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Highlights: 23 

 Existing correction methods may introduce large errors, and more seriously cause 24 

unrealistic negative values in P, ET and Q in up to 10% of cases. 25 

 A novel IWE-Res method is proposed to improve the accuracy and consistency of 26 

corrected satellite-based water budget component data. 27 

 In most river basins (except cold regions), the best correction is achieved by 28 

adjusting 40% to 90% of the total water imbalance error. 29 

 30 

Abstracts: Achieving water budget closure improves the consistency of water budget 31 

component datasets, including precipitation (P), evapotranspiration (ET), streamflow 32 

(Q) and terrestrial water storage change (TWSC), thereby advancing our 33 
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understanding of basin-scale water cycle dynamics. Existing water budget closure 34 

correction (BCC) methods typically aim to eliminate the entire water imbalance error 35 

(ΔRes) by fully redistributing it across budget components. However, this often 36 

overlooks the trade-off between achieving perfect closure and the errors introduced 37 

into the corrected components through this redistribution. Moreover, inaccurate 38 

estimation of redistribution weights can lead to contradictory outcomes, such as 39 

negative values in P, ET, or Q. In this study, we quantify the uncertainties introduced 40 

by four existing BCC methods (CKF, MCL, MSD, and PR) at the monthly scale 41 

across 84 basins spanning diverse climate zones. We then propose a novel method, 42 

IWE-Res, which identifies an optimal redistributing strategy by minimizing the 43 

combined error from both the errors introduced to individual budget components and 44 

the remaining ΔRes error. This method also reduces the occurrence of negative values 45 

in the corrected datasets. Our results show: (1) Existing BCC methods can result in 46 

negative values in 0–10% of the time series for each corrected budget component 47 

(typically < 5%); (2) The proposed IWE-Res method improves the accuracy of 48 

corrected components compared to existing methods, reducing RMSE by 29.5% for P, 49 

24.7% for ET, 69.0% for Q, and 6.8% for TWSC; and (3) For most basins, excluding 50 

those in cold regions, the optimal redistribution is achieved when 40%–90% of ΔRes 51 

is redistributed. By offering a more balanced approach to water budget closure, this 52 

study improves the accuracy and reliability of corrected budget component datasets. 53 

Keywords: Water budget closure; Budget components; Water imbalance; Uncertainty 54 

identification; Global hydrology 55 
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1 Introduction 56 

The terrestrial water balance represents a fundamental physical framework that 57 

describes the distribution and movement of water across the Earth's land surface 58 

(Lehmann et al., 2022) and is governed by four interconnected 59 

components—precipitation (P), evapotranspiration (ET), streamflow (Q), and 60 

terrestrial water storage change (TWSC)—that together regulate the exchange of 61 

water among the atmosphere, land, and oceans (Abolafia-Rosenzweig et al., 2021; 62 

Sahoo et al., 2011; Chen et al., 2020; Wang et al., 2015). These components are 63 

dynamically linked and respond to climatic variability, land surface heterogeneity, and 64 

human interventions across a range of spatial and temporal scales. Achieving water 65 

budget closure (that is, ensuring internal consistency among these fluxes and storages), 66 

Equation (1) is essential for advancing our understanding of hydrological processes 67 

(Li et al., 2024; Mourad et al., 2024). 68 

 P − ET − Q − TWSC = 0 (1) 69 

where P represents precipitation, ET represents evapotranspiration, Q represents 70 

streamflow, and TWSC represents terrestrial water storage change. It is worth noting 71 

that TWSC refers to the change in total terrestrial water storage, including but not 72 

limited to surface water, soil moisture, groundwater, water infiltrating into aquifers, 73 

and ice/snow (Mehrnegar et al., 2023; Pellet et al., 2020; Wang et al., 2022). 74 

Infiltrated water into aquifers is not permanently stored, but eventually returned to 75 

major water bodies sooner or later (Levison et al., 2016). The ability of aquifers to 76 

retain or transmit infiltrated water is strongly influenced by local geological 77 
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characteristics, particularly the spatial heterogeneity, presence of fractures, or 78 

high-permeability pathways (Levison et al., 2016; Schiavo, 2023). 79 

Despite its importance, obtaining observational datasets that achieve water 80 

balance closure remains a major challenge. In practice, no single observational system 81 

can simultaneously measure all four water budget components at the required 82 

resolution and accuracy. Each budget component is typically derived from 83 

independent data sources or models with differing spatial and temporal characteristics, 84 

which complicates the direct closure of the terrestrial water budget. 85 

P is typically derived from point-based rain gauge networks, which are generally 86 

reliable but often incomplete, requiring gap-filling (Esquivel-Arriaga et al., 2024; 87 

Nassaj et al., 2022; Bai et al., 2021; Lockhoff et al., 2014). The main source of 88 

uncertainty lies in the spatial distribution and representativeness of these gauges, 89 

particularly in relation to P type (Bai et al., 2019; Trenberth et al., 2014). Spatial 90 

uncertainty tends to be low for widespread frontal systems but can be substantial for 91 

localized convective storms (Palharini et al., 2020). Gauge placement is often dictated 92 

by accessibility and logistical convenience, which may lead to underestimation of the 93 

uncertainty in daily P inputs (Wang et al., 2017; Bai et al., 2019; Wu et al., 2018). 94 

Satellite-based P estimates have demonstrated good performance in capturing frontal 95 

rainfall, but not in other rainfall types (Masunaga et al., 2019; Petković et al., 2017; 96 

Palharini et al., 2020). ET is commonly estimated by empirical or physically based 97 

models (Jacobs et al., 1998; McMahon et al., 2016; Allen et al., 1998). Although these 98 

models are generally well calibrated, uncertainties persist due to the complex 99 



5 

 

influence of advection and localized meteorological variability, especially in small 100 

catchments. At larger spatial scales, energy balance approaches tend to provide 101 

sufficiently accurate estimates (Hua et al., 2020; Hao et al., 2018; Ruhoff et al., 2022). 102 

Q measurements typically exhibit low uncertainty when rating curves are well 103 

established and regularly maintained (Jian et al., 2015; Krabbenhoft et al., 2022). 104 

However, uncertainty can still arise from the delineation of watershed boundaries, 105 

particularly in regions where groundwater flow does not align with surface catchment 106 

divides (Huang et al., 2023; Bouaziz et al., 2018). This mismatch can result in 107 

misrepresentation of actual hydrological contributions. TWSC generally has a 108 

negligible impact on water balance calculations over multi-year periods, but can 109 

significantly affect short-term (e.g., daily) balances (He et al., 2023; Zhang et al., 110 

2016). A key challenge is to define the effective depth over which TWSC should be 111 

quantified, as changes in soil moisture near the surface are more easily observed than 112 

those occurring at greater depths. 113 

Hydrological models, which are grounded in the principle of mass conservation 114 

and explicitly implement the water balance equation, offer an alternative to direct 115 

observation for achieving water budget closure. However, in practice, model structure 116 

simplifications, parameter uncertainties, and errors in meteorological forcing data 117 

introduce substantial biases and propagate uncertainty across simulated components. 118 

These limitations make it equally difficult to achieve water budget closure using 119 

hydrological modeling alone. 120 

In recent years, the rapid expansion of remote sensing and reanalysis datasets has 121 
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significantly improved global access to budget components, offering new 122 

opportunities for data-driven analysis of hydrological processes. However, even these 123 

advanced products often exhibit internal water budget inconsistencies. To address this 124 

issue, a growing number of studies have adopted water budget closure correction 125 

(BCC) methods to reduce water imbalance error (ΔRes), with the goal of forcing 126 

ΔRes from a non-zero value (ΔRes ≠ 0) to theoretical closure (ΔRes = 0), where 127 

ΔRes = P – ET – Q – TWSC (Zhou et al., 2024; Munier et al., 2018; Zhang et al., 128 

2016). Common methods include Proportional Redistribution (PR), the Constrained 129 

Kalman Filter (CKF), Multiple Collocation (MCL), and the Minimized Series 130 

Deviation (MSD) method (Pan et al., 2012; Luo et al., 2023). For example, Abhishek 131 

et al. (2021) applied the PR, CKF, and MCL methods to quantify water budget closure 132 

and uncertainties in budget components in the upper Chao Phraya River basin; 133 

Abolafia-Rosenzweig et al. (2021) evaluated the effectiveness of PR, CKF, and MCL 134 

methods in closing the water budget for 24 global basins; Dastjerdi et al. (2024) 135 

developed a precipitation data merging method to improve precipitation estimates 136 

based on existing BCC methods. 137 

Existing BCC methods redistribute the entire ΔRes error among water budget 138 

components to enforce strict water budget closure. This redistribution is typically 139 

guided by the relative uncertainties of the individual components, based on the 140 

assumption that the entire residual error originates from observational or modeling 141 

errors in these datasets. However, this assumption overlooks the fact that ΔRes is not 142 

solely the result of measurement or estimation errors in P, ET, Q, or TWSC. Rather, it 143 
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is a composite residual that also reflects contributions from systematic biases and the 144 

omission of unmeasured components. These include deep groundwater exchanges that 145 

may cross basin boundaries, snow and glacier storage changes (particularly in 146 

high-altitude or high-latitude regions), and anthropogenic influences such as irrigation 147 

withdrawals, reservoir operations, and inter-basin water transfers. Because existing 148 

BCC methods do not explicitly account for these additional sources of imbalance, 149 

forcing strict closure by allocating the entire ΔRes to the measured components can 150 

introduce unrealistic uncertainties. As a result, the application of existing BCC 151 

methods—despite their goal of improving internal consistency—often leads to limited 152 

improvements, or, in some cases, even a decline in the accuracy of the corrected 153 

hydrological datasets. 154 

A clear manifestation of this limitation is the occurrence of negative values in 155 

corrected budget component datasets when applying existing BCC methods at the 156 

monthly scale, such as negative P, ET, and Q. These unrealistic negative values arise 157 

when an excessive share of the ΔRes is redistributed to specific components. For 158 

instance, if the BCC method overestimates the error in a specific component, it may 159 

assign an excessively large portion of ΔRes to that component. When the magnitude 160 

of the correction exceeds the component’s original value, the result is a negative flux, 161 

which is hydrologically incorrect. Beyond introducing negative values, such 162 

imbalanced redistribution compromises the integrity of the remaining components. 163 

Overcorrecting one variable necessarily reduces the share of ΔRes available for others, 164 

potentially degrading their accuracy. Our previous work demonstrated that enforcing 165 



8 

 

water budget closure can, to some extent, reduce the accuracy of individual 166 

components and tends to introduce an ET regulation factor to mitigate accuracy loss 167 

in ET caused by existing BCC methods (Luo et al., 2023). A more hydrologically 168 

sound approach may involve partial closure, whereby only the portion of ΔRes 169 

attributable to quantified uncertainties is redistributed, while the residual linked to 170 

unmeasured processes is retained. 171 

The key question we aim to answer in this study is the extent of uncertainty 172 

introduced into budget components by existing BCC methods for enforcing water 173 

budget closure and, more critically, whether this uncertainty exceeds the reduction in 174 

the ΔRes error. If the introduced uncertainty outweighs the error reduction, fully 175 

closing the water budget may not be necessary. As noted earlier, ΔRes represents a 176 

composite error, whereas existing BCC methods primarily address errors in budget 177 

components. Therefore, an optimal balance for redistributing the ΔRes error should be 178 

identified—one that minimizes the combined error from budget components and the 179 

remaining water imbalance. This optimal balance allows for redistributing only the 180 

portion of ΔRes attributable to errors in budget components, rather than the entire 181 

ΔRes, thereby preventing the occurrence of negative values in budget components due 182 

to improper error redistribution. However, research on identifying this optimal 183 

balance, which is crucial for improving existing BCC methods, remains lacking. 184 

The primary goals of this study are to quantify the uncertainties introduced by 185 

existing BCC methods in closing the water budget from multiple perspectives and to 186 

propose a new IWE-Res method for identifying the optimal balance in ΔRes 187 
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redistribution. To enhance the robustness of error analysis and validate the proposed 188 

IWE-Res method, we applied four existing BCC methods with varying principles and 189 

complexities (PR, CKF, MCL, and MSD) across 84 global basins with diverse 190 

climatic characteristics. The specific objectives of this study are:  191 

(1) To quantify the uncertainties introduced into budget components by enforcing 192 

water budget closure using existing BCC methods from multiple perspectives, 193 

including uncertainties relative to observations, the occurrence of negative values in 194 

budget components, and deviations from the original budget component datasets. This 195 

analysis provides a more comprehensive understanding of the trade-offs between 196 

achieving water budget closure and the associated errors;  197 

(2) To analyze in detail the occurrence of negative corrected values in budget 198 

components caused by existing BCC methods, including the proportion of negative 199 

values within the time series of each budget component and their spatial distribution 200 

under varying climatic conditions;  201 

(3) To compare the reduction in ΔRes with the corresponding increase in budget 202 

component errors resulting from enforced water budget closure;  203 

(4) To propose a new method (IWE-Res) for identifying the optimal balance in 204 

ΔRes redistribution, minimizing the combined error from both introduced budget 205 

component errors and the remaining ΔRes error. The accuracy and reliability of the 206 

proposed IWE-Res method were validated through comparisons with existing BCC 207 

methods (PR, CKF, MCL, MSD). 208 

2 Study area and data 209 
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To robustly quantify the uncertainties introduced by existing BCC methods in 210 

closing the water budget and to assess the accuracy of the proposed IWE-Res method 211 

across different climate zones, multiple river basins worldwide were selected as study 212 

areas. In total, 84 basins (Fig. 1) were chosen based on the availability of streamflow 213 

observations from the Global Runoff Data Centre (GRDC) for the period 2002–2020. 214 

To ensure data reliability, the proportion of missing data was kept below 10%, with 215 

missing values interpolated using a linear method. Notably, approximately 90% of the 216 

basins used in this study had less than 5% missing data. 217 

 218 

Fig. 1 Overview of the Study Area. The climate classification used in this study is 219 

based on the Köppen climate classification system. 220 

 221 

The climate classifications presented in Fig. 1 were determined using the Köppen 222 

climate classification system, a widely adopted framework that categorizes global 223 

climates based on temperature and precipitation thresholds (Crosbie et al., 2012; 224 

Hansford et al., 2020; Liu et al., 2022; Papacharalampous et al., 2023). This system 225 
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divides the world into five primary climate types—Tropical, Arid, Temperate, Cold, 226 

and Polar. Its key strength lies in its integration of climate data with vegetation 227 

distribution, making it highly relevant to ecological environments. 228 

For each budget component, multiple datasets are typically available, with 229 

accuracy varying across different basins. No single dataset consistently performs best 230 

across all global basins. Therefore, multiple datasets were selected for each budget 231 

component to generate various data combinations (Equations 2–3). This approach 232 

ensures the inclusion of the most suitable dataset combinations while mitigating 233 

uncertainties associated with reliance on a single dataset. 234 

Given the biases in the outputs of global P and ET models, observationally 235 

constrained datasets that have undergone bias correction or rigorous quality control 236 

are generally considered more accurate and reliable (Ehret et al., 2012). Accordingly, 237 

priority was given to datasets that incorporate extensive ground-based observations 238 

and provide bias-corrected or quality-controlled products. We selected four P 239 

datasets—GPCC, GPM IMERG, MSWEP, and PERSIANN-CDR; three ET 240 

datasets—GLDAS, GLEAM, and TerraClimate; and three TWSC datasets derived 241 

from GRACE satellite observations—GRACE CSR, GRACE GFZ, and GRACE JPL. 242 

All datasets were either bias-corrected according to the standards of their respective 243 

data providers or subjected to systematic quality control. Observed Q data were 244 

obtained from the GRDC platform. The above datasets were upscaled to the basin and 245 

monthly scales using spatial and temporal averaging. By combining these datasets, a 246 

total of 36 distinct data combinations were generated for each basin (Equation 3). 247 
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 𝐶𝑗𝑘𝑙 = [𝑃𝑗   𝐸𝑇𝑘  𝑇𝑊𝑆𝐶𝑙   𝑄] (2) 248 

where j, k, and l represent the indices of the datasets corresponding to each budget 249 

component. Table 1 provides basic information on the datasets used in this study, 250 

along with their corresponding indices. Equation 3 represents a matrix composed of 251 

the elements defined in Equation 2. 252 

 C =

[
 
 
 
𝐶111 𝐶112 𝐶113 𝐶121 𝐶122 𝐶123 𝐶131 𝐶132 𝐶133

𝐶211 𝐶212 𝐶213 𝐶221 𝐶222 𝐶223 𝐶231 𝐶232 𝐶233

𝐶311

𝐶411

𝐶312

𝐶412

𝐶313 𝐶321 𝐶322 𝐶323 𝐶331 𝐶332 𝐶333

𝐶413 𝐶421 𝐶422 𝐶423 𝐶431 𝐶432 𝐶433]
 
 
 

 (3) 253 

The Global Precipitation Climatology Centre (GPCC) dataset, provided by the 254 

German Weather Service (DWD), is derived from a dense global network of rain 255 

gauge observations, and incorporates strict quality control procedures such as station 256 

data validation, temporal consistency checks, and outlier removal (Becker et al., 2013; 257 

Schneider et al., 2008). The dataset is available at 0.25° spatial resolution and daily to 258 

monthly temporal scales. The Global Precipitation Measurement Integrated 259 

Multi-Satellite Retrievals (GPM IMERG) Final Run product, developed by NASA 260 

and JAXA, integrates multiple satellite-based precipitation estimates and applies 261 

monthly bias correction using ground-based gauge data (Wang et al., 2017; Cui et al., 262 

2020; Huang et al., 2019). The Multi-Source Weighted-Ensemble Precipitation 263 

(MSWEP) dataset combines satellite, gauge, and reanalysis data using an 264 

ensemble-weighted approach, incorporating over 77,000 ground stations for 265 

daily-scale bias correction (Beck et al., 2019; Beck et al., 2017). The 266 

PERSIANN-CDR dataset, based on satellite remote sensing and artificial neural 267 

network technology, spans 60°S to 60°N with 0.25° daily resolution, and is 268 
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bias-corrected using the GPCP monthly product, which includes extensive rain gauge 269 

observations (Chen et al., 2020; Kaprom et al., 2025; Sadeghi et al., 2019). 270 

For ET, the Global Land Data Assimilation System (GLDAS), developed by 271 

NASA and NOAA, uses land surface modeling and data assimilation to produce 272 

physically consistent estimates of land surface fluxes. The GLEAM dataset, 273 

developed by the Miralles team at the University of Bristol, estimates actual ET using 274 

satellite-derived net radiation and air temperature via the Priestley-Taylor model, and 275 

applies a stress factor derived from vegetation optical depth (VOD) and soil moisture 276 

to adjust potential evaporation. TerraClimate dataset provides global monthly actual 277 

ET estimates based on the Penman Montieth approach (Abatzoglou et al., 2018). 278 

Notably, bias correction in global ET products is generally less systematic than for P 279 

products, mainly due to the limited availability and spatial coverage of in situ flux 280 

tower observations. As a result, bias adjustments in ET datasets are typically indirect, 281 

relying on corrections applied to the climate forcing variables rather than to ET itself. 282 

The launch of the GRACE and GRACE Follow-On (GRACE-FO) satellite 283 

missions has provided new opportunities for more accurate observations of large-scale 284 

TWSC. GRACE operated from 2002 to 2017, followed by GRACE-FO starting in 285 

2018 (Boergens et al., 2024). These missions infer terrestrial total TWSC by tracking 286 

temporal variations in Earth’s gravity field, which are primarily attributed to changes 287 

in terrestrial water mass. The GRACE TWSC datasets used in this study are provided 288 

by the University of Texas Center for Space Research (CSR), the German Research 289 

Centre for Geosciences (GFZ), and NASA’s Jet Propulsion Laboratory (JPL), all of 290 
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which include multiple bias correction procedures to improve data quality (Landerer 291 

et al., 2012; Shamsudduha et al., 2017). These bias correction procedures include 292 

filtration to suppress correlated noise and striping artifacts (Swenson et al., 2006), 293 

replacement of poorly resolved spherical harmonic coefficients (e.g., degree-2 term 294 

C20) with satellite laser ranging data (Loomis et al., 2020), and correction for glacial 295 

isostatic adjustment (GIA) (Peltier et al., 2012; Mu et al., 2017). Numerous studies 296 

have demonstrated the sensitivity and reliability of GRACE satellite data for 297 

monitoring TWSC (Swenson and Wahr, 2006; Resende et al., 2019; Majid et al., 2019; 298 

Reager et al., 2014). 299 

The GRDC provides the most comprehensive open-access river discharge data 300 

available worldwide, collected from national hydrological agencies. This dataset 301 

includes river streamflow measurements from over 10,000 stations across 159 302 

countries (Su et al., 2024). To minimize the impact of missing data on the reliability of 303 

the results, hydrological stations were selected based on the criterion that missing 304 

values accounted for less than 10% of the total dataset. Linear interpolation was then 305 

applied to fill any remaining data gaps. 306 

Table 1 Datasets used for this study. 307 

Variable Data Source Number Resolution Reference 

P 

Global Precipitation Climatology 

Centre (GPCC) 
1 0.25°/month 

Schneider et al. 

(2008) 

Global Precipitation Measurement 

(GPM IMERG) 
2 0.1°/month 

Huffman et al. 

(2015) 

Multi-Source Weighted-Ensemble 

Precipitation (MSWEP) 
3 0.1°/month 

Beck et al. 

(2019) 

Precipitation Estimation from 

Remotely Sensed Information using 

Artificial Neural Networks — 

4 0.25°/month Hsu et al. (1997) 
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Climate Data Record 

(PERSIANN-CDR) 

ET 

global land data assimilation system 

(GLDAS) 
1 0.25°/month 

Park and Choi 

(2015) 

Global Land Evaporation Amsterdam 

Model (GLEAM) 
2 0.25°/month 

Miralles et al. 

(2011) 

TerraClimate 3 1/24°/month 
Abatzoglou et al. 

(2018) 

TWSC 

Gravity Recovery and Climate 

Experiment (GRACE CSR) 
1 1.0°/month 

Watkins et al. 

(2015) 

Gravity Recovery and Climate 

Experiment (GRACE GFZ) 
2 1.0°/month 

Watkins et al. 

(2015) 

Gravity Recovery and Climate 

Experiment (GRACE JPL) 
3 1.0°/month 

Watkins et al. 

(2015) 

Q Global Runoff Data Centre (GRDC) - - 
Burek and 

Smilovic (2022) 

 308 

3 Methods 309 

3.1 Water imbalance error 310 

The water balance equation describes the conservation of mass between water 311 

inflows, outflows, and changes in storage within a given region (Equation 1). 312 

However, in practice, this balance is rarely achieved due to various sources of error. 313 

These include systematic biases (such as missed portions of outflow resulted from 314 

unclosed basin boundaries and inaccuracies in catchment area delineation, particularly 315 

in small basins), measurement uncertainties, and the omission of unmeasured 316 

components. Consequently, each budget component (P, ET, Q, and TWSC) is subject 317 

to an associated error term (denoted as ԐP, ԐET, ԐQ, ԐTWSC, respectively), leading to a 318 

non-closure of the water budget (i.e., Equation 1 becomes Equation 4) (Aires, 2014; 319 

Wong et al., 2021). The resulting imbalance is represented by the residual error term 320 

ΔRes (Equation 5), which quantifies the inconsistency among the observed or 321 
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estimated components of the water cycle. 322 

Minimizing the ΔRes error is a key objective in practical hydrological 323 

applications, as it enhances the accuracy and reliability of budget component datasets. 324 

However, it is important to note that smaller ΔRes values may arise from error 325 

compensation among budget components rather than genuine improvements in data 326 

accuracy. Therefore, a high-precision water balance dataset is characterized not only 327 

by a near-zero ΔRes error but also by budget components that closely approximate 328 

their true values (Luo et al., 2023). 329 

 (P + 𝜀𝑃) − (ET + 𝜀𝐸𝑇) − (Q + 𝜀𝑄) − (TWSC + 𝜀𝑇𝑊𝑆𝐶) = 0 (4) 330 

 ∆Res = 𝜀𝐸𝑇 + 𝜀𝑄 + 𝜀𝑇𝑊𝑆𝐶 − 𝜀𝑃 = 𝑃 − 𝐸𝑇 − 𝑄 − 𝑇𝑊𝑆𝐶 (5) 331 

where 𝜀𝑃, 𝜀𝐸𝑇, 𝜀𝑄, 𝜀𝑇𝑊𝑆𝐶 are the errors in budget components of P, ET, Q, and 332 

TWSC relative to their true values, respectively. 333 

3.2 Existing water budget closure correction methods 334 

To minimize the ΔRes error in Equation 5 (reducing ΔRes from ≠0 to 0), various 335 

statistical BCC methods have been developed. These methods differ in their principles 336 

for redistributing the ΔRes error, leading to varying levels of introduced uncertainty. 337 

To systematically assess the uncertainties associated with existing BCC methods in 338 

closing the water budget and to reduce uncertainty in method selection, we evaluated 339 

four representative methods: PR, CKF, MCL, and MSD (Luo et al., 2023; 340 

Abolafia-Rosenzweig et al., 2021; Dastjerdi et al., 2024). In the following application 341 

of these BCC methods, the TWSC data used in this study refer to the basin-scale total 342 

terrestrial water storage change observed by GRACE satellite data. 343 
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For each basin, these four methods were applied to 36 different data 344 

combinations (Equation 3), yielding 144 uncertainty estimates. The optimal 345 

combinations were identified using a 5% threshold. By averaging the errors 346 

introduced into budget components across these selected optimal combinations, we 347 

quantified the uncertainty associated with existing BCC methods. This approach 348 

minimizes uncertainties arising from both BCC method selection and budget 349 

component data selection, enabling a more objective evaluation of the errors 350 

introduced by existing BCC methods. A brief overview of the four BCC methods is 351 

provided below: 352 

(1) PR method 353 

The PR method assumes that the error in budget components is proportional to 354 

their magnitudes (Abatzoglou et al., 2018). Based on the relative magnitudes of these 355 

variables, the ΔRes error is redistributed across them to achieve water budget closure 356 

(Equation 6). 357 

 𝐹𝑖 = 𝑋𝑖 − ∆𝑅𝑒𝑠(𝐺𝑖)(
|𝑋𝑖|

∑ |𝑋𝑗|
𝑛
𝑗=1

)  (6) 358 

where 𝐹𝑖 and 𝑋𝑖 represent the corrected and original data for budget components (P, 359 

ET, Q and TWSC), respectively; n  denotes the number of budget components 360 

involved in the water budget closure calculation; ∆𝑅𝑒𝑠  represents the water 361 

imbalance error; 𝐺 is a constant vector defined as 𝐺 = [1 − 1 − 1 − 1]. 362 

(2) CKF method 363 

The CKF method is developed based on the Kalman filter method (Pan and wood, 364 

2006). For a given set of estimated budget components X = [P ET Q TWSC]T and 365 
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their estimated errors ∆𝑅𝑒𝑠 = 𝐺𝑋 ≠ 0 (where G is a constant vector, 𝐺 = [1 − 1 −366 

1 − 1]), the goal is to find a new set of estimates 𝐹 = [𝑃′ 𝐸𝑇′ 𝑄′ 𝑇𝑊𝑆𝐶′]𝑇 367 

such that 𝐺𝑋′ = 0, achieving water budget closure (Pan et al., 2012). In simple 368 

terms, the CKF method redistributes the ∆𝑅𝑒𝑠 among the budget components based 369 

on the error covariance of 𝑋, defined as ∆ε𝑋𝑋 (Equation 7), to obtain a closured 370 

dataset. 371 

 ∆ε𝑋𝑋 = (𝑋 − 𝑋0)(𝑋 − 𝑋0)
𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (7) 372 

where X0 refers to the reference values of the estimated budget components, 373 

and the bar over an expression denotes expectation. For P, ET and TWSC, the 374 

reference values X0 were calculated by averaging all considered datasets, following 375 

previous studies (Zhang et al., 2018; Abolafia-Rosenzweig et al., 2021). For Q, we 376 

adopted observed Q. Due to the difficulty in quantifying the uncertainty in observed Q, 377 

previous studies have reported gauge-based uncertainty as a percent error for some of 378 

the basins, ranging from 2.3%–28.8% (Clarke, 1999; Mueller, 2003; Shiklomanov et 379 

al., 2006; Abolafia-Rosenzweig et al., 2021). We followed a similar approach to 380 

estimate the uncertainty associated with Q in this study. 381 

The error covariance matrix ∆ε𝑋𝑋 is of dimension 4×4 and represents the 382 

covariances among errors in the four budget components: 383 

 ∆ε𝑋𝑋 =

[
 
 
 

∆𝜀𝑃−𝑃 ∆𝜀𝑃−𝐸𝑇 ∆𝜀𝑃−𝑄 ∆𝜀𝑃−𝑇𝑊𝑆𝐶

∆𝜀𝐸𝑇−𝑃 ∆𝜀𝐸𝑇−𝐸𝑇 ∆𝜀𝐸𝑇−𝑄 ∆𝜀𝐸𝑇−𝑇𝑊𝑆𝐶

∆𝜀𝑄−𝑃 ∆𝜀𝑄−𝐸𝑇 ∆𝜀𝑄−𝑄 ∆𝜀𝑄−𝑇𝑊𝑆𝐶

∆𝜀𝑇𝑊𝑆𝐶−𝑃 ∆𝜀𝑇𝑊𝑆𝐶−𝐸𝑇 ∆𝜀𝑇𝑊𝑆𝐶−𝑄 ∆𝜀𝑇𝑊𝑆𝐶−𝑇𝑊𝑆𝐶]
 
 
 

 (8) 384 

Following Pan et al. (2012), the off-diagonal elements representing 385 

cross-variable error covariances were assumed to be zero, under the assumption that 386 
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errors among different budget components are uncorrelated. Accordingly, the matrix F 387 

can be computed as shown in Equation 9. 388 

 𝐹 = 𝑋 + 𝐾(0 − 𝐺𝑋) (9) 389 

where K = ∆𝜀𝑋𝑋𝐶𝑇(𝐶∆𝜀𝑋𝑋𝐶𝑇)−1  is the Kalman gain. Setting GX = ∆Res , and 390 

Equation 9 can be rewritten as Equation 10. 391 

 𝐹 = 𝑋 − ∆𝜀𝑋𝑋𝐺𝑇(𝐺∆𝜀𝑋𝑋𝐺𝑇)−1∆Res (10) 392 

where error covariance 𝜀𝑋𝑋 is calculated entry by entry according to Equation 8. 393 

(3) MCL method 394 

The MCL method is an extension of the triple collocation (TC) method. It 395 

calculates the weights for redistributing the ΔRes error among budget components by 396 

estimating the errors relative to their true values (expressed as distances, without 397 

requiring knowledge of the true values). The fundamental equations of the MCL 398 

method are shown in Equations 11-12. 399 

 𝐹𝑖 = 𝑋𝑖 − ∆Res(𝐺𝑖)(𝑑𝑥𝑥0−𝑛𝑜𝑟𝑚
𝑖 ) (11) 400 

 𝑑𝑥𝑥0−𝑛𝑜𝑟𝑚
𝑖 =

𝑑𝑥𝑥0
𝑖

∑ |𝑑𝑥𝑥0

𝑗
|4

𝑗=1

 (12) 401 

In these equations, 𝐹𝑖  represents the corrected data for the 𝑖 -th budget 402 

component;  𝑋𝑖  denotes the original data for the 𝑖 -th budget component; ΔRes 403 

represents the water imbalance error; 𝑑𝑥𝑥0−𝑛𝑜𝑟𝑚
𝑖  represents the weight assigned to 404 

the 𝑖 -th budget component, and 𝑑𝑥𝑥0
𝑖  represents the distance between the 𝑖 -th 405 

budget component and the true value, as calculated using the Monte Carlo (MC) 406 

method. For example, in the case of five precipitation data products (𝑁 = 5), the 407 

calculation of 𝑑𝑥𝑥0
𝑖  (𝑑1𝑡, 𝑑2𝑡, 𝑑3𝑡, 𝑑4𝑡, and 𝑑5𝑡) is shown in Equations 13-14. 408 
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 𝐴(𝑁)𝑦(𝑁) = 𝑏(𝑁) (13) 409 

 A(5)=

[
 
 
 
 
 
 
 
 
 
1   1   0   0   0

1   0   1   0   0

1   0   0   1   0

1   0   0   0   1

0   1   1   0   0

0   1   0   1   0

0   1   0   0   1

0   0   1   1   0

0   0   1   0   1

0   0   0   1   1]
 
 
 
 
 
 
 
 
 

, y(5)=

[
 
 
 
 
 d1t

2

d2t
2

d3t
2

d4t
2

d5t
2 ]
 
 
 
 
 

, b(5)=

[
 
 
 
 
 
 
 
 
 
 
 
 d12

2

d13
2

d14
2

d15
2

d23
2

d24
2

d25
2

d34
2

d35
2

d45
2 ]

 
 
 
 
 
 
 
 
 
 
 
 

 (14) 410 

(4) MSD method 411 

The MSD method redistributes the ΔRes to each budget component based on 412 

minimizing the time-series deviation error, aiming to reduce model uncertainties 413 

caused by errors in estimating time-point deviations (Luo et al., 2023). Specifically, 414 

the MSD method first calculates the minimum time-series deviation distance between 415 

remote sensing data for budget components and multi-source integrated data products 416 

(EO) (Equation 15). 417 

 𝐷𝑥,→𝑛 = −
[∑ (𝑦(𝐸𝑂,𝑗)−𝑦(𝐸𝑂,→𝑛))(𝑥(𝑅𝑆,𝑗)−𝑥(𝑅𝑆,→𝑛))

𝑛
𝑗=1 ]

2

∑ (𝑥(𝑅𝑆,𝑗)−𝑥(𝑅𝑆,→𝑛))
2𝑛

𝑗=1

+ ∑ (𝑦(𝐸𝑂,𝑗) − 𝑦(𝐸𝑂,→𝑛))
2𝑛

𝑗=1  (15) 418 

where 𝐷𝑥,→𝑛  represents the minimum time-series deviation distance for budget 419 

component 𝑥 (e.g., P, ET, TWSC); 𝑦(𝐸𝑂,𝑗) and 𝑥(𝑅𝑆,𝑗) refer to the integrated value 420 

and raw value of the budget component 𝑥 , respectively; 𝑦(𝐸𝑂,→𝑛)  and 𝑥(𝑅𝑆,→𝑛) 421 

denote the average deviation of budget component 𝑥 from the first to the 𝑛-th time 422 

point. 423 

Next, the MSD method calculates the weights for each budget component based 424 

on 𝐷𝑥,→𝑛 (Equation 16). 425 
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 𝑤𝑥,𝑗 =
𝐷𝑥,→𝑗

∑ 𝐷𝑖,→𝑗
4
𝑖=1

 (16) 426 

where 𝑤𝑥,𝑗 is the weight of budget component 𝑥 at time point 𝑗.  427 

Finally, the weight calculation results from Equation 16 are substituted into 428 

Equation 17 to achieve water budget closure. 429 

 

[
 
 
 
 

𝐹𝑃,𝑗
𝐵𝐶𝐶

𝐹𝐸𝑇,𝑗
𝐵𝐶𝐶

𝐹𝑅,𝑗
𝐵𝐶𝐶

𝐹𝑇𝑊𝑆𝐶,𝑗
𝐵𝐶𝐶

]
 
 
 
 

=

[
 
 
 
 

𝐹𝑃,𝑗
𝑅𝑎𝑤

𝐹𝐸𝑇,𝑗
𝑅𝑎𝑤

𝐹𝑅,𝑗
𝑅𝑎𝑤

𝐹𝑇𝑊𝑆𝐶,𝑗
𝑅𝑎𝑤

]
 
 
 
 

− Δ𝑅𝑒𝑠 [

1
−1
−1
−1

] [

𝑤𝑃,𝑗

𝑤𝐸𝑇,𝑗

𝑤𝑅,𝑗

𝑤𝑇𝑊𝑆𝐶,𝑗

] (17) 430 

where F𝐵𝐶𝐶 represents the budget components (P, ET, Q, and TWSC) corrected for 431 

water budget closure, while F𝑅𝑎𝑤 denotes the raw, uncorrected values of the budget 432 

components. 433 

3.3 Uncertainties introduced by existing BCC methods for closing water budget 434 

When the existing BCC methods described in Section 3.2 are applied to close the 435 

water budget, they redistribute ΔRes based on the estimated errors of budget 436 

components but neglect unmeasured components. This inevitably leads to an 437 

unreasonable redistribution of the ΔRes error, introducing new uncertainties. The 438 

magnitude of these introduced errors and whether they can be ignored remain 439 

unresolved, primarily due to insufficient observational data for some budget 440 

components, making it difficult to quantify the associated uncertainties. 441 

Our analysis in this study reveals that when existing BCC methods are used for 442 

water budget closure, certain budget components that typically have positive values, 443 

such as P, ET, and Q, occasionally become negative in some months. Previous studies 444 

have also mentioned this issue (Lehmann et al., 2022). This clearly indicates an 445 

unreasonable redistribution of ΔRes errors, underscoring the urgent need for 446 
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methodological improvements. Despite this issue, research on negative values remains 447 

limited. Key questions persist regarding the proportion of negative values in each 448 

budget component under current BCC methods, which variables are most susceptible 449 

to severe negative values, and how these errors vary throughout the year. Addressing 450 

these questions is critical for refining existing BCC methods. 451 

Notably, quantifying negative values does not require observational data. To 452 

comprehensively assess the uncertainties introduced by forced water budget closure, 453 

we consider three aspects: errors of individual budget components relative to observed 454 

values (Section 4.2.1), negative values arising from budget closure (Section 4.2.2), 455 

and ensemble errors (Section 4.2.3). 456 

(1) Errors of individual budget components 457 

Quantifying this type of error requires determining reference values for budget 458 

components. However, for certain variables, such as ET, observational data are 459 

insufficient across global watersheds, posing a major challenge in accurately 460 

characterizing global ET patterns. As a result, approximate reference values must be 461 

used to ensure the reliability of the results. 462 

In this study, reference values for budget components were established based on 463 

the following principles. For Q, long-term observational records from hydrological 464 

stations were available for all selected basins, meeting the study’s requirements. For 465 

TWSC, we utilized three observational datasets from the GRACE satellite, which 466 

currently provides the only large-scale measurements of basin water storage changes 467 

under rigorous quality control. The reliability of GRACE data has been validated 468 
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through ground-based observations (Famiglietti et al., 2011; Landerer et al., 2020; 469 

Rodell et al., 2009; Tapley et al., 2004; Yeh et al., 2006). Thus, GRACE TWSC data 470 

can be considered approximately reliable. To further enhance its accuracy, we applied 471 

data fusion techniques, as described in Equation 18, to merge the three GRACE 472 

TWSC products into a single reference dataset (Munier & Aires, 2018; Zhang et al., 473 

2018). 474 

The uncertainty introduced by existing BCC methods for precipitation was 475 

evaluated from two perspectives. First, 13 basins with sufficient observational 476 

precipitation data were selected, using observed precipitation as the reference. This 477 

sample size was sufficient for assessing the uncertainties associated with existing 478 

BCC methods. Second, 71 additional basins lacking sufficient observational 479 

precipitation data were included, for which fused precipitation values, derived using 480 

Equation 18, served as reference. This approach enabled cross-validation of the 481 

reliability of the fused dataset by comparing results with those from basins with 482 

observational data, allowing the study to be extended to a larger number of basins. 483 

ET is the most challenging budget component to measure directly. The scarcity 484 

of globally available ET observational data precludes the direct use of observed ET as 485 

a reference. To address this limitation, previous studies have either focused on a few 486 

basins with available observational data or compared multiple existing ET datasets. 487 

ET products are generally considered reliable if their magnitudes and trends align 488 

with those of other datasets (Chen et al., 2021; Pan et al., 2020; Xu et al., 2019). Some 489 

studies have also employed the fusion of multiple data products as a reference for ET 490 
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validation (Jiménez et al., 2018; Mueller et al., 2011; Yao et al., 2014). Following this 491 

approach, we assessed the uncertainty introduced by existing BCC methods for ET by 492 

utilizing a fusion-based reference dataset. 493 

 𝑀𝑥
̅̅ ̅̅ = ∑ 𝑀𝑥,𝑖 ∗ 𝜔𝑖

𝑛
𝑖=1  𝑎𝑛𝑑 𝜔𝑖 =

1

𝜎𝑖
2 /∑

1

𝜎𝑖
2

1
𝑖=1  (18) 494 

where 𝑀𝑥
̅̅ ̅̅  represents the fused value of the budget component, 𝑀𝑥,𝑖 denotes the 495 

𝑖-th product of the budget component; 𝜔𝑖 denotes the weight of the 𝑖-th product, and 496 

𝜎𝑖
2 refers to the covariance error of the 𝑖-th product, 𝑛 is the total number of budget 497 

components, and 𝑥 refers to P, ET or TWSC. 498 

After establishing reference values for budget components, we quantify errors in 499 

the original data relative to these references, using the positive metric CC and inverse 500 

metric RMSE as examples, denoted as CC1 and RMSE1, respectively. Similarly, errors 501 

in the BCC-corrected data relative to the reference values are calculated, represented 502 

as CC2 and RMSE2. 503 

To assess the uncertainties introduced by water budget closure, changes in CC 504 

and RMSE (CC′ and RMSE′) are computed using Equations 19 and 22. Positive 505 

values of CC′ and RMSE′ indicate an improvement in data accuracy following BCC 506 

correction, whereas negative values suggest a decline. In addition to CC and RMSE, 507 

other statistical metrics used in this study include the positive indicator NSE and the 508 

negative indicator MAE. 509 

 CC′ = 𝐶𝐶2 − 𝐶𝐶1 (19) 510 

 𝑁𝑆𝐸′ = 𝑁𝑆𝐸2 − 𝑁𝑆𝐸1 (20) 511 

 𝑀𝐴𝐸′ = 𝑀𝐴𝐸1 − 𝑀𝐴𝐸2 (21) 512 
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 𝑅𝑀𝑆𝐸′ = 𝑅𝑀𝑆𝐸1 − 𝑅𝑀𝑆𝐸2 (22) 513 

 𝐶𝐶 =
∑ (𝑂𝑏𝑠𝑖−𝑂𝑏𝑠̅̅ ̅̅ ̅̅ )(𝑆𝑖𝑚𝑖−𝑆𝑖𝑚̅̅ ̅̅ ̅̅ )𝑛

𝑖=1

√∑ (𝑂𝑏𝑠𝑖−𝑂𝑏𝑠̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

2√∑ (𝑆𝑖𝑚𝑖−𝑆𝑖𝑚̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

2
 (23) 514 

 𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑖𝑚𝑖−𝑂𝑏𝑠𝑖)

𝑛
𝑖=1

2

∑ (𝑂𝑏𝑠𝑖−𝑂𝑏𝑠̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

2  (24) 515 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖|

𝑛
𝑖=1  (25)  516 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑂𝑏𝑠𝑖 − 𝑆𝑖𝑚𝑖)

2𝑛
𝑖=1  (26) 517 

where Obs𝑖 represents the reference value at time i, and 𝑆𝑖𝑚𝑖 represents either the 518 

original data or the BCC-corrected data. Obs̅̅ ̅̅ ̅ and 𝑆𝑖𝑚̅̅ ̅̅ ̅ represent the mean values of 519 

Obs and Sim, respectively, and 𝑛 is the sample size. 520 

(2) Negative values 521 

Negative values are defined as the issue that arises when the BCC method is used 522 

to close the water budget, and the redistributed ΔRes error exceeds the actual values 523 

of budget components (P, ET, Q, and TWSC), causing P, ET, and Q to become 524 

negative. For TWSC, a negative value occurs when the corrected TWSC has an 525 

opposite sign to its raw value. These negative values represent only a subset of the 526 

errors introduced during water budget closure but reflect an extreme case of 527 

unreasonable ΔRes error redistribution, serving as an indicator of the BCC method’s 528 

effectiveness.  529 

When a budget component exhibits a negative value, the redistribution of ΔRes 530 

errors to other components is significantly affected, reducing the overall accuracy of 531 

the corrected datasets. Thus, negative values are a critical factor influencing the 532 

performance of existing BCC methods and should be prioritized for improvement. To 533 

better understand this issue, we analyze the proportion of negative values for each 534 
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budget component, their seasonal distribution, and their sensitivity to climatic 535 

conditions (i.e., their prevalence in arid versus humid basins). Insights from this 536 

analysis were incorporated into the proposed IWE-Res method to address the 537 

occurrence of negative values (Section 3.4). 538 

(3) Ensembled error of four budget components 539 

The aforementioned evaluations (1) and (2) assess errors for individual budget 540 

components. To gain a more comprehensive understanding of the uncertainties 541 

introduced by water budget closure, we also evaluate the combined error. First, the 542 

absolute error (AE) of each budget component is calculated (using P as an example, 543 

see Equation 29). Second, the relative absolute error (RAE) is determined for each 544 

budget component (Equation 28). Finally, by aggregating the relative errors of 545 

individual components, we define the ensembled relative error (Equation 27) to 546 

quantify the overall error introduced by BCC methods. 547 

𝐹(𝑅𝑒) =
1

𝑛
∑

|𝐴𝐸(𝑃′)|−|𝐴𝐸(𝑃𝑅𝑎𝑤)|+|𝐴𝐸(𝐸𝑇′)|−|𝐴𝐸(𝐸𝑇𝑅𝑎𝑤)|+|𝐴𝐸(𝑄′)|−|𝐴𝐸(𝑄𝑅𝑎𝑤)|+|𝐴𝐸(𝑇𝑊𝑆𝐶′)|−|𝐴𝐸(𝑇𝑊𝑆𝐶𝑅𝑎𝑤)|

𝑃0+𝐸𝑇0+𝑄0+|𝑇𝑊𝑆𝐶0|
𝑛
𝑖=1

=
1

𝑛
∑

𝑅𝐴𝐸(𝑃)+𝑅𝐴𝐸(𝐸𝑇)+𝑅𝐴𝐸(𝑄)+𝑅𝐴𝐸(𝑇𝑊𝑆𝐶)

𝑃0+𝐸𝑇0+𝑄0+|𝑇𝑊𝑆𝐶0|
𝑛
𝑖=1

548 

  (27) 549 

 𝑅𝐴𝐸(𝑃) = |𝐴𝐸(𝑃′)| − |𝐴𝐸(𝑃𝑅𝑎𝑤)| (28) 550 

 𝐴𝐸(𝑃) = |𝑃 − 𝑃0| (29) 551 

where, 𝐹(𝑅𝑒) represents the ensembled relative error, and RAE refers to the relative 552 

value of absolute error, with 𝑖 denoting the month. The subscript "Raw" corresponds 553 

to the raw data of the budget components, the subscript 0 represents the observed data, 554 

the superscript “′” denotes the BCC-corrected data for the budget components. The 555 

degree of alteration induced by the BCC methods for each budget component are 556 
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defined based on the value of 𝐹(𝑅𝑒), and four intervals are established in 5% 557 

increments: no significant change [0-5%], minor change (5-10%], moderate change 558 

(10-15%], and significant change (>15%). 559 

3.4 Proposed IWE-Res method for closing water budget 560 

In this section, we propose the IWE-Res method to identify the optimal balance 561 

for redistributing ΔRes, minimizing the sum of the introduced error to budget 562 

components and the remaining ΔRes error while reducing the negative values 563 

introduced by closing the water budget. Unlike existing BCC methods that fully 564 

redistribute the ΔRes term in a single step, the IWE-Res method adopts a gradual, 565 

iterative redistribution strategy that allows for more consistent correction. Specifically, 566 

the method incrementally allocates fractions of ΔRes to P, ET, Q and TWSC, based on 567 

fixed percentage steps and guided by existing BCC weighting schemes. At each 568 

iteration, the redistribution process seeks to minimize the combined error—defined as 569 

the sum of the induced changes in the water budget components and the remaining 570 

unexplained ΔRes. This dual-objective criterion ensures that the method balances 571 

error reduction while maintaining hydrological plausibility. Importantly, the approach 572 

includes a mechanism to avoid introducing implausible negative values. If, during any 573 

iteration, the corrected value of a component becomes negative—violating 574 

hydrological constraints such as non-negative precipitation or runoff—further 575 

redistribution to that component is halted. Subsequent iterations reallocate the 576 

remaining ΔRes among the unaffected components. From a hydrological perspective, 577 

this strategy acknowledges that not all of the residuals can be attributed to known 578 
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components. Some portion of ΔRes may originate from unmeasured or poorly 579 

constrained processes. By partially closing the water budget in a controlled and 580 

iterative manner, the IWE-Res method reduces the risk of overcorrecting 581 

well-characterized components while better preserving the consistency of the entire 582 

budget. The specific steps of the proposed IWE-Res method are as follows: 583 

First, the ΔRes error is calculated using Equation 5 and the original datasets of 584 

budget components. 585 

Second, an iterative loop is constructed to compute the errors introduced into 586 

budget components during the gradual redistribution of the ΔRes error and to address 587 

negative values. To more accurately identify the optimal balance, a step size of 0.1% 588 

of ΔRes is used in each iteration in this study. We denote the ΔRes redistributed to 589 

budget components in each iteration as x, where x∈[0, ΔRes]. 590 

During each redistribution of ΔRes, two error terms are computed: (1) the 591 

remaining ΔRes error, defined as ΔRes* = ΔRes − x, and (2) the error introduced to 592 

budget components due to the redistribution of the x error, denoted as IWE (Equation 593 

31). When these errors are plotted in a coordinate system, two distinct curves emerge 594 

(Fig. 2), each representing a different error relationship. For ΔRes* (Equation 30), 595 

Figure 2 shows a fixed, monotonically decreasing linear trend, as 0.1% increments of 596 

ΔRes are uniformly redistributed to budget components using existing BCC methods. 597 

In contrast, the IWE curve exhibits a non-fixed shape, reflecting the cumulative error 598 

introduced to budget components during the redistribution of a portion of ΔRes 599 

(Equations 31–32). This variability in the IWE curve arises from the nonlinear 600 
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relationship between the introduced budget component errors and the reduction in 601 

ΔRes error. 602 

ΔRes*=ax+b=-x+ΔRes                      (30) 603 

IWE=F(ԐP, ԐET, ԐQ, ԐTWSC)=F(x, RAE)              (31) 604 

𝑅𝐴𝐸 =
1

4
∑ (𝑅𝐴𝐸(𝑃) + 𝑅𝐴𝐸(𝐸𝑇) + 𝑅𝐴𝐸(𝑄) + 𝑅𝐴𝐸(𝑇𝑊𝑆𝐶))4

𝑖=1    (32) 605 

where x represents the portion of ΔRes redistributed to the budget components, with a 606 

range from 0 to ΔRes. The terms ԐP, ԐET, ԐQ, ԐTWSC represent the errors introduced to P, 607 

ET, Q and TWSC, respectively, due to the redistribution of x to the budget 608 

components. F(x, RAE) denotes the RAE error calculated by the redistribution of the x 609 

error to budget components. 610 

During the iterative correction process, if any of the water budget components (P, 611 

ET, and Q) becomes negative, the redistribution of water imbalance error to that 612 

component is immediately suspended. In subsequent iterations, redistribution is 613 

recalculated to ensure that only components with physically meaningful positive 614 

values receive the imbalance correction. For example, if ET becomes negative in a 615 

given iteration, the imbalance is subsequently redistributed to P, Q, and TWSC only, 616 

in accordance with Equation 33. For TWSC, if a sign reversal occurs during iteration 617 

(i.e., from positive to negative or vice versa), the redistribution of the water imbalance 618 

error to TWSC is suspended in the following iteration. 619 
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= −
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                      (33) 620 

where Fi denotes the corrected dataset, and Xi denotes the original dataset of budget 621 

components. Since ET does not participate in the redistribution of the residual error x 622 
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based on the example above, the weighting vector is defined as G=[1, 0, −1, −1]. The 623 

term Ԑ represents the error in budget components estimated using existing BCC 624 

methods, as described in Section 3.2. 625 

Third, the IWE-Res curve is plotted (Fig. 2) to provide an intuitive comparison 626 

between the introduced budget component errors and the remaining water imbalance 627 

error. The error calculation results from Equations (30) and (31) are presented within 628 

the same coordinate system. 629 

The IWE-Res method is illustrated in Fig. 2 using four curves. The x-axis 630 

represents the percentage of water imbalance error redistributed to budget components 631 

using existing BCC methods, while the y-axis denotes the percentage of the remaining 632 

water imbalance error (ΔRes*) after each iteration. The black dashed line represents 633 

the redistributed x-error value among the budget components. The thin blue solid line 634 

represents the ΔRes* error curve. Since the sum of redistributed x and remaining 635 

ΔRes* equals the total ΔRes error, this curve forms a monotonically decreasing 45° 636 

line. The thin green solid line represents the introduced budget component error (IWE) 637 

after a given percentage of ΔRes is redistributed (x-axis), with its shape varying 638 

depending on the redistribution process (Fig. 2 is illustrative). Initially, when no ΔRes 639 

is redistributed (x = 0), the IWE error is zero. As more ΔRes is redistributed (with 640 

increasing x values), IWE increases due to the growing uncertainty introduced. The 641 

thin red solid line represents the total error, defined as the sum of ΔRes* and IWE 642 

after applying BCC methods. This curve varies depending on the redistribution 643 

process, and its minimum value identifies the optimal balance where combined ΔRes* 644 



31 

 

and IWE errors are minimized. The intersection of the ΔRes* and IWE curves 645 

indicates only the point at which these errors are equal, not necessarily the optimal 646 

balance. 647 

To determine the optimal redistribution of the water imbalance error, we plot 648 

the IWE-Res curve (the green solid line) for each basin, identifying the minimum of 649 

the red total error curve. We then analyze its patterns across basins with different 650 

characteristics to optimize water budget closure and improve the accuracy of budget 651 

component datasets. 652 

The IWE error in Fig. 2 also serves as a metric for evaluating the performance 653 

of existing BCC methods. If a BCC method perfectly redistributed ΔRes without 654 

introducing additional errors, the IWE curve would be a flat line at zero, and the red 655 

total error line would coincide with the blue ΔRes* error line. This scenario indicates 656 

that full redistribution of water imbalance error achieves the optimal balance, 657 

providing indirect validation of the IWE-Res method’s effectiveness. 658 

Finally, the optimal balance is identified, enabling the generation of a 659 

high-precision dataset that improves water budget closure. The optimal balance 660 

corresponds to the minimum of the total error curve (IWE + ΔRes*), where the sum 661 

of remaining water imbalance error and introduced budget component errors is 662 

minimized. Ideally, both ΔRes* and IWE would reach their minimum values 663 

simultaneously, meaning minimal error is introduced while fully redistributing ΔRes. 664 

However, since this ideal state may not always be achievable, identifying the point 665 

where combined error is minimized is essential. This principle defines the proposed 666 
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IWE-Res method (Fig. 2). 667 

 668 

Fig. 2 Framework of the IWE-Res method to identify the optimal balance for 669 

redistributing the ΔRes error. The x-axis represents the proportion of ΔRes 670 

redistributed to budget components, while the y-axis reflects the proportion of the 671 

remaining ΔRes error. The black dashed line represents the redistributed x-error value 672 

among the budget components. The blue solid line represents the ΔRes* curve, while 673 

the green solid line shows the IWE error introduced into budget components after 674 

redistributing the corresponding percentage of ΔRes. The red solid line represents the 675 

total error curve. 676 

 677 

4 Results 678 

4.1 Water imbalance error 679 

This section presents a comparative analysis of variations in water imbalance 680 

errors across different basins and data combinations, aiming to clarify how errors in 681 
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budget components contribute to these discrepancies. Figure 3 illustrates the spatial 682 

distribution of monthly ∆Res errors across various data combinations. To prevent the 683 

cancellation of positive and negative values, the absolute values of monthly ∆Res 684 

errors were first computed for each basin and then averaged. 685 

As shown in Figure 3, ∆Res values vary significantly across basins. Most basins 686 

in Africa, South America, and Europe exhibit high ∆Res values, typically exceeding 687 

20 mm. In North America, ∆Res values generally range from 15 to 45 mm. Due to 688 

inconsistencies among budget component datasets, substantial differences in ∆Res 689 

also emerge across different data combinations. In combinations where only P data 690 

varied while other budget component datasets remained constant (combinations in Fig. 691 

3 where the first digit varies while the second and third remain constant), pronounced 692 

changes in water imbalance errors were observed in parts of southern Africa, northern 693 

Asia, and North America. This suggests substantial estimation errors in P for these 694 

regions. 695 
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 696 

Fig. 3 Spatial distribution of the ∆Res error on a monthly scale for different 697 

combinations of budget components. The unit of ∆Res is mm. Each subplot represents 698 

a distinct combination, where the first digit corresponds to the P product, the second 699 

to the ET product, and the third to the TWSC product. The detailed definitions of 700 

these combinations are provided in Equation 3. 701 

 702 

When different ET products were used (combinations where the second digit 703 

varies while the first and third remain constant), water imbalance errors changed 704 
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significantly in most basins. Specifically, in combinations using the TerraClimate ET 705 

dataset, water imbalance errors exceeded 35 mm in the majority of basins, indicating 706 

severe water imbalance. This underscores the considerable discrepancies among ET 707 

products and their substantial impact on accurately representing basin water balance. 708 

In contrast, when TWSC data from different GRACE products were used 709 

(combinations where the third digit varies while the first and second remain constant), 710 

variations in water imbalance errors across basins were relatively small. 711 

Overall, ET and P are the primary variables influencing water imbalance in most 712 

basins, consistent with previous findings (Pan et al., 2012; Zhang et al., 2018). The 713 

uncertainty in budget component datasets remains a key challenge for water balance 714 

research (Dagan et al., 2019; Lv et al., 2017; Luo et al., 2023). 715 

4.2 Uncertainties of budget components introduced by closing water budget 716 

To gain a more comprehensive understanding of the uncertainties introduced into 717 

budget components when closing the water budget, this section analyzes the errors 718 

introduced by fully closing the water budget using existing BCC methods from three 719 

perspectives: the errors of individual budget components, the occurrence of negative 720 

values, and ensemble errors (Section 3.3). 721 

4.2.1 Errors of individual budget components 722 

Figure 4 presents the relative statistical metrics calculated using Equations 19–22 723 

to evaluate the uncertainties introduced into budget components by existing BCC 724 

methods. Positive values indicate an improvement in the accuracy of corrected budget 725 

components, whereas negative values indicate a decline in accuracy. 726 
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Overall, existing BCC methods exhibit notable limitations in enhancing the 727 

accuracy of budget components. In particular, for P, nearly all statistical metrics (CC', 728 

NSE', MAE', RMSE') across various basins yield negative values. For instance, under 729 

the CKF method, these values are approximately –0.05, –0.15, –3.82 mm, and –8.47 730 

mm, respectively, indicating a significant reduction in the accuracy of the corrected P 731 

dataset when BCC methods are applied to enforce water budget closure. Specifically, 732 

the accuracy of the corrected P dataset decreases by approximately 6%, 34%, 11%, 733 

and 55%, as reflected in the CC, NSE, MAE, and RMSE metrics, respectively. 734 

Analysis of 13 selected basins with sufficient P observations further confirms this 735 

decline, showing a reduction in the accuracy of budget-corrected P (Figure 5). A 736 

possible explanation for this decrease is the inherently high accuracy of raw P datasets, 737 

supported by advancements in remote sensing technologies, meteorological models, 738 

and observational networks. However, when BCC methods are applied, water 739 

imbalance errors from other budget components, such as ET, may be inappropriately 740 

redistributed to the corrected P dataset in an effort to enforce overall water budget 741 

closure. As a result, while the total water budget is balanced, the accuracy of the 742 

corrected P data is compromised. 743 
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 744 

Fig. 4 Box plot quantifying the errors introduced into budget components by existing 745 

BCC methods when closing the water budget. (a) - (d) represent the results of the CC', 746 

NSE', MAE', RMSE' indicators, respectively. Positive values indicate an improvement 747 

in accuracy relative to the reference values after applying existing BCC methods, 748 

while negative values indicate a decline. Different colors represent different BCC 749 

methods. 750 

 751 

The impact of enforcing water budget closure using existing BCC methods on 752 

ET was particularly significant (Fig. 4), with approximately 50% of basins exhibiting 753 

improved accuracy in corrected ET. For TWSC, most basins showed decreased 754 

accuracy. For Q, CC' and NSE' values ranged from 0 to -0.5, while MAE' and RMSE' 755 

were primarily concentrated between 0 mm and -20 mm. Consequently, the accuracy 756 

of corrected Q declined, with CC, NSE, MAE, and RMSE decreasing by 757 

approximately 0.1, 0.2, 3 mm, and 5 mm, respectively. These findings indicate that 758 

while redistributing the entire ∆Res enhances the consistency of budget components, 759 

it provides limited improvement in their accuracy and may even introduce further 760 
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errors. Identifying an optimal redistribution strategy for ∆Res errors could help 761 

mitigate this issue. 762 

 763 

Fig. 5 Box plot illustrating precipitation errors introduced by correcting ∆Res using 764 

existing BCC methods across 13 basins with sufficient observational precipitation 765 

data. The x-axis represents the 13 basins in the following order: NIGER, OB, 766 

MISSISSIPPI, SACRAMENTO, SAN JOAQUIN, SUSQUEHANNA, BRAZOS, 767 

FRASER, NELSON, MURRAY, RIO EBRO, ELBE, and KURA. 768 

 769 

4.2.2 Negative values 770 

This section examines the occurrence of negative values in budget components 771 

arising from the application of existing BCC methods to close the water budget. For 772 

each budget component, the proportion of months with negative values relative to the 773 

total time series was computed (Fig. 6). Overall, the fraction of negative values across 774 

budget components ranges from 0% to 10%, with the majority falling below 5%. This 775 
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proportion is notable, as negative values indicate substantial inaccuracies in the 776 

redistribution of water imbalance errors by existing BCC methods. When a budget 777 

component exhibits a negative value, the accuracy of the remaining budget 778 

components is also compromised. The relatively high occurrence of negative values 779 

highlights the need for methodological improvements to enhance the performance of 780 

existing BCC methods. 781 

 782 

Fig. 6 Percentage of negative values for corrected datasets of budget components 783 

induced by closing the water budget. Different colors indicate distinct climate 784 

classifications. 785 

 786 

Among the individual budget components, ET and TWSC exhibit the most 787 

pronounced negative values, followed by P, while Q shows the least (Fig. 6). Notably, 788 

the proportion of negative values in budget components varies significantly across 789 

climate types. For P, negative values generally remain below 5% but can occasionally 790 

reach 7% in arid regions. The likelihood of negative P values is higher in tropical and 791 

arid climates (mostly below 5%) compared with temperate and cold regions (around 792 
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1%). For ET, the proportion of negative values is largely below 5%, but it is notably 793 

higher in cold climates (reaching 9%), followed by arid and temperate regions 794 

(approximately 1%–3%). Tropical climates exhibit the lowest proportion of negative 795 

ET values, with most instances below 1%. Q consistently shows a low occurrence of 796 

negative values across all climate types (generally below 3%), with a slightly higher 797 

probability in tropical regions than in other zones. The proportion of negative TWSC 798 

values ranges from 3% to 10%, being lowest in tropical climates (below 5%), while 799 

other climate types exhibit values between 3% and 10%. Previous studies based on 800 

the Budyko framework (ignoring TWSC) at the annual scale have shown that water 801 

balance is primarily governed by P and potential ET (Sankarasubramanian & Vogel, 802 

2002; Zhang et al., 2008; Koster & Suarez, 1999). However, these influences vary 803 

across climatic regions. For example, in tropical and arid regions, P tends to be the 804 

dominant controlling factor (Du et al., 2024; Wu et al., 2018; Liu et al., 2017; Guo et 805 

al., 2022). In cold regions, the Budyko model exhibits relatively limited accuracy in 806 

estimating ET at the annual scale (Lute et al., 2014; Gao et al., 2010; Potter et al., 807 

2005). These previous findings at the annual scale provide indirect support for our 808 

results derived at the monthly scale. 809 

Fig. 7 presents the seasonal cycle of negative values across different climate 810 

zones, examining whether these values exhibit significant seasonal patterns. Negative 811 

P values predominantly occur in winter and spring, with a higher proportion from 812 

January to March in tropical climates compared to arid regions. ET tends to show 813 

negative values more frequently in winter and spring, with a lower likelihood in 814 
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summer and autumn. Except in summer, cold climate zones are most susceptible to 815 

negative ET values. Among the four budget components, Q has the lowest occurrence 816 

of negative values. Negative TWSC values exhibit no obvious seasonal pattern, with 817 

arid regions exhibiting a higher likelihood of negative values throughout the year 818 

compared to other climate types. These findings indicate that the occurrence of 819 

negative values varies significantly across seasons and climate zones. Future research 820 

should account for this seasonal variability to further refine existing BCC methods. 821 

 822 

Fig. 7 Seasonal cycle of the proportion of negative errors for budget components. 823 

Different colors representing various climate types. The Southern Hemisphere data by 824 

applying a 6-month shift to align its seasonal phases with those of the Northern 825 

Hemisphere. 826 

 827 

4.2.3 Ensemble errors 828 

Fig. 8 presents the ensemble errors in budget components (i.e., F(Re) in Equation 829 
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27) introduced by existing BCC methods (CKF, MCL, MSD, and PR). All four 830 

methods exhibit similar spatial distribution patterns. Notably, high ensemble errors 831 

(F(Re) > 10%) are concentrated in the northwestern basins of North America, 832 

particularly in Alaska, suggesting substantial variations in budget components in these 833 

regions. Basins with minor ensemble errors (5% < F(Re) ≤ 10%) generally cover 834 

larger areas, such as African and Northern Asia. Although these errors are relatively 835 

small, they remain non-negligible. Basins with lower ensemble errors (F(Re) ≤ 5%) 836 

also cover some basins. Further analysis of ∆Res in basins with higher F(Re) values 837 

reveals a strong correlation, as these basins also exhibit larger ∆Res. This finding 838 

highlights the limitations of existing BCC methods in effectively redistributing ∆Res 839 

errors. 840 

 841 

Fig. 8 Ensemble errors in budget components introduced by closing the water budget 842 

using existing BCC methods. 843 

 844 

To determine whether the error cost introduced by existing BCC methods in 845 
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closing the water budget outweighs the reduction in water imbalance error, we 846 

analyzed the relationship between the reduction in ΔRes error and the introduced 847 

budget component errors (Fig. 9). As shown in Fig. 9, with the exception of the PR 848 

method, the basins where |RAE| exceeds |Res| are largely consistent across the other 849 

three BCC methods. This discrepancy arises because the PR method redistributes 850 

ΔRes based on the magnitude of budget components, whereas the CKF, MCL, and 851 

MSD methods redistribute ΔRes according to the estimated errors in budget 852 

components. 853 

 854 

Fig. 9 Comparison of relative absolute error (RAE) and residual error (Res) for four 855 

BCC methods (CKF, MCL, MSD, PR) across various basins. The black lines in the 856 

red shaded area on the upper half of the y-axis indicate that the error introduced by the 857 

BCC methods for budget components exceeds the reduction in ΔRes error (|RAE| > 858 

|Res|), while the green shaded area on the lower half of the y-axis represents cases 859 
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where the error introduced is less than the reduction in ΔRes error (|RAE| < |Res|). 860 

 861 

For the CKF, MCL, MSD, and PR methods, the proportions of basins where 862 

|RAE| exceeds |Res| are 44.05%, 52.44%, 56.79%, and 77.38%, respectively. This 863 

indicates that, for all four methods, the introduced |RAE| error in budget components 864 

surpasses the reduction in water imbalance error in more than 40% of the basins. 865 

These findings underscore the non-negligible uncertainties introduced by these 866 

methods. Striking a balance between reducing water imbalance error and minimizing 867 

the impact of budget component errors remains a critical challenge, motivating us to 868 

propose the IWE-Res method to identify optimal balance. 869 

4.3 Verifying the accuracy of the proposed IWE-Res method 870 

Based on the error analysis of existing BCC methods in Section 4.2, this section 871 

assesses the accuracy and reliability of the proposed IWE-Res method. The evaluation 872 

is conducted through a comparative analysis with PR, CKF, MCL, and MSD, focusing 873 

on three key aspects: the errors of individual budget components, the occurrence of 874 

negative values, and ensemble errors. 875 

Fig. 10 compares the accuracy of the proposed IWE-Res method with existing 876 

PR, CKF, MCL, and MSD methods from the perspective of errors in individual 877 

budget components. The red and blue lines represent the IWE-Res method and the 878 

existing BCC methods, respectively, while the bars indicate the relative accuracy 879 

improvement of the IWE-Res method compared to the BCC methods. As shown in 880 

Fig. 10, the proposed IWE-Res method exhibits consistently higher accuracy than all 881 
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existing CKF, MCL, MSD, and PR methods for budget components P, ET, Q, and 882 

TWSC. This result highlights the superior capability of the IWE-Res method in 883 

optimizing errors in budget corrected datasets. According to the statistical metrics CC, 884 

NSE, MAE, and RMSE, the proposed IWE-Res method improves the corrected P data 885 

by 4.2%, 21.3%, 25.5% and 29.5%, respectively, compared to the existing BCC 886 

methods. For corrected ET, the improvements are 6.9%, 265.7%, 17.6% and 24.7%, 887 

respectively; for corrected Q, the improvements are 3.4%, 185.1%, 67.1%, and 69.0%; 888 

and for corrected TWSC, the improvements are 0.0%, 7.0%, 7.5%, and 6.8%. 889 

 890 

Fig. 10 Performance comparison of the proposed IWE-Res method with existing BCC 891 

methods in corrected individual budget components. The red and blue lines in the 892 

figure represent the average values across all basins considered in this study. 893 

 894 

Table 2 presents the percentage of negative values observed in the corrected 895 

budget components for the proposed IWE-Res method and existing BCC methods. 896 
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One of the key contributions of the IWE-Res method is its ability to address the 897 

critical limitation of negative value generation in existing BCC methods. As a result, 898 

the percentage of negative values in the corrected P, ET, Q, and TWSC data using the 899 

proposed IWE-Res method is zero. In contrast, the corrected P, ET, Q, and TWSC 900 

data obtained from existing BCC methods contain negative values to varying degrees 901 

(for a detailed analysis of negative values, see Section 4.2.2). These results 902 

demonstrate that, in addition to improving the accuracy of budget components relative 903 

to observations, the proposed IWE-Res method effectively eliminates the issue of 904 

negative values inherent in existing BCC methods. 905 

Table 2 The percentage of months with negative values in the corrected datasets of 906 

budget components P, ET, Q, and TWSC for the proposed IWE-Res method and 907 

existing BCC methods. The percentages in the table represent the average values 908 

across all basins considered in this study. 909 

 
P ET Q TWSC 

Existing IWE-Res Existing IWE-Res Existing IWE-Res Existing IWE-Res 

CKF 0.31% 0% 6.73% 0% 0.75% 0% 4.81% 0% 

MCL 1.82% 0% 4.78% 0% 0.77% 0% 7.61% 0% 

MSD 1.68% 0% 7.03% 0% 0.82% 0% 5.40% 0% 

PR 0% 0% 0.57% 0% 0.72% 0% 0.47% 0% 

 910 

We further evaluate the accuracy and reliability of the proposed IWE-Res 911 

method using the ensemble error metric defined by Equation (27) (Fig. 11), where 912 

lower values indicate better model performance. As shown in Fig. 11, the IWE-Res 913 

method significantly reduces ensemble errors compared to existing BCC methods. For 914 

instance, in the CKF method, the median ensemble error decreases from above 5% to 915 



47 

 

below 5%. This reduction is even more pronounced in the MCL, MSD, and PR 916 

methods. Additionally, the interquartile ranges under IWE-Res are notably narrower, 917 

suggesting improved control over stochastic variability. For example, in the PR 918 

method, the interquartile range shrinks from 5–8% (existing BCC methods) to 1–2% 919 

(IWE-Res), reflecting an approximate 67% reduction in variability. These findings 920 

highlight the robustness of the IWE-Res method in minimizing integrated errors, 921 

aligning with its previously demonstrated excellence in single-variable error 922 

optimization and negative value elimination. 923 

 924 

Fig. 11 Performance comparison of the proposed IWE-Res method and existing BCC 925 

methods based on the ensemble errors of budget components. 926 

 927 

4.4 Identifying the optimal balance for redistributing water imbalance error 928 

Based on the proposed IWE-Res method, this section aims to determine the 929 

optimal balance for redistributing water imbalance errors across different climate 930 

zones (Tropical, Arid, Temperate, and Cold climate zones) to achieve the best 931 

trade-off (Figs. 12-15). Specifically, it seeks to minimize both water imbalance errors 932 

and the uncertainties in budget components introduced by enforcing water budget 933 
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closure. The findings offer a valuable reference for generating high-precision datasets 934 

of budget components with a closed water budget in diverse climate regions. When 935 

developing the IWE-Res method, we incorporated multiple BCC methods, each based 936 

on different principles. As a result, the identified optimal balance results vary across 937 

methods. This section presents results for the CKF method only, while results for the 938 

MSD, MCL, and PR methods are provided in the supplementary materials. 939 

Overall, the optimal balance varied among basins located in different climate 940 

zones (Figs. 12–15). In most basins within the Tropical, Arid, and Temperate zones, 941 

the optimal balance was achieved when only a portion of the water imbalance error, 942 

rather than the entire error, was redistributed to budget components. However, this 943 

pattern was not observed in the Cold region. 944 

For most basins in the Tropical climate zone (Fig. 12), the optimal balance was 945 

reached when 40%–90% of ΔRes was reallocated to budget components, suggesting 946 

that the corrected budget datasets achieve their highest accuracy within this range. 947 

Notably, approximately 20% of basins attained their optimal balance when 80%–90% 948 

of ΔRes was redistributed, while about 70% did so within the 40%–50% range. 949 

Therefore, in Tropical basins, if sufficient observational data are unavailable to 950 

precisely determine the optimal balance, redistributing 40%–50% of ΔRes to budget 951 

components is recommended to obtain the most accurate dataset. 952 
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 953 

Fig. 12 IWE-Res curve in basins of Tropical climate zone for identifying the optimal 954 

balance that enhances water budget closure and reduces uncertainty. 955 

 956 

For basins in the Arid climate zone (Fig. 13), optimal balance are generally found 957 

when 40%–90% of ΔRes is redistributed, indicating that the corrected budget 958 

component datasets achieve their highest accuracy within this range. Specifically, 959 

approximately 31% of basins reach their optimal balance at 40%–50% redistribution, 960 

38% at 60%–80%, and over 20% at 90%. Thus, the distribution of optimal balance in 961 

Arid basins does not follow a distinct pattern. 962 
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 963 

Fig. 13 IWE-Res curve in watersheds of Arid climate zone for identifying the optimal 964 

balance that enhances water budget closure and reduces uncertainty. 965 

 966 

In the Temperate climate zone (Fig. 14), optimal balance are concentrated within 967 

the 40%–90% range. Approximately 53% of basins achieve their optimal balance 968 

when 40%–50% of ΔRes is redistributed, while 17% and 13% reach it at 70% and 90% 969 

of the ΔRes redistribution. A smaller proportion of basins achieve optimal balance at 970 

60% and 80% of the ΔRes redistribution. Overall, redistributing 40%–50% of ΔRes 971 

minimizes the combined error from both the introduced budget component error and 972 

the remaining water imbalance error in most basins. 973 
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 974 

Fig. 14 IWE-Res curve in watersheds of Temperate climate zone for identifying the 975 

optimal balance that enhances water budget closure and reduces uncertainty. 976 

 977 

In Cold climate zone basins (Fig. 15), the optimal balance is typically reached 978 

when the entire ΔRes is fully redistributed. This suggests that complete redistribution 979 

of ΔRes does not compromise the accuracy of the budget components. This is 980 

primarily due to the trend observed in the IWE curve, which initially 981 

increases—indicating rising error—before decreasing, in contrast to the patterns seen 982 
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in most basins in Figs. 12–14. A comparison of ΔRes and the negative values 983 

introduced by full redistribution of ΔRes across climate zones reveals that, in Cold 984 

regions, negative values predominantly occur in ET. This is likely due to the 985 

inherently lower ET values in Cold regions, which increases the likelihood of negative 986 

values when ΔRes is redistributed. However, errors introduced in other budget 987 

components, such as P and Q, remain relatively low under full redistribution of ΔRes. 988 

 989 

Fig. 15 IWE-Res curve in watersheds of Cold climate zone for identifying the optimal 990 
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balance that enhances water budget closure and reduces uncertainty. 991 

5 Discussion 992 

5.1 Uncertainty introduced by existing BCC methods 993 

To quantify the uncertainty introduced by existing BCC methods in closing the 994 

water balance, we evaluated four BCC methods across 84 global basins. The 995 

assessment focused on errors in individual budget components, occurrences of 996 

negative values, and ensemble errors in budget components. Our findings indicate that 997 

while existing BCC methods improve the consistency of budget components, their 998 

ability to enhance the accuracy of these components is limited and, in some cases, 999 

may even reduce it. It is worth noting that the datasets generated by both the existing 1000 

BCC methods and the IWE-Res method proposed in this study were not further 1001 

bias-corrected against independent observations. For basin-specific applications 1002 

requiring higher reliability, we recommend additional bias correction. 1003 

Several factors may contribute to this reduction in accuracy. First, most existing 1004 

BCC methods estimate errors in budget components without incorporating 1005 

independent observational data. These methods then redistribute water imbalance 1006 

errors based on these internally estimated uncertainties (Section 3.2). However, the 1007 

absence of observational constraints undermines the reliability of the estimated 1008 

component errors, which in turn leads to a suboptimal and potentially biased 1009 

allocation of the imbalance. As previously noted, inaccurate error estimates for a 1010 

single variable can propagate through the redistribution process, biasing the residual 1011 

redistribution to the remaining budget components and ultimately lowering the 1012 
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accuracy of all water budget components (Abolafia-Rosenzweig et al., 2021). 1013 

Incorporating high-quality observational data into the error estimation process is 1014 

therefore essential to improve the robustness of BCC methods; Second, existing BCC 1015 

methods are limited by their assumption that the entire water imbalance error can be 1016 

fully attributed to errors in the measured budget components. These methods enforce 1017 

water budget closure by completely redistributing the water imbalance error among 1018 

the budget components, yet this residual may also stem from systematic biases and 1019 

unmeasured processes—not just estimation errors of measured budget components. In 1020 

this study, we propose an iterative optimization approach that seeks a balanced 1021 

redistribution of the ΔRes, aiming to minimize both the errors introduced to individual 1022 

budget components and the remaining ΔRes. This method significantly improves the 1023 

accuracy of the corrected datasets. Future research may further enhance this 1024 

framework by integrating it with physically based hydrological or land surface models, 1025 

which could provide a promising pathway toward more physically consistent and 1026 

realistic water budget estimates; Third, the observational datasets themselves often 1027 

fail to strictly satisfy water budget closure due to measurement limitations and 1028 

sampling errors. This introduces uncertainty when using these datasets to validate the 1029 

accuracy of BCC-corrected estimates. For instance, even if the corrected datasets 1030 

more closely approximate the true values of budget components, the lack of 1031 

ground-truth observations presents a fundamental challenge for objectively evaluating 1032 

the effectiveness of these corrections. Future work should prioritize the development 1033 

of more objective and physically grounded evaluation metrics to assess the accuracy 1034 
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of BCC-corrected datasets. Although this challenge lies beyond the scope of the 1035 

present study, addressing it will be critical for advancing the reliability of water 1036 

budget assessments. 1037 

5.2 Identification of the optimal balance 1038 

Each budget component inherently contains observational or model-based errors. 1039 

Indiscriminately redistributing water imbalance errors across all budget components 1040 

to achieve complete water budget closure can introduce additional uncertainties. By 1041 

identifying the optimal balance for error redistribution across different climate zones, 1042 

we observed significant variations in distribution patterns. In tropical and temperate 1043 

regions, most basins achieved their optimal balance when 40%–90% of the water 1044 

imbalance error was redistributed, with a concentration around the 40%–50% range. 1045 

In arid regions, the distribution of optimal balance was more dispersed, lacking a clear 1046 

concentration within any specific redistribution range but generally falling within the 1047 

40%–90% range. Cold climate regions exhibited distinct characteristics, with most 1048 

basins achieving the smallest error when the water imbalance error was fully 1049 

redistributed. 1050 

Overall, optimizing the redistribution ratio of water imbalance errors is critical 1051 

for improving the accuracy of corrected budget components. However, the sensitivity 1052 

of these components to error redistribution varies, and both over- and 1053 

under-correction can propagate new imbalances across the remaining terms, 1054 

ultimately misrepresenting the underlying hydrological processes. While existing 1055 

BCC methods estimate redistribution weights based on the relative uncertainty of each 1056 
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component, future research should examine the physical rationale behind these 1057 

redistributions. The spatiotemporal variability of residual errors offers valuable insight 1058 

into their dominant sources, which can serve as an independent reference to validate 1059 

the influence weights computed by BCC methods. For instance, as shown in previous 1060 

studies, the contribution of TWSC to residual errors diminishes at annual and 1061 

especially decadal timescales, where P and ET uncertainties become more dominant. 1062 

Spatial patterns of residuals also reflect the nature of regional precipitation regimes. In 1063 

regions dominated by frontal systems, such as temperate zones, remotely sensed 1064 

precipitation products tend to capture rainfall events more accurately, leading to 1065 

smaller residuals. In contrast, in areas characterized by convective rainfall—such as 1066 

the tropics and arid zones—larger residuals are observed, likely due to the higher 1067 

uncertainty in capturing short-lived and spatially localized storm events. 1068 

Notably, the choice of spatial resolution has a significant impact on the results 1069 

(Aziz et al., 2022; Bormann et al., 2006; Senan et al., 2022). Following many previous 1070 

studies (Lehmann et al., 2022; Abolafia-Rosenzweig et al., 2023; Luo et al., 2023; 1071 

Wang et al., 2014; Tan et al., 2022; Sahoo et al., 2011), the BCC method in this study 1072 

is also applied at the basin scale rather than the grid scale for the following reasons: 1) 1073 

Achieving water budget closure at the grid scale is complex and challenging due to 1074 

the difficulty of quantifying all water flux and storage components flowing into and 1075 

out of the grid, including P, ET, TWSC, lateral inflow and outflow, leakage losses, and 1076 

human water withdrawals and returns. Several of these components, such as lateral 1077 

flow and leakage, are poorly observed or highly uncertain, and their omission 1078 
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introduces substantial error; 2) The datasets of different variables have varying spatial 1079 

resolutions, and resampling them to a common resolution introduces uncertainties, 1080 

which in turn affect the accuracy of water budget closure correction; 3) The coarse 1081 

spatial resolution of GRACE-derived TWSC data limits their applicability for water 1082 

budget closure calculation at the grid scale. At monthly resolution, TWSC is a critical 1083 

component and cannot be neglected. Averaging GRACE data to the basin scale helps 1084 

reduce random errors by offsetting positive and negative biases, thereby increasing 1085 

the reliability of water budget closure correction; 4) Despite advances in remote 1086 

sensing and in situ observation networks, grid-scale uncertainties remain substantial 1087 

for some budget components, such as ET. Basin-scale analysis therefore reduces 1088 

uncertainty and improves the reliability of water budget closure correction results. 1089 

6 Conclusions 1090 

Existing BCC methods introduce new uncertainties when closing the water 1091 

budget due to challenges in accurately estimating errors in budget components and the 1092 

integrated concept of water imbalance error. This study first evaluates the issues 1093 

arising from existing BCC methods by comparing the errors introduced in budget 1094 

components with the improvement in water budget closure precision. A new method, 1095 

termed IWE-Res, is proposed to identify the optimal redistribution of ΔRes, aiming to 1096 

minimize the sum of the remaining residual error and the introduced budget 1097 

component error. To assess the reliability of the IWE-Res method, we compare it with 1098 

four different BCC methods across 84 basins spanning various global climate zones. 1099 

The main conclusions are as follows: 1100 
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(1) While applying existing BCC methods reduces water imbalance error, it 1101 

simultaneously introduces new errors in budget components. For P, a decline in 1102 

accuracy is observed in most basins. For Q, the corrected data exhibits lower 1103 

performance than the raw data, with reductions in CC, NSE, MAE, and RMSE of 1104 

approximately 0.1, 0.2, 3 mm, and 5 mm, respectively. At the basin scale, more than 1105 

40% of basins experience budget component errors greater than the reduction in ΔRes 1106 

after applying existing BCC methods. 1107 

(2) The proportion of negative corrected values in each budget component is 1108 

predominantly within 0%–5%. For ET, negative corrected values are mostly below 1109 

5%, though they reach 9% in cold climate regions. For P, the proportion is primarily 1110 

below 5%, with rare occurrences around 7%. Q generally exhibits a lower proportion 1111 

of negative values, mostly below 3%. In TWSC, negative values are concentrated 1112 

between 3% and 10%. 1113 

(3) The proposed IWE-Res method improves the accuracy of corrected budget 1114 

components compared to existing BCC methods. Based on RMSE, it improves the 1115 

accuracy of corrected P by 29.5%, corrected ET by 24.7%, corrected Q by 69.0%, and 1116 

corrected TWSC by 6.8%. 1117 

(4) Except in cold regions, redistributing 40%–90% of ΔRes to budget 1118 

components yields the optimal balance, minimizing the sum of the remaining ΔRes 1119 

and the introduced budget component error. In tropical and temperate regions, the 1120 

optimal balance is typically achieved when 40%–50% of ΔRes is redistributed. 1121 

Similarly, in arid regions, redistributing 40%–90% of ΔRes effectively reduces errors, 1122 
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though the optimal redistribution ratio varies across basins. In most cold-region basins, 1123 

the total error is minimized when the entire ΔRes is redistributed. 1124 
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