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Abstract. The spatiotemporal evolution of snow melt is fundamental for water resources management and risk mitigation

in mountain catchments. Synthetic Aperture Radar (SAR) images acquired by satellite systems such as Sentinel-1 (S1) are

promising for monitoring wet snow due to their high sensitivity to liquid water content (LWC) and ability to provide spatially

distributed data at a high temporal resolutions
::::::::
resolution. While recent studies have successfully linked

:::::
linked

::::::::::::
multitemporal

S1 backscattering to various phasesof snowpack melting
:::::
snow

::::
melt

::::::
phases, a correlation with detailed snowpack properties is5

still missing. To address this, we collected the first dataset of detailed
:::::::::::::
comprehensive wet snow properties tailored for SAR

applications over two consecutive snow seasons at the Weissfluhjoch field site in
::::
near

::::::
Davos, Switzerland. First, our dataset

enabled the validation of previous methods relying on multitemporal SAR
::
we

:::::
tested

:::::::
previous

::::::::
methods

:::::
which

:::
use

::::::::::::
multitemporal

::
S1

:
backscattering to characterize melting snowpacks and physically linked the

::::::
phases,

::::
and

:::::::::::
demonstrated

::::
that

:::
the

::::::::
observed

::::::::::
monotonous

:
increase in backscattering following the local minimum to the evolution

:
is

::::
due

::
to

:::
the

:::::::::::
development

:
of surface10

roughness. Then, the dataset was used
::
we

::::
used

:::
the

:::::::::
measured

:::::
snow

:::::::::
properties as input to the Snow Microwave Radiative

Transfer (SMRT) model to reproduce the S1 backscattering signal
:::::
signals. Our simulations showed a general negative bias

compared to the satellite data, with the most significant drivers being LWC
:::
that

:::::
rather

::::
than

:::::::
melting

:::::::
phases,

::::
time

:::::
series

:::
of

::::::::::::
backscattering

:::::
rather

:::::::
identify

::::::
regimes

:::::::::
dominated

:::
by

:::::
either

:::::
LWC,

:
early in the melt seasonand the surface roughness

::::::
season,

::
or

::::::
surface

:::::::::
roughness, later on. The results also highlight several key challenges for reconciling S1 signals with radiative transfer15

simulations of wet snow: (i) the discrepancy in spatiotemporal variability of LWC as seen by the satellite and validation

measurements, (ii) the lack of fully validated permittivity, microstructure and roughness models for wet snow in the C-band,

(iii) the difficulty of capturing wet snow features potentially generating stronger scattering effects on a large scale ,
:
–
:
such as

internal snowpack structures, soil features in case of low LWC, and surface roughness ,
:
–
:
which are not necessarily captured

by point-wise measurements.20
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1 Introduction

Seasonal snowpack in mountain catchments is one of the most important water resources, as it accumulates and stores water

during winter and releases it consistently in the form of runoff during the melting period (Viviroli and Weingartner, 2004). In

fact, discharge in Alpine streams
::::
alpine

::::::::
streams,

::::::::
discharge is largely dominated by snow melt from May to July and more than

one sixth of the world’s population relies on meltwater released from higher altitudes for drinking water, crop irrigation and25

hydropower production (Beniston et al., 2018). However, this melting snow can also cause wet- and glide-snow avalanches

(Bellaire et al., 2017; Fromm et al., 2018), which pose significant threats to human life and infrastructures. Additionally, rain-

on-snow events on snowpacks with high liquid water content
::::::
already

:::
wet

:::::::::
snowpacks

:
are linked to increased runoff and shorter

time lags between the onset of the event
:::::::::::
precipitation

::::
onset

:
and the resulting runoff (Würzer et al., 2016). These events can

have catastrophic consequences and their occurrence is supposed to increase as a first response to
:
in
::::::::

response
::
to

::
a sustained30

warming (Beniston and Stoffel, 2016). Therefore, information about the spatiotemporal evolution of snow melt is beneficial

for
:::
both

:
the management of water resources and for risk mitigation.

Identifying wet snow is complex both when using manual measurements, automatic instruments and physically based

:::::::::::
physics-based

:
snow models. Datasets of manual measurements of snow water equivalent (SWE) and liquid water content

(LWC
:::::::
hereafter) at high temporal resolution are generally rare due to the required amount of work and resources to collect35

them
::::
time,

:::::
effort

::::
and

::::::::
resources

:::::::
required

:::
for

:::::
their

::::::::
collection. There have been considerable advances in the development of

technologies that exploit
::::::::::
technologies

::::
that

:::
use

:
the dielectric properties of snow in the microwave range to estimate LWC in a

non-destructive way (Schmid et al., 2014; Koch et al., 2014). However, the application of these methods is limited to one single

point without the possibility to capture the spatial variability of the processes. Additionally, their installation and maintenance

is often complicated and expensive, and the extraction of the physical parameters is usually hindered by noise. Physically40

based
:::::::::::
physics-based

:
layered snow models like the SNOWPACK-Alpine3D model chain (Bartelt and Lehning, 2002; Lehning

et al., 2006) or GEOtop (Endrizzi et al., 2014) are used to overcome these challenges, as they can simulate LWC and SWE at

high spatial and temporal resolutions only based on meteorological forcings. However, meteorological forcings also represent

a major source of uncertainty -
:
–
:
especially when needed at high spatial resolution -

:
–
:
affecting the accuracy of the results

(Raleigh et al., 2015), together with the uncertainty .
:::::
This

::::
adds

::
up

::
to
:::
the

:::::::::::
uncertainties

:
related to the amount and type of used45

parametrizations
:::::::::::::
parametrizations

::::
used

:
(Günther et al., 2019).

In this context, a valuable opportunity to identify wet snow is offered by synthetic aperture radar (SAR
:::::::
hereafter) systems.

SAR measurements are highly sensitive to the free liquid water contained in wet snow (Nagler and Rott, 2000). At certain fre-

quencies, the increase in liquid water generates high dielectric losses and increased absorption coefficients (Denoth et al., 1984;

Sihvola and Tiuri, 1986; Mätzler, 1987; Ulaby et al., 2014). Therefore, the radar backscattering
:::::::::
backscatter drops to lower in-50

tensities with respect to winter averages (Ulaby et al., 1987, 2014; Nagler and Rott, 2000; Nagler et al., 2016; Lin et al., 2016).

Basing on this principle, multitemporal SAR data
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ulaby et al., 1987; Strozzi et al., 1997; Strozzi and Matzler, 1998; Nagler and Rott, 2000; Ulaby et al., 2014; Nagler et al., 2016; Lin et al., 2016)

:
.
::::
This

:::::
raised

::::
the

:::::::
question

:::
of

:::::::
whether

::::::::
different

:::::
types

::
of

:::::
snow

:::::
cover

::::::
could

::
be

::::::::
classified

::::::
based

:::
on

::::
their

::::::::
response

::
to

::::::
active

:::::::::
microwave

:::::::
signals.

::::
This

::::::::
challenge

::::
has

:::::
been

::::::::
addressed

:::::
with

::::::
various

::::::::::
approaches

::::
over

::::
the

:::::
years.

::::::::
Between

:::::
1993

:::
and

::::::
1995,
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:
at
::::

the
::::
field

:::
site

:::
of

::::::::::::
Weissfluhjoch

::
in

:::
the

:::::
Swiss

:::::
Alps,

::::::::::::::::::::::::::::::::::::::::
Strozzi et al. (1997); Strozzi and Matzler (1998)

::::::::
conducted

:::::::::::
tower-based55

::::::
C-band

::::::::::
radiometric

:::::::::::
measurements

::
at
:::
all

::::::::::
polarizations

::::::
across

:
a
:::::
wide

::::
range

:::
of

::::::::
incidence

::::::
angles.

:::::::::::::
Simultaneously,

::::
they

::::::
carried

:::
out

:::::::
monthly

::::::::::::
measurements

::
of

::::
snow

:::::::
physical

:::::::::
properties.

:::::
These

::::::::::::
measurements

:
were used to develop algorithms for the generation of

wet-snow maps (Nagler and Rott, 2000; Nagler et al., 2016). There have been further efforts in developing algorithms to derive

LWC using C-band full-polarimetric SAR images (Shi et al., 1993; Shi and Dozier, 1995). However, Strozzi et al. (1997); Kendra et al. (1998)

expressed their doubts about the theoretical background and the
::::::
classify

:::
the

::::::::
observed

::::
snow

::::::
covers

:::
into

:::::::::
categories

::::::
ranging

:::::
from60

:::
dry

:::::::::
snowpacks,

:::
to

:::
thin

:::::
moist

::::::
layers

::::::::
overlying

:::
dry

:::::
snow,

::
to
::::

wet
:::::::::
snowpacks

::::
with

::::::
either

::::::
smooth

::
or

::::::
rough

:::::::
surfaces.

:::::::
Relying

:::
on

:
a
::::::::::
tower-based

::::::::::
radiometer,

:::
the

::::::::::
experiments

:::::
were

:::::
highly

::::::::::
controlled,

:::::::
allowing

:::::::
detailed

:::::::::::
investigation

::
of

:::::
radar

::::::::
responses

::
to
:::::

each

::::
snow

:::::::::
condition.

:::::::::::
Nevertheless,

:::::::::
significant

:::::::
sources

::
of

::::::::::
uncertainty

::::::::
remained

:
–
:::::::::
especially

:::
the

::::::::
influence

::
of

::::::
surface

:::::::::
roughness

:::
on

:::
wet

:::::
snow

:::::::
surfaces,

::::::
which

:::
was

:::
not

::::::::::::
quantitatively

::::::::
measured,

::::
but

::::
only

::::::::::
qualitatively

::::::::
assessed.

:::::
These

:::::::
detailed

:::::::
studies,

:::::
along

::::
with

::
the

:::::
work

::
of

:::::::::::::::::
Kendra et al. (1998),

::::::
raised

::::::::
questions

:::::
about

:::::::::
theoretical

::::::::::
foundations

:::
and

:
systematic reliability of these algorithms65

. With tower-based experiments on wet snow, they found that the backscattering behavior used for the retrieval algorithms

might
:::::
LWC

:::::::
retrieval

:::::::::
algorithms

:::::
based

:::
on

::::::
C-band

::::::::::::::
full-polarimetric

:::::
SAR

:::::::
imagery,

::::::
which

::::
had

::::
been

:::::::::
developed

::::::
shortly

::::::
before

:::::::::::::::::::::::::::::::
(Shi et al., 1993; Shi and Dozier, 1995)

:
.
::
In

:::::::::
particular,

:::
the

:::::::::
scattering

::::::::::
mechanisms

::::::::
assumed

::
in

:::::
these

::::::::
retrievals

::::
may

:
have been

biased by a combination of conditions leading to a strong prevalence of surface scattering mechanisms
:::
that

:::::::
strongly

:::::::
favored

::::::
surface

:::::::::
scattering.

::::::::
Extending

::::
the

::::
prior

:::::::::
knowledge

:::
to

:
a
::::::
spatial

:::
and

::::::::::::
multitemporal

:::::::
context,

:::::::::::::::::::::
(Nagler and Rott, 2000)

::::::::
developed70

::
an

::::::::
algorithm

:::::
based

:::
on

::::::::::
repeat-pass

::::
SAR

::::::
images

:::
to

::::
map

::::::::
wet-snow

::
in

:::::::::::
mountainous

:::::
areas,

::::::::
defining

:
a
::::::::::
backscatter

::::
drop

::
of

::
3

:::
dB

::
to

:::::::::
distinguish

::::
wet

:::::
snow

::::
from

:::::
other

::::::::
surfaces.

:::::::::::
Comparisons

::::
with

:::::
snow

:::::
maps

:::::
from

:::::::
different

:::::::
sources

:::::::
showed

::::::::
generally

:::::
good

::::::::
agreement

::::::
above

::
the

:::::
snow

::::
line,

:::
but

:::::::::
consistent

:::::
biases

::
in

:::::
areas

::::
with

:::::::::
fragmented

:::::
snow

:::::
cover.

After a progress freeze due to the lack
::::::
scarcity

:
of SAR data in the past and simultaneous ground truth measurements, there

was a renewed
::::
field

:::::::::::::
measurements,

:::
the

:::::::
research interest in the use of radar waves to track snow melting processes

::::
topic

::::
was75

:::::::
renewed since the launch of the Sentinel-1 (S1 hereafter) joint mission of the European Space Agency (ESA) and the European

Commission in 2014. At Alpine
:::::
alpine latitudes, S1 acquires C-band SAR imagery in the early morning and late afternoon,

regardless of the weather, with a revisit time of 6 days. The SAR imagery is available free of charge. Marin et al. (2020) used

these images for the first time to develop a correlation between the multitemporal S1 SAR backscattering and the snowmelt

:::::::::
backscatter

:::
and

:::
the

:::::
snow

::::
melt dynamics. Over 5 different Alpine

:::::
alpine sites, the authors have found that the multitemporal S180

SAR acquisitions allow the detection of the melting phases, i.e. moistening, ripening and runoff (Dingman, 2015) with a good

agreement with in-situ observations and layered, physically-based
:::::::::::
physics-based snow models. In particular, the backscattering

:::::::::
backscatter

:
decreased as soon as liquid water appeared in the snowpack and increased progressively and simultaneously with

the runoff release. Deriving and applying a set of identification rules, the authors could define the melting phases for the test

sites with relatively small lag errors with respect to the revisit time of S1.
:::::::::::
Consequently,

:::::
local

:::::::
minima

::
in

:::
S1

::::::::::::
multitemporal85

:::::::::
backscatter

::::
time

:::::
series

::::
and

::::
sharp

::::::::
increases

::::::::
thereafter

:::::
were

::::::::
associated

:::::
with

::::::::
snowpack

:::::::::
saturation,

:::
the

:::::
onset

::
of

::::::
runoff,

:::
and

:::::
snow

::::::
ablation

:::::::::::::::::::::::::::::::::::::
(Darychuk et al., 2023; Gagliano et al., 2023)

:
.

This approach holds
:::::
These

::::::::::
approaches

::::
hold

:
great potential for monitoring the temporal evolution of

::
the

:
melting dynam-

ics, especially
:::::::::
particularly

:
over wide and scarcely instrumented areas. However, in order to fully understand the potential
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of
::
to

::::
fully

::::
use

:
the multitemporal information made available from

:::::::
provided

::
by

:
S1 for snowmelt

::::
snow

::::
melt

:
monitoring, a90

deeper understanding of the scattering mechanisms of melting snow is needed. In particular
:::::::::
underlying

::::::::
scattering

:::::::::::
mechanisms

:
–
:::::::::
especially

:::
the

::::
role

::
of

::::::
surface

:::::::::
roughness

:::::::::::::::::
(Marin et al., 2020)

:
–
::
is

::::
still

::::::::
required.

::::::::::
Specifically, knowing the time window in

which different scattering effects dominate and under which conditions the the C-band radar backscattering
:::::::::
backscatter is

fully absorbed by the melting snowpack would enable to extract as much information as possible from S1 multitemporal

backscattering. Up-to-date
::::
time

::::::
series.

:::
To

::::
date, the only effort in this direction has been done by Brangers et al. (2024) by95

means of
::::
was

:::::
made

::
by

:::::::::::::::::::
Brangers et al. (2024)

:::::
using tower-based C-band measurements, which, however, lack .

:::::::::
However,

:::
this

:::::
study

:::::
lacks

:::::::::::::::::::::
high-temporal-resolution ground-truth validation at high temporal resolution with measured snow proper-

ties. Additionally, the snowpack melt-out has been often associated with sharp increases in backscattering following the

local minima (Marin et al., 2020; Darychuk et al., 2023; Gagliano et al., 2023). However, the underlying physical processes

that determine this trend, among which the effect of surface roughness (Marin et al., 2020), remain to be investigated
:::::::::
Moreover,100

::::::::::
comparisons

::::
with

:::
S1

::::
were

::::::::
hindered

::
by

::::::
several

:::::::
factors,

::::::::
including

:::::
sensor

:::::::::
calibration

::::::
issues

:::
and

:::
the

:::::
small

:::::::
footprint

::::
size

:
–
::::::
which

:::::
likely

:::::::::
introduced

::::::
speckle

:::::
noise

:::
and

:::::
failed

::::::::
capturing

::::::::::
larger-scale

::::::::
scattering

::::::::
processes.

The main limitation that has hindered
::::::
Overall,

:::
the

:::::
main

:::::::::
limitation

::
to

:::::::::
improving

:
the understanding of SAR mechanisms

::
the

::::::::::
interaction

::
of

:::
S1

:::::::::
backscatter

::::::
signals

:::::
with

::::::
melting

:::::
snow

:::::
cover

:
is the lack of reference ground data, especially during the

melting season. Over Alpine
:
.
::::
Over

::::::
alpine snowpacks, it is not uncommon

:::::::
common

:
to observe the formation of ice layers105

either at the surface (Quéno et al., 2018) or at deeper snowpack depths (Pfeffer and Humphrey, 1998). Moreover, in temperate

Alpine
:::::
alpine

:
areas characterized by high snow accumulation and intense solar radiation, suncups may form spontaneously

on the snow surface during the ablation season (Post and LaChapelle, 2000; Mitchell and Tiedje, 2010), increasing the sur-

face roughness significantly (Fassnacht et al., 2009). These phenomena are known to impact the radar response to wet snow

(Kendra et al., 1998; Yueh et al., 2009; Nagler and Rott, 2000; Shi and Dozier, 1995)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Shi and Dozier, 1995; Strozzi and Matzler, 1998; Kendra et al., 1998; Nagler and Rott, 2000; Yueh et al., 2009)110

.

A promising path to explore the interaction between C-band active microwaves and scattering properties of wet snow surfaces

is through
:::::::
However,

:::::::::::::
high-resolution

:::
and

:::::::
detailed

:::::
snow

::::::::::::
measurements

:::::
alone

:::
are

:::::::::
insufficient

:::
to

::::::
address

::::
this

:::::
issue.

:
It
::
is
:::::::
equally

::::::::
important

::
to

::::
rely

:::
on

:
a
:::::::
method

::
to

::::::::
interpret

::::
them

:::::
from

::
a

::::
radar

:::::::::::
perspective.

::
A

:::::::::
promising

:::
and

:::::::::::
increasingly

:::::::
adopted

::::::::
approach

:::::::
involves

:::
the

:::
use

::
of state-of-the-art radiative transfer (RT

:::::::
hereafter) models. Picard et al. (2018) developed the Snow Microwave115

Radiative Transfer (SMRT) model, a versatile model that can be used in active and passive mode to compute backscattering

:::::::::
backscatter and brightness temperature from multilayered media such as snowpacks or ice sheets overlying reflective surfaces

:
,

e.g. ground, ice, or water. SMRT responds to the need of a modular and flexible approach to unify and compare the wide range

of pre-existing representations of microstructure, electromagnetic theories, soil models and permittivity formulations. While

wet snow holds significant importance for various applications, both SMRT and other similar models have primarily been
::::
were120

:::::::
primarily

:
developed and validated under

:::
for dry snow conditions in Arctic and Antarctic snowpacks, or ice sheets (Proksch

et al., 2015; Rott et al., 2021; Soriot et al., 2022; Meloche et al., 2022; Husman et al., 2023). Both the vertical structure and the

surface of these types of snowpack are often less complex than that of a seasonal Alpine
:::::
alpine snowpack. To date, the above

mentioned ensemble of complex melting snowpack processes has been scarcely investigated by means of radiative transfer
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models due to the lack of ground reference data (Shi and Dozier, 1995; Strozzi et al., 1997; Kendra et al., 1998; Nagler and125

Rott, 2000; Magagi and Bernier, 2003; Lodigiani et al., 2025). Murfitt et al. (2024) recently used SMRT to explore, for the first

time, the temporal evolution of the interaction between wet snow and radar waves in a study on lake ice melt. However, the

radiative transfer modeling
::::::::
modelling

:
of wet snow still lacks dedicated effort and validation.

This work aims at collecting
:::
The

:::::::
objective

::
of
::::
this

::::
work

::
is

::
to

::::::
collect the first ground reference dataset on melting snow

::::::
tailored

for SAR applications and to verify the ability of a current, state-of-the-art RT model (SMRT ) to reproduce the backscattering130

signal
:::
use

::
it

:::::::
together

::::
with

::::::
SMRT

::
to

:::::
better

:::::::::
understand

:::
the

::::
key

::::::::
processes

::::::::
governing

:::
the

::::::::::
backscatter

:::::::::
signatures recorded by S1.

Previously, only Lund et al. (2022) carried out an a
::::::::

similarly
:
extensive snow pit campaign in coordination with S1 passages.

Their work facilitated
:::::
While

:::
this

:::::
study

::::::
helped

:::::::
advance

:
the interpretation of S1 backscattering response

:::::::::
backscatter

:::::::::
responses

to diurnal snowpack features. However
::::::::
variations, important scattering properties such as the optical diameter and the surface

roughness were not sampled and their effect on the backscattering was not explored through radiative transfer modeling. In this135

::::::::
measured.

:::
As

:
a
::::::
result,

:::::::::
interpreting

:::::
these

::::::::::::
measurements

::::
from

:::
the

:::::
radar

:::::::::
perspective

:
–
::::
and

:::::::::::
consequently

:::::::::
comparing

::::
them

::::
with

:::
S1

::::::::::
acquisitions

:
–
::::
was

:::
not

::::::::
possible.

::
In

:::
our

:
work, we focus on the co-polarized vertical backscattering only, due to its high signal

to noise ratio for wet snow (Naderpour et al., 2022) and to the fact that, due to the partial implementation of some of the key

processes, it is not possible to simulate accurate cross-polarized backscattering responses with the current version of SMRT. To

our knowledge, this is the first attempt to use SMRT and ground measurements
:::::::
translate

::::::
ground

::::::::::::
measurements

::
–
:
specifically140

designed for RT modeling –
::::::::
modelling,

:
including wetness and roughness – to reproduce

:::
into

:::::
radar

::::::
signals

:::::
using

::::::
SMRT

:::
to

::::::::
reproduce

::::
and

:::::::
interpret

:
S1 backscattering

:::::::::
acquisitions

:
over a wet, multilayered Alpine

:::::
alpine

:
snowpack. This research will

allow us to derive several important information on RT modelling of wet snow, namely the influence of the spatial and temporal

variability of liquid water content
:::::::
provides

::::::::
valuable

::::::
insights

:::
in

:::
two

:::::
main

:::::
areas.

:::::
First,

::
it
::::::::
advances

:::
the

::::::::::::
understanding

:::
of

:::
the

:::::::::
interaction

:::::::
between

::
S1

:::::
radar

:::::::::
backscatter

::::
and

:::
wet

:::::
snow.

::::::::::
Specifically,

::
it
::::::
reveals

:::
the

::::::
effects

::
of

::::::::::::
spatiotemporal

:::::::::
variability

::
of

:::::
LWC145

within the S1 cell
:::::::
footprint occurring between satellite acquisitions and in situ measurements, the influence

:::
and

:::::::::::
measurement

::::::::::
acquisitions.

::
It

:::
also

::::::::
describes

:::
the

::::::
impact

:
of surface roughness , the lack of fully validated models of permittivity and roughness

for wet snow at the C-band and the difficulty of
::
on

::::::::::
backscatter

::::::::
signatures

::::
and

:::::::::
highlights

:::::::::
challenges

::
in

:
capturing key wet

snow conditions generating scattering , namely
:::
that

:::::
likely

:::::::
generate

::::::::
scattering

::
at
:::::::::::
wider-scales.

:::::
These

:::::::
include internal snowpack

structures, large-scale surface roughness,
:::
and

:
interactions with the wet soil interface when the snowpack is only slightly wet.150

::::::
Second,

:::
the

:::::
study

:::::::::
addresses

:::
the

:::
RT

::::::::
modelling

::
of

::::::::
melting,

::::::
layered

::::::::::
snowpacks,

::::::::::
highlighting

:::
the

::::::
current

::::
lack

:::
of

::::
fully

::::::::
validated

:::::::::
permittivity

::::
and

:::::::::
roughness

::::::
models

:::
for

::::
wet

:::::
snow

::
at

:::::::
C-band

::::::::::
frequencies.

:
With ground reference data and adequate process

understanding and modeling
::::::::
modelling, RT models like SMRT may evolve in tools to interpret and translate the information

contained in multitemporal SAR backscattering signals
:::::::::
backscatter

:
into valuable input for snow modeling

:::::::::::::::
snow-hydrological

::::::::
modelling.155
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Figure 1. Location of the Weissfluhjoch field site with respect to Swiss national borders (a) and the area
:::
town

:
of Davos (b). The

::::::::
designated

area dedicated to the
::
for

:
snow profiles is shown in (c)

::::
under

::::::::::::
semi-snow-free

::::::::
conditions

::::::
(picture

::::
taken

::
in

:::
Sep

:::::
2024,

:::::
camera

:::::::
oriented

::::::
towards

::
the

::::::::
north-east), delimited

::::::
enclosed by the

:
a flagged fence, camera facing north-east. Only

:
It

:
is
:::::
worth

:::::
noting

:::
that

::::
only a fraction of the length

:::::
portion

:
of the

:::
this fenced area was effectively used for snow profiles. Picture (d) shows the typical snowpit measurement setting

::::
setup.

2 Campaign overview

This work builds upon a dataset composed of 85 snow pits collected within a measurement campaign which took place over

the two consecutive snow seasons of
:::::
during

::
a

:::::::::
two-season

::::::::
campaign

::
(2022-2023 and 2023-2024

:
) at the high-altitude field site

of Weissfluhjoch Versuchsfeld (WFJ)
:::
field

::::
site, located in the Rhaetian Alps in the Davosarea, canton of Grisons

::::
near

:::::
Davos,

Switzerland. The measurement field lies at an altitude of 2536 m a.s.l. on a relatively flat area embedded in a valley facing160

south-east
:::::
facing

:::::
valley. The site is partially wind sheltered from a small hill situated on the south-east , however

:
–
::::::::
however, the

dominant wind blows from north-west,
:
in addition to katabatic wind. For this measurement campaign, we secured a protected

field covering approximately the same
:::
two

::::
times

::::
the footprint area of S1, i.e. 20 × 20 mnext to the officially delimited field.

However, only a fraction
::::::
portion of this field was effectively used for measurements. This designated area ,

:::::
while

:::
the

:::::::::
remaining

:::
area

::::
was

::::::::::
consistently

:::
left

::::::::::
undisturbed.

::::
The

:::::::
secured

::::
field has a light slope value between 2 and 7%. The flatness of the terrain is165

fundamental for the study of the interaction between wet snow and the C-band co-polarized vertical backscattering
:::::::::
backscatter

signal (σV V
0 hereafter). On the one hand, σV V

0 is less sensitive to changes in snow wetness in areas of steep topographies
::
at

:::
low

::::::::
incidence

::::::
angles (Nagler et al., 2016); on the other hand, steep slopes cause

::
on

::::
steep

::::::
slopes,

:
the liquid water to redistribute

::::::::::
redistributes laterally, at least partially (Wever et al., 2016). The field site of WFJ is equipped with advanced meteorological

sensors recording meteorological forcings at sub-hourly resolutions, and moreover, with first snow observations dating back170

to 1936, it holds one of the longest recorded time series of snow measurements for a high-altitude research station (Marty

and Meister, 2012). The site is ideal for intensive measurement campaigns, as it is easily accessible, protected from avalanche

danger and the two huts provide shelter, storage space for instruments, power and internet connection.

The objective of the measurement campaign was to build a dataset that would provide
::
of ground-truth reference for the

interpretation of S1 σV V
0 to monitor snow melt processes. Therefore, the campaign

:::::::::::
measurements

:
targeted the main scattering175
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properties of snow: temperature, density, specific surface area (SSA), liquid water content (LWC) and surface roughness. These

properties needed to be measured at a high vertical and temporal resolution to track the progression of the wetting front within

the snowpack, and possibly in concomitance with S1 acquisitions. Additionally, we measured snow water equivalent (SWE), a

key variable for snow melt monitoring. The resulting dataset is a time series of manually measured snow profiles describing the

evolution of snow scattering properties at an unprecedented vertical and temporal resolution
::::::::
resolutions. The dataset consists180

of 38 snow profiles for the season of 2022-2023 (starting in February and ending in June) and 47 for the season of 2023-2024

(starting in November and ending in July). In dry snow conditions, measurements were carried out once per week. On the

first season, once the snowpack reached the full isothermal state, measurements have been carried out regularly every second

working day for a total of three times per week. On the following season, the regularity of the measurements was partially

given up in favour
::::
favor of a better synchronization with S1 acquisitions. To get the fullest possible picture to interpret the melt185

dynamics, manual measurements are accompanied by automatically recorded time series of runoff and SWE.

2.1 Manual measurements

2.1.1 Temperature

Snow temperature serves to monitor the progression of the snowpack to the (partial) isothermal state, which allows the presence

of liquid water. Profiles of snow temperature were sampled from the surface to the bottom with a vertical resolution of 10 cm190

on snow season 2022-2023 and of 5 cm on snow season 2023-2024 using a batch of HI98501 Checktemp from Hanna (Han-

naInstrumentsInc.). According to the instrument specifications, the uncertainty range is ± 0.2◦C. Each temperature reading

was marked down after waiting an adequate time for measurement stabilization.

2.1.2 Density

::
In

:::
dry

:::::
snow

:::::::::
conditions,

:::::
snow

:::::::
density

:::::::
controls

:::
(i)

:::
the

:::::::::
probability

:::
of

::::::::
scattering

::::::
events,

:::
as

::::::
denser

:::::
snow

:::
has

:::::
more

:::::
grains

::::
per195

:::
unit

:::::::
volume

:::
and

:::
(ii)

:::
the

::::
real

:::
part

:::
of

:::
the

:::::::
effective

::::::::::
permittivity

::::
(see

:::
the

::::::::
following

::::
Sec.

::::
3.2),

::::::
which

:::::::
increases

:::::
with

:::
the

::::::::
increased

::::::
fraction

::
of

:::
ice

:::::::
relative

::
to

:::
air,

:::::
typical

:::
of

:::::
denser

:::::
snow.

:
Profiles of snow density were sampled from the surface to the bottom with

a vertical resolution of 3 cm using a box density cutter and a digital scale. The box cutter used for this campaign has a volume

of 100 cm3. The uncertainty range of this instrument is between 5 and 10% with the main uncertainty sources being caused by

::::::
sources

:::::
being

:
the presence of ice layers, the compaction of light snow while collecting the sample,

:
or losing fractions of the200

sample
:
it
:
in conditions of fragile snow such as facets or depth hoar (Conger and McClung, 2009; Proksch et al., 2016).

2.1.3 Specific Surface Area

Profiles of snow
:::::
Snow specific surface area (SSA)

::::::::
expresses

:::
the

::::::
surface

::::
area

::
of

:::::
snow

:::::
grains

:::
per

::::
unit

:::::
mass,

:::
and

::
is

::::::
related

::
to

:::
the

::::
grain

::::
size

:::
and

::::::::
structure.

:::::::
Smaller

:::::
grains

::::
give

:::::
higher

::::::
values

::
of

::::
SSA

::
–

:::::::
meaning

:::
that

:::
the

:::::::
number

::
of

::::::::
scattering

::::::
centers

::
is
:::::::::
increased,

:::
but

::
the

:::::
effect

:::
of

::::
each

:::
one

::
is

:::::::::
weakened.

:::::::::
Therefore,

:::::
when

:::::
grains

:::
are

:::
too

:::::
small,

:::
the

::::
total

::::::::::
backscatter

:::
can

::::::::
decrease.

::::::
Larger

::::::
grains,205

::
on

:::
the

::::
other

:::::
hand,

::::
give

:::::
lower

:::::
values

:::
of

::::
SSA

:
–
:::::::
meaning

::::
that

::::::::
scatterers

:::
are

:::::
fewer

:::
but

:::::::
stronger

:::
and

::::
more

::::::::
efficient.

:::::::::
Therefore,

::::
with
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::::::::
enhanced

::::::
volume

:::::::::
scattering,

:::
the

::::::
overall

::::::::::
backscatter

::::::::
increases.

:::::::
Profiles

::
of

:::::
SSA were sampled from the surface to the bottom

with a vertical resolution of 4 cm using the InfraSnow sensor from FPGA (FPGA Company; Wolfsperger et al., 2022). This

non-destructive method builds upon the principle of diffuse near-infrared reflectance measurements using a compact integrating

sphere setup to derive optical equivalent grain diameter (OED), and therefore SSA (Gergely et al., 2014). To compute OED,210

snow density is required as an input parameter and for this we use the measured density profile. With a relative error of

RMSE =15% (Wolfsperger et al., 2022) when compared to µ-CT, this instrument seems to be slightly less accurate than

others commonly used such as the IceCube (Zuanon, 2013), however, this bias is more pronounced for high values of SSA

typical of dry snow, which is not the main object of our study. Moreover, the use of the InfraSnow is especially practical and

portable for field applications.215

2.1.4 Liquid Water Content

Profiles of snow
:::
The

:::::::::
formation

::
of

:
liquid water content (LWC)

::
in

:::
the

::::::::
snowpack

::::::::
enhances

:::
its

::::::::
dielectric

::::::::
constant,

::::::
leading

:::
to

:::::
higher

:::::::::
absorption

:::::
losses

::::
and

:::::::::
significant

::::::::
reduction

::
in

:::::
radar

:::::::::
penetration

::::::
depth.

:::::
These

:::::::
concepts

::::
will

:::
be

::::::::
addressed

::
in

:::::
more

:::::
detail

::
in

:::
Sec.

::::
3.2.

::::::
Profiles

:::
of

::::
LWC

:
were sampled from the surface to the bottom with a vertical resolution of 2, 5 or 10 cm, depending

on the method. We used dielectric sensors coupled with melting calorimetry to corroborate measurements in conditions of220

high LWC at later stages of the melting process. To our knowledge, this is the first time series of liquid water content
:::::
LWC

snow profiles measured at such high vertical and temporal resolution. On the first campaign year, we used the Denoth capacitive

sensor (Denoth, 1994) ("Denothmeter" hereafter). It consists of a flat capacitance probe with an estimated measurement surface

of 176 cm2 (Techel and Pielmeier, 2011). The probe operates at a frequency of 20 MHz and measures the real part of the

permittivity of snow, and a separate measurement of density is required to obtain the imaginary part (Denoth et al., 1984;225

Denoth, 1989) – here, similarly than for SSA, we used the measured density profile. The Denothmeter has been widely used in

field studies to monitor the evolution of snowpack wetness (Fierz and Föhn, 1994; Kattelmann and Dozier, 1999; Techel and

Pielmeier, 2011), alone or in comparison with other techniques, e.g. in Koch et al. (2014); Wolfsperger et al. (2023); Barella

et al. (2024). On the second campaign year, we adopted the new capacitive snow sensor (NCS hereafter) developed at the

Institute for Snow and Avalanche Research SLF (Wolfsperger et al., 2023) and produced in batch series from FPGA company.230

The use of the Denothmeter was discontinued because it is not commercially available, and only two units were available to

us, risking measurement continuity if damaged during intensive use. The NCS works in the same way as the Denothmeter,

operates at the same frequency and measures over a slightly larger surface of 202 cm2. The NCS was compared against the

Denothmeter in both field and lab
::::::::
laboratory settings and the agreement was generally good, however, in some

::::::
isolated

:
cases

of very wet layers(Fierz, 2009), the measured permittivity tended to deviate towards higher values (Wolfsperger et al., 2023). A235

good element of consistency is that the comparison between the NCS and the
::::
NCS

::::
and Denothmeter was carried out within this

campaign, in the snow season 2022-2023. The absolute error associated with dielectric measurements was estimated around

1% in volume (Sihvola and Tiuri, 1986; Fierz and Föhn, 1994). To our knowledge, a systematic study on the errors associated

with the Denothmeter was never carried out. However, similar studies are available for the Finnish snow fork (Sihvola and

Tiuri, 1986), which directly measures both real and imaginary parts of snow permittivity. The error associated to the snow fork240
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in measuring LWC is between ±0.5% (Sihvola and Tiuri, 1986) and ±0.3% (Moldestad, 2005). (Techel and Pielmeier, 2011)

used both the Denothmeter and the Snow Fork in their study, reporting differences of around 1% between the two instruments.

Additional uncertainties for dielectric measurements derive from interference with solar radiation near the surface (Lundberg,

2008), which we tried to minimize throughout the campaign.

Because dielectric devices may lose accuracy for high LWC values (Perla and Banner, 1988; Techel and Pielmeier, 2011),245

for both snow seasons, in conditions of ripe snow, measurements with Denothmeter/NCS
::::::::::::
measurements were backed up with

melting calorimetry following the revised field protocol recently described in Barella et al. (2024) and partially carried out

within the same measurement campaign described here. This field protocol is tailored to reduce the higher uncertainty ranges

previously associated to melting calorimetry (Kawashima et al., 1998; Kinar and Pomeroy, 2015; Avanzi et al., 2016). It

proposes a revised formulation of the calorimetric uncertainty that incorporates the calorimetric constant and the propagation250

of uncertainties coming from instrument, operational and environmental conditions. The uncertainty range associated with the

new protocol for melting calorimetry is ±0.5% and the absolute error compared with Denothmeter measurements is ∼1% in

volume.

2.1.5 Surface Roughness

Snow surface roughness
::::::
controls

:::
the

:::::::::
scattering

:::::::
behavior

::
of

:::
the

:::::::::
snowpack

::::::
surface,

::::
with

:::::::
smooth

:::::::
surfaces

::::::::
exhibiting

::
a

::::::::
dominant255

:::::::
specular

::::::::
reflection

::::
and

:::::
rough

:::::::
surfaces

::::::::
behaving

:::::
more

::::::::
similarly

::
to
::

a
::::::
diffuse

::::::::
scatterer.

::::::
Snow

::::::
surface

:::::::::
roughness

:
is typically

expressed using three parameters: the root mean square of the heights (RMSH), the correlation lenght (CL) and the autocor-

relation function (Williams and Gallagher, 1987; Nagler and Rott, 2000; Manninen et al., 2012; Anttila et al., 2014). These

parameters can be obtained from a digitized snow transect. A proven and robust system involves inserting a panel into the snow

and capturing images of the snow surface with a digital camera (Manninen et al., 2012; Anttila et al., 2014). For this campaign,260

we used the method described in Barella et al. (2021)
:::
and

::::::
refined

:::
in

::::::::::::::::
Barella et al. (2025), which builds upon these concepts

and it is particularly apt
::::
suited

:
for field applications. The panel we used is made of black Forex, 70.5 cm wide and 47 cm tall.

These dimensions are a trade-off between the ease of transport and the length of the snow transect covering at least 10 times

the C-band wavelength λ=5.5 cm as suggested in (Manninen et al., 2012). The panel can be photographed by means of any

digital camera. To attain a representative snow transect, 9 pictures were taken on each campaign
:::::::::::
measurement

:
day: 3 along one265

direction, 3 along the perpendicular direction, and 3 at a 45◦ angle between them. The resulting roughness profile is averaged

among all usable pictures, i.e.,
:

those not affected by excessive shadowing or unclean panel surface. To our knowledge, a time

series of snow surface roughness properties was never measured before.

2.1.6 Snow Water Equivalent

Profiles of snow water equivalent (SWE) were sampled from the surface to the bottom with a cylinder cutter of inner diameter270

9.44 cm and length 55 cm. The snowpack was sampled in sections from the surface to the ground and the total SWE was

obtained by weighting each sample and summing up all the values. The uncertainty range of this instrument is around 10%

with the main uncertainty source being caused by the presence of ice layers (Proksch et al., 2016).
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Figure 2.
:::::
Overall

:::::
range

::
of

::::
local

::::::::
incidence

:::::
angles

:::::
across

:::
the

:::::
study

:::
area

:::
for

:::
all

:::
the

:::
four

::::::
relative

:::::
orbits

::
–

:::::::::::::::
morning/descending

::::
(M↓)

::::
and

:::::::::::::::
afternoon/ascending

::::
(A↑).

::::
Each

::
S1

:::
cell

::
is
:::::::
identified

:::
by

::
its

::::::
centroid

:::
and

:
a
:::::::
number.

2.2 Automatic measurements

2.2.1 Runoff275

Runoff was automatically measured at a sub-hourly resolution by a lysimeter. Unfortunately, the instrument was discovered to

be clogged when the runoff started in 2023. The instrument was repaired only in late May 2023. Therefore, the time series for

that year starts with a peak (see Fig. 8d), although we hypothesize that runoff may have started as early as the end of April

2023. To avoid similar issues, on the following season the lysimeter was inspected timely and assessed as fully functional.

2.2.2 Snow Water Equivalent280

Manual snow water equivalent (SWE) measurements are complemented by an automatically recorded time series at sub-hourly

intervals, using the SSG1000 snow scale permanently installed at the WFJ site and manufactured by Sommer Messtechnik,

Austria. The system consists of a weighing platform and load cells, which directly measure the weight of the snowpack on

the platform and convert it into SWE. This instrument has a measurement range of 0 to 1000 mm of water equivalent. During

the 2023-2024 snow season, the upper capacity was reached due to above-average snow depths. In comparison to manual285

measurements, Smith et al. (2017) estimated an error of ±10%.

2.3 Sentinel-1 acquisitions

S1 is designed as a two sun-synchronous polar-orbiting satellite constellation, acquiring dual polarimetric C-band (frequency

of 5.405 GHz, wavelength of 5.5 cm) SAR images with a nominal resolution up to 3.5 m × 22 m in Interferometric Wide

swath mode (IW) and a revisit time of 6 days. Acquisitions in IW have a swat of approximately 250 km. This, together with290

the overlapping orbit paths, conceives the acquisition of multiple tracks at middle latitudes such as the Alps. For this reason,
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within the time window of 6 days, more acquisitions of the same area may be available. Four tracks are available for the area

of Weissfluhjoch, and their main characteristics are summarized in Tab. 1.

List of Sentinel-1 tracks over the WFJ field site, with times of acquisition and incidence angles. Track number Time of

acquisition Local incidence angle 015 Afternoon, ∼17:30 43◦ 066 Morning, ∼05: 30 31◦ 117 Afternoon, ∼17:30 33◦ 168295

Morning,
::::::::::::
Unfortunately,

::::::::::
Sentinel-1B

:::::
failed

::
at

::
the

::::
end

::
of

:::::
2021,

:::
and

::::
with

::::
only

:::::::::::
Sentinel-1A

::
in

::::
orbit,

::::::
repeat

:::::
cycles

::::::
halved

::::
from

::
6

::
to

::
12

:::::
days.

:::::
Since

::::
then,

:::
the

::::::
overall

::::
data

:::::::::
acquisition

:::::::::
capability

:::
was

:::::::
reduced

:::
by ∼05:30 41◦

::::
50%

::
in

:::::
most

::::::
regions,

:::::::::
including

:::
our

:::::::::::
Weissfluhjoch

::::
field

::::
site.

::::
Data

:::::
from

:::
four

:::::::
relative

:::::
orbits

:::
are

:::::::
available

:::
for

:::
this

::::
site:

::::
two

::::::::
ascending

:::::::::
(afternoon)

::::
and

:::
two

::::::::::
descending

::::::::
(morning)

::::::
passes.

::::::
Figure

:
2
::::::
shows

:::
the

::::::
overall

:::::
range

::
of

::::
local

::::::::
incidence

::::::
angles

::::::
across

::
the

:::::
field

:::
site,

::::::
which

::::
vary

::::
from

:
a
:::::::::
minimum

::
of

:::
27°

::
to

:
a
:::::::::
maximum

::
of

::::
47°.

:::::
These

:::::
maps

::::::::
highlight

:::::::
domains

::::
with

:::::::
stronger

:::
and

:::::::
weaker

:::::::::
dependence

:::
on

:::
the

::::::::
incidence

:::::
angle

:
–
:::
an300

:::::::::
east-facing

:::::::::
back-slope

:::
and

::
a
:::
flat

::::
area,

:::::::::::
respectively.

The SAR images can be downloaded, free of charge, from the copernicus data hub (Copernicus). To account for the complex

topography and to reduce the speckle noise of SAR acquisitions, a tailored preprocessing procedure has been
:::
was applied to all

data. The procedure uses
:::::::::
processing

::::::::
procedure

:::::::
involves

:
a combination of tools, some

::
of

:::::
which

:
are available in SNAP (Sentinel

Application Platform) version 6.0and some
:
,
:::::
while

:
others are customized and written

::::::::
developed in Python. The procedure is305

listed and
:::
full

::::::::
workflow

::
is described in Marin et al. (2020)

:
;
::::::::
however,

::
in

:::
this

:::::
study,

:::
the

:::::::::::
gamma-MAP

:::::
filter

:::
was

:::
not

:::::::
applied. The

final spatial resolution of the post-processed S1 images is 20 × 20 m.

:::
The

:::::::
nominal

::::::::::
radiometric

:::::::::
uncertainty

::
of

:::
S1

::::
falls

::
in

:::
the

:::::
range

::
of

::::::
3σ=1.0

:::
dB,

::
as

::::::::
indicated

::
in

::::::
several

::::
ESA

:::::::::
validation

:::::::::
campaigns

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Torres et al., 2012; Miranda et al., 2015; Schwerdt et al., 2017; Benninga et al., 2020)

:
.
::::::::
However,

::
the

::::::
overall

::::::::::
radiometric

:::::::
accuracy

:
is
::::
also

:::::::
affected

:::
by

:
a
:::::::
number

::
of

::::::::::::
preprocessing

:::::
steps,

::::::::
including

::::
(but

:::
not

::::::
limited

:::
to)

:::
the

::::::::::
application

::
of

::::::::
despeckle

::::::
filters,

::::::
terrain310

::::::::
correction

:::
and

::::::::::
radiometric

::::::::::::
normalization

::::::::::
(particularly

::::::::::
challenging

::
in

::::::::
mountain

::::::
regions

::::
with

:::::::
complex

:::::::::::
topography),

:::
and

:::::::
thermal

::::
noise

:::::::
removal

::::::::::
(important

::
in

:::::::::
conditions

::
of

:::::
high

:::::::::
absorption,

:::::
such

::
as

::::
wet

::::::
snow).

::
In

:::::
such

:::::::::
conditions,

::
a
:::::::
detailed

:::::::::::
specification

:::::::
becomes

::::::::
extremely

::::::::
complex

:::
and

::::
falls

::::::
beyond

:::
the

::::::
scopes

::
of

:::
this

::::::
paper.

::::::::::
Nonetheless,

:::::
since

:::
this

:::::
study

:::::::
explores

:::
the

::::::::::::
multitemporal

:::::::
behavior

::
of

::::
σV V
0 ::::

over
:
a
:::::
target

::::
cell,

::
it

:
is
:::::::
relevant

::
to

:::::::
mention

::::::
speckle

:::::::::
denoising.

:::
We

::::
used

:::
the

::::
filter

::::::::
proposed

::
by

:::::::::::::::::::
Quegan and Yu (2001)

:
–
:
a
::::::::
powerful

:::
yet

::::::::
relatively

::::::
simple

:::
one

::
to

:::::::
denoise

:::::::::::
multitemporal

::::::
stacks,

::::
with

::
a
::
11

::
×

::
11

:::::
pixels

::::::::
window.

::::::::
Similarly

::
to

::::
local

::::::
spatial315

::::::::::::
multi-looking,

::
its

:::::::::::::
implementation

:::::::
involves

:::::
local

::::::::
averages

::
of

:::::::
intensity

::::::
values

:::
for

::::
each

:::::
date.

:::::::::
Intuitively,

:::
this

::::::
could

:::::::::
potentially

:::
blur

::::::
strong

:::::
targets

::::
and

:::::
edges,

:::::::::
ultimately

::::::
leading

::
to

:
a
::::
loss

::
of

::::::::
resolution

:::
and

:::::::::
impacting

:::
the

::::::
overall

:::::::::::
multitemporal

::::::
result.

::::::::
However,

::
in

::::::::
conditions

:::
of

:::
dry

:::::
snow,

:::
the

:::::
snow

:::::
cover

:::
and

:::
the

:::::::
position

::
of

:::
the

::::::::
scatterers

:::
are

::::::
stable,

:::::
snow

:::::::::::
temperatures

:::
are

::::
well

:::::
below

::::
0°C

:::
and

:::
the

:::
soil

::::::
should

:::
be

::::::
mostly

::::::
frozen,

::::::::
implying

::::::::::
constrained

::::::::
variations

::
in

::::
soil

::::::::
moisture.

:::::
Under

:::::
these

:::::::::
conditions,

:::
the

::::::
pixels

:::
we

:::::::::
considered

::
in

:::
our

:::::
study

::::::::
exhibited

::
an

:::::::
overall

:::::
stable

::::::::
behavior.

:::
The

:::::
same

:::::::
stability

::::
was

::::::::
observed

:::::
during

::::
dry

::::::
periods

::
in

::::::::
summer.320

::
In

::::
these

::::
two

:::::
cases,

::::
the

:::::::
standard

::::::::
deviation

::::
was

::::::
within

:::
1.0

:::
dB,

::::::
which

:::::
aligns

::::
with

:::
the

::::::::
nominal

:::::::::
radiometric

::::::::::
uncertainty

::
of

::::
S1.

::::::
During

:::
the

:::::::
melting

::::::
period,

:::
the

:::::::
primary

::::::
source

::
of

::::::::::
radiometric

::::::::::
uncertainty

::::::::
originates

:::::
from

:::
the

:::::::::
formation

::
of

:::::
LWC

::::::
within

:::
the

::::::::
snowpack.

:::
As

:
a
::::::::::::
consequence,

:::
the

::::
radar

:::::
return

::::::
signal

::::
from

:::
the

::::
same

:::::
target

::::
cell

::::::
changes

::::
over

:::::
time,

:::::::
resulting

::
in
:::::::
reduced

::::::::
temporal

::::::::
coherence

::::
and

:::::
larger

:::::::::
deviations

::
in

::::::::::::
multitemporal

::::::::
statistics.

:::
As

::::
will

:::
be

::::::
shown

::
in

:::
the

::::::
course

::
of

::::
this

:::::
study,

:::::
LWC

::::::::::
potentially

::::::
exhibits

:::::
high

:::::::::::
heterogeneity

::::::
across

:
a
::::::
single

::::::::
resolution

::::
cell.

::::::
Under

::::
such

::::::::::
conditions,

:::
the

:::::::::
estimation

::
of

::::::::::
radiometric

::::::::::
uncertainty325
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:::::::
becomes

::::::::::
particularly

::::::::::
challenging.

::::::::
Without

:
a
:::::::

precise
::::::::
reference

:::
for

:::::
LWC,

::
a
:::::::
rigorous

::::::::::
uncertainty

::::::::::::
quantification

::
is

:::::::::
inherently

::::::
difficult

::::
and

:::
lies

::::::
beyond

:::
the

:::::
scope

::
of
::::
this

:::::
work.

2.4 Campaign design

Measurements were carried out within the same snow pit, which was always dug anew starting at approximately
:::::
freshly

::::
dug

::::
snow

::::
pits,

:::::::
starting

::
at 08:00.

::
00

::::::::::::
approximately.

:
The start of the measurement procedure depended on the amount of employees330

available on a specific day, on the amount of snow, on its density and on the weather conditions – generally, between one to two

hours later. The measurement procedure was generally finished around 12:00 refilling the snowpit; however, on isolated days,

there were several hours of delay because of the above mentioned reasons. On the first snow season, the snow temperature was

generally measured first and the melting calorimetry last, with the remaining measurements being carried out in between with

an order that also varied as a function of the above mentioned factors. On the second snow season, we improved the campaign335

design with a more rigorous measurement order: temperature first, SSA and dielectric LWC either simultaneously or one after

the other, density, SWE, and melting calorimetry coupled with a second simultaneous dielectric LWC profile taken at the same

time and vertical location. This has specific importance for the LWC profiles. On the first season, the time lag between the

dielectric and calorimetric LWC profiles was 2 or 3 hours, at an horizontal distance of 50 cm to 1 m. On the second season,

we measured one first dielectric LWC profile and an adjacent, simultaneous one using melting calorimetry. In Sec. 4.2, we will340

refer to the first setup as "co-located" and to the second one as "simultaneous".

On both seasons, before starting the measurement procedure, the profile wall was made as smooth as possible. A Near-Infra-

Red picture was taken for qualitative comparison. Outside of the snow pit, on an undisturbed area, the surface roughness
:::::
panel

pictures were taken. On days where the radiation (from the sun or diffuse) was particularly intense, shading was necessary

for every surface measurement that might have been affected. The temperature profiles were always measured in the shaded345

corner area of the snow pit. Overall, each measurement series would need a total horizontal space of 1.5-1.8 m, and the

single variable profiles were measured at a reasonable horizontal distance from each other. On both seasons, snow profiles

were carried out within the same designated area. The area was divided in corridors approximately 2 m wide. Throughout the

season, measurements were carried out moving continuously forward along the corridor until the slope was hit. The next snow

profile would be dug onto the next corridor. A minimum distance of 30 cm was secured between two consecutive measurement350

days, to avoid disturbances from the previous measurement set.

Data cleaning and homogenization procedures were performed before providing the measured snow properties as RT inputs.

In particular, since sampling resolutions were different (see Sec. 2.1), all measured properties were linearly interpolated to a

common vertical resolution of 1 cm. Positive LWC values recorded at temperatures below 0◦C were corrected to 0%. 0.04%

and 0.4% of the measured LWC values were above or equal to 15% for the two years respectively. For both used dielectric355

instruments, these values are likely not accurate. Since these values likely represent areas of high snow wetness, they were

not excluded from the analysis but their LWC value was set to 15%, similarly to Techel and Pielmeier (2011). Additionally,

instances of very low LWC measurements from thin layers just above the ground in dry snow conditions were discarded,

as we could not rule out potential instrument disturbances from the ground in these cases. Given the accuracy range of the

12



Figure 3. The map in a) shows an aerial
::::

Aerial
:
view of the WFJ measurement station. Each of the 56 points represents the centroid of each

S1 cell. Each centroid is split in two, the left part indicating the interquartile range (IQR) of the winter σV V
0 signal for the snow season of

2022-2023 and the right part for the snow season of 2023-2024. Contour lines indicate the surrounding slopes. The area in white indicates

the surrounding skiable domain. The yellow rectangle indicates the fenced measurement area where snow profiles were carried out in both

seasons. Cell 39
::
40, i.e. the selected S1 cell for this study, is highlighted in red.The boxplots in b) and c) represent the variability of σV V

0

(in dry conditions) over different tracks for the fraction of the S1 cells having the 15% lowest IQR, for the snow seasons of 2022-2023 and

2023-2024, respectively.

thermometer (see Sec. 2.1), temperature oscillations up to 0.2◦
:
°C below 0◦

:
°C were set to 0◦

:
°C from the first measured fully360

isothermal profile onwards. Since the snow properties were measured at a certain lateral distance one from the other, the profiles

of density and SSA were slightly shifted with a simple algorithm to maximise the correlation with the profile of LWC. Finally,

we had to discard the last 3 snowpits
:::::::
snowpit

::::::::::::
measurements of 2023, because the measured RMSH value there was too high

to ensure the conditions of validity of the interface model (see Sec. 3.2).
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Figure 4.
::::::::
Variability

::
of

::::
σV V
0 ::

in
:::
dry

::::
snow

::::::::
conditions

:::
for

::
all

::::::
relative

:::::
orbits

:::::::::
overlooking

::::
cells

:::
18,

::
25,

:::
32,

:::
38,

:::
39,

::
40,

:::
i.e.

:::
the

:::
flat

:::::
terrain

::::
cells

:::
with

:::::
likely

:::::
similar

::::
snow

::::::::
properties

::
as

:::
the

:::::::
measured

::::
ones

::::
(a-b).

:::::::::::
Multitemporal

::::
σV V
0 :::::

signal
::
of

:::
the

::::::
selected

:::
cell

::
40

::::::::
compared

::
to

::
the

::::::::
ensemble

::::::
standard

:::::::
deviation

::::::::
(stdσV V

0
)
::
of

::
the

::::::
similar

:::
cells

::
–
:::::::::::::::
morning/descending

::::
(M↓)

:::
and

:::::::::::::::
afternoon/ascending

::::
(A↑)

::::
(c-f).

3 Methods and model365

3.1 Selection of the Sentinel-1 reference cell

The selection of the reference S1 cell required some considerations. The WFJ field site is ideal for continuous measurements

due to its proximity to structures and sensors, however, these features may interfere with radar waves
:
, thus disrupting the
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Table 1.
::
S1

:::::
tracks

:::::::::
overlooking

:::
the

::::::
selected

:::
cell

:::
40,

::::
with

::::
times

::
of

:::::::::
acquisition,

::::::
direction

::
of
::::
orbit

:::
and

::::
local

::::::::
incidence

:::::
angles.

:::::
Track

:
#

::::
Time

::
of

:::::::::
acquisition

:::::::
Direction

::
of
:::::
orbit

:::::
Local

:::::::
incidence

:::::
angle

:::
015

:::::
∼17:30

: ::::::::
Ascending

::
41°

:

:::
117

:::::
∼17:30

: ::::::::
Ascending

::
32°

:

:::
066

:::::
∼05:30

: :::::::::
Descending

::
33°

:

:::
168

:::::
∼05:30

: :::::::::
Descending

::
42°

:

backscattering
:::::::::
backscatter from natural terrain. Most of the structures within the field site are metallic and may act as additional

reflecting sources in addition to the snowpack.370

To select the reference cell, we extracted σV V
0 values for both years over a grid of 56 points covering the whole extension

of the field site and the immediate surroundings (Fig. 3a). For each cell and for each different year, we isolated the time frame

starting at the beginning of the meteorological winter (December
:::
Dec 01) and ending when the first liquid water was detected

::::::::
measured in the snowpack. Over these time frames, for each year and for each cell we computed the variability of σV V

0 acquired

by the 4 different tracks (See Tab. 1). We assume that low variability
:::::
lower

::::::::::
variabilities between different tracks over a dry375

snowpack may indicate a minimal interference with other non-natural elements on the field, as their backscatter would typically

exhibit strong angular dependence (i.e.
:
, anisotropy).

The results of this analysis are summarized
:::::
shown in Fig. 3. The ,

::::::
where

:::
the

:
variability is mapped over the field using the

interquartile range (IQR). Each cell is represented by its centroid. The boxplots in Fig. 3 refer to the fraction having the 15%

lowest average IQR and illustrate the variability of σV V
0 for each single track and over the two snow seasons independently.380

In general, the IQR does not vary significantly between the two snow seasons, suggesting that this kind of approach might be

adequate to select a reference cell with the least possible artificial disturbance. There are outliers (
:::::::
Outliers

:
–
:

i.e.points ,
:::::

cells

:::
15,

:::
22,

:::
23,

:
27, 52,

::
54,

::::
and

:
55 ) – however, such points are located in field areas likely affected by double-bounces effects

typical of
:::
are

:::::
likely

:::::::::
influenced

:::
by

::::::::
localized

::::
field

:::::::::
conditions.

::::::
These

::::::
include

:::::::::::::
double-bounce

::::::
effects

::::::::
typically

::::::::
associated

:::::
with

man-made targets (
:::::::
structures

:::::
(e.g.,

:::
cell

:
27)or ,

:
surfacing boulders (

::::
cells 52,

:::
54, 55), explaining the

::
or

:::::
small

::::::::
variations

::
in

::::
soil385

:::::::
moisture,

::::::
which

:::::
could

:::::::
account

::
for

:::
the

::::::::
observed year-to-year variability. The highest IQR values are clustered around the large

hut
:::
(for

::::::::::::
double-bounce

:::::::
effects) and where the slopes start to become steeper , i.e. where the backscattering has a strong

:::::
(when

::
the

::::::::::
backscatter

:::
has

::::::::
strongest dependence on the aspect angle

:::::::
incidence

::::::
angle). Interestingly, the IQR values for cell 25 and 32

are among the lowest for both snow seasons, suggesting that smaller metallic sensors might not represent a disturbance for the

::::::::
significant

::::::::::
disturbance

:::
for radar waves. The boxplots in Fig. 3 show the variability of each single track for both years, ordered390

from higher to lower. Cells 38 and 45, despite having low IQR score for both snow seasons, show high σV V
0 variability among

different tracks, suggesting that the small hut, being relatively small with respect to the resolution cell, likely has a limited

impact with respect to the bigger hut, but still generates a bias. Ideally

::::::
Ideally,

:::
the

:::::
target

:::
cell

::::::
should

:::::::
coincide

::::
with

:::
the

:::::::
location

::
of

::::::
in-situ

::::::::::::
measurements

::
to

::::::
ensure

:::
that

:::
the

::::::::
observed

::::
snow

:::::::::
properties

::::::::
accurately

::::::::
represent

:::::
those

:::::::
detected

::
by

:::
the

:::::
radar.

::::::::
Although

:::
S1

:::::::
footprint

::
is

::::
large

::::::::
relatively

::
to
:::
the

::::
area

::::::::
disturbed

::
by

::
a
:::::
single

:::::
snow395
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:::
pit,

:::::::::
excavating

:::::::
multiple

::::::::::
consecutive

::::
snow

:::::::
profiles

::::::
across

:
a
:::::::
broader

:::
area

::::
can

::::::::
ultimately

:::::
alter

::::
snow

:::::::::
conditions

::::::
across

:::
the

:::::
entire

:::
cell

:
–
::::::::::
particularly

:::::
under

:::::
moist

::
or

::::
wet

::::
snow

::::::::::
conditions.

::::
This

:::::
would

::::::::
introduce

::
an

:::::::::::
uncontrolled

::::::
degree

::
of

::::::::::
uncertainty.

::::::::
Therefore,

the target cell has a rather constant average σV V
0 among all tracks and a

:::::
should

:::::
rather

:::
be

:::::::
selected

::::::
among

:::
the

:::::::::::
surrounding

:::::::::
undisturbed

:::::
cells

::::
with

::::::
similar

::::::
slopes

::::
and

::::::
aspect.

::::
Fig.

::::
4a-b

:::::
show

:::
the

::::::::
dry-snow

:::::
σV V
0 :::::::::

variability
:::
for

:
a
:::

set
:::

of
::::
cells

::::
with

:::::
such

:::::::
features,

:::
i.e.,

:::::
cells

:::
18,

:::
25,

:::
38,

:::
39,

:::
40.

:::::::
Among

:::::
these,

::::
cell

::
40

::::::
shows

::
a

:::::::::::
distinguished

::::::::::
dependence

:::
on

::::
each

::::::::
incidence

:::::
angle

::::
and400

::::
orbit

::::::::
direction,

:::::
along

::::
with

::::::::
relatively

:
low variability of each single track. These conditions are met by points 32,

::::
σV V
0 ::::::

across

:::::
tracks.

:::
An

::::::::
exception

::::::
occurs

:::
for

::::
track

:::::
#117

::::::
during

:::::::::
2023-2024,

::::::
where

:::
the

::::::::
variability

::
is

::::::::
relatively

::::::
higher

::::
with

::::::
respect

::
to

:::
the

::::
year

::::::
before.

::::
This

::::::::
increased

:::::::::
variability

:
is
::::

also
:::::::::
noticeable

:::
for

:::
cell

:
25 and 39. Points 25 and 32 were discarded because they lie on a

section of
:::::
Given

:::
the

:::::
lower

::::::::::
variabilities

:::::::
recorded

:::
on

::
the

:::::
prior

::::
year,

::::::::::
interference

::::
from

::::::::::
non-natural

::::::::
elements

:::
can

::
be

:::::
ruled

:::
out.

::::
The

::::
most

::::::::
plausible

::::::::::
explanation

:
is
::

a
::::::
certain

::::::
degree

::
of

:::::::::::
heterogeneity

:::
in

:::
soil

::::::::
moisture

:::::
across

:::
the

:::::
field.

::::::::::::
Unfortunately,

:::
we

:::
are

::::::
unable405

::
to

:::::
verify

:::
this

::::::::::
hypothesis,

::
as

::::
soil

:::::::
moisture

::::::::::::
measurements

:::::
were

:::
not

:::::::
included

::
in

:::
our

::::
field

:::::::::
campaign.

:::::::::::
Additionally,

::::
cell

::
40

::::
lies

::
in

the field where the snow surface is regularly disturbed for daily measurements until complete snow ablation. Point 39, despite

slightly overlapping with our measurement area, lies in close proximity of the measuring field, on a flat surface, protected

from off-piste skiing and exhibits the lowest average IQR, the lowest spread in
::::::::
immediate

:::::::
vicinity

::
to
::::

the
:::::::::::
measurement

::::
site,

:::
and

:
the average

::::
snow

::::::
surface

:::::::
remains

::::::::::
undisturbed

::::
due

::
to

:::
the

::::::::
operation

:::
of

:
a
:::::::
LiDAR

::::
laser

:::::::
scanner

:::::::::::
continuously

::::::::::
monitoring410

::
the

:::::
snow

:::::::
surface.

::::
Fig.

::::
4c-f

::::::::
illustrates

:::
the

::::::::::::
multitemporal

:
σV V
0 value among all tracks, and the smallest overall variability of

each single track, with a small exception for track
:::::
signal

::::
from

::::
cell

::
40

::
in
::::::::::

comparison
::
to
::::

that
::
of

:::
the

:::::
other

::::::::
candidate

:::::
cells.

::::
The

::::::
average

:::::::
standard

::::::::
deviation

::
of

:::
the

::::
σV V
0 ::::::::

ensemble
::::::
across

::::
these

:::::
cells

:
is
::::::::::::
approximately

::
3

::
dB

:::
for

:::
all

:::::
tracks.

:::::::::::
Interestingly,

:::
the

::::::
lowest

:::::::
standard

::::::::
deviation

::
is

::::::::::
consistently

:::::::
observed

::
at

:::
the

::::
time

::
of

:::
the

::::::::::
backscatter

::::
drop

::::::
caused

::
by

::::
wet

:::::
snow,

::::
with

:::
the

::::::::
exception

::
of

:::::
track

:
#117 over the season 2023-2024

:
in

:::::
2024.

::::::::
Notably,

:::::
during

:::
the

:::::::
melting

::::::
season,

:::
the

:::::
signal

::::
from

::::
cell

::
40

:::
lies

::
in
:::
the

:::::
lower

::::
end

::
of

:::
the415

:::::::::
backscatter

:::::
range

:::::
across

:::
all

:::::
years

:::
and

:::::
tracks

::
–

::::
aside

:::
for

:::::
track

::::
#117

::
in

::::::::::
2022-2023.

:::::::::
Potentially,

::::
this

:::::::
behavior

::
is

::::::::
desirable

::
for

::::
wet

::::
snow

:::::::::::
detectability. For these reasons, the σV V

0 recorded over cell 39
::
40

:
is selected as the reference time series for this work.

:::
The

::::::
impact

::
of

::::::::
incidence

:::::
angle

::::
was

:::
not

:
a
:::::::
primary

:::::
focus

::
of

:::
this

:::::
study,

::
as

::
it

:::
has

::::::
already

:::::
been

:::::::::
extensively

::::::::
addressed

::
in
::::::::
previous

:::::::
research

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Mätzler (1987); Shi and Dozier (1992); Strozzi et al. (1997); Strozzi and Matzler (1998),

:::::
which

:::::::
strongly

:::::
relied

:::
on

::::::::::
tower-based

:::::::::
instruments

::::::::
allowing

::::::
greater

::::::
control

::::
than

::::::::::::
satellite-based

:::::
radar

:::::::
systems.

::
In
::::

our
::::
case,

:::
the

::::
area

:::::
most

:::::::::::
representative

::
of
:::::::::

measured420

::::
snow

:::::::::
properties

:
is
::::::::
relatively

:::::
small

::::
and

:::
flat,

::::::::
resulting

::
in

:
a
::::::
limited

:::::
range

::
of

::::
local

:::::::::
incidence

:::::
angles

::::::::
available

::
for

:::::::
analysis

::::
(see

::::
Fig.

::
2).

:::::::::::
Furthermore,

:::
the

::::
high

::::::
spatial

::::::::
variability

:::
of

::::
LWC

::::::
would

::::::
require

::::::::
dedicated

::::::::
reference

::::::::::::
measurements

:::
for

::::
each

::::::::
incidence

:::::
angle

:::
and

::::
cell,

:::::
which

::::
was

:::
not

::::::
feasible

:::::
given

:::
the

::::
time

::::
and

::::::::
resources

::::::
already

:::::::
involved

::
in

::::::::::
conducting

:::
the

::::::::
campaign

::
at

:
a
:::::
single

::::::::
location.

3.2 Snow Microwave Radiative Transfer (SMRT) model
:
:
::::::::::
description and simulation setup425

SMRT is a model that simulates the active-passive microwave response from snowpacks (see Picard et al. (2018))
::::::
layered

:::::::::
snowpacks

::::::::::::::::
(Picard et al., 2018). The model is written and run in a Python environment and has a modular and flexible struc-

ture, allowing the user to set model runs choosing among different
:
a
:::::
wide

::
set

:::
of electromagnetic, microstructure and permit-

tivity models. The reflectivity and transmissivity associated to roughness can also be described according to different models.
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The user has to specify a set of snowpack properties to parametrize the microstructure and the electromagnetic model. In430

particular, the roughness can be set either at the snow-air interface only or for each defined snow layer. Once these neces-

sary parametrizations have been declared in the preliminary components of the model, SMRT uses the discrete ordinate and

eigenvalue (DORT) method to solve the radiative transfer equation. The user can either customize a virtual sensor with specific

frequency, incidence angle and polarization or directly choose from a list of already available sensors, among which Sentinel-1.

The backscattering
::
S1.

::::
The

:::::::::
backscatter

:
intensities can be obtained for all polarizations – this study focuses on the co-polarized435

VV (vertical-vertical)
::::::
vertical

:
signal, because cross-polarizations are currently only partially implemented within the current

version of the module used for the parametrization of surface and interface scattering (Murfitt et al., 2024).

This study uses the symmetrized strong-contrast expansion (SymSCE) (Picard et al., 2022b) as the electromagnetic model

with two different permittivity parametrizations. Measurements of density and SSA were used to compute the Porod length

(ℓP ) (Porod, 1951). The microwave grain size (ℓMW ) is computed as the product of ℓP and the polydispersity k, a parameter440

describing the variability of the length scales with respect to the microstructure (Picard et al., 2022c). k was set to 0.75: this

empirical value was estimated from µ-CT scans of a wide variety of Alpine
:::::
alpine snow samples with convex grains, among

which rounded grains and melt forms (Picard et al., 2022c). As shown in Picard et al. (2022c), the choice of parametrization

of the snow microstructure represents
::
For

::::
this

:::::
study,

:::::
snow

::::::::::::
microstructure

::::
was

:::::::::::
parametrized

:::::
using

:::
the

:::::::::
exponential

::::::
model.

::::
For

:::::::::
frequencies

::
in

:::
the

:::
X-

:::
and

::::::::
Ku-bands

::::::
(10-17

::::::
GHz),

::::::::::
exponential

:::::::::::::
auto-correlation

::::::::
functions

::::
have

::::
been

::::::
shown

::
to

::
be

:::
too

:::::::::
simplistic445

::
for

:::::::::::
representing

::::
snow

:::::::::::::
microstructure.

:::::
Their

:::
fast

::::::
decay

::::
fails

::
to

::::::
capture

:::::::::
long-range

::::::
spatial

::::::::::
correlations,

::::
and

::::
their

::::::::::
inadequacy

::
in

::::::::
modelling

:::::::
densely

::::::::
clustered

:::::
media

::::::
results

::
in

:::
an

:::::::::::::
underestimation

::
of

:::::::
forward

:::::::::
scattering

:::::
effects

:::::::::::::::::
(Chang et al., 2016)

:
.
::::::::
However,

:::::::::::::::::
Picard et al. (2022c)

::::
show

::::
how

:::::
ℓMW :::

can
:::
be

::::::::
computed

::::::::::
analytically

:::
for

::::::
various

:::::
forms

:::
of

:::::::::::::
auto-correlation

:::::::::
functions,

::::::::
including

::
the

:::::::::::
exponential.

:::::
These

:::::::::
analytical

:::::::::
expressions

:::
of

:::::
ℓMW ::::

allow
:::

for
::::::
direct

:::::::::
comparison

::::::::
between

:::::::
different

:::::::::::::
representations

::
of

:::::
snow

::::::::::::
microstructure.

:::::
Most

::::::::::
importantly,

:::::
when

::::
the

::::
same

:::::
value

:::
of

:::::
ℓMW ::

is
::::
used

:::
as

:::::
input,

:::
all

::::::::::::
microstructure

:::::::
models

::::
give

:::
the

:::::
same450

::::::::
scattering

::::::::
amplitude

::
in

:::
the

::::::::::::
low-frequency

:::::
limit.

:::::::::
Therefore,

::::::::
according

::
to

:::::
these

:::::::
findings,

:::
the

::::::
choice

::
of

:::
the

::::
best

::::::::::::
representation

::
of

::::
snow

::::::::::::
microstructure

::::::::
becomes

:
a secondary problem with respect to the

:::::::::
measuring ℓMW in order to predict snow scattering at

::
in

:::
the

:
C-band. For this study, snow microstructure was parametrized using the exponential model.

The permittivity of a material is a complex number composed of a real part (i.e.,
:
the dielectric constant) and an imaginary

part. The contribution of the real part is related to the material’s ability to store electrical energy, whereas the contribution of the455

imaginary part is associated with dielectric losses. Snow is a three-component mixture of snow
::
ice, air and water – therefore,

the effective permittivity of snow (ϵs) depends on the relative proportions of these elements. The presence of liquid water

significantly alters both the real and imaginary parts of ϵs, affecting how microwaves interact with the snowpack. Henceforth,

accurate estimates of ϵs are crucial for interpreting the microwave response of wet snow. Despite extensive research, particularly

in the 1980s, a universally accepted model for snow permittivity remains elusive
:::
has

:::
not

:::
yet

:::::
been

:::::::::
established

:
(Picard et al.,460

2022a). For this study, we selected two formulations: (i) the Microwave Emission Model for Layered Snowpacks version

:::::::::::::::::::::::::
(Wiesmann and Mätzler, 1999)

::
in

::
its

:
3

:

rd
::::::
version

:
(MEMLSv3 hereafter), which is based on the Maxwell-Garnett mixing theory

of dry snow and prolate water inclusions; (ii) the Debye-like model modified by Hallikainen et al. (1986) by fitting it against

field data (H-86 hereafter)
:
,
:::::
which

::::
uses

::
a

::::::
mixing

:::::::
formula

:::::
based

:::
on

::::::
volume

::::::::
fractions

:::
and

::::::::
refractive

:::::::
indices,

::::::::
calibrated

:::::::
against
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Figure 5. Real and imaginary parts of the effective permittivity (ϵs) of wet snow as a function of frequency (f ) for a nominal density value of

400 kgm−3
:::::
kgm−3

:
and varying LWC of 1% (a), 4% (b) and 8% (c) according to the MEMLSv3 and H-86 permittivity models. Grey dotted

lines underline differences between the formulations for
:
at

:
the nominal frequency of S1, i.e. 5.405 GHz.

::::
field

::::
data. These models were selected because they have been

::::
were

:
validated against real-world C-band data. Specifically,465

in Hallikainen et al. (1986) and earlier works, the authors present what is, to our knowledge, the only available dataset of

wet snow permittivity measurements at 6 GHz for varying LWC values, measured using freezing calorimetry. Interestingly,

the MEMLSv3 fails to accurately reproduce this dataset. However, Kendra et al. (1998) observed that the dielectric constant

provided by H-86 appears to be too low, an observation that is supported by data from Achammer and Denoth (1994), collected

::
in

::
the

:::::
range

:
between 8 and 12 GHz. However, these data appear to favor H-86 over MEMLSv3 when considering the imaginary470

part of ϵs. While H-86 has been criticized, some aspects appear to have been overlooked (e.g. the recent corrigendum in Picard

et al. (2022a)). Figure 5 shows the real and imaginary parts of the ϵs as a function of the frequency for a nominal density value

and varying values of LWC according to both MEMLSv3 and H-86 permittivity formulations. For higher values of LWC (see

Fig. 5b,c), the ϵs values obtained from both formulations display a frequency dependence and curve shape closely resembling

that of pure water. In both cases, the real part of ϵs decreases with frequency, whereas the imaginary part increases up to475

the relaxation frequency and then decreases
:::::::
decreases

:::::::::
thereafter. However, at

::
in

:::
the

:
C-band, the two formulations diverge

significantly, especially in their prediction of the imaginary part, which governs absorption losses. This difference becomes

more pronounced for increasing values of LWC. For instance, at LWC =
:::::
LWC=4%, MEMLSv3 predicts an imaginary part of

ϵs approximately twice that of the H-86 at the nominal frequency of S1 (see Fig. 5b). Since we cannot definitively determine

the fitness of one model over the other, both formulations will be used in the SMRT modeling
:::::
SMRT for this study. Given the480

different behavior of the two formulations, we expect a lower and upper bound for S1 backscattering
:::::::::
backscatter

:
simulations.

It is clear that further research is needed to accurately characterize wet snow permittivity, but this is out of the scope of this

paper.
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::
RT

:::::::::
modelling

::
of

:::::
snow

:::::
comes

::::
with

:::
the

:::::::::
additional

:::::::
difficulty

::
of

::::::::::
quantifying

:::
the

:::::
dense

:::::::
medium

::::::
effects,

::::
i.e.,

:::
the

:::::::::::::
electromagnetic

:::::::::
interactions

:::::::::
occurring

:::::::
between

:::::
snow

::::::
grains

:::
that

::::
are

::::::
closely

::::::
packed

::::::::
together.

:::
At

::::::
C-band

:::::::::::
frequencies,

:::::
these

::::::
effects

:::::::
become485

::::::::
significant

::
as

:::
the

::::::::
scattering

::::::
regime

:::::::
changes

:::
due

::
to

:::
the

:::::::
presence

:::
of

:::::
liquid

::::
water

::
–

::::
both

::::::
through

:::::::
changes

::
in

:::::
snow

::::
grain

::::::::::
interactions

:::
and

::
in

:::::
bulk

::::::::
dielectric

:::::::::
properties.

:::
In

:::::
H-86,

::::::
dense

:::::::
medium

::::::
effects

:::
are

::::
not

:::::::::
accounted

:::
for.

:::
In

::::::::::
MEMLSv3,

:::::
these

::::::
effects

::::
are

::::::::
accounted

:::::::
through

:
a
:::::::::::::
semi-empirical

:::::::::::::
parametrization

::::::::
involving,

::::::
among

:::::
other

:::::::::
parameters,

::::::::::
correlation

::::::
length,

:::::::::::::::
density-dependent

:::::::::
corrections

:::
and

::
–
:::
as

:::::::::
mentioned

:::::
above

::
–

::::::
mixing

::::::::
formulas.

::::::::::
Correlation

:::::::
lengths

:::
are

::::
used

::
to
::::::::

represent
::::

the
:::::::
effective

:::::
grain

::::
size

:::
and

::::::
spatial

:::::::::
correlation

::
of

:::
the

:::
ice

:::::::
matrix,

:::
and

::
to

:::::::
capture

:::
the

::::::
degree

::
of

:::::::::
interaction

:::::::
between

::::::
dense

::::::
grains.

::::::
Despite

:::
the

:::::
range

:::
of490

:::::::::
correlation

::::::
lengths

:::::
being

::::::
limited

::
in

::::::::::
MEMLSv3,

:::
the

::::
ones

::::
that

:::
are

:::::::::
represented

::::::
derive

::::
from

::::::::
structures

::::::::
observed

::
at

::::::::::::
Weissfluhjoch

:::::
during

::::
two

:::::
snow

:::::::
seasons

:::::::::::::::::::::::::
(Wiesmann and Mätzler, 1999)

:
.
:::::::::
Therefore,

::::
they

:::
are

:::::
likely

:::::::
suitable

:::
to

:::::::
describe

:::
the

:::::
dense

::::::::
medium

:::::
effects

:::
on

:::
the

:::::::::
snowpack

:::::::::
structures

::::::::
observed

::::
and

::::::::
measured

:::
in

:::
this

::::::
study.

:::::
Snow

:::::::
density

::
is

:::::
used

::
as

::
a
:::::
proxy

:::
to

:::::::::
determine

:::
how

:::::::
closely

::::::
grains

:::
are

:::::::
packed;

:::
and

:::
as

::::::
density

:::::::::
increases,

:::::::::
scattering

::
is

:::::::
reduced

:::
and

::::::::::
absorption

::::::::
increases.

:::::
Such

::::::::::
corrections

::
are

:::::::::
embedded

::::
into

:::
the

::::::::
extinction

:::::
term,

:::
i.e.,

:::
the

::::
sum

::
of

:::::::::
scattering

:::
and

:::::::::
absorption

::::::::::
coefficients.

:
495

The chosen interface model (between snow and air and between snow layers) is the integral equation model (IEM) (Brogioni

et al., 2010), since it is one of the most used models to describe the roughness. However, any other model could be used,

provided the roughness characteristics are within the validity range. The IEM is valid under the conditions w ·RMSH < 2 and

w2 ·RMSH ·CL <
√
εi, where w is the wavenumber (which depends on the medium) and εi is the ratio between the media

permittivities at the interface (Fung et al., 1992). In the absence of rigorous information about the soil substrate, we modeled500

it as a frozen surface . We parametrized the soil backscattering for each year and incidence angle with an average of the values

recorded by

:::::
Using

:::
the

::::::::
functions

:::::::
available

:::
in

::::::
SMRT,

:::
we

::::::::
modelled

:::
the

:::::::
substrate

::
as
::

a
::::::::
reflecting

::::::
surface

::::
with

::
a
:::::
given

:::::
value

::
of

::::::::::
backscatter.

::
In

:::
dry

:::::
snow

:::::::::
conditions,

:::
on

::::
days

:::::
when

::::::
manual

::::::::::::
measurements

::::
and

:::::::
satellite

::::::::
overlooks

:::::::::
coincided,

:::
we

:::::::
assigned

:::
the

:
S1 from the

start of the meteorological winter until the formation of liquid water within the snowpack
:::::::
recorded

:::::::::
backscatter

:::::
value

:::
to

:::
the505

:::::::
substrate, assuming that in dry snow conditions, the snowpack is almost totally transparent to C-band radar waves ,

::
dry

:::::
snow

::
is

:::::::::
transparent

::
to

::::
radar

::::::
waves

::
at

::::::
C-band and that therefore the soil is the only scattering source

::::::::::
contribution

::
to

:::
the

::::
total

::::::::::
backscatter.

::
In

:::
wet

:::::
snow

:::::::::
conditions

:::
(or

:::
in

:::
dry

:::::
snow

:::::::::
conditions,

:::::
when

:::::
there

::::
was

:::
no

::::::::::::
concomitance

:::::::
between

::::::::::::
measurements

::::
and

:::::::
satellite

:::::::::
overlooks),

:::
we

::::::::
assigned

:
a
:::::
fixed

:::::
value

::
of

::::::::::
backscatter

::
to

:::
the

::::::::
substrate,

::::::
which

:::
we

::::::::
computed

:::
as

:::
the

::::::
average

:::::
value

:::
in

:::
dry

:::::
snow

::::::::
conditions

:::
of

::::
each

:::::::::
individual

::::
track

:::::::::
(incidence

::::::
angle).

::::::::
Notably,

::::::
SMRT

:::::
offers

:::
the

:::::::::
possibility

::
to

::::::::
compute

:::
the

:::::::::
backscatter

:::::
from510

::
the

:::::
soil,

:::::::
however,

::
it
:::::::

requires
::

a
:::::
series

:::
of

:::::::
detailed

::::::::::
information

::::
that

:::
are

:::::::
spatially

:::::::::::::
heterogeneous

:::
and

::::::
would

::::
have

:::::
been

::::::
nearly

:::::::::
impossible

::
to

::::::
retrieve

:::::::::::
continuously

:::::
over

:::
the

:::::
course

:::
of

:::
our

:::::::::
campaign.

:::::
These

:::::::::
properties

::::::
include

:::
the

::::
soil

::::::::
moisture,

:::
the

:::::::
relative

::::
sand

:::::::
content,

:::
the

::::::
relative

::::
clay

:::::::
content,

:::
the

:::
soil

:::::::
content

::
in

:::
dry

::::::
matter,

::::
and

::::
other

::::::::::
geometrical

::::::::::
parameters

::::
such

::
as

:::
the

:::::::::
roughness

:::
and

:::
the

:::::::::
correlation

:::::
length.

Under these configurations, the model takes as inputs the following snowpack properties: temperature, density, volumetric515

liquid water, SSA and
::::::
surface

:
roughness. For the snow-air interface, we used the measured values of RMSH and correlation

length. For layer interfaces, we set RMSHlayers=1 mm and CLlayers=30 mm (i.e.,
:

the average winter value from our field

measurements). When measurements and S1 overpasses coincided, the simulation was performed using the incidence angle of
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S1. On days without simultaneous overpasses, the simulation was performed using the incidence angle from the closest previ-

ous or subsequent S1 pass. All modeling
::::::::
modelling

:
choices described above have been designed and motivated to be optimal520

to describe wet snow starting from measured properties. However, it is important to remark that the choice of such parametriza-

tions remains highly arbitrary, as further research is still needed to validate permittivity, roughness and microstructure models

specifically for wet snow at
::
in

:::
the C-band.

Another practical challenge was how
::
to

:::::
design

::
a

:::
way

:
to replicate the often complex snowpack layering observed in the field

within a radiative transfer model which is not specifically made to deal with a high number of layers thinner than the wavelength525

(Sandells et al., 2022). As a matter of fact, this increases the number of dielectrical discontinuities (Leduc-Leballeur et al., 2015)

generating (artificially) higher scattering. Resampling high resolution field measurements to the wavelength or its multiples is

an option, however, this does not necessarily reflect the physical snowpack structure. As an example, in the moistening phase,

liquid water appears in thin layers at the top
:
in

:::
the

:::::
upper

::::
part of the snowpack. These layers can have thicknesses of a smaller

size than the C-band wavelength : their scattering effect
:
–

:::
the

:::::
effect

::
of

::::
such

:::::
layers

:::
on

:::
the

::::
total

:::::::::
backscatter

:
is unclear and this is530

::::::::
represents

:
a potential source of errors when using layering defined by the resolution of the field measurements. As the wetting

front progresses through the snowpack during the ripening phase, liquid water becomes more homogeneous over thicker layers

:::::
layers

::::
with

::::::::
thickness

:::::::::
comparable

::
to

:::
the

::::::
C-band

::::::::::
wavelength. During this phase, it might seem appropriate to choose

:::::
stage,

:::::
using

high-resolution discretizations (e.g., comparable to
::
on

:::
the

::::
order

::
of

:
the C-band wavelength) to reproduce as precisely as possible

:::
may

:::::
seem

::::::::::
appropriate

::
to

::::::
closely

:::::::
replicate the liquid water layering observed in the field. However, this may artificially produce535

drier or wetter layers, potentially leading to a over or underestimation in backscattering, respectively
:::::::
averaging

::::
over

:::::
such

:::::
scales

:::
can

:::::
merge

::::::
distinct

::::
wet

:::
and

:::
dry

::::::
layers,

:::
blur

:::::::::
important

:::::::
contrasts

:::
and

:::::::::
potentially

::::
lead

::
to

::::::
biased

:::::::::
backscatter

::::::::
estimates. On the other

hand, intuitively, lower-resolution discretizations (e.g., multiples of the C-band wavelength) dissipate the scattering effect of

thinner (≃6 cm) wet layers. To reduce the aforementioned sources of uncertainty, we chose to model the snowpack structure

by stacking layers with a minimum thickness corresponding to the C-band wavelength, ensuring each layer had consistent540

average physical properties. These property-based
:::::::::
physically

::::::
similar layers were identified automatically by means of a simple

algorithm and then refined manually, with particular emphasis placed on LWC over the other variables. An example is given

:::::::
provided

:
in Fig. 6. However,

::::::
where

:::::
snow

::::::::
properties

:::
are

::::::
shown

::
at

:::
the

:::::::::::::
field-measured

::::::
vertical

:::::::::
resolution

::
in

:::
(a),

::::
and

::::::::
averaged

:::
into

:::::::::
physically

::::::::
consistent

::::::
layers

::
for

::::::
SMRT

:::::
input

::
in

:::
(b).

::::
Fig.

:
7
::::::
shows

:::
that

:::
the

:::::::
number

::
of

:::::
layers

::::
used

:::
for

::::
each

::::::
SMRT

:::::::::
simulation

:::::
varied

:::::::
between

::
1

:::
and

:::
14,

::::
with

:
a
:::::::
marked

::::::::::
dependence

::
on

:::
the

:::::
stage

::
of

:::
the

::::::
melting

:::::::
process

:::
and

::
on

:::
the

:::::::::
campaign

::::
year.

::
In

:::
dry

:::::
snow545

:::::::::
conditions,

:::
the

:::::::
densely

::::::::
measured

:::::
snow

::::::::
properties

:::
are

:::::::::
practically

::::::
always

::::::::
averaged

::::
into

:::
one

::::::
single

:::::
layer,

:::::
given

:::
the

::::::
absence

:::
of

:::::
liquid

:::::
water.

:::
As

:::
the

::::::::
snowpack

:::::
starts

::::::::::
moistening,

:::
the

::::::
number

:::
of

::::::
distinct

:::::
layers

:::::::::
increases,

::
as

:
a
:::::::
function

:::
of

:::
the

:::
first

:::::::::
formation

::
of

:::::
liquid

:::::
water

:::::
within

:::
the

:::::::::
snowpack.

::::
The

::::::
highest

:::::::
number

::
of

:::::
layers

::::::::
required

::
in

::::::
SMRT

::
to

:::::
model

:::
the

:::::::::
snowpack

::
is

::::
used

::::::
during

:::
the

:::::::
ripening

:::::
phase,

::
as
:::

the
:::::

LWC
:::::::
layering

::
is
::
at
:::
its

::::
most

::::::::::::
heterogeneous

::::
state

::::::
during

::::
this

:::::
phase,

::
as

::
a
:::::::::::
consequence

::
of

:::
the

::::::::::
progression

::
of

:::
the

:::::::
wetting

:::::
front.

:::::
Later

::
in

:::
the

::::::
runoff

:::::
stage,

::::
with

::::
the

::::::::
snowpack

:::::
being

:::::
fully

::::::::
saturated,

::::
the

::::::
number

:::
of

::::
used

::::::
SMRT

::::::
layers550

::::::::
decreases

:::::
again,

::
as

::
a

::::::::::
consequence

::
of

::
a
::::
more

::::::::::::::
homogeneously

:::::
moist

:::::::::
snowpack.

::
On

:::
the

:::::
other

:::::
hand,

::::
Fig.

:
7
::::::
shows

:::
that

::::::
during

:::
the

:::::::
ripening

:::::
phase,

:::
the

::::
first

::::::::
campaign

::::
year

:::
has

:::::
been

::::::::
modelled

:::::
using

:::::
∼30%

::::
less

:::::
layers

::::
than

:::
the

:::::::
second,

::
on

::::::::
average.

:::
The

::::::::
presence

::
of

:::
ice

:::::
lenses

::::::
helped

:::
to

::::::::::
homogenize

:::
the

::::::::::
distribution

:::
of

:::::
liquid

:::::
water

::::::
within

:::
the

:::::::::
snowpack,

::::::::
resulting

:::
in

::::
more

:::::::::
uniformly

::::
wet

20



0

50

100

150

200
HS

 [c
m

]

(a) (b)

100 200 300 400 500 600 700
Density [kgm 3]

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
Temperature [°C]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
LWC [%vol]

0 2 4 6 8 10 12 14 16
SSA [m2kg 1]

222
214

198

188

169

152
146
138

128

58

12

0

SM
RT

 la
ye

rs
 [c

m
]

100 200 300 400 500 600 700
Density [kgm 3]

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
Temperature [°C]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
LWC [%vol]

0 2 4 6 8 10 12 14 16
SSA [m2kg 1]

Figure 6. Example of
:
(acomplete set

:
)
::::::
Vertical

::::::
profiles of SMRT input snow

:::::::
snowpack

:
properties for

:::::::
measured

::
in

::
the

::::
field

::
on

::::
May

:
14/05/

:
,

2024: measured
:::::::::
temperature

::::
(dark

::::
red),

::::::
density

::::
(dark

::::::
yellow),

:::::
liquid

:::::
water

:::::
content

:
(
::::

LWC; light blue),
:

and discretized with average values

:::::
specific

::::::
surface

::::
area (brown

::::
SSA;

::::
dark

::::
blue)over identified physical .

::::
The

::::::
vertical

::::::
spacing

::
of

::
the

:::::
points

::::::::
connected

:::
by

::
the

::::
lines

::::::
reflects

:::
the

::::::::::
measurement

:::::::
resolution

:::
for

:::
each

::::::
profile:

:
5
:::
cm

:::
for

:::::::::
temperature,

:
3
:::
cm

:::
for

::::::
density,

:
2
::
cm

:::
for

:::::
LWC,

:::
and

:
4
:::
cm

::
for

::::
SSA.

:::
(b)

:::::::::::
Representation

::
of

:::
the

::::
same

::::::
profiles

::::::
averaged

::::::::
according

::
to

::
the

::::::::
physically

::::::::
consistent

::::
snow

:
layers (yellow

::::::
indicated

:::
by

:::
grey

::::::::
horizontal

:::::
lines).

:::
The

::::::
layered

::::::
profiles

::
as

:
in
:::
(b)

::::
form

:::
the

::::
input

::::::::
snowpack

::
for

:::
the

:::::
SMRT

::::::
model,

:::::::
combined

::::
with

:::::
surface

::::::::
roughness

:::::::::
parameters

:::::::
measured

::
on

:::
the

::::
same

:::
day

::::::::::
(RMSH=2.7

:::
mm;

:::::::
CL=48.5

:::
mm).

:::::
layers

::::
near

:::
the

::::::
surface

:::
and

::::::::::
consistently

:::::
drier

::::::
sections

::::::
toward

:::
the

:::::::
bottom.

:::::::
Without

:::
ice

::::::
lenses,

::
in

:::::
2024,

:::
the

:::::::::
progression

:::
of

:::::
liquid

::::
water

::::
into

:::
the

:::::::::
snowpack

:::
was

:::::
more

:::::::::::::
heterogeneous,

:::::::
therefore

::::::::
requiring

:::::
more

:::::
layers

:::
in

:::
the

:::::
model

::
to

::::::
remain

:::
as

:::
true

:::
as

:::::::
possible555

::
to

:::
the

:::::::::
conditions

:::::::
observed

::
in
:::

the
:::::

field.
:::::::
Despite

:::
the

::::::
efforts

::
to

:::
find

::
a
:::::::::
reasonable

:::::::::::
compromise

:::::::
between

::
all

:::
the

::::::
above

:::::::::
mentioned
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Figure 7.
::::::::
Variability

::
of

:::
the

::::::
number

::
of

::::::::
modelling

:::::
layers

::
in

:::::
SMRT

::::
used

::
for

::::
each

::::::::
simulation

:::
day

:::
as

:
a
::::::
function

::
of
:::

the
::::::
melting

:::::
phase

:::
and

:::
the

:::::::
campaign

::::
year.

:::::::::
constraints, the optimal way to model a radar-equivalent snowpack from field measurements and/or detailed multilayer physical

model outputs remains an open question in the field of radiative transfer modeling
::::::::
modelling

:
of snow, only recently addressed

by Meloche et al. (2024), albeit for dry snow only.

4 Results560

4.1 Snowmelt
::::::::::::
Identification

::::
and

:::::::::::
re-definition

::
of

:::::::
melting phases identification from multitemporal Sentinel-1

backscattering
::::::::::
backscatter and field measurements

Fig. 8and
:
-4.1 show the evolution of the multitemporal S1 SAR backscattering

:::::::::
backscatter together with the time series

of measured properties: snow temperature, LWC, air temperature, total water content (TWC), runoff, snow water equivalent

(SWE) and surface roughness indices (RMSH and CL). The melting phases identified with the method proposed by Marin et al.565

(2020) are reported on each time series for later validation. We will refer to the snow seasons of 2022-2023 and 2023-2024 as

the 2023 and 2024 seasons, respectively.

Our measurement campaign brought us to observe that the roughness RMSH shows
::::::::
roughness

::::::::::::
measurements

:::::
show

:
clear

differences for different snow surfaces (Fig. 10). Smooth surfaces typical of new/dry snow have RMSH values around 1

mm (Fig. 10a). Thereon, the RMSH
::::::::
roughness increases with increasing surface degradation due to melt-refreeze cycles and570

sublimation (Fig. 10b). The values of RMSH measured in these conditions, which are the most persistent throughout the melt
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Figure 8. Data overview for the snow season of 2022-2023. Panel (a) shows
:

S1
:::::::::

backscatter
::::
time

:::::
series:

::::
exact

:::::
values

::
of
:::::
σV V
0 :::::::::

acquisitions

::::::::
(triangles);

:::::
range

:::::::
obtained

:::
by

:::::::::
connecting

:
the manually

:::::::::
consecutive

:::
S1

:::::::
passages

:::
by

:::::::
direction

:::
of

:::::
orbits,

:::
i.e.

:::
by

:::::::::
connecting

:::
all

:::
the

:::::::::::::::
morning/descending

::::
(M↓)

:::
and

:::
the

:::::::::::::::
afternoon/ascending

::::
(A↑)

:::::::::
acquisitions

::::::
(shaded

::::::
areas).

::::
Each

::::
panel

::
is

::::::::
subdivided

::::
into

::
the

::::::
melting

::::::
phases

:::::::
identified

::::
with

::
the

::::::
method

::
of
:::::::::::::::

Marin et al. (2020).
:::
(b)

:::::::
Manually

:
measured temperature profiles

::
of

::::
snow

:::::::::
temperature. Panel (bc) shows the

manually
:::::::
Manually

:
measured

:::::
profiles

::
of
:::::
snow liquid water content (LWC)profiles. Panel (c

:
d) shows the air

:::
Air temperature at hourly reso-

lutionas
:
, measured by the automatic sensor at WFJ. Panel (d

:
e) shows the measured

:::::::
Measured

:
total water content (TWC) (light blue), the

:
;

runoff time series automatically recorded by the lysimeter
::
at

:::
WFJ

:
(dark blue), ;

::::
lack

::
of

:::::
runoff

:::
data

:::
due

::
to the

::::::::
instrument

:::::
failure

::::
(grey

:::::
area);

snow water equivalent (SWE) both automatically recorded
:
by

:::
the

::::
snow

:::::
scale (black line) and manually measured (black points), and the

lack of runoff data due to the instrument failure (grey area
::::
white

:::::
circles). Panel (e) shows the measured time

:::
Time

:
series of

:::::::
measured

:
surface

roughness by means of the two indices
::::::::
parameters

::
– RMSH and CL.Panel
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season, lie within 3 and 10 mm approximately. Fully-formed suncups are associated to values of RMSH around 10-15 mm

(Fig. 10c). Deep suncups appear like craters on the snow surface (Fig. 10d), some reaching width of 20 cm and depths of 10

cm. In these conditions, we measured values of roughness RMSH equal or higher than 20 mm.

In 2023, the first liquid water was measured on
:::
Apr 10 /04 (Fig. 8b,d). On this date, our data show that the temperature575

of the top ∼5 cm of the snowpack was 0◦
:
°C (Fig. 8a

:
b). The air temperature reached 0◦

:
°C as well on this day (Fig. 8c

:
d).

The snowpack reached full isothermal state 20 days later. Ice layers formed throughout the season, likely as a consequence

of repeated melt-refreeze cycles and the succession of several warm and cold spells (Fig. 8c
:
d). Ice layers were observed

regularly during the measurement campaign, their presence is highlighted by locally higher values of LWC due to ponding at

approximately 100 cm from the ground. The presence of ice layers probably withheld the meltwater in the upper section of the580

snowpack, partially hindering the progression of the wetting front. LWC profiles in Fig. 8b
:
c highlight ponding above ice layers

consistently until 15/05.
::::
May

:::
15.

:
The ponding is no longer detected over the next consecutive 5 snow profiles and becomes

visible again from
::::
May 26 /05 until early June, when the ice layers likely disintegrated allowing the meltwater to percolate to

the bottom of the snowpack. The fact that the ponding above ice layers is not detected on a series of consecutive snow profiles

is probably linked to the partial refreeze of the snowpack highlighted by the drop in air temperature detected within this time585

span (Fig. 8c
:
d). However, ice layers could also be laterally non homogeneous. Fig. 8

:
f shows that the roughness associated with

wet snow starts developing short after the snowpack starts moistening, with RMSH increasing until 09/05. Then, starting from

09/05
:::
May

::
9.

:::::::
Thereon, the cold spell brought new snowfalls which smoothened the snow surface significantly, and roughness

indices reverted to typically winter values for approximately 10 days. Fully-formed suncups were observed on the field from

::::
May 31 /05 onwards. As explained in Sec. 2.2, the lysimeter time series for 2023 (Fig. 8d

:
e) is not useful to detect the runoff590

start. However, the automatic measurements indicate the first slight SWE decrease around 08/05
::::
May

:
8, following a warm spell

that lasted several days. This occurred in the presence of a fully isothermal snowpack, suggesting that meltwater may have

started to be released around this time.

In 2024, the first liquid water on the surface was measured on 08/04
:::
Apr

:
8
:

during a warm spell (Fig. 4.1b,c,d
:::
b-d). From

this date on, the wetting front moved somewhat into the snow before being interrupted by a cold spell, which caused a partial595

surface refreeze(Fig. 4.1a,b,c). The snowpack reached the full isothermal state on 09/05.
::::
May

::
9. Over the course of this season,

ice layers were not observed in the field, the progression of the wetting front was not hindered and the snowpack reached

full saturation earlier with respect to the previous year. The runoff time series confirms that the snowpack released the first

meltwater around 08/04
:::
Apr

:
8
:
– on this date, the (point-wise) measurements show a largely isothermal snowpack. Likely, the

snowpack was isothermal over the entire cell (see Fig. 4.1a,b,d
:::
b,c,e). Additionally, significant amounts of LWC were measured600

at the ground interface after 08/04
:::
Apr

::
8 and the manual measurements show a SWE decrease of ≃100 mm between 04 and

15/04.
::::
Apr

:
4
:::
and

:::
15.

:
These observations can validate the same hypothesis made for the previous season in the absence of runoff

data due to instrument failure.
:::
Our

::::::::::::
measurements

::
in
:

Fig. 4.1e shows that we measured increasing surface roughness
:
f
:::::
show

:::
that

::::::
surface

:::::::::
roughness

::::::::
increased

:
relatively late (03/06

:::
Jun

:
3) with respect to the previous season, with fully-formed suncups

being visible on the field from
::
Jun

:
19 /06 onwards.605
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Coupling the detailed, high temporal resolution information about the state of the snowpack with the multitemporal SAR

σV V
0 recorded by S1 on morning and afternoon overpasses (Fig. 8-4.1f

:
a) enables the validation of the methodology proposed

by Marin et al. (2020) to identify the melting phases. According to the authors, a drop of at least 2 dB with respect to the

winter mean in the afternoon
::::::::
/ascending

:
σV V
0 identifies the start of the moistening phase; the ripening phase starts when the

morning
:::::::::
/descending

:
σV V
0 signal shows the same drop of at least 2 dB; the runoff starts when both morningand afternoon610

::::::::::
/descending

:::
and

:::::::::::::::::
afternoon/ascending

:
σV V
0 time series reach their local minima before the monotonic increase (the authors

propose an average date between the two local minima when both the S1 satellites were available). To obtain
:::
For

:::
the

::::
two

:::::::
seasons,

::
we

:::::::::
computed the average winter backscattering

:::::::::
backscatter (σV V

0,dry) for the two seasons, we considered
::
by

:::::::::
averaging

all values recorded by all tracks over the
::::
each

::::::::
individual

:::::
track

::::
over

:::
the

::::::
course

::
of

:::
the

:
meteorological winter, i.e.from ,

:::::
from

:::
Dec

:
01 /12 until 28/02. This is the threshold

::
to

:::
Feb

:::
28.

::::
The

:::::::
resulting

::::::
values

:::
are

:::
the

:::::::::
benchmark

:
needed to identify the melting615

phases, which are summarized in Table
:
.
::::
The

:::::
results

:::
are

:::::
listed

::
in
::::

Tab.
:

2. As noted by Marin et al. (2020), the dependence of

σV V
0 on incident and aspect angles remains as a residual effect. While the overall magnitude does not change significantly, it

would be more precise, in theory, to compute four separate values for σV V
0,dry, one for each track. However, our selection of the

reference cell was guided by minimizing the influence of aspect and incidence angles on the winter σV V
0 as discussed above

(see Fig.3b). As a result, we chose to use a single, averaged value of σV V
0,dry over the 4 tracks.620

Overview on the identification of the melting phases based on the multitemporal S1 SAR backscattering as proposed by

Marin et al. (2020). For each season, the table shows the relevant values of σV V
0 and the occurrence dates. For the runoff start,

the date proposed by Marin et al. (2020) is compared against the data from the lysimeter, when available.

:::::::
Because

::
for

:::
the

:::::::
selected

::::
cell

:::
two

:::::::
morning/04 -12.5 04

:::::::::
descending

:::
and

:::::::::
afternoon/04 Ripening start -13.2

::::::::
ascending

:::::
looks

:::
are

::::::::
available,

::::
there

:::
are

::::
two

:::::::
possible

::::
dates

:::
for

:::
the

::::
start

::
of

:::
the

::::::::::
moistening

:::
and

:::::::
ripening

::::::
phase,

::::::::::
respectively.

::
In
::::::

2023,
::::
these

:::::
dates

:::
are625

:::
Apr

:::
22

:::
and

:::
29

:::
for

:::
the

::::::::::
moistening

:::::
phase

:::
and

::::
Mar

:::
28

::::
and

:::
Apr

:
26 /04 -16.9 15/04 σV V

0,min,afternoon -18.7 16/05 -20.6 10/05

σV V
0,min,morning -19.9 03/05 -19.9

::
for

:::
the

::::::::
ripening

:::::
phase.

::::
For

:::
the

::::
start

::
of

:::
the

::::::::::
moistening

::::::
phase,

:::
we

:::::::
selected

:::
the

:::::::
earliest,

:::
i.e.

:::
Apr

:::
22.

::::
For

:::
the

::::
start

::
of

:::
the

:::::::
ripening

::::::
phase,

:::
the

::::
two

::::::::
identified

:::::
dates

:::
are

::::::
almost

:::
one

::::::
month

:::::
apart,

::::::::
however,

:::
the

::::
σV V
0 ::::::::

decrease

:::::::
recorded

::
on

::::
Mar

:::
28

::
by

:::::
track

::::
#168

::::::
derives

:::::
from

:
a
:::::::::::
melt-refreeze

:::::
cycle,

:::
as

:::
the

::::::::
following

:::::
value

:::::::
recorded

::
by

:::
the

:::::
same

::::
track

::::::
aligns

::::
back

::::::
around

:::
the

::::::
winter

:::::
mean.

:::::::::
Therefore,

:::
we

:::::::
selected

::::
Apr 26 /05 Marin et al. (2020) Lysimeter Marin et al. (2020) Lysimeter630

Runoff start 09/05 No data – ∼29/04 (?) 18/05 ∼15/04

The method of Marin et al. (2020) is challenged by the low S1 revisit frequency provided by only one satellite. In detail
::
as

::
the

::::
start

::
of
:::
the

::::::::
ripening

:::::
phase.

::
In

:::::
2024, for the moistening start in 2023,

:::::
phase,

:::
the σV V

0 recorded on 17/
::::
value

::::::::
recorded

::
on

::::
Apr

04
::
by

::::
track

:::::
#015 is only 1.5 dB lower than σV V

0,dry, whereas on
:::::::
however, the next passage the drop is 7.8 dB already . For this

reason
::
of

:::
the

::::
same

:::::
track

::
on

::::
Apr

::
16

::::::::
recorded

:
a
::::
drop

:::
of

::::::
already

:::
7.4

:::
dB.

:::::::::
Therefore, the moistening start for 2023 has been placed635

on the date in between, namely 19/
:::
Apr

:
04. Moreover, due to the lower satellite revisit time, the separations

::
On

::::
this

::::
date,

:::::
track

::::
#117

:::::::
recorded

::
a
::::
drop

::
of

::
7

:::
dB

::::
with

::::::
respect

::
to

::::::
σV V
0,dry.

:::
For

:::
the

:::::::
ripening

:::::
start,

::
we

::::::
chose

:::
Apr

:::
15.

:

:::::
These

::::::::::::
considerations

:::::
show

::::
that

:::
the

::::::
method

:::
of

::::::::::::::::
Marin et al. (2020)

::
is

::::::
limited

:::
by

:::
the

:::
the

::::::
halved

:::
S1

:::::
revisit

:::::::::
frequency.

:::::
This

:::::::
becomes

::::
even

:::::
more

:::::
clear

::
for

::::
the

:::::::
selection

:::
of

:::
the

:::::
runoff

::::
start

:::::
date,

::
as

:::
the

:::::
wider

:::::::::
separation

:
between local minima are 13 and

16
:
of

:::::
σV V
0 ::::::::::

considering
::
all

::
4
:::::
looks

::
is

:::
17 days for 2023 and 2024, respectively.

::
16

:::::
days

:::
for

:::::
2024. Using the date in between640
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Table 2.
:::::::
Overview

::
on

::::
the

::::::::::
identification

:::
of

:::
the

::::::
melting

::::::
phases

:::::
based

:::
on

:::
the

:::::::::::
multitemporal

:::
S1

:::::
SAR

:::::::::
backscatter

::
as
::::::::

proposed
:::

by

::::::::::::::
Marin et al. (2020).

:::
For

::::
each

::::::
season,

:::
the

::::
table

:::::
shows

:::
the

::::::
relevant

:::::
values

:::
of

::::
σV V
0 :::

and
:::
the

::::::::
occurrence

:::::
dates

:::
for

:::
each

::::::::::::::::
afternoon/ascending

:::
(A↑)

::::
and

:::::::::::::::
morning/descending

::::
(M↓)

::::
look

:::
(and

:::::::::::
corresponding

::::::::
incidence

:::::
angle).

:::
The

:::::::
selected

:::::
values

::
for

:::
the

::::
start

::
of

::
the

:::::::::
moistening,

:::::::
ripening

:::
and

:::::
runoff

:::::
phases

:::
are

::::::::
highlighted

::
in

::::
bold.

:::
For

:::
the

:::::
runoff

::::
start,

:::
the

::::::
selected

:::
date

::::::::
according

::
to

:::
the

:::::
method

::
of
:::::::::::::::
Marin et al. (2020)

:
is
::::::::
compared

:::::
against

:::
the

:::
data

:::::::
recorded

::
by

:::
the

:::::::
lysimeter,

:::::
when

:::::::
available.

Season → Event ↓ dBDate dBDate σV V
0,dry -9.7 01/12 - 19/04 -10.4 01/12 - 04/04 Moistening start -11.2 ∼ -17.5

19

Season 2022-2023 2023-2024

Track 015 (A↑) 117 (A↑) 066 (M↓) 168 (M↓) 015 (A↑) 117 (A↑) 066 (M↓) 168 (M↓)

Local Incidence Angle 41° 32° 33° 42° 41° 32° 33° 42°

σV V
0,dry [dB] -12.3 -11.4 -8.4 -10.0 -12.6 -11.5 -8.9 -10.1

Moistening start date Apr 22 Apr 29 – – Apr 04 – Apr 16 Mar 18 – –

Moistening start value [dB] -18.5 -16.3 – – -14.1 – -20.0 -13.9 – –

Ripening start date – – Apr 26 Mar 28 – – Apr 08 Apr 15

Ripening start value [dB] – – -12.6 -13.3 – – -12.8 -17.9

σV V
0,min, date May 16 Apr 29 May 08 May 03 May 22 May 17 May 26 Jun 02

σV V
0,min, value [dB] -21.4 -16.3 -19.8 -22.4 -22.6 -23.7 -20.7 -22.8

Runoff start date (Marin et al., 2020) May 06 May 24

Runoff start date (Lysimeter) No data – ∼Apr 29 (?) ∼Apr 15

to determine the runoff start, as done by Marin et al. (2020), gives potentially unreliable results in these conditions. This

low temporal resolution makes it difficult to pinpoint precise onset dates, especially when minima are separated by such long

periods. Despite the ambiguities, on both seasons, the identified moistening phase coincides exactly with the first snowpack

warming and the consequent formation of liquid water. The identified ripening phase is also mostly consistent with the theory,

as field measurements show that the snowpack transitions to the fully isothermal state with the wetting front progressing to645

the bottom, although this process is partially hindered in 2023 by ice layers. In 2024, a sudden cold spell at the beginning

of the ripening phase caused the refreezing of the superficial meltwater (Fig. 4.1a,b,c
::
b-d). This generated a sharp increase in

both morning and afternoon σV V
0 (Fig. 4.1f

:
a). In 2024, the first instance of measuring a fully isothermal snowpack coincided

precisely with the first afternoon local minimum of σV V
0 . The positive bias of the track 117 due to its low incidence angle

does not allow to verify the same
::::
same

::::::
cannot

:::
be

::::::
verified

:
for 2023and it creates ,

::::::
which

::::::
instead

:::::
shows

:
a counterintuitive case650

where the local minimum of morning σV V
0 anticipates the local minimum of afternoon σV V

0 (Fig. 8f
:
a). Nonetheless, by the

time the morning σV V
0 reached its local minimum in 2023, the snowpack had already been fully isothermal for at least 5 days

(Fig. 8a,f
:::
a-b). This suggests that the snowpack is likely to be fully isothermal when the afternoon backscattering

::::
σV V
0 :

reaches

its local minimum. The runoff time series in 2024 shows that the snowpack had started to release meltwater as soon as in the

late moistening phase (Fig. 4.1d
:
e), in correspondence of the first local minimum of the multitemporal SAR backscattering on655

::::::::
afternoon

::::
σV V
0 ::::

time
:::::
series

:::
on

:::
Apr

:
16 /04 (Fig. 4.1f

:
a).
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Marin et al. (2020) proposed three possible explanations for the monotonic backscattering
:::::::::
backscatter

:
increase following

the local minima: (i) the increase in surface roughness, (ii) the decrease in TWC and (iii) the snow cover gradually becoming

patchy. Our data show that over a high-altitude alpine snowpack like the study plot at WFJ, surface roughness develops well

in advance of when
::::::::
roughness

::::::::
develops

:::
on

:::
the

:::::
snow

:::::::
surface

::::
well

::::::
before

:
the snow cover begins to disappear in patches.660

Therefore, at least for similar altitudes, the gradual disappearance of the snow cover can be ruled out as a cause of the increasing

backscattering
:::::::::
backscatter

:
in the late melting stage. For both seasons, our data indicate that the strongest correlation with the

monotonic increase of σV V
0 after the local minimum is observed with the gradual increase in surface roughness (Fig. 8-4.1e

:
f).

Conversely, there seems to be no remarkable correlations between the increase in σV V
0 and the TWC and/or runoff trends.

In fact, Fig. 8-4.1d
:
e
:
show that the decrease of TWC as a consequence of snow ablation is not monotonous. On the other665

hand, both automatic and manual measurements show that by the time SWE started decreasing monotonically (around
::::
May

26/05/2024 and 06/,
:::::
2023

:::
and

:::
Jun

:
06/

:
, 2024), the S1 σV V

0 had already increased again by ≃5
:
6
:
dB.

4.2 Instrumental uncertainty and variability in field measurements of liquid water content

Fig. 5 shows that liquid water has a strong impact on the real and imaginary parts of the effective permittivity of snow
::
ϵs

at C-band frequencies, and therefore, on radiative transfer modeling. For S1 σV V
0 retrievals from ground measurements, this670

poses three major challenges. In the first place, manual measurements concern a very small area/volume whereas satellite

acquisitions cover a pixel size of 20 × 20 m. Secondly, the distribution of liquid water within the snowpack can be highly

heterogeneous because of a variety of features and processes, namely capillary barriers, preferential flows, ice layers. Finally,

what is the most accurate methodology for measuring LWC in both lab and field environments remains a debated question in

snow science (Barella et al., 2024), and although the methods used in this paper attempt
:::
were

::::::::
designed to achieve a good level675

of reliability
::::::::
robustness, they are nevertheless subject to error. Therefore, all these uncertainty sources need to be taken into

account when comparing satellite σV V
0 retrievals with

::::::::
signatures

::::
with

::::::::
retrievals

:::::
driven

:::
by measured data.

In Sec. 2.4, we explained how dielectric measurements were validated against melting calorimetry in conditions of ripe snow.

We referred to the validation setup of 2023 as "co-located" only; whereas in 2024 we performed an additional "simultaneous"

validation in addition to the co-located. Figure 11 shows the spread between dielectric and calorimetric measurements in co-680

located and simultaneous setups for all the LWC validation measurements made over the two years. In 2023, the average

maximum bias between co-located measurements is 2.6% and the average standard deviation is 1.2%. In 2024, the average

maximum bias and the average standard deviation are 2.6% and 1.4% for co-located measurements and 2.3% and 1.5% for

simultaneous measurements, respectively. Figure ??
::
13

:
shows all the measured vertical profiles in detail. In 2023, there is

an overall good agreement between dielectric and calorimetric measurements. The time lag between the measurements is685

highlighted by often similar LWC profile shapes, with calorimetry generally measuring higher peak values. Unexpectedly,

in 2024, the simultaneous measurements resulted in only slightly lower biases and slightly higher standard deviations. This

:::::::::::::
counterintuitive result is supported by a number of previous studies. For example, Donahue et al. (2022) found an average

standard deviation of 1% over 10 cm wide snow samples with LWC between 0 and 5%. The study of Techel and Pielmeier

(2011) confirms the high occurrence of measurement deviations of more than 1% at short horizontal distances. However, Techel690
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and Pielmeier (2011) also show that the correlation between measurements at larger horizontal distances is higher for LWC

values lower than 1.3%. Therefore, the biases and standard deviations observed in our field measurements may overestimate the

instrument uncertainty and/or variability over larger scales comparable to the footprint of S1. Based on these considerations,

we define the large-scale LWC variability as ±1%. We use this value to assess the effect of LWC uncertainty on σV V
0 retrievals

from ground measurements.695

4.3 Interpretation of Sentinel-1 backscattering
::::::::::
backscatter

:
through SMRT simulations driven

:::::
forced

:
by field

measurements

Figure
:::
Fig. 12 shows the comparison between the

::::
time

:::::
series

::
of S1 acquisitions and the modeled

:::::::::::::
SMRT-modelled σV V

0 driven

:::::
forced

:
by snowpit measurements using the two different permittivity models

::::::::::
formulations

::
(MEMLSv3 and H-86in SMRT

:
)

and the model setup described in Sec. 3.2,
:
considering the LWC variability of ±1% estimated in Sec. 4.2. In this Figure, we700

divided the simulation results into groups and discuss possible driving mechanisms
::::::
together

::::
with

::::
Tab.

::
3,

:::::::::
simulation

::::::
results

:::
are

:::::::::
categorized

::::
into

::::::
groups,

::::
and

:::::::
potential

:::::::
sources

::
of

::::::::::::
inconsistencies

:
and/or deviations from S1

::::::
driving

::::::::
scattering

:::::::::::
mechanisms

:::
are

::::::::
discussed for each group

:
, based on the measured values of LWC, TWC,

:
and surface roughness. We show all

::
All

:
measured

profiles of LWCwith the relative measured values of
:
,
:::::
along

::::
with

:::
the

::::::::::::
corresponding

:
TWC and RMSH values,

:::
are

:::::::::
presented

in Fig. 13 and Tab. 5, which will serve as a reference in the following explanations
::
for

::::
the

::::::::
following

:::::::
analysis. Tab. 4 shows705

all biases
::
the

:::::
Root

:::::
Mean

:::::::
Squared

:::::
Errors

::::::::
(RMSE) between S1 acquisitions and simulations, according to the snow season, the

selected permittivity formulation and the melting phase. In general, both models exhibit a mean negative bias of 6
:::
≃5 dB with

respect to S1 recordings over both seasons; however, biases are more pronounced for 2024 than for 2023, with the deviation

between permittivity models being higher as well in 2024. H-86 generally gives higher σV V
0 values with respect to MEMLSv3.

In 2023, the #066 morning S1 track recorded a backscattering
:::::::::
backscatter

:
increase of more than 2 dB between

:::
Apr 05 and710

19/04.
::
19.

:
Similarly, in 2024, we observe a 2.5 dB increase in backscattering

:::::::::
backscatter

:
recorded track #117 from

:::
Feb

:
08

/02 to 04/03.
:
to
::::

Mar
:::
04.

:
We can hypothesize that such increases are driven by the thawing of the soil. However, our data are

insufficient and too uncertain to prove so, because of the possible interferences between dielectric instruments and the ground

in mostly dry snow conditions, as mentioned in Sec. 2.1.4. In dry snow conditions, there were no significant discrepancies

between S1 and simulationsduring the dry seasons; henceforth Fig. 12 only focuses on the period after the assumed soil715

thawing.

Aside the chosen permittivity model
:::::::::
formulation, five primary sources of uncertainty may account for the differences between

simulated and recorded σV V
0 . In the first place, we should consider the fact that a significant source of uncertainty between

recorded and modeled σV V
0 values

:
A

:::::::::
significant

::::
one is snow transformation and melting between satellite and measurement

acquisitions. S1 orbits intersect the field area either in the early morning or in the late afternoon (see Tab. 1). As explained720

in Sec. 2.4, measurements started at around 10:00 and would take several hours. Thus, it is likely that in both cases the LWC

during the passage is lower than the value measured at 10:00 or later because of daily melt-refreeze cycles, especially near the

snowpack surface. Moreover, the point-wise LWC measurements are not necessarily representative of the general liquid water

distribution on
::::
over

:
the entire S1 pixel

::
cell. In 2023,

:
we consistently observed ice layers over a high number of consecutive
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Table 3. Bias
:::::::::::
Supplementary

:::::::::
information

::
to

:::
Fig.

:::
12:

::::::::
measured

:::::
values

::
of

:::::
TWC,

::::
LWC,

:::::::
RMSH,

::::::::
noteworthy

:::::
events

:::
for

:::::::
scattering

:
(in dB

::::
such

:
as
::::

cold
:::::
spells

::
or

:::
late

::::::::
snowfalls)between modeled ,

:
and S1 recorded σV V

0 values according
:::::::::
explanations

:
to the snow season, the selected

permittivity formulation
:::::::
mismatch

::::::
between

:::::::
modelled

:
and melting phase

::::::
recorded

:::
S1

::::::::
backscatter

::::::::
signatures.

Group TWC LWC RMSH Event Source(s) of inconsistency, scattering mechanism

1a – – – Soil thawing – Backscattering increase due to soil thawing

2a <10 mm <3% 1 mm
Snowpack moistening

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

– Wet soil scattering

3a >10 mm >3% 1→4 mm
Snowpack ripening

Formation of surface roughness

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling

4a >10 mm >3% 3∼4 mm
Snowpack ripening

Increasing surface roughness

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling

5a >10 mm >3% ∼1 mm
New snowfall on a wet snowpack

Well-developed surface roughness
– "Buried surface roughness"

6a <10 mm <3% ∼1 mm
Cold spell (partial snowpack refreeze)

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Uncertainty in surface roughness measurements

– Wet soil scattering

7a >10 mm >3% >4 mm
Wet snowpack

Fully-formed suncups

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling

1b <10 mm <3% ∼1 mm
Snowpack moistening

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

– Wet soil scattering

2b >10 mm >3% ∼1 mm
Snowpack moistening

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

3b
<10 mm

(Varying)
<3% ∼1 mm

Cold spell (partial snowpack refreeze)

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

– Wet soil scattering

4b >10 mm >3% ∼1 mm
Snowpack ripening

Smooth surface

– Uncertainty in spatiotemporal LWC/TWC

– Scattering from surface structures (melt-refreeze)

– Surface roughness underestimation

5b >10 mm >3% ∼3 mm
Snowpack ripening

Increasing surface roughness

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling

6b >10 mm >3% ∼1 mm
New snowfall on a wet snowpack

Well-developed surface roughness
– "Buried surface roughness"

7b >10 mm >3% >4 mm
Wet snowpack

Fully-formed suncups

– Uncertainty in spatiotemporal LWC/TWC

– Uncertainty in surface roughness measurements

– Uncertainty in IEM modelling
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Table 4.
:::::
RMSE

:::
(in

:::
dB)

::::::
between

:::::::
modelled

:::
and

:::::::
recorded

::::
σV V
0 :::::

values
::::::::
according

::
to

::
the

::::
snow

::::::
season,

:::
the

::::::
selected

:::::::::
permittivity

:::::::::
formulation

:::
and

::::::
melting

::::
phase.

Season → Permittivity formulation → H-86 MEMLSv3 Data to compare H-86
:::::
Season MEMLSv3 2022-2023 Data to compare 2023-2024

Bias ↓ height
:::::::::
Permittivity

:::::::::
formulation dB

::::
H-86

:
[
::
dB] dB

:::::::::
MEMLSv3 [

::
dB] #

::::
Data

::
to

:::::::
compare [

:
#] dB

::::
H-86

:
[
::
dB] dB

:::::::::
MEMLSv3 [

::
dB] #

::::
Data

::
to

:::::::
compare [

:
#]

Overall height
::::::
Overall 5.37

::
3.4 6.57

::
4.5

:
12

:
9 6.83

::
6.2 7.86

::
7.5

:
26

::
28

:

Dry
:::
Dry 1.00

::
0.5 1.35

::
0.7

:
5 0.56

::
0.7 0.57

::
0.5

:
4

Moistening
::::::::
Moistening – – 0 11.21

::
9.1

:
11.31

:::
12.2

:
3

Ripening
:::::::
Ripening 5.17

::
5.8 6.96

::
7.6

:
4
:
3
:

9.37
::

8.4 12.00
:::
10.1

:
8

::
10

Runoff
:::::
Runoff 8.84

::
0.2 10.24

:::
1.9 3

:
1
:

4.03
::

3.3 3.43
::
2.7

:
11

snow profiles (see Fig. 8b
:
c
:
and 13). Our consecutive measurements suggest that ice layers contributed to creating a more725

spatially homogeneous liquid water distribution by acting as a natural drainage barrier for meltwater. Unlike 2023, in 2024 ice

layers were not consistently observed in the field. Likely, the melting process has been
:::
was

:
more heterogeneous over the cell

area of 20 × 20 m
::
S1

::::
cell, and point-wise measurements are less representative of wider scales on

::
in this season. This explains

the fact that days marked by high variability associated with LWC are more numerous in 2024 than in 2023. In Fig. 12
:::
Tab.

:
3, we

grouped these sources of uncertainties together under the labels "uncertainty in spatiotemporal LWC
:::::
/TWC". Potentially, this730

source of uncertainty affects every S1 retrieval from field data. However, it definitely carries more weight than other sources

of error at early melt stages when the simulation variability associated to LWC uncertainty is particularly high, i.e., when the

TWC is low (24 to 26/04/2023, 04/
:::
Apr

::::::
24-26,

:::::
2023;

::::
Apr 04/,

:
2024) and during both the cold spells of 2023 (

::::
May 17/05) and

2024 (15 to 23/04
:::
Apr

::::::
15-23), which caused the partial refreeze of the snowpack (see Fig. 8-4.1a,b, c

:
,
::::::
4.1b-d).

Daily melt-refreeze cycles, however, not only alter the amount of LWC/TWC in the snowpack, but they also drive the for-735

mation of surface structures that can create additional scattering which is not accounted for in the simulations, i.e. crusts (Lund

et al., 2022; Brangers et al., 2024). In Fig. 12
:::
Tab.

::
3, we labeled this uncertainty source as "scattering from surface structures

due to (melt-refreeze
:
)". This uncertainty applies to the same cases as where "uncertainty in spatiotemporal LWC

:::::
/TWC" ap-

plies, but it likely holds more weight when the TWC is slightly higher and the simulation variability according to LWC is lower

(08 to 15/04/2024,
:::
Apr

::::::
08-15,

:::::
2024;

::::
Apr 27 /04 to 09/

:
-
::::
May

:
05/

:
, 2024).740

Another cause of significant discrepancy between recorded and modeled
::::::::
modelled σV V

0 in the presence of a mostly dry

snowpack with a smooth surface may be the thawing of the soil. This process creates a thin layer of liquid water overlying

the natural soil roughness or absorbed into the basal snow layer (Lombardo et al., 2025). The combination of snow wetness

and roughness, as will be shown later in the paper, can be responsible for backscattering
:::::::::
backscatter increases up to 7 dB.

In Fig. 12
:::
Tab.

::
3
:
we refer to this kind of uncertainty as "scattering from the wet soil

::
wet

::::
soil

::::::::
scattering". This uncertainty745

potentially applies to the instances when the TWC is relatively low and the variability associated to LWC is high. Between 04

and 27/04/
:::
Apr

:::::
04-27,

:
2024, our measurements show considerable amounts of liquid water at the soil interface with otherwise

relatively dry snowpack and smooth surfaces (see Fig. 13). The lysimeter time series corroborates these measurements by

30



Table 5. Total Water Content
::::
water

:::::
content

:
(TWC) and Surface Roughness

:::::
surface

::::::::
roughness

:
(RMSH) values measured on the same dates

as
::
for the LWC profiles shown in Fig. 13.

2023 2024

::::
Date ::::

TWC

[
:::
mm]

:::::
RMSH

:

[
:::
mm] ::::

Date ::::
TWC

[
:::
mm]

:::::
RMSH

:

[
:::
mm]

::
Apr

::
24

:
3

:
3
: :::

Apr
::
04

:
2

:
1
:

::
Apr

::
26

:
1

:
1
: :::

Apr
::
08

::
13

:
2
:

::
Apr

::
29

::
113

: :
1
: :::

Apr
::
11

::
14

:
1
:

:::
May

:::
01

::
39

:
2
: :::

Apr
::
15

::
34

:
2
:

:::
May

:::
03

::
39

:
2
: :::

Apr
::
16

:
6

:
–
:

:::
May

:::
05

::
114

: :
3
: :::

Apr
::
18

:
3

:
1
:

:::
May

:::
08

::
143

: :
3
: :::

Apr
::
23

:
4

:
2
:

:::
May

:::
09

::
102

: :
4
: :::

Apr
::
27

::
11

:
1
:

:::
May

:::
11

::
18

:
1
: :::

May
:::
02

::
16

:
2
:

:::
May

:::
12

::
22

:
2
: :::

May
:::
09

::
161

: :
1
:

:::
May

:::
15

::
14

:
1
: :::

May
:::
10

::
62

:
2
:

:::
May

:::
17

::
11

:
1
: :::

May
:::
14

::
46

:
3
:

:::
May

:::
19

::
36

:
3
: :::

May
:::
21

::
96

:
1
:

:::
May

:::
22

::
72

:
–
: :::

May
:::
22

::
110

: :
1
:

:::
May

:::
24

::
24

:
3
: :::

May
:::
29

::
80

:
2
:

:::
May

:::
26

::
129

: :
–
: ::

Jun
::
03

::
145

: :
4
:

:::
May

:::
29

::
116

: :
4
: ::

Jun
::
07

::
115

: :
3
:

:::
May

:::
31

::
193

: :
7
: ::

Jun
::
10

::
44

:
4
:

::
Jun

::
02

::
27

::
10

::
Jun

::
14

::
47

:
6
:

::
Jun

::
05

::
38

:
–
: ::

Jun
::
19

::
129

: ::
14

::
Jun

::
07

::
67

:
9
: ::

Jun
::
22

::
71

::
12

::
Jun

::
09

::
98

::
16

::
Jun

::
26

::
63

:
–
:

::
Jun

::
12

::
16

::
16

::
Jun

::
27

::
42

::
12

::
Jun

::
14

::
13

::
21

::
Jul

::
01

::
22

::
14

::
Jun

::
16

::
64

::
30

::
Jul

::
04

::
29

::
13
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detecting runoff start on
:::
Apr 08/04/,

:
2024 (see Fig. 4.1d

:
e). However, we lack sufficient data in order to prove and explore this

possible scattering source, therefore we mention it only
:::
only

:::::::
mention

::
it
:
as an hypothesis.750

Two similar instances in 2023 (05 to 09/05
::::
May

:::::
05-09) and 2024 (

:::
Apr

:
10 and 14/05) suggest another interesting phe-

nomenon likely affecting simulation accuracy. On both these intervals, Fig. 12 shows very good agreement between recorded

and modeled
:::::::
modelled

:
values of σV V

0 , regardless of the chosen permittivity model and the variability associated to LWC. On

::
In both instances, surface roughness had just started developing on a wet snow surface (LWC >

:::::
LWC>3%), with measured

RMSH values between 3 and 4 mm (see Fig. 10b). Thereafter, spring snowfalls cover the early-stage roughness and the snow755

surface reverts to smooth with RMSH values between 1 and 2 mm (see Fig. 10a). On both years, the group of simulations fol-

lowing the spring snowfalls (i.e. 11 to 15/05/
::::
May

:::::
11-15,

:
2023and

:
;
::::
May

:
21 and 22/05/,

:
2024) show again strong biases when

compared to S1 recordings. This bias is almost certainly due to the fact that the surface roughness which had started to develop

is now
:::
was

::::
then buried below a smooth layer of new snow and it is not simulated by SMRT in the proposed configuration (see

Sec 3.2). In Fig. 12
:::
Tab.

::
3 we labeled this phenomenon as "buried

::::::
surface roughness".760

Generally, simulations are in better agreement with S1 recordings when the measured surface RMSH is above 3 mm. Fig.

12 shows multiple groups of simulations where S1 retrievals from field data gain increasing accuracy with increasing RMSH

on a wet surface, together with a decreasing dependence on the chosen permittivity model and the uncertainty associated

to LWC (
:::
Apr

:
29 /04 to

::
to

::::
May

:
09/05/2023,

:
,
:::::
2023;

::::
May

:
19 /05 to

::
to

:::
Jun

:
09/06/

:
, 2023and ;

:::::
May

:
29 /05 to

:
to

:::
Jul

:
01/07/

:
,

2024). These instances suggest that in conditions of increasing surface roughness on a wet snow surface, additional source of765

uncertainty in S1 retrievals from field data might be associated to the IEM modeling (see Sec
:
. 3.2) translating surface roughness

in backscattering
:::::::::
backscatter

:
response and/or to point-wise panel measurements underestimating the surface roughness of the

entire S1 cell. In this sense, the fact that the chosen reference cell might slightly overlap with the snow surface disturbed by

snow profile digging is another factor to consider to explain discrepancies between S1 recordings and retrievals. In Fig. 12
::::
Tab.

:
3
:
we labeled these sources as "uncertainties in IEM modeling

:::::::::
uncertainty

:::
in

::::
IEM

::::::::
modelling" and "uncertainties in

:::::::::
uncertainty770

::
in

::::::
surface roughness measurements", respectively.

Interestingly, the S1 signal saturates on both years at values of σV V
0 around ∼-20 dB , which is

::
of

:::::
-22.4

:::
and

:::::
-23.7

:::
dB

:::
for

::::
2023

:::
and

::::::
2024,

::::::::::
respectively.

:::::
These

::::::
values

:::
are

:
close to the nominal noise equivalent sigma naught (NESZ) of S1, i.e. -22 dB.

The saturation of the signal is obtained by SMRT at much lower values, around ∼-30 dB, regardless of the chosen permittivity

model
:::::::::
formulation.775

4.3.1 C-band radar backscattering
::::::::::
backscatter

:
sensitivity to the coupled evolution of surface roughness and liquid

water content

To study the C-band radar backscattering
:::::::::
backscatter sensitivity to the coupled evolution of surface roughness and LWC, we

selected the date of
:::
Apr

:
16/04/,

:
2024. On this date, we measured a melt event in the superficial 45 cm. The bottom part of the

snowpack was homogeneously dry and was discretized as a one layer with the average of the scattering properties measured780

in the field. These values are representative of a compacted snowpack structure at the beginning of the melt process: density

of 428 kgm-3, SSA of 15.1 m2kg-1 and temperature of -0.1◦°C. From this configuration, we prepared a series of synthetic
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snowpack variations with surface LWC increasing from 0 to 12%, and coupled each of them with a range of surface roughness

RMSH increasing from 1 to 15 mm. The extremes of the explored surface roughness range
:::::
These

:::::::
extremes

:
represent a smooth

surface characteristic
::::::
typical of recent snowfall and the highly textured surface of fully formed suncups, respectively. To ensure785

consistency, we gradually increased the value of the second roughness parameter CL as well. To do so, we used an empirical

logarithmic relationship extracted from field data between RMSH and CL, which we report in Fig. A1. However, this empirical

relationship is based on a limited number of points (75 in total) which show larger spreads
:::::
spread for increasing values of

RMSH. Therefore, we assume that the only discontinuity in the experiment
:::
two

:::::::::::::
discontinuities

::
in

::
the

:::::::::::
experimental

:
results (see

Fig. 14b, RMSH =
::
a-c,

::::::::
RMSH=3 mm and LWCtop = ::::::::

LWCtop =12%) can be explained considering this uncertainty. We run790

all experiments with the same incidence angle of 41◦
:::
For

::::::
clarity,

::::
these

:::::
points

:::::
were

::::::::
removed.

:::
All

::::::::::
experiments

::::
were

:::
run

::::
with

::::
two

::::::::
incidence

:::::
angles

::
–

:::
30°

:::
and

::::
40°

:
–
:::::
which

::::::::
represent

:::
the

::::::
overall

:::::
range

::
of

::::::
angles

:::::::
between

:::::::
satellite

:::::::::
overpasses

:::
and

:::
the

:::::
snow

::::::
surface

:::::
within

:::
the

::::::::
reference

::::
cell

::::
(see

:::
Fig.

::
2
::::
and

::::
Tab.

::
1). The result of all the experiments is shown in Fig. 14

:
, for both permittivity

formulations.

In general, Fig. 14 shows that the intensity of the scattering response has a strong dependence on LWC for lower values of795

surface roughness (RMSH ≤
:::::::
RMSH≤3 mm). The higher the surface roughness, the weaker the dependence on LWC. More

in detail, with H-86, for LWC values lower or equal to 0.5%, simultaneously increasing surface LWC and surface roughness

causes a decrease in C-band σV V
0 of a maximum of 2 dB. Within this range, the intensity of the σV V

0 drop from smooth to

rough surfaces decreases gradually with increasing LWC. For LWC values higher than 0.5%, the spread in σV V
0 as a function

of increasing surface roughness for the same value of LWC increases, with a reversed trend. Simultaneously increasing LWC800

eventually generates a σV V
0 increase for all the considered roughness values in this experiment. Interestingly, the higher the

surface roughness, the lower LWC value is needed to invert the trend: for RMSH =
:::::::
RMSH=15 mm (typical of a textured

snow surface where suncups are visible, but also very close to the limit of validity of the IEM), σV V
0 starts to increase for

LWC ≥
::::::
LWC≥1%, whereas for RMSH =

::::::
RMSH=3 mm, the σV V

0 only starts to increase for LWC ≥
:::::
LWC≥2%. For LWC

values higher than the threshold of 0.5%, the surface roughness influences the C-band backscattering
:::::::::
backscatter

:
response to805

an extent that is comparable to the effect of LWC alone over a smooth surface. Similar considerations can be done for the

experiments run with the MEMLSv3permittivity formulation, but as a consequence of the different absorption, the above-

mentioned changes in σV V
0 trends happen for lower values of LWC. Besides these considerations

::::::::::
Furthermore, the experiments

in Fig. 14 reveal that, regardless of the permittivity formulation, for relatively low values of LWC (≃1%), a change in surface

RMSH from 2 to 3 mm generates a remarkable shift
::::::
increase

:
of ≃6 dB in the backscattering response. According to our810

field observations, such values were typically recorded
:::::::::
backscatter

::::::::
response.

::
In

:::
our

:::::
field

:::::::::
campaign,

:::
we

:::::::
typically

:::::::::
measured

::::::::
roughness

::::::
values

::
in

::::
this

:::::
range over snow surfaces undergoing the first cycles of melt-refreeze metamorphism. Interestingly,

the value of 6 dB is almost exactly
::::
very

:::::
close

::
to

:
the average bias observed between S1 acquisitions and modeled values

of
::::::::::::::
SMRT-modelled σV V

0 with SMRT during the
:::::
during

::::
the

:::::::::
moistening

::::
and ripening phase (see Tab. 4). Therefore, we can

conclude that the increase in backscattering from the minimum is due
::::
This

:::::::
supports

:::
the

:::::::::
hypothesis

::::
that

:::::
panel

::::::::::::
measurements815

:::
may

::::::::::::
underestimate

:::
the

:::::::::
large-scale

::::::
surface

:::::::::
roughness.

:::::::::
Moreover,

:::
the

::::::::::
backscatter

:::::::
increase

::::::::
occurring

:::
for

::
all

:::::
LWC

:::
and

:::::::::
regardless
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::
of

:::
the

::::::::
incidence

:::::
angle

:::::::
confirms

::::
that

:::
the

::::::::::
monotonous

:::::::
increase

::
in

::::::::::
backscatter

::::::::
following

:::
the

::::
local

:::::::::
minimum

:::
can

::
be

:::::::::
attributed to

the formation of suncups,
:::
as

::::::
initially

:::::::::
suggested

::
by

:::
the

::::::::::::
measurements

:::::
alone.

:

::::::
Finally,

::::
Fig.

::::
14c,f

:::::
allow

::::::::::::
considerations

::::::::
regarding

:::
the

:::::
impact

::
of

:::
the

::::::::
incidence

::::::
angle.

::
To

::
do

:::
so,

:::
we

:::
use

:::
the

::::
index

::::::::::::::

∣∣∆σV V
0

∣∣
40°−30°,

:::
i.e.,

:::
the

:::::::
absolute

:::::::::
difference

::
in

::::::::::
backscatter

:::::::
between

:::
the

::::
two

::::::::
incidence

::::::
angles

::
of

::::
40°

:::
and

::::
30°

:
–
:::
the

:::::
range

:::
of

::::::::
incidence

::::::
angles820

::::::::::
overlooking

:::
the

::::::::
reference

::::
cell.

:::
For

::::::
smooth

:::::::
surfaces

::::::::::::::
(1≤RMSH≤ 2)

::::
and

::
for

::::::::::::
LWC≥ 1.5%,

:::::::

∣∣∆σV V
0

∣∣
:::::::

exceeds
::
2
:::
dB,

::::
i.e.,

:::::
twice

::
the

::::::::
nominal

::::::::::
uncertainty

::
of

:::
S1

::::
(see

::::
Sec.

:::::
2.3).

:::
For

:::::
LWC

::::::
lower

::::
than

::::::
1.5%,

:::::::

∣∣∆σV V
0

∣∣
::

is
::::::

highly
::::::::

sensitive
::
to
::::::

small
::::::::
increases

::
in

:::::
LWC.

::::
For

::::::::::
RMSH≥ 3,

:::
the

:::::::::
sensitivity

::
of

::::::::

∣∣∆σV V
0

∣∣
::
to

:::::::
changes

:::
in

:::::
LWC

::::::
almost

::::::::::
disappears.

::
In

:::::::::
conditions

:::
of

:::::::::::
fully-formed

::::::
suncups

:::::::::::::
(RMSH≥ 10),

::::::::

∣∣∆σV V
0

∣∣
:::::
drops

::::::
below

:::
the

:::::::
nominal

:::::::::
sensitivity

:::
of

:::
1.0

::::
dB

:::
for

:::::
every

:::::
LWC

::::::
value,

::::::::
meaning

:::
that

::::
the

:::::::::
backscatter

::::::
signals

:::::
show

::::::::::::
progressively

::::::
weaker

:::::::
angular

::::::::::
dependence

:::
for

::::::
highly

:::::::::
structured

:::::
snow

:::::::
surfaces.

:::::
This

:::::::::::
phenomenon825

:
is
::::::
easily

:::::::::
understood

::::::::::
considering

::::
that,

:::
on

:::::
rough

::::::::
surfaces,

::::::
diffuse

::::::::
scattering

::
is

:::::::::
enhanced.

:::::::::
Therefore,

:::
the

:::::::
position

::
of

:::
the

::::::
sensor

:::::::
relatively

:::
to

:::
the

::::
snow

:::::::
surface

:::::::
becomes

::::
less

:::::::::
important,

::
as

:::
the

::::::::
reflected

::::::
energy

::
is

:::
less

::::::::::
directional

:::
and

:::::
more

:::::::
broadly

::::::::
scattered.

:::
The

:::::
same

:::::::::::
phenomenon

:::::::
explains

::::
the

:::::::
apparent

:::::
slight

::::::::::
backscatter

::::::::
decrease

:::
for

::::::::::
RMSH≥ 10

::
at
::::::

angles
:::
of

:::
30°

:::::
(Fig.

::::::
14b,e).

:::
At

:::::
lower

::::::::
incidence

::::::
angles,

:::
the

::::
radar

:::::
beam

::
is

:::::
closer

::
to
::::::::::::
perpendicular

::
to

:::
the

::::::
surface

::::
than

::
it

::
is

::
at

:::::
higher

::::::::
incidence

:::::::
angles.

:::
On

:::::
rough

:::::::
surfaces,

::::
with

::::::::
enhanced

::::::
diffuse

:::::::::
scattering,

:::
the

:::::::
fraction

::
of

::::::
energy

:::::::
reflected

:::::::
directly

::::
back

::
to

:::
the

::::::
sensor

:
is
:::::::
reduced.830

5 Discussion

Two consecutive years of detailed snow profiling with a specific focus on the melting season gave an unprecedented overview

on the multitemporal evolution of the SAR backscattering
:::::::::
backscatter as a result of the measured

:::::::
changing

:
snowpack prop-

erties. The identification of the melting phases based on the evolution of multitemporal SAR backscattering as proposed by

(Marin et al., 2020)
::::::::::::::::
Marin et al. (2020) was complicated by two factors: (i) the failure of Sentinel-1B in 2022, which resulted835

in a halved availability of satellite recordings and (ii) with the ideal incidence angle for wet snow separability being ≃45◦

(Karbou et al., 2021)
::::::::::::::::::::::::::::::::
(Nagler et al., 2016; Karbou et al., 2021)

:
,
:::
and

:::
as

::::::
shown

::
by

:::
the

:::::::::::
experiments

::
in

::::
Fig.

:::
14, lower incidence

angles likely dampened the backscattering response to wet
::::::
dampen

:::
the

::::::::::
backscatter

:::::::
response

::
to

::::::::::
moistening snow. Despite these

limitations, using nothing more than information on σV V
0 change with respect to winter means, the threshold-based method

identified the moistening and ripening phases for both years
::::
with

::::
high

::::::::
accuracy.840

Using
::::
With

:
the first measured time series of surface roughness parameters, we demonstrated that for a high-altitude Alpine

snowpack ,
:::::
alpine

:::::::::
snowpack

::
– where radiation can be the dominant energy input during the melting season and surface

roughness normally develops several weeks before the snow cover starts forming patches ,
::::::
showing

:::::::
patches

::
– the observed

monotonous increase in backscattering
:::::::::
backscatter

::
at

:::
the

::::
end

:::
of

:::
the

:::::::
melting

::::::
season

:
is physically related to the develop-

ment of surface roughness, from initial surface degradation due to melt-refreeze cycles
:::::
and/or

:::
the

::::::::
sequence

::::
and

::::::::
intensity845

::
of

:::::::
snowfall

::::::
events, to the formation of suncups. This connection

:::::::::::
phenomenon was only hypothesized by Marin et al. (2020), as

without ground data
:
.
::::::
Without

:::::::
ground

::::
truth

::::::::
reference, it is impossible to distinguish the effect of surface roughness from patchy

::::::::::
disappearing

:
snow using multitemporal SAR backscattering

:::::::::
backscatter

:
alone. Additionally, the start of the monotonous in-

crease in multitemporal SAR backscattering
:::::::::
backscatter

:
defines the local minima in the time series. Several studies were
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carried out in recent years where such minima were associated to the runoff start (Gagliano et al., 2023; Darychuk et al., 2023).850

However, the proximity of backscatter minimum and runoff start is not due to SAR direct detection of meltwater. Instead, this

apparent coincidence arises at the specific frequency of S1 because of an interplay of several factors. As the snowpack reaches

the maximum detectable water content by S1 (which reduces scattering), surface roughness begins to develop, enhancing scat-

tering. These mechanisms will be discussed individually in the remaining of this discussion. Based on our data, the only and

most likely conclusion we can extrapolate from the backscattering
::::
draw

:::::
from

:::
the

:::::::::
backscatter

:
minima from a practical point of855

view is that the snowpack is in an isothermal state and likely already releasing water. However, processes such as melt-refreeze

cycles, sublimation, compaction, or settlement in the upper snow layers can potentially lead to the formation of rough surfaces

before the snowpack starts releasing meltwater runoff. Therefore, it is relevant to rethink how information on backscattering

:::::::::
backscatter

:
minima are used for hydrological applications, especially when counting on a limited satellite revisit frequency.

Further research should
:::
also

:
investigate other potential energy input mechanisms that are typical of snowpacks in environments860

outside the high-altitude and mid-latitude conditions explored in this study.

Reproducing satellite backscattering through radiative transfer modeling driven by field measurements involves
::::
With

:::::::
radiative

::::::
transfer

:::::::::
modelling,

:::
we

::::
were

::::
able

::
to

:::
link

::::::::
measured

:::::
snow

::::::::
properties

::
to

::::::::
retrieved

:::::::::::
satellite-based

:::::
radar

::::::
signals,

::::::
aiming

::
at

::::::::::
reproducing

::
the

:::::::::::::
multitemporal

:::::::::
backscatter

:::::
time

:::::
series

::::::::
recorded

:::
by

:::
S1.

:::::
This

:::::::
analysis

:::::::
revealed

::::
that

::
–
:::::
rather

:::::
than

:::::::
melting

::::::
phases

:
–
::::

the

:::::::::::
multitemporal

:::
S1

:::::::::
backscatter

::::
time

:::::
series

:::::::
identify

::::
two

::::
main

:::::::
regimes,

:::::
each

:::::
driven

::
by

::
a
:::::::
different

::::::::
dominant

:::::
factor

::::::::::
influencing

:::
the865

::::
radar

::::::::
response:

:::::
LWC

:::
and

:::::::
surface

:::::::::
roughness.

:::::
Thus,

::
as

::::::
shown

::
in

::::
Fig.

:::
12,

:::
the

:::::::::
moistening

::::
and

:::::::
ripening

::::::
phases

:::::
could

::
be

:::::::
merged

:::
into

::
a
:::::
single

::::::
phase

::::::::
primarily

:::::::::
dominated

:::
by

:::::
LWC,

::::::::
whereas

:::
the

:::::
runoff

::::::
phase

:::::
could

:::
be

::::::::
redefined

::
as

::
a
::::::::::::::::::
roughness-dominated

:::::
phase.

:::::::::
Modelling

:::::::
satellite

::::::::::
backscatter

::::::
signals

::::::
forced

:::
by

::::
field

::::::::::::
measurements

:::::::
requires

:
accounting for several sources of un-

certainty, which can be categorized into two main factors: LWC and surface roughness
:::
are

::::::::::::
predominantly

:::::::::
associated

::
to

:::::
these

:::
two

::::::::
variables. The uncertainty associated to LWC manifests itself in many different ways: the time lag between satellite and870

measurement acquisitions, the scattering originating from surface structures formed by melt-refreeze cycles, the spatial het-

erogeneity of the LWC distribution, the instrument uncertainty associated to the measurements and, more on the RT modeling

::::::::
modelling

:
side, a lack of a definite permittivity formulation for wet snow. The uncertainty associated to

::::::
surface

:
roughness

is mostly linked to measurement inaccuracies (and/or not representativeness for the entire S1 cell) and, on the RT modeling

::::::::
modelling

:
side, to possible errors in the IEM surface model.875

Within the approximately 5 hours separating satellite and measurements acquisitions, the liquid water per layer can change

significantly (Kendra et al., 1998; Techel and Pielmeier, 2011), especially during the moistening and ripening phases or within

cold spells, as indicated by the higher simulation variabilities in Fig. 12. Especially on
:::
On early stages of the melt process,

our measurements are likely not representative for
::
of the snowpack state overlooked by S1 because of the strong effect of

melt-refreeze. Our findings confirm that C-band σV V
0 is highly sensitive to diurnal snowpack variability, particularly during880

the early stages of melting when features such as melt-refreeze crusts are present (Lund et al., 2022; Brangers et al., 2024). As

noted in Brangers et al. (2024), this strong dependence
::::::::
potentially

:
complicates LWC retrievals significantly at these latitudes.

This point raises concerns, because the early stages of melting represent a critical period when S1 can detect LWC and likely

the only window of opportunity to obtain and integrate reasonable information.
:::::::
However,

::::
our

:::
RT

:::::::::
simulations

::::::
forced

:::
by

::::
field
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:::::::::::
measurements

:::::
were

::::
able

::
to

:::::::
attribute

:::
the

::::::::
observed

::::
σV V
0 :::::

drops
::::::
across

::
all

::::::
tracks

::::
over

::::
both

:::::
years

:
–
::::
6.2,

:::
4.2,

::::
1.5,

:::
and

:::
7.8

:::
dB

::
–

::
to885

:::::::::::
corresponding

:::::::::
measured

:::::
TWC

::
of

::
3,

::
1,

::
2,

:::
and

:::
34

::::
mm,

:::::::::::
respectively.

:::::
These

::::::
results

:::
are

::
in

:::
line

::::
with

:::
the

::::::::::
tower-based

:::::::::::
experiments

::
of

:::::::::::::::::::::::::::::::::::::::
Strozzi et al. (1997); Strozzi and Matzler (1998).

:

Another issue is the instrument uncertainty in LWC measurements. The deviations between dielectric and calorimetric

measurements that we obtained throughout the campaign are in line with previous field and lab studies (Kinar and Pomeroy,

2015; Avanzi et al., 2016). Unexpectedly, co-located measurements in 2023 in the presence of ice lenses showed smaller890

deviations with respect to simultaneous measurements in 2024. Localized high values of LWC, such as for ponding meltwater

above ice lenses, can pose accuracy problems for instruments that empirically estimate the volumetric liquid water content from

the snow permittivity (Techel and Pielmeier, 2011). However, as already discussed, their presence could homogenize the overall

liquid water distribution among the cell overlooked by the satellite. The increased variability between measurement techniques

in 2024 may be (at least partially) due to the increased LWC hetereogeneity compared to 2023. This may indicate that the895

snowpack stratigraphy and LWC conditions play a larger role than measurement errors due to spatial and temporal offsets.

Accounting for the LWC instrument uncertainty ,
:
–
:
which we estimated to approximately 1% from our data and which are

::::
being

::::::::::::
approximately

::::
1%

::::
from

:::
our

:::::::::::::
measurements,

:::
and in line with previous similar comparative studies (Techel and Pielmeier,

2011; Donahue et al., 2022) ,
:
– generates an uncertainty range in the simulated σV V

0 which is higher than the variability of the

satellite recorded σV V
0 :::::

signal
::::::::
recorded

::
by

:::
S1 over the course of one snow season. Highest deviations happen for highest values900

of LWC, in accordance
:::
line

:
with the findings of Veyssière et al. (2019).

Finally, the lack of a definitive permittivity formulation for wet snow poses a significant challenge for the scientific commu-

nity. Developing
:::
The

::::::::::
permittivity

:::::::::::
formulations

:::::::
selected

:::
for

:::
this

:::::
study

:::::::
exhibit

::::::
similar

:::::::
spectral

::::::
shapes

:::
(see

::::
Fig.

::
5)
::::

and
::::
are,

::
to

:::
our

:::::::::
knowledge,

:::
the

::::
only

::::
ones

::::
that

::::
have

::::
been

::::::::
validated

::::::
against

:::::::::
real-world

:::::::::::
observations

::
at

::::::
C-band

::::::::::
frequencies.

:::
As

:::::::::
mentioned

::
in

:::
Sec.

::::
3.2,

:::
the

::::::::::
permittivity

:::::::::
formulation

::::::::
describes

::::
how

:::
the

::::
real

:::
and

::::::::
imaginary

::::
part

::
of

::
ϵs::::::

change
::::
with

:::::::::
increasing

:::::::
fractions

:::
of

:::::
liquid905

:::::
water,

:::
and

::::::::
therefore

::::
how

:::::
radar

::::::::::
microwaves

:::::::
interact

::::
with

:::
the

:::::::::
snowpack.

::
ϵs::

is
:::::::::
computed

:::::
using

::::::
mixing

:::::::
theories

::
to

:::::::
account

:::
for

::::::
volume

:::::::
fractions

:::
of

:::
ice,

:::::
water

:::
and

:::
air

::
in

:::
the

::::
snow

::::::::
medium.

:::::::::
MEMLSv3

:::::::::::
parametrizes

:::
the

:::::
shape

::
of

:::::
water

::::::::
inclusions

:::
as

::::::::
elongated

::::::::
spheroids

:::::::::
embedded

::
in

::
a

:::::::::::
homogeneous

:::::
host

:::::::
medium.

:::::
This

::::::::
represents

:::
an

:::::::::
important

::::::
source

::
of

::::::::::
uncertainty.

:::
As

::::::
liquid

:::::
water

::::::::
increases,

:::
the

:::::
shape

:::
and

:::::::::
orientation

::
of

:::::
water

:::::::::
inclusions

::::::::::
significantly

::::::
affects

:::
ϵs,

::
as

:::
the

:::::::::::::
electromagnetic

::::
field

:::::::
interacts

::::
with

:::::
them

::
in

:
a
::::::::::::::
shape-dependent

::::
way,

:::::::::
generating

::::::::::
anisotropic

::::::::
responses

::::::::::::::::::::::::::::::::
(Arslan et al., 2003; Chang et al., 2016)

:
.
::::::::
However,

::::::::::::
characterizing910

::
the

::::::::
temporal

::::::::
evolution

::
of

:::
the

:::::
shape

::
of

:::::
water

:::::::::
inclusions

::::::
during

::::::
melting

::::::::
processes

::
is
:::
an

::::::::
ambitious

:::
and

::::::::::
challenging

::::
task

::::
that

:::
has

::::
only

::::
been

::::::::
addressed

::::
very

:::::::
recently

::
by

:::::::::::::::
Krol et al. (2024)

:::::::
through

::::
rapid

::::
MRI

::::::::
profiling

::
in

:
a
:::::::::
controlled

::::::::
laboratory

:::::::::::
environment.

:::
At

::
the

::::
time

::::
our

:::::::::::
measurement

::::::::
campaign

:::
was

::::::::
designed

:::
and

::::::::::
conducted,

::::
these

:::::::
methods

:::
did

:::
not

:::
yet

::::
exist

::
–
::
let

:::::
alone

::::
their

:::::::::::
applicability

::
in

:::
the

:::::
field,

:::::
which

::
is
::::
still

:::::::
entirely

::::::::
unknown.

::::::
These

::::::
recent

::::::::::::
advancements

:::
are

::::::
highly

::::::::
promising

::::
for

:::
the

::::::
crucial

::::::::
challenge

:::
of

:::::::::
developing

:
a comprehensive model applicable across all frequencies and LWC conditionsis crucial. This study highlights915

the discrepancies between simulated and actual S1 backscattering measurements, possibly due to overestimated absorption

loss in existing models . While matching the observed backscattering would suggest an imaginary permittivity
:::::::::
Moreover,

:::
Fig.

:::
12

::::::::
highlights

::::::::::::
discrepancies

::
of

::::::::::::
approximately

::
6
:::
dB

:::::::
between

::::::::::::::
SMRT-simulated

::::
and

::::::::::::::
satellite-recorded

::::::::::
backscatter

:::::::
signals,

::::::::
especially

:::::
when

::::
σV V
0 ::

is
::::::
largely

:::::::::
dominated

::
by

:::::
LWC.

::::::
Similar

:::::::::
deviations

::::
were

:::::
found

:::
by

::::::::::::::::::
Veyssière et al. (2019)

:::::
using

::::::::::
MEMLS&a
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::
to

::::::::
reproduce

:::::
σV V
0 :::::

during
::::::::::
consecutive

::::
melt

:::::::
seasons

::::
over

::::::
alpine

:::::
areas.

:::::::::::
Additionally,

::::
both

::::::::::
permittivity

::::::
models

:::::::
saturate

:::::
σV V
0 ::

at920

:::::
values

:::::
below

::::
-30

:::
dB.

:::::
Such

:::
low

::::::
values

:::
are

:::::
never

::::::::
recorded

::
by

:::
S1,

::::::
which

:::::::
saturates

:::
at

::::::
around

:::
-22

:::
dB.

:::::::
Similar

:::::
signal

:::::::::
saturation

:::::::
(between

::::
-20

:::
and

::::
-25

:::
dB)

:::
in

:::
the

:::::::
C-band

::
in

:::::::
vertical

:::::::::::::
co-polarizations

:::
are

:::::::::
confirmed

:::
by

:::
the

::::::::::
tower-based

::::::::::
radiometric

:::::::
studies

::
of

:::::::::::::::::::::::::::::::::::::::
Strozzi et al. (1997); Strozzi and Matzler (1998).

:::::::::
Matching

:::
the

::::::::
recorded

:::
S1

::::
σV V
0 ::::::

would
:::::::
require

::
an

:::::::::
imaginary

::::
part

::
of

:::
ϵs

similar to that at 1 GHz ,
:
–
:

this would imply unrealistic penetration depths at
:::
for

:::
the

:
C-band, contradicting field obser-

vations (Ulaby and Herschel Stiles, 1981; Shi and Dozier, 1995; Ulaby et al., 2014; Lodigiani et al., 2025). Despite this925

uncertainty, utilizing two different models derived from distinct mixing theories, yet exhibiting similar spectral shapes (see Fig.

5), allowed for an evaluation of the impact of various uncertainty sources and scattering mechanisms. However, the inherent

limitations in
:::
We

::::::::
conclude

::::
that

:::
one

:::::::
possible

::::::::::
explanation

:::
to

:::
the

::::::::
observed

:::::::::
deviations

::
is

:::
the

::::::::::::
overestimated

:::::::::
absorption

:::
loss

:::
in

::
the

:::::::
existing

::::::::::
permittivity

::::::::::::
formulations.

::
In

::::
view

:::
of

:::
the

::::::::
described

:::::::
inherent

:::::::::
limitations

::
of

:::::::
existing

:
wet snow permittivity models

prevented
:::::::::::
formulations,

:
a detailed quantitative analysis of individual scattering contributions . This

::::::::
scattering

:::::::::::
contributions930

::::
from

::::::::
individual

:::::
snow

:::::
layers

::::
was

:::
not

::::::::
possible.

::
As

:::::::::
previously

:::::
noted

::
in
::::
Sec.

::::
3.2,

:::
the

:::::::
absence

::
of

:
a
::::::
unified

::::::::::
permittivity

::::::
model

:::
for

:::
wet

:::::
snow remains an important area

:::::::
direction

:
for future research

:
–
:::
not

::::
only

:::
for

:::
RT

:::::::::
modelling,

:::
but

:::
also

:::
for

::::
field

:::::::::::::
measurements,

::::
since

::::::::
dielectric

:::::::
methods

:::::::
depend

::
on

::::
such

:::::::
models

::
to

:::::
derive

:::::
LWC.

Later in the melting season, the effects of the uncertainties associated to LWC become weaker, because the snowpack

surface becomes wetter and the scattering is mostly dominated by surface effects (Shi and Dozier, 1992) – this can be ob-935

served in Fig. 12on dates where the variabilities ,
::
as

:::::::::
variability

:
associated to LWC decrease gradually as a function of time.

On these stages
:::::::
decreases

::::::::
gradually

::::
with

:::::
time.

:::::::::::::
Simultaneously, deviations between radiative transfer simulations and satellite

acquisitions
::::::::
modelled

:::
and

::::::::
recorded

:::::
σV V
0 :::::::

decrease
:::::::
sensibly

:::::::
(groups

:::::
3-4a

:::
and

::::
4-5b

:::
in

::::
Fig.

:::
12).

::::::
Here,

::::::::
deviations

:
are mostly

explained by inaccuracies in surface roughness measurements
::::::::
inaccurate

::::::
surface

:::::::::
roughness

::::::::::::
quantification. This is clearly

demonstrated by cases where there is a notable loss of simulation accuracy following
:::::::::
particularly

:::::::
evident

::
on

::::::::
instances

::::::
where940

::::::::
simulation

::::::::
accuracy

:::::
drops

:::::
after a spring snowfall , after surface roughness

::
on

::
a

::::::
surface

::::
that had already begun to develop

:::::::::
developing

::::::
marked

:::::::::
roughness (see "buried

::::::
surface

:
roughness" instances in Fig. 12). However, at these later stages of the melt-

ing process, simulations reproduce the recorded backscattering
:::::::::
backscatter generally well. Further

:::
This

::
is
:::::::::
confirmed

:::
by

:::
the

:::
low

::::::
RMSE

::::::
values

:::::::
reported

::
in
:::::

Tab.
:
4
:::
for

:::
the

::::::
runoff

::::::
phase,

:::::
which

:::
we

::::::::
redefined

:::
as

:
a
::::::

phase
:::::::::
dominated

::
by

:::::::
surface

:::::::::
roughness

::::::
effects.

:::::
Here,

::::::
further

:
deviations can be attributed to the possibility that the panel measurements may not fully capture the945

roughness
::::
panel

::::::::::::
measurements

:::::::
possibly

:::
not

:::::::::
capturing

::::
fully

:::
the

:::::::::
large-scale

:::::::::
roughness

:::::::
features observed by the satellite.

::::
This

:::::::::
hypothesis

:::::
seems

::
to

:::
be

::::::::
confirmed

:::
by

:::
the

::::
very

:::::
recent

::::::
results

::
of

:::::::::::::::::
Barella et al. (2025),

::::::
which

:::::
show

:::
that

:::::
panel

::::
sizes

::::::::
practical

:::
for

::::
field

::::::::::::
measurements

::::
may

::
be

:::::::::
insufficient

:::
to

::::::
capture

:::
the

:::::::::
roughness

:::::::
features

::
of

:::::
wider

:::::
areas.

:
Additionally, the IEM model, which

translates roughness parameters into scattering, could be affected by inaccuracies, particularly
::::::::
especially

:
when the roughness

is high enough to approach the limits of
:::::
values

::::::::
approach

::
or

::::::
exceed

:
the model’s validity (see Fig. 3.2)

::::
range

::
of

:::::::
validity.950

In other words, with Fig. 12, we tried to reproduce
::
the

::::::::
recorded

:
S1 σV V

0 over a 20 × 20 m cell using physically based

:::::::::::
physics-based

:
averages of fine, detailed snow properties measured at the point scale. At wider scales, the relative importance of

very specific information on the state of the snowpack may decrease compared to more influential large-scale scattering drivers,

namely the development of internal snowpack structures (e.g. ice lenses and crusts), the soil features in the case of an isothermal
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but predominantly dry snowpack, and large-scale surface roughness. Although the modularity and comprehensiveness of SMRT955

theoretically allows most of these scenarios to be modeled
:::::::
modelled, the problem of how to quantify them on a large scale

persists.

In Fig. 14, we selected a realistic snowpack layering observed in the field and used the full range of measured values of sur-

face roughness to repeat the experiments done in the past by Shi and Dozier (1992)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Shi and Dozier (1992); Strozzi et al. (1997); Strozzi and Matzler (1998)

:
.
:::::
These

::::::::::
simulations

:::::
aimed

:
to characterize the scattering response to increasing surface roughness on

::
of a wet snow cover

::
to960

::::::::
increasing

:::::::
surface

:::::::::
roughness,

:::::
while

:::::::
varying

:::
the

:::::::::
incidence

:::::
angle

::
to

::::::
match

:::
the

:::::
range

::::::::
observed

::::::
across

:::
the

:::::::
relative

::
S1

::::::
orbits

:::::::
covering

:::
the

:::::
study

::::
area. Since the relationship between co-polarized signals and snow wetness is controlled by the scatter-

ing mechanisms, the type of correlation between superficial LWC and surface roughness expresses the relative contribution

of volume rather than surface scattering mechanisms (Shi and Dozier, 1992). Shi and Dozier (1992) found negative corre-

lations with surface roughness for LWC between 2 and 4% and a positive correlation with increasing surface wetness at an965

incidence angle of 50◦
:
°. Similar results were also found by Ulaby and Herschel Stiles (1981) at frequencies of 8.6 GHz and

incidence angles greater than 50◦°. Our results generally confirm these findings, but the wider range of explored combinations

of surface roughness and LWC reveals that the correlation tilt does not occur at a specific LWC value. For RMSH values

::::::
(simply

:::::::::::
"roughness"

::::::::
hereafter)

:
between 2 and 10 mm, typical of snow during most of the melting period, the tilt depends

on both LWC and RMSH
::::::::
roughness, shifting towards higher LWC with lower RMSH

:::::::::
roughness. Specifically, backscattering970

:::::::::
backscatter

:
strongly depends on LWC when RMSH ≤

:::::::::
roughness

:::::
values

::::::
exceed

:
3 mm. For low RMSH values (1–2

::::::
Again,

::
for

:::::::
smooth

:::::::
surfaces

::::
(1-2

:
mm), both permittivity models saturate σV V

0 below -30 dB, a value never recorded by S1, even in

multi-year time series, where saturation occurs around -20 dB.

An interesting finding
::::
result

:
from Fig. 12 is that the most accurate simulations of S1 recordings happen with

:::::
when measured

values of surface RMSH above or equal
::::::::
roughness

:::::
equal

::
or

::::::
exceed

:
the threshold value of 3 mm.

:::
The

:::::::::::
experimental

::::::::
analyses

::
in975

Fig. 14 shows
:::::
show that, for relative low values of LWC between 1 and 1.5%, the backscattering

:::::::::
backscatter response increases

by approximately 6 dB when the roughness RMSH increases from 2 to 3 mm. The value of 6 dB is almost exactly the bias we

observed in Fig. 12 between S1 recordings and our simulations, especially with increasing LWC. Similar
::
As

::::::::::
mentioned,

::::::
similar

deviations were found by Veyssière et al. (2019)using MEMLS&a to reproduce σV V
0 during consecutive melt seasons over

Alpine areas. Additionally, for LWC values ≥1.5% and RMSH
:::::::::
roughness between 3 and 4 mm, the simulated σV V

0 saturates at980

values that are comparable to those recorded by S1. This raises the point that more representative estimates of surface roughness

for the entire S1 cell, and/or improved IEM modeling
::::::::
modelling

:
to translate this information into backscattering

:::::::::
backscatter

signals, could be just as crucial as rigorous permittivity formulations for accurately reproducing and better interpreting mul-

titemporal S1 σV V
0 . Finally

:::::
Recent

::::::::
findings

::
by

::::::::::::::::::
Barella et al. (2025)

:::
also

:::::
point

::
to

::::
this

::::::::
direction,

::::::::::
suggesting

:::
that

::::::::::
commonly

::::
used

::::::
transect

:::::::::
extraction

:::::::::
algorithms

::::
may

::::
filter

::::
out

::::
some

::::::::::
small-scale

::::::::
roughness

::::::::
features.

::
In

:::::::
general,

:::
the

::::::::::
experiments

::
in
::::

Fig.
:::
14985

:::::::
represent

::
a
:::::::::
substantial

:::::::::::
advancement

:::::
with

::::::
respect

::
to

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Shi and Dozier (1992); Strozzi et al. (1997); Strozzi and Matzler (1998)

:
.

::
In

:::::
these

:::::
earlier

:::::::::::
experiments,

:::::::
surface

:::::::::
roughness

::::
was

:::::
either

:::
not

::::::::::::
quantitatively

::::::::
measured

::::::
(being

::::
only

:::::::::::
qualitatively

:::::::::
assessed),

:::::
and/or

::::::::
evaluated

::::
over

::
a
::::
very

:::::::
limited

::
set

:::
of

::::::::
scenarios,

:::::::::::
overlooking

::::::::::
intermediate

:::::::::
conditions

::::
that,

:::
as

:::
our

::::::::::::
measurements

::::::
prove,

::::::::::
characterize

:::
the

:::::::
majority

::
of

:::
the

:::::::
melting

::::::
period.
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:::
Fig.

:::::
14c,f

::::
show

::::
that

:::
for

::::::
smooth

:::::::
surfaces

::::
and

:::
for

::::
LWC

::::::
values

::
as

::::
low

::
as

::::
1.5%

::
–
:::
i.e.,

:::::
when

:::
the

:::::::
melting

::::::
process

::
is
:::::
likely

::
in

:::
its990

:::::
initial

::::
stage

::
–
:::
the

:::::::
variation

::
in
::::::::::
backscatter

::::::
across

::
the

:::::
range

:::
of

::::::::
incidence

:::::
angles

:::::::::::
overlooking

:::
the

::::::::
reference

:::
cell

::
is

::::::::::
comparable

::
to

::
or

::::
even

:::::::
exceeds

:::
the

:::::::
threshold

:::::
used

::
in

::::::::::::::::::::::::::::::::::::::::::::::::::::
Nagler and Rott (2000); Nagler et al. (2016); Marin et al. (2020)

::
for

::::
wet

::::
snow

:::::::::
detection.

::::
This

::::::
angular

::::::::::
dependence

:::::::::
constitutes

::
an

:::::::::
additional

:::::::::
uncertainty

:::::
factor

::
in

::::
wet

::::
snow

::::::::
detection,

::::::
which

:::::::
overlaps

::::
with

:::
the

:::::::::
previously

::::::::
discussed

:::::
effects

:::
of

::::::
diurnal

:::::::::
variability

::
in

::::::::
snowpack

:::::::::
properties.

:::
On

:::
the

:::::
other

:::::
hand,

:::
for

::::
LWC

::::::
values

::::::
higher

::::
than

:::
2%

::
on

:::::::
smooth

:::::::
surfaces,

:::
the

::::::
angular

::::::::::
dependence

::::::::
increases

::
up

::
to

:
3
::::
dB.

::::
This

::::
result

::::::::
supports

::
the

:::::::::
hypothesis

::::
that

:::
two

::::::
distinct

:::::::::
scattering

::::::::::
mechanisms995

:::::::
observed

::::::
across

:::
the

:::
two

::::::
seasons

:::
are

:::::::
directly

:::::
linked

::
to

::::::::
incidence

:::::
angle

::::::
effects.

::::
The

:::
first

::
is
::
a

::::::::
persistent

:::
3–5

:::
dB

::::::::
difference

::
in
:::::
σV V
0

:::::::
between

:::
the

:::
two

:::::::::
ascending

::::::
tracks,

::::::::
recorded

::::
from

:::::::::
mid-April

::
to

:::::
early

::::
June

:::::
2023

:::
(see

::::
Fig.

::::
8a).

::::
This

::::::
spread

::::
was

:::
not

::::::::
observed

::
in

:::
the

::::::::
following

:::::
year.

:::
Our

:::::
LWC

:::::::::::::
measurements

:::::::
indicate

:::
that

:::
the

:::::::::
snowpack

:::::::
surface

:::
was

::::::
wetter

::
in

:::::
2023

::::
than

::
in

:::::
2024,

::::::
likely

:::
due

::
to

:::
the

::::::::
presence

::
of

:::
ice

:::::
lenses

::::::
acting

::
as

:::::::
drainage

:::::::
barriers

:::
for

::::::::
meltwater

::::
and

:::::::
favoring

:::
the

:::::::::
formation

::
of

:
a
::::::
wetter

::::
layer

::::::
above

::::
them

::::
(see

::::
Fig.

::
13

::::
and

::::
Tab.

::
5).

::::::::::::
Consequently,

::::
and

::
in

:::
line

:::::
with

:::
the

:::::
results

:::
in

:::
Fig.

:::
14,

:::
the

::::::::
smoother

::::
and

:::::
wetter

:::::
snow

:::::::
surface

::
in1000

::::
2023

:::
led

::
to

:
a
:::::::
stronger

:::::::
angular

::::::::::
dependence

::::::::
compared

::
to
:::::
2024.

:::::::::::
Additionally,

:::
the

:::::::
angular

::::::::::
dependence

::::::::
decreases

::::
with

:::::::::
increasing

::::::
surface

:::::::::
roughness.

::::
The

::::::
second

:::::::
observed

::::::
feature

::
is
:::
the

:::::
sharp

::::::::
decrease

::
in

:::::::::
backscatter

:::::::
between

::::::::::
consecutive

::::::::::
acquisitions

:::
of

::::
both

::::::::
ascending

::::
and

:::::::::
descending

::::::
tracks

::
in

:::::
2024

:::
—

::::
from

:::::
June

::
15

:::
to

::
22

::::
and

::::
from

:::::
June

:::
19

::
to

:::
26,

:::::::::::
respectively.

::::
Our

::::::::::::
measurements

::::::
indicate

:::::::::
conditions

:::
of

::::
high

::::::::
snowpack

:::::::::
saturation

:::
and

::::::
surface

:::::::::
roughness

::::::
values

:::::
equal

::
to

::
or

:::::::::
exceeding

::
10

::::
mm

::::
(see

::::
Fig.

::
13

::::
and

:::
Tab.

:::
5).

::::::::::
Consistent

::::
with

:::
the

::::::
results

::::::
shown

::
in

::::
Fig.

::::::
14b,e,

:::
we

::::::::
interpret

:::
this

::::::::
decrease

::
as

:::
the

::::::
result

::
of

:::::::
suncups

:::::::::
formation

:::
on1005

:
a
::::::::
saturated

:::::
snow

:::::::
surface.

:::
The

::::::::
enhanced

:::::::
surface

:::::::::
roughness

:::::
likely

::::::::
increased

::::::
diffuse

:::::::::
scattering

:::
and

:::::::
reduced

:::
the

:::::::::
proportion

:::
of

:::::
energy

::::::::
reflected

::::
back

::
to

:::
the

::::::
sensor,

:::::::
thereby

:::::::::
explaining

::
the

::::::::
observed

::::::::::
backscatter

::::::::
decrease.

:::::
These

:::::::
findings

:::::::
indicate

::::
that,

::::::
despite

::
all

:::
the

:::::::::::::
aforementioned

::::::::::
challenges

::
in

:::::::
deriving

:::::
LWC

:::::
from

:::::::::
backscatter

::::
and

::::
vice

:::::
versa,

:::
the

:::::::::::::
multitemporal

:::::::
analysis

::
of

:::::::
angular

:::::::::
dependence

:::::
may

::::
carry

::::::::
valuable

:::::::::
additional

::::::::::
information.

:::::::::::::
Unfortunately,

::::::
further

:::::::
analysis

::
in

::::
this

::::::::
direction

:::
was

:::::::
limited

:::
by

:::
the

::::::
reduced

::::::
revisit

::::::::
frequency

::
of

:::
S1

::::::
during

:::
the

:::::
period

::
of
::::
this

:::::
study.

:
1010

:::::::::
Ultimately, Fig. 14 suggests that with an estimate of the surface LWC from a detailed snow model and recorded values of

S1 backscattering
:::::::::
backscatter, it is in principle possible to give an estimate of the surface roughness. This would inform on two

interesting points. On the one hand, based on the position with respect to the curve tilt, it would be possible to have information

about the dominance of the volume versus surface scattering mechanism. A prevalence of volume scattering would mean that

the snowpack has not yet become a complete black body for C-band radar backscattering
:::::::::
backscatter. On the other hand, the1015

value of surface roughness could be assimilated in physically based
:::::::::::
physics-based snow models to estimate important metrics

for the computation of turbulent heat fluxes, such as the aerodynamic roughness length (Lehning et al., 2011).

Although promising for future research, this paper comes with a number of limitations. LWC is a key variable for inter-

preting and reproducing S1 acquisitions using radiative transfer models. However, despite ongoing advancements, accurately

measuring LWC in the field, modeling it within physically based
::::::::
modelling

:
it
::::::
within

::::::::::::
physics-based snow models, and account-1020

ing for it into permittivity models remain significant challenges which need to be solved individually. The halved availability of

satellite data acquisitions due to the failure of Sentinel-1B in the exact time span when this study was carried out hindered the

possibility to obtain more information than those presented on the relationship between melting processes
::::::::
snowpack

:::::::::
properties

and the multitemporal SAR backscattering
:::::::::
backscatter. Finally, despite this study enhanced significantly the understanding of
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the interaction of SAR backscattering
:::::::::
backscatter

:
with wet snow, these findings are likely valid for high-Alpine

:::::::::
high-alpine

:
re-1025

gions, i.e. homogeneously covered by a rather high amount of snow, and where surface roughness can develop before the snow

cover disappears in patches. However, the launch of the Sentinel-1C satellite will shortly restore the mission’s full capabilities,

providing enhanced data availability. This development will hopefully spark greater interest in the field, driving research ef-

forts to address the above mentioned limitations, explore mechanisms in environments outside
::::::::
scattering

::::::::::
mechanisms

::
in

:::::
other

:::::::::::
environments

::::
than the one explored in this study, and potentially establish a new role for radiative transfer modeling

::::::::
modelling1030

– specifically, to inform physically-based
::::::::::::
physics-based snow models for hydrological applications.

6 Conclusions

In this paper, we presented a unique dataset of wet snow scattering properties collected at a high
::::::
vertical

:::
and temporal resolution

over two snow seasons at the high-Alpine
:::::::::
high-alpine

:
field site of Weissfluhjoch, Davos, Switzerland. Using this dataset,

we analyzed the correlation between melting snow properties and multitemporal SAR backscattering
:::::::::
backscatter

:
from S1,1035

and reproduced the acquired
:::::::
modelled

:::
the

:
satellite signals using the radiative-transfer model SMRT. Our data show that the

moistening and the ripening phase, being mostly related to the presence of liquid water in the snowpack, are generally well

recognized
:::::::
identified

:
using time series of multitemporal SAR backscattering

:::::::::
backscatter

:
from S1. The runoff onset, often

associated with local minima in multitemporal SAR backscattering
:::::::::
backscatter, is not detectable by the satellite. With our

measurements, we showed that these local minima result from a combination of surface wetting, which reduces backscattering1040

:::::::::
backscatter

:
until the S1 signal saturates, and the development of surface roughness before the snow cover begins to disappear

in patches, leading to an increase in backscattering
:::::::::
backscatter. Therefore, it is important to rethink how this information is

used for hydrological applications at high elevations and mid-latitudes, especially when counting on reduced satellite revisit

times, like in this study. Then, we used our dataset as input to the SMRT model to reproduce the S1 backscattering
:::::::::
backscatter

signal. The simulations were generally affected by
:::::::
generally

:::::::
showed a negative bias with respect to the satellite data

::::::
satellite1045

::::::::::
acquisitions, with the most significant drivers being LWC in earlier stages of the melt

:::::::
melting process and the surface roughness

later on. Furthermore, we highlighted key difficulties in electromagnetic modeling
::::
This

::::::::
mismatch

:::
led

::
to

:::
the

::::::
insight

::::
that,

:::::
rather

:::
than

:::::::
melting

:::::::
phases,

:::
the

:::::::::::
multitemporal

:::
S1

::::::::::
backscatter

::::
time

:::::
series

:::::
reveal

::::
two

::::::::
dominant

::::::::
scattering

::::::::
regimes:

:::
one

:::::::::
dominated

:::
by

::::
LWC

::::
and

:::
the

::::
other

:::
by

::::::
surface

:::::::::
roughness.

:::::
These

::::
two

::::::
regimes

::::
also

::::::::
represent

:::
the

::::
main

:::::::
sources

::
of

:::::::::
uncertainty

::
in
::::::::::::::
electromagnetic

::::::::
modelling

:
of melting snowpacksbased on field measurements. These challenges include uncertainties primarily deriving from1050

the spatial and temporal variability of LWC between
::::
field measurements and satellite acquisitions

:::::::::
overpasses, inaccuracies in

surface roughness measurements, and the validity of
:::::::::
estimation,

:::
and

:::::::::
limitations

::
in
:::
the

:
permittivity and roughness models for

wet snow at
:::::::::
applicable

::
to

:::
wet

:::::
snow

::
in

:::
the

:
C-band. Despite these uncertainties, radiative transfer modeling forced

::::::::
modelling

:::::
driven

:
by ground measurements allowed in-depth physical interpretations

::::::::::
interpretation

:
of scattering mechanisms at different

melting stages. Specifically, the unprecedented time series of measured surface roughness parameters made it possible to1055

explore and define
::::::
allowed

::::::::
exploring

::::
and

:::::::
defining

:
the scattering effect of roughness over wetting snowpacks. Our findings

suggest that accurately quantifying surface roughness and/or improving the transfer function in IEM modeling
::::::::
modelling could
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be as critical as developing new, rigorous permittivity formulations to enhance S1 retrievals and enhance the understanding of

scattering mechanisms on wet snow at these wavelengths. With improved process understanding, the imminent restoration of

the the Sentinel
::
S1

:
mission full capabilities, and further validation efforts in radiative transfer sub-modules, the use of C-band1060

satellite radar signals for snow hydrology applications could proceed further, with radiative transfer models possibly informing

physically based
:::::::::::
physics-based snow models.
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Appendix A

Direct comparison of measured profiles of liquid water content with dielectric methods (brown) and melting calorimetry (blue).

The uncertainty associated with melting calorimetry measurements as of Barella et al. (2021) is shown by means of the light1325

blue shaded area. In 2024, a second profile using dielectric instruments (yellow) was simultaneously carried out alongside the

melting calorimetry.
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Data overview for the snow season of 2023-2024. Panel (a
:
b) shows the manually

:::::::
Manually measured temperature profiles

:
of

::::
snow

:::::::::
temperature. Panel (b

:
c) shows the manually

:::::::
Manually measured LWC profiles

:
of

::::
snow

:::::
liquid

::::
water

::::::
content

::::::
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total water
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; runoff time series automatically recorded by the lysimeter
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Each panel is subdivided into the melting phases identified according to the method of Marin et al. (2020).
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:
e) shows

the measured
::::::::
Measured total water content (TWC) (light blue), the ;

:
runoff time series automatically recorded by the lysimeter

:
at
:::::

WFJ (dark blue), the
:
;
:
snow water equivalent (SWE) both automatically recorded

::
by

:::
the

:::::
snow

:::::
scale (black line) and man-

ually measured (black points
:::::
white

:::::
circles). Panel (e) shows the measured time

::::
Time series of

:::::::
measured

:
surface roughness by

means of the two indices
:::::::::
parameters

::
– RMSH and CL.Panel (f) shows the recorded S1 time series divided into descending

morning (light blue) and ascending afternoon (light brown) passages. In panel (f), the triangles indicate the exact values of

S1 acquisitions, whereas shaded areas represent the range of σV V
0 values obtained by connecting the consecutive S1 passages

by direction of orbits, i.e. by connecting all the morning/descending and the afternoon/ascending acquisitions. Each panel is

subdivided into the melting phases identified according to the method of Marin et al. (2020).

Figure 9.
:::
Data

:::::::
overview

:::
for

:::
the

::::
snow

::::::
season

::
of

:::::::::
2023-2024.

:
(f

:
a) shows the recorded S1

:::::::::
backscatter time seriesdivided into descending

morning (light blue) and ascending afternoon (light brown) passages. In panel (f), the triangles indicate the
:
:
:
exact values of S1

::::
σV V
0

acquisitions , whereas shaded areas represent the
::::::::
(triangles);

:
range of σV V

0 values obtained by connecting the consecutive S1 passages by

direction of orbits, i.e. by connecting all the morning/descending and the afternoon/ascending acquisitions
::::::
(shaded

:::::
areas). Each panel is

subdivided into the melting phases identified according to
:::
with

:
the method of Marin et al. (2020).

Data overview for the snow season of 2023-2024. Panel (a
:
b) shows the manually

::::::
Manually

:
measured temperature profiles

:
of

:::::
snow

:::::::::
temperature. Panel (b

:
c) shows the manually

::::::
Manually

:
measured LWC profiles

::
of

::::
snow

:::::
liquid

:::::
water

::::::
content

::::::
(LWC). Panel (c

:
d) shows

the air
:::
Air temperature at hourly resolutionas ,

:
measured by the automatic sensor at WFJ. Panel (de) shows the measured

:::::::
Measured

:
total

water content (TWC) (light blue), the ;
:
runoff time series automatically recorded by the lysimeter

::
at

::::
WFJ (dark blue), the

:
; snow water

equivalent (SWE) both automatically recorded
::
by

:::
the

::::
snow

::::
scale

:
(black line) and manually measured (black points

::::
white

::::::
circles). Panel (e)

shows the measured time
::::
Time series of

:::::::
measured

:
surface roughness by means of the two indices

::::::::
parameters

:
–
:
RMSH and CL.Panel (f)

shows the recorded S1 time series divided into descending morning (light blue) and ascending afternoon (light brown) passages. In panel (f),

the triangles indicate the exact values of S1 acquisitions, whereas shaded areas represent the range of σV V
0 values obtained by connecting

the consecutive S1 passages by direction of orbits, i.e. by connecting all the morning/descending and the afternoon/ascending acquisitions.

Each panel is subdivided into the melting phases identified according to the method of Marin et al. (2020).
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Figure 10. The panels illustrate some representative surface roughness conditions as qualitatively observed on the field (panoramic pictures)

together with one of the panel measurements performed on the same day (bottom right of each panel, where the mean roughness RMSH

measured on that day is also reported). Panel (a) shows a smooth
:::::
Smooth

:
surface typical of dry snowpack conditions. Panel (b) shows

early-stage
:::::::::
Early-stage development of surface roughness deriving from melt-refreeze cycles. Panel (c) shows fully-formed

::::::::::
Fully-formed

suncups over a homogeneous snow cover, at least among the considered S1 cell. Panel (d) shows fully-formed
::::::::::
Fully-formed suncups over a

mostly patchy snow cover.
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Figure 11. Bias between liquid water content
::::
LWC measurements with dielectric devices and melting calorimetry for snow seasons of

::::
2023 (a) 2023 and

:::
2024

:
(b)2024.

:
. In 2024, direct comparisons between simultaneous (brown) and co-located (light blue) measurements are

available
::::
were

:::
also

::::::::
performed.
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Figure 12. Recorded S1
:::::::::
Comparison

:::::::
between

::
the

:::::::
recorded

:
multitemporal

::
S1

:
σV V
0 (light blue and light brown triangles and shaded areas)

compared against SMRT modelled values
::
and

:::
the

::::
time

:::::
series of σV V

0 using
::::::
modelled

::::
with

::::::
SMRT,

::
for

::::
year

::::
2023

:::
(a)

:::
and

::::
2024

:::
(b).

::::::
Results

::
are

:::::
shown

:::
for

:::
both

:::::::::
permittivity

::::::::::
formulations

:
–
:
MEMLSv3 (dark gray boxplots) and H-86 (light gray boxplots)permittivity models. The box-

plots indicate the variability of
:::::::
associated

::
to

:
the results considering an

:::
LWC

:
uncertainty of ±1% in the LWC values for each layer(see

:
,
::
as

:::::::
discussed

::
in Sec. 4.2). The shaded areas of the recorded S1 multitemporal σV V

0 represent the range of σV V
0 values obtained by connecting the

consecutive S1 passages by direction of orbits, i.e. by connecting all the morning/descending and the afternoon/ascending acquisitions. The

triangles represent the exact values of the acquisitions. For clarity, exact values are only shown for days where snow profiles
:::::::::::
measurements

were carried outand therefore simulation and ,
::::

thus
:::::::
allowing direct comparisonis possible. Blue

::::::
Colored

:
boxes group similar simulation

results together
:::
and

::
are

::::::
labeled

:::
with

:::::
codes

::
(e.Yellow bold text indicates

::
g.,

::
1a,

::::
2a),

::::
which

::::
refer

::
to

:::
Tab.

::
3

::
for

:::::
details

::
on

:
the

:::::::::::
corresponding mea-

sured snow propertiesfor each result group, whereas blue italic text explains possible backscattering
::::::
dominant

::::::::
scattering mechanismswhich

may have originated ,
:::
and

:::::::
potential

::::::
sources

::
of

::::
error.

::
At

:
the (spread

::
top

:
of ) simulated results

:::
each

:::::
panel,

:::
the

:::
time

:::::
series

::
are

::::::
further

::::::::
segmented

:::
into

::
the

::::::
melting

::::::
phases

:::::::
identified

::
in

:::
Sec.

:::
4.1

:
–
::
as

::::
well

::
as

::
the

::::
main

::::::::
scattering

::::::
regimes,

:::::
which

:::
are

::::::::
influenced

::
by

:::::
LWC,

:::::
surface

:::::::::
roughness,

:::
and

:::::
buried

:::::
surface

::::::::
roughness.
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Figure 13. Ensemble of all the measured LWC profiles
:::::::
measured

::::
with

:::::::
dielectric

:::::::::
instruments

:::::
(light

::::
blue)

:
from

::
Apr

:
24/04/,

:
2023 and

:::
Apr

04/04/,
:
2024, i.e. the first dates for which a significant discrepancies

:::::::::
mismatches between modeled

:::::::
modelled and S1-acquired σV V

0 val-

ues are recorded in 2023 (top row) and 2024 (bottom row), respectively.
::::::
Melting

:::::::::
calorimetry

:::::::::::
measurements

:
(see Fig

::::
dark

::::
blue),

::::::::
including

:::
their

::::::::
associated

:::::::::
uncertainty

::::
(dark

::::
blue

::::::
shaded

::::
areas)

::
as
::::::::

described
::
in

:::::::::::::::
Barella et al. (2024),

:::
are

:::::
shown

:::
for

:::::::::
comparison. 12

:
In

:::::
2024,

:
a
::::::
second

::::::::::
simultaneous

::::
LWC

:::::
profile

::::
using

:::::::
dielectric

:::::::::
instruments

::::::
(brown)

:::
was

:::
also

::::::
carried

::
out.

54



30

25

20

15

10

VV 0
 [d

B]

(a)Permittivity: MEMLSv3
LIA: 40°

30

25

20

15

10
(b)Permittivity: MEMLSv3

LIA: 30°

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

|
VV 0

| [
dB

]

(c)Permittivity: MEMLSv3
| VV

0 |40 30

0.10.2
50.5 1 1.5 2 3 4 5 6 7 8 9 10 11 12

LWC (top layer) [%]

30

25

20

15

10

VV 0
 [d

B]

(d)Permittivity: H-86
LIA: 40°

0.10.2
50.5 1 1.5 2 3 4 5 6 7 8 9 10 11 12

LWC (top layer) [%]

30

25

20

15

10
(e)Permittivity: H-86

LIA: 30°

0.10.2
50.5 1 1.5 2 3 4 5 6 7 8 9 10 11 12

LWC (top layer) [%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

|
VV 0

| [
dB

]

(f)Permittivity: H-86
| VV

0 |40 30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

RM
SH

 [m
m

]

Figure 14.
::::::::
Sensitivity

::
of

::
the

:
C-band radar backscattering sensitivity

::::::::
backscatter

:
to the coupled evolution of surface roughness (expressed by

RMSH) and LWCaccording to .
:::::
Panels

::
(a,

::
b,
::
d,

::
e)

:::::::
illustrate

::::::::
differences

:::::::
between

:::
two

:::::::
dielectric

:::::::::
permittivity

:::::::::
formulations

::
–
::::::::
MEMLSv3

:
(a
:
,
:
b)

:::
and H-86

::
(c,

::
d)

:
–
::
as

::::
well

::
as

::
the

::::::::
sensitivity

::
to

:::
the

:::
local

::::::::
incidence

::::
angle

:::::
(LIA)

:::
over

:::
cell

:::
40.

::::
σV V
0 ::::::::

responses
::
are

:::::
shown

:::
for

:::
40°

::::
(solid

:::::
lines) and

:::
30° (b

::::
dotted

::::
lines) MEMLSv3 formulations

:::::::
incidence

:::::
angles. The top part

:::::
Panels

::
(c,

::
f)
::::
show

::::::
values of each panel shows

:::::::::::::

∣∣∆σV V
0

∣∣
40°−30°,

:::
i.e., the sensitivity of σV V

0 to consecutive synthetic snowpack variations
::::::::
differences

::::::
between

:::::::::
backscatter

:::::::::
coefficients

::
in

::
(a,

::
b)
::::

and
::
(d,

:::
e),

:::::::::
respectively. The real reference case is the snowpack layering observed on

:::
Apr 16/04/,

:
2024: a melt event in the superficial 45 cm and an

otherwise dry snowpack. The bottom part of each panel shows the
::::::
reported

:::::
results

:::
are consecutive snowpack synthetic variations in terms of

surface LWC
:::
and

:::::::
roughness

::
of

:::
the

::::::
surface

::::
layer.
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Figure A1. Empirical logarithmic relationship fitted on field data between the surface roughness parameters of RMSH and CL, based on a

total of N=75 values over the measurement campaigns of 2023 (yellow) and 2024 (light blue).
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