::::::::
modification

:::
of

:::
any

::::::
particle

::
at
::::
any

::::
time

::::
step

:::::
could

::::
then

::
be

:::::::::
calculated

::
by

::::::::
summing

:::
up

:::
the

::::
three

:::::::
applied

::::
mass

:::::::::::
modification

::::::
terms:

:
i)
:::::

mass
::::
loss

::
to

::::::::
microbial

::::::::
oxidation,

:::
ii)

::::
mass

::::
loss

::
to

:::
the

:::::::::
atmosphere

::::
and

:::
iii)

::::
mass

::::::
gained

::::
from

::::::
nearby

::::::::
removed

:::::::
particles.

:

3.4 Application results

The results from the gas phase modeling step is shown and described in Section 3.1.2 and the dissolved concentrations, atmo-470

spheric flux and fate of CH4 molecules in the modeled domain in the following sections. Animations of the time varying 3-D
:::
3D

CH4 concentration field and 2-D
:::
2D diffusive release field is

::
are shown in supplementary material S1 and S2, respectively.

:
It

::
is

::::::::
important

::
to

::::
note

:::
that

:::
the

::::::::
modeling

::::::
results

::::::::
presented

:::
are

::::::
subject

::
to

:
a
::::
wide

:::::
range

::
of

::::::::
relatively

::::::::
uncertain

::::::::::
assumptions

::::::::::
concerning
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::::::
various

:::::
model

::::::::::
coefficients

::::
and

:::
that

:::
the

:::::
main

::::
aim

::::
here

:
is
:::

to
:::
test

:::
the

::::::::
modeling

:::::::::
framework

::::
and

:::::::::
investigate

:::
the

::::::::
dynamics

:::
of

:::
the

::::::
system,

:::::
rather

::::
than

::::::::
conclude

:::::
about

:::::::
absolute

::::::
values.

:
475

3.4.1 3-D
::
3D

:
CH4 concentration field

The averaged distribution pattern of CH4 throughout the study period is strongly affected by generally northeastward currents

that transports gas along the coast, following the shelf and shelf break. The gas enters the more open fjord systems, and to a

lesser degree inner fjords. North of 70o
:

◦
:
the CH4 plume disperses more, branching into a northward plume leaving the coast

and a coastal plume that keeps following the coastline. The concentration anomaly is generally small, around 2-4 orders of480

magnitude lower than typical oceanic CH4 background concentration values (∼ 3 · 10−6mol m−3(,
:
Figure 9), given

:::
due

::
to the

weak seabed release.

The 3-D
::
3D

:
concentration field is very dynamic due to the energetic regional current regimes, and shows variability on

ranging from tidal (∼12 hours) to fortnightly periods. A visual representation of the temporal variability of the top 9 layers in

the water column (down to 200 m depth) is shown in supplementary material S1 (see video supplement section).485

Most of the CH4 is displaced upward relatively quickly from the trough and pushed on top of the shelf break (Figure 9).

Vertical distribution of CH4 is therefore characterized by a quick (a few days) shift from exponentially increasing towards the

seafloor to increasing towards the sea surface after release (
::::
CH4:::::

being
::::::
mainly

::::::
located

:::::
close

::
to

:::
the

:::::::
seafloor

::
at

:::
the

::::::
release

::::
site

:::::::::
(∼150-200

::
m

::::::
depth)

::
to

::::::::
shallower

:::::
depths

::
(Figure 10). A thorough analysis of mechanisms causing the rapid shift in location of

CH4 is outside the scope of this study, however, upwelling within troughs and along the shelf break is well documented in this490

region (e.g. Slagstad et al., 1999).

3.4.2 Diffusive CH4 flux to the atmosphere,
:::::::::
microbial

::::::::
oxidation

::::
and

:::::::::::
non-physical

:::::::::::::
redistribution

:::
and

::::
loss

The total time-integrated 2-D distribution of
::
2D

:
diffusive atmospheric CH4 release for

::::
over the study period and the model

domain is shown in Figure 11 and the complete time series can be found in supplementary material S2 (see Video supplement

section). Within the model domain, most of the CH4 remains in the water column or is consumed by microbes, with a total of495

∼0.76% (∼528 moles) being exchanged diffusively with the atmosphere. This is ∼3 times the total
:::::::
diffusive

::::::
release

::
is

:::::::
roughly

::::
three

:::::
times

::::::
greater

::::
than

:::
the

:::::
local

:
free gas release (∼ 0.3%

:::::
0.27%) and does not account for any diffusive release occurring

outside of the model domain. The diffusive release
:::
flux

:
extends across a large ocean region covering hundreds of kilometers and

exhibits high temporal variability ,
::::
broad

::::
area

::::::::
spanning

::::::
several

:::::::
hundred

:::::::::
kilometers

:::
and

::::::
shows

::::::::::
pronounced

:::::::
temporal

:::::::::
variability

:::
that

::
is strongly correlated with wind speed (Figure 13a)via the gas transfer velocity function. However,

:
,
:::::::
although

:
no clear effect500

of surface water depletion is observed after storm events. Microbial
:::
CH4:

consumption exceeds atmospheric flux by a factor

of ∼20 - ∼100
:::
one

::
to

:::
two

::::::
orders

::
of

::::::::::
magnitude,

::::::::::
emphasizing

:::
its

::::::
crucial

:::
role

::
in
:::::::::
regulating

::::::::
dissolved

::::
CH4::::::

levels (Figure 13b),

mainly driven by regional wind speeds and, consequently, atmospheric diffusive flux. Loss from the domain due to particles

leaving
:::
the

:::::
model

:::::::
domain is also substantial (∼5 to ∼50 times the atmospheric loss) and shows clear tidal excursions patterns

with periodic variability (Figure 13c). Non-physical methane loss due to dying
:::::::
removed isolated particles (i.e. too far away to505

be re-distribution) is on the same order of magnitude as loss to the atmosphere via diffusive release (Figure 13d).
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Figure 9. Four
::::
Nine depth layers of modification

:::
(i.e.

:::
the

::::::
estimate

::̂
ϕ
::
of

:::
the

::::::
anomaly

:::::::::::
Φ′(x,y,z, t)))

:
to the CH4 concentration on May 1 as

indicated on top of each panel. Typical background concentration in the ocean is ∼3·10−6mol m−3 for reference. The bathymetric boundary

for the different layers are delineated with a grey contourline.
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Figure 10. Fractional vertical distribution of CH4 in the water column 28 days after release. Color scale shows the fraction of total depth

integrated CH4 in the water column.

3.4.3 Fate of released CH4

Excluding deactivated particles and
::
We

::::::::
analyzed

:::
the

:::::::
vertical

:::::::::::
redistribution

::::
and

::::::::::
partitioning

:::
of CH4 :::::

among
::::::::
available

:::::
sinks

:::::
within

:::
the

::::::
model

:::::::
domain

::::
over

:
a
::::
four

:::::
week

::::::
period

::::
(the

::::::
particle

:::::::::
lifetime).

::::
This

:::::::
analysis

::
is

::::::::
important

::::
not

::::
only

:::
for

:::::::::
evaluating

::::
CH4 ::::::::

molecules
::::::::
potential

::
to

:::::
reach

:::
the

::::::::::
atmosphere,

:::
but

:::
also

::
in
:::::
cases

:::::::
impacts

::
on

:::::
water

:::::::
column

:::::
and/or

:::::::
seafloor

::::::::::
ecosystems

:::
are

::
of510

::::::
interest.

:::::::::
Excluding

::::::::
removed

:::::::
particles

::::
and

:::::::
particles leaving the model domain, the accumulated fractional water column

::::
CH4

loss due to atmospheric exchange shows an exponential increase the first 2-3
:::::
couple

::
of

:
days, with a subsequent near linear

slope until the end of the study period, reaching a loss of ∼ 0.7% after the particle lifetime of 4 weeks (Figures 12a and b).

The short period of exponential increase fits well with the rapid vertical shift in the position
::::
four

::::
week

::::::
period.

::::
The

:::::
initial

:::::
rapid

:::::::
gradient

:::::::
increase

::
in

::::::::::
atmospheric

::::
loss

:::::::
fraction

:::::::::::
corresponds

::
to

:
a
:::::::
vertical

:::::::::::
redistribution

:
of dissolved CH4in the water column515

occurring over the first week after release
:
,
:::::
where

:::
the

:::::::::::
concentration

:::::::::
maximum

:::::
shifts

::::
from

:::::
∼200

::
m

::
to

::::
∼10

::
m

:::::
depth (Figure 10).

Methane lost to microbial oxidation greatly exceeds the diffusive and free gas atmospheric flux, and ∼ 65% is consumed after

1 month (∼ 63 times the total atmospheric release from free and dissolved fluxes combined). Since microbial decay dominates

, it also closely follows the logarithmic solution of the decay rate function (Eq. E1). All loss combined means that ∼34 % of

the
::::
After

::::
four

::::::
weeks,

::::::
around

:::::
0.7%

:::
of

::::::::
dissolved

::::
CH4:::::::::

molecules
:::
had

::::
been

::::::::::
transferred

::
to

:::
the

::::::::::
atmosphere

:::::::
(Figures

:::
12a

::::
and

:::
b).520

::::::::
Microbial

::::::::
oxidation

:::::::::
dominates

::::
over

::::
both

:::::::::::
atmospheric

:::::::
diffusive

::::
and

:::::::
free-gas

:::::
fluxes

:::::::::::
transforming

:::::
65%,

:::::
while

::::::
around

::::
34%

:::
of

::
the

:
CH4 remains in the water column after 1 month

::
at

:::
the

:::
end

::
of

:::
the

:::::::
particle

::::::
lifetime.
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Figure 11. Modeled accumulated diffusive release of CH4 within the model domain from the seeps between May 20 and June 20, 2018.

3.4.4 Interpretation of results

Diffusive exchange of CH4 exceeds the local free gas release and spreads over a large ocean region, making it almost impos-

sible to detect and quantify using conventional measuring instrument. It
:::
This

:
also poses a challenge for atmospheric inversion525

models, since these are better at detecting point sources rather than weak releases over large regions (Thompson and Stohl,

2014). This highlights
::::
These

::::::::::
limitations

:::::::
highlight

:
the uncertainty in quantifying the impact of seabed seepage on the atmo-

spheric CH4 budget, in particular when considering the potential increased seepage in recent decades due to e.g. thawing

marine permafrost, hydrate dissociation (e.g. Serov et al., 2015; Ruppel and Kessler, 2017), and physical interventions into the

seafloor by humankind
:::::::::::
anthropogenic

:::::::::::
disturbances

::
of

:::
the

:::::::
seafloor (e.g. drilling). Although here530

::::::::
Although

::::
here,

:
the estimated total atmospheric flux is small, the impact of more extensive seepage such as the vast seepage

region along the West Spitsbergen continental margin [
:::
such

:::
as

:::
e.g.][](Mau et al., 2017) could be significant and at the same

time difficult to observe and/or trace.

Even though the dissolved gas spreads out over cold water coral reef areas, the CO2 generated by microbial oxidation is

:::::
likely too small to have any noticeable affect

:::::::::
measurable

:::::
effect on the local ocean environment and cold water corals. This is535

primarily due to
::::::::
primarily

::::::
reflects

:
the weak seabed release

::::
fluxes. For more intense and/or localized seepage, e.g. a leaking gas
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Figure 12. a) Accumulated fractional loss to atmospheric exchange and microbial oxidation and fraction CH4 that remains in the water

column and b) Accumulated fractional loss to atmospheric exchange and microbial oxidation in days after release.

well, this might not be the case.
:
It

::
is

:::
also

:::::
worth

::::::
noting

::::
that

::
the

::::::::
influence

::
of

::::::
seabed

:::
gas

:::::::
seepage

:::
on

:::::::::
cold-water

::::
coral

::::::::::
ecosystems

::::::
remains

::
a
:::::::
sparsely

:::::::
explored

::::
field

::
of

::::::::
research.

:

A
:::
An

::::::::
additional

:
major caveat, both regarding atmospheric fluxes and potential impact on the ocean environment, is the

uncertainty concerning
:::::
caused

:::
by the microbial oxidation rate coefficient kox and atmospheric flux bulk model. Observations of540

kox:::::::::
assumption

::
in
::::::::
methane

::::::::
oxidation

::::
rates

:::::::
(MOx),

:::::
which vary by several orders of magnitude , corresponding

:::
and

::::::::::
correspond

to half-lives
:::
for

::::::::
dissolved

:::::::
methane

:::
(or

:::::::
methane

::::::::
turnover)

:
ranging from 5 days to almost

:::::
nearly 2 years (Figure 6, Table E1).

The atmospheric
::
To

:::::::
examine

:::::::::
sensitivity

::
to

:::
kox,

:::
we

:::::::::
conducted

:
a
::::::
limited

:::::::::::::::
coefficient-sweep

::::::::::
experiment,

::::::::
rerunning

:::
the

:::::::::
framework

::::
using

:::
the

::::::
lowest

::::
and

::::::
highest

:::::::
reported

:::::
“cold

:::::
seep”

::::
rate

::::::::::
coefficients

::::
from

:::::
Table

:::
E1:

::::::::::
0.02 · 10−6

:::
s−1

:::::
(low)

::::
and

:::::::::
0.98 · 10−6

::::
s−1

:::::
(high)

:::::::::::::::::::
(Gründger et al., 2021),

::
as

::::
well

:::
as

:::
two

:::::::::::
intermediate

::::::
values.545

:::
The

:::
low

::::
and

::::
high

:::
rate

:::::::::
coefficient

::::
runs

::::::
resulted

::
in

::
a

:::::
∼34%

:::::::
increase

::::
(705

::::::
moles)

:::
and

::
∼

::::
41%

:::::::
decrease

::::
(309

:::::::
moles),

::::::::::
respectively,

::
in

::::::::::
atmospheric

::::::::
emissions

::::::
during

::::
over

:::
the

::::::
model

:::::::
domain

:::
and

:::::::
particle

:::::::
lifetime.

::::
The

::::::
impact

::
on

:::
the

::::
final

::::
fate

::
of

::::::::
dissolved

:::::
CH4
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Figure 13. a) Loss of CH4 from the water column from atmospheric equilibrium, b) Microbial oxidation, c) Particles leaving the model

domain and d) Mass loss due to deactivation of particles that are unable to redistribute its mass.

::::::::
molecules

::::
were

::::
also

:::::::::::
considerable

:::::
(Table

:::
1).

::::
After

::
4
::::::
weeks,

::::::
∼5.5%

::
of

::::::::
dissolved

::::
CH4::::

were
:::::::::
consumed

:::
and

::::::
1.16%

:::::::
released

::
to

:::
the

:::::::::
atmosphere

::
in

:::
the

::::
low

:::
rate

:::::::::
coefficient

::::
run,

::::::::
compared

:::
to

:::::
∼91%

:::::::::
consumed

:::
and

::::::
0.36%

:::::::
released

::
in
:::
the

:::::
high

:::
rate

:::::::::
coefficient

::::
run.

:::::
These

:::::
results

:::::::::
highlights

:::
the

:::::::::
importance

:::
of

:::::::
selecting

::
a

::::::
suitable

:::::
MOx

:::
rate

:::::::::
coefficient

::::
and

::::::::
illustrates

:::
the

::::
huge

::::
span

:::
of

:::::
results

::::
one550

:::
can

:::::
obtain

:::::
when

::::::::::
coefficients

::
in

:::
the

::::::::
modeling

:::::::::
framework

:::
are

:::::
poorly

:::::::::::
constrained.

:
It
::
is

::::
also

::::::::
important

::
to

::::
note

:::
that

:::::
since

:::::
MOx

:
is
::
a

::::::::::
biologically

:::::::
mediated

:::::::
process,

::
it

:::
can

::::
vary

::::::::::
substantially

:::
on

:::::::
relatively

:::::
small

::::::::::::
spatiotemporal

::::::
scales

:::::::::::::::::::::::::::::::::
(Valentine et al., 2001; Ruff et al., 2015)

::::::::
depending

:::
on

:
a
::::
wide

:::::
range

::
of

::::::
factors,

::::::::
including

::::
CH4::::::::::::

concentration,
:::::
water

::::::::::
temperature,

:::::::
salinity

:::::::::::::::::::::::::::::::::
(Steinle et al., 2015; Osudar et al., 2015)

:
,
::::::
nutrient

::::::::::
availability

:::::::::::
(Knief, 2015),

::::
and

:::
the

:::::::
presence

::
of

::::
trace

::::::::
elements

:::::::::::::::::::::::
(Hanson and Hanson, 1996).

:::::
Thus,

::::::::
assuming

::
a

:::::::
constant

:::
rate

:::::::::
coefficient

::
is

::
in

::::
itself

::
a

:::::::::
potentially

::::::::::
problematic

::::::::::::
simplification,

::::
since

::
it
::::
will

::::
most

:::::
likely

::::
vary

:::::::::::
considerably

:::::
across

:::
the

::::::
model555

:::::::
domain.

::::
One

::::::
would,

:::
for

:::::::
instance,

::::::
expect

:::::
MOx

::
to

:::::::
decrease

::::
with

:::
the

:::::::
distance

::::
from

::::
seep

::::
area

:::
due

::
to

:::::
rapid

::::::
dilution

::
of

:::::::
methane

::::
and

::::::
varying

::::::::::::
environmental

:::::
stress

:::
for

:::
the

::::
CH4::::::::

oxidizing
::::::::
microbes.

:::
To

::::::
reduce

:::
the

:::::::::
uncertainty

::::::::::
concerning

:::::
MOx

::::
rates,

::::::
future

::::::
studies
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::::
must

::::::::
therefore

:::
not

::::
only

::::::::
constrain

::::
rate

:::::::::::
coefficients,

:::
but

::::
also

:::::::
improve

:::
our

::::::
ability

:::
to

:::::
model

:::::
MOx

:::::::::
dynamics

:::::
within

:::::::::
modeling

::::::::::
frameworks.

::::::::
Including

:::::
more

:::::::
complex

:::::
MOx

::::::::::::::
parametrizations

:
is
:::::::
possible

::
in
::::
our

:::::::::
framework

::::
since

:::
we

:::::
allow

:::::::
explicit

::::::::
modeling

::
of

:::::
higher

:::::
order

:::::
fields

::
at

::::
each

::::::::
time-step

:::
and

:::::::
location

::
in

:::
the

::::::::
modeling

:::::::
domain.

:
560

:::
kox:

(
:::::
10−6

:
s
::

−1
:
)

:::
0.02

:::
0.18

:::
0.36

:::
0.67

:::
0.98

::::
MOx

:::
(%)

: ::
5.5

: :::
31.3

: :::
65.2

: :::
83.7

: :::
91.4

:

:::::::::
Atmospheric

::::::
release

:::
(%)

: ::
1.2

: ::
1.1

: ::
0.7

: ::
0.5

: :::
0.36

:

::::::
Remains

::
in
::::
WC

:::
(%)

:::
93.3

: :::
67.6

: :::
34.1

: :::
15.8

: ::
8.2

:

:::::::
Diffusive

:::::
release

:::::
(mol)

::
705

: ::
640

: ::
528

: ::
392

: ::
309

:

Table 1.
:::
Fate

::
of

::::
CH4 :

4
:::::
weeks

::::
after

::
it

:
is
::::::::
dissolved

:
in
:::::

water
::::
using

::
a
:::::
sweep

::
of

:::::::
different

:::::::
microbial

:::::::
oxidation

::::
rate

::::::::
coefficients

:::::
(kox).

:::::::
Another

::::::::
important

:::::
source

:::
for

:::::::::
uncertainty

::
in

:::
the

:::::::
modeled

::::
fate

::
of

::::
CH4::::

arise
::::
from

:::
the

::::::::::
atmospheric

::::
bulk

::::::
model.

::::
The

::::::::::
atmospheric

gas transfer coefficient function (Eq. (24)) was derived based on, and designed for global CO2 estimates (Wanninkhof, 2014)

and has an estimated uncertainty of ∼ 20%, even for its intended use. We must expect considerably higher uncertainties due

to our application in a local coastal region (as opposed to an ocean basin), where wind speeds may exceed the validity range,

and since the specific coefficient Cκ has been determined solely for CO2. Improving the microbial oxidation and diffusive565

exchange modules are keys to provide more realistic modeling of the fate of dissolved

:::::::::::
Uncertainties

::
in

:::
the

:::::
eddy

:::::::::
diffusivity,

:::::::
vertical

:::::::
transport

::::
and

::::::::::
distribution

:::
are

::::
also

::::::::
expected

::
to

:::
be

:::::
large.

::::
The

:::::
choice

:::
of

::::
grid

:::
cell

::::::::
thickness

:::
can

::::
also

::::::
modify

::::
the

:::
end

::::::
result.

:
If
::::

the
:::
grid

:::::
cells

:::
are

:::
too

::::
thin,

:::
and

::::::::
temporal

:::::::::
resolution

:::
too

::::::
coarse,

:::::
there

::
is

:
a
::::
risk

::
of

::::::::
depletion

::
of

:::
the

::::::
surface

:::::
layer

:::::::
between

:::
the

::::::
model

::::::
output

:::::::::
time-steps.

:::
On

:::
the

:::::
other

:::::
hand,

::
if

:::
the

::::
grid

::::
cells

:::
are

:::
too

:::::
thick,

::::
one

:::::
would

::::::::::
incorporate CH4 in the future.

::::
from

::::::
depths

:::::
where

:::::::::
exchange

::::
with

:::
the

::::::::::
atmosphere

::
is

:::::::::
unrealistic,

:::::::
thereby

::::::::
violating

:::
the570

::::::::::
assumptions

::
of

:::
the

::::::::::
atmospheric

:::::::::
exchange

::::
bulk

::::::
model.

::::
One

:::
can

:::::::
evaluate

:::::::
whether

:::
the

::::::
surface

::::::::
thickness

::
is

::::::::::
sufficiently

::::
thick

:::
by

:::::::::
comparing

::::::
typical

:::::
values

:::
for

::::
Eq.

::
26

:::::
with

:::
the

::::::
typical

::::
mass

:::
of

::::::
surface

:::::
layer

:::::::
particles

::::
and

::::::
ensure

:::
that

::::
the

::::::::::
atmospheric

::::
loss

::
is

::::::::::
considerably

:::::::
smaller

::::
than

::
the

:::::::
surface

::::
layer

:::
gas

:::::::
content

:::
(i.e.

::::
that

:::::::::::::
γα[n]<< Γτ [n]::::::::

always).

4 Conclusions

We implemented and successfully applied a new framework for modeling the impact of seabed gas seepage on spatiotemporal575

water column concentrations and atmospheric gas exchange with the ocean. The application uncovered and highlighted im-

portant aspects of the dynamics regarding the fate of seeped gas from the seabed, such as a highly distributed diffusive release

which considerably exceeds local free atmospheric gas fluxes.

The main challenges with the current framework are high uncertainty in the atmospheric flux module and in the mass

modification modules
::::::::
Estimation

:::::::::::
uncertainties

:::::
arise

::::
from

::
a
::::::::
relatively

:::::
wide

:::::
range

:::
of

::::::
sources

::::::
which

::::::
should

:::
be

::::::::
addressed

:::
in580

:::::
future

::::::
studies.

::
In
:::::::::
particular,

:::::
mass

:::
loss

::::
due

::
to

::::::::
microbial

::::::::
oxidation

::::
pose

:
a
:::::::::
significant

::::::::
challenge

:::::
since

:::
rate

::::::::::
coefficients

:::
are

::::::
shown

::
to

::::::
exhibit

::::
large

:::::::::
variability

:::::
which

:::::
cause

::::::::::
considerable

::::::::::
differences

::
in

::
the

::::::::
modeled

::::::::::
atmospheric

:::::
fluxes

::::
and

::::::::::::
concentrations.

:::::::
Current
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::::::::::::::
parameterizations

::
of

:::::
mass

::::
loss

:::
due

::
to

::::::::::
atmospheric

:::::::::
ventilation

:::
are

::::
also

::::::
simple

:::
and

:::::::::
developed

:::
for

::::
large

:::::
scale

:::::
ocean

:::::::
regions,

:::
not

::::::
coastal

::::
areas. Our results are also sensitive to poorly resolved diffusivity coefficients, which can greatly affect the water column

distribution of dissolved gas. A steady state assumption for the seepage itself might also be a problematic assumption in areas585

where seepage is known to vary strongly over time (e.g. Ferre et al., 2020).

From a pure modeling perspective, non-physical re-distribution of dissolved gas is also a source for potential error and when

estimating the final fate of gas, the limitation in model domain size makes inference about final state difficult.
::
In

::::
cases

::::::
where

::
the

::::
aim

::
is
::
to
::::::::

estimate
:::
the

::::
final

::::
fate

::
of

::::::::
released

::::
gas,

:::
one

:::::
could

:::::
argue

::::
that

::
it
::
is

:::::
more

:::::::
suitable

::
to

:::
use

::
a
:::
1D

:::::::::
approach,

:::
e.g.

:::
as

::::::::
suggested

::
in

:::::::
Nordam

::
et

:::
al.,

::::::
(2025). Using a steady state solution of the gas phase model is also a drawback and might currently590

cause significant errors, especially for intense seep sites where background gas concentrations can be significantly altered.

The
::
On

:::
the

:::::
other

:::::
hand,

:::
the

:
framework is flexible and reasonably fast and makes it possible to employ complex, locally

adapted existing hydrodynamic models as well as customizable
:::
and

::::
can

::::::
include

::::::::
advanced

:
process modules, thereby captur-

ing not only idealized processes but also complex hydrodynamic and chemical/biological phenomena. Thus, it provides a

considerable improvement on previous attempts to model the fate of dissolved gases in the water column (e.g. Graves et al.,595

2015). It has a wide range of potential applications, not only for monitoring known gas seeps, but also for risk assessments

concerning future potential increased seepage due to e.g. hydrate thawing, James et al., 2016, leaking gas wells, and integrity

of subsea legacy carbon storage reservoirs (e.g. Torsæter et al., 2024) and other leaking industrial installations.
::::::
Certain

::::::
studies

:::
also

:::::::
requires

:
a
:::
3D

:::::::::::::
spatiotemporal

:::::::::::
concentration

::::
field,

::::
e.g.

::::
when

::::::::
studying

:::
the

:::::::
potential

:::::
effect

::
of

:::::::
seepage

::
on

:::::::::
biological

::::::::
processes

::
in

:
a
::::::
specific

:::::
area. Aspects of the framework (e.g. the kernel density estimator) can also be complementary to established frame-600

works for post-processing and analysis of ocean particle dispersion data and contaminant spreading in the ocean in general (e.g.

the ChemicalDrift module, Aghito et al., 2023).

Aside from improving process and atmospheric exchange modules, future developments should consider a full on-line

coupling between concentration model and gas phase model as well as a proper validation study to ensure realistic results.

Code and data availability. Code for creating input data to and output data from M2PG1 as well as running the model in batch for multiple605

seeps is freely available at DOI: 10.5281/zenodo.15042452 or GitHub. The adaptive kernel density estimator and testing of the adaptive

kernel density estimator can be accessed at DOI: 10.5281/zenodo.15042426 or GitHub and the code for the whole framework, as well as

seed profiles, including the code used for running OpenDrift can be accessed at DOI: 10.5281/zenodo.15042437 or at GitHub. The particle

position output data from the OpenDrift model run can be accessed at DOI: 10.5281/zenodo.15042308.

Video supplement. Supplementary material 1 (SI1) can be accessed at DOI: 10.5446/69942 and supplementary material 2 (SI2) can be610

accessed at DOI 10.5446/69941.
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Appendix A: M2PG1 Model Grid Cell Dimensions

Here we propose a solution for determining a reasonable horizontal model grid cell size assumption for M2PG1, as no es-

tablished method currently exist. Since M2PG1 assumes horizontally invariant concentrations within the predefined model

domain, the choice of the horizontal model domain size directly affects the concentration within the model grid cells and, in615

turn, gas transfer and dissolution. Defining the horizontal dimensions of the model grid cells must therefore be done with care

and should reflect the horizontal extent of the modeled bubble plume to obtain realistic results. We determine the horizontal

and vertical gas phase model grid cell area, respectively denoted AM and A⊥
M, by modeling the 2-dimensional spread of the

bubble cloud.

We assume that the seeps are point sources and that the bubbles drift with a barotropic current with mean speed U and620

random velocity fluctuations governed by a horizontal diffusivity Dh. In this framework, horizontal bubble spread is caused

by i) differences in accumulated horizontal displacement resulting from varying rising speeds of bubbles with different sizes

(slow/fast bubbles spend more/less time in the velocity field) and ii) turbulent (random) effects in the horizontal flow, modeled

as diffusion. The horizontal extent of the bubble plume increases towards the sea surface and we use the estimated spread at

half of the total water column depth H to minimize estimation errors at the surface/bottom.625

The spread due to differences in rising speed can be estimated using the probability density P for bubble rising speeds wo in

the bubble cloud. The distribution of rising speeds for bubbles in the bubble cloud can be described by the discrete probability

P [wo], and can be derived from the chosen
:::::
initial discrete bubble size distribution (BSD) and bubble rising speed model. This

is done by estimating the bubble rising speed of all bubbles in the BSD and re-bin the results, using the fractional weights from

the BSD, according to bubble sizes. We obtain the weighted distribution average and standard deviation as630

⟨w⟩=
∑

owoP [wo]∑
oP [wo]

and σw =

√∑
o (wo −⟨w⟩)2P [wo]∑

oP [wo]
, (A1)

where wo are discrete rising speeds, P [w[o]] associated probabilities, ⟨w⟩ the weighted average, and σw weighted the standard

deviation (see Figure 5 for an example).
::::
Note

:::
that

:::
the

:::::
BSD

::
is

::::::::
expected

::
to

::::::
change

::::
with

::::::
height

:::::
above

:::
the

:::::::
seafloor

::::::
(which

::::
also

::::::
changes

:::::::
P [wo]).:::

For
:::
the

:::::::
purpose

::
of

::::
this

:::::::::
calculation,

::::::::
however,

:::
we

::::::
assume

:::
the

:::::
BSD

:::::::
remains

:::::::::
unchanged.

:

Along-flow spread ∆xrs can then be expressed as635

∆xrs = U∆tmax, where ∆tmax = H
2

[
1

⟨w⟩−σw
− 1

⟨w⟩+σw

]
. (A2)

Horizontal displacement due to current diffusivity acts in both along-flow (x) and cross-flow (y) direction and can be expressed

by the 2-dimensional
:::
2D Gaussian solution to the diffusion equation for a point source,

p(x,y, t) =
1√

4πDht
e−(x2+y2)/4Dht, (A3)

where p(x,y, t) is the normalized count of bubbles at position (x,y) and time t and 4Dht is the variance of the spread in both640

directions. We constrain diffusive spread using twice the standard deviation 2σD of the distribution at H =H/2 given by

∆xD =∆yD = 2
√
2Dh ·

√
0.5tH where tH =

H

⟨w⟩
. (A4)
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and

AM = (∆xrs +∆xD)∆yD (A5)

giving horizontal grid cell side lengths of
√
AM (since M2PG1 uses square cells).645

An estimate of the vertical grid cell area, which is needed to estimate dissolved gas injection profiles is easily obtained and

defined as

A⊥
M =

√
AM∆zM, (A6)

where zM is the vertical grid cell size.

Appendix B: The histogram estimator650

A commonly used density estimator based on data from particle dispersion models is the histogram estimator. The histogram

estimator for the concentration estimate ϕ̂ at position r0 using a predefined grid with grid cell volume V can be expressed as

ϕ̂(r0) =
1

V

Z∑
ζ=1

ΓζK(r0,ηζ), (B1)

where Γζ and ηζ represent the mass and positions (respectively) of particles, and

K(r0,ηζ) =

1 when ηζ shares the same grid cell as r0,

0 otherwise.
(B2)655

Using the histogram estimator implies modeling a smooth, continuously distributed property with a discontinuous, quantized,

and piece-wise
:::::::
constant

:
function, which introduces several drawbacks with this estimator-property pairing. Firstly, the estima-

tor is highly dependent on the choice of grid cell size: fine grids result in noisy and unrealistic estimates in regions with medium

to low particle counts, while coarse grids lead to significant loss of information in areas with high particle counts. Secondly,

the histogram estimator is highly
:::
can

::
be

:
sensitive to the chosen position of the origin. In addition, the minimum concentration660

estimate is limited to one particle per grid cell, which can significantly influence e.g. atmospheric flux estimates (for instance if

that concentration exceeds the atmospheric background concentration). Some of these issues can be mitigated by adjusting the

grid cell size, however, the problems prevail in highly heterogeneous domains containing regions with low particle saturation

(unless one adobts an unstructured grid). Seeding more particles is always a remedy, however, we are still left with inefficient

use of the particle position data and potentially unfeasible computational complexity (see Sect. 2.2.2). We have therefore for-665

mulated an adaptive bandwidth, 2-dimensional
:::
2D grid-projected Kernel Density Estimator (KDE) specifically for OpenDrift

output data to calculate the concentration field.
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Appendix C: Density estimator testing and validation

The adaptive kernel density estimator was therefore developed, tested, and compared with other estimators using a numerical

toy model that generates data resembling typical OpenDrift data. The toy model gives full control of all parameters and allows670

to efficiently test various scenarios due to the low computational cost of each run. Here we compare the adaptive bandwidth

KDE against three other estimators as explained below.

C1 Toy model and test simulation

The synthetic data was designed to mimic output data from OpenDrift by seeding N = 1900000 particles onto a regular 2D grid

with indices and size given by (i, j) ∈ Z100×100. The position r[tT ] = (x[tT ],y[tT ]) of each particle at time tT was determined675

by
::::::

particles
::
at

::::
seed

:::::::
location

:::
r0 :::

and
:::::::::
calculating

::::
their

:::::::
position

::
at
::::
time

::::
step

::
T

::
(at

::::
time

:::::
T∆t)

:::
as

r(tT ) = r0+
:::

∑
tT
t=t0U[tϑ]

T−1
ϑ=0
:::

(
Uϑ∆t
:::::

+
√
2Dξϑ

√
2D∆t

:::::::

)
, (C1)

where U[tϑ] = [u(tϑ),v(tϑ)] :::::::::::
Uϑ = [uϑ,vϑ]:represents a spatially uniform, time varying velocity field, and ϑ= 0,1,2,3, ...T

and t0 is the seed time for the particle. The stochastic velocity component is determined by ξ[tϑ] which is a vector of

independent random numbers
:::
∆t

::
is

:::
the

::::::::
modeling

::::::::
time-step,

::::::::::::::
ξϑ = [ξϑ,x, ξϑ,y]::::::

where
::::
each

:::::::::
component

::
is

:
sampled from a stan-680

dard normal distribution N (0,1) and D , which is the diffusivity
::::::::
represents

:
a
:::::::::
diffusivity

:::::::::
coefficient

:::::::::
(assuming

::::::::
isotropy). The

velocity field U[tϑ] is modeled
:::
Uϑ::::

was
::::::::
calculated

:
as

U[tϑ]Uϑ
::

=
U0 +Ξ[tϑ]

∥U0 +Ξ[tϑ]∥
U0 +Ξϑ

∥U0 +Ξϑ∥
::::::::::

∥U0∥ (C2)

where U0 = (u0,v0) gives the initial velocity, Ξ[tϑ] = (sin[ tϑ50 ]u0,v0) is a wave component
:::::::::::::::::
Ξϑ = (sin[ ϑ50 ]u0,v0):and || · ||

gives the euclidean norm. The normalization with ∥U0∥ is necessary to ensure conservation of mass in the field. We choose685

U0 = (0.1,0) and D = 0.14 and released a total of 106
::::
2·106

:
particles from a point source at r0 = (10,10) over the course of

380
:::
400 timesteps. The normalized histogram density estimate (Eq. B1) of the full simulation was considered the simulation

"Ground-truth" and is shown in Figure C1.
::::
The

::::::::::
computation

::::
time

:::
for

:::::::::
generating

:::
the

:::
test

::::
data

:::
was

:::
8.3

:::::::
seconds

::::
with

:
a
::::
Intel

:::::
Core

::::
Ultra

::
9

:::::
185H

::::::::
processor.

:

C2 Testing and evaluation of different estimators690

We implemented and tested four estimators i) The histogram estimator, ii) An Time-dependent bandwidth estimator, iii) The

Silverman bandwidth estimator from the gaussian_kde function from the scipy.kde python package, and iv) The adaptive

bandwidth estimator used in the present study. All estimators were tested on a data set where we picked every 1000th particle

from the full dataset (
::::
data

::
set

::
of

:::::
2·106

:
resulting in a total of 1000 particles )

::::
2000

:::::::
particles

:::
for

::::::
density

:::::::::
estimation. All estimates

were done grid-projected as described in Sect. 2.3.1 and for the final time-step only and all particles had a mass of 1.695
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For the histogram estimator estimate, we used Eq. (B1) and for the time-varying bandwidth estimator, we defined the band-

width as

htv =
√
4Dtϑ (C3)

which is the theoretically ideal bandwidth for the time-varying estimate. In a real-world scenario, the diffusion coefficient

varies and we cannot estimate the correct diffusion coefficient unless information about the local diffusivity is given from700

the hydrodynamic model. Although the bandwidth function could be suitable when such information is available, complex

bathymetry may introduce challenges as discussed below. For the estimate using the provided scipy.kde.gaussian_kde, we used

default settings and the bw_method=’silverman’ setting (SciPy Community, 2024). We refer to the package documentation for

details (URL in the reference list). For the adaptive bandwidth estimator, we followed the algorithm described in Sect. 2.3.2

and estimated h locally for each particle-containing grid cell. For the "in-house" coded estimators (all but scipy.kde.gaussian)705

we included the boundary control explained in Section 2.3.3.

A comparison of the four estimators and a residual analysis plot are shown in Figure C2. We have chosen to compare the

estimators visually and evaluating
::
In

:::::::
addition

::
to

:
a
::::::
visual

::::::::::
comparison,

:::
we

:::::::
evaluate how the max values in the field aligns as well

as
:::
and

:::
do a simple R2 statistic. The Histogram estimator gives a noisy result, with

:
a very high max values of 8000 compared

to 5664
::::
value

::
of

:::::
9000

::::::::
compared

::
to

:::::
5672 for the ground truth . and a low R2 = 0.52

:::::::

2 = 0.53. The the non-adaptive Silverman710

results in an unrealistically smooth estimate, with a very low maximum value of 878
:::
927

:
and low R2 = 0.55

:::::::

2 = 0.59. While

the time varying bandwidth estimator works relatively well in the open "unbounded" part of the domain, it over-smooths when

encountering the boundary - highlighting a problem with time varying bandwidth in bounded domains where the stochastic

process is limited by physical obstacles. Nonetheless, it performs better than the non-adaptive Silverman and Histogram es-

timators, achieving an R2 = 0.66
:::::::

2 = 0.71. The adaptive bandwidth estimator is in general slightly over-smooth, however, it715

significantly outperforms the three other estimators with a maximum value of 3692
::::
4531, which is the closest to the ground

truth and an R2 = 0.87
:
of

:::::
5672

:::
and

::::
has

:
a
::::
high

:::::::::
R2 = 0.90 (Figure C2performs well

:
).

:::
The

::::
total

:::::::::::
computation

::::
time

:::
for

:::::
doing

::
all

:::
the

:::::
KDE

::::::::
estimates

:::::::::
(including

:::
the

:::::
kernel

::::::::::
adaptation)

::::
were

::::
less

::::
than

::
1

::::::
second

::::
with

:
a
::::
Intel

::::
Core

:::::
Ultra

::
9

:::::
185H

::::::::
processor,

::::
and

:::
the

:::::::
adaptive

:::::
kernel

::::::
density

::::::::
estimator

::::
was

::::
only

:::::::
slightly

:::::
slower

::::
than

:::
the

::::::::::::
gaussian_kde

:::::::
function

::::
from

::::
the

::::::::
scipy.kde

:::::::
package

:::::
(both

:::::::
≤10−3).

:::
A

::::::
simple

::::::::::
comparative

:::::::::::
performance

:::::
study

:::
as

::::
well

::
as

:::::
script

::::
for

::::::
further720

:::::
testing

::::
and

:::::::::
evaluation

::
of

::::
the

:::::::
adaptive

::::::
kernel

::::::
density

:::::::::
estimator

:::
and

::::
the

:::::::::
estimators

::::
used

:::
for

::::::::::
comparison

::
is
::::::::

available
:::

at
:::
the

::::::
GitHub

::::::::::
repository

:::::
linked

::
in

:::
the

:::::
assets

::::::
section

:::
of

:::
this

:::::
article

:::::::
("Code

:::
for

::
the

::::::::
adaptive

:::::
kernel

::::::
density

::::::::::
estimator").

Appendix D: Rising speed model and flatness parametrization

It is well-known that the terminal bubble rise veloocity Ub varies non-linearly with the bubble size (e.g., (Fan and Tsuchiya,

1990), (Leifer and Patro, 2002)). In addition, it depends on fluid and gas parameters, and the degree of contamination. Fan and725

Tsuchiya (1990, Eq. (2.11)) showed that the terminal bubble rise velocity can be written as

Ub =
(
U−c
b1 +U−c

b2

)−1/c
, (D1)
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Figure C1. Left: Synthetically generated particle dispersion model data for 1,900,000
::::
2·106 particles (purple) and randomly picked "test

data" of 1900
::::
2000 particles (green dots) in a domain with a simple "impermissible" elliptic boundary. Right: Histogram estimate of the full

1,900,000
::::
2·106 particle dataset, representing the "ground truth" in the test scenario for the adaptive kernel density estimator.

where Ub1 dominates for small bubbles, and Ub2 dominates for large bubbles. The dimensionless parameter c (called n in (Fan

and Tsuchiya, 1990) and d in (Leifer and Patro, 2002)) is a measure of the degree of contamination, which directly affects

the surface tension of the bubbles. By fitting Eq. (D1) to multiple experimental data sets, Fan and Tsuchiya (1990) found that730

0.8≤ c≤ 1.6, where the lower limit corresponds to contaminated bubbles, and the upper limits corresponds to clean bubbles.

We follow their recommendation, and apply c= 1.2 for our assumed moderately contaminated conditions, see Figure 4b and

Jansson et al., (2019) for further details.

Bubble deformation is an important factor in bubble dissolution and exchange rates of gas since it changes the surface area

to volume ratio of the bubbles. Deformation can be characterized by a dimensionless flatness ratio, defined as f ≡ a/b. In735

addition to spherical flatness, two parametrization options are available in M2PG1: Leblond flatness (Leblond et al., 2014),

where f = 0.45+1.4ln(a/bref ) for a > 1.48 and Jansson flatness (Jansson et al., 2019), where f = 1+0.3064(a/bref ) (coined

here, referred to as "linear flatness" in Jansson et al., 2019) and bref = 1 mm. While Jansson flatness parametrization has

support for bubbles where a < 1.48 mm, it lacks an empirical basis other than a fair agreement with Leblond for relatively

small bubbles. The divergence between the two models at larger bubble sizes (Figure 4c) can lead to misrepresentations when740

modeling distributions that are skewed towards larger bubbles. Nonetheless, we use Jansson flatness parametrization since here

our observations indicate that most of the gas is confined to smaller bubble sizes (Ferré et al., 2024).
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Figure C2. Density estimates using the Histogram estimate of the full simulation
:::
test

:::::
dataset

:
(106 particles

::::::
N=2000,

:::::
green

:::
dots

::
in
::::::

Figure

::
C1)

::::
using, Histogram estimator

:::
from

:::
left

::
to
::::
right, Adaptive bandwidth

:
a
::::::::
histogram estimator,

::
a
::::::::
Silverman (AKDE

:::::::::
non-adaptive) , Adaptive

bandwidth estimator (AKDE) with boundary control
::::
from

:::
the

:::::::
scipy.kde

:::::
package, a

:
Time-dependent bandwidth

::::
kernel

::::::
density

:
estimator

(TKDE) with boundary control, and the Silverman
:::::::
Adaptive

::::::::
bandwidth

:::::
kernel

:::::
density

::::::::
estimator (non-adaptive

:::::
AKDE) estimator

::::::::
developed

::::
here.

:::
The

:::::
upper

::::
panel

:::::
figures

:::::
show

::
the

::::::
density

:::::::
estimates

::::
and

::
the

:::::
lower

::::
panel

::::::
figures

::
the

:::::::
residuals

:
from the scipy.kde package

:::::
ground

::::
truth

::::::
estimate

:::::
shown

::
in

:::::
Figure

:::
C1. The impermissible region (land/bathymetry) is shaded in grey.

Appendix E: Brief review of existing estimates of MOx rate coefficients

Oxidation of CH4 to carbon dioxide is achieved by several groups of aerobic methanotrophs and reaction rates vary sub-

stantially, depending on existing microbial consortia, stoichiometry of the involving nutrients, and overall succession of the745

methanotrophs (Hanson & Hanson, 1996). Nonetheless, reaction rate measurements with radiotracer assays highlight first-order

reaction kinetics and a CH4 decay rate following

dϕ(t)

dt
=−koxϕ(t) ⇒ ϕ(t) = ϕ0e

−koxt (E1)

where kox is the reaction rate and ϕ0 = ϕ(0) the initial concentration. Most measurements of microbial CH4 oxidation (MOx)

in marine environments are focused on locations where CH4 concentrations exceed the background levels. The rates of CH4750

oxidation in suboxic zones, hydrothermal vents, and cold seeps exhibit substantial variability, spanning several orders of mag-
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nitude from 10−8 to 10−2 nM s−1, primarily due to spatiotemporal fluctuations in CH4 concentrations. In contrast, half-life or

CH4 oxidation rate constants (kox) are independent of CH4 concentration and provide a more accurate representation of the wa-

ter column’s MOx capacity. The rate coefficients (kox) range from 0.02·10−6
:::
s−1

:
to 1.74·10−6 s−1, corresponding to halving

times of approximately five days to two years. However, CH4 can remain stable for decades in oxygen-limited environments755

where aerobic CH4 oxidation is inhibited.
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Location
Temp

(°C)

ϕ

(nM)

kox

10−6s−1

t0.5
(days)

Reference

Oxic/anoxic interface

Cariaco Trench,

Caribbean Sea
- <12100 0.03 277 Ward et al. (1987)

Saanich Inlet,

British Columbia
9 <1580 0.02 535 Ward et al. (1989)

Eastern Tropical

North Pacific
- 19 0.10 77 Pack et al. (2015)

Hydrothermal plume

Juan De Fuca v. - <390 1.74 5 de Angelis et al. (1993)

Man-made accidents

Deepwater Horizon,

Gulf of Mexico
- <183000 0.73 11 Valentine et al. (2010)

North Sea gas blowout 10 <42097 0.41 20 Steinle et al. (2016)

Seep environment

Cape Lookout Bight,

North Carolina
23-27 <740 0.08 107

Sansone &

Martens (1978)

Santa Barbara Channel,

California
5-16 <1900 0.09 93 Mau et al. (2012)

Boknis Eck, Baltic Sea 1-3 300-466 0.50 16 Steinle et al. (2017)

South China Sea 2-5 <1000 0.04 229 Mau et al. (2020)

Hudson Canyon,

US Atlantic
- <335 0.93 9 Weinstein et al. (2016)

Elson Lagoon, Alaska -1.8 <53.8 0.12 69 Uhlig et al. (2018)

Cold seeps - Svalbard Continental margin

Norskebanken 4.7 <83.1 0.06 125 Sert et al. (2023)

Hinlopen Trough 3.5 <874 0.23 35 De Groot et al. (2024)

Prins Karl Forland (2015) ∼3 <334 0.98 8 Gründger et al., (2021)

Prins Karl Forland (2016) ∼1.5 <437 0.02 433 Gründger et al., (2021)

Prins Karl Forland (2017) ∼3 <262 0.02 385 Gründger et al., (2021)

Prins Karl Forland 1.6-4.8 <524 0.21 38 Gentz et al. (2014)

Hornsundbanken >3 <878 0.41 20 Mau et al. (2017)

Isfjordenbanken >3 <100 0.62 13 Mau et al. (2017)

Storfjordrenna -0.5 <82 0.22 36 Sert et al. (2020)

Storfjorden -1.5 <72.3 0.35 23 Mau et al. (2013)

Table E1. Methane Oxidation Rate Coefficients (kox) in units of 10−6 s−1 (µHz) from various studies. We have obtained the maximum kox

reported in the studies unless ranges are given. Half-lives are calculated by solving for ϕ(t0.5) = 0.5ϕ0 in Eq. (E1), i.e. t0.5 = ln(2)/kox.

In Gründker et al., 2021 only May data was included from 2016 and the difference in turnover time between 2016 and 2017 is because the

maximum rate coefficient was 1.85×10−8 s−1 in 2016 and 2.01×10−8 s−1 in 2017, but this difference is rounded off in the table.43


