
Dear Editor and Reviewers: 

 

We appreciate your positive and constructive comments, suggestions on our manuscript entitled “A 

novel method for correcting water budget components and reducing their uncertainties by optimally 

distributing the imbalance residual without full closure” (egusphere-2025-990). 

We carefully considered and addressed all the comments and suggestions in the revision and 

acknowledgement was added. The point-to-point responses and corresponding corrections in the 

revision are given after individual comments. All the changes were highlighted in bright blue for 

easy review. 

We hope that the revision meets the requirement for publication. 

 

 

Reviewer #1 (RC1): 

The manuscript is focused on numerical techniques to 'distribute' residuals of a water balance 

equation over the contributing terms, avoiding negative values. The manuscript seems focused on 

the numerical techniques, with limited efforts for a hydrological interpretation. It could be more 

convincing if authors bring a bit more on the 'explanation' side. 

Response: Thank you very much for your valuable comment. These comments are very helpful for 

us to improve the manuscript. We really appreciate your time and efforts. The point-to-point 

responses were given after comments. All the changes were highlighted in bright blue for easy 

review. We hope that the revision meets the requirement for publication. 

 

We agree that the manuscript, in its current form, lacks sufficient hydrological interpretation 

regarding both the redistribution of residuals across water budget components and the prevention of 

negative values during this process. To address this concern, we revised the manuscript from the 

following aspects: (1) We provided a hydrological explanation for the existence of residuals in 

current water balance datasets and emphasized the importance of reducing these residuals; (2) We 

added a hydrological interpretation of the limitations associated with existing correction methods 

that fully redistribute the residuals in order to achieve water balance closure; (3) We added more 

hydrological interpretation to clarify the rationale and validity of the proposed method in this study; 

(4) Following one of your suggestions below, we conducted a comparison between the monthly-

scale results of our proposed method and the annual-scale estimates derived from the physically 

based Budyko framework. Our specific modifications are as follows: 

(1) We have added a hydrological explanation of the origins of residuals in existing water 

balance datasets and emphasized the importance of minimizing these residuals. The terrestrial water 

balance, composed of four major hydrological variables—precipitation (P), evapotranspiration (ET), 

streamflow (Q), and terrestrial water storage change (TWSC)—describes the distribution and 

movement of water across the Earth’s land surface. Notably, these fluxes and storages are 

dynamically linked, reflecting the actual hydrological processes within a basin. For example, in real-

world hydrology, precipitation transforms into ET, Q, and TWSC through physical processes such 

as infiltration, surface runoff, and evaporation. Therefore, improving the consistency (i.e., closure) 

among P, ET, Q, and TWSC is essential for advancing our understanding of watershed-scale 

hydrological dynamics. 

However, the data used for water components, whether through direct observations or 



hydrological modeling, are often imbalanced. Observationally, each component is typically 

measured independently, and there is a lack of integrated observational systems which are capable 

of capturing all components simultaneously. From a modeling perspective, structural simplifications, 

parameter uncertainties, and observational errors in input data often propagate through the system, 

preventing budget closure. 

Unfortunately, achieving a closed water balance remains challenging. In the era of big data, the 

rapid expansion of remote sensing and reanalysis datasets has significantly improved the availability 

of hydrological data. However, these datasets also suffer from non-closure in the water balance, 

mainly because they are independently produced and not physically coupled, making it difficult to 

reconcile their inconsistencies through modeling. This underscores the urgent need for data-driven 

approaches to enhance the internal consistency of these datasets—especially since the water cycle 

variables are inherently interconnected. To address this issue, numerous water budget closure 

correction methods have been proposed in existing studies. 

We acknowledge that our initial manuscript did not provide sufficient hydrological explanation 

regarding the origin of residuals or the significance of reducing them. To address this, we have added 

the following paragraph to the revised manuscript: 

“The terrestrial water balance represents a fundamental physical framework that describes the 

distribution and movement of water across the Earth's land surface (Lehmann et al., 2022) and is 

governed by four interconnected components—precipitation (P), evapotranspiration (ET), 

streamflow (Q), and terrestrial water storage change (TWSC)—that together regulate the exchange 

of water among the atmosphere, land, and oceans (Abolafia-Rosenzweig et al., 2021; Sahoo et al., 

2011; Chen et al., 2020; Wang et al., 2015). These components are dynamically linked and respond 

to climatic variability, land surface heterogeneity, and human interventions across a range of spatial 

and temporal scales. Achieving water budget closure (that is, ensuring internal consistency among 

these fluxes and storages), Equation (1) is essential for advancing our understanding of hydrological 

processes (Li et al., 2024; Mourad et al., 2024). (Page 3, Lines 57-69). 

 P − ET − Q − TWSC = 0 (1) 

Despite its importance, obtaining observational datasets that achieve water balance closure 

remains a major challenge. In practice, no single observational system can simultaneously measure 

all four water budget components at the required resolution and accuracy. Each budget component 

is typically derived from independent data sources or models with differing spatial and temporal 

characteristics, which complicates the direct closure of the terrestrial water budget. 

P is typically derived from point-based rain gauge networks, which are generally reliable but 

often incomplete, requiring gap-filling (Esquivel-Arriaga et al., 2024; Nassaj et al., 2022; Bai et al., 

2021; Lockhoff et al., 2014). The main source of uncertainty lies in the spatial distribution and 

representativeness of these gauges, particularly in relation to P type (Bai et al., 2019; Trenberth et 

al., 2014). Spatial uncertainty tends to be low for widespread frontal systems but can be substantial 

for localized convective storms (Palharini et al., 2020). Gauge placement is often dictated by 

accessibility and logistical convenience, which may lead to underestimation of the uncertainty in 

daily P inputs (Wang et al., 2017; Bai et al., 2019; Wu et al., 2018). Satellite-based P estimates have 

demonstrated good performance in capturing frontal rainfall, but not in other rainfall types 

(Masunaga et al., 2019; Petković et al., 2017; Palharini et al., 2020). ET is commonly estimated by 

empirical or physically based models (Jacobs et al., 1998; McMahon et al., 2016; Allen et al., 1998). 

Although these models are generally well calibrated, uncertainties persist due to the complex 



influence of advection and localized meteorological variability, especially in small catchments. At 

larger spatial scales, energy balance approaches tend to provide sufficiently accurate estimates (Hua 

et al., 2020; Hao et al., 2018; Ruhoff et al., 2022). Q measurements typically exhibit low uncertainty 

when rating curves are well established and regularly maintained (Jian et al., 2015; Krabbenhoft et 

al., 2022). However, uncertainty can still arise from the delineation of watershed boundaries, 

particularly in regions where groundwater flow does not align with surface catchment divides 

(Huang et al., 2023; Bouaziz et al., 2018). This mismatch can result in misrepresentation of actual 

hydrological contributions. TWSC generally has a negligible impact on water balance calculations 

over multi-year periods, but can significantly affect short-term (e.g., daily) balances (He et al., 2023; 

Zhang et al., 2016). A key challenge is to define the effective depth over which TWSC should be 

quantified, as changes in soil moisture near the surface are more easily observed than those 

occurring at greater depths. 

Hydrological models, which are grounded in the principle of mass conservation and explicitly 

implement the water balance equation, offer an alternative to direct observation for achieving water 

budget closure. However, in practice, model structure simplifications, parameter uncertainties, and 

errors in meteorological forcing data introduce substantial biases and propagate uncertainty across 

simulated components. These limitations make it equally difficult to achieve water budget closure 

using hydrological modeling alone. 

In recent years, the rapid expansion of remote sensing and reanalysis datasets has significantly 

improved global access to budget components, offering new opportunities for data-driven analysis 

of hydrological processes.” (Pages 4-6, Lines 80-123). 

(2) Hydrological interpretation of the limitations associated with existing correction methods 

that fully redistribute the residuals. 

Existing water budget closure correction (BCC) methods commonly redistribute the entire 

residual error (ΔRes) among water budget components to enforce strict closure. In the revised 

manuscript, we explain the limitations of this full redistribution approach from two perspectives: 

the hydrological origins of ΔRes and the principles underlying the redistribution process used in 

current BCC methods. ΔRes is a composite error term that includes estimation errors in budget 

components, systematic biases, and the omission of unmeasured components. However, existing 

BCC methods typically assume that all of ΔRes arises from estimation errors and then redistribute 

it according to estimation errors. This assumption oversimplifies the true hydrological causes of 

imbalance and can lead to unreasonable outcomes—most notably, the appearance of negative values 

in corrected datasets. We have added the following sentence to the revised manuscript: 

“To address this issue, a growing number of studies have adopted water budget closure 

correction (BCC) methods to reduce water imbalance error (ΔRes), with the goal of forcing ΔRes 

from a non-zero value (ΔRes ≠ 0) to theoretical closure (ΔRes = 0), where ΔRes = P – ET – Q – 

TWSC (Zhou et al., 2024; Munier et al., 2018; Zhang et al., 2016). Common methods include 

Proportional Redistribution (PR), the Constrained Kalman Filter (CKF), Multiple Collocation 

(MCL), and the Minimized Series Deviation (MSD) method (Pan et al., 2012; Luo et al., 2023).” 

(Page 6, Lines 124-131). 

and 

“Existing BCC methods redistribute the entire ΔRes error among water budget components to 

enforce strict water budget closure. This redistribution is typically guided by the relative 

uncertainties of the individual components, based on the assumption that the entire residual error 



originates from observational or modeling errors in these datasets. However, this assumption 

overlooks the fact that ΔRes is not solely the result of measurement or estimation errors in P, ET, Q, 

or TWSC. Rather, it is a composite residual that also reflects contributions from systematic biases 

and the omission of unmeasured components. These include deep groundwater exchanges that may 

cross basin boundaries, snow and glacier storage changes (particularly in high-altitude or high-

latitude regions), and anthropogenic influences such as irrigation withdrawals, reservoir operations, 

and inter-basin water transfers. Because existing BCC methods do not explicitly account for these 

additional sources of imbalance, forcing strict closure by allocating the entire ΔRes to the measured 

components can introduce unrealistic uncertainties. As a result, the application of existing BCC 

methods—despite their goal of improving internal consistency—often leads to limited 

improvements, or, in some cases, even a decline in the accuracy of the corrected hydrological 

datasets. 

A clear manifestation of this limitation is the occurrence of negative values in corrected budget 

component datasets when applying existing BCC methods at the monthly scale, such as negative P, 

ET, and Q. These unrealistic negative values arise when an excessive share of the ΔRes is 

redistributed to specific components. For instance, if the BCC method overestimates the error in a 

specific component, it may assign an excessively large portion of ΔRes to that component. When 

the magnitude of the correction exceeds the component’s original value, the result is a negative flux, 

which is hydrologically incorrect. Beyond introducing negative values, such imbalanced 

redistribution compromises the integrity of the remaining components. Overcorrecting one variable 

necessarily reduces the share of ΔRes available for others, potentially degrading their accuracy. Our 

previous work demonstrated that enforcing water budget closure can, to some extent, reduce the 

accuracy of individual components and tends to introduce an ET regulation factor to mitigate 

accuracy loss in ET caused by existing BCC methods (Luo et al., 2023). A more hydrologically 

sound approach may involve partial closure, whereby only the portion of ΔRes attributable to 

quantified uncertainties is redistributed, while the residual linked to unmeasured processes is 

retained.” (Pages 6-8, Lines 138-171). 

(3) We have added further hydrological explanation to justify the design and effectiveness of 

our proposed IWE-Res method: 

“In this section, we propose the IWE-Res method to identify the optimal balance for 

redistributing ΔRes, minimizing the sum of the introduced error to budget components and the 

remaining ΔRes error while reducing the negative values introduced by closing the water budget. 

Unlike existing BCC methods that fully redistribute the ΔRes term in a single step, the IWE-Res 

method adopts a gradual, iterative redistribution strategy that allows for more consistent correction. 

Specifically, the method incrementally allocates fractions of ΔRes to P, ET, Q and TWSC, based on 

fixed percentage steps and guided by existing BCC weighting schemes. At each iteration, the 

redistribution process seeks to minimize the combined error—defined as the sum of the induced 

changes in the water budget components and the remaining unexplained ΔRes. This dual-objective 

criterion ensures that the method balances error reduction while maintaining hydrological 

plausibility. Importantly, the approach includes a mechanism to avoid introducing implausible 

negative values. If, during any iteration, the corrected value of a component becomes negative—

violating hydrological constraints such as non-negative precipitation or runoff—further 

redistribution to that component is halted. Subsequent iterations reallocate the remaining ΔRes 

among the unaffected components. From a hydrological perspective, this strategy acknowledges 



that not all of the residuals can be attributed to known components. Some portion of ΔRes may 

originate from unmeasured or poorly constrained processes. By partially closing the water budget 

in a controlled and iterative manner, the IWE-Res method reduces the risk of overcorrecting well-

characterized components while better preserving the consistency of the entire budget.” (Pages 27-

28, Lines 561-583). 

(4) A comparison with the annual-scale results from the physically based Budyko model 

indicates that our proposed method produces similar outcomes. Both approaches suggest that the 

water balance is primarily influenced by P and potential ET (Sankarasubramanian & Vogel, 2002; 

Zhang et al., 2008; Koster & Suarez, 1999). These influences, however, differ across climatic 

regions. For instance, in tropical and arid zones, P tends to be the dominant factor (Du et al., 2024; 

Wu et al., 2018; Liu et al., 2017; Guo et al., 2022), whereas in cold regions, the Budyko model 

shows relatively low accuracy in estimating ET at the annual scale (Lute et al., 2014; Gao et al., 

2010; Potter et al., 2005). This comparison further supports the reliability of our proposed method. 

The following sentence has been added to the revised manuscript accordingly: 

“Previous studies based on the Budyko framework (ignoring TWSC) at the annual scale have 

shown that water balance is primarily governed by P and potential ET (Sankarasubramanian & Vogel, 

2002; Zhang et al., 2008; Koster & Suarez, 1999). However, these influences vary across climatic 

regions. For example, in tropical and arid regions, P tends to be the dominant controlling factor (Du 

et al., 2024; Wu et al., 2018; Liu et al., 2017; Guo et al., 2022). In cold regions, the Budyko model 

exhibits relatively limited accuracy in estimating ET at the annual scale (Lute et al., 2014; Gao et 

al., 2010; Potter et al., 2005). These previous findings at the annual scale provide indirect support 

for our results derived at the monthly scale.” (Page 40, Lines 800-809). 

 

It is not immediately evident to this reviewer that negative values are a problem, especially for the 

soil storage term (TWSC). In fact one may expect this term to be symmetric around zero, and maybe 

the same holds for the errors? 

Response: Thank you for your careful review. We apologize for not clearly explaining in the 

original manuscript the meaning of negative values for P, ET, and Q, as well as the treatment of 

“negative” values in TWSC, which may have led to misunderstanding. 

In our manuscript, the term “negative values” refers to instances where the values of P, ET, and 

Q, which were originally positive, become negative after applying a BCC method. For TWSC, we 

refer to a change in sign—either from positive to negative or vice versa—after correction. These 

phenomena are caused by the application of BCC methods and intended to highlight a key limitation 

of existing BCC methods: when the full ΔRes is redistributed to budget components, it may 

introduce more uncertainty. Our modifications are as follows: 

(1) To avoid any ambiguity, we have revised the manuscript to clarify the meaning of the 

“negative values” referred to in this study, as follows: 

“A clear manifestation of this limitation is the occurrence of negative values in corrected 

budget component datasets when applying existing BCC methods at the monthly scale, such as 

negative P, ET, and Q. These unrealistic negative values arise when an excessive share of the ΔRes 

is redistributed to specific components. For instance, if the BCC method overestimates the error in 

a specific component, it may assign an excessively large portion of ΔRes to that component. When 

the magnitude of the correction exceeds the component’s original value, the result is a negative flux, 

which is hydrologically incorrect. Beyond introducing negative values, such imbalanced 



redistribution compromises the integrity of the remaining components. Overcorrecting one variable 

necessarily reduces the share of ΔRes available for others, potentially degrading their accuracy. Our 

previous work demonstrated that enforcing water budget closure can, to some extent, reduce the 

accuracy of individual components and tends to introduce an ET regulation factor to mitigate 

accuracy loss in ET caused by existing BCC methods (Luo et al., 2023). A more hydrologically 

sound approach may involve partial closure, whereby only the portion of ΔRes attributable to 

quantified uncertainties is redistributed, while the residual linked to unmeasured processes is 

retained.” (Pages 7-8, Lines 155-171). 

(2) Regarding TWSC, we fully agree with you that this variable can naturally take both positive 

and negative values. Indeed, many studies have shown that at annual scales, and with sufficiently 

long time series, the long-term average of TWSC can be considered negligible. We apologize for 

not clearly describing how our proposed method handles TWSC during the correction process. In 

our proposed method, we assume that TWSC observed by the GRACE satellite is reliable. Therefore, 

if the sign of TWSC changes after correction by the BCC method (e.g., from positive to negative or 

vice versa), we consider the correction to TWSC to be physically unreasonable, and we suspend 

further redistribution of ΔRes to TWSC in subsequent iterations. The following sentence has been 

added to the revised manuscript: 

“During the iterative correction process, if any of the water budget components (P, ET, and Q) 

becomes negative, the redistribution of water imbalance error to that component is immediately 

suspended. In subsequent iterations, redistribution is recalculated to ensure that only components 

with physically meaningful positive values receive the imbalance correction. For example, if ET 

becomes negative in a given iteration, the imbalance is subsequently redistributed to P, Q, and 

TWSC only, in accordance with Equation 33. For TWSC, if a sign reversal occurs during iteration 

(i.e., from positive to negative or vice versa), the redistribution of the water imbalance error to 

TWSC is suspended in the following iteration.” (Page 29, Lines 611-619). 

 

One would assume, based on considerations of the various terms of the water balance that a 

comparison between the negative (or positive) residuals over time will help identifying which term 

may be primarily responsible: the soil term can dominate in the short term (e.g. days), but will be 

small for annual comparisons and may become negligible at decadal scale (except for the long-term 

desiccation discourse). Spatial patterns are also expected, as frontal rainfall patterns are much easier 

to represent correctly than thunderstorms (much of tropics and arid zone rainfall) -- indeed your 

later results (Fig. 6) seem to match this expectation. 

Response: Thank you very much for your thoughtful and insightful review. We fully agree with 

your perspective that analyzing the sign and magnitude of residuals over time can provide valuable 

clues in identifying the dominant contributors to water imbalance errors at different temporal scales. 

For instance, at daily scales, soil moisture variations may dominate, while at annual or longer time 

scales, their influence becomes negligible—except in regions experiencing long-term drying trends. 

Likewise, spatial patterns of residuals reflect regional climatic features, with frontal precipitation 

systems generally captured more accurately than convective storms in tropical and arid zones. 

However, for the purpose of correcting water budget closure at the monthly scale—which is 

the focus of this study—this method of using sign analysis of residuals over time is less effective in 

accurately identifying the dominant error source and quantifying the uncertainty of each component. 

This is due to two key reasons: 1) TWSC cannot be neglected at the monthly scale, meaning the 



residuals are not solely attributable to errors in P, ET, or Q; 2) Redistribution of residual errors in 

BCC methods requires quantitative estimation of monthly uncertainties for each component. 

Unfortunately, time-series-based sign analysis is generally insufficient for this purpose, especially 

when precise, month-by-month uncertainty quantification is needed. Nonetheless, we acknowledge 

that residual pattern analysis over time remains a valuable tool for validating the plausibility of error 

attribution made at the monthly scale. As such, we view it as a complementary approach for guiding 

and validating the redistribution weights used in monthly BCC corrections. 

Currently, most studies on water budget closure correction focus on the monthly scale, for the 

following reasons: 1) At daily scales, the uncertainty in remote sensing estimates of water cycle 

variables is even higher than at the monthly scale, and there is a lack of reliable daily-scale data on 

water storage change (e.g., GRACE data are available only at the monthly scale), which makes daily 

water balance studies highly uncertain; 2) At annual scales, the long-term average of TWSC is often 

negligible, and with relatively accurate observations of Q, the sign of the residual can often indicate 

the balance between P and ET, enabling identification of the primary sources of error. However, if 

monthly water cycle variables can be corrected to achieve consistent closure, the resulting annual 

water balance would also be consistent, with the added benefit of preserving the seasonal variability 

that is masked in annual-scale analyses. For this reason, the monthly scale remains the primary focus 

of BCC-related research. 

Importantly, we also recognize the potential value of using annual-scale residual analysis as a 

constraint for monthly correction. For example, within a given basin, the dominant error sources 

identified at the annual scale should, in principle, align with the redistribution priorities at the 

monthly scale. To incorporate your suggestions, we have made the following revisions in the 

manuscript: 

(1) Clarified the temporal focus of this study in the introduction: “In this study, we quantify 

the uncertainties introduced by four existing BCC methods (CKF, MCL, MSD, and PR) at the 

monthly scale across 84 basins spanning diverse climate zones.” (Page 2, Lines 40-42). 

(2) Expanded the discussion of how spatiotemporal residual patterns can inform future 

improvements in BCC methods, especially regarding the potential of using annual-scale insights to 

guide monthly corrections: “Overall, optimizing the redistribution ratio of water imbalance errors 

is critical for improving the accuracy of corrected budget components. However, the sensitivity of 

these components to error redistribution varies, and both over- and under-correction can propagate 

new imbalances across the remaining terms, ultimately misrepresenting the underlying hydrological 

processes. While existing BCC methods estimate redistribution weights based on the relative 

uncertainty of each component, future research should examine the physical rationale behind these 

redistributions. The spatiotemporal variability of residual errors offers valuable insight into their 

dominant sources, which can serve as an independent reference to validate the influence weights 

computed by BCC methods. For instance, as shown in previous studies, the contribution of TWSC 

to residual errors diminishes at annual and especially decadal timescales, where P and ET 

uncertainties become more dominant. Spatial patterns of residuals also reflect the nature of regional 

precipitation regimes. In regions dominated by frontal systems, such as temperate zones, remotely 

sensed precipitation products tend to capture rainfall events more accurately, leading to smaller 

residuals. In contrast, in areas characterized by convective rainfall—such as the tropics and arid 

zones—larger residuals are observed, likely due to the higher uncertainty in capturing short-lived 

and spatially localized storm events.” (Pages 55-56, Lines 1051-1068). 



 

Maybe further reference can be made to the 'Budyko' literature that looks at an annual balance, while 

your current analysis takes a monthly perspective. 

Response: Thank you for your constructive suggestions. We have reviewed and summarized 

relevant literature that applied the Budyko framework at the annual timescale. Many studies have 

shown that water balance at this scale is primarily influenced by P and potential ET 

(Sankarasubramanian & Vogel, 2002; Zhang et al., 2008; Koster & Suarez, 1999). These influences, 

however, differ across climatic regions. For instance, in tropical and arid zones, P tends to be the 

dominant factor (Du et al., 2024; Wu et al., 2018; Liu et al., 2017; Guo et al., 2022), whereas in cold 

regions, the Budyko model shows relatively low accuracy in estimating ET at the annual scale (Lute 

et al., 2014; Gao et al., 2010; Potter et al., 2005). These previous findings indirectly support our 

results at the monthly scale. The following sentence has been added to the revised manuscript 

accordingly: 

“Previous studies based on the Budyko framework (ignoring TWSC) at the annual scale have 

shown that water balance is primarily governed by P and potential ET (Sankarasubramanian & Vogel, 

2002; Zhang et al., 2008; Koster & Suarez, 1999). However, these influences vary across climatic 

regions. For example, in tropical and arid regions, P tends to be the dominant controlling factor (Du 

et al., 2024; Wu et al., 2018; Liu et al., 2017; Guo et al., 2022). In cold regions, the Budyko model 

exhibits relatively limited accuracy in estimating ET at the annual scale (Lute et al., 2014; Gao et 

al., 2010; Potter et al., 2005). These previous findings at the annual scale provide indirect support 

for our results derived at the monthly scale.” (Page 40, Lines 800-809). 

 

The abstract could become more attractive to readers if the time unit (monthly balance calculations) 

is made explicit, as results for daily or annual balance calculations will likely be different. 

Response: Thank you very much for your constructive suggestion. We have revised the abstract to 

clarify that this study calculates water balance at the monthly scale: “In this study, we quantify the 

uncertainties introduced by four existing BCC methods (CKF, MCL, MSD, and PR) at the monthly 

scale across 84 basins spanning diverse climate zones.” (Page 2, Lines 40-42). 

 

Details: 

 

The Highlights should be understandable for a non-technical expert -- at the moment they are too 

full of jargon to attract readers. 

Response: Thank you very much for your constructive suggestion. We have revised the Highlights 

by removing technical jargon and replacing them with plain language descriptions. The updated 

Highlights clearly convey the key findings and significance of the work in a more understandable 

and engaging manner. Please see our revised Highlights below. 

 Existing correction methods may introduce large errors, and more seriously cause unrealistic 

negative values in P, ET and Q in up to 10% of cases. 

 A novel IWE-Res method is proposed to improve the accuracy and consistency of corrected 

satellite-based water budget component data. 

 In most river basins (except cold regions), the best correction is achieved by adjusting 40% to 

90% of the total water imbalance error. 

 



Line 57 Indeed a closed budget gives some confidence in the underlying estimates, but not if the 

closure is obtained by 'fudging' the data, without 'understanding'. So I disagree that 'closing the 

budget' helps with 'understanding'. 

Response: Thank you very much for your careful review. We sincerely apologize for the 

inappropriate expression in the original sentence. Although a large number of datasets for individual 

budget components have been produced, discrepancies such as measurement errors, systematic 

biases, and unmeasured components prevent the closure of the water budget among these datasets. 

In reality, the components of the water budget are interconnected; together, they regulate the 

exchange of water among the atmosphere, land, and oceans. Many studies have attempted to reduce 

the imbalance in the water budget among existing datasets by estimating and correcting errors in 

the individual components, thereby improving the overall consistency. 

We apologize for our unclear expression in our original sentence. On the one hand, we changed 

the word “understanding” to “confidently applying budget components in hydrological studies”; On 

the other hand, we have expanded this sentence to clearly explain the concept of the terrestrial water 

balance, the main components it includes, and their interactions. We then emphasize the importance 

of improving the consistency among these datasets in order to accurately understand hydrological 

processes, due to the intrinsic interconnections among water budget components in real-world 

hydrological systems, as follows: “The terrestrial water balance represents a fundamental physical 

framework that describes the distribution and movement of water across the Earth's land surface 

(Lehmann et al., 2022) and is governed by four interconnected components—precipitation (P), 

evapotranspiration (ET), streamflow (Q), and terrestrial water storage change (TWSC)— that 

together regulate the exchange of water among the atmosphere, land, and oceans (Abolafia-

Rosenzweig et al., 2021; Sahoo et al., 2011; Chen et al., 2020; Wang et al., 2015). These components 

are dynamically linked and respond to climatic variability, land surface heterogeneity, and human 

interventions across a range of spatial and temporal scales. Achieving water budget closure (that is, 

ensuring internal consistency among these fluxes and storages), Equation (1) is essential for 

advancing our understanding of hydrological processes (Li et al., 2024; Mourad et al., 2024).” (Page 

3, Lines 57-68). 

 

Line 66. Before delving into the details it will be good for the reader to be reminded of the physical 

aspects of uncertainty in the various terms, as these are of different natures: 

P precipitation input -- the typically are fairly reliable point data from rainfall gauge data, often with 

some need t gap fill missing data. The main uncertainty here is in the spatial distribution and 

representativeness of rainfall gauges, in relation to rainfall types (for frontal rains the spatial 

uncertainty is low, for local storms it can be high). The distribution of rainfall gauges is often 

determined in part by accessibility and convenience, and overall uncertainty of daily rainfall may 

be easily underestimated. More recent satellite based estimates of rainfall appear to perform well 

for frontal rains, but not in other rainfall types.  

ET Evapotranspiration equations have been fairly well calibrated, but there can be uncertainty over 

the advection term especially in small catchments. For larger areas energy balance equations may 

be sufficient. 

Q monitoring of outflow can have low uncertainty if ;rating curves' are frequently calibrated. 

However, the delineation of the watershed (and area used for the calculations) can be off where 

groundwater flows don't necessarily follow surface catchment delineations and can be 



underestimated. 

TWSC can become negligible if a multi-year balance is considered (verifying the P and Q estimates) 

but can dominate the balance at a daily time-scale. A major challenge is the depth over which TWSC 

is to be assessed, as changes in the topsoil can be more easily assessed than that deeper in the soil. 

Response: Thank you very much for your thorough review and constructive suggestions, which 

have been very helpful in improving the quality and readability of our manuscript. According to 

your suggestion, we have added a paragraph in the revised manuscript to describe the physical 

aspects of uncertainty in the four water cycle components (P, ET, Q, and TWSC) as follows: 

“P is typically derived from point-based rain gauge networks, which are generally reliable but 

often incomplete, requiring gap-filling (Esquivel-Arriaga et al., 2024; Nassaj et al., 2022; Bai et al., 

2021; Lockhoff et al., 2014). The main source of uncertainty lies in the spatial distribution and 

representativeness of these gauges, particularly in relation to P type (Bai et al., 2019; Trenberth et 

al., 2014). Spatial uncertainty tends to be low for widespread frontal systems but can be substantial 

for localized convective storms (Palharini et al., 2020). Gauge placement is often dictated by 

accessibility and logistical convenience, which may lead to underestimation of the uncertainty in 

daily P inputs (Wang et al., 2017; Bai et al., 2019; Wu et al., 2018). Satellite-based P estimates have 

demonstrated good performance in capturing frontal rainfall, but not in other rainfall types 

(Masunaga et al., 2019; Petković et al., 2017; Palharini et al., 2020). ET is commonly estimated by 

empirical or physically based models (Jacobs et al., 1998; McMahon et al., 2016; Allen et al., 1998). 

Although these models are generally well calibrated, uncertainties persist due to the complex 

influence of advection and localized meteorological variability, especially in small catchments. At 

larger spatial scales, energy balance approaches tend to provide sufficiently accurate estimates (Hua 

et al., 2020; Hao et al., 2018; Ruhoff et al., 2022). Q measurements typically exhibit low uncertainty 

when rating curves are well established and regularly maintained (Jian et al., 2015; Krabbenhoft et 

al., 2022). However, uncertainty can still arise from the delineation of watershed boundaries, 

particularly in regions where groundwater flow does not align with surface catchment divides 

(Huang et al., 2023; Bouaziz et al., 2018). This mismatch can result in misrepresentation of actual 

hydrological contributions. TWSC generally has a negligible impact on water balance calculations 

over multi-year periods, but can significantly affect short-term (e.g., daily) balances (He et al., 2023; 

Zhang et al., 2016). A key challenge is to define the effective depth over which TWSC should be 

quantified, as changes in soil moisture near the surface are more easily observed than those 

occurring at greater depths.” (Pages 4-5, Lines 86-113). 

 

Line 98 Negative ET is possible under 'dew formation' conditions... (be it in only part of a daily 

temperature cycle) 

Response: Thank you for your careful review. We apologize for not clearly explaining in the 

original manuscript the meaning of negative values for P, ET, and Q, which may have led to 

misunderstanding. In our manuscript, the term “negative values” refers to instances where the values 

of P, ET, and Q, which were originally positive, become negative after applying a BCC method. 

These phenomena are caused by the application of BCC methods and intended to highlight a key 

limitation of existing BCC methods: when the full ΔRes is redistributed to budget components, it 

may introduce more uncertainty. Our modifications are as follows: 

To avoid any ambiguity, we have revised the manuscript to clarify the meaning of the “negative 

values” referred to in this study, as follows: “A clear manifestation of this limitation is the 



occurrence of negative values in corrected budget component datasets when applying existing BCC 

methods at the monthly scale, such as negative P, ET, and Q. These unrealistic negative values arise 

when an excessive share of the ΔRes is redistributed to specific components. For instance, if the 

BCC method overestimates the error in a specific component, it may assign an excessively large 

portion of ΔRes to that component. When the magnitude of the correction exceeds the component’

s original value, the result is a negative flux, which is hydrologically incorrect. Beyond introducing 

negative values, such imbalanced redistribution compromises the integrity of the remaining 

components. Overcorrecting one variable necessarily reduces the share of ΔRes available for others, 

potentially degrading their accuracy. Our previous work demonstrated that enforcing water budget 

closure can, to some extent, reduce the accuracy of individual components and tends to introduce 

an ET regulation factor to mitigate accuracy loss in ET caused by existing BCC methods (Luo et al., 

2023). A more hydrologically sound approach may involve partial closure, whereby only the portion 

of ΔRes attributable to quantified uncertainties is redistributed, while the residual linked to 

unmeasured processes is retained.” (Pages 7-8, Lines 155-171). 

 

Line 244 There can be 'bias' (systematic error, e.g. if groundwater flows mean that the basin is not 

closed and part of outflowing Q is missed; the area of the basin can also be incorrect), part 

'measurement error'. As you focus on relatively large basins, the bias term may be relatively small, 

but for smaller watersheds the bias terms cannot be ignored. Standard techniques such as plotting 

cumulative Q vs cumulative P give indications, especially if nested Q data exist beyond outflow 

data. 

Response: Thank you very much for your kind reminder. In the revised manuscript, we have added 

a description regarding systematic biases, as follows: “However, in practice, this balance is rarely 

achieved due to various sources of error. These include systematic biases (such as missed portions 

of outflow resulted from unclosed basin boundaries and inaccuracies in catchment area delineation, 

particularly in small basins), measurement uncertainties, and the omission of unmeasured 

components. Consequently, each budget component (P, ET, Q, and TWSC) is subject to an 

associated error term (denoted as ԐP, ԐET, ԐQ, ԐTWSC, respectively), leading to a non-closure of the 

water budget (i.e., Equation 1 becomes Equation 4) (Aires, 2014; Wong et al., 2021).” (Page 15, 

Lines 313-320). 

 

Line 702-714, Figure 7 - would it make sense to compensate S Hemisphere data for a 6 month shift 

in seasons? Or even more flexibly to use a hydrological year concept with a standardized month for 

maximum P. 

Response: Thank you for the insightful suggestion. We agree that seasonal misalignment between 

the Northern and Southern Hemispheres may obscure underlying hydrological patterns. We have 

redrawn Figure 7 accordingly. Specifically, based on your recommendation, we adjusted the 

Southern Hemisphere data by applying a 6-month shift to align its seasonal phases with those of the 

Northern Hemisphere. This adjustment has been noted in the caption of the revised Figure 7. Finally, 

we reanalyzed the figure based on the updated version. 

“Fig. 7 presents the seasonal cycle of negative values across different climate zones, examining 

whether these values exhibit significant seasonal patterns. Negative P values predominantly occur 

in winter and spring, with a higher proportion from January to March in tropical climates compared 

to arid regions. ET tends to show negative values more frequently in winter and spring, with a lower 



likelihood in summer and autumn. Except in summer, cold climate zones are most susceptible to 

negative ET values. Among the four budget components, Q has the lowest occurrence of negative 

values. Negative TWSC values exhibit no obvious seasonal pattern, with arid regions exhibiting a 

higher likelihood of negative values throughout the year compared to other climate types. These 

findings indicate that the occurrence of negative values varies significantly across seasons and 

climate zones. Future research should account for this seasonal variability to further refine existing 

BCC methods.” (Pages 40-41, Lines 810-821). 

 

Fig. 7 Seasonal cycle of the proportion of negative errors for budget components. Different colors 

representing various climate types. The Southern Hemisphere data by applying a 6-month shift to 

align its seasonal phases with those of the Northern Hemisphere. 
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Reviewer #1 (RC2): 

Thanks to the authors team for a careful response to the two comments. From the text revisions that 

you show I can see that all substantive points have been adequately addressed and that the 

manuscript will now be an important contribution to the literature. Congratulations. 

 

Response: Thank you very much for your positive and constructive review, which helped us to 

improve the manuscript greatly. Thank you again. 

 

 

Reviewer #2 (RC3): 

Greetings. The manuscript entitled “A novel method for 1 correcting water budget components and 

reducing their uncertainties by optimally distributing the imbalance residual without full closure” 

deals with the closure of water budget problems, and specifically with uncertainties therein. The 

structure and goals are clear, and the results offering is well-suited. This paper can for sure be 

published after some adjustments, listed below. I think that these itemized improvements would 

make the work more scientifically sound and robust. These considerations come from my expertise 

as a hydrogeologist, so they will pertain to this sphere of competency. Best regards. 

Response: Thank you very much for your careful review. These comments are very helpful for us 

to improve the manuscript. We really appreciate your time and efforts. 

The point-to-point responses were given after comments. All the changes were highlighted in 

bright blue for easy review. We hope that the revision meets the requirement for publication. 

 

• In equation 2, jkl should be written as subscripts, as well as 123, etc in eq. 3. 

Response: Thanks for your careful review. We apologize for our carelessness. In the revised 

manuscript, “jkl” in Equation 2 and “123” in Equation 3 were formatted as subscripts, respectively, 

as shown below: 

“ 

 𝐶𝑗𝑘𝑙 = [𝑃𝑗  𝐸𝑇𝑘  𝑇𝑊𝑆𝐶𝑙  𝑄] (2) 

where j, k, and l represent the indices of the datasets corresponding to each budget component. Table 

1 provides basic information on the datasets used in this study, along with their corresponding 

indices. Equation 3 represents a matrix composed of the elements defined in Equation 2. 

 C =

[
 
 
 
𝐶111 𝐶112 𝐶113 𝐶121 𝐶122 𝐶123 𝐶131 𝐶132 𝐶133

𝐶211 𝐶212 𝐶213 𝐶221 𝐶222 𝐶223 𝐶231 𝐶232 𝐶233

𝐶311

𝐶411

𝐶312

𝐶412

𝐶313 𝐶321 𝐶322 𝐶323 𝐶331 𝐶332 𝐶333

𝐶413 𝐶421 𝐶422 𝐶423 𝐶431 𝐶432 𝐶433]
 
 
 

 (3) 

”. 

We carefully reviewed all equations and notations throughout the manuscript to ensure that all 

similar issues were addressed. 

 

• We need a more detailed specification, both in the introduction and in the methodology 



(e.g., from line 64 on) of the TWSC term. It is not sufficient to describe the ground-

underground part of the water cycle. Two major points should be at least touched: (i) a 

portion of the TWSC term is the water infiltrating to aquifer, but that is returned to major 

water bodies soon or later (see e.g. Levison et al., 2016); (ii) the major role in the aquifer 

ability to store or drain the portion of water infiltrating is played by local geology, precisely 

its spatial distribution and the eventual presence of fractures (again, Levison et al., 2016) 

or highly permeable conduits (Schiavo, 2023). I think these two major points should be 

supported leveraging the suggested references. 

Response: Thank you for your constructive suggestion. We sincerely apologize for the unclear 

description of the TWSC term in the original manuscript. In this study, TWSC refers to the total 

terrestrial water storage change, which includes but is not limited to surface water, soil moisture, 

groundwater, aquifer infiltration, and ice/snow components. To better represent this, we employed 

three different GRACE satellite-derived datasets to reduce the uncertainty of TWSC estimates. 

We fully agree with you that it is insufficient to describe only surface and subsurface part of 

the water cycle. We should also clarify that the TWSC term includes water that infiltrates into 

aquifers. This water has both storage and drainage characteristics and eventually contributes to 

major water bodies, thereby affecting TWSC. In particular, the ability of aquifers to store or release 

water is strongly influenced by local geological conditions, such as spatial heterogeneity, the 

presence of fracture zones, and high-permeability pathways. These key aspects were incorporated 

into the revised manuscript, and we cited the references you suggested as essential support. 

Specifically, we made revisions in the following three aspects: 

(1) We revised the definition of TWSC in the Introduction to clearly state that it includes 

surface water, soil moisture, groundwater, water infiltrating into aquifers, and ice/snow (Mehrnegar 

et al., 2023; Pellet et al., 2020; Wang et al., 2022). We referenced the works of Levison et al. (2016) 

and Schiavo (2023) to emphasize the drainage characteristics of infiltrated aquifer water (eventually 

returning to major water bodies) and its influencing factors (e.g., geological conditions). Specifically, 

we added the following sentence to the revised manuscript: 

“where P represents precipitation, ET represents evapotranspiration, Q represents streamflow, 

and TWSC represents terrestrial water storage change. It is worth noting that TWSC refers to the 

change in total terrestrial water storage, including but not limited to surface water, soil moisture, 

groundwater, water infiltrating into aquifers, and ice/snow (Mehrnegar et al., 2023; Pellet et al., 

2020; Wang et al., 2022). Infiltrated water into aquifers is not permanently stored, but eventually 

returned to major water bodies sooner or later (Levison et al., 2016). The ability of aquifers to retain 

or transmit infiltrated water is strongly influenced by local geological characteristics, particularly 

the spatial heterogeneity, presence of fractures, or high-permeability pathways (Levison et al., 2016; 

Schiavo, 2023).” (Pages 3-4, Lines 70-79). 

(2) We added a more detailed description of the GRACE TWSC data in the Data section of the 

manuscript. By briefly explaining the principle by which GRACE satellites monitor TWSC, we 

clarified that the GRACE-derived TWSC represents total terrestrial water storage change. The 

following sentence was added to the revised manuscript: 

“The launch of the GRACE and GRACE Follow-On (GRACE-FO) satellite missions has 

provided new opportunities for more accurate observations of large-scale TWSC. GRACE operated 

from 2002 to 2017, followed by GRACE-FO starting in 2018 (Boergens et al., 2024). These 

missions infer terrestrial total TWSC by tracking temporal variations in Earth’s gravity field, which 



are primarily attributed to changes in terrestrial water mass. The GRACE TWSC datasets used in 

this study are provided by the University of Texas Center for Space Research (CSR), the German 

Research Centre for Geosciences (GFZ), and NASA’s Jet Propulsion Laboratory (JPL), all of which 

include multiple bias correction procedures to improve data quality (Landerer et al., 2012; 

Shamsudduha et al., 2017). These bias correction procedures include filtration to suppress correlated 

noise and striping artifacts (Swenson et al., 2006), replacement of poorly resolved spherical 

harmonic coefficients (e.g., degree-2 term C20) with satellite laser ranging data (Loomis et al., 

2020), and correction for glacial isostatic adjustment (GIA) (Peltier et al., 2012; Mu et al., 2017). 

Numerous studies have demonstrated the sensitivity and reliability of GRACE satellite data for 

monitoring TWSC (Swenson and Wahr, 2006; Resende et al., 2019; Majid et al., 2019; Reager et 

al., 2014).” (Pages 13-14, Lines 283-299). 

(3) In the Methodology section, we explicitly emphasized that the TWSC data used in the BCC 

method refer to the total terrestrial water storage change observed by the GRACE satellite: 

“In the following application of these BCC methods, the TWSC data used in this study refer to 

the basin-scale total terrestrial water storage change observed by GRACE satellite data.” (Pages 16-

17, Lines 341-343). 

 

• Global precipitation models, as well as other kinds of climate products, need to be bias 

corrected to be employable, even if these issues and the opportunity of such procedures are 

still subject of scientific debate (e.g., Ehret et al., 2012). Are the employed data raw or bias 

corrected (if so, how)? 

Response: Thank you very much for your careful review, which has been highly valuable in 

improving the quality of our manuscript. To more reliably analyze the uncertainties introduced by 

existing BCC methods and to verify the robustness of the IWE-Res method proposed in this study, 

we selected multiple datasets for each budget component, forming multiple data combinations in 

each basin. Specifically, we used four P datasets (GPCC, GPM IMERG Final Run, MSWEP, and 

PERSIANN-CDR), three ET datasets (GLDAS, GLEAM, and TerraClimate), one observed Q 

dataset, and three GRACE-based TWSC datasets. 

We apologize for not clearly stating the bias correction status of these datasets in the original 

manuscript. (1) All datasets used in this study for driving BCC methods have undergone bias 

correction according to the standards of their respective data providers or have been subject to 

rigorous quality control procedures to ensure their accuracy and reliability. Therefore, we did not 

apply any further bias correction to these driving datasets ourselves; (2) For the datasets produced 

using both existing BCC methods and our proposed IWE-Res method in this study, no additional 

bias correction against observational data was performed. We added a discussion on the potential 

for further bias correction of these produced datasets by this study. Our specific revisions are as 

follows: 

(1) We added descriptions of the bias correction and quality control for datasets driving BCC 

methods used in this study: 

The GPCC precipitation dataset is derived from a large number of ground-based rain gauge 

observations collected globally and is produced through rigorous quality control and spatial 

interpolation procedures (Song et al., 2022; Wei et al., 2019; Abdelwares et al., 2020). The quality 

control process includes verification of station metadata (such as location and elevation), checks for 

temporal consistency, and the removal of extreme or erroneous values. As the GPCC dataset is 



interpolated from rain gauge observations and has undergone strict quality assurance, it is widely 

used in previous studies as a benchmark for bias correction of precipitation estimates from climate 

models.  

The GPM IMERG Final Run precipitation product is a high-resolution, multi-source satellite-

based precipitation dataset. It incorporates ground-based rain gauge observations and applies bias 

correction at the monthly scale (Wang et al., 2017; Cui et al., 2020; Huang et al., 2019). 

The MSWEP dataset is produced by optimally merging precipitation data from satellite 

observations, ground stations, and reanalysis products (Beck et al., 2019; Beck et al., 2017). This 

dataset incorporates bias correction at the daily scale using more than 77,000 gauge observations 

worldwide (Beck et al., 2019; Beck et al., 2017). 

The PERSIANN-CDR precipitation product is bias-corrected using the Global Precipitation 

Climatology Project (GPCP) 2.5° monthly product, which includes gauge data from the Global 

Precipitation Climatology Centre (GPCC) (Chen et al., 2020; Kaprom et al., 2025; Sadeghi et al., 

2019). 

In contrast to precipitation, global ET datasets generally lack standardized and comprehensive 

bias correction procedures. Most bias correction approaches for ET are indirect, focusing on 

correcting the climate forcing inputs used to drive evapotranspiration models. This is primarily due 

to the limited availability of long-term, high-density in situ ET measurements globally— for 

example, the sparse distribution and limited representativeness of eddy covariance flux towers. The 

three ET products used in this study (GLDAS, GLEAM, and TerraClimate) improve data quality 

primarily through such indirect bias correction methods. 

For TWSC, the GRACE TWSC datasets used in this study are provided by the University of 

Texas Center for Space Research (CSR), the German Research Centre for Geosciences (GFZ), and 

NASA’s Jet Propulsion Laboratory (JPL), including multiple bias correction procedures to improve 

data quality (Landerer et al., 2012; Shamsudduha et al., 2017). These include filtering to suppress 

correlated noise and striping artifacts (Swenson et al., 2006), replacement of poorly resolved 

spherical harmonic coefficients (e.g., degree-2 term C20) with satellite laser ranging data (Loomis 

et al., 2020), and correction for glacial isostatic adjustment (GIA) (Peltier et al., 2012; Mu et al., 

2017). Numerous studies have demonstrated the sensitivity and reliability of GRACE satellite data 

for monitoring TWSC (Swenson and Wahr, 2006; Resende et al., 2019; Majid et al., 2019; Reager 

et al., 2014). 

The following sentences were added to the revised manuscript: 

“Given the biases in the outputs of global P and ET models, observationally constrained 

datasets that have undergone bias correction or rigorous quality control are generally considered 

more accurate and reliable (Ehret et al., 2012). Accordingly, priority was given to datasets that 

incorporate extensive ground-based observations and provide bias-corrected or quality-controlled 

products. We selected four P datasets—GPCC, GPM IMERG, MSWEP, and PERSIANN-CDR; 

three ET datasets—GLDAS, GLEAM, and TerraClimate; and three TWSC datasets derived from 

GRACE satellite observations—GRACE CSR, GRACE GFZ, and GRACE JPL. All datasets were 

either bias-corrected according to the standards of their respective data providers or subjected to 

systematic quality control. Observed Q data were obtained from the GRDC platform. The above 

datasets were upscaled to the basin and monthly scales using spatial and temporal averaging. By 

combining these datasets, a total of 36 distinct data combinations were generated for each basin 

(Equation 3). 



 𝐶𝑗𝑘𝑙 = [𝑃𝑗  𝐸𝑇𝑘  𝑇𝑊𝑆𝐶𝑙  𝑄] (2) 

where j, k, and l represent the indices of the datasets corresponding to each budget component. Table 

1 provides basic information on the datasets used in this study, along with their corresponding 

indices. Equation 3 represents a matrix composed of the elements defined in Equation 2. 

 C =

[
 
 
 
𝐶111 𝐶112 𝐶113 𝐶121 𝐶122 𝐶123 𝐶131 𝐶132 𝐶133

𝐶211 𝐶212 𝐶213 𝐶221 𝐶222 𝐶223 𝐶231 𝐶232 𝐶233

𝐶311

𝐶411

𝐶312

𝐶412

𝐶313 𝐶321 𝐶322 𝐶323 𝐶331 𝐶332 𝐶333

𝐶413 𝐶421 𝐶422 𝐶423 𝐶431 𝐶432 𝐶433]
 
 
 

 (3) 

The Global Precipitation Climatology Centre (GPCC) dataset, provided by the German 

Weather Service (DWD), is derived from a dense global network of rain gauge observations, and 

incorporates strict quality control procedures such as station data validation, temporal consistency 

checks, and outlier removal (Becker et al., 2013; Schneider et al., 2008). The dataset is available at 

0.25° spatial resolution and daily to monthly temporal scales. The Global Precipitation 

Measurement Integrated Multi-Satellite Retrievals (GPM IMERG) Final Run product, developed 

by NASA and JAXA, integrates multiple satellite-based precipitation estimates and applies monthly 

bias correction using ground-based gauge data (Wang et al., 2017; Cui et al., 2020; Huang et al., 

2019). The Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset combines satellite, 

gauge, and reanalysis data using an ensemble-weighted approach, incorporating over 77,000 ground 

stations for daily-scale bias correction (Beck et al., 2019; Beck et al., 2017). The PERSIANN-CDR 

dataset, based on satellite remote sensing and artificial neural network technology, spans 60°S to 

60°N with 0.25° daily resolution, and is bias-corrected using the GPCP monthly product, which 

includes extensive rain gauge observations (Chen et al., 2020; Kaprom et al., 2025; Sadeghi et al., 

2019). 

For ET, the Global Land Data Assimilation System (GLDAS), developed by NASA and NOAA, 

uses land surface modeling and data assimilation to produce physically consistent estimates of land 

surface fluxes. The GLEAM dataset, developed by the Miralles team at the University of Bristol, 

estimates actual ET using satellite-derived net radiation and air temperature via the Priestley-Taylor 

model, and applies a stress factor derived from vegetation optical depth (VOD) and soil moisture to 

adjust potential evaporation. TerraClimate dataset provides global monthly actual ET estimates 

based on the Penman Montieth approach (Abatzoglou et al., 2018). Notably, bias correction in global 

ET products is generally less systematic than for P products, mainly due to the limited availability 

and spatial coverage of in situ flux tower observations. As a result, bias adjustments in ET datasets 

are typically indirect, relying on corrections applied to the climate forcing variables rather than to 

ET itself. 

The launch of the GRACE and GRACE Follow-On (GRACE-FO) satellite missions has 

provided new opportunities for more accurate observations of large-scale TWSC. GRACE operated 

from 2002 to 2017, followed by GRACE-FO starting in 2018 (Boergens et al., 2024). These 

missions infer terrestrial total TWSC by tracking temporal variations in Earth’s gravity field, which 

are primarily attributed to changes in terrestrial water mass. The GRACE TWSC datasets used in 

this study are provided by the University of Texas Center for Space Research (CSR), the German 

Research Centre for Geosciences (GFZ), and NASA’s Jet Propulsion Laboratory (JPL), all of which 

include multiple bias correction procedures to improve data quality (Landerer et al., 2012; 

Shamsudduha et al., 2017). These bias correction procedures include filtration to suppress correlated 

noise and striping artifacts (Swenson et al., 2006), replacement of poorly resolved spherical 



harmonic coefficients (e.g., degree-2 term C20) with satellite laser ranging data (Loomis et al., 

2020), and correction for glacial isostatic adjustment (GIA) (Peltier et al., 2012; Mu et al., 2017). 

Numerous studies have demonstrated the sensitivity and reliability of GRACE satellite data for 

monitoring TWSC (Swenson and Wahr, 2006; Resende et al., 2019; Majid et al., 2019; Reager et 

al., 2014). 

The GRDC provides the most comprehensive open-access river discharge data available 

worldwide, collected from national hydrological agencies. This dataset includes river streamflow 

measurements from over 10,000 stations across 159 countries (Su et al., 2024). To minimize the 

impact of missing data on the reliability of the results, hydrological stations were selected based on 

the criterion that missing values accounted for less than 10% of the total dataset. Linear interpolation 

was then applied to fill any remaining data gaps.” (Pages 11-14, Lines 235-306). 

(2) We discussed the potential for further bias correction of the budget corrected datasets 

generated using the proposed IWE-Res method, based on observational data, although this lies 

beyond the scope of the present study. The following sentence has been added to the revised 

manuscript: 

“It is worth noting that the datasets generated by both the existing BCC methods and the IWE-

Res method proposed in this study were not further bias-corrected against independent observations. 

For basin-specific applications requiring higher reliability, we recommend additional bias 

correction.” (Page 53, Lines 1000-1003). 

 

• The resolution of the spatial problem is crucial. It is well known that changes in resolution 

make employed variables (such as DEMs, as in Aziz et al., 2022) very different at the same 

location. How to tackle this point? Which resolution ‘advice’ for the reader? Any criterion? 

Otherwise, the errors will propagate in a sort of uncontrolled cascade. 

Response: Thank you for this important comment. We fully agree that the spatial resolution 

differences among datasets for budget components can introduce uncertainty, especially when 

rescaling is required. We apologize for not clearly stating the spatial resolution used in our study. In 

this work, water budget closure was performed at the basin scale and at the monthly temporal 

resolution. Specifically, all gridded datasets of budget components were spatially and temporally 

aggregated to monthly and basin scales, respectively. Therefore, we did not resample all datasets to 

a common grid resolution; instead, we upscaled each variable directly to the basin scale. Previous 

studies on water budget closure have also focused primarily on the basin scale (e.g., Lehmann et al., 

2022; Abolafia-Rosenzweig et al., 2023; Luo et al., 2023; Wang et al., 2014; Tan et al., 2022; Sahoo 

et al., 2011), mainly for the following reasons: 

(1) Water budget closure correction at the grid scale is extremely complex, as it requires 

accurate quantification of all inflow and outflow terms. These may include precipitation, 

evapotranspiration, changes in water storage, lateral inflows and outflows, leakage losses, and 

human withdrawals or returns. Many of these components are difficult to observe or estimate 

directly, particularly lateral fluxes and leakage. Neglecting these terms introduces substantial 

uncertainty into grid-scale analyses; (2) As you correctly noted, merging datasets with differing 

spatial resolutions onto a common grid introduces additional sources of uncertainty, which can 

reduce the accuracy of water budget closure correction; (3) The GRACE satellite-derived TWSC 

data have a relatively coarse spatial resolution, which limits their applicability at the grid scale. 

Since TWSC is a critical component of the monthly water budget closure correction, it cannot be 



omitted. By aggregating GRACE data to the basin scale, random errors tend to cancel out, thereby 

improving accuracy; (4) Despite recent advances in remote sensing and the expansion of global 

observational networks, significant uncertainties remain in gridded hydrological datasets when 

applied at fine spatial scales, especially for evapotranspiration. Thus, conducting water budget 

closure correction at the basin scale remains a central focus of current research. 

In the revised manuscript, on the one hand, we clarified the spatial resolution applied in our 

analysis as “The above datasets were upscaled to the basin and monthly scales using spatial and 

temporal averaging.” (Page 11, Lines 245-246); On the other hand, we added a detailed discussion 

of why the basin scale was selected for water budget closure correction in this study as “Notably, 

the choice of spatial resolution has a significant impact on the results (Aziz et al., 2022; Bormann 

et al., 2006; Senan et al., 2022). Following many previous studies (Lehmann et al., 2022; Abolafia-

Rosenzweig et al., 2023; Luo et al., 2023; Wang et al., 2014; Tan et al., 2022; Sahoo et al., 2011), 

the BCC method in this study is also applied at the basin scale rather than the grid scale for the 

following reasons: 1) Achieving water budget closure at the grid scale is complex and challenging 

due to the difficulty of quantifying all water flux and storage components flowing into and out of 

the grid, including P, ET, TWSC, lateral inflow and outflow, leakage losses, and human water 

withdrawals and returns. Several of these components, such as lateral flow and leakage, are poorly 

observed or highly uncertain, and their omission introduces substantial error; 2) The datasets of 

different variables have varying spatial resolutions, and resampling them to a common resolution 

introduces uncertainties, which in turn affect the accuracy of water budget closure correction; 3) 

The coarse spatial resolution of GRACE-derived TWSC data limits their applicability for water 

budget closure calculation at the grid scale. At monthly resolution, TWSC is a critical component 

and cannot be neglected. Averaging GRACE data to the basin scale helps reduce random errors by 

offsetting positive and negative biases, thereby increasing the reliability of water budget closure 

correction; 4) Despite advances in remote sensing and in situ observation networks, grid-scale 

uncertainties remain substantial for some budget components, such as ET. Basin-scale analysis 

therefore reduces uncertainty and improves the reliability of water budget closure correction results.” 

(Pages 56-57, Lines 1069-1089). 

 

• From line 289 on, I think that the noise to afflict the Kalman Filter with should be pointed 

out. Which is the observation noise covariance (and its quantification for the employed 

variables)? 

Response: Thank you for your careful review. We sincerely apologize for the insufficient 

explanation of the observation noise covariance and its quantification in the CKF method in the 

original manuscript. The CKF method used in this study is developed by Pan and Wood (2006) 

based on the Kalman Filter method. Given that the CKF method has been widely applied in previous 

studies for correcting budget component datasets, we included it as one of the benchmark methods 

to evaluate the performance of the proposed IWE-Res method. 

In the CKF method, the reference values used to compute the error covariance (ε in Equations 

7–10) differ among the four budget components (P, ET, Q, and TWSC). For P, ET, and TWSC, due 

to the lack of spatially matched ground-truth observations at the grid scale, previous studies (Zhang 

et al., 2018; Abolafia-Rosenzweig et al., 2021) have typically used the ensemble mean across all 

datasets considered in their studies as the reference value. For Q, both previous studies and the 

present work use observed Q in the CKF method. Previous studies have reported gauge-based 



uncertainty as a percent error for some of the basins, ranging from 2.3%–28.8% (Clarke, 1999; 

Mueller, 2003; Shiklomanov et al., 2006; Abolafia-Rosenzweig et al., 2021). 

To ensure consistency with previous studies, we adopted the same assumptions in our 

application of the CKF method. However, as this method relies on approximated reference values, 

it may introduce inaccuracies in the error estimation for certain budget components. This, in turn, 

can propagate uncertainty into the corrected datasets. Hence, evaluating the uncertainty ranges of 

existing correction methods and developing new methods to reduce those uncertainties is essential. 

This concern forms a core motivation of our study: (1) to quantify the uncertainties introduced by 

existing BCC methods (CKF, MCL, MSD, and PR) at the monthly scale across 84 global basins 

spanning diverse climate zones; and (2) to propose a novel method, IWE-Res, for identifying the 

optimal balance in ΔRes redistribution, minimizing the combined error from both introduced budget 

component errors and the remaining ΔRes error. 

In the revised manuscript, we carefully revised the description of the CKF method to clarify 

the relationships among the relevant equations and to more clearly explain the quantification of the 

error covariance for each budget component. Additionally, we incorporated more references to 

previous studies that have applied the CKF method. The specific revisions made to the manuscript 

are as follows: 

“The CKF method is developed based on the Kalman filter method (Pan and wood, 2006). For 

a given set of estimated budget components X = [P ET Q TWSC]T  and their estimated errors 

∆𝑅𝑒𝑠 = 𝐺𝑋 ≠ 0 (where G is a constant vector, 𝐺 = [1 − 1 − 1 − 1]), the goal is to find a new 

set of estimates 𝐹 = [𝑃′ 𝐸𝑇′ 𝑄′ 𝑇𝑊𝑆𝐶′]𝑇 such that 𝐺𝑋′ = 0, achieving water budget closure (Pan 

et al., 2012). In simple terms, the CKF method redistributes the ∆𝑅𝑒𝑠  among the budget 

components based on the error covariance of 𝑋, defined as ∆ε𝑋𝑋 (Equation 7), to obtain a closured 

dataset. 

 ∆ε𝑋𝑋 = (𝑋 − 𝑋0)(𝑋 − 𝑋0)
𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (7) 

where X0 refers to the reference values of the estimated budget components, and the bar over an 

expression denotes expectation. For P, ET and TWSC, the reference values X0 were calculated by 

averaging all considered datasets, following previous studies (Zhang et al., 2018; Abolafia-

Rosenzweig et al., 2021). For Q, we adopted observed Q. Due to the difficulty in quantifying the 

uncertainty in observed Q, previous studies have reported gauge-based uncertainty as a percent error 

for some of the basins, ranging from 2.3%–28.8% (Clarke, 1999; Mueller, 2003; Shiklomanov et 

al., 2006; Abolafia-Rosenzweig et al., 2021). We followed a similar approach to estimate the 

uncertainty associated with Q in this study. 

The error covariance matrix ∆ε𝑋𝑋 is of dimension 4×4 and represents the covariances among 

errors in the four budget components: 

 ∆ε𝑋𝑋 =

[
 
 
 

∆𝜀𝑃−𝑃 ∆𝜀𝑃−𝐸𝑇 ∆𝜀𝑃−𝑄 ∆𝜀𝑃−𝑇𝑊𝑆𝐶

∆𝜀𝐸𝑇−𝑃 ∆𝜀𝐸𝑇−𝐸𝑇 ∆𝜀𝐸𝑇−𝑄 ∆𝜀𝐸𝑇−𝑇𝑊𝑆𝐶

∆𝜀𝑄−𝑃 ∆𝜀𝑄−𝐸𝑇 ∆𝜀𝑄−𝑄 ∆𝜀𝑄−𝑇𝑊𝑆𝐶

∆𝜀𝑇𝑊𝑆𝐶−𝑃 ∆𝜀𝑇𝑊𝑆𝐶−𝐸𝑇 ∆𝜀𝑇𝑊𝑆𝐶−𝑄 ∆𝜀𝑇𝑊𝑆𝐶−𝑇𝑊𝑆𝐶]
 
 
 

 (8) 

Following Pan et al. (2012), the off-diagonal elements representing cross-variable error 

covariances were assumed to be zero, under the assumption that errors among different budget 

components are uncorrelated. Accordingly, the matrix F can be computed as shown in Equation 9. 

 𝐹 = 𝑋 + 𝐾(0 − 𝐺𝑋) (9) 

where K = ∆𝜀𝑋𝑋𝐶𝑇(𝐶∆𝜀𝑋𝑋𝐶𝑇)−1 is the Kalman gain. Setting GX = ∆Res, and Equation 9 can be 



rewritten as Equation 10. 

 𝐹 = 𝑋 − ∆𝜀𝑋𝑋𝐺𝑇(𝐺∆𝜀𝑋𝑋𝐺𝑇)−1∆Res (10) 

where error covariance 𝜀𝑋𝑋 is calculated entry by entry according to Equation 8.” (Pages 17-19, 

Lines 364-393). 

 

• Is there any exit criterion (such as tolerances) to exit from equations 9 and 10? 

Response: Thank you for your careful review. The existing CKF method uses the total number of 

months within the study period as the only termination criterion for iteration—that is, it runs for a 

fixed number of iterations corresponding to the study duration. No additional exit conditions are set 

for Equations 9 and 10. This design is rooted in the core principle of the CKF method: it first 

estimates the error covariances of the water budget components and then proportionally redistributes 

the water imbalance (∆Res) back to the raw data based on these estimated errors. However, if the 

error covariances are inaccurately estimated, the redistribution of ∆Res may be suboptimal. This 

misallocation can then propagate: an excessive correction to one variable reduces the remaining 

∆Res available for others, potentially resulting in further inaccuracies. Notably, this iteration process 

continues until the predetermined number of steps (the total number of months) is reached, 

regardless of whether such misallocations occur. 

We highlighted this limitation in the modified manuscript by stating: “Beyond introducing 

negative values, such imbalanced redistribution compromises the integrity of the remaining 

components. Overcorrecting one variable necessarily reduces the share of ΔRes available for 

others, potentially degrading their accuracy.” (Pages 7-8, Lines 162-165). 

To address these limitations of existing methods, we proposed the IWE-Res method. Unlike 

existing methods, IWE-Res introduces exit conditions based on the physical plausibility of the 

corrected variables. Specifically, we terminate the iteration if any of the following occurs: P, ET, or 

Q becomes negative, or if the sign of TWSC reverses (from positive to negative or vice versa). The 

following sentences were added to the revised manuscript as: “During the iterative correction 

process, if any of the water budget components (P, ET, and Q) becomes negative, the redistribution 

of water imbalance error to that component is immediately suspended. In subsequent iterations, 

redistribution is recalculated to ensure that only components with physically meaningful positive 

values receive the imbalance correction. For example, if ET becomes negative in a given iteration, 

the imbalance is subsequently redistributed to P, Q, and TWSC only, in accordance with Equation 

33. For TWSC, if a sign reversal occurs during iteration (i.e., from positive to negative or vice versa), 

the redistribution of the water imbalance error to TWSC is suspended in the following iteration.” 

(Page 29, Lines 611-619). 
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• Aziz, K.M.A., Rashwan, K.S. Comparison of different resolutions of six free online DEMs 

with GPS elevation data on a new 6th of October City, Egypt. Arab J Geosci15, 1585 

(2022). https://doi.org/10.1007/s12517-022-10845-5 

Response: Thanks very much for the useful references. We carefully reviewed the suggested 

references and incorporated them into the revised manuscript. 
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Reviewer #3 (CC1): 

With the rapid development of satellite remote sensing technology, a large number of datasets 

related to water cycle variables have been produced, providing important opportunities for more 

accurately revealing hydrological variation processes within watersheds. However, many datasets 

on precipitation, evapotranspiration, runoff, and water storage change are observed or modeled 

independently, and contain certain uncertainties. This leads to poor physical consistency among the 

datasets, often manifested as non-closure of the water balance. It is therefore crucial to obtain 

consistent datasets. 

This paper addresses the limitations of existing water balance closure correction methods that 

fully allocate water imbalance residuals, which may lead to negative corrected values. The authors 

propose a method based on partially closed water balance correction, which effectively resolves the 

issues of accuracy loss and negative values inherent in current methods. This approach demonstrates 



important innovation and research value. To help the authors further improve the manuscript, I have 

the following suggestions: 

Response: Thank you for your careful review. These comments are very helpful for us to improve 

the manuscript. We really appreciate your time and efforts. The point-to-point responses were given 

after individual comments. 

 

• It is recommended that the authors provide a more detailed explanation in the introduction 

regarding the sources of water balance residuals (including errors, unmeasured components, 

and biases). This would better clarify the irrationality of fully allocating the residuals based 

solely on observational errors in existing closure methods, as well as the underlying reason 

why this can easily lead to negative values. 

Response: Thank you for your constructive suggestion. We apologize for not clearly explaining the 

sources of water imbalance errors in our manuscript. These errors primarily stem from the 

estimation errors of budget components (errors in remote sensing and reanalysis products of budget 

components), systematic biases, and the omission of unmeasured components. However, existing 

BCC methods typically assume that all of ΔRes arises from estimation errors and then redistribute 

it according to estimation errors. In the revised manuscript, we have provided a more detailed 

description of the principles behind existing BCC methods, the main uncertainty sources causing 

water imbalance error, and the limitations of existing BCC methods that fully redistribute the water 

imbalance error. The following sentence has been added to the revised manuscript: 

“Existing BCC methods redistribute the entire ΔRes error among water budget components to 

enforce strict water budget closure. This redistribution is typically guided by the relative 

uncertainties of the individual components, based on the assumption that the entire residual error 

originates from observational or modeling errors in these datasets. However, this assumption 

overlooks the fact that ΔRes is not solely the result of measurement or estimation errors in P, ET, Q, 

or TWSC. Rather, it is a composite residual that also reflects contributions from systematic biases 

and the omission of unmeasured components. These include deep groundwater exchanges that may 

cross basin boundaries, snow and glacier storage changes (particularly in high-altitude or high-

latitude regions), and anthropogenic influences such as irrigation withdrawals, reservoir operations, 

and inter-basin water transfers. Because existing BCC methods do not explicitly account for these 

additional sources of imbalance, forcing strict closure by allocating the entire ΔRes to the measured 

components can introduce unrealistic uncertainties. As a result, the application of existing BCC 

methods—despite their goal of improving internal consistency — often leads to limited 

improvements, or, in some cases, even a decline in the accuracy of the corrected hydrological 

datasets.” (Pages 6-7, Lines 138-154). 

 

• In the methods section, the authors propose a stepwise iterative approach to find an optimal 

balance point for allocating residuals, which is a sound strategy. The condition for 

terminating the iteration is the emergence of negative values in the water cycle variables. 

While it is easy to understand how precipitation, evapotranspiration, and runoff can become 

negative, water storage change inherently includes both positive and negative values. 

Therefore, the authors are advised to clearly explain how the termination condition is 

defined for water storage change. 

Response: Thank you for your careful review. We apologize for not clearly explaining the 



termination condition for the iterative adjustment of terrestrial water storage change (TWSC). We 

consider it inappropriate to continue redistributing the water imbalance error to TWSC if its sign 

changes after applying the existing BCC method—specifically, if TWSC shifts from a positive to a 

negative value, or vice versa. Such a change indicates that the correction applied to TWSC may be 

unreasonable. This is because GRACE satellite observations of TWSC are generally regarded as 

reliable, and the primary purpose of BCC methods is to improve the internal consistency among 

precipitation, evapotranspiration, runoff, and TWSC. A reversal in the sign of TWSC during the 

correction process suggests a potential overcorrection, and further adjustments should therefore be 

terminated. We have added the following sentence to the revised manuscript: 

“During the iterative correction process, if any of the water budget components (P, ET, and Q) 

becomes negative, the redistribution of water imbalance error to that component is immediately 

suspended. In subsequent iterations, redistribution is recalculated to ensure that only components 

with physically meaningful positive values receive the imbalance correction. For example, if ET 

becomes negative in a given iteration, the imbalance is subsequently redistributed to P, Q, and 

TWSC only, in accordance with Equation 33. For TWSC, if a sign reversal occurs during iteration 

(i.e., from positive to negative or vice versa), the redistribution of the water imbalance error to 

TWSC is suspended in the following iteration.” (Page 29, Lines 611-619). 

 

• The paper demonstrates that applying existing water balance closure correction methods 

may reduce the accuracy of water cycle variables. Although this is an important finding, it 

is recommended that the authors add a discussion on the underlying reasons for this issue. 

Response: Thanks for your constructive suggestion. We believe that the reduced accuracy of the 

corrected datasets resulting from existing water budget closure correction (BCC) methods may be 

due to the following reasons: 1) Most existing BCC methods estimate errors in budget components 

without incorporating independent observational data. Inaccurate error estimates for a single budget 

component can propagate through the redistribution process, biasing the redistribution of the water 

imbalance error to other budget components and ultimately reducing the accuracy of all budget 

components (Abolafia-Rosenzweig et al., 2021). Incorporating high-quality observational data into 

the error estimation process is therefore essential to improve the robustness of BCC methods; 2) 

Existing BCC methods are limited by the assumption that the entire water imbalance error can be 

fully attributed to estimation errors in budget components. These methods enforce water budget 

closure by completely redistributing the water imbalance error among the budget components. 

However, this residual may also arise from systematic biases and unmeasured processes, rather than 

solely from component-level estimation errors. In this study, we propose an iterative optimization 

approach that seeks a more balanced redistribution of water imbalance error, aiming to minimize 

both the errors introduced into individual budget components and the remaining water imbalance 

error. This method significantly improves the accuracy of the corrected datasets. Future research 

could further enhance this approach by integrating it with physically based hydrological or land 

surface models, offering a promising pathway toward greater physical realism and internal 

consistency in corrected water budget datasets; 3) Observational datasets themselves often do not 

strictly satisfy water budget closure due to inherent measurement limitations and sampling errors. 

This introduces uncertainty when using these datasets to validate the accuracy of BCC-corrected 

results. For example, even if the corrected datasets more closely approximate the true values of 

individual components, the absence of ground-truth observations presents a fundamental challenge 



for objectively assessing the validity of these corrections. Future studies should prioritize the 

development of more objective and physically grounded evaluation metrics to better assess the 

performance of BCC-corrected datasets. We have discussed these issues and potential solutions in 

the revised manuscript as follows: 

“Several factors may contribute to this reduction in accuracy. First, most existing BCC methods 

estimate errors in budget components without incorporating independent observational data. These 

methods then redistribute water imbalance errors based on these internally estimated uncertainties 

(Section 3.2). However, the absence of observational constraints undermines the reliability of the 

estimated component errors, which in turn leads to a suboptimal and potentially biased allocation 

of the imbalance. As previously noted, inaccurate error estimates for a single variable can propagate 

through the redistribution process, biasing the residual redistribution to the remaining budget 

components and ultimately lowering the accuracy of all water budget components (Abolafia-

Rosenzweig et al., 2021). Incorporating high-quality observational data into the error estimation 

process is therefore essential to improve the robustness of BCC methods; Second, existing BCC 

methods are limited by their assumption that the entire water imbalance error can be fully attributed 

to errors in the measured budget components. These methods enforce water budget closure by 

completely redistributing the water imbalance error among the budget components, yet this residual 

may also stem from systematic biases and unmeasured processes—not just estimation errors of 

measured budget components. In this study, we propose an iterative optimization approach that 

seeks a balanced redistribution of the ΔRes, aiming to minimize both the errors introduced to 

individual budget components and the remaining ΔRes. This method significantly improves the 

accuracy of the corrected datasets. Future research may further enhance this framework by 

integrating it with physically based hydrological or land surface models, which could provide a 

promising pathway toward more physically consistent and realistic water budget estimates; Third, 

the observational datasets themselves often fail to strictly satisfy water budget closure due to 

measurement limitations and sampling errors. This introduces uncertainty when using these datasets 

to validate the accuracy of BCC-corrected estimates. For instance, even if the corrected datasets 

more closely approximate the true values of budget components, the lack of ground-truth 

observations presents a fundamental challenge for objectively evaluating the effectiveness of these 

corrections. Future work should prioritize the development of more objective and physically 

grounded evaluation metrics to assess the accuracy of BCC-corrected datasets. Although this 

challenge lies beyond the scope of the present study, addressing it will be critical for advancing the 

reliability of water budget assessments.” (Pages 53-55, Lines 1004-1037). 

 

• Some minor formatting issues should be carefully checked. For example, multiple terms 

and abbreviations are used throughout the paper. It is suggested that the full name along 

with the abbreviation be given at first mention, with the abbreviation used thereafter. 

Response: Thank you very much for your careful review. We have thoroughly revised the 

manuscript to ensure that all abbreviations are spelled out in full when first introduced, with the 

corresponding abbreviations provided in parentheses. Thereafter, only the abbreviations are used 

consistently throughout the text. 

 

• The axis labels in Figures 12–15 should be formatted consistently with the other figures. 

They should not be bolded. 
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