
Response to Review  

Reviewer #1: 

 

The manuscript is focused on numerical techniques to 'distribute' residuals of a water balance 

equation over the contributing terms, avoiding negative values. The manuscript seems focused on 

the numerical techniques, with limited efforts for a hydrological interpretation. It could be more 

convincing if authors bring a bit more on the 'explanation' side. 

Response: Thank you for your valuable comment. We agree that the manuscript, in its current form, 

lacks sufficient hydrological interpretation regarding both the redistribution of residuals across 

water budget components and the prevention of negative values during this process. To address this 

concern, we revised the manuscript from the following aspects: (1) We provided a hydrological 

explanation for the existence of residuals in current water balance datasets and emphasized the 

importance of reducing these residuals; (2) We added a hydrological interpretation of the limitations 

associated with existing correction methods that fully redistribute the residuals in order to achieve 

water balance closure; (3) We added more hydrological interpretation to clarify the rationale and 

validity of the proposed method in this study; (4) Following one of your suggestions below, we 

conducted a comparison between the monthly-scale results of our proposed method and the annual-

scale estimates derived from the physically based Budyko framework. Our specific modifications 

are as follows: 

(1) We have added a hydrological explanation of the origins of residuals in existing water 

balance datasets and emphasized the importance of minimizing these residuals. The terrestrial water 

balance, composed of four major hydrological variables—precipitation (P), evapotranspiration (ET), 

streamflow (Q), and terrestrial water storage change (TWSC)—describes the distribution and 

movement of water across the Earth’s land surface. Notably, these fluxes and storages are 

dynamically linked, reflecting the actual hydrological processes within a basin. For example, in real-

world hydrology, precipitation transforms into ET, Q, and TWSC through physical processes such 

as infiltration, surface runoff, and evaporation. Therefore, improving the consistency (i.e., closure) 

among P, ET, Q, and TWSC is essential for advancing our understanding of watershed-scale 

hydrological dynamics. 

However, the data used for water components, whether through direct observations or 

hydrological modeling, are often imbalanced. Observationally, each component is typically 

measured independently, and there is a lack of integrated observational systems which are capable 

of capturing all components simultaneously. From a modeling perspective, structural simplifications, 

parameter uncertainties, and observational errors in input data often propagate through the system, 

preventing budget closure. 

Unfortunately, achieving a closed water balance remains challenging. In the era of big data, the 

rapid expansion of remote sensing and reanalysis datasets has significantly improved the availability 

of hydrological data. However, these datasets also suffer from non-closure in the water balance, 

mainly because they are independently produced and not physically coupled, making it difficult to 

reconcile their inconsistencies through modeling. This underscores the urgent need for data-driven 

approaches to enhance the internal consistency of these datasets—especially since the water cycle 

variables are inherently interconnected. To address this issue, numerous water budget closure 

correction methods have been proposed in existing studies. 

We acknowledge that our initial manuscript did not provide sufficient hydrological explanation 



regarding the origin of residuals or the significance of reducing them. To address this, we have added 

the following paragraph to the revised manuscript: 

“The terrestrial water balance represents a fundamental physical framework that describes the 

distribution and movement of water across the Earth's land surface (Lehmann et al., 2022). It is 

governed by four interconnected components—precipitation (P), evapotranspiration (ET), 

streamflow (Q), and terrestrial water storage change (TWSC)—that together regulate the exchange 

of water among the atmosphere, land, and oceans (Abolafia-Rosenzweig et al., 2021; Sahoo et al., 

2011; Chen et al., 2020; Wang et al., 2015). These components are dynamically linked and respond 

to climatic variability, land surface heterogeneity, and human interventions across a range of spatial 

and temporal scales. Achieving water budget closure (that is, ensuring internal consistency among 

these fluxes and storages, Equation 1) is essential for advancing our understanding of hydrological 

processes (Li et al., 2024; Mourad et al., 2024). 

 P − ET − Q − TWSC = 0 (1) 

Despite its importance, obtaining observational datasets that achieve water balance closure 

remains a major challenge. In practice, no single observational system can simultaneously measure 

all four water balance components at the required resolution and accuracy. Each variable is typically 

derived from independent data sources with differing spatial and temporal characteristics, which 

complicates the direct closure of the terrestrial water budget. 

P is typically derived from point-based rain gauge networks, which are generally reliable but 

often incomplete, requiring gap-filling (Esquivel-Arriaga et al., 2024; Nassaj et al., 2022; Bai et al., 

2021; Lockhoff et al., 2014). The main source of uncertainty lies in the spatial distribution and 

representativeness of these gauges, particularly in relation to precipitation type (Bai et al., 2019; 

Trenberth et al., 2014). Spatial uncertainty tends to be low for widespread frontal systems but can 

be substantial for localized convective storms (Palharini et al., 2020). Gauge placement is often 

dictated by accessibility and logistical convenience, which may lead to underestimation of the 

uncertainty in daily precipitation inputs (Wang et al., 2017; Bai et al., 2019; Wu et al., 2018). 

Satellite-based precipitation estimates have demonstrated good performance in capturing frontal 

rainfall, but not in other rainfall types (Masunaga et al., 2019; Petković et al., 2017; Palharini et al., 

2020). ET is commonly estimated using empirical or physically based models (Jacobs et al., 1998; 

McMahon et al., 2016; Allen et al., 1998). Although these models are generally well calibrated, 

uncertainties persist due to the complex influence of advection and localized meteorological 

variability, especially in small catchments. At larger spatial scales, energy balance approaches tend 

to provide sufficiently accurate estimates (Hua et al., 2020; Hao et al., 2018; Ruhoff et al., 2022). Q 

measurements typically exhibit low uncertainty when rating curves are well established and 

regularly maintained (Jian et al., 2015; Krabbenhoft et al., 2022). However, uncertainty can still 

arise from the delineation of watershed boundaries, particularly in regions where groundwater flow 

does not align with surface catchment divides (Huang et al., 2023; Bouaziz et al., 2018). This 

mismatch can result in misrepresentation of actual hydrological contributions. TWSC generally has 

a negligible impact on water balance calculations over multi-year periods, but can significantly 

affect short-term (e.g., daily) balances (He et al., 2023; Zhang et al., 2016). A key challenge is 

defining the effective depth over which TWSC should be quantified, as changes in soil moisture 

near the surface are more easily observed than those occurring at greater depths. 

Hydrological models, which are grounded in the principle of mass conservation and explicitly 

implement the water balance equation, offer an alternative to direct observation for achieving water 



budget closure. However, in practice, model structure simplifications, parameter uncertainties, and 

errors in meteorological forcing data introduce substantial biases and propagate uncertainty across 

simulated components. These limitations make it equally difficult to achieve water balance closure 

using hydrological modeling alone. 

In recent years, the rapid expansion of remote sensing and reanalysis datasets has significantly 

improved global access to water cycle variables, offering new opportunities for data-driven analysis 

of hydrological processes.”. 

(2) Hydrological interpretation of the limitations associated with existing correction methods 

that fully redistribute the residuals. 

Existing water budget closure correction (BCC) methods commonly redistribute the entire 

residual error (ΔRes) among water budget components to enforce strict closure. In the revised 

manuscript, we explain the limitations of this full redistribution approach from two perspectives: 

the hydrological origins of ΔRes and the principles underlying the redistribution process used in 

current BCC methods. ΔRes is a composite error term that includes estimation errors in budget 

components, systematic biases, and the omission of unmeasured components. However, existing 

BCC methods typically assume that all of ΔRes arises from estimation errors and then redistribute 

it according to estimation errors. This assumption oversimplifies the true hydrological causes of 

imbalance and can lead to unreasonable outcomes—most notably, the appearance of negative values 

in corrected datasets. We have added the following sentence to the revised manuscript: 

“To address this issue, a growing number of studies have adopted water budget closure 

correction (BCC) methods to reduce water imbalance errors (ΔRes), with the goal of forcing ΔRes 

from a non-zero value (ΔRes ≠ 0) to theoretical closure (ΔRes = 0), where ΔRes = P – ET – Q – 

TWSC (Zhou et al., 2024; Munier et al., 2018; Zhang et al., 2016). Common methods include 

Proportional Redistribution (PR), the Constrained Kalman Filter (CKF), Multiple Collocation 

(MCL), and the Minimized Series Deviation (MSD) method (Pan et al., 2012; Luo et al., 2023).”  

and 

“Existing BCC methods redistribute the entire ΔRes error among water budget components to 

enforce strict water budget closure. This redistribution is typically guided by the relative 

uncertainties of the individual components, based on the assumption that the entire residual error 

originates from observational or modeling errors in these datasets. However, this assumption 

overlooks the fact that ΔRes is not solely the result of measurement or estimation errors in P, ET, Q, 

or TWSC. Rather, it is a composite residual that also reflects contributions from systematic biases 

and the omission of unmeasured components. These include deep groundwater exchanges that may 

cross basin boundaries, snow and glacier storage changes (particularly in high-altitude or high-

latitude regions), and anthropogenic influences such as irrigation withdrawals, reservoir operations, 

and inter-basin water transfers. Because existing BCC methods do not explicitly account for these 

additional sources of imbalance, forcing strict closure by allocating the entire ΔRes to the measured 

components can introduce unrealistic uncertainties. As a result, the application of existing BCC 

methods—despite their goal of improving internal consistency—often leads to limited 

improvements, or, in some cases, even a decline in the accuracy of the corrected hydrological 

datasets. 

A clear manifestation of this limitation is the occurrence of negative values in corrected budget 

component datasets when applying existing BCC methods at the monthly scale, such as negative P, 

ET, and Q. These unrealistic negative values arise when an excessive share of the ΔRes is 



redistributed to specific components. For instance, if the BCC method overestimates the error in a 

specific component, it may assign an excessively large portion of ΔRes to that component. When 

the magnitude of the correction exceeds the component’s original value, the result is a negative flux, 

which is hydrologically incorrect. Beyond introducing negative values, such imbalanced 

redistribution compromises the integrity of the remaining components. Overcorrecting one variable 

necessarily reduces the share of ΔRes available for others, potentially degrading their accuracy. Our 

previous work demonstrated that enforcing water budget closure can, to some extent, reduce the 

accuracy of individual components and tends to introduce an ET regulation factor to mitigate 

accuracy loss in ET caused by existing BCC methods (Luo et al., 2023). A more hydrologically 

sound approach may involve partial closure, whereby only the portion of ΔRes attributable to 

quantified uncertainties is redistributed, while the residual linked to unmeasured processes is 

retained.”. 

(3) We have added further hydrological explanation to justify the design and effectiveness of 

our proposed IWE-Res method: 

“In this section, we propose the IWE-Res method to identify the optimal balance for 

redistributing ΔRes, minimizing the sum of the introduced error to budget components and the 

remaining ΔRes error while reducing the negative values introduced by closing the water budget. 

Unlike existing BCC methods that fully redistribute the ΔRes term in a single step, the IWE-Res 

method adopts a gradual, iterative redistribution strategy that allows for more consistent correction. 

Specifically, the method incrementally allocates fractions of ΔRes to P, ET, Q and TWSC, based on 

fixed percentage steps and guided by existing BCC weighting schemes. At each iteration, the 

redistribution process seeks to minimize the combined error—defined as the sum of the induced 

changes in the water budget components and the remaining unexplained ΔRes. This dual-objective 

criterion ensures that the method balances error reduction while maintaining hydrological 

plausibility. Importantly, the approach includes a mechanism to avoid introducing implausible 

negative values. If, during any iteration, the corrected value of a component becomes negative—

violating hydrological constraints such as non-negative precipitation or runoff—further 

redistribution to that component is halted. Subsequent iterations reallocate the remaining ΔRes 

among the unaffected components. From a hydrological perspective, this strategy acknowledges 

that not all of the residual can be attributed to known components. Some portion of ΔRes may 

originate from unmeasured or poorly constrained processes. By partially closing the water budget 

in a controlled and iterative manner, the IWE-Res method reduces the risk of overcorrecting well-

characterized components while better preserving the consistency of the entire budget.”. 

(4) A comparison with the annual-scale results from the physically based Budyko model 

indicates that our proposed method produces similar outcomes. Both approaches suggest that the 

water balance is primarily influenced by P and potential ET (Sankarasubramanian & Vogel, 2002; 

Zhang et al., 2008; Koster & Suarez, 1999). These influences, however, differ across climatic 

regions. For instance, in tropical and arid zones, P tends to be the dominant factor (Du et al., 2024; 

Wu et al., 2018; Liu et al., 2017; Guo et al., 2022), whereas in cold regions, the Budyko model 

shows relatively low accuracy in estimating ET at the annual scale (Lute et al., 2014; Gao et al., 

2010; Potter et al., 2005). This comparison further supports the reliability of our proposed method. 

The following sentence has been added to the revised manuscript accordingly: 

“Previous studies based on the Budyko framework (ignoring TWSC) at the annual scale have 

shown that water balance is primarily governed by P and potential ET (Sankarasubramanian & Vogel, 



2002; Zhang et al., 2008; Koster & Suarez, 1999). However, these influences vary across climatic 

regions. For example, in tropical and arid regions, P tends to be the dominant controlling factor (Du 

et al., 2024; Wu et al., 2018; Liu et al., 2017; Guo et al., 2022). In cold regions, the Budyko model 

exhibits relatively limited accuracy in estimating ET at the annual scale (Lute et al., 2014; Gao et 

al., 2010; Potter et al., 2005). These previous findings at the annual scale provide indirect support 

for our results derived at the monthly scale.”. 

 

It is not immediately evident to this reviewer that negative values are a problem, especially for the 

soil storage term (TWSC). In fact one may expect this term to be symmetric around zero, and maybe 

the same holds for the errors? 

Response: Thank you for your careful review. We apologize for not clearly explaining in the 

original manuscript the meaning of negative values for P, ET, and Q, as well as the treatment of 

“negative” values in TWSC, which may have led to misunderstanding. 

In our manuscript, the term “negative values” refers to instances where the values of P, ET, and 

Q, which were originally positive, become negative after applying a BCC method. For TWSC, we 

refer to a change in sign—either from positive to negative or vice versa—after correction. These 

phenomena are caused by the application of BCC methods and intended to highlight a key limitation 

of existing BCC methods: when the full ΔRes is redistributed to budget components, it may 

introduce more uncertainty. Our modifications are as follows: 

(1) To avoid any ambiguity, we have revised the manuscript to clarify the meaning of the 

“negative values” referred to in this study, as follows: 

“A clear manifestation of this limitation is the occurrence of negative values in corrected 

budget component datasets when applying existing BCC methods at the monthly scale, such as 

negative P, ET, and Q. These unrealistic negative values arise when an excessive share of the ΔRes 

is redistributed to specific components. For instance, if the BCC method overestimates the error in 

a specific component, it may assign an excessively large portion of ΔRes to that component. When 

the magnitude of the correction exceeds the component’s original value, the result is a negative flux, 

which is hydrologically incorrect. Beyond introducing negative values, such imbalanced 

redistribution compromises the integrity of the remaining components. Overcorrecting one variable 

necessarily reduces the share of ΔRes available for others, potentially degrading their accuracy. Our 

previous work demonstrated that enforcing water budget closure can, to some extent, reduce the 

accuracy of individual components and tends to introduce an ET regulation factor to mitigate 

accuracy loss in ET caused by existing BCC methods (Luo et al., 2023). A more hydrologically 

sound approach may involve partial closure, whereby only the portion of ΔRes attributable to 

quantified uncertainties is redistributed, while the residual linked to unmeasured processes is 

retained.”. 

(2) Regarding TWSC, we fully agree with you that this variable can naturally take both positive 

and negative values. Indeed, many studies have shown that at annual scales, and with sufficiently 

long time series, the long-term average of TWSC can be considered negligible. We apologize for 

not clearly describing how our proposed method handles TWSC during the correction process. In 

our proposed method, we assume that TWSC observed by the GRACE satellite is reliable. Therefore, 

if the sign of TWSC changes after correction by the BCC method (e.g., from positive to negative or 

vice versa), we consider the correction to TWSC to be physically unreasonable, and we suspend 

further redistribution of ΔRes to TWSC in subsequent iterations. The following sentence has been 



added to the revised manuscript: 

“During the iterative correction process, if any of the water budget components (P, ET, and Q) 

becomes negative, the redistribution of water imbalance error to that component is immediately 

suspended. In subsequent iterations, redistribution is recalculated to ensure that only components 

with physically meaningful positive values receive the imbalance correction. For example, if ET 

becomes negative in a given iteration, the imbalance is subsequently redistributed to P, Q, and 

TWSC only, in accordance with Equation 33. For TWSC, if a sign reversal occurs during iteration 

(i.e., from positive to negative or vice versa), the redistribution of the water imbalance error to 

TWSC is suspended in the following iteration.”. 

 

One would assume, based on considerations of the various terms of the water balance that a 

comparison between the negative (or positive) residuals over time will help identifying which term 

may be primarily responsible: the soil term can dominate in the short term (e.g. days), but will be 

small for annual comparisons and may become negligible at decadal scale (except for the long-term 

desiccation discourse). Spatial patterns are also expected, as frontal rainfall patterns are much easier 

to represent correctly than thunderstorms (much of tropics and arid zone rainfall) -- indeed your 

later results (Fig. 6) seem to match this expectation. 

Response: Thank you very much for your thoughtful and insightful review. We fully agree with 

your perspective that analyzing the sign and magnitude of residuals over time can provide valuable 

clues in identifying the dominant contributors to water imbalance errors at different temporal scales. 

For instance, at daily scales, soil moisture variations may dominate, while at annual or longer time 

scales, their influence becomes negligible—except in regions experiencing long-term drying trends. 

Likewise, spatial patterns of residuals reflect regional climatic features, with frontal precipitation 

systems generally captured more accurately than convective storms in tropical and arid zones. 

However, for the purpose of correcting water budget closure at the monthly scale—which is 

the focus of this study—this method of using sign analysis of residuals over time is less effective in 

accurately identifying the dominant error source and quantifying the uncertainty of each component. 

This is due to two key reasons: 1) TWSC cannot be neglected at the monthly scale, meaning the 

residuals are not solely attributable to errors in P, ET, or Q; 2) Redistribution of residual errors in 

BCC methods requires quantitative estimation of monthly uncertainties for each component. 

Unfortunately, time-series-based sign analysis is generally insufficient for this purpose, especially 

when precise, month-by-month uncertainty quantification is needed. Nonetheless, we acknowledge 

that residual pattern analysis over time remains a valuable tool for validating the plausibility of error 

attribution made at the monthly scale. As such, we view it as a complementary approach for guiding 

and validating the redistribution weights used in monthly BCC corrections. 

Currently, most studies on water budget closure correction focus on the monthly scale, for the 

following reasons: 1) At daily scales, the uncertainty in remote sensing estimates of water cycle 

variables is even higher than at the monthly scale, and there is a lack of reliable daily-scale data on 

water storage change (e.g., GRACE data are available only at the monthly scale), which makes daily 

water balance studies highly uncertain; 2) At annual scales, the long-term average of TWSC is often 

negligible, and with relatively accurate observations of Q, the sign of the residual can often indicate 

the balance between P and ET, enabling identification of the primary sources of error. However, if 

monthly water cycle variables can be corrected to achieve consistent closure, the resulting annual 

water balance would also be consistent, with the added benefit of preserving the seasonal variability 



that is masked in annual-scale analyses. For this reason, the monthly scale remains the primary focus 

of BCC-related research. 

Importantly, we also recognize the potential value of using annual-scale residual analysis as a 

constraint for monthly correction. For example, within a given basin, the dominant error sources 

identified at the annual scale should, in principle, align with the redistribution priorities at the 

monthly scale. To incorporate your suggestions, we have made the following revisions in the 

manuscript: 

(1) Clarified the temporal focus of this study in the introduction: “In this study, we quantify 

the uncertainties introduced by four existing BCC methods (CKF, MCL, MSD, and PR) at the 

monthly scale across 84 basins spanning diverse climate zones.”. 

(2) Expanded the discussion of how spatiotemporal residual patterns can inform future 

improvements in BCC methods, especially regarding the potential of using annual-scale insights to 

guide monthly corrections: “Overall, optimizing the redistribution ratio of water imbalance errors 

is critical for improving the accuracy of corrected budget components. However, the sensitivity of 

these components to error redistribution varies, and both over- and under-correction can propagate 

new imbalances across the remaining terms, ultimately misrepresenting the underlying hydrological 

processes. While existing BCC methods estimate redistribution weights based on the relative 

uncertainty of each component, future research should examine the physical rationale behind these 

redistributions. The spatiotemporal variability of residual errors offers valuable insight into their 

dominant sources, which can serve as an independent reference to validate the influence weights 

computed by BCC methods. For instance, as shown in previous studies, the contribution of TWSC 

to residual errors diminishes at annual and especially decadal timescales, where precipitation (P) 

and evapotranspiration (ET) uncertainties become more dominant. Spatial patterns of residuals also 

reflect the nature of regional precipitation regimes. In the regions dominated by frontal systems, 

such as temperate zones, remotely sensed precipitation products tend to capture rainfall events more 

accurately, leading to smaller residuals. In contrast, in areas characterized by convective rainfall—

such as the tropics and arid zones—larger residuals are observed, likely due to the higher uncertainty 

in capturing short-lived and spatially localized storm events.”. 

 

Maybe further reference can be made to the 'Budyko' literature that looks at an annual balance, while 

your current analysis takes a monthly perspective. 

Response: Thank you for your constructive suggestions. We have reviewed and summarized 

relevant literature that applied the Budyko framework at the annual timescale. Many studies have 

shown that water balance at this scale is primarily influenced by P and potential ET 

(Sankarasubramanian & Vogel, 2002; Zhang et al., 2008; Koster & Suarez, 1999). These influences, 

however, differ across climatic regions. For instance, in tropical and arid zones, P tends to be the 

dominant factor (Du et al., 2024; Wu et al., 2018; Liu et al., 2017; Guo et al., 2022), whereas in cold 

regions, the Budyko model shows relatively low accuracy in estimating ET at the annual scale (Lute 

et al., 2014; Gao et al., 2010; Potter et al., 2005). These previous findings indirectly support our 

results at the monthly scale. The following sentence has been added to the revised manuscript 

accordingly: 

“Previous studies based on the Budyko framework (ignoring TWSC) at the annual scale have 

shown that water balance is primarily governed by P and potential ET (Sankarasubramanian & Vogel, 

2002; Zhang et al., 2008; Koster & Suarez, 1999). However, these influences vary across climatic 



regions. For example, in tropical and arid regions, P tends to be the dominant controlling factor (Du 

et al., 2024; Wu et al., 2018; Liu et al., 2017; Guo et al., 2022). In cold regions, the Budyko model 

exhibits relatively limited accuracy in estimating ET at the annual scale (Lute et al., 2014; Gao et 

al., 2010; Potter et al., 2005). These previous findings at the annual scale provide indirect support 

for our results derived at the monthly scale.”. 

 

The abstract could become more attractive to readers if the time unit (monthly balance calculations) 

is made explicit, as results for daily or annual balance calculations will likely be different. 

Response: Thank you very much for your constructive suggestion. We have revised the abstract to 

clarify that this study calculates water balance at the monthly scale: “In this study, we quantify the 

uncertainties introduced by four existing BCC methods (CKF, MCL, MSD, and PR) at the monthly 

scale across 84 basins spanning diverse climate zones.”. 

 

Details: 

 

The Highlights should be understandable for a non-technical expert -- at the moment they are too 

full of jargon to attract readers. 

Response: Thank you very much for your constructive suggestion. We have revised the Highlights 

by removing technical jargon and replacing them with plain language descriptions. The updated 

Highlights clearly convey the key findings and significance of the work in a more understandable 

and engaging manner. Please see our revised Highlights below. 

 Existing correction methods may introduce large errors, and more seriously cause unrealistic 

negative values in P, ET and Q in up to 10% of cases. 

 A novel IWE-Res method is proposed to improve the accuracy and consistency of corrected 

satellite-based water budget component data. 

 In most river basins (except cold regions), the best correction is achieved by adjusting 40% to 

90% of the total water imbalance error. 

 

Line 57 Indeed a closed budget gives some confidence in the underlying estimates, but not if the 

closure is obtained by 'fudging' the data, without 'understanding'. So I disagree that 'closing the 

budget' helps with 'understanding'. 

Response: Thank you very much for your careful review. We sincerely apologize for the 

inappropriate expression in the original sentence. Although a large number of datasets for individual 

budget components have been produced, discrepancies such as measurement errors, systematic 

biases, and unmeasured components prevent the closure of the water budget among these datasets. 

In reality, the components of the water budget are interconnected; together, they regulate the 

exchange of water among the atmosphere, land, and oceans. Many studies have attempted to reduce 

the imbalance in the water budget among existing datasets by estimating and correcting errors in 

the individual components, thereby improving the overall consistency. 

We apologize for our unclear expression in our original sentence. On the one hand, we changed 

the word “understanding” to “confidently applying budget components in hydrological studies”; On 

the other hand, we have expanded this sentence to clearly explain the concept of the terrestrial water 

balance, the main components it includes, and their interactions. We then emphasize the importance 

of improving the consistency among these datasets in order to accurately understand hydrological 



processes, due to the intrinsic interconnections among water budget components in real-world 

hydrological systems, as follows: “The terrestrial water balance represents a fundamental physical 

framework that describes the distribution and movement of water across the Earth's land surface 

(Lehmann et al., 2022). It is governed by four interconnected components—precipitation (P), 

evapotranspiration (ET), streamflow (Q), and terrestrial water storage change (TWSC)— that 

together regulate the exchange of water among the atmosphere, land, and oceans (Abolafia-

Rosenzweig et al., 2021; Sahoo et al., 2011; Chen et al., 2020; Wang et al., 2015). These fluxes and 

storages are dynamically linked, responding to climatic variability, land surface heterogeneity, and 

human interventions across a range of spatial and temporal scales. Ensuring a closed water balance 

is essential for maintaining consistency among these budget components and for confidently 

applying them in hydrological studies (Li et al., 2024; Mourad et al., 2024).”. 

 

Line 66. Before delving into the details it will be good for the reader to be reminded of the physical 

aspects of uncertainty in the various terms, as these are of different natures: 

P precipitation input -- the typically are fairly reliable point data from rainfall gauge data, often with 

some need t gap fill missing data. The main uncertainty here is in the spatial distribution and 

representativeness of rainfall gauges, in relation to rainfall types (for frontal rains the spatial 

uncertainty is low, for local storms it can be high). The distribution of rainfall gauges is often 

determined in part by accessibility and convenience, and overall uncertainty of daily rainfall may 

be easily underestimated. More recent satellite based estimates of rainfall appear to perform well 

for frontal rains, but not in other rainfall types.  

ET Evapotranspiration equations have been fairly well calibrated, but there can be uncertainty over 

the advection term especially in small catchments. For larger areas energy balance equations may 

be sufficient. 

Q monitoring of outflow can have low uncertainty if ;rating curves' are frequently calibrated. 

However, the delineation of the watershed (and area used for the calculations) can be off where 

groundwater flows don't necessarily follow surface catchment delineations and can be 

underestimated. 

TWSC can become negligible if a multi-year balance is considered (verifying the P and Q estimates) 

but can dominate the balance at a daily time-scale. A major challenge is the depth over which TWSC 

is to be assessed, as changes in the topsoil can be more easily assessed than that deeper in the soil. 

Response: Thank you very much for your thorough review and constructive suggestions, which 

have been very helpful in improving the quality and readability of our manuscript. According to 

your suggestion, we have added a paragraph in the revised manuscript to describe the physical 

aspects of uncertainty in the four water cycle components (P, ET, Q, and TWSC) as follows: 

“P is typically derived from point-based rain gauge networks, which are generally reliable but 

often incomplete, requiring gap-filling (Esquivel-Arriaga et al., 2024; Nassaj et al., 2022; Bai et al., 

2021; Lockhoff et al., 2014). The main source of uncertainty lies in the spatial distribution and 

representativeness of these gauges, particularly in relation to precipitation type (Bai et al., 2019; 

Trenberth et al., 2014). Spatial uncertainty tends to be low for widespread frontal systems but can 

be substantial for localized convective storms (Palharini et al., 2020). Gauge placement is often 

dictated by accessibility and logistical convenience, which may lead to underestimation of the 

uncertainty in daily precipitation inputs (Wang et al., 2017; Bai et al., 2019; Wu et al., 2018). 

Satellite-based precipitation estimates have demonstrated good performance in capturing frontal 



rainfall, but not in other rainfall types (Masunaga et al., 2019; Petković et al., 2017; Palharini et al., 

2020). ET is commonly estimated using empirical or physically based models (Jacobs et al., 1998; 

McMahon et al., 2016; Allen et al., 1998). Although these models are generally well calibrated, 

uncertainties persist due to the complex influence of advection and localized meteorological 

variability, especially in small catchments. At larger spatial scales, energy balance approaches tend 

to provide sufficiently accurate estimates (Hua et al., 2020; Hao et al., 2018; Ruhoff et al., 2022). Q 

measurements typically exhibit low uncertainty when rating curves are well established and 

regularly maintained (Jian et al., 2015; Krabbenhoft et al., 2022). However, uncertainty can still 

arise from the delineation of watershed boundaries, particularly in regions where groundwater flow 

does not align with surface catchment divides (Huang et al., 2023; Bouaziz et al., 2018). This 

mismatch can result in misrepresentation of actual hydrological contributions. TWSC generally has 

a negligible impact on water balance calculations over multi-year periods, but can significantly 

affect short-term (e.g., daily) balances (He et al., 2023; Zhang et al., 2016). A key challenge is 

defining the effective depth over which TWSC should be quantified, as changes in soil moisture 

near the surface are more easily observed than those occurring at greater depths.”. 

 

Line 98 Negative ET is possible under 'dew formation' conditions... (be it in only part of a daily 

temperature cycle) 

Response: Thank you for your careful review. We apologize for not clearly explaining in the 

original manuscript the meaning of negative values for P, ET, and Q, which may have led to 

misunderstanding. In our manuscript, the term “negative values” refers to instances where the values 

of P, ET, and Q, which were originally positive, become negative after applying a BCC method. 

These phenomena are caused by the application of BCC methods and intended to highlight a key 

limitation of existing BCC methods: when the full ΔRes is redistributed to budget components, it 

may introduce more uncertainty. Our modifications are as follows: 

To avoid any ambiguity, we have revised the manuscript to clarify the meaning of the “negative 

values” referred to in this study, as follows: “A clear manifestation of this limitation is the 

occurrence of negative values in corrected budget component datasets when applying existing BCC 

methods at the monthly scale, such as negative P, ET, and Q. These unrealistic negative values arise 

when an excessive share of the ΔRes is redistributed to specific components. For instance, if the 

BCC method overestimates the error in a specific component, it may assign an excessively large 

portion of ΔRes to that component. When the magnitude of the correction exceeds the component’

s original value, the result is a negative flux, which is hydrologically unrealistic. Beyond introducing 

negative values, such imbalanced redistribution compromises the integrity of the remaining 

components. Overcorrecting one variable necessarily reduces the share of ΔRes available for others, 

potentially degrading their accuracy. Our previous work demonstrated that enforcing water budget 

closure can, to some extent, reduce the accuracy of individual components and tends to introduce 

an ET regulation factor to mitigate accuracy loss in ET caused by existing BCC methods (Luo et al., 

2023). A more hydrologically sound approach may involve partial closure, whereby only the portion 

of ΔRes attributable to quantified uncertainties is redistributed, while the residual linked to 

unmeasured processes is retained.”. 

 

Line 244 There can be 'bias' (systematic error, e.g. if groundwater flows mean that the basin is not 

closed and part of outflowing Q is missed; the area of the basin can also be incorrect), part 



'measurement error'. As you focus on relatively large basins, the bias term may be relatively small, 

but for smaller watersheds the bias terms cannot be ignored. Standard techniques such as plotting 

cumulative Q vs cumulative P give indications, especially if nested Q data exist beyond outflow 

data. 

Response: Thank you very much for your kind reminder. In the revised manuscript, we have added 

a description regarding systematic biases, as follows: “However, in practice, this balance is rarely 

achieved due to various sources of error. These include systematic biases (such as missed portions 

of outflow resulting from unclosed basin boundaries and inaccuracies in catchment area delineation, 

particularly in small basins), measurement uncertainties, and the omission of unmeasured 

components. Consequently, each budget component (P, ET, Q, and TWSC) is subject to an 

associated error term (denoted as ԐP, ԐET, ԐQ, ԐTWSC, respectively), leading to a non-closure of the 

water budget (i.e., Equation 1 becomes Equation 4) (Aires, 2014; Wong et al., 2021).”. 

 

Line 702-714, Figure 7 - would it make sense to compensate S Hemisphere data for a 6 month shift 

in seasons? Or even more flexibly to use a hydrological year concept with a standardized month for 

maximum P. 

Response: Thank you for the insightful suggestion. We agree that seasonal misalignment between 

the Northern and Southern Hemispheres may obscure underlying hydrological patterns. We have 

redrawn Figure 7 accordingly. Specifically, based on your recommendation, we adjusted the 

Southern Hemisphere data by applying a 6-month shift to align its seasonal phases with those of the 

Northern Hemisphere. This adjustment has been noted in the caption of the revised Figure 7. Finally, 

we reanalyzed the figure based on the updated version. 

“Fig. 7 presents the seasonal cycle of negative values across different climate zones, examining 

whether these values exhibit significant seasonal patterns. Negative P values predominantly occur 

in winter and spring, with a higher proportion from January to March in tropical climates compared 

to arid regions. ET tends to show negative values more frequently in winter and spring, with a lower 

likelihood in summer and autumn. Except in summer, cold climate zones are most susceptible to 

negative ET values. Among the four budget components, Q has the lowest occurrence of negative 

values. Negative TWSC values exhibit no obvious seasonal pattern, with arid regions exhibiting a 

higher likelihood of negative values throughout the year compared to other climate types. These 

findings indicate that the occurrence of negative values varies significantly across seasons and 

climate zones. Future research should account for this seasonal variability to further refine existing 

BCC methods.”. 



 

Fig. 7 Seasonal cycle of the proportion of negative errors for budget components. Different colors 

representing various climate types. The Southern Hemisphere data by applying a 6-month shift to 

align its seasonal phases with those of the Northern Hemisphere. 
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