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Abstract. The spatiotemporal evolution of snow melt is fundamental for water resources management and risk mitigation

in mountain catchments. Synthetic Aperture Radar (SAR) images acquired by satellite systems such as Sentinel-1 (S1) are

promising for monitoring wet snow due to their high sensitivity to liquid water content (LWC) and ability to provide spatially

distributed data at a high temporal resolution. While recent studies have linked multitemporal S1 backscattering to snow melt

phases, a correlation with detailed snowpack properties is still missing. To address this, we collected the first dataset of com-5

prehensive wet snow properties tailored for SAR applications over two consecutive snow seasons at the Weissfluhjoch field site

near Davos, Switzerland. First, we tested previous methods which use multitemporal S1 backscattering to characterize melting

phases, and demonstrated that the observed monotonous increase in backscattering following the local minimum is due to the

development of surface roughness. Then, we used the measured snow properties as input to the Snow Microwave Radiative

Transfer (SMRT) model to reproduce S1 backscattering signals. Our simulations showed that rather than melting phases, time10

series of backscattering rather identify regimes dominated by either LWC, early in the season, or surface roughness, later on.

The results also highlight several key challenges for reconciling S1 signals with radiative transfer simulations of wet snow:

(i) the discrepancy in spatiotemporal variability of LWC as seen by the satellite and validation measurements, (ii) the lack of

fully validated permittivity, microstructure and roughness models for wet snow in the C-band, (iii) the difficulty of capturing

wet snow features potentially generating stronger scattering effects on a large scale – such as internal snowpack structures, soil15

features in case of low LWC, and surface roughness – which are not necessarily captured by point-wise measurements.

1 Introduction

Seasonal snowpack in mountain catchments is one of the most important water resources, as it accumulates and stores water

during winter and releases it consistently in the form of runoff during the melting period (Viviroli and Weingartner, 2004).

In alpine streams, discharge is largely dominated by snow melt from May to July and more than one sixth of the world’s20

population relies on meltwater released from higher altitudes for drinking water, crop irrigation and hydropower production

(Beniston et al., 2018). However, melting snow can also cause wet- and glide-snow avalanches (Bellaire et al., 2017; Fromm
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et al., 2018), which pose significant threats to human life and infrastructures. Additionally, rain-on-snow events on already wet

snowpacks are linked to increased runoff and shorter time lags between precipitation onset and the resulting runoff (Würzer

et al., 2016). These events can have catastrophic consequences and their occurrence is supposed to increase in response to a25

sustained warming (Beniston and Stoffel, 2016). Therefore, information about the spatiotemporal evolution of snow melt is

beneficial for both the management of water resources and for risk mitigation.

Identifying wet snow is complex both when using manual measurements, automatic instruments and physics-based snow

models. Datasets of manual measurements of snow water equivalent (SWE) and liquid water content (LWC hereafter) at high

temporal resolution are generally rare due to the time, effort and resources required for their collection. There have been30

considerable advances in technologies that use the dielectric properties of snow in the microwave range to estimate LWC

in a non-destructive way (Schmid et al., 2014; Koch et al., 2014). However, the application of these methods is limited to

one single point without the possibility to capture the spatial variability of the processes. Additionally, their installation and

maintenance is often complicated and expensive, and the extraction of the physical parameters is usually hindered by noise.

physics-based layered snow models like the SNOWPACK-Alpine3D model chain (Bartelt and Lehning, 2002; Lehning et al.,35

2006) or GEOtop (Endrizzi et al., 2014) are used to overcome these challenges, as they can simulate LWC and SWE at high

spatial and temporal resolutions based on meteorological forcings. However, meteorological forcings also represent a major

source of uncertainty – especially when needed at high spatial resolution – affecting the accuracy of the results (Raleigh et al.,

2015). This adds up to the uncertainties related to the amount and type of parametrizations used (Günther et al., 2019).

In this context, a valuable opportunity to identify wet snow is offered by synthetic aperture radar (SAR hereafter) systems.40

SAR measurements are highly sensitive to the free liquid water contained in wet snow (Nagler and Rott, 2000). At certain

frequencies, the increase in liquid water generates high dielectric losses and increased absorption coefficients (Denoth et al.,

1984; Sihvola and Tiuri, 1986; Mätzler, 1987; Ulaby et al., 2014). Therefore, the radar backscatter drops to lower intensities

with respect to winter averages (Ulaby et al., 1987; Strozzi et al., 1997; Strozzi and Matzler, 1998; Nagler and Rott, 2000;

Ulaby et al., 2014; Nagler et al., 2016; Lin et al., 2016). This raised the question of whether different types of snow cover could45

be classified based on their response to active microwave signals. This challenge has been addressed with various approaches

over the years. Between 1993 and 1995, at the field site of Weissfluhjoch in the Swiss Alps, Strozzi et al. (1997); Strozzi and

Matzler (1998) conducted tower-based C-band radiometric measurements at all polarizations across a wide range of incidence

angles. Simultaneously, they carried out monthly measurements of snow physical properties. These measurements were used to

classify the observed snow covers into categories ranging from dry snowpacks, to thin moist layers overlying dry snow, to wet50

snowpacks with either smooth or rough surfaces. Relying on a tower-based radiometer, the experiments were highly controlled,

allowing detailed investigation of radar responses to each snow condition. Nevertheless, significant sources of uncertainty

remained – especially the influence of surface roughness on wet snow surfaces, which was not quantitatively measured, but only

qualitatively assessed. These detailed studies, along with the work of Kendra et al. (1998), raised questions about theoretical

foundations and systematic reliability of LWC retrieval algorithms based on C-band full-polarimetric SAR imagery, which had55

been developed shortly before (Shi et al., 1993; Shi and Dozier, 1995). In particular, the scattering mechanisms assumed in

these retrievals may have been biased by a combination of conditions that strongly favored surface scattering. Extending the
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prior knowledge to a spatial and multitemporal context, (Nagler and Rott, 2000) developed an algorithm based on repeat-pass

SAR images to map wet-snow in mountainous areas, defining a backscatter drop of 3 dB to distinguish wet snow from other

surfaces. Comparisons with snow maps from different sources showed generally good agreement above the snow line, but60

consistent biases in areas with fragmented snow cover.

After a progress freeze due to the scarcity of SAR data in the past and simultaneous field measurements, the research interest

in the topic was renewed since the launch of the Sentinel-1 (S1 hereafter) joint mission of the European Space Agency (ESA)

and the European Commission in 2014. At alpine latitudes, S1 acquires C-band SAR imagery in the early morning and late

afternoon, regardless of the weather, with a revisit time of 6 days. The SAR imagery is available free of charge. Marin et al.65

(2020) used these images for the first time to develop a correlation between the multitemporal S1 SAR backscatter and the

snow melt dynamics. Over 5 different alpine sites, the authors have found that the multitemporal S1 SAR acquisitions allow

the detection of the melting phases, i.e. moistening, ripening and runoff (Dingman, 2015) with a good agreement with in-

situ observations and layered, physics-based snow models. In particular, the backscatter decreased as soon as liquid water

appeared in the snowpack and increased progressively and simultaneously with the runoff release. Deriving and applying a70

set of identification rules, the authors could define the melting phases for the test sites with relatively small lag errors with

respect to the revisit time of S1. Consequently, local minima in S1 multitemporal backscatter time series and sharp increases

thereafter were associated with snowpack saturation, the onset of runoff, and snow ablation (Darychuk et al., 2023; Gagliano

et al., 2023).

These approaches hold great potential for monitoring the temporal evolution of the melting dynamics, particularly over75

wide and scarcely instrumented areas. However, to fully use the multitemporal information provided by S1 for snow melt

monitoring, a deeper understanding of the underlying scattering mechanisms – especially the role of surface roughness (Marin

et al., 2020) – is still required. Specifically, knowing the time window in which different scattering effects dominate and under

which conditions the C-band radar backscatter is fully absorbed by the melting snowpack would enable to extract as much

information as possible from S1 time series. To date, the only effort in this direction was made by Brangers et al. (2024) using80

tower-based C-band measurements. However, this study lacks high-temporal-resolution ground-truth validation with measured

snow properties. Moreover, comparisons with S1 were hindered by several factors, including sensor calibration issues and the

small footprint size – which likely introduced speckle noise and failed capturing larger-scale scattering processes.

Overall, the main limitation to improving the understanding of the interaction of S1 backscatter signals with melting snow

cover is the lack of reference ground data. Over alpine snowpacks, it is common to observe the formation of ice layers either85

at the surface (Quéno et al., 2018) or at deeper snowpack depths (Pfeffer and Humphrey, 1998). Moreover, in temperate alpine

areas characterized by high snow accumulation and intense solar radiation, suncups may form spontaneously on the snow

surface during the ablation season (Post and LaChapelle, 2000; Mitchell and Tiedje, 2010), increasing the surface roughness

significantly (Fassnacht et al., 2009). These phenomena are known to impact the radar response to wet snow (Shi and Dozier,

1995; Strozzi and Matzler, 1998; Kendra et al., 1998; Nagler and Rott, 2000; Yueh et al., 2009).90

However, high-resolution and detailed snow measurements alone are insufficient to address this issue. It is equally important

to rely on a method to interpret them from a radar perspective. A promising and increasingly adopted approach involves the
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use of state-of-the-art radiative transfer (RT hereafter) models. Picard et al. (2018) developed the Snow Microwave Radiative

Transfer (SMRT) model, a versatile model that can be used in active and passive mode to compute backscatter and brightness

temperature from multilayered media such as snowpacks or ice sheets overlying reflective surfaces, e.g. ground, ice, or water.95

SMRT responds to the need of a modular and flexible approach to unify and compare the wide range of pre-existing representa-

tions of microstructure, electromagnetic theories, soil models and permittivity formulations. While wet snow holds significant

importance for various applications, both SMRT and other similar models were primarily developed and validated for dry snow

conditions in Arctic and Antarctic snowpacks, or ice sheets (Proksch et al., 2015; Rott et al., 2021; Soriot et al., 2022; Meloche

et al., 2022; Husman et al., 2023). Both the vertical structure and the surface of these types of snowpack are often less complex100

than that of a seasonal alpine snowpack. To date, the above mentioned ensemble of complex melting snowpack processes has

been scarcely investigated by means of radiative transfer models due to the lack of ground reference data (Shi and Dozier,

1995; Strozzi et al., 1997; Kendra et al., 1998; Nagler and Rott, 2000; Magagi and Bernier, 2003; Lodigiani et al., 2025).

Murfitt et al. (2024) recently used SMRT to explore, for the first time, the temporal evolution of the interaction between wet

snow and radar waves in a study on lake ice melt. However, the radiative transfer modelling of wet snow still lacks dedicated105

effort and validation.

The objective of this work is to collect the first ground reference dataset on melting snow tailored for SAR applications

and to use it together with SMRT to better understand the key processes governing the backscatter signatures recorded by

S1. Previously, only Lund et al. (2022) carried out a similarly extensive snow pit campaign in coordination with S1 passages.

While this study helped advance the interpretation of S1 backscatter responses to diurnal snowpack variations, important110

scattering properties such as the optical diameter and the surface roughness were not measured. As a result, interpreting

these measurements from the radar perspective – and consequently comparing them with S1 acquisitions – was not possible.

In our work, we focus on the co-polarized vertical backscattering only, due to its high signal to noise ratio for wet snow

(Naderpour et al., 2022) and to the fact that, due to the partial implementation of some of the key processes, it is not possible

to simulate accurate cross-polarized backscattering responses with the current version of SMRT. To our knowledge, this is115

the first attempt to translate ground measurements – specifically designed for RT modelling, including wetness and roughness

– into radar signals using SMRT to reproduce and interpret S1 acquisitions over a wet, multilayered alpine snowpack. This

research provides valuable insights in two main areas. First, it advances the understanding of the interaction between S1 radar

backscatter and wet snow. Specifically, it reveals the effects of spatiotemporal variability of LWC within the S1 footprint

occurring between satellite and measurement acquisitions. It also describes the impact of surface roughness on backscatter120

signatures and highlights challenges in capturing key wet snow conditions that likely generate scattering at wider-scales. These

include internal snowpack structures, large-scale surface roughness, and interactions with the wet soil interface when the

snowpack is only slightly wet. Second, the study addresses the RT modelling of melting, layered snowpacks, highlighting the

current lack of fully validated permittivity and roughness models for wet snow at C-band frequencies. With ground reference

data and adequate process understanding and modelling, RT models like SMRT may evolve in tools to interpret and translate125

the information contained in multitemporal SAR backscatter into valuable input for snow-hydrological modelling.
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Figure 1. Location of the Weissfluhjoch field site with respect to Swiss national borders (a) and the town of Davos (b). The designated

area for snow profiles is shown in (c) under semi-snow-free conditions (picture taken in Sep 2024, camera oriented towards the north-east),

enclosed by a flagged fence. It is worth noting that only a portion of this fenced area was effectively used for snow profiles. Picture (d) shows

the typical snowpit measurement setup.

2 Campaign overview

This work builds upon a dataset of 85 snow pits collected during a two-season campaign (2022-2023 and 2023-2024) at

the high-altitude Weissfluhjoch Versuchsfeld (WFJ) field site, located in the Rhaetian Alps near Davos, Switzerland. The

measurement field lies at an altitude of 2536 m a.s.l. on a relatively flat area embedded in a south-east facing valley. The130

site is partially wind sheltered from a small hill situated on the south-east – however, the dominant wind blows from north-

west, in addition to katabatic wind. For this measurement campaign, we secured a protected field covering approximately two

times the footprint area of S1, i.e. 20 × 20 m. However, only a portion of this field was effectively used for measurements,

while the remaining area was consistently left undisturbed. The secured field has a light slope value between 2 and 7%. The

flatness of the terrain is fundamental for the study of the interaction between wet snow and the C-band co-polarized vertical135

backscatter signal (σV V
0 hereafter). On the one hand, σV V

0 is less sensitive to changes in snow wetness at low incidence angles

(Nagler et al., 2016); on the other hand, on steep slopes, the liquid water redistributes laterally, at least partially (Wever et al.,

2016). The field site of WFJ is equipped with advanced meteorological sensors recording meteorological forcings at sub-hourly

resolutions, and moreover, with first snow observations dating back to 1936, it holds one of the longest recorded time series of

snow measurements for a high-altitude research station (Marty and Meister, 2012). The site is ideal for intensive measurement140

campaigns, as it is easily accessible, protected from avalanche danger and the two huts provide shelter, storage space for

instruments, power and internet connection.

The objective of the measurement campaign was to build a dataset of ground-truth reference for the interpretation of S1 σV V
0

to monitor snow melt processes. Therefore, the measurements targeted the main scattering properties of snow: temperature,

density, specific surface area (SSA), liquid water content (LWC) and surface roughness. These properties needed to be measured145

at a high vertical and temporal resolution to track the progression of the wetting front within the snowpack, and possibly

5



in concomitance with S1 acquisitions. Additionally, we measured snow water equivalent (SWE), a key variable for snow

melt monitoring. The resulting dataset is a time series of manually measured snow profiles describing the evolution of snow

scattering properties at unprecedented vertical and temporal resolutions. The dataset consists of 38 snow profiles for the season

of 2022-2023 (starting in February and ending in June) and 47 for the season of 2023-2024 (starting in November and ending150

in July). In dry snow conditions, measurements were carried out once per week. On the first season, once the snowpack reached

the full isothermal state, measurements have been carried out regularly every second working day for a total of three times per

week. On the following season, the regularity of the measurements was partially given up in favor of a better synchronization

with S1 acquisitions. To get the fullest possible picture to interpret the melt dynamics, manual measurements are accompanied

by automatically recorded time series of runoff and SWE.155

2.1 Manual measurements

2.1.1 Temperature

Snow temperature serves to monitor the progression of the snowpack to the isothermal state, which allows the presence of

liquid water. Profiles of snow temperature were sampled from the surface to the bottom with a vertical resolution of 10 cm on

snow season 2022-2023 and of 5 cm on snow season 2023-2024 using a batch of HI98501 Checktemp from Hanna (HannaIn-160

strumentsInc.). According to the instrument specifications, the uncertainty range is ± 0.2◦C. Each temperature reading was

marked down after waiting an adequate time for measurement stabilization.

2.1.2 Density

In dry snow conditions, snow density controls (i) the probability of scattering events, as denser snow has more grains per

unit volume and (ii) the real part of the effective permittivity (see the following Sec. 3.2), which increases with the increased165

fraction of ice relative to air, typical of denser snow. Profiles of snow density were sampled from the surface to the bottom with

a vertical resolution of 3 cm using a box density cutter and a digital scale. The box cutter used for this campaign has a volume

of 100 cm3. The uncertainty range of this instrument is between 5 and 10% with the main sources being the presence of ice

layers, the compaction of light snow while collecting the sample, or losing fractions of it in conditions of fragile snow such as

facets or depth hoar (Conger and McClung, 2009; Proksch et al., 2016).170

2.1.3 Specific Surface Area

Snow specific surface area (SSA) expresses the surface area of snow grains per unit mass, and is related to the grain size and

structure. Smaller grains give higher values of SSA – meaning that the number of scattering centers is increased, but the effect

of each one is weakened. Therefore, when grains are too small, the total backscatter can decrease. Larger grains, on the other

hand, give lower values of SSA – meaning that scatterers are fewer but stronger and more efficient. Therefore, with enhanced175

volume scattering, the overall backscatter increases. Profiles of SSA were sampled from the surface to the bottom with a vertical

resolution of 4 cm using the InfraSnow sensor from FPGA (FPGA Company; Wolfsperger et al., 2022). This non-destructive
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method builds upon the principle of diffuse near-infrared reflectance measurements using a compact integrating sphere setup

to derive optical equivalent grain diameter (OED), and therefore SSA (Gergely et al., 2014). To compute OED, snow density

is required as an input parameter and for this we use the measured density profile. With a relative error of RMSE =15%180

(Wolfsperger et al., 2022) when compared to µ-CT, this instrument seems to be slightly less accurate than others commonly

used such as the IceCube (Zuanon, 2013), however, this bias is more pronounced for high values of SSA typical of dry snow,

which is not the main object of our study. Moreover, the use of the InfraSnow is especially practical and portable for field

applications.

2.1.4 Liquid Water Content185

The formation of liquid water content (LWC) in the snowpack enhances its dielectric constant, leading to higher absorption

losses and significant reduction in radar penetration depth. These concepts will be addressed in more detail in Sec. 3.2. Profiles

of LWC were sampled from the surface to the bottom with a vertical resolution of 2, 5 or 10 cm, depending on the method. We

used dielectric sensors coupled with melting calorimetry to corroborate measurements in conditions of high LWC at later stages

of the melting process. To our knowledge, this is the first time series of LWC snow profiles measured at such high vertical190

and temporal resolution. On the first campaign year, we used the Denoth capacitive sensor (Denoth, 1994) ("Denothmeter"

hereafter). It consists of a flat capacitance probe with an estimated measurement surface of 176 cm2 (Techel and Pielmeier,

2011). The probe operates at a frequency of 20 MHz and measures the real part of the permittivity of snow, and a separate

measurement of density is required to obtain the imaginary part (Denoth et al., 1984; Denoth, 1989) – here, similarly than for

SSA, we used the measured density profile. The Denothmeter has been widely used in field studies to monitor the evolution of195

snowpack wetness (Fierz and Föhn, 1994; Kattelmann and Dozier, 1999; Techel and Pielmeier, 2011), alone or in comparison

with other techniques, e.g. in Koch et al. (2014); Wolfsperger et al. (2023); Barella et al. (2024). On the second campaign year,

we adopted the new capacitive snow sensor (NCS hereafter) developed at the Institute for Snow and Avalanche Research SLF

(Wolfsperger et al., 2023) and produced in batch series from FPGA company. The use of the Denothmeter was discontinued

because it is not commercially available, and only two units were available to us, risking measurement continuity if damaged200

during intensive use. The NCS works in the same way as the Denothmeter, operates at the same frequency and measures over

a slightly larger surface of 202 cm2. The NCS was compared against the Denothmeter in both field and laboratory settings

and the agreement was generally good, however, in isolated cases of very wet layers, the measured permittivity tended to

deviate towards higher values (Wolfsperger et al., 2023). A good element of consistency is that the comparison between

NCS and Denothmeter was carried out within this campaign, in the snow season 2022-2023. The absolute error associated205

with dielectric measurements was estimated around 1% in volume (Sihvola and Tiuri, 1986; Fierz and Föhn, 1994). To our

knowledge, a systematic study on the errors associated with the Denothmeter was never carried out. However, similar studies

are available for the Finnish snow fork (Sihvola and Tiuri, 1986), which directly measures both real and imaginary parts of

snow permittivity. The error associated to the snow fork in measuring LWC is between ±0.5% (Sihvola and Tiuri, 1986)

and ±0.3% (Moldestad, 2005). (Techel and Pielmeier, 2011) used both the Denothmeter and the Snow Fork in their study,210
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reporting differences of around 1% between the two instruments. Additional uncertainties for dielectric measurements derive

from interference with solar radiation near the surface (Lundberg, 2008), which we tried to minimize throughout the campaign.

Because dielectric devices may lose accuracy for high LWC values (Perla and Banner, 1988; Techel and Pielmeier, 2011),

for both snow seasons, in conditions of ripe snow, Denothmeter/NCS measurements were backed up with melting calorimetry

following the revised field protocol recently described in Barella et al. (2024) and partially carried out within the same mea-215

surement campaign described here. This field protocol is tailored to reduce the higher uncertainty ranges previously associated

to melting calorimetry (Kawashima et al., 1998; Kinar and Pomeroy, 2015; Avanzi et al., 2016). It proposes a revised formu-

lation of the calorimetric uncertainty that incorporates the calorimetric constant and the propagation of uncertainties coming

from instrument, operational and environmental conditions. The uncertainty range associated with the new protocol for melting

calorimetry is ±0.5% and the absolute error compared with Denothmeter measurements is ∼1% in volume.220

2.1.5 Surface Roughness

Snow surface roughness controls the scattering behavior of the snowpack surface, with smooth surfaces exhibiting a domi-

nant specular reflection and rough surfaces behaving more similarly to a diffuse scatterer. Snow surface roughness is typically

expressed using three parameters: the root mean square of the heights (RMSH), the correlation lenght (CL) and the autocor-

relation function (Williams and Gallagher, 1987; Nagler and Rott, 2000; Manninen et al., 2012; Anttila et al., 2014). These225

parameters can be obtained from a digitized snow transect. A proven and robust system involves inserting a panel into the snow

and capturing images of the snow surface with a digital camera (Manninen et al., 2012; Anttila et al., 2014). For this campaign,

we used the method described in Barella et al. (2021) and refined in Barella et al. (2025), which builds upon these concepts

and it is particularly suited for field applications. The panel we used is made of black Forex, 70.5 cm wide and 47 cm tall.

These dimensions are a trade-off between the ease of transport and the length of the snow transect covering at least 10 times230

the C-band wavelength λ=5.5 cm as suggested in (Manninen et al., 2012). The panel can be photographed by means of any

digital camera. To attain a representative snow transect, 9 pictures were taken on each measurement day: 3 along one direction,

3 along the perpendicular direction, and 3 at a 45◦ angle between them. The resulting roughness profile is averaged among all

usable pictures, i.e., those not affected by excessive shadowing or unclean panel surface. To our knowledge, a time series of

snow surface roughness properties was never measured before.235

2.1.6 Snow Water Equivalent

Profiles of snow water equivalent (SWE) were sampled from the surface to the bottom with a cylinder cutter of inner diameter

9.44 cm and length 55 cm. The snowpack was sampled in sections from the surface to the ground and the total SWE was

obtained by weighting each sample and summing up all the values. The uncertainty range of this instrument is around 10%

with the main uncertainty source being caused by the presence of ice layers (Proksch et al., 2016).240
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Figure 2. Overall range of local incidence angles across the study area for all the four relative orbits – morning/descending (M↓) and

afternoon/ascending (A↑). Each S1 cell is identified by its centroid and a number.

2.2 Automatic measurements

2.2.1 Runoff

Runoff was automatically measured at a sub-hourly resolution by a lysimeter. Unfortunately, the instrument was discovered to

be clogged when the runoff started in 2023. The instrument was repaired only in late May 2023. Therefore, the time series for

that year starts with a peak (see Fig. 8d), although we hypothesize that runoff may have started as early as the end of April245

2023. To avoid similar issues, on the following season the lysimeter was inspected timely and assessed as fully functional.

2.2.2 Snow Water Equivalent

Manual snow water equivalent (SWE) measurements are complemented by an automatically recorded time series at sub-hourly

intervals, using the SSG1000 snow scale permanently installed at the WFJ site and manufactured by Sommer Messtechnik,

Austria. The system consists of a weighing platform and load cells, which directly measure the weight of the snowpack on250

the platform and convert it into SWE. This instrument has a measurement range of 0 to 1000 mm of water equivalent. During

the 2023-2024 snow season, the upper capacity was reached due to above-average snow depths. In comparison to manual

measurements, Smith et al. (2017) estimated an error of ±10%.

2.3 Sentinel-1 acquisitions

S1 is designed as a two sun-synchronous polar-orbiting satellite constellation, acquiring dual polarimetric C-band (frequency255

of 5.405 GHz, wavelength of 5.5 cm) SAR images with a nominal resolution up to 3.5 m × 22 m in Interferometric Wide

swath mode (IW) and a revisit time of 6 days. Acquisitions in IW have a swat of approximately 250 km. This, together with the

overlapping orbit paths, conceives the acquisition of multiple tracks at middle latitudes such as the Alps. For this reason, within

the time window of 6 days, more acquisitions of the same area may be available. Unfortunately, Sentinel-1B failed at the end
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of 2021, and with only Sentinel-1A in orbit, repeat cycles halved from 6 to 12 days. Since then, the overall data acquisition260

capability was reduced by ∼50% in most regions, including our Weissfluhjoch field site. Data from four relative orbits are

available for this site: two ascending (afternoon) and two descending (morning) passes. Figure 2 shows the overall range of

local incidence angles across the field site, which vary from a minimum of 27° to a maximum of 47°. These maps highlight

domains with stronger and weaker dependence on the incidence angle – an east-facing back-slope and a flat area, respectively.

The SAR images can be downloaded, free of charge, from the copernicus data hub (Copernicus). To account for the complex265

topography and to reduce the speckle noise of SAR acquisitions, a tailored preprocessing procedure was applied to all data. The

processing procedure involves a combination of tools, some of which are available in SNAP (Sentinel Application Platform)

version 6.0, while others are customized and developed in Python. The full workflow is described in Marin et al. (2020);

however, in this study, the gamma-MAP filter was not applied. The final spatial resolution of the post-processed S1 images is

20 × 20 m.270

The nominal radiometric uncertainty of S1 falls in the range of 3σ=1.0 dB, as indicated in several ESA validation campaigns

(Torres et al., 2012; Miranda et al., 2015; Schwerdt et al., 2017; Benninga et al., 2020). However, the overall radiometric

accuracy is also affected by a number of preprocessing steps, including (but not limited to) the application of despeckle filters,

terrain correction and radiometric normalization (particularly challenging in mountain regions with complex topography),

and thermal noise removal (important in conditions of high absorption, such as wet snow). In such conditions, a detailed275

specification becomes extremely complex and falls beyond the scopes of this paper. Nonetheless, since this study explores

the multitemporal behavior of σV V
0 over a target cell, it is relevant to mention speckle denoising. We used the filter proposed

by Quegan and Yu (2001) – a powerful yet relatively simple one to denoise multitemporal stacks, with a 11 × 11 pixels

window. Similarly to local spatial multi-looking, its implementation involves local averages of intensity values for each date.

Intuitively, this could potentially blur strong targets and edges, ultimately leading to a loss of resolution and impacting the280

overall multitemporal result. However, in conditions of dry snow, the snow cover and the position of the scatterers are stable,

snow temperatures are well below 0°C and the soil should be mostly frozen, implying constrained variations in soil moisture.

Under these conditions, the pixels we considered in our study exhibited an overall stable behavior. The same stability was

observed during dry periods in summer. In these two cases, the standard deviation was within 1.0 dB, which aligns with the

nominal radiometric uncertainty of S1. During the melting period, the primary source of radiometric uncertainty originates285

from the formation of LWC within the snowpack. As a consequence, the radar return signal from the same target cell changes

over time, resulting in reduced temporal coherence and larger deviations in multitemporal statistics. As will be shown in

the course of this study, LWC potentially exhibits high heterogeneity across a single resolution cell. Under such conditions,

the estimation of radiometric uncertainty becomes particularly challenging. Without a precise reference for LWC, a rigorous

uncertainty quantification is inherently difficult and lies beyond the scope of this work.290

2.4 Campaign design

Measurements were carried out within freshly dug snow pits, starting at 08:00 approximately. The start of the measurement

procedure depended on the amount of employees available on a specific day, on the amount of snow, on its density and on
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the weather conditions – generally, between one to two hours later. The measurement procedure was generally finished around

12:00 refilling the snowpit; however, on isolated days, there were several hours of delay because of the above mentioned295

reasons. On the first snow season, the snow temperature was generally measured first and the melting calorimetry last, with

the remaining measurements being carried out in between with an order that also varied as a function of the above mentioned

factors. On the second snow season, we improved the campaign design with a more rigorous measurement order: temperature

first, SSA and dielectric LWC either simultaneously or one after the other, density, SWE, and melting calorimetry coupled

with a second simultaneous dielectric LWC profile taken at the same vertical location. This has specific importance for the300

LWC profiles. On the first season, the time lag between the dielectric and calorimetric LWC profiles was 2 or 3 hours, at an

horizontal distance of 50 cm to 1 m. On the second season, we measured one first dielectric LWC profile and an adjacent,

simultaneous one using melting calorimetry. In Sec. 4.2, we will refer to the first setup as "co-located" and to the second one

as "simultaneous".

On both seasons, before starting the measurement procedure, the profile wall was made as smooth as possible. A Near-Infra-305

Red picture was taken for qualitative comparison. Outside of the snow pit, on an undisturbed area, the surface roughness panel

pictures were taken. On days where the radiation (from the sun or diffuse) was particularly intense, shading was necessary

for every surface measurement that might have been affected. The temperature profiles were always measured in the shaded

corner area of the snow pit. Overall, each measurement series would need a total horizontal space of 1.5-1.8 m, and the

single variable profiles were measured at a reasonable horizontal distance from each other. On both seasons, snow profiles310

were carried out within the same designated area. The area was divided in corridors approximately 2 m wide. Throughout the

season, measurements were carried out moving continuously forward along the corridor until the slope was hit. The next snow

profile would be dug onto the next corridor. A minimum distance of 30 cm was secured between two consecutive measurement

days, to avoid disturbances from the previous measurement set.

Data cleaning and homogenization procedures were performed before providing the measured snow properties as RT inputs.315

In particular, since sampling resolutions were different (see Sec. 2.1), all measured properties were linearly interpolated to a

common vertical resolution of 1 cm. Positive LWC values recorded at temperatures below 0◦C were corrected to 0%. 0.04% and

0.4% of the measured LWC values were above or equal to 15% for the two years respectively. For both dielectric instruments,

these values are likely not accurate. Since these values likely represent areas of high snow wetness, they were not excluded

from the analysis but their LWC value was set to 15%, similarly to Techel and Pielmeier (2011). Additionally, instances of very320

low LWC measurements from thin layers just above the ground in dry snow conditions were discarded, as we could not rule

out potential instrument disturbances from the ground in these cases. Given the accuracy range of the thermometer (see Sec.

2.1), temperature oscillations up to 0.2°C below 0°C were set to 0°C from the first measured fully isothermal profile onwards.

Since the snow properties were measured at a certain lateral distance one from the other, the profiles of density and SSA were

slightly shifted with a simple algorithm to maximise the correlation with the profile of LWC. Finally, we had to discard the last325

3 snowpit measurements of 2023, because the measured RMSH value there was too high to ensure the conditions of validity

of the interface model (see Sec. 3.2).
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Figure 3. Aerial view of the WFJ measurement station. Each of the 56 points represents the centroid of each S1 cell. Each centroid is split

in two, the left part indicating the interquartile range (IQR) of the winter σV V
0 signal for the snow season of 2022-2023 and the right part for

the snow season of 2023-2024. Contour lines indicate the surrounding slopes. The yellow rectangle indicates the fenced measurement area

where snow profiles were carried out in both seasons. Cell 40, i.e. the selected S1 cell for this study, is highlighted in red.

Table 1. S1 tracks overlooking the selected cell 40, with times of acquisition, direction of orbit and local incidence angles.

Track # Time of acquisition Direction of orbit Local incidence angle

015 ∼17:30 Ascending 41°

117 ∼17:30 Ascending 32°

066 ∼05:30 Descending 33°

168 ∼05:30 Descending 42°

3 Methods and model

3.1 Selection of the Sentinel-1 reference cell

The selection of the reference S1 cell required some considerations. The WFJ field site is ideal for continuous measurements330

due to its proximity to structures and sensors, however, these features may interfere with radar waves, thus disrupting the
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Figure 4. Variability of σV V
0 in dry snow conditions for all relative orbits overlooking cells 18, 25, 32, 38, 39, 40, i.e. the flat terrain cells

with likely similar snow properties as the measured ones (a-b). Multitemporal σV V
0 signal of the selected cell 40 compared to the ensemble

standard deviation (stdσV V
0

) of the similar cells – morning/descending (M↓) and afternoon/ascending (A↑) (c-f).

backscatter from natural terrain. Most of the structures within the field site are metallic and may act as additional reflecting

sources in addition to the snowpack.

To select the reference cell, we extracted σV V
0 values for both years over a grid of 56 points covering the whole extension

of the field site and the immediate surroundings (Fig. 3). For each cell and for each different year, we isolated the time frame335

starting at the beginning of the meteorological winter (Dec 01) and ending when the first liquid water was measured in the

snowpack. Over these time frames, for each year and for each cell we computed the variability of σV V
0 acquired by the 4

different tracks (See Tab. 1). We assume that lower variabilities between different tracks over a dry snowpack may indicate a
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minimal interference with other non-natural elements on the field, as their backscatter would typically exhibit strong angular

dependence (i.e., anisotropy).340

The results of this analysis are shown in Fig. 3, where the variability is mapped over the field using the interquartile range

(IQR). In general, the IQR does not vary significantly between the two snow seasons, suggesting that this kind of approach

might be adequate to select a reference cell with the least possible artificial disturbance. Outliers – i.e., cells 15, 22, 23, 27,

52, 54, and 55 – are likely influenced by localized field conditions. These include double-bounce effects typically associated

with man-made structures (e.g., cell 27), surfacing boulders (cells 52, 54, 55), or small variations in soil moisture, which could345

account for the observed year-to-year variability. The highest IQR values are clustered around the large hut (for double-bounce

effects) and where the slopes start to become steeper (when the backscatter has strongest dependence on the incidence angle).

Interestingly, the IQR values for cell 25 and 32 are among the lowest for both snow seasons, suggesting that smaller metallic

sensors might not represent a significant disturbance for radar waves.

Ideally, the target cell should coincide with the location of in-situ measurements to ensure that the observed snow properties350

accurately represent those detected by the radar. Although S1 footprint is large relatively to the area disturbed by a single snow

pit, excavating multiple consecutive snow profiles across a broader area can ultimately alter snow conditions across the entire

cell – particularly under moist or wet snow conditions. This would introduce an uncontrolled degree of uncertainty. Therefore,

the target cell should rather be selected among the surrounding undisturbed cells with similar slopes and aspect. Fig. 4a-b

show the dry-snow σV V
0 variability for a set of cells with such features, i.e., cells 18, 25, 38, 39, 40. Among these, cell 40355

shows a distinguished dependence on each incidence angle and orbit direction, along with relatively low variability of σV V
0

across tracks. An exception occurs for track #117 during 2023-2024, where the variability is relatively higher with respect

to the year before. This increased variability is also noticeable for cell 25 and 39. Given the lower variabilities recorded on

the prior year, interference from non-natural elements can be ruled out. The most plausible explanation is a certain degree

of heterogeneity in soil moisture across the field. Unfortunately, we are unable to verify this hypothesis, as soil moisture360

measurements were not included in our field campaign. Additionally, cell 40 lies in the immediate vicinity to the measurement

site, and the snow surface remains undisturbed due to the operation of a LiDAR laser scanner continuously monitoring the

snow surface. Fig. 4c-f illustrates the multitemporal σV V
0 signal from cell 40 in comparison to that of the other candidate cells.

The average standard deviation of the σV V
0 ensemble across these cells is approximately 3 dB for all tracks. Interestingly, the

lowest standard deviation is consistently observed at the time of the backscatter drop caused by wet snow, with the exception365

of track #117 in 2024. Notably, during the melting season, the signal from cell 40 lies in the lower end of the backscatter range

across all years and tracks – aside for track #117 in 2022-2023. Potentially, this behavior is desirable for wet snow detectability.

For these reasons, the σV V
0 recorded over cell 40 is selected as the reference time series for this work.

The impact of incidence angle was not a primary focus of this study, as it has already been extensively addressed in previous

research Mätzler (1987); Shi and Dozier (1992); Strozzi et al. (1997); Strozzi and Matzler (1998), which strongly relied on370

tower-based instruments allowing greater control than satellite-based radar systems. In our case, the area most representative

of measured snow properties is relatively small and flat, resulting in a limited range of local incidence angles available for

analysis (see Fig. 2). Furthermore, the high spatial variability of LWC would require dedicated reference measurements for
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each incidence angle and cell, which was not feasible given the time and resources already involved in conducting the campaign

at a single location.375

3.2 Snow Microwave Radiative Transfer (SMRT) model: description and simulation setup

SMRT is a model that simulates the active-passive microwave response from layered snowpacks (Picard et al., 2018). The

model is written and run in a Python environment and has a modular and flexible structure, allowing the user to set model

runs choosing among a wide set of electromagnetic, microstructure and permittivity models. The reflectivity and transmissiv-

ity associated to roughness can also be described according to different models. The user has to specify a set of snowpack380

properties to parametrize the microstructure and the electromagnetic model. In particular, the roughness can be set either at

the snow-air interface only or for each defined snow layer. Once these necessary parametrizations have been declared in the

preliminary components of the model, SMRT uses the discrete ordinate and eigenvalue (DORT) method to solve the radiative

transfer equation. The user can either customize a virtual sensor with specific frequency, incidence angle and polarization or

directly choose from a list of already available sensors, among which S1. The backscatter intensities can be obtained for all385

polarizations – this study focuses on the co-polarized vertical signal, because cross-polarizations are currently only partially

implemented within the current version of the module used for the parametrization of surface and interface scattering (Murfitt

et al., 2024).

This study uses the symmetrized strong-contrast expansion (SymSCE) (Picard et al., 2022b) as the electromagnetic model

with two different permittivity parametrizations. Measurements of density and SSA were used to compute the Porod length390

(ℓP ) (Porod, 1951). The microwave grain size (ℓMW ) is computed as the product of ℓP and the polydispersity k, a parameter

describing the variability of the length scales with respect to the microstructure (Picard et al., 2022c). k was set to 0.75:

this empirical value was estimated from µ-CT scans of a wide variety of alpine snow samples with convex grains, among

which rounded grains and melt forms (Picard et al., 2022c). For this study, snow microstructure was parametrized using

the exponential model. For frequencies in the X- and Ku-bands (10-17 GHz), exponential auto-correlation functions have395

been shown to be too simplistic for representing snow microstructure. Their fast decay fails to capture long-range spatial

correlations, and their inadequacy in modelling densely clustered media results in an underestimation of forward scattering

effects (Chang et al., 2016). However, Picard et al. (2022c) show how ℓMW can be computed analytically for various forms

of auto-correlation functions, including the exponential. These analytical expressions of ℓMW allow for direct comparison

between different representations of snow microstructure. Most importantly, when the same value of ℓMW is used as input, all400

microstructure models give the same scattering amplitude in the low-frequency limit. Therefore, according to these findings,

the choice of the best representation of snow microstructure becomes a secondary problem with respect to measuring ℓMW in

order to predict snow scattering in the C-band.

The permittivity of a material is a complex number composed of a real part (i.e., the dielectric constant) and an imaginary

part. The contribution of the real part is related to the material’s ability to store electrical energy, whereas the contribution of405

the imaginary part is associated with dielectric losses. Snow is a three-component mixture of ice, air and water – therefore,

the effective permittivity of snow (ϵs) depends on the relative proportions of these elements. The presence of liquid water

15



Figure 5. Real and imaginary parts of the effective permittivity (ϵs) of wet snow as a function of frequency (f ) for a nominal density value

of 400 kgm−3 and varying LWC of 1% (a), 4% (b) and 8% (c) according to the MEMLSv3 and H-86 permittivity models. Grey dotted lines

underline differences between the formulations at the nominal frequency of S1, i.e. 5.405 GHz.

significantly alters both the real and imaginary parts of ϵs, affecting how microwaves interact with the snowpack. Henceforth,

accurate estimates of ϵs are crucial for interpreting the microwave response of wet snow. Despite extensive research, particularly

in the 1980s, a universally accepted model for snow permittivity has not yet been established (Picard et al., 2022a). For this410

study, we selected two formulations: (i) the Microwave Emission Model for Layered Snowpacks (Wiesmann and Mätzler,

1999) in its 3rd version (MEMLSv3 hereafter), which is based on the Maxwell-Garnett mixing theory of dry snow and prolate

water inclusions; (ii) the Debye-like model modified by Hallikainen et al. (1986) (H-86 hereafter), which uses a mixing formula

based on volume fractions and refractive indices, calibrated against field data. These models were selected because they were

validated against real-world C-band data. Specifically, in Hallikainen et al. (1986) and earlier works, the authors present what415

is, to our knowledge, the only available dataset of wet snow permittivity measurements at 6 GHz for varying LWC values,

measured using freezing calorimetry. Interestingly, MEMLSv3 fails to accurately reproduce this dataset. However, Kendra

et al. (1998) observed that the dielectric constant provided by H-86 appears to be too low, an observation that is supported

by data from Achammer and Denoth (1994), collected in the range between 8 and 12 GHz. However, these data appear

to favor H-86 over MEMLSv3 when considering the imaginary part of ϵs. While H-86 has been criticized, some aspects420

appear to have been overlooked (e.g. the recent corrigendum in Picard et al. (2022a)). Figure 5 shows the real and imaginary

parts of the ϵs as a function of the frequency for a nominal density value and varying values of LWC according to both

MEMLSv3 and H-86 permittivity formulations. For higher values of LWC (see Fig. 5b,c), the ϵs values obtained from both

formulations display a frequency dependence and curve shape closely resembling that of pure water. In both cases, the real part

of ϵs decreases with frequency, whereas the imaginary part increases up to the relaxation frequency and decreases thereafter.425

However, in the C-band, the two formulations diverge significantly, especially in their prediction of the imaginary part, which

governs absorption losses. This difference becomes more pronounced for increasing values of LWC. For instance, at LWC=4%,
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MEMLSv3 predicts an imaginary part of ϵs approximately twice that of the H-86 at the nominal frequency of S1 (see Fig. 5b).

Since we cannot definitively determine the fitness of one model over the other, both formulations will be used in SMRT for this

study. Given the different behavior of the two formulations, we expect a lower and upper bound for S1 backscatter simulations.430

It is clear that further research is needed to accurately characterize wet snow permittivity, but this is out of the scope of this

paper.

RT modelling of snow comes with the additional difficulty of quantifying the dense medium effects, i.e., the electromag-

netic interactions occurring between snow grains that are closely packed together. At C-band frequencies, these effects become

significant as the scattering regime changes due to the presence of liquid water – both through changes in snow grain interac-435

tions and in bulk dielectric properties. In H-86, dense medium effects are not accounted for. In MEMLSv3, these effects are

accounted through a semi-empirical parametrization involving, among other parameters, correlation length, density-dependent

corrections and – as mentioned above – mixing formulas. Correlation lengths are used to represent the effective grain size and

spatial correlation of the ice matrix, and to capture the degree of interaction between dense grains. Despite the range of correla-

tion lengths being limited in MEMLSv3, the ones that are represented derive from structures observed at Weissfluhjoch during440

two snow seasons (Wiesmann and Mätzler, 1999). Therefore, they are likely suitable to describe the dense medium effects on

the snowpack structures observed and measured in this study. Snow density is used as a proxy to determine how closely grains

are packed; and as density increases, scattering is reduced and absorption increases. Such corrections are embedded into the

extinction term, i.e., the sum of scattering and absorption coefficients.

The chosen interface model (between snow and air and between snow layers) is the integral equation model (IEM) (Brogioni445

et al., 2010), since it is one of the most used models to describe the roughness. However, any other model could be used,

provided the roughness characteristics are within the validity range. The IEM is valid under the conditions w ·RMSH < 2 and

w2 ·RMSH ·CL <
√
εi, where w is the wavenumber (which depends on the medium) and εi is the ratio between the media

permittivities at the interface (Fung et al., 1992).

Using the functions available in SMRT, we modelled the substrate as a reflecting surface with a given value of backscatter.450

In dry snow conditions, on days when manual measurements and satellite overlooks coincided, we assigned the S1 recorded

backscatter value to the substrate, assuming that dry snow is transparent to radar waves at C-band and that therefore the

soil is the only contribution to the total backscatter. In wet snow conditions (or in dry snow conditions, when there was

no concomitance between measurements and satellite overlooks), we assigned a fixed value of backscatter to the substrate,

which we computed as the average value in dry snow conditions of each individual track (incidence angle). Notably, SMRT455

offers the possibility to compute the backscatter from the soil, however, it requires a series of detailed information that are

spatially heterogeneous and would have been nearly impossible to retrieve continuously over the course of our campaign.

These properties include the soil moisture, the relative sand content, the relative clay content, the soil content in dry matter,

and other geometrical parameters such as the roughness and the correlation length.

Under these configurations, the model takes as inputs the following snowpack properties: temperature, density, volumetric460

liquid water, SSA and surface roughness. For the snow-air interface, we used the measured values of RMSH and correlation

length. For layer interfaces, we set RMSHlayers=1 mm and CLlayers=30 mm (i.e., the average winter value from our field
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measurements). When measurements and S1 overpasses coincided, the simulation was performed using the incidence angle of

S1. On days without simultaneous overpasses, the simulation was performed using the incidence angle from the closest previous

or subsequent S1 pass. All modelling choices described above have been designed and motivated to be optimal to describe wet465

snow starting from measured properties. However, it is important to remark that the choice of such parametrizations remains

highly arbitrary, as further research is still needed to validate permittivity, roughness and microstructure models specifically

for wet snow in the C-band.

Another practical challenge was to design a way to replicate the often complex snowpack layering observed in the field

within a radiative transfer model which is not specifically made to deal with a high number of layers thinner than the wavelength470

(Sandells et al., 2022). As a matter of fact, this increases the number of dielectrical discontinuities (Leduc-Leballeur et al., 2015)

generating (artificially) higher scattering. Resampling high resolution field measurements to the wavelength or its multiples is

an option, however, this does not necessarily reflect the physical snowpack structure. As an example, in the moistening phase,

liquid water appears in thin layers in the upper part of the snowpack. These layers can have thicknesses of a smaller size

than the C-band wavelength – the effect of such layers on the total backscatter is unclear and represents a potential source of475

errors when using layering defined by the resolution of the field measurements. As the wetting front progresses through the

snowpack during the ripening phase, liquid water becomes more homogeneous over layers with thickness comparable to the

C-band wavelength. During this stage, using high-resolution discretizations (e.g., on the order of the C-band wavelength) may

seem appropriate to closely replicate the liquid water layering observed in the field. However, averaging over such scales can

merge distinct wet and dry layers, blur important contrasts and potentially lead to biased backscatter estimates. On the other480

hand, intuitively, lower-resolution discretizations (e.g., multiples of the C-band wavelength) dissipate the scattering effect of

thinner (≃6 cm) wet layers. To reduce the aforementioned sources of uncertainty, we chose to model the snowpack structure

by stacking layers with a minimum thickness corresponding to the C-band wavelength, ensuring each layer had consistent

average physical properties. These physically similar layers were identified automatically by means of a simple algorithm and

then refined manually, with particular emphasis placed on LWC over the other variables. An example is provided in Fig. 6,485

where snow properties are shown at the field-measured vertical resolution in (a), and averaged into physically consistent layers

for SMRT input in (b). Fig. 7 shows that the number of layers used for each SMRT simulation varied between 1 and 14,

with a marked dependence on the stage of the melting process and on the campaign year. In dry snow conditions, the densely

measured snow properties are practically always averaged into one single layer, given the absence of liquid water. As the

snowpack starts moistening, the number of distinct layers increases, as a function of the first formation of liquid water within490

the snowpack. The highest number of layers required in SMRT to model the snowpack is used during the ripening phase, as

the LWC layering is at its most heterogeneous state during this phase, as a consequence of the progression of the wetting front.

Later in the runoff stage, with the snowpack being fully saturated, the number of used SMRT layers decreases again, as a

consequence of a more homogeneously moist snowpack. On the other hand, Fig. 7 shows that during the ripening phase, the

first campaign year has been modelled using ∼30% less layers than the second, on average. The presence of ice lenses helped495

to homogenize the distribution of liquid water within the snowpack, resulting in more uniformly wet layers near the surface and

consistently drier sections toward the bottom. Without ice lenses, in 2024, the progression of liquid water into the snowpack
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Figure 6. (a) Vertical profiles of snowpack properties measured in the field on May 14, 2024: temperature (dark red), density (dark yellow),

liquid water content (LWC; light blue), and specific surface area (SSA; dark blue). The vertical spacing of the points connected by the

lines reflects the measurement resolution for each profile: 5 cm for temperature, 3 cm for density, 2 cm for LWC, and 4 cm for SSA. (b)

Representation of the same profiles averaged according to the physically consistent snow layers (indicated by grey horizontal lines). The

layered profiles as in (b) form the input snowpack for the SMRT model, combined with surface roughness parameters measured on the same

day (RMSH=2.7 mm; CL=48.5 mm).

was more heterogeneous, therefore requiring more layers in the model to remain as true as possible to the conditions observed

in the field. Despite the efforts to find a reasonable compromise between all the above mentioned constraints, the optimal way

to model a radar-equivalent snowpack from field measurements and/or detailed multilayer physical model outputs remains an500
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Figure 7. Variability of the number of modelling layers in SMRT used for each simulation day as a function of the melting phase and the

campaign year.

open question in the field of radiative transfer modelling of snow, only recently addressed by Meloche et al. (2024), albeit for

dry snow only.

4 Results

4.1 Identification and re-definition of melting phases from multitemporal Sentinel-1 backscatter and field

measurements505

Fig. 8-9 show the evolution of the multitemporal S1 SAR backscatter together with the time series of measured properties: snow

temperature, LWC, air temperature, total water content (TWC), runoff, snow water equivalent (SWE) and surface roughness

indices (RMSH and CL). The melting phases identified with the method proposed by Marin et al. (2020) are reported on each

time series for later validation. We will refer to the snow seasons of 2022-2023 and 2023-2024 as the 2023 and 2024 seasons,

respectively.510

Our roughness measurements show clear differences for different snow surfaces (Fig. 10). Smooth surfaces typical of

new/dry snow have RMSH values around 1 mm (Fig. 10a). Thereon, roughness increases with increasing surface degrada-

tion due to melt-refreeze cycles and sublimation (Fig. 10b). The values of RMSH measured in these conditions, which are the

most persistent throughout the melt season, lie within 3 and 10 mm approximately. Fully-formed suncups are associated to

values of RMSH around 10-15 mm (Fig. 10c). Deep suncups appear like craters on the snow surface (Fig. 10d), some reaching515
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Figure 8. Data overview for the snow season of 2022-2023. (a) S1 backscatter time series: exact values of σV V
0 acquisitions (triangles);

range obtained by connecting the consecutive S1 passages by direction of orbits, i.e. by connecting all the morning/descending (M↓) and the

afternoon/ascending (A↑) acquisitions (shaded areas). Each panel is subdivided into the melting phases identified with the method of Marin

et al. (2020). (b) Manually measured profiles of snow temperature. (c) Manually measured profiles of snow liquid water content (LWC). (d)

Air temperature at hourly resolution, measured by the automatic sensor at WFJ. (e) Measured total water content (TWC) (light blue); runoff

time series automatically recorded by the lysimeter at WFJ (dark blue); lack of runoff data due to the instrument failure (grey area); snow

water equivalent (SWE) both automatically recorded by the snow scale (black line) and manually measured (white circles). (e) Time series

of measured surface roughness parameters – RMSH and CL.

width of 20 cm and depths of 10 cm. In these conditions, we measured values of roughness RMSH equal or higher than 20

mm.
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Figure 9. Data overview for the snow season of 2023-2024. (a) S1 backscatter time series: exact values of σV V
0 acquisitions (triangles);

range obtained by connecting the consecutive S1 passages by direction of orbits, i.e. by connecting all the morning/descending and the

afternoon/ascending acquisitions (shaded areas). Each panel is subdivided into the melting phases identified with the method of Marin et al.

(2020). (b) Manually measured profiles of snow temperature. (c) Manually measured profiles of snow liquid water content (LWC). (d) Air

temperature at hourly resolution, measured by the automatic sensor at WFJ. (e) Measured total water content (TWC) (light blue); runoff time

series automatically recorded by the lysimeter at WFJ (dark blue); snow water equivalent (SWE) both automatically recorded by the snow

scale (black line) and manually measured (white circles). (e) Time series of measured surface roughness parameters – RMSH and CL.

In 2023, the first liquid water was measured on Apr 10 (Fig. 8b). On this date, our data show that the temperature of the

top ∼5 cm of the snowpack was 0°C (Fig. 8b). The air temperature reached 0°C as well on this day (Fig. 8d). The snowpack

reached full isothermal state 20 days later. Ice layers formed throughout the season, likely as a consequence of repeated melt-520
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Figure 10. The panels illustrate some representative surface roughness conditions as qualitatively observed on the field (panoramic pictures)

together with one of the panel measurements performed on the same day (bottom right of each panel, where the mean roughness RMSH

measured on that day is also reported). (a) Smooth surface typical of dry snowpack conditions. (b) Early-stage development of surface

roughness deriving from melt-refreeze cycles. (c) Fully-formed suncups over a homogeneous snow cover, at least among the considered S1

cell. (d) Fully-formed suncups over a patchy snow cover.
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refreeze cycles and the succession of several warm and cold spells (Fig. 8d). Ice layers were observed regularly during the

measurement campaign, their presence is highlighted by locally higher values of LWC due to ponding at approximately 100

cm from the ground. The presence of ice layers probably withheld the meltwater in the upper section of the snowpack, partially

hindering the progression of the wetting front. LWC profiles in Fig. 8c highlight ponding above ice layers consistently until

May 15. The ponding is no longer detected over the next consecutive 5 snow profiles and becomes visible again from May 26525

until early June, when the ice layers likely disintegrated allowing the meltwater to percolate to the bottom of the snowpack. The

fact that the ponding above ice layers is not detected on a series of consecutive snow profiles is probably linked to the partial

refreeze of the snowpack highlighted by the drop in air temperature detected within this time span (Fig. 8d). However, ice

layers could also be laterally non homogeneous. Fig. 8f shows that the roughness associated with wet snow starts developing

short after the snowpack starts moistening, with RMSH increasing until May 9. Thereon, the cold spell brought new snowfalls530

which smoothened the snow surface significantly, and roughness indices reverted to typically winter values for approximately

10 days. Fully-formed suncups were observed on the field from May 31 onwards. As explained in Sec. 2.2, the lysimeter

time series for 2023 (Fig. 8e) is not useful to detect the runoff start. However, the automatic measurements indicate the first

slight SWE decrease around May 8, following a warm spell that lasted several days. This occurred in the presence of a fully

isothermal snowpack, suggesting that meltwater may have started to be released around this time.535

In 2024, the first liquid water on the surface was measured on Apr 8 during a warm spell (Fig. 9b-d). From this date on, the

wetting front moved somewhat into the snow before being interrupted by a cold spell, which caused a partial surface refreeze.

The snowpack reached the full isothermal state on May 9. Over the course of this season, ice layers were not observed in the

field, the progression of the wetting front was not hindered and the snowpack reached full saturation earlier with respect to

the previous year. The runoff time series confirms that the snowpack released the first meltwater around Apr 8 – on this date,540

the (point-wise) measurements show a largely isothermal snowpack. Likely, the snowpack was isothermal over the entire cell

(Fig. 9b,c,e). Additionally, significant amounts of LWC were measured at the ground interface after Apr 8 and the manual

measurements show a SWE decrease of ≃100 mm between Apr 4 and 15. These observations can validate the same hypothesis

made for the previous season in the absence of runoff data due to instrument failure. Our measurements in Fig. 9f show that

surface roughness increased relatively late (Jun 3) with respect to the previous season, with fully-formed suncups being visible545

on the field from Jun 19 onwards.

Coupling the detailed, high temporal resolution information about the state of the snowpack with the multitemporal SAR

σV V
0 recorded by S1 on morning and afternoon overpasses (Fig. 8-9a) enables the validation of the methodology proposed

by Marin et al. (2020) to identify the melting phases. According to the authors, a drop of at least 2 dB with respect to the

winter mean in the afternoon/ascending σV V
0 identifies the start of the moistening phase; the ripening phase starts when the550

morning/descending σV V
0 signal shows the same drop of at least 2 dB; the runoff starts when both morning/descending and

afternoon/ascending σV V
0 time series reach their local minima before the monotonic increase (the authors propose an average

date between the two local minima when both the S1 satellites were available). For the two seasons, we computed the average

winter backscatter (σV V
0,dry) by averaging all values recorded by each individual track over the course of the meteorological
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Table 2. Overview on the identification of the melting phases based on the multitemporal S1 SAR backscatter as proposed by Marin et al.

(2020). For each season, the table shows the relevant values of σV V
0 and the occurrence dates for each afternoon/ascending (A↑) and

morning/descending (M↓) look (and corresponding incidence angle). The selected values for the start of the moistening, ripening and runoff

phases are highlighted in bold. For the runoff start, the selected date according to the method of Marin et al. (2020) is compared against the

data recorded by the lysimeter, when available.

Season 2022-2023 2023-2024

Track 015 (A↑) 117 (A↑) 066 (M↓) 168 (M↓) 015 (A↑) 117 (A↑) 066 (M↓) 168 (M↓)

Local Incidence Angle 41° 32° 33° 42° 41° 32° 33° 42°

σV V
0,dry [dB] -12.3 -11.4 -8.4 -10.0 -12.6 -11.5 -8.9 -10.1

Moistening start date Apr 22 Apr 29 – – Apr 04 – Apr 16 Mar 18 – –

Moistening start value [dB] -18.5 -16.3 – – -14.1 – -20.0 -13.9 – –

Ripening start date – – Apr 26 Mar 28 – – Apr 08 Apr 15

Ripening start value [dB] – – -12.6 -13.3 – – -12.8 -17.9

σV V
0,min, date May 16 Apr 29 May 08 May 03 May 22 May 17 May 26 Jun 02

σV V
0,min, value [dB] -21.4 -16.3 -19.8 -22.4 -22.6 -23.7 -20.7 -22.8

Runoff start date (Marin et al., 2020) May 06 May 24

Runoff start date (Lysimeter) No data – ∼Apr 29 (?) ∼Apr 15

winter, i.e., from Dec 01 to Feb 28. The resulting values are the benchmark needed to identify the melting phases. The results555

are listed in Tab. 2. As noted by Marin et al. (2020), the dependence of σV V
0 on incident angles remains as a residual effect.

Because for the selected cell two morning/descending and afternoon/ascending looks are available, there are two possible

dates for the start of the moistening and ripening phase, respectively. In 2023, these dates are Apr 22 and 29 for the moistening

phase and Mar 28 and Apr 26 for the ripening phase. For the start of the moistening phase, we selected the earliest, i.e. Apr 22.

For the start of the ripening phase, the two identified dates are almost one month apart, however, the σV V
0 decrease recorded560

on Mar 28 by track #168 derives from a melt-refreeze cycle, as the following value recorded by the same track aligns back

around the winter mean. Therefore, we selected Apr 26 as the start of the ripening phase. In 2024, for the moistening phase,

the σV V
0 value recorded on Apr 04 by track #015 is only 1.5 dB lower than σV V

0,dry, however, the next passage of the same track

on Apr 16 recorded a drop of already 7.4 dB. Therefore, the moistening start has been placed on Apr 04. On this date, track

#117 recorded a drop of 7 dB with respect to σV V
0,dry. For the ripening start, we chose Apr 15.565

These considerations show that the method of Marin et al. (2020) is limited by the the halved S1 revisit frequency. This

becomes even more clear for the selection of the runoff start date, as the wider separation between local minima of σV V
0

considering all 4 looks is 17 days for 2023 and 16 days for 2024. Using the date in between to determine the runoff start,

as done by Marin et al. (2020), gives potentially unreliable results in these conditions. This low temporal resolution makes it

difficult to pinpoint precise onset dates, especially when minima are separated by such long periods. Despite the ambiguities, on570

both seasons, the identified moistening phase coincides exactly with the first snowpack warming and the consequent formation

of liquid water. The identified ripening phase is also mostly consistent with the theory, as field measurements show that the
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Figure 11. Bias between LWC measurements with dielectric devices and melting calorimetry for snow seasons of 2023 (a) and 2024 (b). In

2024, direct comparisons between simultaneous (brown) and co-located (light blue) measurements were also performed.

snowpack transitions to the fully isothermal state with the wetting front progressing to the bottom, although this process is

partially hindered in 2023 by ice layers. In 2024, a sudden cold spell at the beginning of the ripening phase caused the refreezing

of the superficial meltwater (Fig. 9b-d). This generated a sharp increase in both morning and afternoon σV V
0 (Fig. 9a). In 2024,575

the first instance of measuring a fully isothermal snowpack coincided precisely with the first afternoon local minimum of

σV V
0 . The same cannot be verified for 2023, which instead shows a counterintuitive case where the local minimum of morning

σV V
0 anticipates the local minimum of afternoon σV V

0 (Fig. 8a). Nonetheless, by the time the morning σV V
0 reached its local

minimum in 2023, the snowpack had already been fully isothermal for at least 5 days (Fig. 8a-b). This suggests that the

snowpack is likely to be fully isothermal when the afternoon σV V
0 reaches its local minimum. The runoff time series in 2024580

shows that the snowpack had started to release meltwater as soon as in the late moistening phase (Fig. 9e), in correspondence

of the first local minimum of the afternoon σV V
0 time series on Apr 16 (Fig. 9a).

Marin et al. (2020) proposed three possible explanations for the monotonic backscatter increase following the local minima:

(i) the increase in surface roughness, (ii) the decrease in TWC and (iii) the snow cover gradually becoming patchy. Our data

show that over a high-altitude alpine snowpack like the study plot at WFJ, roughness develops on the snow surface well before585

the snow cover begins to disappear in patches. Therefore, at least for similar altitudes, the gradual disappearance of the snow

cover can be ruled out as a cause of the increasing backscatter in the late melting stage. For both seasons, our data indicate that

the strongest correlation with the monotonic increase of σV V
0 after the local minimum is observed with the gradual increase

in surface roughness (Fig. 8-9f). Conversely, there seems to be no remarkable correlations between the increase in σV V
0 and

the TWC and/or runoff trends. In fact, Fig. 8-9e show that the decrease of TWC as a consequence of snow ablation is not590

monotonous. On the other hand, both automatic and manual measurements show that by the time SWE started decreasing

monotonically (around May 26, 2023 and Jun 06, 2024), the S1 σV V
0 had already increased again by ≃6 dB.

4.2 Instrumental uncertainty and variability in field measurements of liquid water content

Fig. 5 shows that liquid water has a strong impact on the real and imaginary parts of ϵs at C-band frequencies. For S1 σV V
0

retrievals from ground measurements, this poses three major challenges. In the first place, manual measurements concern a595
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very small area/volume whereas satellite acquisitions cover a pixel size of 20 × 20 m. Secondly, the distribution of liquid

water within the snowpack can be highly heterogeneous because of a variety of features and processes, namely capillary

barriers, preferential flows, ice layers. Finally, what is the most accurate methodology for measuring LWC in both lab and field

environments remains a debated question in snow science (Barella et al., 2024), and although the methods used in this paper

were designed to achieve a good level of robustness, they are nevertheless subject to error. Therefore, all these uncertainty600

sources need to be taken into account when comparing satellite σV V
0 signatures with retrievals driven by measured data.

In Sec. 2.4, we explained how dielectric measurements were validated against melting calorimetry in conditions of ripe

snow. We referred to the validation setup of 2023 as "co-located" only; whereas in 2024 we performed an additional "simulta-

neous" validation in addition to the co-located. Figure 11 shows the spread between dielectric and calorimetric measurements

in co-located and simultaneous setups for all the LWC validation measurements made over the two years. In 2023, the average605

maximum bias between co-located measurements is 2.6% and the average standard deviation is 1.2%. In 2024, the average

maximum bias and the average standard deviation are 2.6% and 1.4% for co-located measurements and 2.3% and 1.5% for

simultaneous measurements, respectively. Figure 13 shows all the measured vertical profiles in detail. In 2023, there is an over-

all good agreement between dielectric and calorimetric measurements. The time lag between the measurements is highlighted

by often similar LWC profile shapes, with calorimetry generally measuring higher peak values. Unexpectedly, in 2024, the610

simultaneous measurements resulted in only slightly lower biases and slightly higher standard deviations. This counterintuitive

result is supported by a number of previous studies. For example, Donahue et al. (2022) found an average standard deviation

of 1% over 10 cm wide snow samples with LWC between 0 and 5%. The study of Techel and Pielmeier (2011) confirms the

high occurrence of measurement deviations of more than 1% at short horizontal distances. However, Techel and Pielmeier

(2011) also show that the correlation between measurements at larger horizontal distances is higher for LWC values lower615

than 1.3%. Therefore, the biases and standard deviations observed in our field measurements may overestimate the instrument

uncertainty and/or variability over larger scales comparable to the footprint of S1. Based on these considerations, we define the

large-scale LWC variability as ±1%. We use this value to assess the effect of LWC uncertainty on σV V
0 retrievals from ground

measurements.

4.3 Interpretation of Sentinel-1 backscatter through SMRT simulations forced by field measurements620

Fig. 12 shows the comparison between the time series of S1 acquisitions and SMRT-modelled σV V
0 forced by snowpit mea-

surements using the two different permittivity formulations (MEMLSv3 and H-86) and the model setup described in Sec.

3.2, considering the LWC variability of ±1% estimated in Sec. 4.2. In this Figure, together with Tab. 3, simulation results

are categorized into groups, and potential sources of inconsistencies and/or driving scattering mechanisms are discussed for

each group, based on the measured values of LWC, TWC, and surface roughness. All measured profiles of LWC, along with625

the corresponding TWC and RMSH values, are presented in Fig. 13 and Tab. 5, which serve as a reference for the following

analysis. Tab. 4 shows all the Root Mean Squared Errors (RMSE) between S1 acquisitions and simulations, according to the

snow season, the selected permittivity formulation and the melting phase. In general, both models exhibit a mean negative bias

of ≃5 dB with respect to S1 recordings over both seasons; however, biases are more pronounced for 2024 than for 2023, with
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Table 3. Supplementary information to Fig. 12: measured values of TWC, LWC, RMSH, noteworthy events for scattering (such as cold

spells or late snowfalls), and explanations to the mismatch between modelled and recorded S1 backscatter signatures.

Group TWC LWC RMSH Event Source(s) of inconsistency, scattering mechanism

1a – – – Soil thawing – Backscattering increase due to soil thawing

2a <10 mm <3% 1 mm
Snowpack moistening

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

– Wet soil scattering

3a >10 mm >3% 1→4 mm
Snowpack ripening

Formation of surface roughness

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling

4a >10 mm >3% 3∼4 mm
Snowpack ripening

Increasing surface roughness

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling

5a >10 mm >3% ∼1 mm
New snowfall on a wet snowpack

Well-developed surface roughness
– "Buried surface roughness"

6a <10 mm <3% ∼1 mm
Cold spell (partial snowpack refreeze)

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Uncertainty in surface roughness measurements

– Wet soil scattering

7a >10 mm >3% >4 mm
Wet snowpack

Fully-formed suncups

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling

1b <10 mm <3% ∼1 mm
Snowpack moistening

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

– Wet soil scattering

2b >10 mm >3% ∼1 mm
Snowpack moistening

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

3b
<10 mm

(Varying)
<3% ∼1 mm

Cold spell (partial snowpack refreeze)

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

– Wet soil scattering

4b >10 mm >3% ∼1 mm
Snowpack ripening

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

5b >10 mm >3% ∼3 mm
Snowpack ripening

Increasing surface roughness

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling

6b >10 mm >3% ∼1 mm
New snowfall on a wet snowpack

Well-developed surface roughness
– "Buried surface roughness"

7b >10 mm >3% >4 mm
Wet snowpack

Fully-formed suncups

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling28



Figure 12. Comparison between the recorded multitemporal S1 σV V
0 (triangles and shaded areas) and the time series of σV V

0 modelled with

SMRT, for year 2023 (a) and 2024 (b). Results are shown for both permittivity formulations – MEMLSv3 (dark gray boxplots) and H-86

(light gray boxplots). The boxplots indicate the variability associated to the LWC uncertainty of ±1% for each layer, as discussed in Sec. 4.2.

The shaded areas of the recorded S1 multitemporal σV V
0 represent the range of values obtained by connecting the consecutive passages by

direction of orbits, i.e. by connecting all the morning/descending and the afternoon/ascending acquisitions. The triangles represent the exact

values of the acquisitions. For clarity, exact values are only shown for days where snow measurements were carried out, thus allowing direct

comparison. Colored boxes group similar simulation results and are labeled with codes (e.g., 1a, 2a), which refer to Tab. 3 for details on the

corresponding measured snow properties, dominant scattering mechanisms, and potential sources of error. At the top of each panel, the time

series are further segmented into the melting phases identified in Sec. 4.1 – as well as the main scattering regimes, which are influenced by

LWC, surface roughness, and buried surface roughness.

the deviation between permittivity models being higher as well in 2024. H-86 generally gives higher σV V
0 values with respect630

to MEMLSv3.
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Table 4. RMSE (in dB) between modelled and recorded σV V
0 values according to the snow season, the selected permittivity formulation and

melting phase.

Season 2022-2023 2023-2024

Permittivity formulation H-86 [dB] MEMLSv3 [dB] Data to compare [#] H-86 [dB] MEMLSv3 [dB] Data to compare [#]

Overall 3.4 4.5 9 6.2 7.5 28

Dry 0.5 0.7 5 0.7 0.5 4

Moistening – – 0 9.1 12.2 3

Ripening 5.8 7.6 3 8.4 10.1 10

Runoff 0.2 1.9 1 3.3 2.7 11

In 2023, the #066 morning S1 track recorded a backscatter increase of more than 2 dB between Apr 05 and 19. Similarly,

in 2024, we observe a 2.5 dB increase in backscatter recorded track #117 from Feb 08 to Mar 04. We can hypothesize that

such increases are driven by the thawing of the soil. However, our data are insufficient and too uncertain to prove so, because

of possible interferences between dielectric instruments and the ground in mostly dry snow conditions, as mentioned in Sec.635

2.1.4. In dry snow conditions, there were no significant discrepancies between S1 and simulations; henceforth Fig. 12 only

focuses on the period after the assumed soil thawing.

Aside the chosen permittivity formulation, five primary sources of uncertainty may account for the differences between

simulated and recorded σV V
0 . A significant one is snow transformation and melting between satellite and measurement acqui-

sitions. S1 orbits intersect the field area either in the early morning or in the late afternoon (see Tab. 1). As explained in Sec.640

2.4, measurements started at around 10:00 and would take several hours. Thus, it is likely that in both cases the LWC during the

passage is lower than the value measured at 10:00 or later because of daily melt-refreeze cycles, especially near the snowpack

surface. Moreover, the point-wise LWC measurements are not necessarily representative of the general liquid water distribution

over the entire S1 cell. In 2023, we consistently observed ice layers over a high number of consecutive snow profiles (see Fig.

8c and 13). Our consecutive measurements suggest that ice layers contributed creating a more spatially homogeneous liquid645

water distribution by acting as a natural drainage barrier for meltwater. Unlike 2023, in 2024 ice layers were not consistently

observed in the field. Likely, the melting process was more heterogeneous over the S1 cell, and point-wise measurements are

less representative of wider scales in this season. This explains the fact that days marked by high variability associated with

LWC are more numerous in 2024 than in 2023. In Tab. 3, we grouped these sources of uncertainties together under the labels

"uncertainty in spatiotemporal LWC/TWC". Potentially, this source of uncertainty affects every S1 retrieval from field data.650

However, it definitely carries more weight than other sources of error at early melt stages when the simulation variability as-

sociated to LWC uncertainty is particularly high, i.e., when the TWC is low (Apr 24-26, 2023; Apr 04, 2024) and during both

the cold spells of 2023 (May 17) and 2024 (Apr 15-23), which caused the partial refreeze of the snowpack (see Fig. 8, 9b-d).

Daily melt-refreeze cycles, however, not only alter the amount of LWC/TWC in the snowpack, but also drive the formation

of surface structures that can create additional scattering which is not accounted for in the simulations, i.e. crusts (Lund et al.,655

2022; Brangers et al., 2024). In Tab. 3, we labeled this uncertainty source as "scattering from surface structures (melt-refreeze)".
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Table 5. Total water content (TWC) and surface roughness (RMSH) values measured for the LWC profiles shown in Fig. 13.

2023 2024

Date
TWC

[mm]

RMSH

[mm]
Date

TWC

[mm]

RMSH

[mm]

Apr 24 3 3 Apr 04 2 1

Apr 26 1 1 Apr 08 13 2

Apr 29 113 1 Apr 11 14 1

May 01 39 2 Apr 15 34 2

May 03 39 2 Apr 16 6 –

May 05 114 3 Apr 18 3 1

May 08 143 3 Apr 23 4 2

May 09 102 4 Apr 27 11 1

May 11 18 1 May 02 16 2

May 12 22 2 May 09 161 1

May 15 14 1 May 10 62 2

May 17 11 1 May 14 46 3

May 19 36 3 May 21 96 1

May 22 72 – May 22 110 1

May 24 24 3 May 29 80 2

May 26 129 – Jun 03 145 4

May 29 116 4 Jun 07 115 3

May 31 193 7 Jun 10 44 4

Jun 02 27 10 Jun 14 47 6

Jun 05 38 – Jun 19 129 14

Jun 07 67 9 Jun 22 71 12

Jun 09 98 16 Jun 26 63 –

Jun 12 16 16 Jun 27 42 12

Jun 14 13 21 Jul 01 22 14

Jun 16 64 30 Jul 04 29 13
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Figure 13. Ensemble of all the LWC profiles measured with dielectric instruments (light blue) from Apr 24, 2023 and Apr 04, 2024, i.e.

the first dates for which significant mismatches between modelled and S1-acquired σV V
0 values in 2023 (top row) and 2024 (bottom row),

respectively. Melting calorimetry measurements (dark blue), including their associated uncertainty (dark blue shaded areas) as described in

Barella et al. (2024), are shown for comparison. In 2024, a second simultaneous LWC profile using dielectric instruments (brown) was also

carried out.

This uncertainty applies to the same cases as where "uncertainty in spatiotemporal LWC/TWC" applies, but it likely holds more

weight when the TWC is slightly higher and the simulation variability according to LWC is lower (Apr 08-15, 2024; Apr 27 -

May 05, 2024).
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Another cause of significant discrepancy between recorded and modelled σV V
0 in the presence of a mostly dry snowpack660

with a smooth surface may be the thawing of the soil. This process creates a thin layer of liquid water overlying the natural soil

roughness or absorbed into the basal snow layer (Lombardo et al., 2025). The combination of snow wetness and roughness,

as will be shown later in the paper, can be responsible for backscatter increases up to 7 dB. In Tab. 3 we refer to this kind of

uncertainty as "wet soil scattering". This uncertainty potentially applies to the instances when the TWC is relatively low and

the variability associated to LWC is high. Between Apr 04-27, 2024, our measurements show considerable amounts of liquid665

water at the soil interface with otherwise relatively dry snowpack and smooth surfaces (see Fig. 13). The lysimeter time series

corroborates these measurements by detecting runoff start on Apr 08, 2024 (see Fig. 9e). However, we lack sufficient data in

order to prove and explore this possible scattering source, therefore we only mention it as an hypothesis.

Two similar instances in 2023 (May 05-09) and 2024 (Apr 10 and 14) suggest another interesting phenomenon likely

affecting simulation accuracy. On both these intervals, Fig. 12 shows very good agreement between recorded and modelled670

values of σV V
0 , regardless of the chosen permittivity model and the variability associated to LWC. In both instances, surface

roughness had just started developing on a wet snow surface (LWC>3%), with measured RMSH values between 3 and 4 mm

(see Fig. 10b). Thereafter, spring snowfalls cover the early-stage roughness and the snow surface reverts to smooth with RMSH

values between 1 and 2 mm (see Fig. 10a). On both years, the group of simulations following the spring snowfalls (i.e. May

11-15, 2023; May 21 and 22, 2024) show again strong biases when compared to S1 recordings. This bias is almost certainly675

due to the fact that the surface roughness which had started to develop was then buried below a smooth layer of new snow

and it is not simulated by SMRT in the proposed configuration (see Sec 3.2). In Tab. 3 we labeled this phenomenon as "buried

surface roughness".

Generally, simulations are in better agreement with S1 recordings when the measured surface RMSH is above 3 mm. Fig.

12 shows multiple groups of simulations where S1 retrievals from field data gain increasing accuracy with increasing RMSH680

on a wet surface, together with a decreasing dependence on the chosen permittivity model and the uncertainty associated to

LWC (Apr 29 to May 09, 2023; May 19 to Jun 09, 2023; May 29 to Jul 01, 2024). These instances suggest that in conditions of

increasing surface roughness on a wet snow surface, additional source of uncertainty in S1 retrievals from field data might be

associated to the IEM (see Sec. 3.2) translating surface roughness in backscatter response and/or to point-wise panel measure-

ments underestimating the surface roughness of the entire S1 cell. In Tab. 3 we labeled these sources as "uncertainty in IEM685

modelling" and "uncertainty in surface roughness measurements", respectively.

Interestingly, the S1 signal saturates at values of σV V
0 of -22.4 and -23.7 dB for 2023 and 2024, respectively. These values

are close to the nominal noise equivalent sigma naught (NESZ) of S1, i.e. -22 dB. The saturation of the signal is obtained by

SMRT at much lower values, around ∼-30 dB, regardless of the chosen permittivity formulation.

4.3.1 C-band radar backscatter sensitivity to the coupled evolution of surface roughness and liquid water content690

To study the C-band radar backscatter sensitivity to the coupled evolution of surface roughness and LWC, we selected the

date of Apr 16, 2024. On this date, we measured a melt event in the superficial 45 cm. The bottom part of the snowpack was

homogeneously dry and was discretized as a one layer with the average of the scattering properties measured in the field. These
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Figure 14. Sensitivity of the C-band radar backscatter to the coupled evolution of surface roughness (expressed by RMSH) and LWC. Panels

(a, b, d, e) illustrate differences between two dielectric permittivity formulations – MEMLSv3 (a, b) and H-86 (c, d) – as well as the sensitivity

to the local incidence angle (LIA) over cell 40. σV V
0 responses are shown for 40° (solid lines) and 30° (dotted lines) incidence angles. Panels

(c, f) show values of
∣∣∆σV V

0

∣∣
40°−30°, i.e., the differences between backscatter coefficients in (a, b) and (d, e), respectively. The real reference

case is the snowpack layering observed on Apr 16, 2024: a melt event in the superficial 45 cm and an otherwise dry snowpack. The reported

results are consecutive synthetic variations of LWC and roughness of the surface layer.

values are representative of a compacted snowpack structure at the beginning of the melt process: density of 428 kgm-3, SSA

of 15.1 m2kg-1 and temperature of -0.1°C. From this configuration, we prepared a series of synthetic snowpack variations with695

surface LWC increasing from 0 to 12%, and coupled each of them with a range of surface roughness RMSH increasing from 1

to 15 mm. These extremes represent a smooth surface typical of recent snowfall and the highly textured surface of fully formed

suncups, respectively. To ensure consistency, we gradually increased the value of the second roughness parameter CL as well.

To do so, we used an empirical logarithmic relationship extracted from field data between RMSH and CL, which we report in

Fig. A1. However, this empirical relationship is based on a limited number of points (75 in total) which show larger spread for700

increasing values of RMSH. Therefore, we assume that the only two discontinuities in the experimental results (see Fig. 14a-c,

RMSH=3 mm and LWCtop =12%) can be explained considering this uncertainty. For clarity, these points were removed. All

experiments were run with two incidence angles – 30° and 40° – which represent the overall range of angles between satellite
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overpasses and the snow surface within the reference cell (see Fig. 2 and Tab. 1). The result of all the experiments is shown in

Fig. 14, for both permittivity formulations.705

In general, Fig. 14 shows that the intensity of the scattering response has a strong dependence on LWC for lower values of

surface roughness (RMSH≤3 mm). The higher the surface roughness, the weaker the dependence on LWC. More in detail,

with H-86, for LWC values lower or equal to 0.5%, simultaneously increasing surface LWC and surface roughness causes

a decrease in C-band σV V
0 of a maximum of 2 dB. Within this range, the intensity of the σV V

0 drop from smooth to rough

surfaces decreases gradually with increasing LWC. For LWC values higher than 0.5%, the spread in σV V
0 as a function of710

increasing surface roughness for the same value of LWC increases, with a reversed trend. Simultaneously increasing LWC

eventually generates a σV V
0 increase for all the considered roughness values in this experiment. Interestingly, the higher the

surface roughness, the lower LWC value is needed to invert the trend: for RMSH=15 mm (typical of a textured snow surface

where suncups are visible, but also very close to the limit of validity of the IEM), σV V
0 starts to increase for LWC≥1%,

whereas for RMSH=3 mm, the σV V
0 only starts to increase for LWC≥2%. For LWC values higher than the threshold of 0.5%,715

the surface roughness influences the C-band backscatter response to an extent that is comparable to the effect of LWC alone

over a smooth surface. Similar considerations can be done for the experiments run with MEMLSv3, but as a consequence

of the different absorption, the above-mentioned changes in σV V
0 trends happen for lower values of LWC. Furthermore, the

experiments in Fig. 14 reveal that, regardless of the permittivity formulation, for relatively low values of LWC (≃1%), a

change in surface RMSH from 2 to 3 mm generates a remarkable increase of ≃6 dB in the backscatter response. In our field720

campaign, we typically measured roughness values in this range over snow surfaces undergoing the first cycles of melt-refreeze

metamorphism. Interestingly, the value of 6 dB is very close to the average bias observed between S1 acquisitions and SMRT-

modelled σV V
0 during the moistening and ripening phase (see Tab. 4). This supports the hypothesis that panel measurements

may underestimate the large-scale surface roughness. Moreover, the backscatter increase occurring for all LWC and regardless

of the incidence angle confirms that the monotonous increase in backscatter following the local minimum can be attributed to725

the formation of suncups, as initially suggested by the measurements alone.

Finally, Fig. 14c,f allow considerations regarding the impact of the incidence angle. To do so, we use the index
∣∣∆σV V

0

∣∣
40°−30°,

i.e., the absolute difference in backscatter between the two incidence angles of 40° and 30° – the range of incidence angles

overlooking the reference cell. For smooth surfaces (1≤RMSH≤ 2) and for LWC≥ 1.5%,
∣∣∆σV V

0

∣∣ exceeds 2 dB, i.e., twice

the nominal uncertainty of S1 (see Sec. 2.3). For LWC lower than 1.5%,
∣∣∆σV V

0

∣∣ is highly sensitive to small increases in730

LWC. For RMSH≥ 3, the sensitivity of
∣∣∆σV V

0

∣∣ to changes in LWC almost disappears. In conditions of fully-formed suncups

(RMSH≥ 10),
∣∣∆σV V

0

∣∣ drops below the nominal sensitivity of 1.0 dB for every LWC value, meaning that the backscatter

signals show progressively weaker angular dependence for highly structured snow surfaces. This phenomenon is easily un-

derstood considering that, on rough surfaces, diffuse scattering is enhanced. Therefore, the position of the sensor relatively

to the snow surface becomes less important, as the reflected energy is less directional and more broadly scattered. The same735

phenomenon explains the apparent slight backscatter decrease for RMSH≥ 10 at angles of 30° (Fig. 14b,e). At lower incidence

angles, the radar beam is closer to perpendicular to the surface than it is at higher incidence angles. On rough surfaces, with

enhanced diffuse scattering, the fraction of energy reflected directly back to the sensor is reduced.
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5 Discussion

Two consecutive years of detailed snow profiling with specific focus on the melting season gave an unprecedented overview740

on the multitemporal evolution of the SAR backscatter as a result of the changing snowpack properties. The identification of

the melting phases based on the multitemporal SAR backscattering as proposed by Marin et al. (2020) was complicated by

two factors: (i) the failure of Sentinel-1B in 2022, which resulted in a halved availability of satellite recordings and (ii) with

the ideal incidence angle for wet snow separability being ≃45◦ (Nagler et al., 2016; Karbou et al., 2021), and as shown by the

experiments in Fig. 14, lower incidence angles dampen the backscatter response to moistening snow. Despite these limitations,745

using nothing more than information on σV V
0 change with respect to winter means, the threshold-based method identified the

moistening and ripening phases for both years with high accuracy.

With the first measured time series of surface roughness parameters, we demonstrated that for a high-altitude alpine snow-

pack – where radiation can be the dominant energy input during the melting season and surface roughness develops several

weeks before the snow cover starts showing patches – the observed monotonous increase in backscatter at the end of the melt-750

ing season is physically related to the development of surface roughness, from initial surface degradation due to melt-refreeze

cycles and/or the sequence and intensity of snowfall events, to the formation of suncups. This phenomenon was only hypoth-

esized by Marin et al. (2020). Without ground truth reference, it is impossible to distinguish the effect of surface roughness

from disappearing snow using multitemporal SAR backscatter alone. Additionally, the start of the monotonous increase in

multitemporal SAR backscatter defines the local minima in the time series. Several studies were carried out in recent years755

where such minima were associated to the runoff start (Gagliano et al., 2023; Darychuk et al., 2023). However, the proximity of

backscatter minimum and runoff start is not due to SAR direct detection of meltwater. Instead, this apparent coincidence arises

at the specific frequency of S1 because of an interplay of several factors. As the snowpack reaches the maximum detectable

water content by S1 (which reduces scattering), surface roughness begins to develop, enhancing scattering. These mechanisms

will be discussed individually in the remaining of this discussion. Based on our data, the only and most likely conclusion we760

can draw from the backscatter minima from a practical point of view is that the snowpack is in an isothermal state and likely

already releasing water. However, processes such as melt-refreeze cycles, sublimation, compaction, or settlement in the upper

snow layers can potentially lead to the formation of rough surfaces before the snowpack starts releasing meltwater runoff.

Therefore, it is relevant to rethink how information on backscatter minima are used for hydrological applications, especially

when counting on a limited satellite revisit frequency. Further research should also investigate other potential energy input765

mechanisms that are typical of snowpacks in environments outside the high-altitude and mid-latitude conditions explored in

this study.

With radiative transfer modelling, we were able to link measured snow properties to retrieved satellite-based radar signals,

aiming at reproducing the multitemporal backscatter time series recorded by S1. This analysis revealed that – rather than melt-

ing phases – the multitemporal S1 backscatter time series identify two main regimes, each driven by a different dominant factor770

influencing the radar response: LWC and surface roughness. Thus, as shown in Fig. 12, the moistening and ripening phases

could be merged into a single phase primarily dominated by LWC, whereas the runoff phase could be redefined as a roughness-
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dominated phase. Modelling satellite backscatter signals forced by field measurements requires accounting for several sources

of uncertainty, which are predominantly associated to these two variables. The uncertainty associated to LWC manifests itself

in many different ways: the time lag between satellite and measurement acquisitions, the scattering originating from surface775

structures formed by melt-refreeze cycles, the spatial heterogeneity of the LWC distribution, the instrument uncertainty as-

sociated to the measurements and, on the RT modelling side, a lack of a definite permittivity formulation for wet snow. The

uncertainty associated to surface roughness is mostly linked to measurement inaccuracies (and/or not representativeness for

the entire S1 cell) and, on the RT modelling side, to possible errors in the IEM surface model.

Within the approximately 5 hours separating satellite and measurements acquisitions, the liquid water per layer can change780

significantly (Kendra et al., 1998; Techel and Pielmeier, 2011), especially during the moistening and ripening phases or within

cold spells, as indicated by the higher simulation variabilities in Fig. 12. On early stages of the melt process, our measure-

ments are likely not representative of the snowpack state overlooked by S1 because of the strong effect of melt-refreeze. Our

findings confirm that C-band σV V
0 is highly sensitive to diurnal snowpack variability, particularly during the early stages of

melting when features such as melt-refreeze crusts are present (Lund et al., 2022; Brangers et al., 2024). As noted in Brangers785

et al. (2024), this strong dependence potentially complicates LWC retrievals significantly at these latitudes. This point raises

concerns, because the early stages of melting represent a critical period when S1 can detect LWC and likely the only window

of opportunity to obtain and integrate reasonable information. However, our RT simulations forced by field measurements

were able to attribute the observed σV V
0 drops across all tracks over both years – 6.2, 4.2, 1.5, and 7.8 dB – to corresponding

measured TWC of 3, 1, 2, and 34 mm, respectively. These results are in line with the tower-based experiments of Strozzi et al.790

(1997); Strozzi and Matzler (1998).

Another issue is the instrument uncertainty in LWC measurements. The deviations between dielectric and calorimetric

measurements that we obtained throughout the campaign are in line with previous field and lab studies (Kinar and Pomeroy,

2015; Avanzi et al., 2016). Unexpectedly, co-located measurements in 2023 in the presence of ice lenses showed smaller

deviations with respect to simultaneous measurements in 2024. Localized high values of LWC, such as for ponding meltwater795

above ice lenses, can pose accuracy problems for instruments that empirically estimate the volumetric liquid water content from

the snow permittivity (Techel and Pielmeier, 2011). However, as already discussed, their presence could homogenize the overall

liquid water distribution among the cell overlooked by the satellite. The increased variability between measurement techniques

in 2024 may be (at least partially) due to the increased LWC hetereogeneity compared to 2023. This may indicate that the

snowpack stratigraphy and LWC conditions play a larger role than measurement errors due to spatial and temporal offsets.800

Accounting for the LWC instrument uncertainty – which we estimated being approximately 1% from our measurements, and

in line with previous similar comparative studies (Techel and Pielmeier, 2011; Donahue et al., 2022) – generates an uncertainty

range in the simulated σV V
0 which is higher than the variability of the signal recorded by S1 over the course of one snow

season. Highest deviations happen for highest values of LWC, in line with the findings of Veyssière et al. (2019).

Finally, the lack of a definitive permittivity formulation for wet snow poses a significant challenge for the scientific commu-805

nity. The permittivity formulations selected for this study exhibit similar spectral shapes (see Fig. 5) and are, to our knowledge,

the only ones that have been validated against real-world observations at C-band frequencies. As mentioned in Sec. 3.2, the
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permittivity formulation describes how the real and imaginary part of ϵs change with increasing fractions of liquid water, and

therefore how radar microwaves interact with the snowpack. ϵs is computed using mixing theories to account for volume frac-

tions of ice, water and air in the snow medium. MEMLSv3 parametrizes the shape of water inclusions as elongated spheroids810

embedded in a homogeneous host medium. This represents an important source of uncertainty. As liquid water increases, the

shape and orientation of water inclusions significantly affects ϵs, as the electromagnetic field interacts with them in a shape-

dependent way, generating anisotropic responses (Arslan et al., 2003; Chang et al., 2016). However, characterizing the temporal

evolution of the shape of water inclusions during melting processes is an ambitious and challenging task that has only been

addressed very recently by Krol et al. (2024) through rapid MRI profiling in a controlled laboratory environment. At the time815

our measurement campaign was designed and conducted, these methods did not yet exist – let alone their applicability in the

field, which is still entirely unknown. These recent advancements are highly promising for the crucial challenge of developing

a comprehensive model applicable across all frequencies and LWC conditions. Moreover, Fig. 12 highlights discrepancies

of approximately 6 dB between SMRT-simulated and satellite-recorded backscatter signals, especially when σV V
0 is largely

dominated by LWC. Similar deviations were found by Veyssière et al. (2019) using MEMLS&a to reproduce σV V
0 during820

consecutive melt seasons over alpine areas. Additionally, both permittivity models saturate σV V
0 at values below -30 dB. Such

low values are never recorded by S1, which saturates at around -22 dB. Similar signal saturation (between -20 and -25 dB) in

the C-band in vertical co-polarizations are confirmed by the tower-based radiometric studies of Strozzi et al. (1997); Strozzi

and Matzler (1998). Matching the recorded S1 σV V
0 would require an imaginary part of ϵs similar to that at 1 GHz – this would

imply unrealistic penetration depths for the C-band, contradicting field observations (Ulaby and Herschel Stiles, 1981; Shi and825

Dozier, 1995; Ulaby et al., 2014; Lodigiani et al., 2025). We conclude that one possible explanation to the observed deviations

is the overestimated absorption loss in the existing permittivity formulations. In view of the described inherent limitations of

existing wet snow permittivity formulations, a detailed quantitative analysis of scattering contributions from individual snow

layers was not possible. As previously noted in Sec. 3.2, the absence of a unified permittivity model for wet snow remains an

important direction for future research – not only for RT modelling, but also for field measurements, since dielectric methods830

depend on such models to derive LWC.

Later in the melting season, the effects of the uncertainties associated to LWC become weaker, because the snowpack

surface becomes wetter and the scattering is mostly dominated by surface effects (Shi and Dozier, 1992) – this can be observed

in Fig. 12, as variability associated to LWC decreases gradually with time. Simultaneously, deviations between modelled and

recorded σV V
0 decrease sensibly (groups 3-4a and 4-5b in Fig. 12). Here, deviations are mostly explained by inaccurate surface835

roughness quantification. This is particularly evident on instances where simulation accuracy drops after a spring snowfall on

a surface that had already begun developing marked roughness (see "buried surface roughness" instances in Fig. 12). However,

at these later stages of the melting process, simulations reproduce the recorded backscatter generally well. This is confirmed by

the low RMSE values reported in Tab. 4 for the runoff phase, which we redefined as a phase dominated by surface roughness

effects. Here, further deviations can be attributed to panel measurements possibly not capturing fully the large-scale roughness840

features observed by the satellite. This hypothesis seems to be confirmed by the very recent results of Barella et al. (2025),

which show that panel sizes practical for field measurements may be insufficient to capture the roughness features of wider
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areas. Additionally, the IEM model, which translates roughness parameters into scattering, could be affected by inaccuracies,

especially when the roughness values approach or exceed the model’s range of validity.

In other words, with Fig. 12, we tried to reproduce the recorded S1 σV V
0 over a 20 × 20 m cell using physics-based averages of845

fine, detailed snow properties measured at the point scale. At wider scales, the relative importance of very specific information

on the state of the snowpack may decrease compared to more influential large-scale scattering drivers, namely the development

of internal snowpack structures (e.g. ice lenses and crusts), the soil features in the case of an isothermal but predominantly dry

snowpack, and large-scale surface roughness. Although the modularity and comprehensiveness of SMRT theoretically allows

most of these scenarios to be modelled, the problem of how to quantify them on a large scale persists.850

In Fig. 14, we selected a realistic snowpack layering observed in the field and used the full range of measured values of

surface roughness to repeat the experiments done in the past by Shi and Dozier (1992); Strozzi et al. (1997); Strozzi and

Matzler (1998). These simulations aimed to characterize the scattering response of a wet snow cover to increasing surface

roughness, while varying the incidence angle to match the range observed across the relative S1 orbits covering the study area.

Since the relationship between co-polarized signals and snow wetness is controlled by the scattering mechanisms, the type of855

correlation between superficial LWC and surface roughness expresses the relative contribution of volume rather than surface

scattering mechanisms (Shi and Dozier, 1992). Shi and Dozier (1992) found negative correlations with surface roughness for

LWC between 2 and 4% and a positive correlation with increasing surface wetness at an incidence angle of 50°. Similar results

were also found by Ulaby and Herschel Stiles (1981) at frequencies of 8.6 GHz and incidence angles greater than 50°. Our

results generally confirm these findings, but the wider range of explored combinations of surface roughness and LWC reveals860

that the correlation tilt does not occur at a specific LWC value. For RMSH values (simply "roughness" hereafter) between 2

and 10 mm, typical of snow during most of the melting period, the tilt depends on both LWC and roughness, shifting towards

higher LWC with lower roughness. Specifically, backscatter strongly depends on LWC when roughness values exceed 3 mm.

Again, for smooth surfaces (1-2 mm), both permittivity models saturate σV V
0 below -30 dB, a value never recorded by S1.

An interesting result from Fig. 12 is that the most accurate simulations of S1 recordings happen when measured values of865

surface roughness equal or exceed the threshold value of 3 mm. The experimental analyses in Fig. 14 show that, for relative low

values of LWC between 1 and 1.5%, the backscatter response increases by approximately 6 dB when the roughness increases

from 2 to 3 mm. The value of 6 dB is almost exactly the bias we observed in Fig. 12 between S1 recordings and our simulations,

especially with increasing LWC. As mentioned, similar deviations were found by Veyssière et al. (2019). Additionally, for LWC

values ≥1.5% and roughness between 3 and 4 mm, the simulated σV V
0 saturates at values that are comparable to those recorded870

by S1. This raises the point that more representative estimates of surface roughness for the entire S1 cell, and/or improved IEM

modelling to translate this information into backscatter signals, could be just as crucial as rigorous permittivity formulations for

accurately reproducing and better interpreting multitemporal S1 σV V
0 . Recent findings by Barella et al. (2025) also point to this

direction, suggesting that commonly used transect extraction algorithms may filter out some small-scale roughness features. In

general, the experiments in Fig. 14 represent a substantial advancement with respect to Shi and Dozier (1992); Strozzi et al.875

(1997); Strozzi and Matzler (1998). In these earlier experiments, surface roughness was either not quantitatively measured
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(being only qualitatively assessed), and/or evaluated over a very limited set of scenarios, overlooking intermediate conditions

that, as our measurements prove, characterize the majority of the melting period.

Fig. 14c,f show that for smooth surfaces and for LWC values as low as 1.5% – i.e., when the melting process is likely in

its initial stage – the variation in backscatter across the range of incidence angles overlooking the reference cell is comparable880

to or even exceeds the threshold used in Nagler and Rott (2000); Nagler et al. (2016); Marin et al. (2020) for wet snow

detection. This angular dependence constitutes an additional uncertainty factor in wet snow detection, which overlaps with

the previously discussed effects of diurnal variability in snowpack properties. On the other hand, for LWC values higher than

2% on smooth surfaces, the angular dependence increases up to 3 dB. This result supports the hypothesis that two distinct

scattering mechanisms observed across the two seasons are directly linked to incidence angle effects. The first is a persistent885

3–5 dB difference in σV V
0 between the two ascending tracks, recorded from mid-April to early June 2023 (see Fig. 8a). This

spread was not observed in the following year. Our LWC measurements indicate that the snowpack surface was wetter in 2023

than in 2024, likely due to the presence of ice lenses acting as drainage barriers for meltwater and favoring the formation of a

wetter layer above them (see Fig. 13 and Tab. 5). Consequently, and in line with the results in Fig. 14, the smoother and wetter

snow surface in 2023 led to a stronger angular dependence compared to 2024. Additionally, the angular dependence decreases890

with increasing surface roughness. The second observed feature is the sharp decrease in backscatter between consecutive

acquisitions of both ascending and descending tracks in 2024 — from June 15 to 22 and from June 19 to 26, respectively. Our

measurements indicate conditions of high snowpack saturation and surface roughness values equal to or exceeding 10 mm (see

Fig. 13 and Tab. 5). Consistent with the results shown in Fig. 14b,e, we interpret this decrease as the result of suncups formation

on a saturated snow surface. The enhanced surface roughness likely increased diffuse scattering and reduced the proportion of895

energy reflected back to the sensor, thereby explaining the observed backscatter decrease. These findings indicate that, despite

all the aforementioned challenges in deriving LWC from backscatter and vice versa, the multitemporal analysis of angular

dependence may carry valuable additional information. Unfortunately, further analysis in this direction was limited by the

reduced revisit frequency of S1 during the period of this study.

Ultimately, Fig. 14 suggests that with an estimate of the surface LWC from a detailed snow model and recorded values of900

S1 backscatter, it is in principle possible to give an estimate of the surface roughness. This would inform on two interesting

points. On the one hand, based on the position with respect to the curve tilt, it would be possible to have information about

the dominance of the volume versus surface scattering mechanism. A prevalence of volume scattering would mean that the

snowpack has not yet become a complete black body for C-band radar backscatter. On the other hand, the value of surface

roughness could be assimilated in physics-based snow models to estimate important metrics for the computation of turbulent905

heat fluxes, such as the aerodynamic roughness length (Lehning et al., 2011).

Although promising for future research, this paper comes with a number of limitations. LWC is a key variable for inter-

preting and reproducing S1 acquisitions using radiative transfer models. However, despite ongoing advancements, accurately

measuring LWC in the field, modelling it within physics-based snow models, and accounting for it into permittivity mod-

els remain significant challenges which need to be solved individually. The halved availability of satellite data acquisitions910

due to the failure of Sentinel-1B in the exact time span when this study was carried out hindered the possibility to obtain
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more information than those presented on the relationship between melting snowpack properties and the multitemporal SAR

backscatter. Finally, despite this study enhanced significantly the understanding of the interaction of SAR backscatter with wet

snow, these findings are likely valid for high-alpine regions, i.e. homogeneously covered by a rather high amount of snow, and

where surface roughness can develop before the snow cover disappears in patches. However, the launch of the Sentinel-1C915

satellite will shortly restore the mission’s full capabilities. This development will hopefully spark greater interest in the field,

driving research efforts to address the above mentioned limitations, explore scattering mechanisms in other environments than

the one explored in this study, and potentially establish a new role for radiative transfer modelling – specifically, to inform

physics-based snow models for hydrological applications.

6 Conclusions920

In this paper, we presented a unique dataset of wet snow scattering properties collected at a high vertical and temporal resolu-

tion over two snow seasons at the high-alpine field site of Weissfluhjoch, Davos, Switzerland. Using this dataset, we analyzed

the correlation between melting snow properties and multitemporal SAR backscatter from S1, and modelled the satellite sig-

nals using the radiative-transfer model SMRT. Our data show that the moistening and the ripening phase, being mostly related

to the presence of liquid water in the snowpack, are generally well identified using time series of multitemporal SAR backscat-925

ter from S1. The runoff onset, often associated with local minima in multitemporal SAR backscatter, is not detectable by the

satellite. With our measurements, we showed that these local minima result from a combination of surface wetting, which

reduces backscatter until the S1 signal saturates, and the development of surface roughness before the snow cover begins to

disappear in patches, leading to an increase in backscatter. Therefore, it is important to rethink how this information is used for

hydrological applications at high elevations and mid-latitudes, especially when counting on reduced satellite revisit times, like930

in this study. Then, we used our dataset as input to the SMRT model to reproduce the S1 backscatter signal. The simulations

generally showed a negative bias with respect to satellite acquisitions, with the most significant drivers being LWC in earlier

stages of the melting process and the surface roughness later on. This mismatch led to the insight that, rather than melting

phases, the multitemporal S1 backscatter time series reveal two dominant scattering regimes: one dominated by LWC and the

other by surface roughness. These two regimes also represent the main sources of uncertainty in electromagnetic modelling935

of melting snowpacks. These challenges include the spatial and temporal variability of LWC between field measurements and

satellite overpasses, inaccuracies in surface roughness estimation, and limitations in the permittivity and roughness models

applicable to wet snow in the C-band. Despite these uncertainties, radiative transfer modelling driven by ground measurements

allowed in-depth physical interpretation of scattering mechanisms at different stages. Specifically, the unprecedented time se-

ries of measured surface roughness parameters allowed exploring and defining the scattering effect of roughness over wetting940

snowpacks. Our findings suggest that accurately quantifying surface roughness and/or improving the transfer function in IEM

modelling could be as critical as developing new, rigorous permittivity formulations to enhance S1 retrievals and the under-

standing of scattering mechanisms on wet snow at these wavelengths. With improved process understanding, the imminent

restoration of the S1 mission full capabilities, and further validation efforts in radiative transfer sub-modules, the use of C-band
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satellite radar signals for snow hydrology applications could proceed further, with radiative transfer models possibly informing945

physics-based snow models.
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Figure A1. Empirical logarithmic relationship fitted on field data between the surface roughness parameters of RMSH and CL, based on a

total of N=75 values over the measurement campaigns of 2023 (yellow) and 2024 (light blue).
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