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Abstract. Forests are an important component in the framework of nature-based solutions for mitigating climate change. How-

ever, there are still uncertainties about the biogeophysical effects of forest cover changes affecting heat and water fluxes as

captured by Earth System Models (ESMs) simulations and observations. In this study, we investigate the differences in the sur-

face temperature response to idealized, complete deforestation and the temperature sensitivity to percentage change in forest

cover in ESMs and observations. In this comparison, the separation between local (at the place of deforestation) and non-local5

(nearby or distant locations) effects is crucial as observations capture only the former. Here, we propose a modified methodol-

ogy to separate local and non-local effects in climate models suitable for simulations with linear rate of deforestation. The local

sensitivity of a climate variable per unit deforested area is represented by the slope of the linear regression, where tree cover is

an explanatory variable. The non-local effect is defined as the difference between the overall change in the respective climate

variable and the local effect. Our analysis of eleven ESMs of the Coupled Model Intercomparison Project Phase 6 (CMIP6)10

that participated in the idealized global deforestation experiment deforest-glob, reveals a coherent local temperature response

among climate models characterized by warming in the tropics and cooling in the northern higher latitudes. The temperature

response however varies in magnitude, space and time with ESMs showing distinctive seasonal and spatial patterns. A closer

look at the albedo response to deforestation across northern latitudes shows an overestimation in the ESMs in comparison to
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observations that translates via an emergent constraint (i.e. resulting from the linear relationships
:::::::
between

::::
local

::::::
albedo

::::
and15

::::::
surface

::::::::::
temperature within the model ensemble) into an overestimation of the overall simulated cooling effect. The overesti-

mation of the local albedo sensitivity cannot be explained solely by the higher percentage of snow cover in ESMs. In terms of

local latent heat flux sensitivity, the ESMs ensemble mean is overestimated for the boreal region, but it is in good agreement

with the observational constraint in the temperate forests and the tropics. However, the inter-model spread and the internal

model variation in these regions are considerable. ESMs having higher local albedo and latent heat flux sensitivities than the20

current observational constraints can still exhibit a realistic temperature response due to compensatory effects between the two

sensitivities. Non-local effects contribute to consistent cooling throughout the globe, which persists also during the summer

when the influence of the overestimated albedo sensitivity over snow is weaker. Having a deeper understanding of how local

and non-local biogeophysical effects are represented in ESMs can give us insights into the net climate impact of deforestation

and help us improve next generation ESMs.25
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1 Introduction

Forests are essential for our adaptation to a warmer world as they cool the climate during the hottest months of the year,

contributing to the resilience of urban, agricultural, and natural landscapes (Lawrence et al., 2022). Through their climate

benefits, forests can also serve as one of the most promising natural climate solutions - a set of measures aimed at mitigating30

climate change without limiting the supply of food and fiber and putting natural habitats under pressure (Griscom et al., 2017).

Whether through afforestation, reforestation, avoided forest conversion, improved forest management, forest restoration or

agroforestry, forests have a large potential for capturing and retaining CO2 (Griscom et al., 2017). In addition to acting as a

carbon sink, forests also influence the climate by altering key biogeophysical properties such as albedo, evapotranspiration

efficiency and surface roughness (Bonan, 2008). Unlike the biogeochemical effects of deforestation, which encompass an35

increase in CO2 concentration in the atmosphere with a clear link to warming, the biogeophysical effects of changes in forest

cover can have opposite impacts on temperature depending on the location and season (Bonan, 2008) and the type of forest

in question (Bright et al., 2017; Naudts et al., 2016). For example, boreal forests can have a warming effect (relative to non-

forested boreal regions) because of their significantly lower albedo compared to snow-covered short vegetation, while tropical

forests can cool the climate through higher rates of evapotranspiration and enhanced cloud cover (Betts, 2000; Claussen et al.,40

2001; Wang et al., 2009). Correspondingly, deforestation has a cooling effect in the boreal region driven mainly by the higher

albedo due to the reduction in the snow-masking effect of trees, thus limiting the amount of available energy at the surface. In

tropical forests, the albedo effect is not as strong and is overpowered by the increase in incoming shortwave radiation due to

lower cloud cover. The increase in incoming solar radiation leads to a rise in net surface radiation and consequently of surface

temperature as evaporative cooling over grasslands is not as efficient (Boysen et al., 2020).45
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To gain more insight into the biogeophysical effects on climate resulting from large-scale changes in forest cover, a number

of Earth System Models (ESMs) and regional climate models experiments have been performed using either plausible defor-

estation patterns derived from historic or future land use and land cover changes (e.g., Pongratz et al., 2010; Boisier et al.,

2012; Lejeune et al., 2018; Li et al., 2023), or idealized extensive deforestation scenarios ((e.g., Durbidge et al., 1993; Werth

and Avissar, 2002) and more recently (Devaraju et al., 2018; Strandberg and Kjellström, 2019; Boysen et al., 2020)). Previous50

deforestation studies (e.g., Bala et al., 2007; Davin and de Noblet-Ducoudré, 2010; Bright et al., 2017; Winckler et al., 2019b)

have identified the competing effects of decreasing evapotranspiration efficiency and surface roughness, which typically lead to

warming, and increasing albedo, which is considered to be the dominant of the three factors driving global mean cooling (Davin

and de Noblet-Ducoudré, 2010; Laguë et al., 2019). In such model simulations, deforestation causes strong changes in surface

temperatures locally (at the place of deforestation) through changes in biogeophysical land surface properties (termed "the55

local effect"). But large-scale deforestation in these experiments also triggers strong changes in advection of heat and moisture,

as well as in atmospheric and ocean circulation, which influence regions that have not undergone deforestation (Winckler et al.,

2017b; Portmann et al., 2022). These biogeophysical "non-local effects" may be even more important than local effects in terms

of their influence on the patterns of temperatures (Winckler et al., 2019a, c). By considering only local effects in models, the

global mean cooling observed in complete deforestation experiments could be to a large extent reconciled with the warming60

pattern in observations (Winckler et al., 2019a; Chen and Dirmeyer, 2020).

More recently, substantial strides in our understanding of the impact of changes in forest cover on near-surface climate

could be achieved also from an observational perspective through the availability of high-quality satellite-based data products

of key climate variables (e.g., surface temperature) and tree cover (e.g., Alkama and Cescatti, 2016). Similarly to models,

observation-based studies recognized the competing effects of evapotranspiration and albedo in forests (e.g., Li et al., 2015).65

Deforestation in the arid, tropical and temperate regions leads to an increase in the mean surface and air surface temperature

(Alkama and Cescatti, 2016; Bright et al., 2017; Duveiller et al., 2018b). In the boreal region, a clear seasonal pattern is

observed showing warming during the snow free months and cooling during the rest of the year with mean annual effect

ranging from mild warming to significant cooling (Alkama and Cescatti, 2016; Li et al., 2016b). In these studies, the climate

impact of deforestation is usually estimated between neighboring pixels with contrasting forest cover - the so called space-for-70

time substitution, using the difference in temperature before and after deforestation (e.g., Alkama and Cescatti, 2016; Li et al.,

2016b; Baker and Spracklen, 2019; Prevedello et al., 2019), or between climatology averages (e.g., Li et al., 2015; Duveiller

et al., 2018b) to account for natural climate variability. Importantly, both approaches only capture the local biogeophysical

effects of deforestation as non-local effects are either canceled out or indistinguishable from natural climate variability. Another

limitation of satellite observations is that they are collected during mostly cloud-free days, which can bias estimates of surface75

temperature changes (Chen and Dirmeyer, 2020). A new method proposed by Bright et al. (2017) overcomes this limitation

by deriving empirical estimates of the local surface temperature change using flux tower measurements, which are collected

continuously also during overcast conditions.

Comparing only the local biogeophysical effects of deforestation in ESMs and observations has reconciled many of the

earlier discrepancies in the findings based on these two approaches, particularly for northern latitudes (Pongratz et al., 2021).80
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Yet, substantial differences in the magnitude of the local temperature response remain in models and satellite-based studies,

especially in certain areas such as the boreal region and southern tropics (Winckler et al., 2019a). In addition, when considering

the combined (local and non-local) effects of deforestation, ESMs show substantial differences in temperature sensitivities to

deforestation, sometimes even with opposite sign (Boysen et al., 2020). Land surface models, an integral part of ESMs, still

have limitations in simulating turbulent heat fluxes, leading to discrepancies and even disagreement between models in the sign85

of change triggered by land cover transitions (Duveiller et al., 2018a). Uncertainties exist also in the satellite-based temperature

sensitivities, which can come from differences in the resolution and sensor accuracy or the underlying parametrization (Chen

and Dirmeyer, 2020).

One of the key goals of this study is to provide observational-based emergent constraints (Hall and Qu, 2006) for the

ESM responses to deforestation by comparing local surface temperature and key biogeophysical sensitivities to changes in90

forest cover in observations and models. Observations cannot be directly compared against ESMs because the spatial extent,

location and background climate conditions determine the biogeophysical response to deforestation and differ between the

observations and simulations. However, local sensitivities are largely independent of these effects, allowing us to apply the

emergent constraints approach. The emergent constraints concept states that a relationship between two variables can emerge

across simulations with different background climate (i.e. current climate and future climate projection) in a sufficiently large95

ensemble of ESMs. By knowing the local effects from observations and the emerging relationship between local and total

effects from model experiments, we could use these relationships to constrain the total effects of deforestation on the near-

surface climate.

In this study, we address therefore specifically the question whether the local effects of deforestation are consistent across

a range of ESMs and how well these agree with observed in-situ and satellite-based local responses. We investigate the dif-100

ferences in the local temperature response to deforestation (i.e. temperature sensitivity) in ESMs and observations and relate

them to biogeophysical properties controlling the interactions between forests and near-surface climate. The objective is to

provide observationally based emergent constraints for local surface temperature, albedo and latent heat flux sensitivities to

deforestation, against which the
::::
both

:::
the

::::
local

::::
and

::::
total

:::::
(local

:::
and

:::::::::
non-local)

:
ESM based sensitivities can be compared. This

evaluation of the simulated local climate effects of large-scale deforestation is a first step toward more robust simulations of105

the total (local and non-local) biogeophysical climate impact of large-scale afforestation and reforestation efforts.

2 Methods

2.1 ESM deforestation experiment

Idealized deforestation experiments have a higher signal-to-noise ratio compared to realistic deforestation scenarios, which

allows the deforestation signal to exceed model internal variability (Davin et al., 2010). The Land Use Model Intercomparison110

Project (LUMIP), endorsed by CMIP6, provides a set of experiments aiming to quantify the effects of land use and land cover

change on climate (Lawrence et al., 2016). In this study, we focus on the idealized global deforestation experiment deforest-

glob conducted as part of LUMIP. In this simulation, roughly 20 million km2 of forest are converted to natural grassland over
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a period of 50 years, followed by 30 years with stable forest cover. The deforestation is performed in grid cells having the

highest percentage of tree cover area, thus creating a similar pattern of deforestation across the ESMs, limited mostly to the115

boreal and tropical regions (Fig. 1). The climate and anthropogenic forcings are kept at pre-industrial level by branching off

the deforestation experiment from an 1850 control simulation (piControl) as defined by CMIP (Eyring et al., 2016). Dynamic

vegetation changes within deforested areas are disabled to prevent the regrowth of trees. A more detailed description of the

simulations is available in Lawrence et al. (2016). The ESMs that provided results for the deforest-glob experiment included:

MPI-ESM-1.2.0 (MPI) (Wieners et al., 2019; Pongratz et al., 2019), IPSL-CM6A-LR (IPSL) (Boucher et al., 2018, 2019),120

CESM2 (CESM) (Danabasoglu et al., 2019; Danabasoglu, 2019), CanESM5 (CanESM) (Swart et al., 2019b, a), CNRM-ESM2-

1 (CNRM) (Séférian, 2018, 2019), BCC-CSM2-MR (BCC) (Wu et al., 2018; Zhang et al., 2019), MIROC-ES2L (MIROC)

(Hajima et al., 2019; Ito and Hajima, 2020), UKESM1-0-LL (UKESM) (Tang et al., 2019; Wiltshire, 2020), EC-Earth3-Veg

(EC-Earth) (Döscher et al., 2022; EC-Earth Consortium, 2019, 2020), CMCC-ESM2 (CMCC) (Lovato et al., 2021; Peano

et al., 2021), and GISS-E2-1-G (GISS) (NASA Goddard Institute for Space Studies, 2018, 2020). All models couple land,125

atmosphere and ocean in terms of momentum, matter and energy (Lawrence et al., 2016).

The ESM simulations provide all required variables – surface temperature , albedo, latent heat flux, snow cover and forest

cover changes – from the same simulations. Because the albedos retrieved by the ESMs were not available from the model

output, the albedo used in this study was calculated as the ratio between surface upwelling shortwave radiation and incoming

shortwave radiation. The corresponding names conforming to the climate and forecast model conventions and CMIP standards130

are provided in Table A1. All analyses were performed at the original grid resolution except for Fig. 9, where the models’

outputs were resampled to a common 1.25°x0.94° grid using the nearest neighbor algorithm.

2.2 Observational datasets

Bright et al. (2017) combine remote sensing and in-situ measurements (from FLUXNET) to derive the local surface temper-

ature response to different land use and land cover changes. In their dataset, nine common land cover and land management135

transitions are studied. Here, we consider only three of them - grassland to evergreen needleleaved forest (ENF), grassland to

deciduous broadleaved forest (DBF), and grassland to evergreen broadleaved forest (EBF) conversion. As the ESMs simula-

tions document deforestation, we changed the signs of the observations prior to comparing them against the simulations and

thus assumed that the effects of reforestation and deforestation are symmetric. Previous studies (Alkama and Cescatti, 2016;

Prevedello et al., 2019) have shown that the local biogeophysical effects of afforestation and deforestation on temperature140

are to first order similar in magnitude but with opposite sign. While the assumption of proportionality is commonly adopted

(e.g., Winckler et al., 2019a), a new study has suggested a certain degree of asymmetry in that response (Su et al., 2023). The

grassland to ENF conversion is used when comparing the surface temperature response to boreal deforestation, as needleleaf

trees are the predominant tree type in this region. Similarly, the grassland to DBF transition is applied for deforestation in the

temperate region, and the grassland to EBF transition for deforestation in the tropics.145

We also utilized a compilation of satellite-derived MODIS data products of key climate and biogeophysical variables. These

include daytime land surface temperature (MYD11A2) (Wan et al., 2021), albedo together with snow cover (MCD43C3)
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Figure 1. Forest cover change in the deforest-glob simulation

(Schaaf and Wang, 2021) to account for the differences in background climate between ESMs and observations, and latent

heat flux (MOD16A2) (Running et al., 2017). Except for the latent heat flux, for which only an older version (v006) of the

MODIS data products is available, the most recent collection v061 was used (LP DAAC, 2023). Monthly data were retrieved150

for all years between 2003 and 2012. Similarly to other studies (e.g., Li et al., 2015), the blue-sky albedo that was used in our

analysis and considered to be representative of mean conditions, was calculated as the average of the black-sky and white-sky

shortwave broadband albedo. The albedo is instantaneous, provided at local solar noon time and averaged over 16 days. For
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albedo and snow cover, only observations with "relative good quality" (Schaaf and Wang, 2021) or higher were considered. All

MODIS-based datasets were reprojected to the WGS84 coordinate system and resampled to 0.05°.155

In addition, the Landsat-based Global Forest Change product developed by Hansen et al. (2013) was used to estimate the

differences in forest cover. For the period 2003-2012, the Hansen et al. (2013) dataset only reports the presence or absence

of forest cover loss and gain and, therefore, does not give a direct estimate of the percentage of forest cover. To retrieve the

percentage of forest cover change, the pixels at the original resolution of 30 m were resampled to 0.05° using averaging, thus

giving us a percentage estimate of the gain/loss for each 0.05° grid cell. Because the gain in forest cover is not reported for each160

year but as a binary mask for the period from 2000 to 2012, a linear change was assumed to retrieve yearly values (Alkama and

Cescatti, 2016). The difference between the loss and gain layers represents the forest cover change. The dataset was processed

in Python using the rasterio, xarray and rioxarray packages (Gillies et al., 2013; Hoyer and Hamman, 2017).

2.3 Extracting the deforestation climate signal

In the deforest-glob ESM experiment, the deforestation signal in land surface temperature, albedo and latent heat flux is derived165

by calculating the difference between the mean of the first 30 years of the pre-industrial control simulation (piControl), from

which deforest-glob is branched off, and the mean of the last 30 years of the deforestation simulation as in Boysen et al. (2020).

The change in forest fraction is calculated as the difference in tree cover before and after the deforestation took place.

In MODIS-based data products, a multi-year mean is calculated in order to diminish the effect of interannual climate vari-

ability (Baker and Spracklen, 2019). The deforestation response of the climate variables is calculated as the difference between170

the mean in the period 2003-2007 and the mean in the period 2008-2012. This approach is different from the one in Alkama

and Cescatti (2016), which considers only pairs of single year means for the climate variables and thus does not implicitly

account for interannual climate variability. The change in forest fraction is represented by the net change in forest cover in the

period 2003-2012.

In the FLUXNET-based dataset, the land cover and land use change signals are calculated by adding the surface temperature175

responses triggered by changes in albedo, heat conducted by the surface medium, and turbulent energy redistribution, which

are based on monthly mean climatologies from 2001-2011 (Bright et al., 2017). The change in forest fraction is 100% and is

considered only for pixels , where the respective vegetation cover types are actually present and/or could potentially occur as

defined by MODIS-derived land cover maps for 2005 and Köppen-Geiger climate zone maps for the 20th century.

The differences between the various datasets in terms of temporal resolution and continuity, consideration of cloud coverage,180

aggregation methods and consideration of land/ocean/atmosphere interactions are summarized in Table A2.

2.4 Separating local and non-local effects

The separation of local and non-local climate effects of deforestation in the ESM simulations is necessary in order to be

able to compare deforestation signals in the simulations and observations, as the latter only captures local effects (Pongratz

et al., 2021). In this study, we separated local and non-local effects in ESMs in a similar fashion as in the moving window185

approach by Lejeune et al. (2018). Alternative approaches of using information from different vegetation types at sub-grid
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Figure 2. Separation of local and non-local effects in ESMs. a) shows the list of predictors and predictands used as inputs in the multiple

linear regression; b) the regression is trained for each pair of 5x5 grid cells moving windows; c) the methodology is applied for all three

predictands; the regression coefficients β0,1,2,3,4 and the error term ϵ are specific for each pair of moving windows; β1 represents the local

sensitivity to tree cover change.

level (Malyshev et al., 2015) or a separation through additional simulations alternating grid cells with forest cover change with

unaltered vegetation cover (Winckler et al., 2017b) are not applicable to the CMIP6 output.

The method by Lejeune et al. (2018) entails fitting a linear regression between the temporal changes in the climate variables

and the changes in forest cover in neighboring pixels. However, instead of temporal changes, we use the climatological monthly190

mean values as a dependent variable from both the piControl and the deforest-glob simulations (Fig. 2a). This modification

is necessary because with the linear rate of deforestation (as performed in the deforest-glob experiments) the change pattern

in neighboring grid cells is too similar to determine a linear relationship between forest cover change and the variable of

interest (e.g., surface temperature). With our proposed modified method, the linear regression is trained by using simultaneously

the higher values of forest cover from the piControl simulation and the lower values of forest cover from the deforest-glob195

simulation together with the corresponding surface temperature, albedo or latent heat flux represented as a function of forest

cover, thus increasing the variation in the respective climate variables and improving the robustness of the linear regression

(Fig. 2b-c).

The exact method consists of the following steps: a moving window corresponding to 5× 5 model grid cells is applied over

the variable of interest; for each window pair, a linear regression is trained using four predictor variables: tree cover, latitude,200

longitude and elevation. Hereby, the linear regression is calculated only for pixels with more than 10% forest cover change

similarly to Chen and Dirmeyer (2020) and only for windows where at least eight pixels are available (for consideration of

signal-to-noise ratios). The slope of the tree cover variable represents the local sensitivity of a variable of interest (predictand)

to deforestation. This approach is adopted for all predictand variables (land surface temperature, albedo and latent heat flux).

The size of the moving window remains the same independently of the resolution of the ESM. The only exception is the IPSL205
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model, for which the window size was adjusted to 3 grid cells in longitude and 5 grid cells in latitude to account for the higher

latitudinal resolution.

The FLUXNET-based dataset provides only the local surface temperature response to land cover changes (Bright et al.,

2017). For MODIS-based datasets, local effects are extracted using the spatial gradient method by Alkama and Cescatti (2016).

Pixels with stable forest cover are identified, which are defined as having less than 2% difference in tree cover in the period210

2003-2012, and the change in the respective climate variable at these locations is interpolated, so that the background climate

signal can be retrieved and removed from the overall climate response. It should be noted that the background climate signal

is not equivalent to the biogeophysical non-local effects in models as the former encompasses also natural interannual climate

variability and greenhouse gas forcings. The local sensitivity to deforestation is determined by training a linear regression with

zero intercept in a moving 12° by 12° window, where tree cover is the predictor variable and its slope is the sensitivity. The215

sensitivity represents the change in surface temperature, albedo, or latent heat flux corresponding to 1% change in tree cover.

2.5 Constraining local sensitivities to deforestation – emergent constraints

When comparing the sensitivities of ESMs and satellite observations, a scaling to 100% deforestationis applied to account

for the different levels of tree cover change and to improve comparability with existing studies (Wang et al., 2023). Here,

we assume a linear response of the
::
By

:::::::
showing

::::
the

:::::
linear

::::::::::
relationship

:::::::
between

:::::
local

:::
and

:::::
total

::::::
surface

::::::::::
temperature

:::::::
change220

:::
due

::
to

::::::::::::
deforestation,

:::
we

::::
are

::::
able

::
to

::::::::
constrain

::::
the

::::::
overall

::::::::
response

::
of

::::::
ESMs

::
to

::::::::::::
deforestation,

:::
for

::::::
which

:::
no

:::::::::::
observations

::
are

:::::::::
available,

::
as

:::
the

::::::
range

::
of

::::::::
plausible

:::::
local

::::::
surface

:::::::::::
temperature

::::::::::
sensitivities

::
is

::::::::
narrowed

:::::
down

:::
by

:::::::::::
observations

:::
and

:::::
total

::::::
surface

::::::::::
temperature

::::::::
responses

:::
are

::::::
related

:::
to

::::
those

:::
by

::::::::::
statistically

:::
and

:::::::::
physically

::::::::::
meaningful

::::::::::
relationship.

:::
By

:::::
using

:::
the

:::::
local

:::::::::
sensitivities

:::::::
derived

::::
from

::::::
in-situ

::::
and

::::::::::::
satellite-based

::::
data,

:::
we

:::
are

:::::::::
potentially

::::
able

::
to
:::::::

provide
::::::::
emergent

:::::::::
constraints

:::
for

:::::::
surface

::::::::::
temperature,

::::::
albedo

:::
and

:::::
latent

::::
heat

::::
flux.

:::
The

::::::::::
sensitivities

::
of

:::::
these climate variables to tree cover change, although a recent study225

suggests that afforestation and deforestation have effects with differing magnitudes (Su et al., 2023). This assumption affects

mostly satellite-based data, where the tree cover changes in both directions. Thus, depending on whether a pixel has undergone

more afforestation or deforestation, the strength of the sensitivities might be underestimated or overestimated, respectively. If

estimated separately for tree cover gain and loss, the difference in surface temperature sensitivity can reach 0.15°C in absolute

value (Su et al., 2023)
::::::::::
deforestation

:::
are

::::::
studied

::::
both

::::::::::
temporally

:::
and

:::::::
spatially

:::
to

::::::
account

:::
for

:::
the

::::
fact

:::
that

:::::
some

::::::
climate

:::::::
models230

:::::
might

:::::::
perform

:::::
better

:::::
under

::::::
certain

:::::::
climatic

::::::::
conditions

::::::
and/or

:::
for

::::::
certain

::::::
regions.

In order to evaluate the consistency of seasonal surface temperature responses between the ESMs and the observation-based

estimates, we extracted the mean values of local surface temperature responses to deforestation also at monthly timescale for

broad latitudinal regions: boreal (from 50° N to 90° N), temperate (from 23° N to 50° N) and tropical (from 23° S to 23° N).

We repeated this analysis step for albedo and latent heat responses to aid the interpretation of the surface temperature effects.235

By showing the linear relationship between local and total surface temperature change due to deforestation, we are able to

constrain the overall response of ESMs to deforestation, for which no observations are available, as local surface temperature

sensitivities from models and observations can be brought into a meaningful relationship. By using the local sensitivities

derived from in-situ and satellite-based data, we are potentially able to provide emergent constraints for surface temperature,
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albedo and latent heat flux. The sensitivities of these
:::::
When

:::::::::
comparing

:::
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::::::::::
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::
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::::::
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:::::
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::::::
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::::
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:::::::
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:::::
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:::::
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both temporally and spatially to account for the fact that some climate models might perform better under certain climatic

conditions and/or for certain regions
:::
tree

:::::
cover

:::::::
change,

:::::::
although

::
a
:::::
recent

:::::
study

::::::::
suggests

:::
that

:::::::::::
afforestation

::::
and

:::::::::::
deforestation

::::
have

::::::
effects

::::
with

::::::::
differing

:::::::::
magnitudes

::::::::::::::
(Su et al., 2023)

:
.
::::
This

::::::::::
assumption

::::::
affects

::::::
mostly

::::::::::::
satellite-based

::::
data,

::::::
where

:::
the

::::
tree245

::::
cover

:::::::
changes

:::
in

::::
both

:::::::::
directions.

:::::
Thus,

:::::::::
depending

::
on

:::::::
whether

::
a
::::
pixel

::::
has

:::::::::
undergone

::::
more

:::::::::::
afforestation

::
or

::::::::::::
deforestation,

:::
the

::::::
strength

:::
of

:::
the

::::::::::
sensitivities

:::::
might

::
be

:::::::::::::
underestimated

::
or

::::::::::::
overestimated,

:::::::::::
respectively.

::
If

::::::::
estimated

::::::::
separately

:::
for

::::
tree

:::::
cover

::::
gain

:::
and

::::
loss,

::::
the

::::::::
difference

:::
in

::::::
surface

::::::::::
temperature

:::::::::
sensitivity

:::
can

:::::
reach

::::::
0.15°C

::
in

:::::::
absolute

:::::
value

:::::::::::::
(Su et al., 2023).

We refer to "observational constraints" as a broader term, encompassing emergent constraints. When non-local or total

effects are referred to, we use specifically the term (observational) emergent constraints, as these effects can be evaluated only250

by considering the emergent linear relationship between the different models.

3 Results

3.1 Spatial pattern in local responses to deforestation in observations and ESMs

Averaged over the globe, the local response to complete deforestation is mostly dominated by cooling in the northern latitudes,

which overwhelms warming in the tropics. The magnitude and spatial pattern of local responses, however, vary across the255

ESMs with some showing weaker cooling in the northern latitudes (e.g., MPI, IPSL and BCC) compared to the rest of the

models (Fig. 3). In the tropics, all models except MIROC show local warming with varying magnitude and spatial patterns

(Fig. 3). The weaker cooling in some climate models (e.g., MPI, IPSL, BCC) in the boreal region is more consistent with the

MODIS-based local responses to deforestation in comparison to the models showing strong non-local cooling effects (Fig. 3).

A closer look into tropical regions indicates complex and partially diverging local responses to deforestation. For example,260

CESM and IPSL show stronger warming in the southern part of the tropical region both in the Amazon and Congo basins.

3.2 Seasonal local responses to deforestation in observations and ESMs

Our results show that in the boreal region, observation-based local surface temperature responses exhibit cooling during boreal

winter and warming in boreal summer (Fig. 4a). Although this seasonal pattern is confirmed by observational and model studies

(Alkama and Cescatti, 2016; Strandberg and Kjellström, 2019; Winckler et al., 2019b), it is only reproduced by a subset of265

ESMs (MPI, IPSL and BCC), while the majority of the other models shows a cooling response throughout the year (albeit with

substantially more cooling in the colder season) (Fig. A2a). Compared to observations, the ESMs also show a considerably

stronger increase in surface albedo following deforestation, especially in the colder season, which may explain the stronger

cooling in the ESMs (Fig. 4a-b). Satellite observations also show a decline in latent heat flux due to deforestation, which is

centered in the growing season and may overwhelm the relatively weak albedo effect giving rise to warming during this time270
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Figure 3. Local annual surface temperature response to complete deforestation for eleven ESMs, which have conducted the deforest-glob

simulation (a-k). Stippling indicates non-statistically significant changes between a control and the deforestation scenario at the 5% signif-

icance level. (l) shows the local annual surface temperature response based on MODIS data. For this, the change in surface temperature is

calculated as the difference between two reference periods: 2003-2007 and 2008-2012. The change in forest cover (based on Landsat data)

is calculated as the cumulative change (gain minus loss) from 2003 to 2012.

of the year (Fig. 4a-c). The ESMs’ latent heat flux reductions due to deforestation tend to be larger compared to observations
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Figure 4. Monthly local surface temperature (first row), albedo (second row) and latent heat flux (third row) responses to complete defor-

estation for the boreal (a, b, c), temperate (d, e, f), and tropical region (g, h, i). Only models showing statistically significant changes at the

5% significance level for all months are included (following this criterion MIROC is excluded).

(albeit with considerable spread), but in this case the strong albedo response in the ESMs seems more important in terms of

changes in the surface energy balance leading to the cooling pattern (Fig. 4a-c).

In the temperate region, the observational datasets show predominantly warming, which peaks during the boreal summer

months, with the MODIS dataset exhibiting warming during the entire year, while the FLUXNET-based dataset displays weak275

cooling during winter (Fig. 4d). The FLUXNET-based dataset has almost constant warming during spring and summer, while

the MODIS surface temperature response spikes in June. While broadleaved forests in Europe were replaced by coniferous

forests throughout the last centuries and may not be the dominant forest type in Europe anymore (Naudts et al., 2016), the

local surface temperature response of the two types of forest conversion is almost identical (Bright et al., 2017) and therefore

the choice of a specific forest transition does not influence the observational constraint (Fig. A3). The ESMs, on average, show280

less cooling during June, July and August compared to the rest of the year, with only MPI, IPSL and BCC exhibiting warming
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during the boreal summer (Fig. A2d). The albedo shows a pattern similar to that of the boreal forest but attenuated during the

colder months (Fig. 4e). As in the boreal region, the ESMs’ albedo response is considerably stronger than the MODIS one.

The latent heat flux response of ESMs is also stronger compared to observations (Fig. 4f). However, not all models are able

to reproduce the anticipated overall annual decrease in latent heat. In those ESMs, which do simulate the decline, and also in285

observations, the decrease of latent heat flux is more pronounced during spring and summer coinciding with vegetation growth.

In the tropics, most models show warming (Fig. 4g). The MODIS surface temperature signal lies considerably above the

FLUXNET-based dataset and the model ensemble mean, while the latter two agree closely. The only model that shows con-

sistent cooling over the tropics is GISS (Fig. A2g). In the tropics, the albedo plays a secondary role in explaining the surface

temperature response (Fig. 4h). The differences before and after deforestation are much smaller in magnitude and consistent290

throughout the year. The ESMs mean albedo is slightly higher than the observational estimate. The latent heat flux response of

ESMs is stronger compared to observations and does not have seasonal fluctuations (Fig. 4i). Some models show an increase in

latent heat flux as a result of deforestation. Such anomalous behavior is observed also when considering the combined effects

of deforestation (Boysen et al., 2020).

3.3 Comparison of local sensitivities to deforestation between observations and ESMs – emergent constraints295

The largely consistent behavior (among the ESMs, among the observations, and between the ESMs and the observations) in

regard to local responses to deforestation in albedo and latent heat flux and the corresponding local surface temperature open

up the possibility of providing observation-based emergent constraints. A key result is that across the ESMs the local surface

temperature response to deforestation exhibits a strong linear relationship with the local albedo sensitivity, so that models that

have a strong albedo sensitivity show stronger cooling (Fig. 5a-c). This is particularly evident in the boreal and temperate300

regions with robust linear relationships between these metrics as shown by the percentage of variance explained in the model

simulations (0.59 and 0.76 for the boreal and temperate regions, respectively). Importantly, for the boreal and temperate regions,

the local surface temperature and albedo sensitivities based on observations are considerably smaller in magnitudes compared

to the ESMs and in the case of surface temperature exhibit even opposite signs (Fig. 5a-b). In the tropics, the albedo sensitivities

to deforestation in the ESMs also tend to be slightly overestimated, however, still rest close to the observational constraint (with305

most models falling within the boundaries defined by the standard deviation of the MODIS observations) (Fig. 5c).

The discrepancy in local albedo and surface temperature sensitivities to deforestation in observations and climate models

in the northern latitudes may be partially explained by different levels of observed and simulated snow cover. That is because

the deforestation-induced albedo increases are thought to be largest in regions with extensive snow cover (due to the loss

of effective masking of the snow albedo by darker trees (Bonan, 2008)). A complementary analysis for the boreal region310

during spring showed differences in snow cover extent between the ESMs and observations (Fig. 6a-b), which can in part

be explained by the colder background climates in the ESMs that are more representative of preindustrial conditions (see

Methods). Separating the effect of different levels of snow cover reveals that for pixels with higher snow cover in the boreal

region during spring, the difference in albedo sensitivity to deforestation between climate models and observations is largest,
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Figure 5. Emergent constraints for local annual surface temperature and albedo for the boreal (a), temperate (b) and tropical (c) regions. The

dashed line with orange
::::
green

:
uncertainty range shows the FLUXNET-based surface temperature sensitivity to complete deforestation (Bright

et al., 2017). All sensitivities are scaled to 100% deforestation, so that the sensitivity represents the change in surface temperature/albedo

corresponding to 100% change in tree cover. The error bars show the standard deviation based on annual mean values. The percentage

variance explained is denoted by R2.

whereas over regions with less snow cover, these differences become smaller (Fig. 6c-e). This relationship persists also when315

accounting for the different geographic distribution of the pixels (Fig. A4).

Taken together, these results do suggest that in comparison to observations the subset of CMIP6 ESMs investigated here

substantially overestimate albedo increases resulting from deforestation in northern latitudes (especially in boreal regions with

extensive snow cover) and as a result produce considerable local cooling response, whereas the observations show only little

changes in local surface temperature response (in part due to compensating effects of local cooling and warming responses320

during the colder and warmer seasons, respectively).

Unlike for albedo, no clear linear relationship between local surface temperature and latent heat flux sensitivities to defor-

estation could be identified in ESMs (Fig. 7). Across the ESMs, the local latent heat flux sensitivities to deforestation show a

wider spread in the tropics compared to the northern regions, but many of the simulated responses are within (or not far from)

the corresponding satellite-based constraints (Fig. 7).325

In the tropics, local surface temperature sensitivities to deforestation differ markedly in the satellite-based and in-situ es-

timates. The majority of the ESMs shows a positive local surface temperature sensitivity to deforestation well within obser-

vational constraints, but two models also show an (unexpected) negative local surface temperature sensitivity that may be

explained by an overestimation of the albedo increase following deforestation (e.g., GISS, UKESM) (Fig. 5c and Fig. 7c). In

other cases, models that are close to the observational constraints for surface temperature sensitivity may compensate their330

high albedo sensitivity with an even stronger latent heat flux sensitivity (e.g., MPI) leading to a realistic temperature response

(Fig. 5c, Fig. 7c and Fig. A5c).
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Figure 6. Monthly mean boreal snow cover for models and observations (a). Distribution of boreal snow cover extent in models and observa-

tions for the spring season (March and April) (b). Emergent constraints for the boreal spring for different levels of snow cover (c, d, e). Only

March and April are considered due to substantial snow cover differences between models and observation in May. The FLUXNET-based

dataset (depicted with dashed line with orange
::::
green uncertainty range) (Bright et al., 2017) does not contain information about snow cover,

so a spring average is displayed.

Figure 7. Emergent constraints for local annual surface temperature and latent heat flux sensitivities for the boreal (a), temperate (b) and

tropical (c) regions. The dashed line with orange
::::
green

:
uncertainty range shows the FLUXNET-based surface temperature sensitivity to

complete deforestation (Bright et al., 2017). All sensitivities are scaled to 100% deforestation, so that the sensitivity represents the change in

surface temperature/latent heat flux corresponding to 100% change in tree cover. The error bars show the standard deviation based on annual

mean values.
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Figure 8. Emergent constraints for local and total annual surface temperature for the boreal (a), temperate (b) and tropical (c) regions.

The dashed line with orange
::::
green

:
uncertainty range shows the FLUXNET-based surface temperature sensitivity to complete deforestation

(Bright et al., 2017). The dashed line with blue
:::::
orange uncertainty range shows the MODIS-based surface temperature sensitivity to com-

plete deforestation. The local sensitivities (x-axis) are scaled to 100% deforestation, so that the sensitivity represents the change in surface

temperature corresponding to 100% change in tree cover. The y-axis shows the total (local and non-local) surface temperature response to

deforestation, no scaling is applied. The error bars show the standard deviation based on annual mean values.

3.4 Local, non-local and total surface temperature effects of large-scale deforestation

While a necessary requirement for a good model is that local surface temperature sensitivities to deforestation agree with

observations, an intriguing question is if deviations at local levels also translate into deviations in the total surface temperature335

response. A corresponding analysis comparing local and total surface temperature sensitivities to deforestation does reveal a

linear relationship between these two variables giving rise to another set of emergent constraints (Fig. 8). For the boreal and

temperate regions specifically, these results show that models that overestimate the local cooling effect of deforestation also

tend to overestimate the total cooling effect. The interpretation of these emergent constraints, however, is not straightforward as

some models that agree well with observations in regard to local surface temperature sensitivities may achieve this only because340

of compensatory effects of high sensitivities to albedo and latent heat (see Section 3.3).
:::
For

:::
the

:::::
boreal

::::
and

::::::::
temperate

:::::::
regions

:::::::::
specifically,

:::::
these

::::::
results

::::
show

::::
that

::::::
models

::::
that

::::::::::
overestimate

:::
the

:::::
local

::::::
cooling

:::::
effect

::
of

:::::::::::
deforestation

::::
also

::::
tend

::
to

:::::::::::
overestimate

::
the

::::
total

:::::::
cooling

:::::
effect.

:::
As

:::
the

::::
local

:::::::
cooling

:::::
effect

::
of

:::::::::::
deforestation

::
is

:::::::
strongest

:::
in

::
the

::::::
colder

:::::::
months,

:
it
::
is
::::::::
important

::
to
::::::::
consider

::::::
whether

:::
the

:::::::::::::
overestimation

:::
can

::
be

::::::::
observed

::::
also

:::::
during

:::
the

:::::::
warmer

:::::::
months,

:::::
when

:::
the

::::::
albedo

:::::
effects

:::
are

:::
not

::::
that

::::::::::
pronounced.

:

In order to isolate the strong albedo effects on surface temperature in the northern hemisphere, a separate analysis is per-345

formed concentrating on boreal summer (June, July, August) (Fig. 9). In this analysis, we focus on models having plausible

local albedo and latent heat flux sensitivities, defined here as being within two standard deviations of the model ensemble mean

(as presented in Fig. 4), which leads to the exclusion of four out of the eleven ESMs.

In the summer, a strong local warming effect can be observed, however, this effect is not spatially homogeneous. For the

boreal region and part of the northern hemisphere temperate region (up to 34◦N) a local cooling is seen (Fig. 9c). A summer350

non-local cooling, although not as strong compared to the annual non-local effects, can be observed throughout the globe de-

16



Figure 9. Surface temperature differences due to deforestation during boreal summer (June, July, August) in land grid cells (a); the local

and non-local effects are calculated as an average of all models having local albedo and latent heat flux sensitivities within two standard

deviations of the model ensemble mean (thus, excluding CanESM, CNRM, MIROC and UKESM); here, only the actual deforestation in

the deforest-glob experiment is considered. All lines are smoothed using a 10° moving average. (b), (c) and (d) show the total, local and

non-local effects of deforestation during boreal summer. The non-local effects are calculated as the difference between the total and local

effects. Only statistically significant changes at the 5% significance level are shown. All datasets are resampled to approx. 1°.

spite the albedo effect of snow being excluded (Fig. 9a). ,
::::::::::
confirming

:::
that

:::
the

::::::::::::
overestimation

::
of

:::::::
cooling

::::
(Fig.

:::::
8a-b)

::::::
persists

::::
also

:::::
during

:::::::
summer.

:
The summer non-local effects are strongest in the high latitudes (above 50◦N). However, strong variation exists

among ESMs, with some models showing non-local warming in the boreal region, specifically at the place of deforestation

(Fig. A1). In the tropics, there is also non-local warming at the place of deforestation, most prominent in the Amazon, though355
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it is not strong enough to overpower the non-local cooling from neighboring grid cells (Fig. 9a,d). The compound response of

summer local and non-local effects (i.e. total effect) is dominated by cooling, except for the tropics, where an overall warming

can be observed (Fig. 9b). This warming is strongest in the southern part of the Amazon. The total summer surface temperature

response over land averages to -0.23K globally, comprised by 0.02K local warming and -0.25K non-local cooling.

4 Discussion360

4.1 Identification of observational constraints for surface temperature

Our study shows that climate models largely agree on the sign and the general spatial pattern of surface temperature change

as a result of deforestation; nevertheless, the magnitude of these changes differs across models and observations. The overall

pattern of warming in the tropics and cooling in the northern latitudes is in line with previous studies on the local effects of

deforestation (e.g., Winckler et al., 2017b). However, a more detailed look at the tropics reveals differences in the surface365

temperature response in the Amazon, Congo basin and Southeast Asia, which are not that pronounced in observational datasets

(Fig. 3). Some of these discrepancies are thought to be triggered by differences in the spatial distribution of the initial tree cover

in the ESMs, while other stem from differences in the strength of vegetation-atmosphere feedbacks. The stronger warming that

is observed in the southern part of the Amazon may be linked to the deforestation-induced strong decrease in evapotranspiration

during the dry season (Zemp et al., 2017; Baker and Spracklen, 2019), which is longer and more pronounced in the southeastern370

part of the basin (Davidson et al., 2012). MIROC shows no significant effects on surface temperature from deforestation, likely

as a result of the fast regrowth of forest, which is immediately merged into existing vegetation with developed canopy (Boysen

et al., 2020).

Throughout the year, most models show a consistent overestimation of the cooling response in the boreal and temperate

regions. Because of the emergent constraints relationship between the local and total surface temperature effects, this over-375

estimation is valid also for the overall response to deforestation, thus showing that most models exhibit too strong cooling

in comparison to observations (Fig. 8). For the tropics, however, approximately half of the ESMs show realistic total surface

temperature response, as defined by the emergent constraint based on MODIS data, with fewer models being within the real-

istic margins defined by the FLUXNET-based dataset (Fig. 8). In the tropics, there is a better agreement between the ESMs

ensemble mean and the FLUXNET-based estimate. The MODIS estimate in all regions and particularly in the tropics lies380

considerably above the model mean (Fig. 4). This disparity can be explained by the bias of optical remote sensing products

towards cloud free days and the resulting overestimation of land surface temperature (Li et al., 2015). While this bias occurs

globally, it is most notable in the tropics because of the high cloud cover fraction there. The overpass time of the Aqua satellite

(on board of which is the MODIS sensor) is at 1:30 pm and thus closer to the daytime maximum surface temperature rather

than the daily surface temperature average used in the model comparison. Using the daytime maximum surface temperature in385

the comparison with MODIS data has shown more consistent results (Chen and Dirmeyer, 2020). Accounting for cloud cover

in ESMs can also make them more comparable with observations (Chen and Dirmeyer, 2020). The level at which temperature
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is measured (i.e. surface temperature, temperature at the lowest atmospheric layer, near-surface air temperature) also influences

the strength of local effects (Winckler et al., 2019c).

4.2 Identification of observational constraints for albedo390

Similarly to Boisier et al. (2012), all models showed a consistent increase in albedo after deforestation with varying magnitude.

In the boreal region and to a lesser extent in the temperate region, discrepancies in the albedo response in models and observa-

tions (based on MODIS) were found. These discrepancies only partially stem from the differences in snow cover conditioned

by the reference climate settings. An additional analysis accounting for the different levels of snow revealed that albedo sen-

sitivities over snow are overestimated (Fig. 6), which has been confirmed also by Lejeune et al. (2020) and Luo et al. (2023).395

Based on the emergent constraints (Fig. 8), the overestimated local sensitivities of albedo suggest that the overall albedo re-

sponse and the corresponding cooling are also overestimated. In the boreal region, the overestimation is possibly related to

the cold bias in Siberia still observed in many CMIP6 models (Portal et al., 2023). Our results revealed that some models

(e.g., MPI) closer to the observational constraint for surface temperature (i.e. global mean local warming) tend to compensate

their high latent heat flux sensitivity with high albedo sensitivity (Fig. A5). Thus, models having overestimated albedo and400

turbulent heat flux sensitivities can be close to the observational surface temperature constraint as compensating effects occur.

Luo et al. (2023) have also reported that models representing better surface temperature after deforestation do not necessar-

ily have realistic albedo and turbulent heat flux estimates. The slope of the linear relationship between surface temperature

and albedo sensitivity decreases with increasing snow cover, indicating a non-linear behavior of the sensitivities. Gottlieb and

Mankin (2024) point out that snow cover in spring is less affected by warming if climatological winter temperatures are below405

-8°C. Thus, colder regions with more snow cover are expected to have a weaker relationship between temperature and albedo

sensitivities.

4.3 No emergent constraints for latent heat flux

No clear linear relationship could be observed between surface temperature and latent heat flux sensitivities to deforestation

(Fig. 7). While the absence of such an emergent constraints relationship may not be too surprising for the boreal and temperate410

regions (since latent heat changes may not yield a first-order influence on annual surface temperature responses), the apparent

lack of such a relationship also for the tropical regions is surprising given the strong influence of the latent heat flux on

temperature responses (Bonan, 2008). Indeed, ESMs still cannot reliably estimate the change in latent heat flux, as evidenced

by the wide spread of sensitivities and the disagreement in the sign of the change reported also in earlier studies (de Noblet-

Ducoudré et al., 2012; Boisier et al., 2012; Devaraju et al., 2018; Duveiller et al., 2018a). Recent research (Winckler et al.,415

2019b; Devaraju et al., 2018) has explored the effects of surface roughness and the consequent changes in turbulent heat fluxes,

arguing that surface roughness could be the main factor modulating the local surface temperature response even in the boreal

forest during the spring season, when albedo effects are strongest. Our analysis showed that this effect reported on the basis of

simulations with MPI and IPSL might be related to the strong latent heat flux sensitivity of these models (Fig. 7a-c).
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The albedo and latent heat flux sensitivities shown here are in line with Devaraju et al. (2018), who report that IPSL has420

stronger turbulent heat flux sensitivity compared to CESM, which, on the other hand, exhibits stronger albedo sensitivity. Two

of the models (EC-Earth and CMCC) show a mean increase in latent heat flux, which in the case of EC-Earth might be partly

due to the replacement of trees with very productive grasses with high Leaf Area Index in wetter areas. The difficulties of

ESMs in reproducing turbulent heat fluxes are well known and have also been confirmed in the newest generation of CMIP6

models (Luo et al., 2023).425

4.4 Non-local effects in comparison with other studies

In our analysis of the local and non-local effects during boreal summer, we show that there is non-local cooling associated

with deforestation throughout the globe, which compensates for most of the local warming except for the tropics (Fig. 9). The

non-local cooling could be explained with the increase of albedo and consequently the decrease of net surface radiation. While

higher albedo causes cooling both locally and non-locally, local albedo-induced cooling is offset by decreases in latent and430

sensible heat fluxes (Winckler et al., 2019a). The resulting cool and dry air is moved away from the place of deforestation

through advection (Winckler et al., 2019a). The non-local cooling reported here only partially agrees with Chen and Dirmeyer

(2020), who also observe non-local cooling in the temperate and boreal regions, and however reveal stronger non-local warming

in the tropics. This discrepancy might be explained by the fact that Chen and Dirmeyer (2020) consider daily maximum surface

temperature during cloud-free days, while the non-local effects reported here refer to mean surface temperature without being435

limited to cloud-free days and only account for partial deforestation. The globally averaged non-local cooling, in general,

agrees with other studies (e.g., Devaraju et al., 2018; Winckler et al., 2019a). It is stronger in the mid and high latitudes, while

in the tropics the local effects dominate the temperature response in line with Devaraju et al. (2018) and Winckler et al. (2019a).

However, the magnitude of non-local effects is largely dependent on the extent of deforestation (Winckler et al., 2017b), thus

making a comparison with other deforestation experiments difficult.440

5 Limitations

In comparing the biogeophysical effects of deforestation between models and observations, there are a number of limitations to

be considered. The method used for the separation of local and non-local effects could influence the magnitude of the effects.

A comparison of a spatial interpolation method commonly used in chessboard pattern deforestation experiments (Winckler

et al., 2017b) with the moving window approach by Lejeune et al. (2018) revealed that the latter could lead to an under-445

estimation of local effects up to a factor of two. An additional analysis comparing temperature sensitivities to deforestation

based on the linear regression method applied in this study and the chessboard pattern deforestation experiments of Winck-

ler et al. (2019a) did not reveal
:::::
reveal

::::
some

::::::::::
differences

::
in

::::::::::::
corresponding

:::::::
patterns

:::
but

:::
did

:::
not

:::::::
provide evidence of systematic

underestimation
:::::
under-

::
or

::::::::::::
overestimation

:
of local effects (Fig. A6e, f).

:
).
::::::::
However,

:::::::::::
comparisons

::
of

::::
the

::::
local

:::::::::::::
biogeophysical

:::::
effects

::::::
among

::::::::
different

:::::::::::
deforestation

::::::::
scenarios

:
-
::::
even

::::::
within

:::
the

:::::
same

:::::
model

:::::::::
framework

::
-
:::
are

::::::::::
challenging

::
as

::::
local

:::::::
effects,

::
in450
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::::
their

::::::
impact

::
on

::::::
global

:::::::
climate,

:::
are

:::::::::
influenced

:::
by

:::
the

::::::
degree

::
of

:::::::::::
deforestation

:::::
(e.g.,

:::::
partial

:::
or

:::::::::
complete),

:::
and

:::
the

::::::
initial

:::::
forest

::::
cover

:::::::::::::::::::::::::::::::::
(Li et al., 2016a; Winckler et al., 2017a).

:

It should be noted that in our study the local effects represent responses due to incomplete deforestation as defined in

the deforest-glob experiment. An additional scaling to 100% was applied in order to make these local effects comparable

:::::::
compare

:::::
these

::::::::::
ESM-based

::::
local

::::::
effects to observations, which only capture complete deforestation. Thus, it is expected that455

the modeled effects without the scaling applied (Fig. 9) are attenuated in comparison to the observational datasets. When

evaluating non-local effects, scaling to 100% deforestation is not appropriate as non-local effects cannot be directly attributed

to the percentage of tree cover, although some authors suggest a linear relationship between non-local effects and the number

of deforested grid cells (Winckler et al., 2019a). However, scaling to 100%
::
(as

:::::::
applied

:::
here

::::::
often) could lead to overestimation

of local effectscompared to other methods (Fig. A6g, h) ,
:
possibly because the relationship between surface temperature and460

tree cover change is not strictly linear as
::::
since albedo and evapotranspiration effects vary as a function of initial tree cover and

across biomes (Bonan, 2008; Alibakhshi et al., 2020).
::::::::::
Importantly,

::::::::
potential

::::::::::
uncertainties

:::::::::
associated

::::
with

::::::
scaling

::
or

:::::::
method

::
of

::::::::
separating

:::::
local

:::
and

::::::::
non-local

::::::
effects

::
do

:::
not

::::
alter

:::
the

::::::::::
relationship

:::::::
between

::::::::::
ESM-based

::::
total

:::
and

:::::
local

::::::::::
temperature

::::::::::
sensitivities

::::
(Fig.

::
8)

:
-
:::
as

::
all

:::::::
models

:::::::::
experience

:::
the

:::::
same

:::::
‘bias’

:
-
:::
and

::::::::
therefore

:::
the

:::::
slope

::
of

:::
the

:::::
linear

:::::::::::
relationship

::::::
central

::
to

:::
the

::::::::
emergent

::::::::
constraint

:::::::
concept

::
is

:::
not

:::::::
affected.

::::::::
However,

::
a
:::::::
possible

::::::
under-

::
or

::::::::::::
overestimation

::
of
::::

the
:::::::::
ESM-based

:::::
local

::::::
effects

:::::
could

::::
lead

::
to465

::::
shifts

::
in
:::
the

:::::::::
proximity

::
to

:::::::::::
observational

::::::::::
constraints.

Another important factor are the background climate conditions. Here, we study only the biogeophysical effects of defor-

estation ignoring that the observations were collected in the last decades under a warmer climate compared to the pre-industrial

conditions used as a reference in climate models. While we control for differences in snow cover, we cannot account for the

changes in plant physiology resulting from adaptation to a warmer climate with higher concentration of CO2 and the conse-470

quent effects on sensitivities. Traditionally, plant functional types, which capture the physiological traits of vegetation in ESMs,

have been fixed (Wullschleger et al., 2014). However, the inclusion of trait variation in plant functional types as a response

to environmental changes can significantly alter ESMs’ outputs (Verheijen et al., 2015). Pitman et al. (2011) have also elab-

orated on the effects of background climate on deforestation induced changes in surface and near-surface variables, arguing

that changes in rainfall and snow induced from increased CO2 levels control biogeophysical effects and can even reverse their475

sign. It is not clear how the hydrometeorological state under increased greenhouse gases conditions affects local and non-local

biogeophysical changes separately. A simulation similar to deforest-glob but under fixed present-day climate conditions could

improve our understanding of how background climate influences deforestation effects.

In many deforestation simulations, forested areas are converted to grasslands, which do not necessarily represent the major

land use and land cover change in observations. Similarly to Devaraju et al. (2018), we assume that the different resolution of the480

models does not affect the separation of local and non-local effects, which does not hold true for satellite-based observations.

Coarse resolution satellite measurements of surface temperature reveal a cooling in response to deforestation that is not visible

in fine resolution datasets such as MODIS, which can be attributed to the fact that cloud effects are present in coarse resolution

datasets (Chen and Dirmeyer, 2020). Here, we calculate the sensitivities as latitudinal means, however, a more complete
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constraint analysis would include regional sensitivities as local biogeophysical effects of deforestation have distinctive regional485

patterns (Fig. 3).

Instantaneous observational measurements of albedo are often used in the modeling community (e.g., Duveiller et al., 2018a;

Chen and Dirmeyer, 2020). However, these measurements do not fully correspond to the true daily mean albedo, which ac-

counts for differences in the sun zenith angle. Daily mean albedo can be up to 8.8% higher than local noon albedo on an annual

basis, and the difference can reach more than 10% under snow free conditions (Wang et al., 2015). It should also be noted that490

the MODIS product has a limited number of pixels in the boreal region fulfilling the quality criteria during the winter months,

making the albedo monthly average values less representative compared to the other seasons. The low count of quality pixels

explains the lower albedo in January compared to December and February. An additional analysis concentrating only on grid

cells, where valid MODIS pixels exist, did not reveal considerable changes in the ESMs’ response (Fig. A7).

Lastly, testing the emergent constraints in different experiments and multi-model ensembles is an important next step towards495

confirming its robustness. The overestimation of albedo sensitivities over snow and the difficulties of models in representing

turbulent heat fluxes, as found in our study, have also been documented in the study of Luo et al. (2023), which is based on

historical land use and land cover changes and therefore represents more realistic patterns of deforestation. Therefore, one can

expect that the surface temperature emergent constraint would hold true also under more realistic conditions; however, more

studies applying the emergent constraint concept in land use and land cover change scenarios are needed.500

6 Conclusions

In this study, we investigate the biogeophysical response to deforestation in eleven state-of-the-art ESMs, part of the latest

CMIP6. Climate models mostly agree on the sign of the local surface temperature change after deforestation: cooling in the

boreal region and warming in the tropics. In contrast, in observations, the local cooling effect is weaker and warming dominates

the annual surface temperature response. For the boreal and temperate regions, the difference in surface temperature response is505

stronger during the winter and spring months, mostly due to differences in albedo. These differences can be partially attributed

to the higher percentage of snow cover in climate models compared to observations. Even when accounting for the different

levels of snow cover, ESMs still show stronger albedo sensitivity than observations. The robust linear relationships of local

surface temperature sensitivity with total surface temperature response, and with local albedo sensitivity point towards emergent

constraints for albedo and surface temperature. Thus, the overestimation of the local albedo sensitivity and the corresponding510

strong local cooling are indicative of overestimation of both local and non-local
::::
total effects in the ESMs in northern latitudes.

The sensitivity of latent heat flux to deforestation does not show a clear relationship to surface temperature sensitivity across

the different latitudes and not all ESMs reproduce the expected decrease of latent heat flux. Despite the good overlap between

the ensemble mean and the observational constraint for latent heat flux, considerable variation exists between models. In

some models, overestimated albedo and latent heat flux sensitivities are mutually compensated, leading to realistic surface515

temperature sensitivities. In the summer, strong non-local effects dominate the surface temperature response in the northern
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hemisphere temperate and high latitudes. The non-local cooling varies regionally and persists also during summer when the

effects of albedo are weaker.

The observational constraints presented here contribute further to understanding how climate models represent deforestation

and where biases exist. As models are usually evaluated based on how well they reproduce a subset of past observations,520

their ability to predict future climate is more uncertain (Flato et al., 2014). By using emergent constraints, modeling centers

are potentially able to improve the parameterization and tuning of ESMs, so that they are better adapted to simulate future

climate without being overfitted to historical data. Being aware of the limitations of ESMs can help both modelers in initiating

improvements and practitioners using models to measure and maximize the efficiency of re-/afforestation efforts in mitigating

anthropogenic climate change impacts.525

Code and data availability. The climate model outputs are freely available from the Earth System Grid Federation (ESGF; https://aims2.

llnl.gov, last access: 10 August 2023). The FLUXNET-based dataset was provided by Bright et al. (2017). The tree cover dataset is re-

trieved from https://storage.googleapis.com/earthenginepartners-hansen/GFC-2022-v1.10/download.html (last access: 18 August 2023). The

MODIS datasets are downloaded and processed in Google Earth Engine (Gorelick et al., 2017). The code is available from the corresponding

author upon reasonable request.530
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Appendix A

Table A1. Climate variables and their respective “cmorized” names in accordance with the Climate Model Output Rewriter (CMOR) stan-

dards. The forest cover in MIROC is labeled as “forestfrac”, and in GISS - as “total_forest_frac”. All other models use the standard “treeFrac”

to denote the percentage of tree cover.

Variable name CMOR name Frequency

Surface temperature ts monthly

Surface upwelling shortwave radiation rsus monthly

Incoming shortwave radiation rsds monthly

Latent heat flux hfls monthly

Forest cover treeFrac/ forestfrac/ total_forest_frac yearly

Snow cover snc monthly

Table A2. Overview of climate variables datasets. “True” values are those that account for differences in the sun zenith angle.

Timestamp
Temporal and

spatial coverage

Temporal

aggregation

Land-atmosphere

interactions

ESMs 3-hourly Complete True 3-hourly mean Coupled

FLUXNET-based Monthly Complete True 3-hourly
::::::
monthly mean Uncoupled

MODIS

Daily at 13:30 (surface

temperature); Daily

mean from the

acquisitions at 10:30 and

13:30 (albedo); 8-day

composite from daily

acquisitions at 10:30

(latent heat flux)

Clear sky

conditions only

Snapshot

monthly/seasonal/

annual clear-sky

means

Coupled
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Figure A1. Same as Fig. 3 in main text but for summer non-local effects. Non-local effects are calculated as the difference between total and

local effects, where the local effects are statistically significant (see Methods). The local effects of the individual models are shown in Fig. 3

25



Figure A2. Same as Fig. 4 in main text but with individual models highlighted.
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Figure A3. Same as Fig. 4d in main text but including also the grassland to ENF transition for the temperate region (Bright et al., 2017).

Figure A4. Same as Fig. 6(c,d,e) in main text but only for model grid cells, where MODIS pixels fulfill the quality criteria (see Methods

2.2), thus comparing only spatially overlapping pixels in models and observations.

Figure A5. Albedo and latent heat flux sensitivities for the boreal (a), temperate (b) and tropical (c) regions. All sensitivities are scaled to

100% deforestation, so that the sensitivity represents the change in albedo/latent heat flux corresponding to 100% change in tree cover. The

error bars show the standard deviation based on annual mean values.
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Figure A6. Comparison between the local effects in the deforest-glob simulation without (a) and with scaling to 100% applied
::::
from

:::
this

::::
study (d

:
a) and the chessboard patter

:::::
pattern simulations of Winckler et al. (2019a), where one out of four grid cells (b) or two out of four

grid cells (c) are deforested. All
::::
Here,

:::
all simulations are performed with MPI-ESM.
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Figure A7. Same as Fig. 4 (b, e, h) in main text but only for model grid cells, where MODIS pixels fulfill the quality criteria (see Methods

2.2)
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