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Abstract

Ocean alkalinity enhancement (OAE) is a carbon dioxide (CO2) removal approach that
involves the addition of alkaline substances to the marine environment to increase seawater
buffering capacity and allow it to absorb more atmospheric CO». Increasing seawater alkalinity
leads to an increase in the saturation state (€2) with respect to several minerals, which may trigger
mineral precipitation, consuming the added alkalinity and thus decreasing the overall efficiency of
OAE. To explore mineral formation due to alkalinity addition, we present results from shipboard
experiments in which an aqueous solution of NaOH was added to unfiltered seawater collected
from the surface ocean in the Sargasso Sea. Alkalinity addition ranged from 500 to 2000 pmol.kg"
!'and the carbonate chemistry was monitored through time by measuring total alkalinity (TA) and
dissolved inorganic carbon (DIC), which were used to calculate Q2. The amount of precipitate and
its minerology were determined throughout the experiments. Mineral precipitation took place in
all experiments over a timescale of hours to days. The dominant precipitate phase is aragonite with
trace amounts of calcite and magnesium hydroxide (MgOHo, i.e., brucite). Aragonite crystallite
size increases and its micro-strain decreases with time, consistent with Ostwald ripening. The
precipitation rate (r) in our experiments and those of other OAE-related calcium carbonate
precipitation studies correlates with aragonite saturation state (€24), and the resulting fit of logio(r)
=n x logio( Qa-1) + log (k) yields a reaction order n = 2.15 + 0.50 and a rate constant £ = 0.20 +

0.10 umol.hr!. The reaction order is comparable to that derived from previous studies, but the rate
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constant is an order of magnitude lower, which we attribute to the fact that our experiments are
unseeded compared with previous studies that used aragonite seeds which act as nuclei for
precipitation. Observable precipitation was delayed by an induction period, the length of which is
inversely correlated with the initial Q. Mineral precipitation occurred in a runaway manner,
decreasing TA to values below that of seawater prior to alkalinity addition.

This study demonstrates that the highest risk of mineral precipitation is immediately
following alkalinity addition and before dilution and CO; uptake by seawater, both of which lowers
Q. Aragonite precipitation will decrease OAE efficiency, because aragonite is typically
supersaturated in surface ocean waters. Thus, once formed, aragonite essentially permanently
removes the precipitated alkalinity from the CO: uptake process. Runaway mineral precipitation
also means that mineral precipitation following OAE may not only decrease OAE efficiency at
sequestering CO; but could render this approach counterproductive. As such, mineral precipitation
should be avoided by keeping Q below the threshold of precipitation and quantifying its
consequences on OAE efficiency if it occurs. Lastly, in order to be able to quantitatively determine
the impact of mineral precipitation during OAE, a mechanistic understanding of precipitation in

the context of OAE must be developed.

1 Introduction

The concentration of atmospheric carbon dioxide (CO:) continues to increase due to human
activity, leading to an increase in global mean temperature by > 1 °C since pre-industrial times
(Cannon, 2025; Hawkins et al., 2017). Nearly 30% of anthropogenic CO; emitted annually into
the atmosphere is absorbed by the oceans (Friedlingstein et al., 2022; Gruber et al., 2019),
decreasing seawater pH, thus causing ocean acidification (Doney et al., 2009). Rapid reductions
in anthropogenic CO; emissions are necessary to minimize the negative impacts of global warming
and ocean acidification. Such emissions reductions will need to be supplemented by active removal
of atmospheric COz in order to meet climate objectives (e.g., Paris Climate Agreement, 2015) and
offset CO; emissions from difficult-to-abate sectors. Ocean alkalinity enhancement (OAE) is a
marine-based CO2 removal (mCDR) approach that involves the addition of alkaline substances to
the surface ocean or to surficial sediments to increase seawater buffering capacity, allowing it to

absorb more atmospheric CO; (Renforth and Henderson, 2017).
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Adding alkalinity to seawater lowers its partial pressure of CO». As alkalized seawater
equilibrates with the atmosphere, it takes up additional atmospheric CO», which increases seawater
dissolved inorganic carbon (DIC) and brings about a new steady state. Alkalinity could be
enhanced by adding an alkaline solution or minerals that release alkalinity upon dissolution in
seawater (Eisaman et al., 2023). Increasing seawater alkalinity drives an increase in the saturation
state ((2) with respect to several minerals (Fig. 1; Hartmann et al., 2023; Moras et al., 2022; Schulz
et al., 2023), which is given by:

n=" (1)

Ksp

where IAP is the ionic activity product and K is the mineral solubility product. An Q> 1 indicates
supersaturation, Q2 < 1 indicates undersaturation, and Q = 1 indicates chemical equilibrium
between the solid and solution. For calcium carbonate (CaCOs3) minerals such as vaterite,
aragonite, calcite and amorphous CaCOs3, the increase in Q occurs because adding alkalinity to
seawater raises its pH and shifts the carbonate chemistry speciation towards higher concentration
of carbonate ions ([CO3*]). For metal hydroxide minerals, such as magnesium hydroxide (i.e.,
brucite), the increase in Q is due to the increase in the concentration of [OH]. An increase in Q
due to alkalinity addition can trigger mineral precipitation, which consumes some or all of the
added alkalinity, thus decreasing the efficiency of OAE at sequestrating atmospheric COx.
Therefore, understanding the timing and kinetics of mineral formation in the context of OAE will

help devise an implementation plan that maximizes CO; sequestration.
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Fig. 1. The saturation state ({2) with respect to a number of selected minerals calculated using Geochemist’s
Workbench software for a solution of average seawater composition at 27 °C and 1 bar. The horizontal dashed
line represents equilibrium, above which the solution is supersaturated and below which the solution is
undersaturated. The triangles at the top of the plot denote the conditions for each experiment. The calculations
assumed a closed system where seawater remained unequilibrated with atmospheric COx.
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Precipitation is thermodynamically favored if the solution is supersaturated (€2 > 1). However,
minerals do not always precipitate once Q exceeds 1. Typically, there exists a higher, mineral-
specific Q threshold above which precipitation occurs (Pokrovsky, 1998). This threshold is higher
for homogenous (i.e., spontaneous) precipitation, where nuclei form directly from the solution,
than for heterogeneous precipitation, where minerals nucleate onto existing surfaces (Morse et al.,
2007). The exact Q threshold and the factors influencing it are not fully understood. Determining
the Q threshold is particularly challenging for OAE-induced precipitation, given that alkalinity
might be added in the form of minerals that would provide nucleation sites onto which secondary
precipitation can take place, potentially lowering the threshold Q for precipitation.

The kinetics of precipitation are also important. Precipitation does not necessarily occur as
soon as € is above the precipitation threshold, but may be delayed by a period of time referred to
as the induction period (Hashim et al., 2023; Kaczmarek et al., 2017; Pokrovsky, 1998). For OAE,
if the induction period is longer than the time it takes seawater to equilibrate with atmospheric CO»
(e.g., Jones et al., 2014) or the time of alkalinity dilution (He and Tyka, 2023), then the risk of
secondary precipitation is minimized. Hence, the induction period is a critical parameter to
incorporate into models of alkalinity consumption and will be an important factor when balancing
pH thresholds, dilution timescales, and CO; uptake rates. Thus far, little attention has been given
to characterizing induction periods, particularly in OAE relevant studies.

The precipitation of each mineral has a unique impact on seawater carbonate chemistry.
For example, the precipitation of 1 mole of brucite (Mg(OH)>) decreases alkalinity by 2 moles and
does not impact DIC, whereas the precipitation of 1 mole of aragonite (CaCOs) decreases alkalinity
by 2 moles and DIC by 1 mole. The type of mineral that precipitates is not only dictated by Q but
also by a range of thermodynamic and kinetic factors including temperature, and the presence and
concentration of chemical catalysts and inhibitors (Burton and Walter, 1987; Hashim and
Kaczmarek, 2021; Morse et al., 1997; Morse and He, 1993; Subhas et al., 2017). The compounding
effects of these variables lead to the phenomenon — often explained qualitatively by the Ostwald
Step Rule (Morse and Casey, 1988) — that what precipitates from seawater is not necessarily the
most thermodynamically stable phase, but the most kinetically favored. For carbonates, this is
exemplified by the observation that while dolomite and calcite are the most stable phases, aragonite
and high-Mg calcite are the ones that are more likely to precipitate. The impact of alkalinity

addition on the mineralogical precipitation landscape remains unclear. It is also unknown how
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minerals change through time after alkalinity is added to seawater and whether they will sink and
export the alkalinity to the deep ocean, thus decreasing OAE efficiency, or redissolve over time,
releasing the alkalinity back into the surface ocean for CO; sequestration.

Here we present results from experiments whereby alkalinity was added as an aqueous
solution of NaOH to seawater collected from the Sargasso Sea and incubated on deck in a flowing-
seawater temperature bath. The carbonate chemistry was monitored through time by measuring
TA and DIC, which were used to calculate Q. The mineralogy of the precipitate was determined

using X-ray diffraction and differential scanning calorimetry.

2 Methods
2.1 Experimental setup

Experiments were conducted during a research expedition aboard the R/V Atlantic Explorer
in the Sargasso Sea (31°40'00"N, 64°10'00"W) near the Bermuda Atlantic Time Series site (BATS)
from September 5" to 11", 2023. The experiments were performed in opaque 5L Cali-5-Bond™
multi-layer foil bags (Calibrated Instruments), placed in a flow-through incubator where surface
seawater was continuously flowed to maintain a constant temperature of approximately 27 °C.
Each bag was filled with approximately 3 + 0.02 L of unfiltered seawater using a rubber hose that
was flushed with water to remove air bubbles, ensuring that no air entered the bags. Bags were
rinsed 3 times with seawater before filling and sealing with the Luer-fitted stopcock. The bags
were allowed to float freely in the incubator, and they moved continuously due to the ship
movement. The mixed layer at the study site was approximately 40 m thick, and seawater for the
experiment was collected from the upper 10 m. The seawater was not filtered nor was it passed
through a mesh in order to mimic a realistic OAE scenario. The total particle concentration in the
seawater was 0.15 mg/L and the particulate inorganic carbon (PIC) concentration was 0.13 umol/L.

Experiments involved the addition of NaOH solution prepared by weighing ACS grade
NaOH in the lab prior to the cruise in a plastic Falcon tube that was capped and sealed with parafilm
tape. During the cruise, DI water was added to make up stock NaOH solutions with a final
concentration of 1 M. The NaOH solution was pipetted into the seawater filled bags through the
Luer-fitted stopcock. Because NaOH contributes only alkalinity but not DIC, seawater in the
experiments was out of equilibrium with the atmosphere, which was intended to simulate

conditions immediately following alkalinity addition to seawater during OAE deployments.
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In total, 5 experiments were conducted (Table 1). The first experiment (experiment A in
Table 1) was a control with no alkalinity addition. In the second, third and fourth experiment (B,
C, and D) alkalinity was enhanced by 500, 1000, and 2000 pumol.kg™! respectively. The fifth
experiment (E) represents a set of “sacrificial” time series experiments whereby 9 bags were
prepared similar to other experiments and alkalinity was enhanced by 1000 umol.kg™! in each one
of them, but each bag was sequentially opened and filtered in order to evaluate the precipitate
mineralogy through time. In experiment E, water samples for TA and DIC measurements were

taken only at the end of the experiment. The experiments were run for approximately 5 days.

Table 1. Experimental setup and conditions’.

Alkalinity . . .
Experiment ?)ddition (nmol.kg” | pH is;;lglzi:ltiltzn(gj)t ¢ with Duration (h) dE:s[;iE;)l:;f)ﬁtin legends
A 0 8.25 53 122.9 (A) Control
B 500 8.68 11.3 125.5 (B) +500
C 1000 9.02 17.5 123.1 (C) +1000
D 2000 9.71 28.0 123.9 (D) +2000
E* 1000 9.02 17.5 Various durations (E) +1000

T The seawater used for the experiments has an average TA of 2547 + 10, DIC of 2082 + 26 pmol.kg™!, and salinity of
36 psu. The experimental temperature was 27 (°C).

* This experiment represents a time series whereby 9 experiments (bags) were started at the same time, and they were
opened and filtered sequentially at specific time points to determine precipitate mineralogy.

2.2 Sampling from experiments

Two separate 12 mL seawater samples were taken from bags through time, one for DIC
and one for TA. Each of these samples were subsequently modified in order to test recently
proposed best practices for carbonate chemistry sampling techniques (Schulz et al., 2023). These
proposed techniques were designed to retain the original DIC and TA values at the time of sampling
while decreasing Q in the sample container to avoid mineral precipitation during sample storage.
For DIC samples, adding an acid to a sample in a completely sealed vessel with no headspace
neutralizes a proportion of the previously added alkalinity and thus decreases Q2 while retaining all
the DIC inside the vial. Similarly for TA samples, bubbling CO: into the sample increases the DIC,
and thus decreases Q without changing the TA. As such, Q can be lowered in both samples to
prevent mineral precipitation during sample storage in a way that allows for the accurate
determination of DIC and TA (Schulz et al., 2023). We note that these techniques only work for
conservative carbonate system parameters (i.e. DIC and TA), and not for non-conservative

parameters such as pCO; or pH.
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The 12 mL aliquot taken for DIC was passed through a 0.2 um filter into a gas-tight
borosilicate vial (CHROMONE®, NJ, USA), poisoned with 2.4 pL of saturated HgCl>, and then
acidified by adding a pre-calculated volume of 0.075 M HCI using a glass syringe through the
plastic vial septum to titrate the initially added alkalinity. Seawater and acid injections in the vial
were done steadily to minimize gas exchange. The amount of HCI added was 80, 160, 400, and
160 pl for samples taken from experiments B, C, D, and E, respectively. The 12 mL TA aliquot
was filtered (0.2 pm filter), and then bubbled with pure CO: using a nylon tubing with a stainless
steel needle for 30 seconds to increase its DIC without changing TA, followed by poisoning with
HgCl. A gas regulator was used to maintain a constant CO» flow rate and to prevent over-bubbling.
The DIC and TA samples were returned to the lab where they were kept in cool and dark conditions
until analysis, which took place within 2 months.

Experiments were quenched by filtering all remaining seawater through 47 mm 0.8 pm
polycarbonate filters using a peristaltic pump. Filters were rinsed with deionized and purified water
(18.2 MQ), dried at 55°C, and stored cool and in the dark. The precipitates were then scraped off
the filters and analyzed for mineralogy with X-ray diffraction (see Section 2.4).

2.3 TA and DIC measurements and saturation state calculations

TA was determined using an open-system Gran titration on weighed 5 mL samples in
duplicate using a Metrohm 805 Dosimat, with a 1 mL burette, and an 855 robotic Titrosampler. An
0.04 M HCl titrant was used to first acidify the sample to a pH of 3.9 before continuing to a pH of
3.25, dosing at 0.02 mL increments. The analyses were calibrated using in-house seawater
standards that were ran every 15 samples, to assess titrant and electrode drifts throughout the day.
A nonlinear least-squares method was used to determine TA as outlined in the Best Practices guide
(Dickson et al., 2007).

DIC was determined using an Apollo LI-5300A connected to a Li-COR CO; analyzer, with
CO; extracted from a 1.5 mL sample volume by adding 0.8 mL of 3% phosphoric acid. Once
opened, the sample lines were inserted to the base of the vial and sealed with parafilm tape to limit
gas exchange. Before each analysis, 0.75 mL of sample and 0.8 mL of acid is drawn into the sample
syringe to flush out any prior remnants from the system. After the flush, the 1.5 mL sample is
drawn into the calibrated syringe and injected into the reaction chamber, where resulting CO; is

carried by a zero COz air stream to the Li-COR CO; analyzer. Samples were run in triplicates. The
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instrument was calibrated twice daily against an in-house seawater standard that were
intercalibrated against seawater Certified Reference Materials (Dickson batch #187).

The saturation state with respect to aragonite (Qa) throughout the experiments was
calculated using PyCO, 1.8.1 (Humphreys et al., 2022), the Python version of the original
CO2SYS program (Lewis et al., 1998) using the carbonic acid dissociation constants of Mehrbach
et al. (1973) refitted by Dickson and Millero (1987). The Qa calculations used a corrected
concentration of Ca to account for changes induced by CaCOs precipitation, calculated according

to the following equation:

TAmsrd— TAinitia
[Ca] = [Ca]s_corr + ( 2 > : l) (2)

Where [Cals cor is the mean seawater concentration of Ca in mmolkg! corrected for
salinity by multiplying 10.28 by measured salinity at BATS and dividing by 35, TAmsw is the
measured TA in mmol.kg! in each sample, and TA, is the initial TA after alkalinity addition in
mmol.kg!. The saturation state with respect to other minerals was calculated using the
Geochemist’s Workbench (GWB) software, version 11 using the thermo.dat database at 1 bar and
27 °C (Bethke, 1996) for seawater, equivalent to that used in our experiments, titrated with 1 M
NaOH solution under closed system conditions (Fig. 1). GWB was used to calculate Q with respect
to a wider range of minerals than possible using PyCOx. The carbonate chemistry data are archived
in Hashim et al. (2025a).

2.4 Mineralogy

The solid precipitates collected by filtering the seawater from the experimental bags were
analyzed for mineralogy using X-ray diffraction (XRD). Precipitates were gently powdered by
hand using an agate mortar and pestle under acetone and mounted on a silicon zero-background
diffraction plate, which was placed in an automatic sample changer (Hashim and Kaczmarek,
2022). Samples were measured at the MIT.nano facility at the Massachusetts Institute of
Technology using a PANalytical X Pert PRO X-ray powder diffractometer using a Cu anode and
an X’Celerator Scientific 1D position-sensitive detector in Bragg-Brentano geometry. The 26
range was 5 to 100° and a count time of 1 s.step™'. Data were processed using the fundamental-
parameters Rietveld refinement program TOPAS V7 (Coelho, 2018). The data were corrected for
an instrument zero error determined using the NIST standard LaBs (660c), which has a certified
unit-cell parameter of 4.156826 A, crystallite size (Lvo) of 500 nm, and no micro-strain related

peak broadening (Black et al., 2020). The zero error refers to a shift in diffraction patterns due to
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misalignment of the detector. Instrument parameters were set to known values during Rietveld
refinement and TOPAS was used to determine relative mineral abundances, unit cell parameters,
crystallite size, and micro-strain (Bish and Howard, 1988). All raw XRD data and the Rietveld
refinement results are archived in Hashim et al. (2025b).

A TA Instruments Q600 simultaneous thermal analyzer was used for thermogravimetric
analysis and differential scanning calorimetry of mineral precipitates from Experiment D. About
35 mg was heated from room temperature to 1100 °C with a heating rate of 10 °C per minute in a
N> atmosphere. The N> flow rate was 50 mL.min"!. Routine measurements of standard materials
supplied by the manufacturer indicate that the temperature is accurate to 1 °C and the weight

change to 0.5 pg. The raw TGA data are archived in Hashim et al. (2025c).

3 Results

3.1 Precipitate mineralogy

Relative mineral abundances derived from X-ray diffraction (XRD) data suggest the precipitation
of aragonite, calcite, and halite (Fig. 2A). Halite presence can be attributed to its precipitation as a
result of seawater evaporation during filter drying and is omitted from relative abundance
comparisons (Fig. 2B). The relative abundance of aragonite and calcite varies slightly across
experiments in that calcite abundance decreases with the increase of alkalinity addition (Fig. 2B).
In experiment E, aragonite remains the dominant phase through time (Fig. 3). Furthermore, results
from the Rietveld refinement for experiment E (Table 1) samples reveal that aragonite crystallite
size increases whereas the lattice strain decreases with time (Fig. 4). Precipitates at the end of
experiments C and D (+1000 and 2000 umol.kg™!) yielded aragonite with smaller crystallite size
that falls of the trend of experiment E (Fig. 4A).



261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
277

>

Alll

~
IS
~ D) +2000 Q
5 2 2
s =
z 5
2 C
.“E) (C) +1000 .g
= <
o)
g ~

(B) +500 T Aragonite

ammtansth Calcite
L I L | LU I L
25.0 27.5 30.0 32.5 35.0 +500 +1000 +2000
2theta (degrees) Alkalinity addition (#mol kg™)

Fig. 2. A) Raw X-ray diffraction (XRD) spectra of precipitate from experiment B, C, and D truncated
between 25 and 35° 2theta for easier viewing. All three precipitates were collected at the end of the
experiments which were conducted for ~ 123 h. Miller indices of prominent peaks are shown where A
stands for aragonite, H for halite, and C for calcite. B) Relative mineral abundance determined via Rietveld
refinement of the three spectra shown in (A). Each of aragonite and calcite abundances are normalized to
the total (aragonite + calcite) given that halite is considered an artifact that precipitated during filter drying.
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XRD data is available in Hashim et al. (2025b).
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Thermogravimetric analysis of precipitate (Fig. 5) from experiment D revealed two weight loss
events that can be attributed to dehydroxylation of magnesium hydroxide (2.97 wt.% at ~353 °C)
and calcination of Ca-carbonate (33.52 wt% at ~768 °C) (Foldvari, 2011; Klein et al., 2020).
Additional weight loss occurred at 467 °C (0.98 wt.%) and 968 °C (3.88 wt.%); the underlying
cause of these weight loss events remains unresolved but we speculate that the minor weight
change at 467 °C could be attributed to the loss of adsorbed water during the phase transition of

aragonite to calcite, or possibly to decomposition of a hydrous Mg-carbonate mineral similar to

hydromagnesite.
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’ 2 1 0100 v
E 1204 \ ) 11
Q ] v g 0.075
@ 1004 ¥ Al & v
= ] 2 0.050 .
S 80 ¢ S ] v
2 ] S 00254 v S 4
O 60 %+1000 ©
1 +2000 (D)
] V¥ +1000 (E) 0.000
40 LB B T UL P P B |
0 25 50 75 100 125 0 255075 100 125
Time (h) Time (h)

Fig. 4. Crystallographic characteristics of aragonite precipitate determined via Rietveld refinement. A) Aragonite
crystallite size plotted against time. XRD data were collected for precipitate in experiment E thought time and
only at the end in experiments C and D. The logarithmic function is fitted through the E data only. The p-value
for the fit is << 0.05 and R? is 0.76. B) Aragonite micro-strain as a function of time for the same experiments
shown in (A). The logarithmic function is fitted through experiment E data only. The p-value of the fit is 0.02 and
R? is 0.47. The shaded region represents the 95% confidence interval.

Carbonate chemistry response to alkalinity enhancement

The measured TA and DIC of the control experiment with no alkalinity addition remain
nearly constant throughout the duration of the experiment with an average value (+ 1o) for TA of
2547 + 10 pmol.kg! and DIC of 2082 + 26 umol.kg! (Fig. 6A and 6B). All alkalinity enhancement
experiments show elevated initial TA values as expected (Fig. 6A) and exhibit a gradual decrease
in TA, DIC, and Qa with time (Figs. 6A, 6B, and 7A). The decrease in TA, DIC, and Qa is steeper
and reaches lower final values for experiments with higher alkalinity addition. The lowest final TA
value is observed for experiment D with highest alkalinity addition of 2000 umol.kg™!, followed
by experiment C (1000 pmol.kg™!), followed by experiment B (500 umol.kg™!) (Fig. 6A). Similar
trends are observed with DIC, which decreases more steeply and reaches the lowest final values

for experiments where alkalinity is enhanced the most (Fig. 6B).
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Fig. 5. Thermogravimetric analysis of precipitates from experiment D (+2000 umol.kg!) after 124 h. The
data is consistent with the presence of Ca-carbonate (likely aragonite) and minor amounts of brucite,
which are indicated by the shaded area. The small peak around 470°C denoted with a question mark is
suggestive of the presence of hydromagnesite which was initially supersaturated. Alternatively, this event
could be due to loss of minor adsorbed water during the transition of aragonite to calcite. The raw TGA
data is available in Hashim et al. (2025c).

TA and DIC decrease linearly with each other with slopes of 1.39, 1.44, and 1.85 for
experiment B, C, and D, respectively (Fig. 6C). Such slopes are difficult to interpret in the context
of mineral precipitation given that CaCO3 minerals (aragonite, calcite, vaterite) should decrease
TA and DIC in a 2:1 ratio (slope = 2) whereas magnesium hydroxide (i.e., brucite) decreases only
TA (slope = o). The slope values being < 2 imply that more DIC is removed than can be explained
by CaCOs precipitation (Fig. 6D). We suggest an explanation for these observations in Section 4.4.
3.3 Amount and rate of mineral precipitation

Measured TA through time was used to estimate the amount of CaCO3 precipitate (Fig. 8)
assuming that the decrease in TA with time was solely due to CaCOs3 precipitation and a TA to

CaCOj; molar ratio of 2:1, according to the following equation:

TAinitial — TA d
Mceaco; = —— > "X Megco, (3)
Where M¢qco, is the mass of CaCOs precipitate in pg.kg™! and M¢4co, is the molar mass of

CaCOs in g.mol™!. Assuming that TA decreases only due to CaCOs precipitation is reasonable

12
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because the dominant mineralogy in all experiments is aragonite (see Section 3.1). These
calculations indicate that a higher amount of precipitation occurs in experiments where TA was
enhanced the most (Fig. 8). Moreover, in experiment B (+500 umol.kg™!), precipitation occurs
gradually throughout the duration of the experiment whereas in experiments C and D (+1000 and
2000 umol.kg!), most precipitation takes place during the first 24 hours followed by a gradual
increase in the amount of precipitate with time (Fig. 8).

The rate of mineral precipitation was calculated using the following equation:

_ ATA .
T Ox At )

Where r is the rate in pmol.h™!, ATA is the change in TA between two datapoints, and At is

the time difference between the same datapoints (Fig. 9). The rate data were fitted to an empirical
rate law in its logarithmic form (Zhong and Mucci, 1989):

log (r) =nxlog (2, — 1)+ log (k) (5
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Where n is the empirical reaction order and £ is the rate constant in umol.hr!. Plotting log
(r) against log (Q2 —1) shows that there is a relationship for our experiments, experiments of Moras
et al. (2022), and aragonite precipitation experiments of Mucci et al. (1989). A fit through our and
Moras et al. (2022) data yields a reaction order of 2.15 £ 0.40 and a rate constant of 0.20 + 0.10
umol.hr!. A fit through Mucci et al. (1989) data gives a reaction order of 1.5 + 0.3 and a rate

constant of 45 + 2 umol.hr'!.
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Fig. 6. A) Measured TA through time showing a gradual decrease from the initial enhanced value except for
the control experiment. B) Measured DIC (solid line) and calculated DIC (dashed line) using Eq. 6. Both
measured and calculated DIC decrease with time from the initial seawater value except for the control
experiment. C) TA plotted against measured DIC with linear regressions fitted for experiment B, C, and D
(equations shown in the upper left corner). The grey lines represent the expected slopes as a result of CaCOs
(slope = 2) and brucite (slope = o) precipitation. D) Measured DIC plotted against DIC calculated assuming
2:1 TA:DIC removal from CaCOs precipitation, showing that most datapoints have lower measured than
calculated DIC and hence deviate from the 1:1 line suggesting that some DIC was removed during HCl addition
which was done to preserve the samples.
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4 Discussion
4.1 Thermodynamic constraints on mineral precipitation

The Q of the seawater used in our experiments both prior and following alkalinity addition
was calculated with respect to a set of minerals that includes aragonite (CaCQO3), calcite (CaCO3),
dolomite (CaMg(COs3)2), brucite (Mg(OH)), magnesite (MgCO3), hydromagnesite
(Mgs(CO3)4(OH)2-4H20), and huntite (Mg3;Ca(COs)4) (Fig. 1). This list represents only a small
fraction of all the minerals that could possibly precipitate but this set of minerals was chosen
because they have been reported to occur naturally in marine environments and some of them (e.g.,
aragonite and brucite) have been shown to precipitate during OAE experiments (Bach et al., 2024;
Hartmann et al.,, 2023; Moras et al., 2022). Seawater was initially highly (i.e., Q > 100)
supersaturated with respect to dolomite and huntite and moderately (i.e., Q ~ 10) supersaturated
with aragonite, calcite, and magnesite (Fig. 1). In contrast, brucite and hydromagnesite are
undersaturated in natural seawater, and become supersaturated as alkalinity increases. Alkalinity
addition increases Q with respect to all of these minerals. Hydromagnesite becomes supersaturated
when the TA reaches ~ 2700 umol.kg™! and brucite becomes supersaturated when the TA reaches
~ 3100 and becomes more supersaturated than aragonite at TA of ~ 4600 umol.kg™! (Fig. 1). The
reason for the different saturation behaviors is that magnesium hydroxide solubility is a function
of [OH]?, whereas CaCO3; mineral solubilities are proportional to [COs*]. Hydroxide ion
concentration increases with TA addition, thus rapidly increasing the saturation state of hydroxide-
bearing minerals.
4.2 Mineralogy of the OAE induced precipitation

In experiments B, C, and D (+500, +1000, +2000 umol.kg!, respectively), the dominant
precipitate mineralogy according to XRD data is aragonite, followed by a small amount of calcite
(Fig. 2). This observation is consistent with previous studies showing that the calcium carbonate
precipitating from seawater at a temperature of 27 °C is aragonite (Burton and Walter, 1987;
Hartmann et al., 2023; Hashim et al., 2024; Moras et al., 2022; Morse et al., 1997; Morse and He,
1993). This is often attributed to the inhibition of calcite growth by Mg (Berner, 1975; Mills et al.,
2022) that leads to the precipitation of the metastable aragonite at the expense of the more stable
calcite, despite the fact that the solution is more supersaturated with respect to calcite than

aragonite (Fig. 1).
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Aragonite was also the dominant precipitated phase in experiment E (+1000 umol.kg™)
where mineralogy was determined through time (Fig. 3). The crystallographic characteristics of
the aragonite evolved throughout the experiment, specifically, aragonite crystallite size increased
whereas its micro-strain decreased (Fig. 4). Crystallite size refers to a coherently diffracting
domain within a crystal and micro-strain refers to distortions or deformations within the crystal
lattice arising from dislocations, point defects, or crystal boundaries (Bish and Post, 2018; Hashim
et al., 2023; Mittemeijer and Welzel, 2008). These data are consistent with the process of Oswald
ripening whereby aragonite recrystallizes to a more stable phase with a larger crystallite size and
lower strain. It is unclear why experiments C and D yielded aragonite with smaller crystallite size
after a longer period of time compared to experiment E (Fig. 4A). The higher alkalinity addition
in experiment D compared to E may suggest that there is an inverse relationship between alkalinity
(or Q) and aragonite crystallite size. However, this cannot explain why experiment C, which used
similar amount of alkalinity as experiment E, produced aragonite with smaller crystallite size.
Future work should explore the crystallographic properties of precipitated minerals under a wide
range of alkalinity additions. We also suggest supporting the XRD-derived crystallite size
measurements with other approaches such as Transmission Electron Microscopy. Nonetheless, the
changing crystallographic properties of aragonite through time suggests that aragonite
recrystallizes to become more stable. In the context of OAE, if aragonite becomes more stable, it
will take longer to redissolve and may sink in the water column, decreasing the efficiency of OAE.

Another mineral that could have formed in experiment E is brucite, which was initially
slightly supersaturated (Qbrucite ~ 1.7) (Fig. 1A). This slight supersaturation may not have been high
enough for brucite to precipitate, perhaps due to kinetic nucleation limitations similar to carbonate
minerals. Alternatively, brucite, or more generally amorphous magnesium hydroxide, may have
formed initially but redissolved before the first sample was taken at 0.6 h following alkalinity
addition. The alkalinity decreased from the initial enhanced value of 3500 to ~3150 umol.kg! after
0.6 h which corresponds to an Qprucite of 0.7. Thus, brucite could have formed initially but
redissolved as aragonite precipitation decreased alkalinity, rendering brucite undersaturated.

In experiment D, Qprucite Was initially > 10, i.e., likely sufficient for brucite to precipitate
(Fig. 1A). The thermogravimetric analysis (TGA) confirms the presence of a small (~ 3%) amount
of brucite in experiment D precipitate (Fig. 5). It is surprising that brucite in experiment D did not

redissolve given that at the end of experiment D, Qprucite Was < 0.01. It is possible that aragonite
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nucleated on brucite crystals, enclosing and protecting them from dissolution. Alternatively, slow
dissolution kinetics may have prevented all of the brucite from redissolving, despite near complete
undersaturation. It should be noted that brucite was only detected with TGA but not XRD despite
that our XRD spectra encompassed the 26 range of the dominant brucite peaks such as the (001)
that typically appears at 18.4° 20. It is possible that the small amount of brucite was below the
detection limit of XRD, or that the precipitate was amorphous magnesium hydroxide with no
diffracting structure rather than brucite mineral. Brucite has been documented to exhibit a wide
range of structures including amorphous Mg(OH) with implications for its dissolution kinetics
(Cifuentes-Araya et al., 2014; Vermilyea, 1969).

At high Q values, such as those that characterized some of our experiments, vaterite,
amorphous calcium carbonate (ACC), and amorphous calcium-magnesium carbonate (ACMC)
have been observed to form, but such phases are highly unstable and quickly transform to other
more stable phases (Evans et al., 2020; Methley et al., 2024). It is therefore possible that the
observed aragonite in our experiment is not the first phase to form but is the product of a
transformation reaction from an even less stable phase such as vaterite, ACC or ACMC, although
no evidence for the occurrence of these phases was found. A high-resolution sampling within
minutes of the start of the experiments as well as using synchrotron XRD could detect the first
phases that form at conditions relevant to OAE.

4.3 Saturation state (£2) calculations and the threshold of precipitation

TA and DIC decrease linearly with each other with a slope of 1.39, 1.44, and 1.85 for
experiment B, C, and D (+500, +1000, +2000 umol.kg™!), respectively (Fig. 6C). Slope values < 2
imply that more DIC is removed than can be explained by CaCOs precipitation. One way for this
to happen is if the acidification of the samples in vials, which was done to lower Q to prevent
precipitation during sample storage (Section 2.2), neutralized too much of the sample TA, leading
to a high pCO; that induced outgassing and thus DIC loss. Accordingly, we calculated DIC using
TA by assuming that the decrease in DIC was solely due to the precipitation of CaCOs according
to the following equation:

DIC; = DIC, — (F2=) (6)

Where DIC, and TA, are the initial DIC and TA values in each experimental series and TA;

is the value of TA measured throughout the experiment. The assumption that DIC decreases solely

due to CaCOs precipitation is a reasonable one given that our XRD data show that the dominant
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mineralogy in all experiments is aragonite (Fig. 2). In all alkalinity addition experiments, the
measured DIC is lower and more variable than the calculated DIC (Fig. 6D). This suggests that in
the high alkalinity addition nearly all of the DIC in the sample was lost due to acidification. Thus,
the acidification protocol proposed by Schulz et al. (2023) must be carefully evaluated to prevent
significant degassing of acidified CO; during sample storage, and when the vial is opened for
measurement. For these reasons, instead of measured DIC, we use the calculated DIC via equation
6, along with measured TA, to calculate Qa. For future studies, instead of adding a predetermined
amount of acid based on alkalinity addition, we recommend using our and other mineral
precipitation studies as a guidance to predict the values of TA and DIC through time, which can
then be used to determine the amount of acid to be added such that only excess TA is removed.

The decrease in measured TA, calculated DIC, and Qa over the course of the experiment
(Fig. 6A, 6B, 7A) suggests that precipitation occurs at all alkalinity enhancement levels. This is in
general agreement with previous studies showing that precipitation occurs with similar alkalinity
additions (Hartmann et al., 2023; Moras et al., 2022). The threshold of saturation state with respect
to aragonite () for homogenous precipitation from seawater is between 13 and 19 (Morse and
He, 1993; Pytkowicz, 1973; Sun et al., 2015). For reference, surface ocean seawater has an Qa of
<5 (Jiang et al., 2015). In our experiments, precipitation is observed at an initial Qa of 11 where
alkalinity was enhanced by 500 pmol.kg!. Since this is the lowest amount of alkalinity added in
our study, we suggest that the threshold Q4 for mineral precipitation under the experimental
conditions is < 11. This is consistent with previous OAE experiments showing that precipitation
takes place at an Qa of 7 (Moras et al., 2022). Several factors impact the threshold Q for
precipitation, one of which is whether precipitation is homogenous or heterogenous (Morse et al.,
2007). The threshold Q is higher for homogenous precipitation due to the energy intensive process
of forming nuclei out of an aqueous solution (Morse et al., 2007). This is supported by the
observation that the threshold Q for precipitation from unfiltered seawater is lower than that from
filtered seawater (Hartmann et al., 2023), which means that minerals can nucleate on existing
mineral particles in seawater (Alexandersson, 1972).
4.4 Precipitation rate

Using the changes in TA through time (Fig. 6A), we calculated the precipitation rate (r) in
our experiments and those of Moras et al. (2022). Plotting this rate against Q — 1 yielded an
empirical reaction order of 2.15 + 0.40 and a rate constant of 0.20 + 0.10 pmol.hr! (Fig. 9). The
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reaction order is higher but within the uncertainty of that from Mucci et al. (1989) and Burton and
Walter (1987) for seeded aragonite precipitation experiments from artificial seawater at 25 °C (Fig.
9), which are 1.48 £ 0.3 and 1.70 + 0.1, respectively. The similarity in the reaction order suggests
that the precipitation mechanism is similar in our experiments, those of Moras et al. (2022), and

the seeded experiments of Mucci et al. (1989) and Burton and Walter (1987).
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Fig. 9. The logarithm of precipitation rate (log r) plotted against the logarithm of (Q2 — 1) for experiments
from this study, Moras et al. (2022), and Mucci et al. (1989). The solid black line with the brown shading
represents the linear fit through data from our and Moras et al. (2022) experiments with a 95% confidence
interval. The equation of this fit provides the reaction order (n = 2.15) and the reaction constant (log £ = -0.7;
k=0.2). All rate data are available in Hashim et al. (2025a).

However, the calculated rate constant is lower by about one order of magnitude compared
with Mucci et al. (1989). A major difference in the experimental setup is that most previous studies
used aragonite seeds to induce precipitation (e.g., Mucci et al., 1989). Aragonite seeds provide a
template and thus decrease kinetic limitations to precipitation. In contrast, precipitation in our
experiments was homogenous or pseudo-homogenous, where minerals either precipitated directly

from seawater, or formed on the inner walls of the foil bags. Nucleating on existing aragonite
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crystal is easier than nucleating on plastic or glass material (Subhas et al., 2022). For example, it
has been shown that calcite grows faster on existing calcite compared to quartz (Lioliou et al.,
2007). In addition, the entire inner surface area of the bag is 0.24 m? whereas the surface area of
the aragonite seeds in the experiments of Mucci et al. (1989) is 1.7 m2. Normalizing our and Mucci
et al.’s rate constants by their respective surface area gives a reaction constant of 0.63 and 26.50
umol.m™ hr, respectively. Therefore, the higher rate constant in the experiments of Mucci et al.
(1989) are likely due to the presence of aragonite seeds. These comparisons indicate that the
availability of nuclei represents a significant control on the rate of precipitation (Morse et al.,
2007). They also reveal that the kinetics of homogenous nucleation of calcium carbonate minerals
is not fully understood, and that future work should address this knowledge gap, particularly in the
context of OAE.

It is worth pointing out that our experiments were conducted at 27 °C, Moras et al. (2022)
experiments at 21 °C, and Mucci et al. (1989) at 25 °C. The reaction order is expected to increase
by ~ 0.066 per 1 °C and the reaction constant by ~ 0.5 per 1 °C (Burton and Walter, 1987). This
suggests that differences in reaction order and constant due to temperature are within the reported
uncertainties and are much smaller than the observed differences between our and Moras et al.
(2022) experiments and those of Mucci et al. (1989). We have not recalculated all of these results
to a single temperature because the study of Burton and Walter (1987), which originally explored
the effects of temperature on reaction order and constant, was based on seeded experiments where
the reaction constant is much higher than in our and Moras et al. (2022) experiments. This
difference in experimental conditions is likely to be a dominant factor, and recalculation to account
for slight differences in temperature did not seem warranted. This highlights the need for future
work focusing on the role of temperature in mineral precipitation kinetics under conditions
representative of a range of OAE scenarios.

4.5 The induction period prior to mineral precipitation

The induction period (tip) is the time required for precipitation to initiate from a
supersaturated solution. In the context of OAE, a longer tj, allows for more dilution with
surrounding seawater during OAE deployments (He and Tyka, 2023), and on longer timescales,
allows for more CO; uptake to increase DIC (Jones et al., 2014), potentially reducing or even
eliminating mineral precipitation. Previous work has shown that the ti;, for CaCO; minerals

inversely correlates with the initial Q (Pokrovsky, 1998), although the exact mechanism behind
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this relationship and how other variables impact ti, remain unclear. One interesting observation is
that higher solution Mg/Ca leads to longer ti, for the same Q (Fig. 10A), likely due to the inhibition
effect of Mg on the nucleation and/or crystal growth of carbonate minerals (Berner, 1975; Bischoff,
1968; Hashim and Kaczmarek, 2020).

Identifying tip precisely in highly supersaturated solutions requires a continuous and fast-
responding measurements such as pH. To determine the induction period (ti) as well as the
extrapolated Q to infinite time following precipitation, the change in Q2 over time was empirically
described by fitting a Heaviside stepwise function to the data:

0= 0,x(1—H(t = tp)) + Qo + (2 — Qo) x e ) x H(t — ) (7)

Where Q is the saturation state with respect to aragonite to be calculated through time, Qo
is the initial saturation state in the experiments, which is higher than that of seawater as a result of
alkalinity addition, t is time in hours, t;, is the induction period in hours, Q. is the non-zero
asymptote value after the exponential decay when € ceases to change with time, k is a decay
constant that is related to the precipitation rate, and H is the Heaviside function which is defined
by:

o= 4150w

When t < tjp. (i.e., during the induction period), the expression (t — tip) becomes negative,
and H(t) equals 0, which makes the first term of the equation equals to Q.. When t > t;, (after the
induction period), H(t) equals to 1, and Q will decrease with time according to the exponential
decay formula in the second term of the equation. This function was fitted to data from experiments
B, C, and D (Table 1), as well as to three sets of experiments from Moras et al. (2022) that, similar
to our experiments, are characterized by an induction period and exponential decay. The fit was
performed by concomitantly changing the free parameters Qo, tip, Q«, and k while minimizing the
difference between the fit and the data using Solver’s nonlinear generalized reduced gradient
algorithm in Excel®. We note that we only interpret ti, and Q. in this framework. The exponential
part of the equation is a convenient functional form to model the decrease in Q2 with time, but is
purely descriptive of the data and should not be used as a functional relationship between time and

the decrease in Q. All parameters obtained from the fitting are provided in Table 2.

Table 2. Parameters obtained from fitting Eq. 7 to data for TA and Qa.

Experiment (TA addition

Parameter Study pJm)l_kg-l)

Initial value | Final (asymptote) | Induction period (h) | k
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this study B (+500) 3047.00 1912.00 10.58 0.021
this study C (+1000) 3547.44 1486.27 7.71 0.181
TA this study D (+2000) 4547.44 1003.41 2.44 0.112
(g*_‘f)n‘ﬂ'k Moras et al. (2022) | CaO (+500) 2721.84 1769.90 92.10 0.009
Moras etal. (2022) | Ca(OH)2 (+500) 2744.92 1608.86 159.49 0.002
NaxCO;  with  particles
Moras et al. (2022) (+1000) 3394.92 212522 165.50 0.009
this study B (+500) 11.47 3.45 5.80 0.023
this study C (+1000) 17.73 3.13 7.44 0.213
this study D (+2000) 28.75 2.93 2.17 0.131
Q Moras etal. (2022) | CaO (+500) 7.52 1.83 87.92 0.010
Moras etal. (2022) | Ca(OH). (+500) 7.32 1.00 125.74 0.002
NaxCO;  with  particles
Moras et al. (2022) (+1000) 9.20 1.89 117.74 0.008
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Fig. 10. Plots of some of the parameters obtained from fitting equation 7 to data shown in Figure 7. A)
Linear-log plot between the induction period (tip) and the initial Q (all Q values are with respect to
aragonite). Circles are data from Pokrovsky (1998) for solutions with different Mg/Ca ratios. B)
Alkalinity drawdown (ATA = initial TA following alkalinity addition — final TA at the end of the
experiment) plotted against alkalinity addition. The horizontal dashed line is plotted at ATA = 0
indicating no precipitation whereas the dotted line has a slope of 1 indicating that the removed alkalinity
due to precipitation equals the added alkalinity. C) Cross plot of the extrapolated € at infinite time (£2x)
and initial Q following alkalinity addition. The 1:1 line indicates that the initial and (% are equal (no

precipitation).
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For our experiments, ti, decreases as initial Q4 increases (Fig. 10A). Furthermore, the ti, of
our experiments is shorter than those of Moras et al. (2022) confirming the relationship between
tip and initial Q4 given that our experiments were conducted at higher Qa (Fig. 10A). In general,
the ti, from our experiment B (+500 umol.kg™!) and experiments of Moras et al. (2022) are in good
agreement with data from Pokrovsky (1998) for seawater with average Mg/Ca. In contrast, ti, of
experiments C and D (+1000 and +2000 umol.kg™!) are generally longer than those of Pokrovsky
(1998) for the same initial Q. Experiment C has a ti, of 7 h compared to 1 hr for Pokrovsky’s data
for the same Q and experiment D has a tj, of 2 h compared to 0.3 h for Pokrovsky’s data (Fig.
10A). These differences could be due to the fact that our tip values are based on a model fitted to
the data and do not represent actual measurements. Alternatively, they might be related to the
presence of chemical inhibitors. Pokrovsky (1998) used a sulfate- and phosphate-free solution,
both of which are known inhibitors of carbonate mineral precipitation and dissolution (e.g., Burton
and Walter, 1990; Fernandez-Diaz et al., 2010). Given that both our study and Moras et al. (2022)
used natural seawater that contains both sulfate and phosphate, we suggest that the inhibition of
mineral precipitation by these ions, in addition to Mg, may explain the longer ti, in our experiments
compared to those of Pokrovsky (1998). Additionally, the presence of particulate and dissolved
organics in natural seawater may have further contributed to the inhibition of mineral precipitation
(Moras et al., 2024; Naviaux et al., 2019; Subhas et al., 2018). Our study does not provide
quantitative constraints on the tjp because the sampling resolution was not high enough to
determine the occurrence and duration of the induction period. Further, there is little data in the
literature on this important feature of mineral precipitation. Future work should focus on directly
constraining tij, under a wide range of OAE-relevant chemical conditions.

4.6 Runaway precipitation

Alkalinity addition can raise Q high enough to initiate spontaneous precipitation of
minerals whose surfaces can then serve as additional nucleation sites for crystal growth, leading
to a phenomenon referred to as “runaway” precipitation, where more alkalinity is removed than
had been added (Fuhr et al., 2022; Hartmann et al., 2023; Moras et al., 2022; Schulz et al., 2023;
Suitner et al., 2024). Our data suggest the occurrence of runaway precipitation in all experiments
(Fig. 6A and 10B).

Examining the relationship between alkalinity addition and alkalinity decline (i.e., the

decrease in TA over the course of the experiment) provides further insights into the nature of this
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phenomenon (Fig. 10B). When plotting alkalinity addition on the x-axis and ATA on the y-axis,
the horizontal line (slope and intercept = 0) indicates no precipitation whereas the 1:1 line (slope
= 0) indicates that the amount of alkalinity removed due to precipitation equals the amount added.
The ideal scenario is that datapoints fall on the horizontal line or at least below the 1:1 line. The
experiments of Moras et al. (2022), where alkalinity was enhanced by 250 pmolkg! are an
example of such a scenario where no alkalinity was removed due to precipitation (Fig. 10B). In
contrast, all other experiments fall above the 1:1 line, reflecting runaway precipitation where more
alkalinity is removed than added. The data also suggests that the intensity of the runaway
precipitation increases with higher alkalinity addition (Fig. 10B).

The extrapolated Q. value in our experiments is always above 1, suggesting that mineral
precipitation did not lower Q until equilibrium is reached but ceased at an Q4 of ~ 3 regardless of
the initial Qa which ranged between 10 and 30 (Fig. 10C). One explanation to why equilibrium is
not reached is that precipitation becomes kinetically limited at lower Q values, due to the presence
of Mg, phosphate, and organics, all of which are known to inhibit carbonate mineral precipitation
(e.g., Berner, 1975; Mills et al., 2022). Alternatively, 2 may not have reached equilibrium because
the duration of the experiments was too short. Indeed, the experiments of Moras et al. (2022),
which were conducted for longer durations than ours, are all characterized by lower final Q values,
although two out of the three experiments analyzed here have an Q of ~ 2, suggesting that even
with long durations equilibrium may not be reached due to kinetic inhibition of mineral

precipitation (Fig. 10C).

S Conclusions

This study used shipboard experiments to investigate mineral precipitation from seawater
following alkalinity addition to test the efficiency of OAE as an ocean-based CO» sequestration
approach. Thermodynamic calculations indicate that OAE causes seawater to become
supersaturated with respect to numerous minerals. The mineralogical data reveal that the dominant
mineralogy of precipitate in all experiments is aragonite followed by a minor amount of calcite.
Small amount of brucite is detected only in the experiment where 2000 umol.kg™! of alkalinity was
added. Moreover, the data show that the crystallographic characteristics (crystallite size and micro-

strain) of aragonite evolve through time, consistent with the occurrence of Ostwald ripening.
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The logarithm of the precipitation rate correlates with the logarithm of Q — 1, yielding a
reaction order of 2.16 + 0.5 and a rate constant of 0.2 = 0.10 umol.hr! for our experiments and
those of Moras et al. (2022). Our reaction order is generally comparable to that derived from
previous studies, but the rate constant is an order of magnitude lower. This difference is attributed
to the fact that our experiments and most of those of Moras et al. (2022) were unseeded whereas
previous studies (e.g., Burton and Walter, 1987; Mucci et al., 1989) used carbonate seeds that act
as nuclei for precipitation. The onset of precipitation was detected after an induction period, the
length of which is inversely correlated with the initial . Mineral precipitation occurred in all
experiments suggesting that the threshold Qa for precipitation is < 11. Precipitation took place in
a runaway manner, decreasing TA to values below that of seawater prior to alkalinity addition.

Our results demonstrate that the highest risk of mineral precipitation is immediately
following alkalinity addition and before dilution and CO; uptake by seawater, both of which lower
Q. The observation that the dominant mineralogy of precipitate is aragonite indicates that mineral
precipitation has a negative impact on OAE efficiency because aragonite is unlikely to redissolve
given that the surface ocean is currently supersaturated with respect to this mineral. Magnesium
hydroxide (i.e., brucite) precipitation, in contrast, is less problematic because it is more likely to
redissolve, releasing alkalinity back into seawater. The occurrence of runaway precipitation also
means that mineral precipitation following OAE may not only decrease OAE efficiency at
sequestering CO; but can render this approach counterproductive. As such, mineral precipitation
should be avoided by keeping Q below the threshold of precipitation and quantifying its
consequences on OAE efficiency if it occurs. Lastly, in order to be able to quantitatively determine
the impact of mineral precipitation on OAE under a wide range of conditions, a mechanistic

understanding of precipitation in the context of OAE must be developed.

Code/Data availability

All data used in this study are archived in the BCO-DMO repository. This includes the carbonate
chemistry measurements and precipitate kinetics data (Hashim et al., 2025a), the raw XRD data
and the associated Rietveld refinement results (Hashim et al., 2025b), and the Thermogravimetric

analysis (Hashim et al. 2025c).
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