
Response to Review  

Reviewer #2: 

 

Greetings. The manuscript entitled “A novel method for 1 correcting water budget components and 

reducing their uncertainties by optimally distributing the imbalance residual without full closure” 

deals with the closure of water budget problems, and specifically with uncertainties therein. The 

structure and goals are clear, and the results offering is well-suited. This paper can for sure be 

published after some adjustments, listed below. I think that these itemized improvements would 

make the work more scientifically sound and robust. These considerations come from my expertise 

as a hydrogeologist, so they will pertain to this sphere of competency. Best regards. 

Response: Thank you very much for your careful review. These comments are very helpful for us 

to improve the manuscript. We really appreciate your time and efforts. 

The point-to-point responses were given after comments. All the changes were highlighted in 

bright blue for easy review. We hope that the revision meets the requirement for publication. 

 

• In equation 2, jkl should be written as subscripts, as well as 123, etc in eq. 3. 

Response: Thanks for your careful review. We apologize for our carelessness. In the revised 

manuscript, “jkl” in Equation 2 and “123” in Equation 3 were formatted as subscripts, respectively, 

as shown below: 

“ 

 𝐶𝑗𝑘𝑙 = [𝑃𝑗  𝐸𝑇𝑘  𝑇𝑊𝑆𝐶𝑙  𝑄] (2) 

where j, k, and l represent the indices of the datasets corresponding to each budget component. Table 

1 provides basic information on the datasets used in this study, along with their corresponding 

indices. Equation 3 represents a matrix composed of the elements defined in Equation 2. 

 C =

[
 
 
 
𝐶111 𝐶112 𝐶113 𝐶121 𝐶122 𝐶123 𝐶131 𝐶132 𝐶133

𝐶211 𝐶212 𝐶213 𝐶221 𝐶222 𝐶223 𝐶231 𝐶232 𝐶233

𝐶311

𝐶411

𝐶312

𝐶412

𝐶313 𝐶321 𝐶322 𝐶323 𝐶331 𝐶332 𝐶333

𝐶413 𝐶421 𝐶422 𝐶423 𝐶431 𝐶432 𝐶433]
 
 
 

 (3) 

”. 

We carefully reviewed all equations and notations throughout the manuscript to ensure that all 

similar issues were addressed. 

 

• We need a more detailed specification, both in the introduction and in the methodology 

(e.g., from line 64 on) of the TWSC term. It is not sufficient to describe the ground-

underground part of the water cycle. Two major points should be at least touched: (i) a 

portion of the TWSC term is the water infiltrating to aquifer, but that is returned to major 

water bodies soon or later (see e.g. Levison et al., 2016); (ii) the major role in the aquifer 

ability to store or drain the portion of water infiltrating is played by local geology, precisely 

its spatial distribution and the eventual presence of fractures (again, Levison et al., 2016) 

or highly permeable conduits (Schiavo, 2023). I think these two major points should be 

supported leveraging the suggested references. 

Response: Thank you for your constructive suggestion. We sincerely apologize for the unclear 

description of the TWSC term in the original manuscript. In this study, TWSC refers to the total 

terrestrial water storage change, which includes but is not limited to surface water, soil moisture, 



groundwater, aquifer infiltration, and ice/snow components. To better represent this, we employed 

three different GRACE satellite-derived datasets to reduce the uncertainty of TWSC estimates. 

We fully agree with you that it is insufficient to describe only surface and subsurface part of 

the water cycle. We should also clarify that the TWSC term includes water that infiltrates into 

aquifers. This water has both storage and drainage characteristics and eventually contributes to 

major water bodies, thereby affecting TWSC. In particular, the ability of aquifers to store or release 

water is strongly influenced by local geological conditions, such as spatial heterogeneity, the 

presence of fracture zones, and high-permeability pathways. These key aspects were incorporated 

into the revised manuscript, and we cited the references you suggested as essential support. 

Specifically, we made revisions in the following three aspects: 

(1) We revised the definition of TWSC in the Introduction to clearly state that it includes 

surface water, soil moisture, groundwater, water infiltrating into aquifers, and ice/snow (Mehrnegar 

et al., 2023; Pellet et al., 2020; Wang et al., 2022). We referenced the works of Levison et al. (2016) 

and Schiavo (2023) to emphasize the drainage characteristics of infiltrated aquifer water (eventually 

returning to major water bodies) and its influencing factors (e.g., geological conditions). Specifically, 

we added the following sentence to the revised manuscript: 

“where P represents precipitation, ET represents evapotranspiration, Q represents streamflow, 

and TWSC represents terrestrial water storage change. It is worth noting that TWSC refers to the 

change in total terrestrial water storage, including but not limited to surface water, soil moisture, 

groundwater, water infiltrating into aquifers, and ice/snow (Mehrnegar et al., 2023; Pellet et al., 

2020; Wang et al., 2022). Infiltrated water into aquifers does not remain permanently stored, but is 

eventually returned to major water bodies sooner or later (Levison et al., 2016). The ability of 

aquifers to retain or transmit infiltrated water is strongly influenced by local geological 

characteristics, particularly the spatial heterogeneity, presence of fractures, or high-permeability 

pathways (Levison et al., 2016; Schiavo, 2023).”. 

(2) We added a more detailed description of the GRACE TWSC data in the Data section of the 

manuscript. By briefly explaining the principle by which GRACE satellites monitor TWSC, we 

clarified that the GRACE-derived TWSC represents total terrestrial water storage change. The 

following sentence was added to the revised manuscript: 

“The launch of the GRACE and GRACE Follow-On (GRACE-FO) satellite missions has 

provided new opportunities for more accurate observations of large-scale TWSC. GRACE operated 

from 2002 to 2017, followed by GRACE-FO starting in 2018 (Boergens et al., 2024). These 

missions infer terrestrial total TWSC by tracking temporal variations in Earth’s gravity field, which 

are primarily attributed to changes in terrestrial water mass. The GRACE TWSC datasets used in 

this study are provided by the University of Texas Center for Space Research (CSR), the German 

Research Centre for Geosciences (GFZ), and NASA’s Jet Propulsion Laboratory (JPL), all of which 

include multiple bias correction procedures to improve data quality (Landerer et al., 2012; 

Shamsudduha et al., 2017). These bias correction procedures include filtration to suppress correlated 

noise and striping artifacts (Swenson et al., 2006), replacement of poorly resolved spherical 

harmonic coefficients (e.g., degree-2 term C20) with satellite laser ranging data (Loomis et al., 

2020), and correction for glacial isostatic adjustment (GIA) (Peltier et al., 2012; Mu et al., 2017). 

Numerous studies have demonstrated the sensitivity and reliability of GRACE satellite data for 

monitoring TWSC (Swenson and Wahr, 2006; Resende et al., 2019; Majid et al., 2019; Reager et 

al., 2014).”. 



(3) In the Methodology section, we explicitly emphasized that the TWSC data used in the BCC 

method refer to the total terrestrial water storage change observed by the GRACE satellite: 

“In the following application of the BCC method, the TWSC data used in this study refer to 

the basin-scale total terrestrial water storage change observed by GRACE satellite data.”. 

 

• Global precipitation models, as well as other kinds of climate products, need to be bias 

corrected to be employable, even if these issues and the opportunity of such procedures are 

still subject of scientific debate (e.g., Ehret et al., 2012). Are the employed data raw or bias 

corrected (if so, how)? 

Response: Thank you very much for your careful review, which has been highly valuable in 

improving the quality of our manuscript. To more reliably analyze the uncertainties introduced by 

existing BCC methods and to verify the robustness of the IWE-Res method proposed in this study, 

we selected multiple datasets for each budget component, forming multiple data combinations in 

each basin. Specifically, we used four P datasets (GPCC, GPM IMERG Final Run, MSWEP, and 

PERSIANN-CDR), three ET datasets (GLDAS, GLEAM, and TerraClimate), one observed Q 

dataset, and three GRACE-based TWSC datasets. 

We apologize for not clearly stating the bias correction status of these datasets in the original 

manuscript. (1) All datasets used in this study for driving BCC methods have undergone bias 

correction according to the standards of their respective data providers or have been subject to 

rigorous quality control procedures to ensure their accuracy and reliability. Therefore, we did not 

apply any further bias correction to these driving datasets ourselves; (2) For the datasets produced 

using both existing BCC methods and our proposed IWE-Res method in this study, no additional 

bias correction against observational data was performed. We added a discussion on the potential 

for further bias correction of these produced datasets by this study. Our specific revisions are as 

follows: 

(1) We added descriptions of the bias correction and quality control for datasets driving BCC 

methods used in this study: 

The GPCC precipitation dataset is derived from a large number of ground-based rain gauge 

observations collected globally and is produced through rigorous quality control and spatial 

interpolation procedures (Song et al., 2022; Wei et al., 2019; Abdelwares et al., 2020). The quality 

control process includes verification of station metadata (such as location and elevation), checks for 

temporal consistency, and the removal of extreme or erroneous values. As the GPCC dataset is 

interpolated from rain gauge observations and has undergone strict quality assurance, it is widely 

used in previous studies as a benchmark for bias correction of precipitation estimates from climate 

models.  

The GPM IMERG Final Run precipitation product is a high-resolution, multi-source satellite-

based precipitation dataset. It incorporates ground-based rain gauge observations and applies bias 

correction at the monthly scale (Wang et al., 2017; Cui et al., 2020; Huang et al., 2019). 

The MSWEP dataset is produced by optimally merging precipitation data from satellite 

observations, ground stations, and reanalysis products (Beck et al., 2019; Beck et al., 2017). This 

dataset incorporates bias correction at the daily scale using more than 77,000 gauge observations 

worldwide (Beck et al., 2019; Beck et al., 2017). 

The PERSIANN-CDR precipitation product is bias-corrected using the Global Precipitation 

Climatology Project (GPCP) 2.5° monthly product, which includes gauge data from the Global 



Precipitation Climatology Centre (GPCC) (Chen et al., 2020; Kaprom et al., 2025; Sadeghi et al., 

2019). 

In contrast to precipitation, global ET datasets generally lack standardized and comprehensive 

bias correction procedures. Most bias correction approaches for ET are indirect, focusing on 

correcting the climate forcing inputs used to drive evapotranspiration models. This is primarily due 

to the limited availability of long-term, high-density in situ ET measurements globally— for 

example, the sparse distribution and limited representativeness of eddy covariance flux towers. The 

three ET products used in this study (GLDAS, GLEAM, and TerraClimate) improve data quality 

primarily through such indirect bias correction methods. 

For TWSC, the GRACE TWSC datasets used in this study are provided by the University of 

Texas Center for Space Research (CSR), the German Research Centre for Geosciences (GFZ), and 

NASA’s Jet Propulsion Laboratory (JPL), including multiple bias correction procedures to improve 

data quality (Landerer et al., 2012; Shamsudduha et al., 2017). These include filtering to suppress 

correlated noise and striping artifacts (Swenson et al., 2006), replacement of poorly resolved 

spherical harmonic coefficients (e.g., degree-2 term C20) with satellite laser ranging data (Loomis 

et al., 2020), and correction for glacial isostatic adjustment (GIA) (Peltier et al., 2012; Mu et al., 

2017). Numerous studies have demonstrated the sensitivity and reliability of GRACE satellite data 

for monitoring TWSC (Swenson and Wahr, 2006; Resende et al., 2019; Majid et al., 2019; Reager 

et al., 2014). 

The following sentences were added to the revised manuscript: 

“Given the biases in the outputs of global P and ET models, observationally constrained 

datasets that have undergone bias correction or rigorous quality control are generally considered 

more accurate and reliable (Ehret et al., 2012). Accordingly, priority was given to datasets that 

incorporate extensive ground-based observations and provide bias-corrected or quality-controlled 

products. We selected four P datasets—GPCC, GPM IMERG, MSWEP, and PERSIANN-CDR; 

three ET datasets—GLDAS, GLEAM, and TerraClimate; and three TWSC datasets derived from 

GRACE satellite observations—GRACE CSR, GRACE GFZ, and GRACE JPL. All datasets were 

either bias-corrected according to the standards of their respective data providers or subjected to 

systematic quality control. Observed Q data were obtained from the GRDC platform. By combining 

these datasets, a total of 36 distinct data combinations were generated for each basin (Equation 3). 

 𝐶𝑗𝑘𝑙 = [𝑃𝑗  𝐸𝑇𝑘  𝑇𝑊𝑆𝐶𝑙  𝑄] (2) 

where j, k, and l represent the indices of the datasets corresponding to each budget component. Table 

1 provides basic information on the datasets used in this study, along with their corresponding 

indices. Equation 3 represents a matrix composed of the elements defined in Equation 2. 

 C =

[
 
 
 
𝐶111 𝐶112 𝐶113 𝐶121 𝐶122 𝐶123 𝐶131 𝐶132 𝐶133

𝐶211 𝐶212 𝐶213 𝐶221 𝐶222 𝐶223 𝐶231 𝐶232 𝐶233

𝐶311

𝐶411

𝐶312

𝐶412

𝐶313 𝐶321 𝐶322 𝐶323 𝐶331 𝐶332 𝐶333

𝐶413 𝐶421 𝐶422 𝐶423 𝐶431 𝐶432 𝐶433]
 
 
 

 (3) 

The Global Precipitation Climatology Centre (GPCC) dataset, provided by the German 

Weather Service (DWD), is derived from a dense global network of rain gauge observations, and 

incorporates strict quality control procedures such as station data validation, temporal consistency 

checks, and outlier removal (Becker et al., 2013; Schneider et al., 2008). The dataset is available at 

0.25° spatial resolution and daily to monthly temporal scales. The Global Precipitation 

Measurement Integrated Multi-Satellite Retrievals (GPM IMERG) Final Run product, developed 



by NASA and JAXA, integrates multiple satellite-based precipitation estimates and applies monthly 

bias correction using ground-based gauge data (Wang et al., 2017; Cui et al., 2020; Huang et al., 

2019). The Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset combines satellite, 

gauge, and reanalysis data using an ensemble-weighted approach, incorporating over 77,000 ground 

stations for daily-scale bias correction (Beck et al., 2019; Beck et al., 2017). The PERSIANN-CDR 

dataset, based on satellite remote sensing and artificial neural network technology, spans 60°S to 

60°N with 0.25° daily resolution, and is bias-corrected using the GPCP monthly product, which 

includes extensive rain gauge observations (Chen et al., 2020; Kaprom et al., 2025; Sadeghi et al., 

2019). 

For ET, the Global Land Data Assimilation System (GLDAS), developed by NASA and NOAA, 

uses land surface modeling and data assimilation to produce physically consistent estimates of land 

surface fluxes. The GLEAM dataset, developed by the Miralles team at the University of Bristol, 

estimates actual ET using satellite-derived net radiation and air temperature via the Priestley-Taylor 

model, and applies a stress factor derived from vegetation optical depth (VOD) and soil moisture to 

adjust potential evaporation. TerraClimate dataset provides global monthly actual ET estimates 

based on the Penman Montieth approach (Abatzoglou et al., 2018). Notably, bias correction in global 

ET products is generally less systematic than for P products, mainly due to the limited availability 

and spatial coverage of in situ flux tower observations. As a result, bias adjustments in ET datasets 

are typically indirect, relying on corrections applied to the climate forcing variables rather than to 

ET itself. 

The launch of the GRACE and GRACE Follow-On (GRACE-FO) satellite missions has 

provided new opportunities for more accurate observations of large-scale TWSC. GRACE operated 

from 2002 to 2017, followed by GRACE-FO starting in 2018 (Boergens et al., 2024). These 

missions infer terrestrial total TWSC by tracking temporal variations in Earth’s gravity field, which 

are primarily attributed to changes in terrestrial water mass. The GRACE TWSC datasets used in 

this study are provided by the University of Texas Center for Space Research (CSR), the German 

Research Centre for Geosciences (GFZ), and NASA’s Jet Propulsion Laboratory (JPL), all of which 

include multiple bias correction procedures to improve data quality (Landerer et al., 2012; 

Shamsudduha et al., 2017). These bias correction procedures include filtration to suppress correlated 

noise and striping artifacts (Swenson et al., 2006), replacement of poorly resolved spherical 

harmonic coefficients (e.g., degree-2 term C20) with satellite laser ranging data (Loomis et al., 

2020), and correction for glacial isostatic adjustment (GIA) (Peltier et al., 2012; Mu et al., 2017). 

Numerous studies have demonstrated the sensitivity and reliability of GRACE satellite data for 

monitoring TWSC (Swenson and Wahr, 2006; Resende et al., 2019; Majid et al., 2019; Reager et 

al., 2014). 

The Global Runoff Data Centre (GRDC) provides the most comprehensive open-access river 

discharge data available worldwide, collected from national hydrological agencies. This dataset 

includes river streamflow measurements from over 10,000 stations across 159 countries (Su et al., 

2024). To minimize the impact of missing data on the reliability of the results, hydrological stations 

were selected based on the criterion that missing values accounted for less than 10% of the total 

dataset. Linear interpolation was then applied to fill any remaining data gaps.”. 

(2) We discussed the potential for further bias correction of the budget corrected datasets 

generated using the proposed IWE-Res method, based on observational data, although this lies 

beyond the scope of the present study. The following sentence has been added to the revised 



manuscript: 

“It is worth noting that the datasets generated by both the existing BCC methods and the IWE-

Res method proposed in this study were not further bias-corrected against independent observations. 

For basin-specific applications requiring higher reliability, we recommend additional bias 

correction.”. 

 

• The resolution of the spatial problem is crucial. It is well known that changes in resolution 

make employed variables (such as DEMs, as in Aziz et al., 2022) very different at the same 

location. How to tackle this point? Which resolution ‘advice’ for the reader? Any criterion? 

Otherwise, the errors will propagate in a sort of uncontrolled cascade. 

Response: Thank you for this important comment. We fully agree that the spatial resolution 

differences among datasets for budget components can introduce uncertainty, especially when 

rescaling is required. We apologize for not clearly stating the spatial resolution used in our study. In 

this work, water budget closure was performed at the basin scale and at the monthly temporal 

resolution. Specifically, all gridded datasets of budget components were spatially and temporally 

aggregated to monthly and basin scales, respectively. Therefore, we did not resample all datasets to 

a common grid resolution; instead, we upscaled each variable directly to the basin scale. Previous 

studies on water budget closure have also focused primarily on the basin scale (e.g., Lehmann et al., 

2022; Abolafia-Rosenzweig et al., 2023; Luo et al., 2023; Wang et al., 2014; Tan et al., 2022; Sahoo 

et al., 2011), mainly for the following reasons: 

(1) Water budget closure correction at the grid scale is extremely complex, as it requires 

accurate quantification of all inflow and outflow terms. These may include precipitation, 

evapotranspiration, changes in water storage, lateral inflows and outflows, leakage losses, and 

human withdrawals or returns. Many of these components are difficult to observe or estimate 

directly, particularly lateral fluxes and leakage. Neglecting these terms introduces substantial 

uncertainty into grid-scale analyses; (2) As you correctly noted, merging datasets with differing 

spatial resolutions onto a common grid introduces additional sources of uncertainty, which can 

reduce the accuracy of water budget closure correction; (3) The GRACE satellite-derived TWSC 

data have a relatively coarse spatial resolution, which limits their applicability at the grid scale. 

Since TWSC is a critical component of the monthly water budget closure correction, it cannot be 

omitted. By aggregating GRACE data to the basin scale, random errors tend to cancel out, thereby 

improving accuracy; (4) Despite recent advances in remote sensing and the expansion of global 

observational networks, significant uncertainties remain in gridded hydrological datasets when 

applied at fine spatial scales, especially for evapotranspiration. Thus, conducting water budget 

closure correction at the basin scale remains a central focus of current research. 

In the revised manuscript, on the one hand, we clarified the spatial resolution applied in our 

analysis as “The above datasets were upscaled to the basin and monthly scales using spatial and 

temporal averaging.”; On the other hand, we added a detailed discussion of why the basin scale was 

selected for water budget closure correction in this study as “Notably, the choice of spatial resolution 

has a significant impact on the results (Aziz et al., 2022; Bormann et al., 2006; Senan et al., 2022). 

Following many previous studies (Lehmann et al., 2022; Abolafia-Rosenzweig et al., 2023; Luo et 

al., 2023; Wang et al., 2014; Tan et al., 2022; Sahoo et al., 2011), the BCC method in this study is 

also applied at the basin scale rather than the grid scale for the following reasons: 1) Achieving 

water budget closure at the grid scale is complex and challenging due to the difficulty of quantifying 



all water flux and storage components flowing into and out of the grid, including P, ET, TWSC, 

lateral inflow and outflow, leakage losses, and human water withdrawals and returns. Several of 

these components, such as lateral flow and leakage, are poorly observed or highly uncertain, and 

their omission introduces substantial error; 2) The datasets of different variables have varying spatial 

resolutions, and resampling them to a common resolution introduces uncertainties, which in turn 

affect the accuracy of water budget closure correction; 3) The coarse spatial resolution of GRACE-

derived TWSC data limits their applicability for water budget closure calculation at the grid scale. 

At monthly resolution, TWSC is a critical component and cannot be neglected. Averaging GRACE 

data to the basin scale helps reduce random errors by offsetting positive and negative biases, thereby 

increasing the reliability of water budget closure correction; 4) Despite advances in remote sensing 

and in situ observation networks, grid-scale uncertainties remain substantial for some budget 

components, such as ET. Basin-scale analysis therefore reduces uncertainty and improves the 

reliability of water budget closure correction results.”. 

 

• From line 289 on, I think that the noise to afflict the Kalman Filter with should be pointed 

out. Which is the observation noise covariance (and its quantification for the employed 

variables)? 

Response: Thank you for your careful review. We sincerely apologize for the insufficient 

explanation of the observation noise covariance and its quantification in the CKF method in the 

original manuscript. The CKF method used in this study is developed by Pan and Wood (2006) 

based on the Kalman Filter method. Given that the CKF method has been widely applied in previous 

studies for correcting budget component datasets, we included it as one of the benchmark methods 

to evaluate the performance of the proposed IWE-Res method. 

In the CKF method, the reference values used to compute the error covariance (ε in Equations 

7–10) differ among the four budget components (P, ET, Q, and TWSC). For P, ET, and TWSC, due 

to the lack of spatially matched ground-truth observations at the grid scale, previous studies (Zhang 

et al., 2018; Abolafia-Rosenzweig et al., 2021) have typically used the ensemble mean across all 

datasets considered in their studies as the reference value. For Q, both previous studies and the 

present work use observed Q in the CKF method. Previous studies have reported gauge-based 

uncertainty as a percent error for some of the basins, ranging from 2.3%–28.8% (Clarke, 1999; 

Mueller, 2003; Shiklomanov et al., 2006; Abolafia-Rosenzweig et al., 2021). 

To ensure consistency with previous studies, we adopted the same assumptions in our 

application of the CKF method. However, as this method relies on approximated reference values, 

it may introduce inaccuracies in the error estimation for certain budget components. This, in turn, 

can propagate uncertainty into the corrected datasets. Hence, evaluating the uncertainty ranges of 

existing correction methods and developing new methods to reduce those uncertainties is essential. 

This concern forms a core motivation of our study: (1) to quantify the uncertainties introduced by 

existing BCC methods (CKF, MCL, MSD, and PR) at the monthly scale across 84 global basins 

spanning diverse climate zones; and (2) to propose a novel method, IWE-Res, for identifying the 

optimal balance in ΔRes redistribution, minimizing the combined error from both introduced budget 

component errors and the remaining ΔRes error. 

In the revised manuscript, we carefully revised the description of the CKF method to clarify 

the relationships among the relevant equations and to more clearly explain the quantification of the 

error covariance for each budget component. Additionally, we incorporated more references to 



previous studies that have applied the CKF method. The specific revisions made to the manuscript 

are as follows: 

“The CKF method is developed based on the Kalman filter method (Pan and wood, 2006). For 

a given set of estimated budget components X = [P ET Q TWSC]T  and their estimated errors 

∆𝑅𝑒𝑠 = 𝐺𝑋 ≠ 0 (where G is a constant vector, 𝐺 = [1 − 1 − 1 − 1]), the goal is to find a new 

set of estimates 𝐹 = [𝑃′ 𝐸𝑇′ 𝑄′ 𝑇𝑊𝑆𝐶′]𝑇 such that 𝐺𝑋′ = 0, achieving water budget closure (Pan 

et al., 2012). In simple terms, the CKF method redistributes the ∆𝑅𝑒𝑠  among the budget 

components based on the error covariance of 𝑋, defined as ∆ε𝑋𝑋 (Equation 7), to obtain a closured 

dataset. 

 ∆ε𝑋𝑋 = (𝑋 − 𝑋0)(𝑋 − 𝑋0)
𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (7) 

where X0 refers to the reference values of the estimated budget components, and the bar over an 

expression denotes expectation. For P, ET and TWSC, the reference values X0 were calculated by 

averaging all considered datasets, following previous studies (Zhang et al., 2018; Abolafia-

Rosenzweig et al., 2021). For Q, we adopted observed Q. Due to the difficulty in quantifying the 

uncertainty in observed Q, previous studies have reported gauge-based uncertainty as a percent error 

for some of the basins, ranging from 2.3%–28.8% (Clarke, 1999; Mueller, 2003; Shiklomanov et 

al., 2006; Abolafia-Rosenzweig et al., 2021). We followed a similar approach to estimate the 

uncertainty associated with Q in this study. 

The error covariance matrix ∆ε𝑋𝑋 is of dimension 4×4 and represents the covariances among 

errors in the four budget components: 

 ∆ε𝑋𝑋 =

[
 
 
 

∆𝜀𝑃−𝑃 ∆𝜀𝑃−𝐸𝑇 ∆𝜀𝑃−𝑄 ∆𝜀𝑃−𝑇𝑊𝑆𝐶

∆𝜀𝐸𝑇−𝑃 ∆𝜀𝐸𝑇−𝐸𝑇 ∆𝜀𝐸𝑇−𝑄 ∆𝜀𝐸𝑇−𝑇𝑊𝑆𝐶

∆𝜀𝑄−𝑃 ∆𝜀𝑄−𝐸𝑇 ∆𝜀𝑄−𝑄 ∆𝜀𝑄−𝑇𝑊𝑆𝐶

∆𝜀𝑇𝑊𝑆𝐶−𝑃 ∆𝜀𝑇𝑊𝑆𝐶−𝐸𝑇 ∆𝜀𝑇𝑊𝑆𝐶−𝑄 ∆𝜀𝑇𝑊𝑆𝐶−𝑇𝑊𝑆𝐶]
 
 
 

 (8) 

Following Pan et al. (2012), the off-diagonal elements representing cross-variable error 

covariances were assumed to be zero, under the assumption that errors among different budget 

components are uncorrelated. Accordingly, the matrix F can be computed as shown in Equation 9. 

 𝐹 = 𝑋 + 𝐾(0 − 𝐺𝑋) (9) 

where K = ∆𝜀𝑋𝑋𝐶𝑇(𝐶∆𝜀𝑋𝑋𝐶𝑇)−1 is the Kalman gain. Setting GX = ∆Res, and Equation 9 can be 

rewritten as Equation 10. 

 𝐹 = 𝑋 − ∆𝜀𝑋𝑋𝐺𝑇(𝐺∆𝜀𝑋𝑋𝐺𝑇)−1∆Res (10) 

where error covariance 𝜀𝑋𝑋 is calculated entry by entry according to Equation 8.”. 

 

• Is there any exit criterion (such as tolerances) to exit from equations 9 and 10? 

Response: Thank you for your careful review. The existing CKF method uses the total number of 

months within the study period as the only termination criterion for iteration—that is, it runs for a 

fixed number of iterations corresponding to the study duration. No additional exit conditions are set 

for Equations 9 and 10. This design is rooted in the core principle of the CKF method: it first 

estimates the error covariances of the water budget components and then proportionally redistributes 

the water imbalance (∆Res) back to the raw data based on these estimated errors. However, if the 

error covariances are inaccurately estimated, the redistribution of ∆Res may be suboptimal. This 

misallocation can then propagate: an excessive correction to one variable reduces the remaining 

∆Res available for others, potentially resulting in further inaccuracies. Notably, this iteration process 

continues until the predetermined number of steps (the total number of months) is reached, 



regardless of whether such misallocations occur. 

We highlighted this limitation in the modified manuscript by stating: “Beyond introducing 

negative values, such imbalanced redistribution compromises the integrity of the remaining 

components. Overcorrecting one variable necessarily reduces the share of ΔRes available for 

others, potentially degrading their accuracy.”. 

To address these limitations of existing methods, we proposed the IWE-Res method. Unlike 

existing methods, IWE-Res introduces exit conditions based on the physical plausibility of the 

corrected variables. Specifically, we terminate the iteration if any of the following occurs: P, ET, or 

Q becomes negative, or if the sign of TWSC reverses (from positive to negative or vice versa). The 

following sentences were added to the revised manuscript as: “During the iterative correction 

process, if any of the water budget components (P, ET, and Q) becomes negative, the redistribution 

of water imbalance error to that component is immediately suspended. In subsequent iterations, 

redistribution is recalculated to ensure that only components with physically meaningful positive 

values receive the imbalance correction. For example, if ET becomes negative in a given iteration, 

the imbalance is subsequently redistributed to P, Q, and TWSC only, in accordance with Equation 

33. For TWSC, if a sign reversal occurs during iteration (i.e., from positive to negative or vice versa), 

the redistribution of the water imbalance error to TWSC is suspended in the following iteration.”. 
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