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Abstract. The spatiotemporal evolution of snow melt is fundamental for water resources management and risk mitigation
in mountain catchments. Synthetic Aperture Radar (SAR) images acquired by satellite systems such as Sentinel-1 (S1) are
promising for monitoring wet snow due to their high sensitivity to liquid water content (LWC) and ability to provide spatially
distributed data at a high temporal resolution. While recent studies have linked multitemporal S1 backscattering to snow melt
phases, a correlation with detailed snowpack properties is still missing. To address this, we collected the first dataset of com-
prehensive wet snow properties tailored for SAR applications over two consecutive snow seasons at the Weissfluhjoch field site
near Davos, Switzerland. First, we tested previous methods which use multitemporal S1 backscattering to characterize melting
phases, and demonstrated that the observed monotonous increase in backscattering following the local minimum is due to the
development of surface roughness. Then, we used the measured snow properties as input to the Snow Microwave Radiative
Transfer (SMRT) model to reproduce S1 backscattering signals. Our simulations showed that rather than melting phases, time
series of backscattering rather identify regimes dominated by either LWC, early in the season, or surface roughness, later on.
The results also highlight several key challenges for reconciling S1 signals with radiative transfer simulations of wet snow:
(i) the discrepancy in spatiotemporal variability of LWC as seen by the satellite and validation measurements, (ii) the lack of
fully validated permittivity, microstructure and roughness models for wet snow in the C-band, (iii) the difficulty of capturing
wet snow features potentially generating stronger scattering effects on a large scale — such as internal snowpack structures, soil

features in case of low LWC, and surface roughness — which are not necessarily captured by point-wise measurements.

1 Introduction

Seasonal snowpack in mountain catchments is one of the most important water resources, as it accumulates and stores water
during winter and releases it consistently in the form of runoff during the melting period (Viviroli and Weingartner, 2004).
In alpine streams, discharge is largely dominated by snow melt from May to July and more than one sixth of the world’s
population relies on meltwater released from higher altitudes for drinking water, crop irrigation and hydropower production

(Beniston et al., 2018). However, melting snow can also cause wet- and glide-snow avalanches (Bellaire et al., 2017; Fromm
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et al., 2018), which pose significant threats to human life and infrastructures. Additionally, rain-on-snow events on already wet
snowpacks are linked to increased runoff and shorter time lags between precipitation onset and the resulting runoff (Wiirzer
et al., 2016). These events can have catastrophic consequences and their occurrence is supposed to increase in response to a
sustained warming (Beniston and Stoffel, 2016). Therefore, information about the spatiotemporal evolution of snow melt is
beneficial for both the management of water resources and for risk mitigation.

Identifying wet snow is complex both when using manual measurements, automatic instruments and physics-based snow
models. Datasets of manual measurements of snow water equivalent (SWE) and liquid water content (LWC hereafter) at high
temporal resolution are generally rare due to the time, effort and resources required for their collection. There have been
considerable advances in technologies that use the dielectric properties of snow in the microwave range to estimate LWC
in a non-destructive way (Schmid et al., 2014; Koch et al., 2014). However, the application of these methods is limited to
one single point without the possibility to capture the spatial variability of the processes. Additionally, their installation and
maintenance is often complicated and expensive, and the extraction of the physical parameters is usually hindered by noise.
physics-based layered snow models like the SNOWPACK-Alpine3D model chain (Bartelt and Lehning, 2002; Lehning et al.,
2006) or GEOtop (Endrizzi et al., 2014) are used to overcome these challenges, as they can simulate LWC and SWE at high
spatial and temporal resolutions based on meteorological forcings. However, meteorological forcings also represent a major
source of uncertainty — especially when needed at high spatial resolution — affecting the accuracy of the results (Raleigh et al.,
2015). This adds up to the uncertainties related to the amount and type of parametrizations used (Giinther et al., 2019).

In this context, a valuable opportunity to identify wet snow is offered by synthetic aperture radar (SAR hereafter) systems.
SAR measurements are highly sensitive to the free liquid water contained in wet snow (Nagler and Rott, 2000). At certain
frequencies, the increase in liquid water generates high dielectric losses and increased absorption coefficients (Denoth et al.,
1984; Sihvola and Tiuri, 1986; Mitzler, 1987; Ulaby et al., 2014). Therefore, the radar backscatter drops to lower intensities
with respect to winter averages (Ulaby et al., 1987; Strozzi et al., 1997; Strozzi and Matzler, 1998; Nagler and Rott, 2000;
Ulaby et al., 2014; Nagler et al., 2016; Lin et al., 2016). This raised the question of whether different types of snow cover could
be classified based on their response to active microwave signals. This challenge has been addressed with various approaches
over the years. Between 1993 and 1995, at the field site of Weissfluhjoch in the Swiss Alps, Strozzi et al. (1997); Strozzi and
Matzler (1998) conducted tower-based C-band radiometric measurements at all polarizations across a wide range of incidence
angles. Simultaneously, they carried out monthly measurements of snow physical properties. These measurements were used to
classify the observed snow covers into categories ranging from dry snowpacks, to thin moist layers overlying dry snow, to wet
snowpacks with either smooth or rough surfaces. Relying on a tower-based radiometer, the experiments were highly controlled,
allowing detailed investigation of radar responses to each snow condition. Nevertheless, significant sources of uncertainty
remained — especially the influence of surface roughness on wet snow surfaces, which was not quantitatively measured, but only
qualitatively assessed. These detailed studies, along with the work of Kendra et al. (1998), raised questions about theoretical
foundations and systematic reliability of LWC retrieval algorithms based on C-band full-polarimetric SAR imagery, which had
been developed shortly before (Shi et al., 1993; Shi and Dozier, 1995). In particular, the scattering mechanisms assumed in

these retrievals may have been biased by a combination of conditions that strongly favored surface scattering. Extending the
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prior knowledge to a spatial and multitemporal context, (Nagler and Rott, 2000) developed an algorithm based on repeat-pass
SAR images to map wet-snow in mountainous areas, defining a backscatter drop of 3 dB to distinguish wet snow from other
surfaces. Comparisons with snow maps from different sources showed generally good agreement above the snow line, but
consistent biases in areas with fragmented snow cover.

After a progress freeze due to the scarcity of SAR data in the past and simultaneous field measurements, the research interest
in the topic was renewed since the launch of the Sentinel-1 (S1 hereafter) joint mission of the European Space Agency (ESA)
and the European Commission in 2014. At alpine latitudes, S1 acquires C-band SAR imagery in the early morning and late
afternoon, regardless of the weather, with a revisit time of 6 days. The SAR imagery is available free of charge. Marin et al.
(2020) used these images for the first time to develop a correlation between the multitemporal S1 SAR backscatter and the
snow melt dynamics. Over 5 different alpine sites, the authors have found that the multitemporal S1 SAR acquisitions allow
the detection of the melting phases, i.e. moistening, ripening and runoff (Dingman, 2015) with a good agreement with in-
situ observations and layered, physics-based snow models. In particular, the backscatter decreased as soon as liquid water
appeared in the snowpack and increased progressively and simultaneously with the runoff release. Deriving and applying a
set of identification rules, the authors could define the melting phases for the test sites with relatively small lag errors with
respect to the revisit time of S1. Consequently, local minima in S1 multitemporal backscatter time series and sharp increases
thereafter were associated with snowpack saturation, the onset of runoff, and snow ablation (Darychuk et al., 2023; Gagliano
et al., 2023).

These approaches hold great potential for monitoring the temporal evolution of the melting dynamics, particularly over
wide and scarcely instrumented areas. However, to fully use the multitemporal information provided by S1 for snow melt
monitoring, a deeper understanding of the underlying scattering mechanisms — especially the role of surface roughness (Marin
et al., 2020) — is still required. Specifically, knowing the time window in which different scattering effects dominate and under
which conditions the C-band radar backscatter is fully absorbed by the melting snowpack would enable to extract as much
information as possible from S1 time series. To date, the only effort in this direction was made by Brangers et al. (2024) using
tower-based C-band measurements. However, this study lacks high-temporal-resolution ground-truth validation with measured
snow properties. Moreover, comparisons with S1 were hindered by several factors, including sensor calibration issues and the
small footprint size — which likely introduced speckle noise and failed capturing larger-scale scattering processes.

Overall, the main limitation to improving the understanding of the interaction of S1 backscatter signals with melting snow
cover is the lack of reference ground data. Over alpine snowpacks, it is common to observe the formation of ice layers either
at the surface (Quéno et al., 2018) or at deeper snowpack depths (Pfeffer and Humphrey, 1998). Moreover, in temperate alpine
areas characterized by high snow accumulation and intense solar radiation, suncups may form spontaneously on the snow
surface during the ablation season (Post and LaChapelle, 2000; Mitchell and Tiedje, 2010), increasing the surface roughness
significantly (Fassnacht et al., 2009). These phenomena are known to impact the radar response to wet snow (Shi and Dozier,
1995; Strozzi and Matzler, 1998; Kendra et al., 1998; Nagler and Rott, 2000; Yueh et al., 2009).

However, high-resolution and detailed snow measurements alone are insufficient to address this issue. It is equally important

to rely on a method to interpret them from a radar perspective. A promising and increasingly adopted approach involves the
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use of state-of-the-art radiative transfer (RT hereafter) models. Picard et al. (2018) developed the Snow Microwave Radiative
Transfer (SMRT) model, a versatile model that can be used in active and passive mode to compute backscatter and brightness
temperature from multilayered media such as snowpacks or ice sheets overlying reflective surfaces, e.g. ground, ice, or water.
SMRT responds to the need of a modular and flexible approach to unify and compare the wide range of pre-existing representa-
tions of microstructure, electromagnetic theories, soil models and permittivity formulations. While wet snow holds significant
importance for various applications, both SMRT and other similar models were primarily developed and validated for dry snow
conditions in Arctic and Antarctic snowpacks, or ice sheets (Proksch et al., 2015; Rott et al., 2021; Soriot et al., 2022; Meloche
et al., 2022; Husman et al., 2023). Both the vertical structure and the surface of these types of snowpack are often less complex
than that of a seasonal alpine snowpack. To date, the above mentioned ensemble of complex melting snowpack processes has
been scarcely investigated by means of radiative transfer models due to the lack of ground reference data (Shi and Dozier,
1995; Strozzi et al., 1997; Kendra et al., 1998; Nagler and Rott, 2000; Magagi and Bernier, 2003; Lodigiani et al., 2025).
Murfitt et al. (2024) recently used SMRT to explore, for the first time, the temporal evolution of the interaction between wet
snow and radar waves in a study on lake ice melt. However, the radiative transfer modelling of wet snow still lacks dedicated
effort and validation.

The objective of this work is to collect the first ground reference dataset on melting snow tailored for SAR applications
and to use it together with SMRT to better understand the key processes governing the backscatter signatures recorded by
S1. Previously, only Lund et al. (2022) carried out a similarly extensive snow pit campaign in coordination with S1 passages.
While this study helped advance the interpretation of S1 backscatter responses to diurnal snowpack variations, important
scattering properties such as the optical diameter and the surface roughness were not measured. As a result, interpreting
these measurements from the radar perspective — and consequently comparing them with S1 acquisitions — was not possible.
In our work, we focus on the co-polarized vertical backscattering only, due to its high signal to noise ratio for wet snow
(Naderpour et al., 2022) and to the fact that, due to the partial implementation of some of the key processes, it is not possible
to simulate accurate cross-polarized backscattering responses with the current version of SMRT. To our knowledge, this is
the first attempt to translate ground measurements — specifically designed for RT modelling, including wetness and roughness
— into radar signals using SMRT to reproduce and interpret S1 acquisitions over a wet, multilayered alpine snowpack. This
research provides valuable insights in two main areas. First, it advances the understanding of the interaction between S1 radar
backscatter and wet snow. Specifically, it reveals the effects of spatiotemporal variability of LWC within the S1 footprint
occurring between satellite and measurement acquisitions. It also describes the impact of surface roughness on backscatter
signatures and highlights challenges in capturing key wet snow conditions that likely generate scattering at wider-scales. These
include internal snowpack structures, large-scale surface roughness, and interactions with the wet soil interface when the
snowpack is only slightly wet. Second, the study addresses the RT modelling of melting, layered snowpacks, highlighting the
current lack of fully validated permittivity and roughness models for wet snow at C-band frequencies. With ground reference
data and adequate process understanding and modelling, RT models like SMRT may evolve in tools to interpret and translate

the information contained in multitemporal SAR backscatter into valuable input for snow-hydrological modelling.
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Figure 1. Location of the Weissfluhjoch field site with respect to Swiss national borders (a) and the town of Davos (b). The designated
area for snow profiles is shown in (c) under semi-snow-free conditions (picture taken in Sep 2024, camera oriented towards the north-east),
enclosed by a flagged fence. It is worth noting that only a portion of this fenced area was effectively used for snow profiles. Picture (d) shows

the typical snowpit measurement setup.

2 Campaign overview

This work builds upon a dataset of 85 snow pits collected during a two-season campaign (2022-2023 and 2023-2024) at
the high-altitude Weissfluhjoch Versuchsfeld (WFJ) field site, located in the Rhaetian Alps near Davos, Switzerland. The
measurement field lies at an altitude of 2536 m a.s.l. on a relatively flat area embedded in a south-east facing valley. The
site is partially wind sheltered from a small hill situated on the south-east — however, the dominant wind blows from north-
west, in addition to katabatic wind. For this measurement campaign, we secured a protected field covering approximately two
times the footprint area of S1, i.e. 20 x 20 m. However, only a portion of this field was effectively used for measurements,
while the remaining area was consistently left undisturbed. The secured field has a light slope value between 2 and 7%. The
flatness of the terrain is fundamental for the study of the interaction between wet snow and the C-band co-polarized vertical
backscatter signal (0} ¥ hereafter). On the one hand, o}V is less sensitive to changes in snow wetness at low incidence angles
(Nagler et al., 2016); on the other hand, on steep slopes, the liquid water redistributes laterally, at least partially (Wever et al.,
2016). The field site of WFJ is equipped with advanced meteorological sensors recording meteorological forcings at sub-hourly
resolutions, and moreover, with first snow observations dating back to 1936, it holds one of the longest recorded time series of
snow measurements for a high-altitude research station (Marty and Meister, 2012). The site is ideal for intensive measurement
campaigns, as it is easily accessible, protected from avalanche danger and the two huts provide shelter, storage space for
instruments, power and internet connection.

The objective of the measurement campaign was to build a dataset of ground-truth reference for the interpretation of S1 oV’
to monitor snow melt processes. Therefore, the measurements targeted the main scattering properties of snow: temperature,
density, specific surface area (SSA), liquid water content (LWC) and surface roughness. These properties needed to be measured

at a high vertical and temporal resolution to track the progression of the wetting front within the snowpack, and possibly
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in concomitance with S1 acquisitions. Additionally, we measured snow water equivalent (SWE), a key variable for snow
melt monitoring. The resulting dataset is a time series of manually measured snow profiles describing the evolution of snow
scattering properties at unprecedented vertical and temporal resolutions. The dataset consists of 38 snow profiles for the season
of 2022-2023 (starting in February and ending in June) and 47 for the season of 2023-2024 (starting in November and ending
in July). In dry snow conditions, measurements were carried out once per week. On the first season, once the snowpack reached
the full isothermal state, measurements have been carried out regularly every second working day for a total of three times per
week. On the following season, the regularity of the measurements was partially given up in favor of a better synchronization
with S1 acquisitions. To get the fullest possible picture to interpret the melt dynamics, manual measurements are accompanied

by automatically recorded time series of runoff and SWE.
2.1 Manual measurements
2.1.1 Temperature

Snow temperature serves to monitor the progression of the snowpack to the isothermal state, which allows the presence of
liquid water. Profiles of snow temperature were sampled from the surface to the bottom with a vertical resolution of 10 cm on
snow season 2022-2023 and of 5 cm on snow season 2023-2024 using a batch of HI98501 Checktemp from Hanna (Hannaln-
strumentsInc.). According to the instrument specifications, the uncertainty range is £ 0.2°C. Each temperature reading was

marked down after waiting an adequate time for measurement stabilization.
2.1.2 Density

In dry snow conditions, snow density controls (i) the probability of scattering events, as denser snow has more grains per
unit volume and (ii) the real part of the effective permittivity (see the following Sec. 3.2), which increases with the increased
fraction of ice relative to air, typical of denser snow. Profiles of snow density were sampled from the surface to the bottom with
a vertical resolution of 3 cm using a box density cutter and a digital scale. The box cutter used for this campaign has a volume
of 100 cm?®. The uncertainty range of this instrument is between 5 and 10% with the main sources being the presence of ice
layers, the compaction of light snow while collecting the sample, or losing fractions of it in conditions of fragile snow such as
facets or depth hoar (Conger and McClung, 2009; Proksch et al., 2016).

2.1.3 Specific Surface Area

Snow specific surface area (SSA) expresses the surface area of snow grains per unit mass, and is related to the grain size and
structure. Smaller grains give higher values of SSA — meaning that the number of scattering centers is increased, but the effect
of each one is weakened. Therefore, when grains are too small, the total backscatter can decrease. Larger grains, on the other
hand, give lower values of SSA — meaning that scatterers are fewer but stronger and more efficient. Therefore, with enhanced
volume scattering, the overall backscatter increases. Profiles of SSA were sampled from the surface to the bottom with a vertical

resolution of 4 cm using the InfraSnow sensor from FPGA (FPGA Company; Wolfsperger et al., 2022). This non-destructive
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method builds upon the principle of diffuse near-infrared reflectance measurements using a compact integrating sphere setup
to derive optical equivalent grain diameter (OED), and therefore SSA (Gergely et al., 2014). To compute OED, snow density
is required as an input parameter and for this we use the measured density profile. With a relative error of RMSE =15%
(Wolfsperger et al., 2022) when compared to x-CT, this instrument seems to be slightly less accurate than others commonly
used such as the IceCube (Zuanon, 2013), however, this bias is more pronounced for high values of SSA typical of dry snow,
which is not the main object of our study. Moreover, the use of the InfraSnow is especially practical and portable for field

applications.
2.1.4 Liquid Water Content

The formation of liquid water content (LWC) in the snowpack enhances its dielectric constant, leading to higher absorption
losses and significant reduction in radar penetration depth. These concepts will be addressed in more detail in Sec. 3.2. Profiles
of LWC were sampled from the surface to the bottom with a vertical resolution of 2, 5 or 10 cm, depending on the method. We
used dielectric sensors coupled with melting calorimetry to corroborate measurements in conditions of high LWC at later stages
of the melting process. To our knowledge, this is the first time series of LWC snow profiles measured at such high vertical
and temporal resolution. On the first campaign year, we used the Denoth capacitive sensor (Denoth, 1994) ("Denothmeter”
hereafter). It consists of a flat capacitance probe with an estimated measurement surface of 176 cm? (Techel and Pielmeier,
2011). The probe operates at a frequency of 20 MHz and measures the real part of the permittivity of snow, and a separate
measurement of density is required to obtain the imaginary part (Denoth et al., 1984; Denoth, 1989) — here, similarly than for
SSA, we used the measured density profile. The Denothmeter has been widely used in field studies to monitor the evolution of
snowpack wetness (Fierz and Fohn, 1994; Kattelmann and Dozier, 1999; Techel and Pielmeier, 2011), alone or in comparison
with other techniques, e.g. in Koch et al. (2014); Wolfsperger et al. (2023); Barella et al. (2024). On the second campaign year,
we adopted the new capacitive snow sensor (NCS hereafter) developed at the Institute for Snow and Avalanche Research SLF
(Wolfsperger et al., 2023) and produced in batch series from FPGA company. The use of the Denothmeter was discontinued
because it is not commercially available, and only two units were available to us, risking measurement continuity if damaged
during intensive use. The NCS works in the same way as the Denothmeter, operates at the same frequency and measures over
a slightly larger surface of 202 cm?. The NCS was compared against the Denothmeter in both field and laboratory settings
and the agreement was generally good, however, in isolated cases of very wet layers, the measured permittivity tended to
deviate towards higher values (Wolfsperger et al., 2023). A good element of consistency is that the comparison between
NCS and Denothmeter was carried out within this campaign, in the snow season 2022-2023. The absolute error associated
with dielectric measurements was estimated around 1% in volume (Sihvola and Tiuri, 1986; Fierz and Fohn, 1994). To our
knowledge, a systematic study on the errors associated with the Denothmeter was never carried out. However, similar studies
are available for the Finnish snow fork (Sihvola and Tiuri, 1986), which directly measures both real and imaginary parts of
snow permittivity. The error associated to the snow fork in measuring LWC is between +0.5% (Sihvola and Tiuri, 1986)

and +0.3% (Moldestad, 2005). (Techel and Pielmeier, 2011) used both the Denothmeter and the Snow Fork in their study,
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reporting differences of around 1% between the two instruments. Additional uncertainties for dielectric measurements derive
from interference with solar radiation near the surface (Lundberg, 2008), which we tried to minimize throughout the campaign.

Because dielectric devices may lose accuracy for high LWC values (Perla and Banner, 1988; Techel and Pielmeier, 2011),
for both snow seasons, in conditions of ripe snow, Denothmeter/NCS measurements were backed up with melting calorimetry
following the revised field protocol recently described in Barella et al. (2024) and partially carried out within the same mea-
surement campaign described here. This field protocol is tailored to reduce the higher uncertainty ranges previously associated
to melting calorimetry (Kawashima et al., 1998; Kinar and Pomeroy, 2015; Avanzi et al., 2016). It proposes a revised formu-
lation of the calorimetric uncertainty that incorporates the calorimetric constant and the propagation of uncertainties coming
from instrument, operational and environmental conditions. The uncertainty range associated with the new protocol for melting

calorimetry is +0.5% and the absolute error compared with Denothmeter measurements is ~1% in volume.
2.1.5 Surface Roughness

Snow surface roughness controls the scattering behavior of the snowpack surface, with smooth surfaces exhibiting a domi-
nant specular reflection and rough surfaces behaving more similarly to a diffuse scatterer. Snow surface roughness is typically
expressed using three parameters: the root mean square of the heights (RMSH), the correlation lenght (CL) and the autocor-
relation function (Williams and Gallagher, 1987; Nagler and Rott, 2000; Manninen et al., 2012; Anttila et al., 2014). These
parameters can be obtained from a digitized snow transect. A proven and robust system involves inserting a panel into the snow
and capturing images of the snow surface with a digital camera (Manninen et al., 2012; Anttila et al., 2014). For this campaign,
we used the method described in Barella et al. (2021) and refined in Barella et al. (2025), which builds upon these concepts
and it is particularly suited for field applications. The panel we used is made of black Forex, 70.5 cm wide and 47 cm tall.
These dimensions are a trade-off between the ease of transport and the length of the snow transect covering at least 10 times
the C-band wavelength A\=5.5 cm as suggested in (Manninen et al., 2012). The panel can be photographed by means of any
digital camera. To attain a representative snow transect, 9 pictures were taken on each measurement day: 3 along one direction,
3 along the perpendicular direction, and 3 at a 45° angle between them. The resulting roughness profile is averaged among all
usable pictures, i.e., those not affected by excessive shadowing or unclean panel surface. To our knowledge, a time series of

snow surface roughness properties was never measured before.
2.1.6 Snow Water Equivalent

Profiles of snow water equivalent (SWE) were sampled from the surface to the bottom with a cylinder cutter of inner diameter
9.44 cm and length 55 cm. The snowpack was sampled in sections from the surface to the ground and the total SWE was
obtained by weighting each sample and summing up all the values. The uncertainty range of this instrument is around 10%

with the main uncertainty source being caused by the presence of ice layers (Proksch et al., 2016).
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Figure 2. Overall range of local incidence angles across the study area for all the four relative orbits — morning/descending (M) and

afternoon/ascending (AT). Each S1 cell is identified by its centroid and a number.

2.2 Automatic measurements
2.2.1 Runoff

Runoff was automatically measured at a sub-hourly resolution by a lysimeter. Unfortunately, the instrument was discovered to
be clogged when the runoff started in 2023. The instrument was repaired only in late May 2023. Therefore, the time series for
that year starts with a peak (see Fig. 8d), although we hypothesize that runoff may have started as early as the end of April

2023. To avoid similar issues, on the following season the lysimeter was inspected timely and assessed as fully functional.
2.2.2 Snow Water Equivalent

Manual snow water equivalent (SWE) measurements are complemented by an automatically recorded time series at sub-hourly
intervals, using the SSG1000 snow scale permanently installed at the WFJ site and manufactured by Sommer Messtechnik,
Austria. The system consists of a weighing platform and load cells, which directly measure the weight of the snowpack on
the platform and convert it into SWE. This instrument has a measurement range of 0 to 1000 mm of water equivalent. During
the 2023-2024 snow season, the upper capacity was reached due to above-average snow depths. In comparison to manual

measurements, Smith et al. (2017) estimated an error of +=10%.
2.3 Sentinel-1 acquisitions

S1 is designed as a two sun-synchronous polar-orbiting satellite constellation, acquiring dual polarimetric C-band (frequency
of 5.405 GHz, wavelength of 5.5 cm) SAR images with a nominal resolution up to 3.5 m x 22 m in Interferometric Wide
swath mode (IW) and a revisit time of 6 days. Acquisitions in IW have a swat of approximately 250 km. This, together with the
overlapping orbit paths, conceives the acquisition of multiple tracks at middle latitudes such as the Alps. For this reason, within

the time window of 6 days, more acquisitions of the same area may be available. Unfortunately, Sentinel-1B failed at the end
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of 2021, and with only Sentinel-1A in orbit, repeat cycles halved from 6 to 12 days. Since then, the overall data acquisition
capability was reduced by ~50% in most regions, including our Weissfluhjoch field site. Data from four relative orbits are
available for this site: two ascending (afternoon) and two descending (morning) passes. Figure 2 shows the overall range of
local incidence angles across the field site, which vary from a minimum of 27° to a maximum of 47°. These maps highlight
domains with stronger and weaker dependence on the incidence angle — an east-facing back-slope and a flat area, respectively.

The SAR images can be downloaded, free of charge, from the copernicus data hub (Copernicus). To account for the complex
topography and to reduce the speckle noise of SAR acquisitions, a tailored preprocessing procedure was applied to all data. The
processing procedure involves a combination of tools, some of which are available in SNAP (Sentinel Application Platform)
version 6.0, while others are customized and developed in Python. The full workflow is described in Marin et al. (2020);
however, in this study, the gamma-MAP filter was not applied. The final spatial resolution of the post-processed S1 images is
20 x 20 m.

The nominal radiometric uncertainty of S1 falls in the range of 30=1.0 dB, as indicated in several ESA validation campaigns
(Torres et al., 2012; Miranda et al., 2015; Schwerdt et al., 2017; Benninga et al., 2020). However, the overall radiometric
accuracy is also affected by a number of preprocessing steps, including (but not limited to) the application of despeckle filters,
terrain correction and radiometric normalization (particularly challenging in mountain regions with complex topography),
and thermal noise removal (important in conditions of high absorption, such as wet snow). In such conditions, a detailed
specification becomes extremely complex and falls beyond the scopes of this paper. Nonetheless, since this study explores
the multitemporal behavior of o}V over a target cell, it is relevant to mention speckle denoising. We used the filter proposed
by Quegan and Yu (2001) — a powerful yet relatively simple one to denoise multitemporal stacks, with a 11 x 11 pixels
window. Similarly to local spatial multi-looking, its implementation involves local averages of intensity values for each date.
Intuitively, this could potentially blur strong targets and edges, ultimately leading to a loss of resolution and impacting the
overall multitemporal result. However, in conditions of dry snow, the snow cover and the position of the scatterers are stable,
snow temperatures are well below 0°C and the soil should be mostly frozen, implying constrained variations in soil moisture.
Under these conditions, the pixels we considered in our study exhibited an overall stable behavior. The same stability was
observed during dry periods in summer. In these two cases, the standard deviation was within 1.0 dB, which aligns with the
nominal radiometric uncertainty of S1. During the melting period, the primary source of radiometric uncertainty originates
from the formation of LWC within the snowpack. As a consequence, the radar return signal from the same target cell changes
over time, resulting in reduced temporal coherence and larger deviations in multitemporal statistics. As will be shown in
the course of this study, LWC potentially exhibits high heterogeneity across a single resolution cell. Under such conditions,
the estimation of radiometric uncertainty becomes particularly challenging. Without a precise reference for LWC, a rigorous

uncertainty quantification is inherently difficult and lies beyond the scope of this work.
2.4 Campaign design

Measurements were carried out within freshly dug snow pits, starting at 08:00 approximately. The start of the measurement

procedure depended on the amount of employees available on a specific day, on the amount of snow, on its density and on
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the weather conditions — generally, between one to two hours later. The measurement procedure was generally finished around
12:00 refilling the snowpit; however, on isolated days, there were several hours of delay because of the above mentioned
reasons. On the first snow season, the snow temperature was generally measured first and the melting calorimetry last, with
the remaining measurements being carried out in between with an order that also varied as a function of the above mentioned
factors. On the second snow season, we improved the campaign design with a more rigorous measurement order: temperature
first, SSA and dielectric LWC either simultaneously or one after the other, density, SWE, and melting calorimetry coupled
with a second simultaneous dielectric LWC profile taken at the same vertical location. This has specific importance for the
LWC profiles. On the first season, the time lag between the dielectric and calorimetric LWC profiles was 2 or 3 hours, at an
horizontal distance of 50 cm to 1 m. On the second season, we measured one first dielectric LWC profile and an adjacent,
simultaneous one using melting calorimetry. In Sec. 4.2, we will refer to the first setup as "co-located" and to the second one
as "simultaneous".

On both seasons, before starting the measurement procedure, the profile wall was made as smooth as possible. A Near-Infra-
Red picture was taken for qualitative comparison. Outside of the snow pit, on an undisturbed area, the surface roughness panel
pictures were taken. On days where the radiation (from the sun or diffuse) was particularly intense, shading was necessary
for every surface measurement that might have been affected. The temperature profiles were always measured in the shaded
corner area of the snow pit. Overall, each measurement series would need a total horizontal space of 1.5-1.8 m, and the
single variable profiles were measured at a reasonable horizontal distance from each other. On both seasons, snow profiles
were carried out within the same designated area. The area was divided in corridors approximately 2 m wide. Throughout the
season, measurements were carried out moving continuously forward along the corridor until the slope was hit. The next snow
profile would be dug onto the next corridor. A minimum distance of 30 cm was secured between two consecutive measurement
days, to avoid disturbances from the previous measurement set.

Data cleaning and homogenization procedures were performed before providing the measured snow properties as RT inputs.
In particular, since sampling resolutions were different (see Sec. 2.1), all measured properties were linearly interpolated to a
common vertical resolution of 1 cm. Positive LWC values recorded at temperatures below 0°C were corrected to 0%. 0.04% and
0.4% of the measured LWC values were above or equal to 15% for the two years respectively. For both dielectric instruments,
these values are likely not accurate. Since these values likely represent areas of high snow wetness, they were not excluded
from the analysis but their LWC value was set to 15%, similarly to Techel and Pielmeier (2011). Additionally, instances of very
low LWC measurements from thin layers just above the ground in dry snow conditions were discarded, as we could not rule
out potential instrument disturbances from the ground in these cases. Given the accuracy range of the thermometer (see Sec.
2.1), temperature oscillations up to 0.2°C below 0°C were set to 0°C from the first measured fully isothermal profile onwards.
Since the snow properties were measured at a certain lateral distance one from the other, the profiles of density and SSA were
slightly shifted with a simple algorithm to maximise the correlation with the profile of LWC. Finally, we had to discard the last
3 snowpit measurements of 2023, because the measured RMSH value there was too high to ensure the conditions of validity

of the interface model (see Sec. 3.2).
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Figure 3. Aerial view of the WFJ measurement station. Each of the 56 points represents the centroid of each S1 cell. Each centroid is split
in two, the left part indicating the interquartile range (IQR) of the winter o ¥ signal for the snow season of 2022-2023 and the right part for
the snow season of 2023-2024. Contour lines indicate the surrounding slopes. The yellow rectangle indicates the fenced measurement area

where snow profiles were carried out in both seasons. Cell 40, i.e. the selected S1 cell for this study, is highlighted in red.

Table 1. S1 tracks overlooking the selected cell 40, with times of acquisition, direction of orbit and local incidence angles.

Track# Time of acquisition Direction of orbit Local incidence angle
015 ~17:30 Ascending 41°
117 ~17:30 Ascending 32°
066 ~05:30 Descending 33°
168 ~05:30 Descending 42°

3 Methods and model
3.1 Selection of the Sentinel-1 reference cell

330 The selection of the reference S1 cell required some considerations. The WFJ field site is ideal for continuous measurements

due to its proximity to structures and sensors, however, these features may interfere with radar waves, thus disrupting the
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Figure 4. Variability of o§ ¥ in dry snow conditions for all relative orbits overlooking cells 18, 25, 32, 38, 39, 40, i.e. the flat terrain cells
with likely similar snow properties as the measured ones (a-b). Multitemporal o§ ¥ signal of the selected cell 40 compared to the ensemble

standard deviation (stdang) of the similar cells — morning/descending (MJ) and afternoon/ascending (A7) (c-f).

backscatter from natural terrain. Most of the structures within the field site are metallic and may act as additional reflecting
sources in addition to the snowpack.

To select the reference cell, we extracted oy ¥ values for both years over a grid of 56 points covering the whole extension
of the field site and the immediate surroundings (Fig. 3). For each cell and for each different year, we isolated the time frame
starting at the beginning of the meteorological winter (Dec 01) and ending when the first liquid water was measured in the
snowpack. Over these time frames, for each year and for each cell we computed the variability of o'V acquired by the 4

different tracks (See Tab. 1). We assume that lower variabilities between different tracks over a dry snowpack may indicate a
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minimal interference with other non-natural elements on the field, as their backscatter would typically exhibit strong angular
dependence (i.e., anisotropy).

The results of this analysis are shown in Fig. 3, where the variability is mapped over the field using the interquartile range
(IQR). In general, the IQR does not vary significantly between the two snow seasons, suggesting that this kind of approach
might be adequate to select a reference cell with the least possible artificial disturbance. Outliers — i.e., cells 15, 22, 23, 27,
52, 54, and 55 — are likely influenced by localized field conditions. These include double-bounce effects typically associated
with man-made structures (e.g., cell 27), surfacing boulders (cells 52, 54, 55), or small variations in soil moisture, which could
account for the observed year-to-year variability. The highest IQR values are clustered around the large hut (for double-bounce
effects) and where the slopes start to become steeper (when the backscatter has strongest dependence on the incidence angle).
Interestingly, the IQR values for cell 25 and 32 are among the lowest for both snow seasons, suggesting that smaller metallic
sensors might not represent a significant disturbance for radar waves.

Ideally, the target cell should coincide with the location of in-situ measurements to ensure that the observed snow properties
accurately represent those detected by the radar. Although S1 footprint is large relatively to the area disturbed by a single snow
pit, excavating multiple consecutive snow profiles across a broader area can ultimately alter snow conditions across the entire
cell — particularly under moist or wet snow conditions. This would introduce an uncontrolled degree of uncertainty. Therefore,
the target cell should rather be selected among the surrounding undisturbed cells with similar slopes and aspect. Fig. 4a-b
show the dry-snow U[‘)/V variability for a set of cells with such features, i.e., cells 18, 25, 38, 39, 40. Among these, cell 40
shows a distinguished dependence on each incidence angle and orbit direction, along with relatively low variability of o}V’
across tracks. An exception occurs for track #117 during 2023-2024, where the variability is relatively higher with respect
to the year before. This increased variability is also noticeable for cell 25 and 39. Given the lower variabilities recorded on
the prior year, interference from non-natural elements can be ruled out. The most plausible explanation is a certain degree
of heterogeneity in soil moisture across the field. Unfortunately, we are unable to verify this hypothesis, as soil moisture
measurements were not included in our field campaign. Additionally, cell 40 lies in the immediate vicinity to the measurement
site, and the snow surface remains undisturbed due to the operation of a LiDAR laser scanner continuously monitoring the
snow surface. Fig. 4c-f illustrates the multitemporal o} ¥ signal from cell 40 in comparison to that of the other candidate cells.
The average standard deviation of the o}V ensemble across these cells is approximately 3 dB for all tracks. Interestingly, the
lowest standard deviation is consistently observed at the time of the backscatter drop caused by wet snow, with the exception
of track #117 in 2024. Notably, during the melting season, the signal from cell 40 lies in the lower end of the backscatter range
across all years and tracks — aside for track #117 in 2022-2023. Potentially, this behavior is desirable for wet snow detectability.
For these reasons, the a(‘)/ V' recorded over cell 40 is selected as the reference time series for this work.

The impact of incidence angle was not a primary focus of this study, as it has already been extensively addressed in previous
research Mitzler (1987); Shi and Dozier (1992); Strozzi et al. (1997); Strozzi and Matzler (1998), which strongly relied on
tower-based instruments allowing greater control than satellite-based radar systems. In our case, the area most representative

of measured snow properties is relatively small and flat, resulting in a limited range of local incidence angles available for

analysis (see Fig. 2). Furthermore, the high spatial variability of LWC would require dedicated reference measurements for
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each incidence angle and cell, which was not feasible given the time and resources already involved in conducting the campaign

at a single location.
3.2 Snow Microwave Radiative Transfer (SMRT) model: description and simulation setup

SMRT is a model that simulates the active-passive microwave response from layered snowpacks (Picard et al., 2018). The
model is written and run in a Python environment and has a modular and flexible structure, allowing the user to set model
runs choosing among a wide set of electromagnetic, microstructure and permittivity models. The reflectivity and transmissiv-
ity associated to roughness can also be described according to different models. The user has to specify a set of snowpack
properties to parametrize the microstructure and the electromagnetic model. In particular, the roughness can be set either at
the snow-air interface only or for each defined snow layer. Once these necessary parametrizations have been declared in the
preliminary components of the model, SMRT uses the discrete ordinate and eigenvalue (DORT) method to solve the radiative
transfer equation. The user can either customize a virtual sensor with specific frequency, incidence angle and polarization or
directly choose from a list of already available sensors, among which S1. The backscatter intensities can be obtained for all
polarizations — this study focuses on the co-polarized vertical signal, because cross-polarizations are currently only partially
implemented within the current version of the module used for the parametrization of surface and interface scattering (Murfitt
et al., 2024).

This study uses the symmetrized strong-contrast expansion (SymSCE) (Picard et al., 2022b) as the electromagnetic model
with two different permittivity parametrizations. Measurements of density and SSA were used to compute the Porod length
({p) (Porod, 1951). The microwave grain size (¢j;1) is computed as the product of /p and the polydispersity k, a parameter
describing the variability of the length scales with respect to the microstructure (Picard et al., 2022c). k was set to 0.75:
this empirical value was estimated from p-CT scans of a wide variety of alpine snow samples with convex grains, among
which rounded grains and melt forms (Picard et al., 2022c). For this study, snow microstructure was parametrized using
the exponential model. For frequencies in the X- and Ku-bands (10-17 GHz), exponential auto-correlation functions have
been shown to be too simplistic for representing snow microstructure. Their fast decay fails to capture long-range spatial
correlations, and their inadequacy in modelling densely clustered media results in an underestimation of forward scattering
effects (Chang et al., 2016). However, Picard et al. (2022¢) show how £,y can be computed analytically for various forms
of auto-correlation functions, including the exponential. These analytical expressions of ¢,y allow for direct comparison
between different representations of snow microstructure. Most importantly, when the same value of £,y is used as input, all
microstructure models give the same scattering amplitude in the low-frequency limit. Therefore, according to these findings,
the choice of the best representation of snow microstructure becomes a secondary problem with respect to measuring £,y in
order to predict snow scattering in the C-band.

The permittivity of a material is a complex number composed of a real part (i.e., the dielectric constant) and an imaginary
part. The contribution of the real part is related to the material’s ability to store electrical energy, whereas the contribution of
the imaginary part is associated with dielectric losses. Snow is a three-component mixture of ice, air and water — therefore,

the effective permittivity of snow (e5) depends on the relative proportions of these elements. The presence of liquid water
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Figure 5. Real and imaginary parts of the effective permittivity (e,) of wet snow as a function of frequency (f) for a nominal density value
of 400 kgm ™3 and varying LWC of 1% (a), 4% (b) and 8% (c) according to the MEMLSv3 and H-86 permittivity models. Grey dotted lines

underline differences between the formulations at the nominal frequency of S1, i.e. 5.405 GHz.

significantly alters both the real and imaginary parts of ¢, affecting how microwaves interact with the snowpack. Henceforth,
accurate estimates of €, are crucial for interpreting the microwave response of wet snow. Despite extensive research, particularly
in the 1980s, a universally accepted model for snow permittivity has not yet been established (Picard et al., 2022a). For this
study, we selected two formulations: (i) the Microwave Emission Model for Layered Snowpacks (Wiesmann and Mitzler,
1999) in its 3™ version (MEMLSvV3 hereafter), which is based on the Maxwell-Garnett mixing theory of dry snow and prolate
water inclusions; (ii) the Debye-like model modified by Hallikainen et al. (1986) (H-86 hereafter), which uses a mixing formula
based on volume fractions and refractive indices, calibrated against field data. These models were selected because they were
validated against real-world C-band data. Specifically, in Hallikainen et al. (1986) and earlier works, the authors present what
is, to our knowledge, the only available dataset of wet snow permittivity measurements at 6 GHz for varying LWC values,
measured using freezing calorimetry. Interestingly, MEMLSv3 fails to accurately reproduce this dataset. However, Kendra
et al. (1998) observed that the dielectric constant provided by H-86 appears to be too low, an observation that is supported
by data from Achammer and Denoth (1994), collected in the range between 8 and 12 GHz. However, these data appear
to favor H-86 over MEMLSv3 when considering the imaginary part of ¢;. While H-86 has been criticized, some aspects
appear to have been overlooked (e.g. the recent corrigendum in Picard et al. (2022a)). Figure 5 shows the real and imaginary
parts of the €, as a function of the frequency for a nominal density value and varying values of LWC according to both
MEMLSvV3 and H-86 permittivity formulations. For higher values of LWC (see Fig. 5b,c), the €, values obtained from both
formulations display a frequency dependence and curve shape closely resembling that of pure water. In both cases, the real part
of €, decreases with frequency, whereas the imaginary part increases up to the relaxation frequency and decreases thereafter.
However, in the C-band, the two formulations diverge significantly, especially in their prediction of the imaginary part, which

governs absorption losses. This difference becomes more pronounced for increasing values of LWC. For instance, at LWC=4%,
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MEMLSV3 predicts an imaginary part of €, approximately twice that of the H-86 at the nominal frequency of S1 (see Fig. 5b).
Since we cannot definitively determine the fitness of one model over the other, both formulations will be used in SMRT for this
study. Given the different behavior of the two formulations, we expect a lower and upper bound for S1 backscatter simulations.
It is clear that further research is needed to accurately characterize wet snow permittivity, but this is out of the scope of this
paper.

RT modelling of snow comes with the additional difficulty of quantifying the dense medium effects, i.e., the electromag-
netic interactions occurring between snow grains that are closely packed together. At C-band frequencies, these effects become
significant as the scattering regime changes due to the presence of liquid water — both through changes in snow grain interac-
tions and in bulk dielectric properties. In H-86, dense medium effects are not accounted for. In MEMLSv3, these effects are
accounted through a semi-empirical parametrization involving, among other parameters, correlation length, density-dependent
corrections and — as mentioned above — mixing formulas. Correlation lengths are used to represent the effective grain size and
spatial correlation of the ice matrix, and to capture the degree of interaction between dense grains. Despite the range of correla-
tion lengths being limited in MEMLSV3, the ones that are represented derive from structures observed at Weissfluhjoch during
two snow seasons (Wiesmann and Mitzler, 1999). Therefore, they are likely suitable to describe the dense medium effects on
the snowpack structures observed and measured in this study. Snow density is used as a proxy to determine how closely grains
are packed; and as density increases, scattering is reduced and absorption increases. Such corrections are embedded into the
extinction term, i.e., the sum of scattering and absorption coefficients.

The chosen interface model (between snow and air and between snow layers) is the integral equation model (IEM) (Brogioni
et al., 2010), since it is one of the most used models to describe the roughness. However, any other model could be used,
provided the roughness characteristics are within the validity range. The IEM is valid under the conditions w- RM SH < 2 and
w?-RMSH-CL < \/€i, where w is the wavenumber (which depends on the medium) and ¢; is the ratio between the media
permittivities at the interface (Fung et al., 1992).

Using the functions available in SMRT, we modelled the substrate as a reflecting surface with a given value of backscatter.
In dry snow conditions, on days when manual measurements and satellite overlooks coincided, we assigned the S1 recorded
backscatter value to the substrate, assuming that dry snow is transparent to radar waves at C-band and that therefore the
soil is the only contribution to the total backscatter. In wet snow conditions (or in dry snow conditions, when there was
no concomitance between measurements and satellite overlooks), we assigned a fixed value of backscatter to the substrate,
which we computed as the average value in dry snow conditions of each individual track (incidence angle). Notably, SMRT
offers the possibility to compute the backscatter from the soil, however, it requires a series of detailed information that are
spatially heterogeneous and would have been nearly impossible to retrieve continuously over the course of our campaign.
These properties include the soil moisture, the relative sand content, the relative clay content, the soil content in dry matter,
and other geometrical parameters such as the roughness and the correlation length.

Under these configurations, the model takes as inputs the following snowpack properties: temperature, density, volumetric
liquid water, SSA and surface roughness. For the snow-air interface, we used the measured values of RMSH and correlation

length. For layer interfaces, we set RM S Hjqyers=1 mm and CLjgyers=30 mm (i.e., the average winter value from our field
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measurements). When measurements and S1 overpasses coincided, the simulation was performed using the incidence angle of
S1. On days without simultaneous overpasses, the simulation was performed using the incidence angle from the closest previous
or subsequent S1 pass. All modelling choices described above have been designed and motivated to be optimal to describe wet
snow starting from measured properties. However, it is important to remark that the choice of such parametrizations remains
highly arbitrary, as further research is still needed to validate permittivity, roughness and microstructure models specifically
for wet snow in the C-band.

Another practical challenge was to design a way to replicate the often complex snowpack layering observed in the field
within a radiative transfer model which is not specifically made to deal with a high number of layers thinner than the wavelength
(Sandells et al., 2022). As a matter of fact, this increases the number of dielectrical discontinuities (Leduc-Leballeur et al., 2015)
generating (artificially) higher scattering. Resampling high resolution field measurements to the wavelength or its multiples is
an option, however, this does not necessarily reflect the physical snowpack structure. As an example, in the moistening phase,
liquid water appears in thin layers in the upper part of the snowpack. These layers can have thicknesses of a smaller size
than the C-band wavelength — the effect of such layers on the total backscatter is unclear and represents a potential source of
errors when using layering defined by the resolution of the field measurements. As the wetting front progresses through the
snowpack during the ripening phase, liquid water becomes more homogeneous over layers with thickness comparable to the
C-band wavelength. During this stage, using high-resolution discretizations (e.g., on the order of the C-band wavelength) may
seem appropriate to closely replicate the liquid water layering observed in the field. However, averaging over such scales can
merge distinct wet and dry layers, blur important contrasts and potentially lead to biased backscatter estimates. On the other
hand, intuitively, lower-resolution discretizations (e.g., multiples of the C-band wavelength) dissipate the scattering effect of
thinner (~6 cm) wet layers. To reduce the aforementioned sources of uncertainty, we chose to model the snowpack structure
by stacking layers with a minimum thickness corresponding to the C-band wavelength, ensuring each layer had consistent
average physical properties. These physically similar layers were identified automatically by means of a simple algorithm and
then refined manually, with particular emphasis placed on LWC over the other variables. An example is provided in Fig. 6,
where snow properties are shown at the field-measured vertical resolution in (a), and averaged into physically consistent layers
for SMRT input in (b). Fig. 7 shows that the number of layers used for each SMRT simulation varied between 1 and 14,
with a marked dependence on the stage of the melting process and on the campaign year. In dry snow conditions, the densely
measured snow properties are practically always averaged into one single layer, given the absence of liquid water. As the
snowpack starts moistening, the number of distinct layers increases, as a function of the first formation of liquid water within
the snowpack. The highest number of layers required in SMRT to model the snowpack is used during the ripening phase, as
the LWC layering is at its most heterogeneous state during this phase, as a consequence of the progression of the wetting front.
Later in the runoff stage, with the snowpack being fully saturated, the number of used SMRT layers decreases again, as a
consequence of a more homogeneously moist snowpack. On the other hand, Fig. 7 shows that during the ripening phase, the
first campaign year has been modelled using ~30% less layers than the second, on average. The presence of ice lenses helped
to homogenize the distribution of liquid water within the snowpack, resulting in more uniformly wet layers near the surface and

consistently drier sections toward the bottom. Without ice lenses, in 2024, the progression of liquid water into the snowpack
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Figure 6. (a) Vertical profiles of snowpack properties measured in the field on May 14, 2024: temperature (dark red), density (dark yellow),
liquid water content (LWC; light blue), and specific surface area (SSA; dark blue). The vertical spacing of the points connected by the
lines reflects the measurement resolution for each profile: 5 cm for temperature, 3 cm for density, 2 cm for LWC, and 4 cm for SSA. (b)
Representation of the same profiles averaged according to the physically consistent snow layers (indicated by grey horizontal lines). The
layered profiles as in (b) form the input snowpack for the SMRT model, combined with surface roughness parameters measured on the same

day (RMSH=2.7 mm; CL=48.5 mm).

was more heterogeneous, therefore requiring more layers in the model to remain as true as possible to the conditions observed
in the field. Despite the efforts to find a reasonable compromise between all the above mentioned constraints, the optimal way

to model a radar-equivalent snowpack from field measurements and/or detailed multilayer physical model outputs remains an
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Figure 7. Variability of the number of modelling layers in SMRT used for each simulation day as a function of the melting phase and the

campaign year.

open question in the field of radiative transfer modelling of snow, only recently addressed by Meloche et al. (2024), albeit for

dry snow only.

4 Results

4.1 Identification and re-definition of melting phases from multitemporal Sentinel-1 backscatter and field

505 measurements

Fig. 8-9 show the evolution of the multitemporal S1 SAR backscatter together with the time series of measured properties: snow

temperature, LWC, air temperature, total water content (TWC), runoff, snow water equivalent (SWE) and surface roughness

indices (RMSH and CL). The melting phases identified with the method proposed by Marin et al. (2020) are reported on each

time series for later validation. We will refer to the snow seasons of 2022-2023 and 2023-2024 as the 2023 and 2024 seasons,
510 respectively.

Our roughness measurements show clear differences for different snow surfaces (Fig. 10). Smooth surfaces typical of
new/dry snow have RMSH values around 1 mm (Fig. 10a). Thereon, roughness increases with increasing surface degrada-
tion due to melt-refreeze cycles and sublimation (Fig. 10b). The values of RMSH measured in these conditions, which are the
most persistent throughout the melt season, lie within 3 and 10 mm approximately. Fully-formed suncups are associated to

515 values of RMSH around 10-15 mm (Fig. 10c). Deep suncups appear like craters on the snow surface (Fig. 10d), some reaching
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Figure 8. Data overview for the snow season of 2022-2023. (a) SI backscatter time series: exact values of o¢ ” acquisitions (triangles);
range obtained by connecting the consecutive S1 passages by direction of orbits, i.e. by connecting all the morning/descending (MJ) and the
afternoon/ascending (A1) acquisitions (shaded areas). Each panel is subdivided into the melting phases identified with the method of Marin
et al. (2020). (b) Manually measured profiles of snow temperature. (c) Manually measured profiles of snow liquid water content (LWC). (d)
Air temperature at hourly resolution, measured by the automatic sensor at WFJ. (¢) Measured total water content (TWC) (light blue); runoff
time series automatically recorded by the lysimeter at WFJ (dark blue); lack of runoft data due to the instrument failure (grey area); snow
water equivalent (SWE) both automatically recorded by the snow scale (black line) and manually measured (white circles). (e) Time series

of measured surface roughness parameters —- RMSH and CL.

width of 20 cm and depths of 10 cm. In these conditions, we measured values of roughness RMSH equal or higher than 20

mim.
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Figure 9. Data overview for the snow season of 2023-2024. (a) SI backscatter time series: exact values of o¢ ” acquisitions (triangles);
range obtained by connecting the consecutive S1 passages by direction of orbits, i.e. by connecting all the morning/descending and the
afternoon/ascending acquisitions (shaded areas). Each panel is subdivided into the melting phases identified with the method of Marin et al.
(2020). (b) Manually measured profiles of snow temperature. (¢) Manually measured profiles of snow liquid water content (LWC). (d) Air
temperature at hourly resolution, measured by the automatic sensor at WFJ. (e) Measured total water content (TWC) (light blue); runoff time
series automatically recorded by the lysimeter at WFJ (dark blue); snow water equivalent (SWE) both automatically recorded by the snow

scale (black line) and manually measured (white circles). (¢) Time series of measured surface roughness parameters - RMSH and CL.

In 2023, the first liquid water was measured on Apr 10 (Fig. 8b). On this date, our data show that the temperature of the
top ~5 cm of the snowpack was 0°C (Fig. 8b). The air temperature reached 0°C as well on this day (Fig. 8d). The snowpack

reached full isothermal state 20 days later. Ice layers formed throughout the season, likely as a consequence of repeated melt-
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Mar 20th, 2024

RMSH = 1.1 mm

Jun 14th, 202

Picture credits: Mathias Bavay, Francesca Carletti

Figure 10. The panels illustrate some representative surface roughness conditions as qualitatively observed on the field (panoramic pictures)
together with one of the panel measurements performed on the same day (bottom right of each panel, where the mean roughness RMSH
measured on that day is also reported). (a) Smooth surface typical of dry snowpack conditions. (b) Early-stage development of surface
roughness deriving from melt-refreeze cycles. (c) Fully-formed suncups over a homogeneous snow cover, at least among the considered S1

cell. (d) Fully-formed suncups over a patchy snow cover.
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refreeze cycles and the succession of several warm and cold spells (Fig. 8d). Ice layers were observed regularly during the
measurement campaign, their presence is highlighted by locally higher values of LWC due to ponding at approximately 100
cm from the ground. The presence of ice layers probably withheld the meltwater in the upper section of the snowpack, partially
hindering the progression of the wetting front. LWC profiles in Fig. 8c highlight ponding above ice layers consistently until
May 15. The ponding is no longer detected over the next consecutive 5 snow profiles and becomes visible again from May 26
until early June, when the ice layers likely disintegrated allowing the meltwater to percolate to the bottom of the snowpack. The
fact that the ponding above ice layers is not detected on a series of consecutive snow profiles is probably linked to the partial
refreeze of the snowpack highlighted by the drop in air temperature detected within this time span (Fig. 8d). However, ice
layers could also be laterally non homogeneous. Fig. 8f shows that the roughness associated with wet snow starts developing
short after the snowpack starts moistening, with RMSH increasing until May 9. Thereon, the cold spell brought new snowfalls
which smoothened the snow surface significantly, and roughness indices reverted to typically winter values for approximately
10 days. Fully-formed suncups were observed on the field from May 31 onwards. As explained in Sec. 2.2, the lysimeter
time series for 2023 (Fig. 8e) is not useful to detect the runoff start. However, the automatic measurements indicate the first
slight SWE decrease around May 8, following a warm spell that lasted several days. This occurred in the presence of a fully
isothermal snowpack, suggesting that meltwater may have started to be released around this time.

In 2024, the first liquid water on the surface was measured on Apr 8 during a warm spell (Fig. 9b-d). From this date on, the
wetting front moved somewhat into the snow before being interrupted by a cold spell, which caused a partial surface refreeze.
The snowpack reached the full isothermal state on May 9. Over the course of this season, ice layers were not observed in the
field, the progression of the wetting front was not hindered and the snowpack reached full saturation earlier with respect to
the previous year. The runoff time series confirms that the snowpack released the first meltwater around Apr 8 — on this date,
the (point-wise) measurements show a largely isothermal snowpack. Likely, the snowpack was isothermal over the entire cell
(Fig. 9b,c.e). Additionally, significant amounts of LWC were measured at the ground interface after Apr 8§ and the manual
measurements show a SWE decrease of ~100 mm between Apr 4 and 15. These observations can validate the same hypothesis
made for the previous season in the absence of runoff data due to instrument failure. Our measurements in Fig. 9f show that
surface roughness increased relatively late (Jun 3) with respect to the previous season, with fully-formed suncups being visible
on the field from Jun 19 onwards.

Coupling the detailed, high temporal resolution information about the state of the snowpack with the multitemporal SAR
o)V recorded by S1 on morning and afternoon overpasses (Fig. 8-9a) enables the validation of the methodology proposed
by Marin et al. (2020) to identify the melting phases. According to the authors, a drop of at least 2 dB with respect to the
winter mean in the afternoon/ascending oy ¥ identifies the start of the moistening phase; the ripening phase starts when the
morning/descending o) V' signal shows the same drop of at least 2 dB; the runoff starts when both morning/descending and
afternoon/ascending o}V time series reach their local minima before the monotonic increase (the authors propose an average
date between the two local minima when both the S1 satellites were available). For the two seasons, we computed the average

winter backscatter (a(‘f C‘{Ty) by averaging all values recorded by each individual track over the course of the meteorological
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Table 2. Overview on the identification of the melting phases based on the multitemporal S1 SAR backscatter as proposed by Marin et al.
(2020). For each season, the table shows the relevant values of oy ¥ and the occurrence dates for each afternoon/ascending (A7) and
morning/descending (M) look (and corresponding incidence angle). The selected values for the start of the moistening, ripening and runoff
phases are highlighted in bold. For the runoff start, the selected date according to the method of Marin et al. (2020) is compared against the

data recorded by the lysimeter, when available.

Season 2022-2023 2023-2024
Track | 015 (A1) 117 (AT) 066 MJ) 168 (M]) 015 (A1) 117 (A1) 066 M]) 168 (M])
Local Incidence Angle 41° 32° 33° 42° 41° 32° 33° 42°
oy v, [dB] | -123 -11.4 -8.4 -10.0 -12.6 -115 -8.9 -10.1
Moistening start date | Apr 22 Apr 29 - - Apr 04 - Apr 16  Mar 18 - -
Moistening start value [dB] -18.5 -16.3 - - -14.1 - -20.0 -13.9 - -
Ripening start date - - Apr 26 Mar 28 - - Apr 08 Apr 15
Ripening start value [dB] - - -12.6 -13.3 - - -12.8 -17.9
cr(‘){ Y in, date | May 16 Apr 29 May 08 May 03 May 22 May 17 May 26 Jun 02
o8 ¥ in» value [dB] 214 -16.3 -19.8 -22.4 -22.6 -23.7 -20.7 -22.8
Runoff start date (Marin et al., 2020) May 06 May 24
Runoff start date (Lysimeter) No data — ~Apr 29 (?) ~Apr 15

winter, i.e., from Dec 01 to Feb 28. The resulting values are the benchmark needed to identify the melting phases. The results
are listed in Tab. 2. As noted by Marin et al. (2020), the dependence of o}V on incident angles remains as a residual effect.

Because for the selected cell two morning/descending and afternoon/ascending looks are available, there are two possible
dates for the start of the moistening and ripening phase, respectively. In 2023, these dates are Apr 22 and 29 for the moistening
phase and Mar 28 and Apr 26 for the ripening phase. For the start of the moistening phase, we selected the earliest, i.e. Apr 22.
For the start of the ripening phase, the two identified dates are almost one month apart, however, the oV decrease recorded
on Mar 28 by track #168 derives from a melt-refreeze cycle, as the following value recorded by the same track aligns back
around the winter mean. Therefore, we selected Apr 26 as the start of the ripening phase. In 2024, for the moistening phase,
the o’V value recorded on Apr 04 by track #015 is only 1.5 dB lower than m, however, the next passage of the same track
on Apr 16 recorded a drop of already 7.4 dB. Therefore, the moistening start has been placed on Apr 04. On this date, track
#117 recorded a drop of 7 dB with respect to m. For the ripening start, we chose Apr 15.

These considerations show that the method of Marin et al. (2020) is limited by the the halved S1 revisit frequency. This
becomes even more clear for the selection of the runoff start date, as the wider separation between local minima of a(‘)/ v
considering all 4 looks is 17 days for 2023 and 16 days for 2024. Using the date in between to determine the runoff start,
as done by Marin et al. (2020), gives potentially unreliable results in these conditions. This low temporal resolution makes it
difficult to pinpoint precise onset dates, especially when minima are separated by such long periods. Despite the ambiguities, on
both seasons, the identified moistening phase coincides exactly with the first snowpack warming and the consequent formation

of liquid water. The identified ripening phase is also mostly consistent with the theory, as field measurements show that the
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Figure 11. Bias between LWC measurements with dielectric devices and melting calorimetry for snow seasons of 2023 (a) and 2024 (b). In

2024, direct comparisons between simultaneous (brown) and co-located (light blue) measurements were also performed.

snowpack transitions to the fully isothermal state with the wetting front progressing to the bottom, although this process is
partially hindered in 2023 by ice layers. In 2024, a sudden cold spell at the beginning of the ripening phase caused the refreezing
of the superficial meltwater (Fig. 9b-d). This generated a sharp increase in both morning and afternoon o} V' (Fig. 9a). In 2024,
the first instance of measuring a fully isothermal snowpack coincided precisely with the first afternoon local minimum of
o’V The same cannot be verified for 2023, which instead shows a counterintuitive case where the local minimum of morning
oY’V anticipates the local minimum of afternoon oV (Fig. 8a). Nonetheless, by the time the morning o V' reached its local
minimum in 2023, the snowpack had already been fully isothermal for at least 5 days (Fig. 8a-b). This suggests that the
snowpack is likely to be fully isothermal when the afternoon o) V' reaches its local minimum. The runoff time series in 2024
shows that the snowpack had started to release meltwater as soon as in the late moistening phase (Fig. 9e), in correspondence
of the first local minimum of the afternoon o}V time series on Apr 16 (Fig. 9a).

Marin et al. (2020) proposed three possible explanations for the monotonic backscatter increase following the local minima:
(i) the increase in surface roughness, (ii) the decrease in TWC and (iii) the snow cover gradually becoming patchy. Our data
show that over a high-altitude alpine snowpack like the study plot at WFJ, roughness develops on the snow surface well before
the snow cover begins to disappear in patches. Therefore, at least for similar altitudes, the gradual disappearance of the snow
cover can be ruled out as a cause of the increasing backscatter in the late melting stage. For both seasons, our data indicate that
the strongest correlation with the monotonic increase of oV after the local minimum is observed with the gradual increase
in surface roughness (Fig. 8-9f). Conversely, there seems to be no remarkable correlations between the increase in o ¥ and
the TWC and/or runoff trends. In fact, Fig. 8-9e show that the decrease of TWC as a consequence of snow ablation is not
monotonous. On the other hand, both automatic and manual measurements show that by the time SWE started decreasing

monotonically (around May 26, 2023 and Jun 06, 2024), the S1 o'V had already increased again by ~6 dB.
4.2 TInstrumental uncertainty and variability in field measurements of liquid water content

Fig. 5 shows that liquid water has a strong impact on the real and imaginary parts of €, at C-band frequencies. For S1 oV

retrievals from ground measurements, this poses three major challenges. In the first place, manual measurements concern a
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very small area/volume whereas satellite acquisitions cover a pixel size of 20 x 20 m. Secondly, the distribution of liquid
water within the snowpack can be highly heterogeneous because of a variety of features and processes, namely capillary
barriers, preferential flows, ice layers. Finally, what is the most accurate methodology for measuring LWC in both lab and field
environments remains a debated question in snow science (Barella et al., 2024), and although the methods used in this paper
were designed to achieve a good level of robustness, they are nevertheless subject to error. Therefore, all these uncertainty
sources need to be taken into account when comparing satellite o} ¥ signatures with retrievals driven by measured data.

In Sec. 2.4, we explained how dielectric measurements were validated against melting calorimetry in conditions of ripe
snow. We referred to the validation setup of 2023 as "co-located" only; whereas in 2024 we performed an additional "simulta-
neous" validation in addition to the co-located. Figure 11 shows the spread between dielectric and calorimetric measurements
in co-located and simultaneous setups for all the LWC validation measurements made over the two years. In 2023, the average
maximum bias between co-located measurements is 2.6% and the average standard deviation is 1.2%. In 2024, the average
maximum bias and the average standard deviation are 2.6% and 1.4% for co-located measurements and 2.3% and 1.5% for
simultaneous measurements, respectively. Figure 13 shows all the measured vertical profiles in detail. In 2023, there is an over-
all good agreement between dielectric and calorimetric measurements. The time lag between the measurements is highlighted
by often similar LWC profile shapes, with calorimetry generally measuring higher peak values. Unexpectedly, in 2024, the
simultaneous measurements resulted in only slightly lower biases and slightly higher standard deviations. This counterintuitive
result is supported by a number of previous studies. For example, Donahue et al. (2022) found an average standard deviation
of 1% over 10 cm wide snow samples with LWC between 0 and 5%. The study of Techel and Pielmeier (2011) confirms the
high occurrence of measurement deviations of more than 1% at short horizontal distances. However, Techel and Pielmeier
(2011) also show that the correlation between measurements at larger horizontal distances is higher for LWC values lower
than 1.3%. Therefore, the biases and standard deviations observed in our field measurements may overestimate the instrument
uncertainty and/or variability over larger scales comparable to the footprint of S1. Based on these considerations, we define the
large-scale LWC variability as +1%. We use this value to assess the effect of LWC uncertainty on o} V' retrievals from ground

measurements.
4.3 Interpretation of Sentinel-1 backscatter through SMRT simulations forced by field measurements

Fig. 12 shows the comparison between the time series of S1 acquisitions and SMRT-modelled oV forced by snowpit mea-
surements using the two different permittivity formulations (MEMLSv3 and H-86) and the model setup described in Sec.
3.2, considering the LWC variability of +1% estimated in Sec. 4.2. In this Figure, together with Tab. 3, simulation results
are categorized into groups, and potential sources of inconsistencies and/or driving scattering mechanisms are discussed for
each group, based on the measured values of LWC, TWC, and surface roughness. All measured profiles of LWC, along with
the corresponding TWC and RMSH values, are presented in Fig. 13 and Tab. 5, which serve as a reference for the following
analysis. Tab. 4 shows all the Root Mean Squared Errors (RMSE) between S1 acquisitions and simulations, according to the
snow season, the selected permittivity formulation and the melting phase. In general, both models exhibit a mean negative bias

of ~5 dB with respect to S1 recordings over both seasons; however, biases are more pronounced for 2024 than for 2023, with
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Table 3. Supplementary information to Fig. 12: measured values of TWC, LWC, RMSH, noteworthy events for scattering (such as cold

spells or late snowfalls), and explanations to the mismatch between modelled and recorded S1 backscatter signatures.

Group TWC LWC RMSH Event Source(s) of inconsistency, scattering mechanism

la - - - Soil thawing — Backscattering increase due to soil thawing

— Uncertainty in spatiotemporal LWC/TWC
Snowpack moistening — Scattering from surface structures (melt-refreeze)
2a <10 mm <3% 1 mm
Smooth surface — Surface roughness underestimation

— Wet soil scattering

o — Uncertainty in spatiotemporal LWC/TWC
Snowpack ripening
3a >10 mm >3% 1—4 mm ) — Uncertainty in surface roughness measurements
Formation of surface roughness o .
— Uncertainty in IEM modelling

o — Uncertainty in spatiotemporal LWC/TWC
Snowpack ripening
4a >10 mm >3% 3~4 mm ] — Uncertainty in surface roughness measurements
Increasing surface roughness o .
— Uncertainty in IEM modelling

New snowfall on a wet snowpack .
Sa >10 mm >3% ~1mm — "Buried surface roughness"
Well-developed surface roughness

— Uncertainty in spatiotemporal LWC/TWC
Cold spell (partial snowpack refreeze) — Scattering from surface structures (melt-refreeze)
6a <10 mm <3% ~1 mm
Smooth surface — Uncertainty in surface roughness measurements

— Wet soil scattering

— Uncertainty in spatiotemporal LWC/TWC
Wet snowpack
7a >10 mm >3% >4 mm — Uncertainty in surface roughness measurements
Fully-formed suncups o .
— Uncertainty in IEM modelling

— Uncertainty in spatiotemporal LWC/TWC
Snowpack moistening — Scattering from surface structures (melt-refreeze)
1b <10 mm <3% ~1mm
Smooth surface — Surface roughness underestimation

— Wet soil scattering

o — Uncertainty in spatiotemporal LWC/TWC
Snowpack moistening )
2b >10 mm >3% ~1mm — Scattering from surface structures (melt-refreeze)
Smooth surface
— Surface roughness underestimation

— Uncertainty in spatiotemporal LWC/TWC
<10 mm Cold spell (partial snowpack refreeze) — Scattering from surface structures (melt-refreeze)
3b <3% ~1mm
(Varying) Smooth surface — Surface roughness underestimation

— Wet soil scattering

o — Uncertainty in spatiotemporal LWC/TWC
Snowpack ripening
4b >10 mm >3% ~1 mm — Scattering from surface structures (melt-refreeze)
Smooth surface o
— Surface roughness underestimation

L — Uncertainty in spatiotemporal LWC/TWC
Snowpack ripening o
5b >10 mm >3% ~3 mm ) — Uncertainty in surface roughness measurements
Increasing surface roughness o .
— Uncertainty in IEM modelling

New snowfall on a wet snowpack .
6b >10 mm >3% ~1mm — "Buried surface roughness”
Well-developed surface roughness

— Uncertainty in spatiotemporal LWC/TWC
Wet snowpack o
7b >10 mm >3% >4 mm — Uncertainty in surface roughness measurements

Fully-fornéeg suncups

— Uncertainty in IEM modelling
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Figure 12. Comparison between the recorded multitemporal S1 o " (triangles and shaded areas) and the time series of o modelled with
SMRT, for year 2023 (a) and 2024 (b). Results are shown for both permittivity formulations — MEMLSv3 (dark gray boxplots) and H-86
(light gray boxplots). The boxplots indicate the variability associated to the LWC uncertainty of 1% for each layer, as discussed in Sec. 4.2.
The shaded areas of the recorded S1 multitemporal o ¥ represent the range of values obtained by connecting the consecutive passages by
direction of orbits, i.e. by connecting all the morning/descending and the afternoon/ascending acquisitions. The triangles represent the exact
values of the acquisitions. For clarity, exact values are only shown for days where snow measurements were carried out, thus allowing direct
comparison. Colored boxes group similar simulation results and are labeled with codes (e.g., 1a, 2a), which refer to Tab. 3 for details on the
corresponding measured snow properties, dominant scattering mechanisms, and potential sources of error. At the top of each panel, the time
series are further segmented into the melting phases identified in Sec. 4.1 — as well as the main scattering regimes, which are influenced by

LWC, surface roughness, and buried surface roughness.

630 the deviation between permittivity models being higher as well in 2024. H-86 generally gives higher o}V values with respect
to MEMLSv3.
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Table 4. RMSE (in dB) between modelled and recorded o ¥ values according to the snow season, the selected permittivity formulation and

melting phase.

Season 2022-2023 2023-2024
Permittivity formulation | H-86 [dB] MEMLSv3 [dB] Data to compare [#] | H-86 [dB] MEMLSv3 [dB] Data to compare [#]
Overall 34 4.5 9 6.2 7.5 28
Dry 0.5 0.7 5 0.7 0.5 4
Moistening - - 0 9.1 12.2
Ripening 5.8 7.6 3 8.4 10.1 10
Runoff 0.2 1.9 1 33 2.7 11

In 2023, the #066 morning S1 track recorded a backscatter increase of more than 2 dB between Apr 05 and 19. Similarly,
in 2024, we observe a 2.5 dB increase in backscatter recorded track #117 from Feb 08 to Mar 04. We can hypothesize that
such increases are driven by the thawing of the soil. However, our data are insufficient and too uncertain to prove so, because

635 of possible interferences between dielectric instruments and the ground in mostly dry snow conditions, as mentioned in Sec.
2.1.4. In dry snow conditions, there were no significant discrepancies between S1 and simulations; henceforth Fig. 12 only
focuses on the period after the assumed soil thawing.

Aside the chosen permittivity formulation, five primary sources of uncertainty may account for the differences between
simulated and recorded o V. A significant one is snow transformation and melting between satellite and measurement acqui-

640 sitions. S1 orbits intersect the field area either in the early morning or in the late afternoon (see Tab. 1). As explained in Sec.
2.4, measurements started at around 10:00 and would take several hours. Thus, it is likely that in both cases the LWC during the
passage is lower than the value measured at 10:00 or later because of daily melt-refreeze cycles, especially near the snowpack
surface. Moreover, the point-wise LWC measurements are not necessarily representative of the general liquid water distribution
over the entire S1 cell. In 2023, we consistently observed ice layers over a high number of consecutive snow profiles (see Fig.

645 8c and 13). Our consecutive measurements suggest that ice layers contributed creating a more spatially homogeneous liquid
water distribution by acting as a natural drainage barrier for meltwater. Unlike 2023, in 2024 ice layers were not consistently
observed in the field. Likely, the melting process was more heterogeneous over the S1 cell, and point-wise measurements are
less representative of wider scales in this season. This explains the fact that days marked by high variability associated with
LWC are more numerous in 2024 than in 2023. In Tab. 3, we grouped these sources of uncertainties together under the labels

650 "uncertainty in spatiotemporal LWC/TWC". Potentially, this source of uncertainty affects every S1 retrieval from field data.
However, it definitely carries more weight than other sources of error at early melt stages when the simulation variability as-
sociated to LWC uncertainty is particularly high, i.e., when the TWC is low (Apr 24-26, 2023; Apr 04, 2024) and during both
the cold spells of 2023 (May 17) and 2024 (Apr 15-23), which caused the partial refreeze of the snowpack (see Fig. 8§, 9b-d).

Daily melt-refreeze cycles, however, not only alter the amount of LWC/TWC in the snowpack, but also drive the formation

655 of surface structures that can create additional scattering which is not accounted for in the simulations, i.e. crusts (Lund et al.,

2022; Brangers et al., 2024). In Tab. 3, we labeled this uncertainty source as "scattering from surface structures (melt-refreeze)".
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Table 5. Total water content (TWC) and surface roughness (RMSH) values measured for the LWC profiles shown in Fig. 13.

2023 2024
Date TWC RMSH Date TWC RMSH
[mm]  [mm] [mm]  [mm]
Apr 24 3 3 Apr 04 2 1
Apr 26 1 1 Apr 08 13 2
Apr29 113 1 Apr 11 14 1
May 01 39 2 Apr 15 34 2
May 03 39 2 Apr 16 6 -
May 05 114 3 Apr 18 3 1
May 08 143 3 Apr 23 4 2
May 09 102 4 Apr 27 11 1
May 11 18 1 May 02 16 2
May 12 22 2 May 09 161 1
May 15 14 1 May 10 62 2
May 17 11 1 May 14 46 3
May 19 36 3 May 21 96 1
May 22 72 - May 22 110 1
May 24 24 3 May 29 80 2
May 26 129 - Jun 03 145 4
May 29 116 4 Jun 07 115 3
May 31 193 7 Jun 10 44 4
Jun 02 27 10 Jun 14 47 6
Jun 05 38 - Jun 19 129 14
Jun 07 67 9 Jun 22 71 12
Jun 09 98 16 Jun 26 63 -
Jun 12 16 16 Jun 27 42 12
Jun 14 13 21 Jul 01 22 14
Jun 16 64 30 Jul 04 29 13
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Figure 13. Ensemble of all the LWC profiles measured with dielectric instruments (light blue) from Apr 24, 2023 and Apr 04, 2024, i.e.
the first dates for which significant mismatches between modelled and S1-acquired oy ¥ values in 2023 (top row) and 2024 (bottom row),
respectively. Melting calorimetry measurements (dark blue), including their associated uncertainty (dark blue shaded areas) as described in
Barella et al. (2024), are shown for comparison. In 2024, a second simultaneous LWC profile using dielectric instruments (brown) was also

carried out.

This uncertainty applies to the same cases as where "uncertainty in spatiotemporal LWC/TWC" applies, but it likely holds more
weight when the TWC is slightly higher and the simulation variability according to LWC is lower (Apr 08-15, 2024; Apr 27 -
May 05, 2024).
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Another cause of significant discrepancy between recorded and modelled o}V in the presence of a mostly dry snowpack
with a smooth surface may be the thawing of the soil. This process creates a thin layer of liquid water overlying the natural soil
roughness or absorbed into the basal snow layer (Lombardo et al., 2025). The combination of snow wetness and roughness,
as will be shown later in the paper, can be responsible for backscatter increases up to 7 dB. In Tab. 3 we refer to this kind of
uncertainty as "wet soil scattering". This uncertainty potentially applies to the instances when the TWC is relatively low and
the variability associated to LWC is high. Between Apr 04-27, 2024, our measurements show considerable amounts of liquid
water at the soil interface with otherwise relatively dry snowpack and smooth surfaces (see Fig. 13). The lysimeter time series
corroborates these measurements by detecting runoff start on Apr 08, 2024 (see Fig. 9¢). However, we lack sufficient data in
order to prove and explore this possible scattering source, therefore we only mention it as an hypothesis.

Two similar instances in 2023 (May 05-09) and 2024 (Apr 10 and 14) suggest another interesting phenomenon likely
affecting simulation accuracy. On both these intervals, Fig. 12 shows very good agreement between recorded and modelled
values of oV, regardless of the chosen permittivity model and the variability associated to LWC. In both instances, surface
roughness had just started developing on a wet snow surface (LWC>3%), with measured RMSH values between 3 and 4 mm
(see Fig. 10b). Thereafter, spring snowfalls cover the early-stage roughness and the snow surface reverts to smooth with RMSH
values between 1 and 2 mm (see Fig. 10a). On both years, the group of simulations following the spring snowfalls (i.e. May
11-15, 2023; May 21 and 22, 2024) show again strong biases when compared to S1 recordings. This bias is almost certainly
due to the fact that the surface roughness which had started to develop was then buried below a smooth layer of new snow
and it is not simulated by SMRT in the proposed configuration (see Sec 3.2). In Tab. 3 we labeled this phenomenon as "buried
surface roughness".

Generally, simulations are in better agreement with S1 recordings when the measured surface RMSH is above 3 mm. Fig.
12 shows multiple groups of simulations where S1 retrievals from field data gain increasing accuracy with increasing RMSH
on a wet surface, together with a decreasing dependence on the chosen permittivity model and the uncertainty associated to
LWC (Apr 29 to May 09, 2023; May 19 to Jun 09, 2023; May 29 to Jul 01, 2024). These instances suggest that in conditions of
increasing surface roughness on a wet snow surface, additional source of uncertainty in S1 retrievals from field data might be
associated to the IEM (see Sec. 3.2) translating surface roughness in backscatter response and/or to point-wise panel measure-
ments underestimating the surface roughness of the entire S1 cell. In Tab. 3 we labeled these sources as "uncertainty in IEM
modelling" and "uncertainty in surface roughness measurements", respectively.

Interestingly, the S1 signal saturates at values of oV of -22.4 and -23.7 dB for 2023 and 2024, respectively. These values
are close to the nominal noise equivalent sigma naught (NESZ) of S1, i.e. -22 dB. The saturation of the signal is obtained by

SMRT at much lower values, around ~-30 dB, regardless of the chosen permittivity formulation.
4.3.1 C-band radar backscatter sensitivity to the coupled evolution of surface roughness and liquid water content

To study the C-band radar backscatter sensitivity to the coupled evolution of surface roughness and LWC, we selected the
date of Apr 16, 2024. On this date, we measured a melt event in the superficial 45 cm. The bottom part of the snowpack was

homogeneously dry and was discretized as a one layer with the average of the scattering properties measured in the field. These
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Figure 14. Sensitivity of the C-band radar backscatter to the coupled evolution of surface roughness (expressed by RMSH) and LWC. Panels
(a, b, d, e) illustrate differences between two dielectric permittivity formulations - MEMLSV3 (a, b) and H-86 (c, d) — as well as the sensitivity
to the local incidence angle (LIA) over cell 40. odV responses are shown for 40° (solid lines) and 30° (dotted lines) incidence angles. Panels

(c, f) show values of ‘Aa(‘f v ’ 4 o, 1.., the differences between backscatter coefficients in (a, b) and (d, e), respectively. The real reference

0°-30
case is the snowpack layering observed on Apr 16, 2024: a melt event in the superficial 45 cm and an otherwise dry snowpack. The reported

results are consecutive synthetic variations of LWC and roughness of the surface layer.

values are representative of a compacted snowpack structure at the beginning of the melt process: density of 428 kgm™, SSA
of 15.1 m*kg™! and temperature of -0.1°C. From this configuration, we prepared a series of synthetic snowpack variations with
surface LWC increasing from 0 to 12%, and coupled each of them with a range of surface roughness RMSH increasing from 1
to 15 mm. These extremes represent a smooth surface typical of recent snowfall and the highly textured surface of fully formed
suncups, respectively. To ensure consistency, we gradually increased the value of the second roughness parameter CL as well.
To do so, we used an empirical logarithmic relationship extracted from field data between RMSH and CL, which we report in
Fig. Al. However, this empirical relationship is based on a limited number of points (75 in total) which show larger spread for
increasing values of RMSH. Therefore, we assume that the only two discontinuities in the experimental results (see Fig. 14a-c,
RMSH=3 mm and LWC,,,, =12%) can be explained considering this uncertainty. For clarity, these points were removed. All

experiments were run with two incidence angles — 30° and 40° — which represent the overall range of angles between satellite
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overpasses and the snow surface within the reference cell (see Fig. 2 and Tab. 1). The result of all the experiments is shown in
705 Fig. 14, for both permittivity formulations.

In general, Fig. 14 shows that the intensity of the scattering response has a strong dependence on LWC for lower values of
surface roughness (RMSH<3 mm). The higher the surface roughness, the weaker the dependence on LWC. More in detail,
with H-86, for LWC values lower or equal to 0.5%, simultaneously increasing surface LWC and surface roughness causes
a decrease in C-band o) of a maximum of 2 dB. Within this range, the intensity of the oV drop from smooth to rough

vV
0

710 surfaces decreases gradually with increasing LWC. For LWC values higher than 0.5%, the spread in o5 ¥ as a function of

increasing surface roughness for the same value of LWC increases, with a reversed trend. Simultaneously increasing LWC
eventually generates a o ¥ increase for all the considered roughness values in this experiment. Interestingly, the higher the
surface roughness, the lower LWC value is needed to invert the trend: for RMSH=15 mm (typical of a textured snow surface
where suncups are visible, but also very close to the limit of validity of the IEM), oy V" starts to increase for LWC>1%,
715 whereas for RMSH=3 mm, the 0'(‘)/ v only starts to increase for LWC>2%. For LWC values higher than the threshold of 0.5%,
the surface roughness influences the C-band backscatter response to an extent that is comparable to the effect of LWC alone
over a smooth surface. Similar considerations can be done for the experiments run with MEMLSvV3, but as a consequence
of the different absorption, the above-mentioned changes in o} V" trends happen for lower values of LWC. Furthermore, the
experiments in Fig. 14 reveal that, regardless of the permittivity formulation, for relatively low values of LWC (~1%), a
720 change in surface RMSH from 2 to 3 mm generates a remarkable increase of ~6 dB in the backscatter response. In our field
campaign, we typically measured roughness values in this range over snow surfaces undergoing the first cycles of melt-refreeze
metamorphism. Interestingly, the value of 6 dB is very close to the average bias observed between S1 acquisitions and SMRT-
modelled o}V during the moistening and ripening phase (see Tab. 4). This supports the hypothesis that panel measurements
may underestimate the large-scale surface roughness. Moreover, the backscatter increase occurring for all LWC and regardless
725 of the incidence angle confirms that the monotonous increase in backscatter following the local minimum can be attributed to
the formation of suncups, as initially suggested by the measurements alone.
Finally, Fig. 14c,f allow considerations regarding the impact of the incidence angle. To do so, we use the index |Ao(‘)/ v ] 10°—30°>
i.e., the absolute difference in backscatter between the two incidence angles of 40° and 30° — the range of incidence angles
overlooking the reference cell. For smooth surfaces (1 <RMSH< 2) and for LWC> 1.5%, |Aa(§/ V| exceeds 2 dB, i.e., twice
730 the nominal uncertainty of S1 (see Sec. 2.3). For LWC lower than 1.5%, {Aa(‘)/ V’ is highly sensitive to small increases in
LWC. For RMSH?> 3, the sensitivity of |Aa(‘)/ V| to changes in LWC almost disappears. In conditions of fully-formed suncups
(RMSH> 10),

Aoy V| drops below the nominal sensitivity of 1.0 dB for every LWC value, meaning that the backscatter
signals show progressively weaker angular dependence for highly structured snow surfaces. This phenomenon is easily un-
derstood considering that, on rough surfaces, diffuse scattering is enhanced. Therefore, the position of the sensor relatively

735 to the snow surface becomes less important, as the reflected energy is less directional and more broadly scattered. The same
phenomenon explains the apparent slight backscatter decrease for RMSH> 10 at angles of 30° (Fig. 14b,e). At lower incidence
angles, the radar beam is closer to perpendicular to the surface than it is at higher incidence angles. On rough surfaces, with

enhanced diffuse scattering, the fraction of energy reflected directly back to the sensor is reduced.
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5 Discussion

Two consecutive years of detailed snow profiling with specific focus on the melting season gave an unprecedented overview
on the multitemporal evolution of the SAR backscatter as a result of the changing snowpack properties. The identification of
the melting phases based on the multitemporal SAR backscattering as proposed by Marin et al. (2020) was complicated by
two factors: (i) the failure of Sentinel-1B in 2022, which resulted in a halved availability of satellite recordings and (ii) with
the ideal incidence angle for wet snow separability being ~45° (Nagler et al., 2016; Karbou et al., 2021), and as shown by the
experiments in Fig. 14, lower incidence angles dampen the backscatter response to moistening snow. Despite these limitations,
using nothing more than information on oV change with respect to winter means, the threshold-based method identified the
moistening and ripening phases for both years with high accuracy.

With the first measured time series of surface roughness parameters, we demonstrated that for a high-altitude alpine snow-
pack — where radiation can be the dominant energy input during the melting season and surface roughness develops several
weeks before the snow cover starts showing patches — the observed monotonous increase in backscatter at the end of the melt-
ing season is physically related to the development of surface roughness, from initial surface degradation due to melt-refreeze
cycles and/or the sequence and intensity of snowfall events, to the formation of suncups. This phenomenon was only hypoth-
esized by Marin et al. (2020). Without ground truth reference, it is impossible to distinguish the effect of surface roughness
from disappearing snow using multitemporal SAR backscatter alone. Additionally, the start of the monotonous increase in
multitemporal SAR backscatter defines the local minima in the time series. Several studies were carried out in recent years
where such minima were associated to the runoff start (Gagliano et al., 2023; Darychuk et al., 2023). However, the proximity of
backscatter minimum and runoff start is not due to SAR direct detection of meltwater. Instead, this apparent coincidence arises
at the specific frequency of S1 because of an interplay of several factors. As the snowpack reaches the maximum detectable
water content by S1 (which reduces scattering), surface roughness begins to develop, enhancing scattering. These mechanisms
will be discussed individually in the remaining of this discussion. Based on our data, the only and most likely conclusion we
can draw from the backscatter minima from a practical point of view is that the snowpack is in an isothermal state and likely
already releasing water. However, processes such as melt-refreeze cycles, sublimation, compaction, or settlement in the upper
snow layers can potentially lead to the formation of rough surfaces before the snowpack starts releasing meltwater runoff.
Therefore, it is relevant to rethink how information on backscatter minima are used for hydrological applications, especially
when counting on a limited satellite revisit frequency. Further research should also investigate other potential energy input
mechanisms that are typical of snowpacks in environments outside the high-altitude and mid-latitude conditions explored in
this study.

With radiative transfer modelling, we were able to link measured snow properties to retrieved satellite-based radar signals,
aiming at reproducing the multitemporal backscatter time series recorded by S1. This analysis revealed that — rather than melt-
ing phases — the multitemporal S1 backscatter time series identify two main regimes, each driven by a different dominant factor
influencing the radar response: LWC and surface roughness. Thus, as shown in Fig. 12, the moistening and ripening phases

could be merged into a single phase primarily dominated by LWC, whereas the runoff phase could be redefined as a roughness-
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dominated phase. Modelling satellite backscatter signals forced by field measurements requires accounting for several sources
of uncertainty, which are predominantly associated to these two variables. The uncertainty associated to LWC manifests itself
in many different ways: the time lag between satellite and measurement acquisitions, the scattering originating from surface
structures formed by melt-refreeze cycles, the spatial heterogeneity of the LWC distribution, the instrument uncertainty as-
sociated to the measurements and, on the RT modelling side, a lack of a definite permittivity formulation for wet snow. The
uncertainty associated to surface roughness is mostly linked to measurement inaccuracies (and/or not representativeness for
the entire S1 cell) and, on the RT modelling side, to possible errors in the IEM surface model.

Within the approximately 5 hours separating satellite and measurements acquisitions, the liquid water per layer can change
significantly (Kendra et al., 1998; Techel and Pielmeier, 2011), especially during the moistening and ripening phases or within
cold spells, as indicated by the higher simulation variabilities in Fig. 12. On early stages of the melt process, our measure-
ments are likely not representative of the snowpack state overlooked by S1 because of the strong effect of melt-refreeze. Our
findings confirm that C-band o}V is highly sensitive to diurnal snowpack variability, particularly during the early stages of
melting when features such as melt-refreeze crusts are present (Lund et al., 2022; Brangers et al., 2024). As noted in Brangers
et al. (2024), this strong dependence potentially complicates LWC retrievals significantly at these latitudes. This point raises
concerns, because the early stages of melting represent a critical period when S1 can detect LWC and likely the only window
of opportunity to obtain and integrate reasonable information. However, our RT simulations forced by field measurements
were able to attribute the observed o}V drops across all tracks over both years — 6.2, 4.2, 1.5, and 7.8 dB — to corresponding
measured TWC of 3, 1, 2, and 34 mm, respectively. These results are in line with the tower-based experiments of Strozzi et al.
(1997); Strozzi and Matzler (1998).

Another issue is the instrument uncertainty in LWC measurements. The deviations between dielectric and calorimetric
measurements that we obtained throughout the campaign are in line with previous field and lab studies (Kinar and Pomeroy,
2015; Avanzi et al., 2016). Unexpectedly, co-located measurements in 2023 in the presence of ice lenses showed smaller
deviations with respect to simultaneous measurements in 2024. Localized high values of LWC, such as for ponding meltwater
above ice lenses, can pose accuracy problems for instruments that empirically estimate the volumetric liquid water content from
the snow permittivity (Techel and Pielmeier, 2011). However, as already discussed, their presence could homogenize the overall
liquid water distribution among the cell overlooked by the satellite. The increased variability between measurement techniques
in 2024 may be (at least partially) due to the increased LWC hetereogeneity compared to 2023. This may indicate that the
snowpack stratigraphy and LWC conditions play a larger role than measurement errors due to spatial and temporal offsets.
Accounting for the LWC instrument uncertainty — which we estimated being approximately 1% from our measurements, and
in line with previous similar comparative studies (Techel and Pielmeier, 2011; Donahue et al., 2022) — generates an uncertainty
range in the simulated o}V which is higher than the variability of the signal recorded by S1 over the course of one snow
season. Highest deviations happen for highest values of LWC, in line with the findings of Veyssiere et al. (2019).

Finally, the lack of a definitive permittivity formulation for wet snow poses a significant challenge for the scientific commu-
nity. The permittivity formulations selected for this study exhibit similar spectral shapes (see Fig. 5) and are, to our knowledge,

the only ones that have been validated against real-world observations at C-band frequencies. As mentioned in Sec. 3.2, the
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permittivity formulation describes how the real and imaginary part of €; change with increasing fractions of liquid water, and
therefore how radar microwaves interact with the snowpack. €, is computed using mixing theories to account for volume frac-
tions of ice, water and air in the snow medium. MEMLSv3 parametrizes the shape of water inclusions as elongated spheroids
embedded in a homogeneous host medium. This represents an important source of uncertainty. As liquid water increases, the
shape and orientation of water inclusions significantly affects €, as the electromagnetic field interacts with them in a shape-
dependent way, generating anisotropic responses (Arslan et al., 2003; Chang et al., 2016). However, characterizing the temporal
evolution of the shape of water inclusions during melting processes is an ambitious and challenging task that has only been
addressed very recently by Krol et al. (2024) through rapid MRI profiling in a controlled laboratory environment. At the time
our measurement campaign was designed and conducted, these methods did not yet exist — let alone their applicability in the
field, which is still entirely unknown. These recent advancements are highly promising for the crucial challenge of developing
a comprehensive model applicable across all frequencies and LWC conditions. Moreover, Fig. 12 highlights discrepancies
of approximately 6 dB between SMRT-simulated and satellite-recorded backscatter signals, especially when oV is largely
dominated by LWC. Similar deviations were found by Veyssiere et al. (2019) using MEMLS&a to reproduce o V" during
consecutive melt seasons over alpine areas. Additionally, both permittivity models saturate o V" at values below -30 dB. Such
low values are never recorded by S1, which saturates at around -22 dB. Similar signal saturation (between -20 and -25 dB) in
the C-band in vertical co-polarizations are confirmed by the tower-based radiometric studies of Strozzi et al. (1997); Strozzi
and Matzler (1998). Matching the recorded S1 o}V would require an imaginary part of ¢, similar to that at | GHz — this would
imply unrealistic penetration depths for the C-band, contradicting field observations (Ulaby and Herschel Stiles, 1981; Shi and
Dozier, 1995; Ulaby et al., 2014; Lodigiani et al., 2025). We conclude that one possible explanation to the observed deviations
is the overestimated absorption loss in the existing permittivity formulations. In view of the described inherent limitations of
existing wet snow permittivity formulations, a detailed quantitative analysis of scattering contributions from individual snow
layers was not possible. As previously noted in Sec. 3.2, the absence of a unified permittivity model for wet snow remains an
important direction for future research — not only for RT modelling, but also for field measurements, since dielectric methods
depend on such models to derive LWC.

Later in the melting season, the effects of the uncertainties associated to LWC become weaker, because the snowpack
surface becomes wetter and the scattering is mostly dominated by surface effects (Shi and Dozier, 1992) — this can be observed
in Fig. 12, as variability associated to LWC decreases gradually with time. Simultaneously, deviations between modelled and
recorded o)V decrease sensibly (groups 3-4a and 4-5b in Fig. 12). Here, deviations are mostly explained by inaccurate surface
roughness quantification. This is particularly evident on instances where simulation accuracy drops after a spring snowfall on
a surface that had already begun developing marked roughness (see "buried surface roughness" instances in Fig. 12). However,
at these later stages of the melting process, simulations reproduce the recorded backscatter generally well. This is confirmed by
the low RMSE values reported in Tab. 4 for the runoff phase, which we redefined as a phase dominated by surface roughness
effects. Here, further deviations can be attributed to panel measurements possibly not capturing fully the large-scale roughness
features observed by the satellite. This hypothesis seems to be confirmed by the very recent results of Barella et al. (2025),

which show that panel sizes practical for field measurements may be insufficient to capture the roughness features of wider
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areas. Additionally, the IEM model, which translates roughness parameters into scattering, could be affected by inaccuracies,
especially when the roughness values approach or exceed the model’s range of validity.

In other words, with Fig. 12, we tried to reproduce the recorded S1 o) V' over a 20 x 20 m cell using physics-based averages of
fine, detailed snow properties measured at the point scale. At wider scales, the relative importance of very specific information
on the state of the snowpack may decrease compared to more influential large-scale scattering drivers, namely the development
of internal snowpack structures (e.g. ice lenses and crusts), the soil features in the case of an isothermal but predominantly dry
snowpack, and large-scale surface roughness. Although the modularity and comprehensiveness of SMRT theoretically allows
most of these scenarios to be modelled, the problem of how to quantify them on a large scale persists.

In Fig. 14, we selected a realistic snowpack layering observed in the field and used the full range of measured values of
surface roughness to repeat the experiments done in the past by Shi and Dozier (1992); Strozzi et al. (1997); Strozzi and
Matzler (1998). These simulations aimed to characterize the scattering response of a wet snow cover to increasing surface
roughness, while varying the incidence angle to match the range observed across the relative S1 orbits covering the study area.
Since the relationship between co-polarized signals and snow wetness is controlled by the scattering mechanisms, the type of
correlation between superficial LWC and surface roughness expresses the relative contribution of volume rather than surface
scattering mechanisms (Shi and Dozier, 1992). Shi and Dozier (1992) found negative correlations with surface roughness for
LWC between 2 and 4% and a positive correlation with increasing surface wetness at an incidence angle of 50°. Similar results
were also found by Ulaby and Herschel Stiles (1981) at frequencies of 8.6 GHz and incidence angles greater than 50°. Our
results generally confirm these findings, but the wider range of explored combinations of surface roughness and LWC reveals
that the correlation tilt does not occur at a specific LWC value. For RMSH values (simply "roughness" hereafter) between 2
and 10 mm, typical of snow during most of the melting period, the tilt depends on both LWC and roughness, shifting towards
higher LWC with lower roughness. Specifically, backscatter strongly depends on LWC when roughness values exceed 3 mm.
Again, for smooth surfaces (1-2 mm), both permittivity models saturate o) V' below -30 dB, a value never recorded by S1.

An interesting result from Fig. 12 is that the most accurate simulations of S1 recordings happen when measured values of
surface roughness equal or exceed the threshold value of 3 mm. The experimental analyses in Fig. 14 show that, for relative low
values of LWC between 1 and 1.5%, the backscatter response increases by approximately 6 dB when the roughness increases
from 2 to 3 mm. The value of 6 dB is almost exactly the bias we observed in Fig. 12 between S1 recordings and our simulations,
especially with increasing LWC. As mentioned, similar deviations were found by Veyssiere et al. (2019). Additionally, for LWC
values >1.5% and roughness between 3 and 4 mm, the simulated cr(‘)/ V' saturates at values that are comparable to those recorded
by S1. This raises the point that more representative estimates of surface roughness for the entire S1 cell, and/or improved IEM
modelling to translate this information into backscatter signals, could be just as crucial as rigorous permittivity formulations for
accurately reproducing and better interpreting multitemporal S1 o} V. Recent findings by Barella et al. (2025) also point to this
direction, suggesting that commonly used transect extraction algorithms may filter out some small-scale roughness features. In
general, the experiments in Fig. 14 represent a substantial advancement with respect to Shi and Dozier (1992); Strozzi et al.

(1997); Strozzi and Matzler (1998). In these earlier experiments, surface roughness was either not quantitatively measured
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(being only qualitatively assessed), and/or evaluated over a very limited set of scenarios, overlooking intermediate conditions
that, as our measurements prove, characterize the majority of the melting period.

Fig. 14c,f show that for smooth surfaces and for LWC values as low as 1.5% — i.e., when the melting process is likely in
its initial stage — the variation in backscatter across the range of incidence angles overlooking the reference cell is comparable
to or even exceeds the threshold used in Nagler and Rott (2000); Nagler et al. (2016); Marin et al. (2020) for wet snow
detection. This angular dependence constitutes an additional uncertainty factor in wet snow detection, which overlaps with
the previously discussed effects of diurnal variability in snowpack properties. On the other hand, for LWC values higher than
2% on smooth surfaces, the angular dependence increases up to 3 dB. This result supports the hypothesis that two distinct
scattering mechanisms observed across the two seasons are directly linked to incidence angle effects. The first is a persistent
3-5 dB difference in o)V between the two ascending tracks, recorded from mid-April to early June 2023 (see Fig. 8a). This
spread was not observed in the following year. Our LWC measurements indicate that the snowpack surface was wetter in 2023
than in 2024, likely due to the presence of ice lenses acting as drainage barriers for meltwater and favoring the formation of a
wetter layer above them (see Fig. 13 and Tab. 5). Consequently, and in line with the results in Fig. 14, the smoother and wetter
snow surface in 2023 led to a stronger angular dependence compared to 2024. Additionally, the angular dependence decreases
with increasing surface roughness. The second observed feature is the sharp decrease in backscatter between consecutive
acquisitions of both ascending and descending tracks in 2024 — from June 15 to 22 and from June 19 to 26, respectively. Our
measurements indicate conditions of high snowpack saturation and surface roughness values equal to or exceeding 10 mm (see
Fig. 13 and Tab. 5). Consistent with the results shown in Fig. 14b,e, we interpret this decrease as the result of suncups formation
on a saturated snow surface. The enhanced surface roughness likely increased diffuse scattering and reduced the proportion of
energy reflected back to the sensor, thereby explaining the observed backscatter decrease. These findings indicate that, despite
all the aforementioned challenges in deriving LWC from backscatter and vice versa, the multitemporal analysis of angular
dependence may carry valuable additional information. Unfortunately, further analysis in this direction was limited by the
reduced revisit frequency of S1 during the period of this study.

Ultimately, Fig. 14 suggests that with an estimate of the surface LWC from a detailed snow model and recorded values of
S1 backscatter, it is in principle possible to give an estimate of the surface roughness. This would inform on two interesting
points. On the one hand, based on the position with respect to the curve tilt, it would be possible to have information about
the dominance of the volume versus surface scattering mechanism. A prevalence of volume scattering would mean that the
snowpack has not yet become a complete black body for C-band radar backscatter. On the other hand, the value of surface
roughness could be assimilated in physics-based snow models to estimate important metrics for the computation of turbulent
heat fluxes, such as the aerodynamic roughness length (Lehning et al., 2011).

Although promising for future research, this paper comes with a number of limitations. LWC is a key variable for inter-
preting and reproducing S1 acquisitions using radiative transfer models. However, despite ongoing advancements, accurately
measuring LWC in the field, modelling it within physics-based snow models, and accounting for it into permittivity mod-
els remain significant challenges which need to be solved individually. The halved availability of satellite data acquisitions

due to the failure of Sentinel-1B in the exact time span when this study was carried out hindered the possibility to obtain
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more information than those presented on the relationship between melting snowpack properties and the multitemporal SAR
backscatter. Finally, despite this study enhanced significantly the understanding of the interaction of SAR backscatter with wet
snow, these findings are likely valid for high-alpine regions, i.e. homogeneously covered by a rather high amount of snow, and
where surface roughness can develop before the snow cover disappears in patches. However, the launch of the Sentinel-1C
satellite will shortly restore the mission’s full capabilities. This development will hopefully spark greater interest in the field,
driving research efforts to address the above mentioned limitations, explore scattering mechanisms in other environments than
the one explored in this study, and potentially establish a new role for radiative transfer modelling — specifically, to inform

physics-based snow models for hydrological applications.

6 Conclusions

In this paper, we presented a unique dataset of wet snow scattering properties collected at a high vertical and temporal resolu-
tion over two snow seasons at the high-alpine field site of Weissfluhjoch, Davos, Switzerland. Using this dataset, we analyzed
the correlation between melting snow properties and multitemporal SAR backscatter from S1, and modelled the satellite sig-
nals using the radiative-transfer model SMRT. Our data show that the moistening and the ripening phase, being mostly related
to the presence of liquid water in the snowpack, are generally well identified using time series of multitemporal SAR backscat-
ter from S1. The runoff onset, often associated with local minima in multitemporal SAR backscatter, is not detectable by the
satellite. With our measurements, we showed that these local minima result from a combination of surface wetting, which
reduces backscatter until the S1 signal saturates, and the development of surface roughness before the snow cover begins to
disappear in patches, leading to an increase in backscatter. Therefore, it is important to rethink how this information is used for
hydrological applications at high elevations and mid-latitudes, especially when counting on reduced satellite revisit times, like
in this study. Then, we used our dataset as input to the SMRT model to reproduce the S1 backscatter signal. The simulations
generally showed a negative bias with respect to satellite acquisitions, with the most significant drivers being LWC in earlier
stages of the melting process and the surface roughness later on. This mismatch led to the insight that, rather than melting
phases, the multitemporal S1 backscatter time series reveal two dominant scattering regimes: one dominated by LWC and the
other by surface roughness. These two regimes also represent the main sources of uncertainty in electromagnetic modelling
of melting snowpacks. These challenges include the spatial and temporal variability of LWC between field measurements and
satellite overpasses, inaccuracies in surface roughness estimation, and limitations in the permittivity and roughness models
applicable to wet snow in the C-band. Despite these uncertainties, radiative transfer modelling driven by ground measurements
allowed in-depth physical interpretation of scattering mechanisms at different stages. Specifically, the unprecedented time se-
ries of measured surface roughness parameters allowed exploring and defining the scattering effect of roughness over wetting
snowpacks. Our findings suggest that accurately quantifying surface roughness and/or improving the transfer function in IEM
modelling could be as critical as developing new, rigorous permittivity formulations to enhance S1 retrievals and the under-
standing of scattering mechanisms on wet snow at these wavelengths. With improved process understanding, the imminent

restoration of the S1 mission full capabilities, and further validation efforts in radiative transfer sub-modules, the use of C-band
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satellite radar signals for snow hydrology applications could proceed further, with radiative transfer models possibly informing

physics-based snow models.

Code and data availability. The code to reproduce the simulations and plot of Fig. 12 is available on GitHub (https://github.com/carlettif/
multitemporal-s1-backscattering). The SMRT model code is available on GitHub (https:/github.com/smrt-model/smrt/releases/tag/v1.1).
The manually measured and automatically recorded data used in this paper are available on Envidat (https://doi.org/10.16904/envidat.574).
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Figure Al. Empirical logarithmic relationship fitted on field data between the surface roughness parameters of RMSH and CL, based on a

total of N=75 values over the measurement campaigns of 2023 (yellow) and 2024 (light blue).
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