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Abstract. The spatiotemporal evolution of snow melt is fundamental for water resources management and risk mitigation
in mountain catchments. Synthetic Aperture Radar (SAR) images acquired by satellite systems such as Sentinel-1 (S1) are
promising for monitoring wet snow due to their high sensitivity to liquid water content (LWC) and ability to provide spatially
distributed data at a high temporal resotutionsresolution. While recent studies have sueeessfully-tinked-linked multitemporal
S1 backscattering to various-phasesof-snowpack-meltingsnow melt phases, a correlation with detailed snowpack properties is
still missing. To address this, we collected the first dataset of detatled-comprehensive wet snow properties tailored for SAR

applications over two consecutive snow seasons at the Weissfluhjoch field site in-near Davos, Switzerland. First, eur-dataset

we tested previous methods which use multitemporal
S1 backscattering to characterize melting snowpacks-and-physteally-tinked-the-phases, and demonstrated that the observed
monotonous increase in backscattering following the local minimum te-the-evelution-is due to the development of surface

roughness. Then, the-dataset-was—used-we used the measured snow properties as input to the Snow Microwave Radiative
Transfer (SMRT) model to reproduce the-S1 backscattering stgralsignals. Our simulations showed a-general-negativebias

ompared to the sateHite data: with the mo epificant-drivers—beineWECthat rather than melting phases, time series of

backscattering rather identify regimes dominated by either LWC, early in the melt-seasonand-the-surface-roughnessseason, or
surface roughness, later on. The results also highlight several key challenges for reconciling S1 signals with radiative transfer

simulations of wet snow: (i) the discrepancy in spatiotemporal variability of LWC as seen by the satellite and validation
measurements, (ii) the lack of fully validated permittivity, microstructure and roughness models for wet snow in the C-band,
(iii) the difficulty of capturing wet snow features potentially generating stronger scattering effects on a large scale s— such as
internal snowpack structures, soil features in case of low LWC, and surface roughness s— which are not necessarily captured

by point-wise measurements.
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1 Introduction

Seasonal snowpack in mountain catchments is one of the most important water resources, as it accumulates and stores water

during winter and releases it consistently in the form of runoff during the melting period (Viviroli and Weingartner, 2004). In

s-alpine streams, discharge is largely dominated by snow melt from May to July and more than
one sixth of the world’s population relies on meltwater released from higher altitudes for drinking water, crop irrigation and
hydropower production (Beniston et al., 2018). However, this-melting snow can also cause wet- and glide-snow avalanches
(Bellaire et al., 2017; Fromm et al., 2018), which pose significant threats to human life and infrastructures. Additionally, rain-
on-snow events on spowpacks-with-high-liquid-watercontent-already wet snowpacks are linked to increased runoff and shorter
time lags between the-onset-of-the-eventprecipitation onset and the resulting runoff (Wiirzer et al., 2016). These events can
have catastrophic consequences and their occurrence is supposed to increase as-a-firstresponse-to-in response to a sustained
warming (Beniston and Stoffel, 2016). Therefore, information about the spatiotemporal evolution of snow melt is beneficial
for both the management of water resources and for risk mitigation.

Identifying wet snow is complex both when using manual measurements, automatic instruments and physieally—based

physics-based snow models. Datasets of manual measurements of snow water equivalent (SWE) and liquid water content

(LWC hereafter) at high temporal resolution are generally rare due to the required-amount-of-work-and-reseurces—to-colleet
themtime, effort and resources required for their collection. There have been considerable advances in the-development-of
technologies-thatexploit-technologies that use the dielectric properties of snow in the microwave range to estimate LWC in a

non-destructive way (Schmid et al., 2014; Koch et al., 2014). However, the application of these methods is limited to one single
point without the possibility to capture the spatial variability of the processes. Additionally, their installation and maintenance
is often complicated and expensive, and the extraction of the physical parameters is usually hindered by noise. Physically
based-physics-based layered snow models like the SNOWPACK-Alpine3D model chain (Bartelt and Lehning, 2002; Lehning
et al., 2006) or GEOtop (Endrizzi et al., 2014) are used to overcome these challenges, as they can simulate LWC and SWE at
high spatial and temporal resolutions enly-based on meteorological forcings. However, meteorological forcings also represent
a major source of uncertainty — especially when needed at high spatial resolution — affecting the accuracy of the results
(Raleigh et al., 2015);-together-with-the-uneertainty-, This adds up to the uncertainties related to the amount and type of used

parametrizations-parametrizations used (Giinther et al., 2019).
In this context, a valuable opportunity to identify wet snow is offered by synthetic aperture radar (SAR hereafter) systems.

SAR measurements are highly sensitive to the free liquid water contained in wet snow (Nagler and Rott, 2000). At certain fre-
quencies, the increase in liquid water generates high dielectric losses and increased absorption coefficients (Denoth et al., 1984;
Sihvola and Tiuri, 1986; Mitzler, 1987; Ulaby et al., 2014). Therefore, the radar backseattering-backscatter drops to lower in-

tensities with respect to winter averages {ota

Basing-onthisprinciple;multitemporal-SAR-data-(Ulaby et al., 1987; Strozzi et al., 1997; Strozzi and Matzler, 1998; Nagler and Rott, 200!

. This raised the question of whether different types of snow cover could be classified based on their response to active
microwave signals. This challenge has been addressed with various approaches over the years. Between 1993 and 1995
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at the field site of Weissfluhjoch in the Swiss Alps, Strozzi et al. (1997); Strozzi and Matzler (1998) conducted tower-based
C-band radiometric measurements at all polarizations across a wide range of incidence angles. Simultaneously, they carried out

classify the observed snow covers into categories ranging from
dry snowpacks, to thin moist layers overlying dry snow, to wet snowpacks with either smooth or rough surfaces. Relying on
a tower-based radiometer, the experiments were highly controlled, allowing detailed investigation of radar responses to each
snow condition. Nevertheless, significant sources of uncertainty remained — especially the influence of surface roughness on
wet snow surfaces, which was not quantitatively measured, but only qualitatively assessed. These detailed studies, along with
the work of Kendra et al. (1998), raised questions about theoretical foundations and systematic reliability of these-atgorithms

Shi et al.,
biased by a combination of conditions leading-to-a—strong-prevalence-of surfaceseattering-mechanismsthat strongly favored
surface scattering. Extending the prior knowledge to a spatial and multitemporal context, (Nagler and Rott, 2000) developed
an algorithm based on repeat-pass SAR images to map wet-snow in mountainous areas, defining a backscatter drop of 3 dB.
to_distinguish wet snow from other surfaces. Comparisons with snow maps from different sources showed generally good
agreement above the snow line, but consistent biases in areas with fragmented snow cover.

After a progress freeze due to the fack-scarcity of SAR data in the past and simultaneous ground-truth-measurements;-there
was-a-renewed-field measurements, the research interest in the use-ef radar-waves-to-track-snow-melting-processes-topic was

renewed since the launch of the Sentinel-1 (S1 hereafter) joint mission of the European Space Agency (ESA) and the European

1993; Shi and Dozier, 1995). In particular, the scattering mechanisms assumed in these retrievals may have been

Commission in 2014. At Alpine-alpine latitudes, S1 acquires C-band SAR imagery in the early morning and late afternoon,
regardless of the weather, with a revisit time of 6 days. The SAR imagery is available free of charge. Marin et al. (2020) used
these images for the first time to develop a correlation between the multitemporal S1 SAR backseattering-and-the-snowmelt
backscatter and the snow melt dynamics. Over 5 different Adpine-alpine sites, the authors have found that the multitemporal S1
SAR acquisitions allow the detection of the melting phases, i.e. moistening, ripening and runoff (Dingman, 2015) with a good
agreement with in-situ observations and layered, physieally-based-physics-based snow models. In particular, the backseattering
backscatter decreased as soon as liquid water appeared in the snowpack and increased progressively and simultaneously with
the runoff release. Deriving and applying a set of identification rules, the authors could define the melting phases for the test

sites with relatively small lag errors with respect to the revisit time of S1. Consequently, local minima in S1 multitemporal

backscatter time series and sharp increases thereafter were associated with snowpack saturation, the onset of runoff, and snow.
This-approach-hetds-These approaches hold great potential for monitoring the temporal evolution of the melting dynam-
ics, tatly-particularly over wide and scarcely instrumented areas. However, in-order—tofully-understand-the-potential



90 of-to fully use the multitemporal information made-avatlablefrem-provided by S1 for snowmelt-snow melt monitoring, a
deeper understanding of the seatteri HE-SROW-it —-partienlarunderlying scattering mechanisms

— especially the role of surface roughness (Marin et al., 2020) — is still required. Specifically, knowing the time window in
which different scattering effects dominate and under which conditions the the-C-band radar backseattering-backscatter is
fully absorbed by the melting snowpack would enable to extract as much information as possible from S1 multitemperal

95 baekseattering—Up-to-datetime series. To date, the only effort in this direction has-been-done-byBrangers-etal(2024)-by

means—of-was made by Brangers et al. (2024) using tower-based C-band measurements;—which;-hewever,tack—, However,
this study lacks high-temporal-resolution ground-truth validation at-high-temperal-reselution-with measured snow proper-

100

comparisons with S1 were hindered by several factors, including sensor calibration issues and the small footprint size — which

likely introduced speckle noise and failed capturing larger-scale scattering processes.
The-main-timitation-that-has-hindered-Overall, the main limitation to improving the understanding of SAR-mechanisms

the interaction of S1 backscatter signals with melting snow cover is the lack of reference ground data;-espectally-during—the

105 meltingseason—Over-Alpine-, Over alpine snowpacks, it is net-uneommen-common to observe the formation of ice layers
either at the surface (Quéno et al., 2018) or at deeper snowpack depths (Pfeffer and Humphrey, 1998). Moreover, in temperate

Alpine-alpine areas characterized by high snow accumulation and intense solar radiation, suncups may form spontaneously
on the snow surface during the ablation season (Post and LaChapelle, 2000; Mitchell and Tiedje, 2010), increasing the sur-
face roughness significantly (Fassnacht et al., 2009). These phenomena are known to impact the radar response to wet snow

Shi and Dozier, 1995; Strozzi and Matzler, 1998; K

110

is-through-However, high-resolution and detailed snow measurements alone are insufficient to address this issue. It is equall
important to rely on a method to interpret them from a radar perspective. A promising and increasingly adopted approach

115 involves the use of state-of-the-art radiative transfer (RT hereafter) models. Picard et al. (2018) developed the Snow Microwave
Radiative Transfer (SMRT) model, a versatile model that can be used in active and passive mode to compute backseattering
backscatter and brightness temperature from multilayered media such as snowpacks or ice sheets overlying reflective surfaces,
e.g. ground, ice, or water. SMRT responds to the need of a modular and flexible approach to unify and compare the wide range
of pre-existing representations of microstructure, electromagnetic theories, soil models and permittivity formulations. While

120 wet snow holds significant importance for various applications, both SMRT and other similar models have-primarity-been-were
primarily developed and validated underfor dry snow conditions in Arctic and Antarctic snowpacks, or ice sheets (Proksch
et al., 2015; Rott et al., 2021; Soriot et al., 2022; Meloche et al., 2022; Husman et al., 2023). Both the vertical structure and the
surface of these types of snowpack are often less complex than that of a seasonal Adpine-alpine snowpack. To date, the above

mentioned ensemble of complex melting snowpack processes has been scarcely investigated by means of radiative transfer
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models due to the lack of ground reference data (Shi and Dozier, 1995; Strozzi et al., 1997; Kendra et al., 1998; Nagler and
Rott, 2000; Magagi and Bernier, 2003; Lodigiani et al., 2025). Murfitt et al. (2024) recently used SMRT to explore, for the first
time, the temporal evolution of the interaction between wet snow and radar waves in a study on lake ice melt. However, the
radiative transfer modeling-modelling of wet snow still lacks dedicated effort and validation.

This-werk-atms-ateoleeting The objective of this work is to collect the first ground reference dataset on melting snow tailored
for SAR applications and to veri ¢ h o

stgnaluse it together with SMRT to better understand the key processes governing the backscatter signatures recorded by S1.

Previously, only Lund et al. (2022) carried out an-a similarly extensive snow pit campaign in coordination with S1 passages.

Their-workfaeilitated-While this study helped advance the interpretation of S1 baeckseatteringrespense-backscatter responses
to diurnal snowpack features—Howevervariations, important scattering properties such as the optical diameter and the surface

roughness were not sa

measured. As a result, interpreting these measurements from the radar perspective — and consequently comparing them with S1
acquisitions — was not possible. In our work, we focus on the co-polarized vertical backscattering only, due to its high signal

to noise ratio for wet snow (Naderpour et al., 2022) and to the fact that, due to the partial implementation of some of the key

processes, it is not possible to simulate accurate cross-polarized backscattering responses with the current version of SMRT. To

our knowledge, this is the first attempt to use-SMRT-and-ground-measurements-translate ground measurements — specifically
designed for RT medeling—modelling, including wetness and roughness — to-reproduce-into radar signals using SMRT to
reproduce and interpret S1 backseattering-acquisitions over a wet, multilayered Alpine-alpine snowpack. This research wilt

vartability-of-liquid-watercontent_provides valuable insights in two main areas. First, it advances the understanding of the
within the S1 eel-footprint occurring between satellite acquisitions-and-in-situ-measurements;-the-influenee-and measurement
acquisitions. It also describes the impact of surface roughness -thetack-of-fully-validated-models-of permittivity-and-roughness
for-wet-snow-at-the-C-band-and-the-diffieulty-of-on backscatter signatures and highlights challenges in capturing key wet
snow conditions generating seattering namely-that likely generate scattering at wider-scales. These include internal snowpack
structures, large-scale surface roughness, and interactions with the wet soil interface when the snowpack is only slightly wet.
Second, the study addresses the RT modelling of melting, layered snowpacks, highlighting the current lack of fully validated
permittivity and roughness models for wet snow at C-band frequencies. With ground reference data and adequate process
understanding and medelingmodelling, RT models like SMRT may evolve in tools to interpret and translate the information
contained in multitemporal SAR backseattering-signals-backscatter into valuable input for snew-medelingsnow-hydrological
modelling.
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Figure 1. Location of the Weissfluhjoch field site with respect to Swiss national borders (a) and the area-town of Davos (b). The designated

area dedicated-to-the-for snow profiles is shown in (c) under semi-snow-free conditions (picture taken in Sep 2024, camera oriented towards

the north-east), delimitedenclosed by the-a flagged fence;eamera-facingnorth-east. Onby-It is worth noting that only a fraction-of-the fength

portion of the-this fenced area was effectively used for snow profiles. Picture (d) shows the typical snowpit measurement settirgsetup.

2 Campaign overview

This work builds upon a dataset eemposed-of 85 snow pits collected wi

the-two-conseeutive snow-seasons-of-during a two-season campaign (2022-2023 and 2023-2024) at the high-altitude field-site
of-Weissfluhjoch Versuchsfeld (WFJ) field site, located in the Rhaetian Alps in-the-Davosarea;-canton-of-Grisonsnear Davos,
Switzerland. The measurement field lies at an altitude of 2536 m a.s.l. on a relatively flat area embedded in a vaHey-facing

south-east facing valley. The site is partially wind sheltered from a small hill situated on the south-east -hewever— however, the
dominant wind blows from north-west, in addition to katabatic wind. For this measurement campaign, we secured a protected
field covering approximately the-same-two times the footprint area of S1, i.e. 20 x 20 mnext-to-the-officially-delimited-field.
However, only a fraction-portion of this field was effectively used for measurements-—Fhis-designated-area-, while the remaining
area was consistently left undisturbed. The secured field has a light slope value between 2 and 7%. The flatness of the terrain is
fundamental for the study of the interaction between wet snow and the C-band co-polarized vertical backseattering-backscatter
signal (o}V" hereafter). On the one hand, oV is less sensitive to changes in snow wetness in-areas-of steep-topographies-at
low incidence angles (Nagler et al., 2016); on the other hand, steep-stopes-cause-on steep slopes, the liquid water to-redistribute
redistributes laterally, at least partially (Wever et al., 2016). The field site of WFJ is equipped with advanced meteorological
sensors recording meteorological forcings at sub-hourly resolutions, and moreover, with first snow observations dating back
to 1936, it holds one of the longest recorded time series of snow measurements for a high-altitude research station (Marty
and Meister, 2012). The site is ideal for intensive measurement campaigns, as it is easily accessible, protected from avalanche
danger and the two huts provide shelter, storage space for instruments, power and internet connection.

The objective of the measurement campaign was to build a dataset that-weuld-provide-of ground-truth reference for the

interpretation of S1 o} to monitor snow melt processes. Therefore, the eampaign-measurements targeted the main scattering
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properties of snow: temperature, density, specific surface area (SSA), liquid water content (LWC) and surface roughness. These
properties needed to be measured at a high vertical and temporal resolution to track the progression of the wetting front within
the snowpack, and possibly in concomitance with S1 acquisitions. Additionally, we measured snow water equivalent (SWE), a
key variable for snow melt monitoring. The resulting dataset is a time series of manually measured snow profiles describing the
evolution of snow scattering properties at an-unprecedented vertical and temporal resetutionresolutions. The dataset consists
of 38 snow profiles for the season of 2022-2023 (starting in February and ending in June) and 47 for the season of 2023-2024
(starting in November and ending in July). In dry snow conditions, measurements were carried out once per week. On the
first season, once the snowpack reached the full isothermal state, measurements have been carried out regularly every second
working day for a total of three times per week. On the following season, the regularity of the measurements was partially
given up in faveur-favor of a better synchronization with S1 acquisitions. To get the fullest possible picture to interpret the melt

dynamics, manual measurements are accompanied by automatically recorded time series of runoff and SWE.
2.1 Manual measurements
2.1.1 Temperature

Snow temperature serves to monitor the progression of the snowpack to the (partial)-isothermal state, which allows the presence
of liquid water. Profiles of snow temperature were sampled from the surface to the bottom with a vertical resolution of 10 cm
on snow season 2022-2023 and of 5 cm on snow season 2023-2024 using a batch of HI98501 Checktemp from Hanna (Han-
nalnstrumentsinc.). According to the instrument specifications, the uncertainty range is = 0.2°C. Each temperature reading

was marked down after waiting an adequate time for measurement stabilization.
2.1.2 Density

In dry snow conditions, snow density controls (i) the probability of scattering events, as denser snow has more grains per

see the following Sec. 3.2), which increases with the increased
fraction of ice relative to air, typical of denser snow. Profiles of snow density were sampled from the surface to the bottom with
a vertical resolution of 3 cm using a box density cutter and a digital scale. The box cutter used for this campaign has a volume
of 100 cm?. The uncertainty range of this instrument is between 5 and 10% with the main uneertainty sourees being eaused by
sources being the presence of ice layers, the compaction of light snow while collecting the sample, or losing fractions of the

sample-it in conditions of fragile snow such as facets or depth hoar (Conger and McClung, 2009; Proksch et al., 2016).

2.1.3 Specific Surface Area

Profiles-of snow-Snow specific surface area (SSA) expresses the surface area of snow grains per unit mass, and is related to the
grain size and structure. Smaller grains give higher values of SSA — meaning that the number of scattering centers is increased,
but the effect of each one is weakened. Therefore, when grains are too small, the total backscatter can decrease. Larger grains,
on the other hand, give lower values of SSA — meaning that scatterers are fewer but stronger and more efficient. Therefore, with
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enhanced volume scattering, the overall backscatter increases. Profiles of SSA were sampled from the surface to the bottom
with a vertical resolution of 4 cm using the InfraSnow sensor from FPGA (FPGA Company; Wolfsperger et al., 2022). This

non-destructive method builds upon the principle of diffuse near-infrared reflectance measurements using a compact integrating
sphere setup to derive optical equivalent grain diameter (OED), and therefore SSA (Gergely et al., 2014). To compute OED,
snow density is required as an input parameter and for this we use the measured density profile. With a relative error of
RMSE =15% (Wolfsperger et al., 2022) when compared to u-CT, this instrument seems to be slightly less accurate than
others commonly used such as the IceCube (Zuanon, 2013), however, this bias is more pronounced for high values of SSA
typical of dry snow, which is not the main object of our study. Moreover, the use of the InfraSnow is especially practical and

portable for field applications.
2.1.4 Liquid Water Content

Profiles-of snow-The formation of liquid water content (LWC) in the snowpack enhances its dielectric constant, leading to
higher absorption losses and significant reduction in radar penetration depth. These concepts will be addressed in more detail
in Sec. 3.2. Profiles of LWC were sampled from the surface to the bottom with a vertical resolution of 2, 5 or 10 cm, depending
on the method. We used dielectric sensors coupled with melting calorimetry to corroborate measurements in conditions of
high LWC at later stages of the melting process. To our knowledge, this is the first time series of hguid-water-content LWC
snow profiles measured at such high vertical and temporal resolution. On the first campaign year, we used the Denoth capacitive
sensor (Denoth, 1994) ("Denothmeter" hereafter). It consists of a flat capacitance probe with an estimated measurement surface
of 176 cm? (Techel and Pielmeier, 2011). The probe operates at a frequency of 20 MHz and measures the real part of the
permittivity of snow, and a separate measurement of density is required to obtain the imaginary part (Denoth et al., 1984;
Denoth, 1989) — here, similarly than for SSA, we used the measured density profile. The Denothmeter has been widely used in
field studies to monitor the evolution of snowpack wetness (Fierz and Fohn, 1994; Kattelmann and Dozier, 1999; Techel and
Pielmeier, 2011), alone or in comparison with other techniques, e.g. in Koch et al. (2014); Wolfsperger et al. (2023); Barella
et al. (2024). On the second campaign year, we adopted the new capacitive snow sensor (NCS hereafter) developed at the
Institute for Snow and Avalanche Research SLF (Wolfsperger et al., 2023) and produced in batch series from FPGA company.
The use of the Denothmeter was discontinued because it is not commercially available, and only two units were available to
us, risking measurement continuity if damaged during intensive use. The NCS works in the same way as the Denothmeter,
operates at the same frequency and measures over a slightly larger surface of 202 cm?. The NCS was compared against the
Denothmeter in both field and tab-laboratory settings and the agreement was generally good, however, in seme-isolated cases
of very wet layers{Fierz2009), the measured permittivity tended to deviate towards higher values (Wolfsperger et al., 2023). A
good element of consistency is that the comparison between the NES-and-the NCS and Denothmeter was carried out within this
campaign, in the snow season 2022-2023. The absolute error associated with dielectric measurements was estimated around
1% in volume (Sihvola and Tiuri, 1986; Fierz and Fohn, 1994). To our knowledge, a systematic study on the errors associated
with the Denothmeter was never carried out. However, similar studies are available for the Finnish snow fork (Sihvola and

Tiuri, 1986), which directly measures both real and imaginary parts of snow permittivity. The error associated to the snow fork
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in measuring LWC is between £0.5% (Sihvola and Tiuri, 1986) and +0.3% (Moldestad, 2005). (Techel and Pielmeier, 2011)
used both the Denothmeter and the Snow Fork in their study, reporting differences of around 1% between the two instruments.
Additional uncertainties for dielectric measurements derive from interference with solar radiation near the surface (Lundberg,
2008), which we tried to minimize throughout the campaign.

Because dielectric devices may lose accuracy for high LWC values (Perla and Banner, 1988; Techel and Pielmeier, 2011),
for both snow seasons, in conditions of ripe snow, measurements-with-Denothmeter/NCS measurements were backed up with
melting calorimetry following the revised field protocol recently described in Barella et al. (2024) and partially carried out
within the same measurement campaign described here. This field protocol is tailored to reduce the higher uncertainty ranges
previously associated to melting calorimetry (Kawashima et al., 1998; Kinar and Pomeroy, 2015; Avanzi et al., 2016). It
proposes a revised formulation of the calorimetric uncertainty that incorporates the calorimetric constant and the propagation
of uncertainties coming from instrument, operational and environmental conditions. The uncertainty range associated with the
new protocol for melting calorimetry is £0.5% and the absolute error compared with Denothmeter measurements is ~1% in

volume.

2.1.5 Surface Roughness

Snow surface roughness controls the scattering behavior of the snowpack surface, with smooth surfaces exhibiting a dominant
specular reflection and rough surfaces behaving more similarly to a diffuse scatterer. Snow surface roughness is typically

expressed using three parameters: the root mean square of the heights (RMSH), the correlation lenght (CL) and the autocor-
relation function (Williams and Gallagher, 1987; Nagler and Rott, 2000; Manninen et al., 2012; Anttila et al., 2014). These
parameters can be obtained from a digitized snow transect. A proven and robust system involves inserting a panel into the snow
and capturing images of the snow surface with a digital camera (Manninen et al., 2012; Anttila et al., 2014). For this campaign,
we used the method described in Barella et al. (2021) and refined in Barella et al. (2025), which builds upon these concepts
and it is particularly apt-suited for field applications. The panel we used is made of black Forex, 70.5 cm wide and 47 cm tall.
These dimensions are a trade-off between the ease of transport and the length of the snow transect covering at least 10 times
the C-band wavelength A=5.5 cm as suggested in (Manninen et al., 2012). The panel can be photographed by means of any
digital camera. To attain a representative snow transect, 9 pictures were taken on each eampaign-measurement day: 3 along one
direction, 3 along the perpendicular direction, and 3 at a 45° angle between them. The resulting roughness profile is averaged
among all usable pictures, i.e., those not affected by excessive shadowing or unclean panel surface. To our knowledge, a time

series of snow surface roughness properties was never measured before.
2.1.6 Snow Water Equivalent

Profiles of snow water equivalent (SWE) were sampled from the surface to the bottom with a cylinder cutter of inner diameter
9.44 cm and length 55 cm. The snowpack was sampled in sections from the surface to the ground and the total SWE was
obtained by weighting each sample and summing up all the values. The uncertainty range of this instrument is around 10%

with the main uncertainty source being caused by the presence of ice layers (Proksch et al., 2016).
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Figure 2. Overall range of local incidence angles across the study area for all the four relative orbits — morning/descending (M) and
afternoon/ascending (A1). Each S1 cell is identified by its centroid and a number.

2.2 Automatic measurements
2.2.1 Runoff

Runoff was automatically measured at a sub-hourly resolution by a lysimeter. Unfortunately, the instrument was discovered to
be clogged when the runoff started in 2023. The instrument was repaired only in late May 2023. Therefore, the time series for
that year starts with a peak (see Fig. 8d), although we hypothesize that runoff may have started as early as the end of April

2023. To avoid similar issues, on the following season the lysimeter was inspected timely and assessed as fully functional.
2.2.2 Snow Water Equivalent

Manual snow water equivalent (SWE) measurements are complemented by an automatically recorded time series at sub-hourly
intervals, using the SSG1000 snow scale permanently installed at the WFJ site and manufactured by Sommer Messtechnik,
Austria. The system consists of a weighing platform and load cells, which directly measure the weight of the snowpack on
the platform and convert it into SWE. This instrument has a measurement range of 0 to 1000 mm of water equivalent. During
the 2023-2024 snow season, the upper capacity was reached due to above-average snow depths. In comparison to manual

measurements, Smith et al. (2017) estimated an error of +£10%.
2.3 Sentinel-1 acquisitions

S1 is designed as a two sun-synchronous polar-orbiting satellite constellation, acquiring dual polarimetric C-band (frequency
of 5.405 GHz, wavelength of 5.5 cm) SAR images with a nominal resolution up to 3.5 m x 22 m in Interferometric Wide
swath mode (IW) and a revisit time of 6 days. Acquisitions in IW have a swat of approximately 250 km. This, together with

the overlapping orbit paths, conceives the acquisition of multiple tracks at middle latitudes such as the Alps. For this reason,
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within the time window of 6 days, more acquisitions of the same area may be available. Four-tracks-are-available forthe-area

295

Merning;-Unfortunately, Sentinel-1B failed at the end of 2021, and with only Sentinel-1A in orbit, repeat cycles halved from 6
to 12 days. Since then, the overall data acquisition capability was reduced by ~05:30-41+°-50% in most regions, including our

afternoon) and two descendin

Weissfluhjoch field site. Data from four relative orbits are available for this site: two ascendin

morning) passes. Figure 2 shows the overall range of local incidence angles across the field site, which vary from a minimum
300 of 27° to a maximum of 47°. These maps highlight domains with stronger and weaker dependence on the incidence angle — an
east-facing back-slope and a flat area, respectively.

The SAR images can be downloaded, free of charge, from the copernicus data hub (Copernicus). To account for the complex

topography and to reduce the speckle noise of SAR acquisitions, a tailored preprocessing procedure has-been-was applied to all
data. The procedure-tses-processing procedure involyes a combination of tools, some of which are available in SNAP (Sentinel

305 Application Platform) version 6.0and-some-, while others are customized and written-developed in Python. The procedure-is
isted-and-full workflow is described in Marin et al. (2020); however, in this study, the gamma-MAP filter was not applied. The
final spatial resolution of the post-processed S1 images is 20 x 20 m.

The nominal radiometric uncertainty of S1 falls in the range of 30=1.0 dB, as indicated in several ESA validation campaigns

Torres et al., 2012; Miranda et al., 2015; Schwerdt et al., 2017; Benninga et al., 2020). However, the overall radiometric accurac

310 1is also affected by a number of preprocessing steps, including (but not limited to) the application of despeckle filters, terrain

correction and radiometric normalization (particularly challenging in mountain regions with complex topography), and thermal
noise removal (important in conditions of high absorption, such as wet snow). In such conditions, a detailed specification
becomes extremely complex and falls beyond the scopes of this paper. Nonetheless, since this study explores the multitemporal
behavior of o overa target cell, it is relevant to mention speckle denoising. We used the filter proposed by Quegan and Yu (2001)_
315 —apowerful yet relatively simple one to denoise multitemporal stacks, with a 11 x 11 pixels window. Similarly to local spatial
multi-looking, its implementation involves local averages of intensity values for each date. Intuitively, this could potentially.
blur strong targets and edges, ultimately leading to a loss of resolution and impacting the overall multitemporal result. However,
in conditions of dry snow, the snow cover and the position of the scatterers are stable, snow temperatures are well below 0°C
and the soil should be mostly frozen, implying constrained variations in soil moisture. Under these conditions, the pixels we
320  considered in our study exhibited an overall stable behavior. The same stability was observed during dry periods in summer.
In these two cases, the standard deviation was within 1.0 dB, which aligns with the nominal radiometric uncertainty of S1.
During the melting period, the primary source of radiometric uncertainty originates from the formation of LWC within the
snowpack. As a consequence, the radar return signal from the same target cell changes over time, resulting in reduced temporal
coherence and larger deviations in multitemporal statistics. As will be shown in the course of this study, LWC potentially
325  exhibits high heterogeneity across a single resolution cell. Under such conditions, the estimation of radiometric uncertainty.
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becomes particularly challenging. Without a precise reference for LWC, a rigorous uncertainty quantification is inherentl
difficult and lies beyond the scope of this work.

2.4 Campaign design

Measurements were carried out within yv-freshly dug
snow pits, starting at 08:00-00 approximately. The start of the measurement procedure depended on the amount of employees
available on a specific day, on the amount of snow, on its density and on the weather conditions — generally, between one to two
hours later. The measurement procedure was generally finished around 12:00 refilling the snowpit; however, on isolated days,
there were several hours of delay because of the above mentioned reasons. On the first snow season, the snow temperature was
generally measured first and the melting calorimetry last, with the remaining measurements being carried out in between with
an order that also varied as a function of the above mentioned factors. On the second snow season, we improved the campaign
design with a more rigorous measurement order: temperature first, SSA and dielectric LWC either simultaneously or one after
the other, density, SWE, and melting calorimetry coupled with a second simultaneous dielectric LWC profile taken at the same
time-and-vertical location. This has specific importance for the LWC profiles. On the first season, the time lag between the
dielectric and calorimetric LWC profiles was 2 or 3 hours, at an horizontal distance of 50 cm to 1 m. On the second season,
we measured one first dielectric LWC profile and an adjacent, simultaneous one using melting calorimetry. In Sec. 4.2, we will
refer to the first setup as "co-located" and to the second one as "simultaneous".

On both seasons, before starting the measurement procedure, the profile wall was made as smooth as possible. A Near-Infra-
Red picture was taken for qualitative comparison. Outside of the snow pit, on an undisturbed area, the surface roughness panel
pictures were taken. On days where the radiation (from the sun or diffuse) was particularly intense, shading was necessary
for every surface measurement that might have been affected. The temperature profiles were always measured in the shaded
corner area of the snow pit. Overall, each measurement series would need a total horizontal space of 1.5-1.8 m, and the
single variable profiles were measured at a reasonable horizontal distance from each other. On both seasons, snow profiles
were carried out within the same designated area. The area was divided in corridors approximately 2 m wide. Throughout the
season, measurements were carried out moving continuously forward along the corridor until the slope was hit. The next snow
profile would be dug onto the next corridor. A minimum distance of 30 cm was secured between two consecutive measurement
days, to avoid disturbances from the previous measurement set.

Data cleaning and homogenization procedures were performed before providing the measured snow properties as RT inputs.
In particular, since sampling resolutions were different (see Sec. 2.1), all measured properties were linearly interpolated to a
common vertical resolution of 1 cm. Positive LWC values recorded at temperatures below 0°C were corrected to 0%. 0.04%
and 0.4% of the measured LWC values were above or equal to 15% for the two years respectively. For both used-dielectric
instruments, these values are likely not accurate. Since these values likely represent areas of high snow wetness, they were
not excluded from the analysis but their LWC value was set to 15%, similarly to Techel and Pielmeier (2011). Additionally,
instances of very low LWC measurements from thin layers just above the ground in dry snow conditions were discarded,

as we could not rule out potential instrument disturbances from the ground in these cases. Given the accuracy range of the
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Figure 3. The-map-in-a)-shows-an-aerial-Aerial view of the WFJ measurement station. Each of the 56 points represents the centroid of each
S1 cell. Each centroid is split in two, the left part indicating the interquartile range (IQR) of the winter 0§ ¥ signal for the snow season of
2022-2023 and the right part for the snow season of 2023-2024. Contour lines indicate the surrounding slopes. The area-in-white-indieates
the-surrounding-skiable-domain—The-yellow rectangle indicates the fenced measurement area where snow profiles were carried out in both

seasons. Cell 3940, i.e. the selected S1 cell for this study, is highlighted in red The-boxplots—in-b)-and-¢)-represent-the-variability-of-o

thermometer (see Sec. 2.1), temperature oscillations up to 0.25°C below 0°°C were set to 0>°C from the first measured fully
isothermal profile onwards. Since the snow properties were measured at a certain lateral distance one from the other, the profiles
of density and SSA were slightly shifted with a simple algorithm to maximise the correlation with the profile of LWC. Finally,
we had to discard the last 3 snowpits-snowpit measurements of 2023, because the measured RMSH value there was too high

to ensure the conditions of validity of the interface model (see Sec. 3.2).
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Figure 4. Variability of oV in dry snow conditions for all relative orbits overlooking cells 18 25, 32, 38, 39, 40, i.e. the flat terrain cells

YV sional of the selected cell 40 compared to the ensemble

with likely similar snow properties as the measured ones (a-b). Multitemporal o

standard deviation (std_vv ) of the similar cells — morning/descending (M) and afternoon/ascending (A7) (c-f).

365 3 Methods and model
3.1 Selection of the Sentinel-1 reference cell

The selection of the reference S1 cell required some considerations. The WFJ field site is ideal for continuous measurements

due to its proximity to structures and sensors, however, these features may interfere with radar waves, thus disrupting the
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Table 1. S1 tracks overlooking the selected cell 40, with times of acquisition, direction of orbit and local incidence angles.

baekseattering-backscatter from natural terrain. Most of the structures within the field site are metallic and may act as additional
reflecting sources in addition to the snowpack.

To select the reference cell, we extracted o}V values for both years over a grid of 56 points covering the whole extension
of the field site and the immediate surroundings (Fig. 3a). For each cell and for each different year, we isolated the time frame
starting at the beginning of the meteorological winter (Beeember-Dec 01) and ending when the first liquid water was detected
measured in the snowpack. Over these time frames, for each year and for each cell we computed the variability of o) V" acquired
by the 4 different tracks (See Tab. 1). We assume that lew-variability-lower variabilities between different tracks over a dry
snowpack may indicate a minimal interference with other non-natural elements on the field, as their backscatter would typically
exhibit strong angular dependence (i.e., anisotropy).

The results of this analysis are summarized-shown in F1g 3—T—h&,mvxlleArAeAtpAeNvanab1hty is mapped over the field using the

interquartile range (IQR).

In general, the IQR does not vary significantly between the two snow seasons, suggesting that this kind of approach might be

adequate to select a reference cell with the least p0551b1e artificial disturbance. Thefeﬂ%eﬂ—@tl%l e.points-, cells

15, 22, 23, 27, 52, 54, and 55 )—

A Ll 2204
man-made targets<{structures (e.g., cell 27)er-, surfacing boulders (cells 52, 54, 55), explaining-the-or small variations in soil
moisture, which could account for the observed year-to-year variability. The highest IQR values are clustered around the large
hut (for double-bounce effects) and where the slopes start to become steeper ;+e—where-the-backseattering-has-a-streng-(when
the backscatter has strongest dependence on the aspeet-angleincidence angle). Interestingly, the IQR values for cell 25 and 32

are among the lowest for both snow seasons, suggesting that smaller metallic sensors might not represent a distarbancefor-the

significant disturbance for radar waves.

Ideally, the target cell should coincide with the location of in-situ measurements to ensure that the observed snow properties
accurately represent those detected by the radar. Although S1 footprint is large relatively to the area disturbed by a single snow
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pit, excavating multiple consecutive snow profiles across a broader area can ultimately alter snow conditions across the entire
cell - particularly under moist or wet snow conditions. This would introduce an uncontrolled degree of uncertainty. Therefore,
the target cell should rather be selected among the surrounding
undisturbed cells with similar slopes and aspect. Fig. 4a-b show the dry-snow gyV_variability for a set of cells with such
400  features, ie., cells 18, 25, 38, 39, 40. Among these, cell 40 shows a distinguished dependence on each incidence angle and
orbit direction, along with relatively low variability of each-single-track—TFhese-conditions-are-met-by-points 320y ¥ across
tracks. An exception occurs for track #117 during 2023-2024, where the variability is relatively higher with respect to the year
before. This increased variability is also noticeable for cell 25 and 39. Peints-25-and-32-were-discarded-because-they lie-on-a
seetion-of-Given the lower variabilities recorded on the prior year, interference from non-natural elements can be ruled out. The
405  most plausible explanation is a certain degree of heterogeneity in soil moisture across the field. Unfortunately, we are unable

to verify this hypothesis, as soil moisture measurements were not included in our field campaign. Additionally, cell 40 lies in
the . . . . . . .

| g | in-immediate vicinity to the measurement site,

410 and the average-snow surface remains undisturbed due to the operation of a LiDAR laser scanner continuously monitoring
the snow surface. Fig. 4c-f illustrates the multitemporal oy vatue-among-att-tracks,-and-the smaltest overatt-variability-of
each-single-track-with-a-smatl-exeeptionfor track-signal from cell 40 in comparison to that of the other candidate cells. The
average standard deviation of the g ¥’ ensemble across these cells is approximately 3 dB for all tracks. Interestingly, the lowest
standard deviation is consistently observed at the time of the backscatter drop caused by wet snow, with the exception of track

415 #117 over the season2023-2024in 2024. Notably, during the melting season, the signal from cell 40 lies in the lower end of the
backscatter range across all years and tracks — aside for track #117 in 2022-2023. Potentially, this behavior is desirable for wet
snow detectability. For these reasons, the o V' recorded over cell 39-40 is selected as the reference time series for this work.

The impact of incidence angle was not a primary focus of this study, as it has already been extensively addressed in previous
research Mitzler (1987); Shi and Dozier (1992); Strozzi et al. (1997); Strozzi and Matzler (1998

420 instruments allowing greater control than satellite-based radar systems. In our case, the area most representative of measured

g < W-es v S 3

which strongly relied on tower-based

2). Furthermore, the high spatial variability of LWC would require dedicated reference measurements for each incidence angle
and cell, which was not feasible given the time and resources already involved in conducting the campaign at a single location.

425 3.2 Snow Microwave Radiative Transfer (SMRT) model: description and simulation setup

SMRT is a model that simulates the active-passive microwave response from snowpacks—seePicard-et-al(264+8)layered
snowpacks (Picard et al., 2018). The model is written and run in a Python environment and has a modular and flexible struc-

ture, allowing the user to set model runs choosing among different-a wide set of electromagnetic, microstructure and permit-

tivity models. The reflectivity and transmissivity associated to roughness can also be described according to different models.
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The user has to specify a set of snowpack properties to parametrize the microstructure and the electromagnetic model. In
particular, the roughness can be set either at the snow-air interface only or for each defined snow layer. Once these neces-
sary parametrizations have been declared in the preliminary components of the model, SMRT uses the discrete ordinate and
eigenvalue (DORT) method to solve the radiative transfer equation. The user can either customize a virtual sensor with specific
frequency, incidence angle and polarization or directly choose from a list of already available sensors, among which Sentinel-1-
The-backseattering-S1. The backscatter intensities can be obtained for all polarizations — this study focuses on the co-polarized
VYV -(vertical-vertieal)-vertical signal, because cross-polarizations are currently only partially implemented within the current
version of the module used for the parametrization of surface and interface scattering (Murfitt et al., 2024).

This study uses the symmetrized strong-contrast expansion (SymSCE) (Picard et al., 2022b) as the electromagnetic model
with two different permittivity parametrizations. Measurements of density and SSA were used to compute the Porod length
({p) (Porod, 1951). The microwave grain size (¢,;y) is computed as the product of £p and the polydispersity k, a parameter
describing the variability of the length scales with respect to the microstructure (Picard et al., 2022c). k was set to 0.75: this

empirical value was estimated from p-CT scans of a wide variety of Alpine-alpine snow samples with convex grains, among

which rounded grains and melt forms (Picard et al., 2022c). As—shewn-inPicard-et-al(2022¢);thechoice-of parametrization
of the-snow-mierostrueture represents-For this study, snow microstructure was parametrized using the exponential model. For
frequencies in the X- and Ku-bands (10-17 GHz), exponential auto-correlation functions have been shown to be too simplistic
for representing snow microstructure. Their fast decay fails to capture long-range spatial correlations, and their inadequacy in
modelling densely clustered media results in an underestimation of forward scattering effects (Chang et al., 2016). However,
Picard et al. (2022¢) show how £y can be computed analytically for various forms of auto-correlation functions, including
the exponential. These analytical expressions of £y allow for direct comparison between different representations of snow.
microstructure. Most importantly, when the same value of £y is used as input, all microstructure models give the same
scattering amplitude in the low-frequency limit. Therefore, according to these findings, the choice of the best representation of

snow microstructure becomes a secondary problem with respect to the-measuring £y in order to predict snow scattering at

The permittivity of a material is a complex number composed of a real part (i.e., the dielectric constant) and an imaginary
part. The contribution of the real part is related to the material’s ability to store electrical energy, whereas the contribution of the
imaginary part is associated with dielectric losses. Snow is a three-component mixture of spowice, air and water — therefore,
the effective permittivity of snow (es) depends on the relative proportions of these elements. The presence of liquid water
significantly alters both the real and imaginary parts of €, affecting how microwaves interact with the snowpack. Henceforth,
accurate estimates of €, are crucial for interpreting the microwave response of wet snow. Despite extensive research, particularly
in the 1980s, a universally accepted model for snow permittivity remains-ehisive-has not yet been established (Picard et al.,
2022a). For this study, we selected two formulations: (i) the Microwave Emission Model for Layered Snowpacks version
(Wiesmann and Miitzler, 1999) in its 3" version (MEMLSV3 hereafter), which is based on the Maxwell-Garnett mixing theory
of dry snow and prolate water inclusions; (ii) the Debye-like model modified by Hallikainen et al. (1986) by-fitting-it-against

field-data-(H-86 hereafter), which uses a mixing formula based on volume fractions and refractive indices, calibrated against
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Figure 5. Real and imaginary parts of the effective permittivity (es) of wet snow as a function of frequency (f) for a nominal density value of
400 kgfmikg/@:iand varying LWC of 1% (a), 4% (b) and 8% (c) according to the MEMLSv3 and H-86 permittivity models. Grey dotted

lines underline differences between the formulations fer-at the nominal frequency of S1, i.e. 5.405 GHz.

field data. These models were selected because they have-been-were validated against real-world C-band data. Specifically,
in Hallikainen et al. (1986) and earlier works, the authors present what is, to our knowledge, the only available dataset of
wet snow permittivity measurements at 6 GHz for varying LWC values, measured using freezing calorimetry. Interestingly,
the-MEMLSV3 fails to accurately reproduce this dataset. However, Kendra et al. (1998) observed that the dielectric constant
provided by H-86 appears to be too low, an observation that is supported by data from Achammer and Denoth (1994), collected
in the range between 8 and 12 GHz. However, these data appear to favor H-86 over MEMLSv3 when considering the imaginary
part of 5. While H-86 has been criticized, some aspects appear to have been overlooked (e.g. the recent corrigendum in Picard
et al. (2022a)). Figure 5 shows the real and imaginary parts of the €, as a function of the frequency for a nominal density value
and varying values of LWC according to both MEMLSv3 and H-86 permittivity formulations. For higher values of LWC (see
Fig. 5b,c), the €, values obtained from both formulations display a frequency dependence and curve shape closely resembling
that of pure water. In both cases, the real part of ¢, decreases with frequency, whereas the imaginary part increases up to
the relaxation frequency and then-deereases-decreases thereafter. However, at-in the C-band, the two formulations diverge
significantly, especially in their prediction of the imaginary part, which governs absorption losses. This difference becomes
more pronounced for increasing values of LWC. For instance, at ZW-G-=LWC=4%, MEMLSV3 predicts an imaginary part of
€s approximately twice that of the H-86 at the nominal frequency of S1 (see Fig. 5b). Since we cannot definitively determine
the fitness of one model over the other, both formulations will be used in the-SMRF-modeling-SMRT for this study. Given the
different behavior of the two formulations, we expect a lower and upper bound for S1 baekseattering-backscatter simulations.

It is clear that further research is needed to accurately characterize wet snow permittivity, but this is out of the scope of this

paper.
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RT modelling of snow comes with the additional difficulty of quantifying the dense medium effects, i.e., the electromagnetic
interactions occurring between snow grains that are closely packed together. At C-band frequencies, these effects become
significant as the scattering regime changes due to the presence of liquid water — both through changes in snow grain interactions
and in bulk dielectric properties. In H-86, dense medium effects are not accounted for. In MEMLSV3, these effects are
accounted through a semi-empirical parametrization involving, among other parameters, correlation length, density-dependent
corrections and — as mentioned above — mixing formulas. Correlation lengths are used to represent the effective grain size
and spatial correlation of the ice matrix, and to capture the degree of interaction between dense grains. Despite the range of
correlation lengths being limited in MEMLSY3, the ones that are represented derive from structures observed at Weissfluhjoch
during two snow seasons (Wiesmann and Mitzler, 1999). Therefore, they are likely suitable to describe the dense medium
effects on the snowpack structures observed and measured in this study. Snow density is used as a proxy to determine
how closely grains are packed: and as density increases, scattering is reduced and absorption increases. Such corrections

are embedded into the extinction term, i.e., the sum of scattering and absorption coefficients.
The chosen interface model (between snow and air and between snow layers) is the integral equation model (IEM) (Brogioni

et al., 2010), since it is one of the most used models to describe the roughness. However, any other model could be used,
provided the roughness characteristics are within the validity range. The IEM is valid under the conditions w- RM SH < 2 and
w?-RMSH-CL < \/€i» where w is the wavenumber (which depends on the medium) and ; is the ratio between the media

permittivities at the interface (Fung et al., 1992).

Using the functions available in SMRT, we modelled the substrate as a reflecting surface with a given value of backscatter.
In dry snow conditions, on days when manual measurements and satellite overlooks coincided, we assigned the S1 from-the

ab-winter-until-the formation-of liquid-water-within-the-snowpaekrecorded backscatter value to the

dry snow is
transparent to radar waves at C-band and that therefore the soil is the only seattering-soureecontribution to the total backscatter.
In wet snow conditions (or in dry snow conditions, when there was no concomitance between measurements and satellite
overlooks), we assigned a fixed value of backscatter to the substrate, which we computed as the average value in dry snow.
conditions of each individual track (incidence angle). Notably, SMRT offers the possibility to compute the backscatter from
the soil, however, it requires a series of detailed information that are spatially heterogeneous and would have been nearly.
impossible to retrieve continuously over the course of our campaign. These properties include the soil moisture, the relative
sand content, the relative clay content, the soil content in dry matter, and other geometrical parameters such as the roughness

and the correlation length.
Under these configurations, the model takes as inputs the following snowpack properties: temperature, density, volumetric

substrate, assuming that in

liquid water, SSA and surface roughness. For the snow-air interface, we used the measured values of RMSH and correlation
length. For layer interfaces, we set RM S Hjqyers=1 mm and C'Ljqyers=30 mm (i.e., the average winter value from our field

measurements). When measurements and S1 overpasses coincided, the simulation was performed using the incidence angle of
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S1. On days without simultaneous overpasses, the simulation was performed using the incidence angle from the closest previ-
ous or subsequent S1 pass. All medeling-modelling choices described above have been designed and motivated to be optimal
to describe wet snow starting from measured properties. However, it is important to remark that the choice of such parametriza-
tions remains highly arbitrary, as further research is still needed to validate permittivity, roughness and microstructure models
specifically for wet snow at-in the C-band.

Another practical challenge was hew-to design a way to replicate the often complex snowpack layering observed in the field
within a radiative transfer model which is not specifically made to deal with a high number of layers thinner than the wavelength
(Sandells et al., 2022). As a matter of fact, this increases the number of dielectrical discontinuities (Leduc-Leballeur et al., 2015)
generating (artificially) higher scattering. Resampling high resolution field measurements to the wavelength or its multiples is
an option, however, this does not necessarily reflect the physical snowpack structure. As an example, in the moistening phase,
liquid water appears in thin layers at-the-top-in the upper part of the snowpack. These layers can have thicknesses of a smaller
size than the C-band wavelength :-theirseattering-effeet— the effect of such layers on the total backscatter is unclear and this-is
represents a potential source of errors when using layering defined by the resolution of the field measurements. As the wetting

front progresses through the snowpack during the ripening phase, liquid water becomes more homogeneous over thickertayers

layers with thickness comparable to the C-band wavelength. During this phase-itmight seemappropriate to-choose stage, using
high-resolution discretizations (e.g., comparable-to-on the order of the C-band wavelength) te-reproduce-as-precisely-as-possible
may seem appropriate to closely replicate the liquid water layering observed in the field. However, this-may-artificially-produee
can merge distinct wet and dry layers, blur important contrasts and potentially lead to biased backscatter estimates. On the other

hand, intuitively, lower-resolution discretizations (e.g., multiples of the C-band wavelength) dissipate the scattering effect of
thinner (~6 cm) wet layers. To reduce the aforementioned sources of uncertainty, we chose to model the snowpack structure
by stacking layers with a minimum thickness corresponding to the C-band wavelength, ensuring each layer had consistent
average physical properties. These property-based-physically similar layers were identified automatically by means of a simple
algorithm and then refined manually, with particular emphasis placed on LWC over the other variables. An example is given
provided in Fig. 6-Hewever, where snow properties are shown at the field-measured vertical resolution in (a), and averaged
into physically consistent layers for SMRT input in (b). Fi
varied between 1 and 14, with a marked dependence on the stage of the melting process and on the campaign year. In dry snow.
conditions, the densely measured snow properties are practically always averaged into one single layer, given the absence of
liquid water. As the snowpack starts moistening, the number of distinct layers increases, as a function of the first formation of
liguid water within the snowpack. The highest number of layers required in SMRT to model the snowpack is used during the
ripening phase, as the LWC layering is at its most heterogencous state during this phase, as a consequence of the progression
of the wetting front. Later in the runoff stage, with the snowpack being fully saturated, the number of used SMRT layers
decreases again, as a consequence of a more homogeneously moist snowpack. On the other hand, Fig. 7 shows that during the
ripening phase, the first campaign year has been modelled using ~30% less layers than the second, on average. The presence
of ice lenses helped to homogenize the distribution of liquid water within the snowpack, resulting in more uniformly wet

. 7 shows that the number of layers used for each SMRT simulation
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Figure 6. Example-of (acompleteset) Vertical profiles of SMRT-input-snow-snowpack properties for-measured in the field on May 14705/,
2024: measured-temperature (dark red), density (dark yellow), liquid water content (LWC; light blue), and diseretized-with-average-vatues
specific surface area (brownSSA; dark blue)over-identified physieat, The vertical spacing of the points connected by the lines reflects the
measurement resolution for each profile: 5 cm for temperature, 3 cm for density, 2 cm for LWC, and 4 cm for SSA. (b) Representation of the
same profiles averaged according to the physically consistent snow layers (yeHewindicated by grey horizontal lines). The layered profiles as
in (b) form the input snowpack for the SMRT model, combined with surface roughness parameters measured on the same day (RMSH=2.7

mm; CL=48.5 mm).

layers near the surface and consistently drier sections toward the bottom. Without ice lenses, in 2024, the progression of liquid
water into the snowpack was more heterogeneous, therefore requiring more layers in the model to remain as true as possible
to the conditions observed in the field. Despite the efforts to find a reasonable compromise between all the above mentioned
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Figure 7. Variability of the number of modelling layers in SMRT used for each simulation day as a function of the melting phase and the

campaign year.

constraints, the optimal way to model a radar-equivalent snowpack from field measurements and/or detailed multilayer physical
model outputs remains an open question in the field of radiative transfer medeling-modelling of snow, only recently addressed
by Meloche et al. (2024), albeit for dry snow only.

4 Results

4.1 SnewmeltIdentification and re-definition of melting phases identifieationfrom multitemporal Sentinel-1
baekseattering-backscatter and field measurements

Fig. 8and—-4.1 show the evolution of the multitemporal S1 SAR backseattering-backscatter together with the time series
of measured properties: snow temperature, LWC, air temperature, total water content (TWC), runoff, snow water equivalent
(SWE) and surface roughness indices (RMSH and CL). The melting phases identified with the method proposed by Marin et al.
(2020) are reported on each time series for later validation. We will refer to the snow seasons of 2022-2023 and 2023-2024 as

the 2023 and 2024 seasons, respectively.

vs-roughness measurements show clear

differences for different snow surfaces (Fig. 10). Smooth surfaces typical of new/dry snow have RMSH values around 1

Our measurement-campaign-brough

mm (Fig. 10a). Thereon, the RMSH-roughness increases with increasing surface degradation due to melt-refreeze cycles and

sublimation (Fig. 10b). The values of RMSH measured in these conditions, which are the most persistent throughout the melt
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Figure 8. Data overview for the snow season of 2022-2023. Panel-(a) WMMMW@&WMMW/MM
(triangles); range obtained by connecting the manuatty—consecutive S1 passages by direction of orbits, i.e. by connecting all the
mantatty-Manually measured profiles of snow liquid water content (LW C)profites. PanetH(ed) shows-the-air-Air temperature at hourly reso-
lutionas-, measured by the automatic sensor at WFJ. Panel-(de) shows-the-measured-Measured total water content (TWC) (light blue);-the-;
runoff time series automatically recorded by the lysimeter at WFJ (dark blue);; lack of runoff data due to the instrument failure (grey area);
snow water equivalent (SWE) both automatically recorded by the snow scale (black line) and manually measured (blackpoints)yand-the
tack-of runoff-data-due-to-the instrument-fatturetgrey-areawhite circles). Panet(e) shows-the-measured-time-Time series of measured surface
roughness by-means-of-the-two-indices-parameters — RMSH and CL.Panel-
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season, lie within 3 and 10 mm approximately. Fully-formed suncups are associated to values of RMSH around 10-15 mm
(Fig. 10c). Deep suncups appear like craters on the snow surface (Fig. 10d), some reaching width of 20 cm and depths of 10
cm. In these conditions, we measured values of roughness RMSH equal or higher than 20 mm.

In 2023, the first liquid water was measured on Apr 10 /04-(Fig. 8bsd). On this date, our data show that the temperature
of the top ~5 cm of the snowpack was 0>°C (Fig. 8ab). The air temperature reached 0>°C as well on this day (Fig. 8ed).
The snowpack reached full isothermal state 20 days later. Ice layers formed throughout the season, likely as a consequence
of repeated melt-refreeze cycles and the succession of several warm and cold spells (Fig. 8ed). Ice layers were observed
regularly during the measurement campaign, their presence is highlighted by locally higher values of LWC due to ponding at
approximately 100 cm from the ground. The presence of ice layers probably withheld the meltwater in the upper section of the
snowpack, partially hindering the progression of the wetting front. LWC profiles in Fig. 8b-c highlight ponding above ice layers
consistently until +5/65-May 15. The ponding is no longer detected over the next consecutive 5 snow profiles and becomes
visible again from May 26 /05-until early June, when the ice layers likely disintegrated allowing the meltwater to percolate to
the bottom of the snowpack. The fact that the ponding above ice layers is not detected on a series of consecutive snow profiles
is probably linked to the partial refreeze of the snowpack highlighted by the drop in air temperature detected within this time
span (Fig. 8ed). However, ice layers could also be laterally non homogeneous. Fig. 8f shows that the roughness associated with
wet snow starts developing short after the snowpack starts moistening, with RMSH increasing until 09/05-Then;startingfrom
09/05May 9. Thereon, the cold spell brought new snowfalls which smoothened the snow surface significantly, and roughness
indices reverted to typically winter values for approximately 10 days. Fully-formed suncups were observed on the field from
May 31 #/65-onwards. As explained in Sec. 2.2, the lysimeter time series for 2023 (Fig. 8de) is not useful to detect the runoff
start. However, the automatic measurements indicate the first slight SWE decrease around 68/05May 8, following a warm spell
that lasted several days. This occurred in the presence of a fully isothermal snowpack, suggesting that meltwater may have
started to be released around this time.

In 2024, the first liquid water on the surface was measured on 08/04-Apr 8 during a warm spell (Fig. 4.1b;e;db-d). From
this date on, the wetting front moved somewhat into the snow before being interrupted by a cold spell, which caused a partial
surface refreeze(Fig—4-ta;b;e). The snowpack reached the full isothermal state on 69/05-May 9. Over the course of this season,
ice layers were not observed in the field, the progression of the wetting front was not hindered and the snowpack reached
full saturation earlier with respect to the previous year. The runoff time series confirms that the snowpack released the first
meltwater around 68/04-Apr 8 — on this date, the (point-wise) measurements show a largely isothermal snowpack. Likely, the
snowpack was isothermal over the entire cell (see-Fig. 4.1a;b;db,c,e). Additionally, significant amounts of LWC were measured
at the ground interface after 68/64-Apr 8 and the manual measurements show a SWE decrease of ~100 mm between 64-and
1+5/04-Apr 4 and 15. These observations can validate the same hypothesis made for the previous season in the absence of runoff

data due to instrument failure. Qur measurements in Fig. 4.1 ss-f show
that surface roughness increased relatively late (63/06Jun 3) with respect to the previous season, with fully-formed suncups

being visible on the field from Jun 19 /86-onwards.

24



610

615

620

625

630

635

640

Coupling the detailed, high temporal resolution information about the state of the snowpack with the multitemporal SAR
o'V recorded by S1 on morning and afternoon overpasses (Fig. 8-4. 1fa) enables the validation of the methodology proposed
by Marin et al. (2020) to identify the melting phases. According to the authors, a drop of at least 2 dB with respect to the
winter mean in the afternoon/ascending oV identifies the start of the moistening phase; the ripening phase starts when the
morning/descending o}V signal shows the same drop of at least 2 dB; the runoff starts when both morningand-afternoon
/descending and afternoon/ascending oV time series reach their local minima before the monotonic increase (the authors
propose an average date between the two local minima when both the S1 satellites were available). Fo-obtain-For the two
seasons, we computed the average winter baekse&&eﬁnglgggggg@gg{(m) for-the-two-seasons;-we-considered-by averaging
all values recorded by al-tracks-ever-the-each individual track over the course of the meteorological winter, i.e.frem-, from
Dec 01 A2-until-28/02-This-is-the-threshold-to Feb 28. The resulting values are the benchmark needed to identify the melting
phases;—which-are-summartzed-in—Fable-, The results are listed in Tab. 2. As noted by Marin et al. (2020), the dependence of
oY’V on incident and-aspeet-angles remains as a residual effect. While-the-overalt magnitude-doesnot change significantlyit

Because for the selected cell two morning/64—+2:5-64descending and afternoon/64-Ripening-start—13-2-ascending looks are

available, there are two possible dates for the start of the moistening and ripening phase, respectively. In 2023, these dates are
Apr 22 and 29 for the moistening phase and Mar 28 and Apr 26 /04691504 187 16/05-20-6-10/05

0,min,afternoon

O v morming ~19-9-03/05—19-9-for the ripening phase. For the start of the moistening phase, we selected the earliest, i.e.
Apr 22, For the start of the ripening phase, the two identified dates are almost one month apart, however, the 0" decrease
recorded on Mar 28 by track #168 derives from a melt-refreeze cycle, as the following value recorded by the same track aligns
back around the winter mean. Therefore, we selected Apr 26 #05-Marin-etal—(2020) Lysimeter Marin-et al(2020) Lysimeter

the start of the ripening phase. In 2024, for the moistening start in-2023: phase, the oV recorded-on-7/value recorded on Apr
04 by track #0135 is only 1.5 dB lower than m, whereas-on-however, the next passage the-drop-is-7-8-dB-already—For-this
reasonof the same track on Apr 16 recorded a drop of already 7.4 dB. Therefore, the moistening start for-2623-has been placed
on the-date-in-between;namely19/Apr 04. Moreover-due-to-the-tower-satellite revisittime;-the-separations-On this date, track
becomes even more clear for the selection of the runoff start date, as the wider separation between local minima are—+3-and

16-of o)V considering all 4 looks is 17 days for 2023 and 2024-+espeetively—16 days for 2024. Using the date in between
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Table 2. Overview on the identification of the melting phases based on the multitemporal S1 SAR backscatter as proposed b
Marin et al, (2020). For each season, the table shows the relevant values of oy ¥ and the occurrence dates for each afternoon/ascendin

A7) and morning/descending (M,

look (and correspondin

incidence angle). The selected values for the start of the moistenin

Season 2022-2023 2023-2024
Track | 015 (A1) 117 (A1) 066 (MJ) 168 (M) 015 (A1) 117 (A1) 066 (M]) 168 (M)
Local Incidence Angle 41° 32° 33¢ 42° 41° 32° 33° 42°
oy s, [dB] | -12.3 -11.4 -84 -10.0 -12.6 -115 -8.9 -10.1
Moistening start date | Apr 22 Apr 29 - - Apr 04— Apr16  Mar 18 - -
19 Moistening start value [dB] -18.5 -16.3 - - -14.1 - -20.0 -13.9 - -
Ripening start date - - Apr 26 Mar 28 - - Apr 08 Apr 15
Ripening start value [dB] - - -12.6 -13.3 - - -12.8 -17.9
Ohmins date | May 16 Apr29  May08  May 03 May 22 May 17  May 26 Jun 02
O wins value [dB] 214 -16.3 -19.8 224 -22.6 -23.7 -20.7 228
Runoff start date (Marin et al., 2020) May 06 May 24
Runoff start date (Lysimeter) No data — ~Apr 29 (?) ~Apr 15

to determine the runoff start, as done by Marin et al. (2020), gives potentially unreliable results in these conditions. This
low temporal resolution makes it difficult to pinpoint precise onset dates, especially when minima are separated by such long
periods. Despite the ambiguities, on both seasons, the identified moistening phase coincides exactly with the first snowpack
warming and the consequent formation of liquid water. The identified ripening phase is also mostly consistent with the theory,
as field measurements show that the snowpack transitions to the fully isothermal state with the wetting front progressing to
the bottom, although this process is partially hindered in 2023 by ice layers. In 2024, a sudden cold spell at the beginning
of the ripening phase caused the refreezing of the superficial meltwater (Fig. 4.1a;b;eb-d). This generated a sharp increase in
both morning and afternoon oV (Fig. 4.1fa). In 2024, the first instance of measuring a fully isothermal snowpack coincided
precisely with the first afternoon local minimum of o V. The
dees-not-allow-to-verify-the-same-same cannot be verified for 2023and-it-ereates-, which instead shows a counterintuitive case

where the local minimum of morning o V" anticipates the local minimum of afternoon oV (Fig. 8fa). Nonetheless, by the

time the morning oy V' reached its local minimum in 2023, the snowpack had already been fully isothermal for at least 5 days
(Fig. 8a;fa-b). This suggests that the snowpack is likely to be fully isothermal when the afternoon backseattering-g ¥ reaches

its local minimum. The runoff time series in 2024 shows that the snowpack had started to release meltwater as soon as in the

late moistening phase (Fig. 4.1de), in correspondence of the first local minimum of the multitemporal-SAR-backseattering-on
afternoon oy ¥ time series on Apr 16 04-(Fig. 4.1fa).
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Marin et al. (2020) proposed three possible explanations for the monotonic backseattering-backscatter increase following
the local minima: (i) the increase in surface roughness, (ii) the decrease in TWC and (iii) the snow cover gradually becoming
patchy. Our data show that over a high-altitude alpine snowpack like the study plot at WFJ, surface-roughness-develops—welt
in-advanee-of-when-roughness develops on the snow surface well before the snow cover begins to disappear in patches.
Therefore, at least for similar altitudes, the gradual disappearance of the snow cover can be ruled out as a cause of the increasing
baekseattering-backscatter in the late melting stage. For both seasons, our data indicate that the strongest correlation with the
monotonic increase of o) V" after the local minimum is observed with the gradual increase in surface roughness (Fig. 8-4. Lef).
Conversely, there seems to be no remarkable correlations between the increase in cr(‘)/ V' and the TWC and/or runoff trends.
In fact, Fig. 8-4.1d-¢ show that the decrease of TWC as a consequence of snow ablation is not monotonous. On the other
hand, both automatic and manual measurements show that by the time SWE started decreasing monotonically (around May
26/65/2024-and-06/, 2023 and Jun 06/, 2024), the S1 oy'V had already increased again by ~56 dB.

4.2 Instrumental uncertainty and variability in field measurements of liquid water content

Fig. 5 shows that liquid water has a strong impact on the real and imaginary parts of the-effeetive-permittivity-of-snow-—¢,
at C-band frequencies;-and-therefore;-on—radiative-transfer-modehlng. For S1 a(‘{ V' retrievals from ground measurements, this

poses three major challenges. In the first place, manual measurements concern a very small area/volume whereas satellite
acquisitions cover a pixel size of 20 x 20 m. Secondly, the distribution of liquid water within the snowpack can be highly
heterogeneous because of a variety of features and processes, namely capillary barriers, preferential flows, ice layers. Finally,
what is the most accurate methodology for measuring LWC in both lab and field environments remains a debated question in
snow science (Barella et al., 2024), and although the methods used in this paper attempt-were designed to achieve a good level
of reliabilityrobustness, they are nevertheless subject to error. Therefore, all these uncertainty sources need to be taken into
account when comparing satellite o V" retrievals-with-signatures with retrievals driven by measured data.

In Sec. 2.4, we explained how dielectric measurements were validated against melting calorimetry in conditions of ripe snow.
We referred to the validation setup of 2023 as "co-located" only; whereas in 2024 we performed an additional "simultaneous"
validation in addition to the co-located. Figure 11 shows the spread between dielectric and calorimetric measurements in co-
located and simultaneous setups for all the LWC validation measurements made over the two years. In 2023, the average
maximum bias between co-located measurements is 2.6% and the average standard deviation is 1.2%. In 2024, the average
maximum bias and the average standard deviation are 2.6% and 1.4% for co-located measurements and 2.3% and 1.5% for
simultaneous measurements, respectively. Figure 22-13 shows all the measured vertical profiles in detail. In 2023, there is
an overall good agreement between dielectric and calorimetric measurements. The time lag between the measurements is
highlighted by often similar LWC profile shapes, with calorimetry generally measuring higher peak values. Unexpectedly,
in 2024, the simultaneous measurements resulted in only slightly lower biases and slightly higher standard deviations. This
counterintuitive result is supported by a number of previous studies. For example, Donahue et al. (2022) found an average
standard deviation of 1% over 10 cm wide snow samples with LWC between 0 and 5%. The study of Techel and Pielmeier

(2011) confirms the high occurrence of measurement deviations of more than 1% at short horizontal distances. However, Techel
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and Pielmeier (2011) also show that the correlation between measurements at larger horizontal distances is higher for LWC
values lower than 1.3%. Therefore, the biases and standard deviations observed in our field measurements may overestimate the
instrument uncertainty and/or variability over larger scales comparable to the footprint of S1. Based on these considerations,
we define the large-scale LWC variability as -1%. We use this value to assess the effect of LWC uncertainty on o V' retrievals

from ground measurements.

4.3 Interpretation of Sentinel-1 backseattering backscatter through SMRT simulations driven-forced by field

measurements

Figure Fig. 12 shows the comparison between the time series of S1 acquisitions and the-medeled-SMRT-modelled o}V driven
forced by snowpit measurements using the two different permittivity medels-formulations (MEMLSv3 and H-86in-SMRT-)
and the model setup described in Sec. 3.2, considering the LWC variability of +1% estimated in Sec. 4.2. In this Figure, we

ms-together with Tab. 3, simulation results are

categorized into groups, and potential sources of inconsistencies and/or deviations-from-St-driving scattering mechanisms are
discussed for each group, based on the measured values of LWC, TWC, and surface roughness. We-shew-all-All measured

profiles of LWCwith-the-relative-measured-values-of-, along with the corresponding TWC and RMSH values, are presented
in Fig. 13 and Tab. 5, which witt-serve as a reference in-the-foltoewing-explanationsfor the following analysis. Tab. 4 shows
all biases-the Root Mean Squared Errors (RMSE) between S1 acquisitions and simulations, according to the snow season, the
selected permittivity formulation and the melting phase. In general, both models exhibit a mean negative bias of 6-~5 dB with
respect to S1 recordings over both seasons; however, biases are more pronounced for 2024 than for 2023, with the deviation
between permittivity models being higher as well in 2024. H-86 generally gives higher o) V' values with respect to MEMLSV3.

In 2023, the #066 morning S1 track recorded a backseattering-backscatter increase of more than 2 dB between Apr 05 and
1976419, Similarly, in 2024, we observe a 2.5 dB increase in backseattering-backscatter recorded track #117 from Feb 08
762-t6-04/63-to Mar 04, We can hypothesize that such increases are driven by the thawing of the soil. However, our data are
insufficient and too uncertain to prove so, because of the-possible interferences between dielectric instruments and the ground
in mostly dry snow conditions, as mentioned in Sec. 2.1.4. In dry snow conditions, there were no significant discrepancies
between S1 and simulationsduring—the—dry—seasens; henceforth Fig. 12 only focuses on the period after the assumed soil
thawing.

Aside the chosen permittivity medelformulation, five primary sources of uncertainty may account for the differences between

simulated and recorded oyV.

recorded-and-modeled-o ) —values-A significant one is snow transformation and melting between satellite and measurement
acquisitions. S1 orbits intersect the field area either in the early morning or in the late afternoon (see Tab. 1). As explained
in Sec. 2.4, measurements started at around 10:00 and would take several hours. Thus, it is likely that in both cases the LWC
during the passage is lower than the value measured at 10:00 or later because of daily melt-refreeze cycles, especially near the
snowpack surface. Moreover, the point-wise LWC measurements are not necessarily representative of the general liquid water

distribution en—over the entire S1 pixelcell. In 2023, we consistently observed ice layers over a high number of consecutive
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Table 3. Bias-Supplementary information to Fig. 12: measured values of TWC, LWC, RMSH, noteworthy events for scattering (in-dBsuch
as cold spells or late snowfalls)between-meodeted-, and SHeemded—m%Lvakieﬁeeefdiﬁgmto the snow-season;—the-selected

permittivity-formutatton-mismatch between modelled and mekting-phaserecorded S1 backscatter signatures.

Group TWC LWC RMSH Event Source(s) of inconsistency, scattering mechanism

la - - - Soil thawing — Backscattering increase due to soil thawing

— Uncertainty in spatiotemporal LWC/TWC
Snowpack moistening — Scattering from surface structures (melt-refreeze)
2a <10 mm <3% 1 mm
Smooth surface — Surface roughness underestimation

— Wet soil scattering

L — Uncertainty in spatiotemporal LWC/TWC
Snowpack ripening T
3a >10 mm >3% 1—4 mm ) — Uncertainty in surface roughness measurements
Formation of surface roughness
— Uncertainty in IEM modelling

o — Uncertainty in spatiotemporal LWC/TWC
Snowpack ripening
4a >10 mm >3% 3~4 mm ) — Uncertainty in surface roughness measurements
Increasing surface roughness o .
— Uncertainty in IEM modelling

New snowfall on a wet snowpack .
Sa >10 mm >3% ~1mm — "Buried surface roughness"

Well-developed surface roughness

— Uncertainty in spatiotemporal LWC/TWC
Cold spell (partial snowpack refreeze) — Scattering from surface structures (melt-refreeze)
6a <10 mm <3% ~1mm
Smooth surface — Uncertainty in surface roughness measurements

— Wet soil scattering

— Uncertainty in spatiotemporal LWC/TWC
‘Wet snowpack
7a >10 mm >3% >4 mm — Uncertainty in surface roughness measurements
Fully-formed suncups . K
— Uncertainty in IEM modelling

— Uncertainty in spatiotemporal LWC/TWC
Snowpack moistening — Scattering from surface structures (melt-refreeze)
1b <10 mm <3% ~1 mm
Smooth surface — Surface roughness underestimation

— Wet soil scattering

. . — Uncertainty in spatiotemporal LWC/TWC
Snowpack moistening
2b >10 mm >3% ~1 mm — Scattering from surface structures (melt-refreeze)
Smooth surface o
— Surface roughness underestimation

— Uncertainty in spatiotemporal LWC/TWC
<10 mm Cold spell (partial snowpack refreeze) — Scattering from surface structures (melt-refreeze)
3b <3% ~1mm
(Varying) Smooth surface — Surface roughness underestimation

— Wet soil scattering

L — Uncertainty in spatiotemporal LWC/TWC
Snowpack ripening
4b >10 mm >3% ~1mm — Scattering from surface structures (melt-refreeze)
Smooth surface
— Surface roughness underestimation

o — Uncertainty in spatiotemporal LWC/TWC
Snowpack ripening T
5b >10 mm >3% ~3 mm ) — Uncertainty in surface roughness measurements
Increasing surface roughness o .
— Uncertainty in IEM modelling

New snowfall on a wet snowpack . N
6b >10 mm >3% ~1mm — "Buried surface roughness"

Well-developed surface roughness

— Uncertainty in spatiotemporal LWC/TWC
Wet spgypack o
7b >10 mm >3% >4 mm — Uncertainty in surface roughness measurements

Fully-formed suncups

— Uncertainty in IEM modelling




Table 4. RMSE (in dB) between modelled and recorded o ¥ values according to the snow season, the selected permittivity formulation and

Season—Permittivity-formulation—H-86 MEMLSv3 Data-to-compare H-86-Season | MEMLSY3- 2022-2023 Data-to-compare-
Bias-heightPermittivity formulation | ¢BH-86 [dB] ~¢BMEMLSv3 [dB] +#Data to compare [
OveraltheightOQverall | 53734 65745 129
PryDry | 40005 13507 5
Meistening-Moistening - - 0
Ripening Ripening | 54758 69676 43,
Runoff Runoff | 88402 102419 31

725 snow profiles (see Fig. 86c and 13). Our consecutive measurements suggest that ice layers contributed to—creating a more
spatially homogeneous liquid water distribution by acting as a natural drainage barrier for meltwater. Unlike 2023, in 2024 ice
layers were not consistently observed in the field. Likely, the melting process has-been-was more heterogeneous over the eelt
area-0f20-x20-mS1 cell, and point-wise measurements are less representative of wider scales on-in this season. This explains
the fact that days marked by high variability associated with LWC are more numerous in 2024 than in 2023. In Fig—42Tab. 3, we

730 grouped these sources of uncertainties together under the labels "uncertainty in spatiotemporal LWC/TWC". Potentially, this
source of uncertainty affects every S1 retrieval from field data. However, it definitely carries more weight than other sources
of error at early melt stages when the simulation variability associated to LWC uncertainty is particularly high, i.e., when the
TWC is low (24-t0-26/04/2023;-04/Apr 24-26, 2023; Apr 04/, 2024) and during both the cold spells of 2023 (May 17/65) and
2024 (+5-t0-23/04Apr 15-23), which caused the partial refreeze of the snowpack (see Fig. 8-4-ta;b:¢, 4.1b-d).

735 Daily melt-refreeze cycles, however, not only alter the amount of LWC/TWC in the snowpack, but they-also drive the for-
mation of surface structures that can create additional scattering which is not accounted for in the simulations, i.e. crusts (Lund
et al., 2022; Brangers et al., 2024). In Fig—2Tab. 3, we labeled this uncertainty source as "scattering from surface structures
due-to-(melt-refreeze)”. This uncertainty applies to the same cases as where "uncertainty in spatiotemporal LWC/TWC" ap-
plies, but it likely holds more weight when the TWC is slightly higher and the simulation variability according to LWC is lower

740  (08-to-15/04/2024-Apr 08-15, 2024; Apr 27 /04-t0-09/- May 05/, 2024).

Another cause of significant discrepancy between recorded and modeted-modelled o¥'V in the presence of a mostly dry
snowpack with a smooth surface may be the thawing of the soil. This process creates a thin layer of liquid water overlying
the natural soil roughness or absorbed into the basal snow layer (Lombardo et al., 2025). The combination of snow wetness
and roughness, as will be shown later in the paper, can be responsible for backseattering-backscatter increases up to 7 dB.

745 In Fig—+2-Tab. 3 we refer to this kind of uncertainty as "seatteringfrom-the-wet-setl-wet soil scattering”. This uncertainty
potentially applies to the instances when the TWC is relatively low and the variability associated to LWC is high. Between 04
and-27/04/Apr 04-27, 2024, our measurements show considerable amounts of liquid water at the soil interface with otherwise

relatively dry snowpack and smooth surfaces (see Fig. 13). The lysimeter time series corroborates these measurements by
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Table 5. Total Water-Content-water content (TWC) and Surface-Reughness-surface roughness (RMSH) values measured on-the-same-dates
as-for the LWC profiles shown in Fig. 13.

2023 2024

(mm]  [mm] (mm]  [mm]
Apr24 3 3 | dApos 2 L
Apr2s L 1 | Apros 13 2
Apr2o U3 1 | Aprio14 1
Mayol 39 2 |Apls 34 2
May03 39 2 | Apl6 6 -
Mayos 114 3 | Apl8 3 L
May0s 143 3. | Ap2 4 2
May09 102 4 | Ap27 1L 1
Mayll 18 1 | M2 16 2
May12 2 2 | May09 161 1
Mayls 14 1 | Malo € 2
Mayl7 1L 1 | Mayl4 46 3
May19 36 3 | Ma2l 9% 1
Moy22 2 - | M2 10 L
May24 24 3 | May29 80 2
May26 129 - | Jwm03 145 4
May29 116 4 | Jwm07 15 3
May3l 193 7 | Jwmlo 4 4
w2 2 10 | Jwmld 41 6
Jwnos 38 o | Jwml9 129 14
w07 6 9 |dm2 712
w09 98 16 | w26 6 -
w2 1616 | dwm2 £ 12
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detecting runoff start on Apr 087047, 2024 (see Fig. 4.1de). However, we lack sufficient data in order to prove and explore this
possible scattering source, therefore we mention-it-enty-only mention it as an hypothesis.

Two similar instances in 2023 (85-t6-09/65May 05-09) and 2024 (Apr 10 and 14/05) suggest another interesting phe-
nomenon likely affecting simulation accuracy. On both these intervals, Fig. 12 shows very good agreement between recorded
and medeled-modelled values of o}V, regardless of the chosen permittivity model and the variability associated to LWC. On
In both instances, surface roughness had just started developing on a wet snow surface (ZW-&=>LWC>3%), with measured
RMSH values between 3 and 4 mm (see Fig. 10b). Thereafter, spring snowfalls cover the early-stage roughness and the snow
surface reverts to smooth with RMSH values between 1 and 2 mm (see Fig. 10a). On both years, the group of simulations fol-
lowing the spring snowfalls (i.e. H-to-15/05/May 11-15, 2023and-; May 21 and 22/05/, 2024) show again strong biases when
compared to S1 recordings. This bias is almost certainly due to the fact that the surface roughness which had started to develop
is-now-was then buried below a smooth layer of new snow and it is not simulated by SMRT in the proposed configuration (see

Sec 3.2). In Fig—12-Tab. 3 we labeled this phenomenon as "buried surface roughness”.

Generally, simulations are in better agreement with S1 recordings when the measured surface RMSH is above 3 mm. Fig.
12 shows multiple groups of simulations where S1 retrievals from field data gain increasing accuracy with increasing RMSH
on a wet surface, together with a decreasing dependence on the chosen permittivity model and the uncertainty associated
to LWC (Apr 29 /04-te-to May 09/65/2623;-, 2023; May 19 /05-to-to Jun 09706/, 2023and-; May 29 7/65-te-to Jul 01/67/,
2024). These instances suggest that in conditions of increasing surface roughness on a wet snow surface, additional source of
uncertainty in S1 retrievals from field data might be associated to the IEM modeling-(see Sec. 3.2) translating surface roughness
in backseattering-backscatter response and/or to point-wise panel measurements underestimating the surface roughness of the

entire S1 cell. In this-sense

SHOW He-dreemetsanothe < e r-diserepanctes-be en res-and+ evals—ntie: Tab.
3 we labeled these sources as " inties inrguncertainty in IEM modelling" and "uneertainties-in-uncertainty

in surface roughness measurements", respectively.

Interestingly, the S1 signal saturates en-both-years-at values of oV areund~-20-dB—whieh-is-of -22.4 and -23.7 dB for
2023 and 2024, respectively. These values are close to the nominal noise equivalent sigma naught (NESZ) of S1, i.e. -22 dB.
The saturation of the signal is obtained by SMRT at much lower values, around ~-30 dB, regardless of the chosen permittivity

4.3.1 C-band radar backseattering backscatter sensitivity to the coupled evolution of surface roughness and liquid

water content

To study the C-band radar backseattering-backscatter sensitivity to the coupled evolution of surface roughness and LWC, we
selected the date of Apr 16/647, 2024. On this date, we measured a melt event in the superficial 45 cm. The bottom part of the
snowpack was homogeneously dry and was discretized as a one layer with the average of the scattering properties measured
in the field. These values are representative of a compacted snowpack structure at the beginning of the melt process: density

of 428 kgm™, SSA of 15.1 m?kg™! and temperature of -0.12°C. From this configuration, we prepared a series of synthetic
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snowpack variations with surface LWC increasing from O to 12%, and coupled each of them with a range of surface roughness
RMSH increasing from 1 to 15 mm. The-extremes-of-the-explored-surfaceroughnessrange-These extremes represent a smooth
surface eharaeteristie-typical of recent snowfall and the highly textured surface of fully formed suncups, respectively. To ensure
consistency, we gradually increased the value of the second roughness parameter CL as well. To do so, we used an empirical
logarithmic relationship extracted from field data between RMSH and CL, which we report in Fig. A1. However, this empirical
relationship is based on a limited number of points (75 in total) which show larger spreads-spread for increasing values of

RMSH. Therefore, we assume that the only diseentintity-in-the-experimenttwo discontinuities in the experimental results (see
Fig. 14b;-RM-S5H—=a-c, RMSH=3 mm and £W-C5;=LWC,;,, =12%) can be explained considering this uncertainty. We-ru

ARAANAANAANAS

al-experiments-with-the-same-inetdenee-angle-ef-44+>For clarity, these points were removed. All experiments were run with two
incidence angles — 30° and 40° — which represent the overall range of angles between satellite overpasses and the snow surface
within the reference cell (see Fig. 2 and Tab. 1). The result of all the experiments is shown in Fig. 14, for both permittivity

formulations.

In general, Fig. 14 shows that the intensity of the scattering response has a strong dependence on LWC for lower values of
surface roughness (FM-SH-<RMSH<3 mm). The higher the surface roughness, the weaker the dependence on LWC. More
in detail, with H-86, for LWC values lower or equal to 0.5%, simultaneously increasing surface LWC and surface roughness
causes a decrease in C-band o'V of a maximum of 2 dB. Within this range, the intensity of the o'V drop from smooth to
VvV
0

rough surfaces decreases gradually with increasing LWC. For LWC values higher than 0.5%, the spread in oy * as a function

of increasing surface roughness for the same value of LWC increases, with a reversed trend. Simultaneously increasing LWC
eventually generates a oV increase for all the considered roughness values in this experiment. Interestingly, the higher the
surface roughness, the lower LWC value is needed to invert the trend: for ZA4SH=RMSH=15 mm (typical of a textured
snow surface where suncups are visible, but also very close to the limit of validity of the ITEM), o) starts to increase for
LW-E=LWC>1%, whereas for RA4-SH-=RMSH=3 mm, the o}V only starts to increase for LH&>LWC>2%. For LWC
values higher than the threshold of 0.5%, the surface roughness influences the C-band baekseattering-backscatter response to
an extent that is comparable to the effect of LWC alone over a smooth surface. Similar considerations can be done for the
experiments run with the-MEMLSv3permittivityformulation, but as a consequence of the different absorption, the above-
mentioned changes in o V" trends happen for lower values of LWC. Besides-these-considerationsFurthermore, the experiments

in Fig. 14 reveal that, regardless of the permittivity formulation, for relatively low values of LWC (~1%), a change in surface

RMSH from 2 to 3 mm generates a remarkable shift-increase of ~6 dB in the backsecatteringrespense—Accordingto-our

field-observations;such—values—were-typicallyrecorded-backscatter response. In our field campaign, we typically measured
roughness values in this range over snow surfaces undergoing the first cycles of melt-refreeze metamorphism. Interestingly,

the value of 6 dB is almest-exactly-very close to the average bias observed between S1 acquisitions and medeled—valaes
of SMRT-modelled o"" i i during the moistening and ripening phase (see Tab. 4). Therefore;we-can

conclude-that-the-inerease-in-backseatteringfrom-the-minimum-is-due-This supports the hypothesis that panel measurements
may underestimate the large-scale surface roughness. Moreover, the backscatter increase occurring for all LWC and regardless
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of the incidence angle confirms that the monotonous increase in backscatter following the local minimum can be attributed to
the formation of suncups, as initially suggested by the measurements alone.
Finally, Fi

i.e., the absolute difference in backscatter between the two incidence angles of 40° and 30° — the range of incidence angles

overlooking the reference cell. For smooth surfaces (1 <RMSH< 2) and for LWC> 1.5%, |AcY V| exceeds 2 dB, i.e., twice

the nominal uncertainty of S1 (see Sec. 2.3). For LWC lower than 1.5%, |Ac)V | is highly sensitive to small increases
in LWC. For RMSH> 3. the sensitivity of |AcY"V| to changes in LWC almost disappears. In conditions of fully-formed
suncups (RMSH> 10), |AcYV| drops below the nominal sensitivity of 1.0 dB for every LWC value, meaning that the

backscatter signals show progressively weaker angular dependence for highly structured snow surfaces. This phenomenon
is easily understood considering that, on rough surfaces. diffuse scattering is enhanced. Therefore, the position of the sensor
relatively to the snow surface becomes less important, as the reflected energy is less directional and more broadly scattered.
The same phenomenon explains the apparent slight backscatter decrease for RMSH> 10 at angles of 30° (Fig. 14be). At
lower incidence angles, the radar beam is closer to perpendicular to the surface than it is at higher incidence angles. On rough
surfaces, with enhanced diffuse scattering, the fraction of energy reflected directly back to the sensor is reduced.

. 14¢.f allow considerations regarding the impact of the incidence angle. To do so, we use the index |Ao o,

5 Discussion

Two consecutive years of detailed snow profiling with a-specific focus on the melting season gave an unprecedented overview
on the multitemporal evolution of the SAR backseattering-backscatter as a result of the meastred-changing snowpack prop-
erties. The identification of the melting phases based on the evelution-ef-multitemporal SAR backscattering as proposed by
Marin-et-al5-2020)-Marin et al. (2020) was complicated by two factors: (i) the failure of Sentinel-1B in 2022, which resulted

in a halved availability of satellite recordings and (ii) with the ideal incidence angle for wet snow separability being ~45°

HKarbou-etal5202H(Nagler et al., 2016; Karbou et al., 2021), and as shown by the experiments in Fig. 14, lower incidence

angles likely-dampened-the-backseattering respense-to-wet-dampen the backscatter response to moistening snow. Despite these
limitations, using nothing more than information on o}V change with respect to winter means, the threshold-based method

identified the moistening and ripening phases for both years with high accuracy.

Using-With the first measured time series of surface roughness parameters, we demonstrated that for a high-altitude Alpine
spowpaek—-alpine snowpack — where radiation can be the dominant energy input during the melting season and surface
roughness nermally-develops several weeks before the snow cover starts forming-patehes—-showing patches — the observed

monotonous increase in backseattering-backscatter at the end of the melting season is physically related to the develop-
ment of surface roughness, from initial surface degradation due to melt-refreeze cycles and/or the sequence and intensit

of snowfall events, to the formation of suncups. This eenneetion-phenomenon was only hypothesized by Marin et al. (2020);-as
witheut-ground-data. Without ground truth reference, it is impossible to distinguish the effect of surface roughness from patehy
disappearing snow using multitemporal SAR backseattering-backscatter alone. Additionally, the start of the monotonous in-
crease in multitemporal SAR backseattering-backscatter defines the local minima in the time series. Several studies were
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carried out in recent years where such minima were associated to the runoff start (Gagliano et al., 2023; Darychuk et al., 2023).
However, the proximity of backscatter minimum and runoff start is not due to SAR direct detection of meltwater. Instead, this
apparent coincidence arises at the specific frequency of S1 because of an interplay of several factors. As the snowpack reaches
the maximum detectable water content by S1 (which reduces scattering), surface roughness begins to develop, enhancing scat-
tering. These mechanisms will be discussed individually in the remaining of this discussion. Based on our data, the only and
most likely conclusion we can extrapelate-from-the-backseattering-draw from the backscatter minima from a practical point of
view is that the snowpack is in an isothermal state and likely already releasing water. However, processes such as melt-refreeze
cycles, sublimation, compaction, or settlement in the upper snow layers can potentially lead to the formation of rough surfaces
before the snowpack starts releasing meltwater runoff. Therefore, it is relevant to rethink how information on baekseattering
backscatter minima are used for hydrological applications, especially when counting on a limited satellite revisit frequency.
Further research should also investigate other potential energy input mechanisms that are typical of snowpacks in environments

outside the high-altitude and mid-latitude conditions explored in this study.

ves With radiative

transfer modelling, we were able to link measured snow properties to retrieved satellite-based radar signals, aiming at reproducing
the multitemporal backscatter time series recorded by S1. This analysis revealed that — rather than melting phases — the
multitemporal S1 backscatter time series identify two main regimes, each driven by a different dominant factor influencing the
radar response: LWC and surface roughness. Thus, as shown in Fig. 12, the moistening and ripening phases could be merged
into a single phase primarily dominated by LWC, whereas the runoff phase could be redefined as a roughness-dominated
phase. Modelling satellite backscatter signals forced by field measurements requires accounting for several sources of un-

certainty, which ean-be st ors-LW nd-su e are predominantly associated to these
two variables. The uncertainty associated to LWC manifests itself in many different ways: the time lag between satellite and

measurement acquisitions, the scattering originating from surface structures formed by melt-refreeze cycles, the spatial het-
erogeneity of the LWC distribution, the instrument uncertainty associated to the measurements and, mere-on the RT medeling
modelling side, a lack of a definite permittivity formulation for wet snow. The uncertainty associated to surface roughness
is mostly linked to measurement inaccuracies (and/or not representativeness for the entire S1 cell) and, on the RT medeling
modelling side, to possible errors in the IEM surface model.

Within the approximately 5 hours separating satellite and measurements acquisitions, the liquid water per layer can change
significantly (Kendra et al., 1998; Techel and Pielmeier, 2011), especially during the moistening and ripening phases or within
cold spells, as indicated by the higher simulation variabilities in Fig. 12. Espeeially-on-On early stages of the melt process,
our measurements are likely not representative for-of the snowpack state overlooked by S1 because of the strong effect of
melt-refreeze. Our findings confirm that C-band oV is highly sensitive to diurnal snowpack variability, particularly during
the early stages of melting when features such as melt-refreeze crusts are present (Lund et al., 2022; Brangers et al., 2024). As
noted in Brangers et al. (2024), this strong dependence potentially complicates LWC retrievals significantly at these latitudes.
This point raises concerns, because the early stages of melting represent a critical period when S1 can detect LWC and likely

the only window of opportunity to obtain and integrate reasonable information. However, our RT simulations forced by field
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measurements were able to attribute the observed oV drops across all tracks over both years — 6.2, 4.2, 1.5, and 7.8 dB — to
corresponding measured TWC of 3, 1, 2, and 34 mm, respectively. These results are in line with the tower-based experiments
of Strozzi et al. (1997); Strozzi and Matzler (1998).

Another issue is the instrument uncertainty in LWC measurements. The deviations between dielectric and calorimetric
measurements that we obtained throughout the campaign are in line with previous field and lab studies (Kinar and Pomeroy,
2015; Avanzi et al., 2016). Unexpectedly, co-located measurements in 2023 in the presence of ice lenses showed smaller
deviations with respect to simultaneous measurements in 2024. Localized high values of LWC, such as for ponding meltwater
above ice lenses, can pose accuracy problems for instruments that empirically estimate the volumetric liquid water content from
the snow permittivity (Techel and Pielmeier, 2011). However, as already discussed, their presence could homogenize the overall
liquid water distribution among the cell overlooked by the satellite. The increased variability between measurement techniques
in 2024 may be (at least partially) due to the increased LWC hetereogeneity compared to 2023. This may indicate that the
snowpack stratigraphy and LWC conditions play a larger role than measurement errors due to spatial and temporal offsets.
Accounting for the LWC instrument uncertainty ;— which we estimated to-approximately 1% from-our-data—and-which-are
being approximately 1% from our measurements, and in line with previous similar comparative studies (Techel and Pielmeier,
2011; Donahue et al., 2022) ;— generates an uncertainty range in the simulated o’V which is higher than the variability of the
satellite reeorded-o-f—signal recorded by S1 over the course of one snow season. Highest deviations happen for highest values
of LWC, in aecordanee-line with the findings of Veyssiere et al. (2019).

Finally, the lack of a definitive permittivity formulation for wet snow poses a significant challenge for the scientific commu-

nity. Beveloping-The permittivity formulations selected for this study exhibit similar spectral shapes (see Fig. 5) and are, to
our knowledge, the only ones that have been validated against real-world observations at C-band frequencies. As mentioned in
Sec. 3.2, the permittivity formulation describes how the real and imaginary part of ¢, change with increasing fractions of liquid
water, and therefore how radar microwaves interact with the snowpack. ¢, is computed using mixing theories to account for
volume fractions of ice, water and air in the snow medium. MEMLSv3 parametrizes the shape of water inclusions as elongated
spheroids embedded in a homogeneous host medium. This represents an important source of uncertainty. As liquid water
increases, the shape and orientation of water inclusions significantly affects ¢;. as the electromagnetic field interacts with them

in a shape-dependent way, generating anisotropic responses (Arslan et al., 2003; Chang et al., 2016). However, characterizin

the temporal evolution of the shape of water inclusions during melting processes is an ambitious and challenging task that has
only been addressed very recently by Krol et al. (2024) through rapid MRI profiling in a controlled laboratory environment. At
the time our measurement campaign was designed and conducted, these methods did not yet exist - let alone their applicability.
in the field, which is still entirely unknown. These recent advancements are highly promising for the crucial challenge of
developing a comprehensive model applicable across all frequencies and LWC conditionsis-ertetal—This-—study-highlights

Fig. 12 highlights discrepancies of approximately 6 dB between SMRT-simulated and satellite-recorded backscatter signals
V'V is largely dominated by LWC. Similar deviations were found by Veyssiere et al. (2019) using MEMLS&a

especially when o
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to reproduce o ¥ during consecutive melt seasons over alpine areas. Additionally, both permittivity models saturate g " at
values below -30 dB. Such low values are never recorded by S1, which saturates at around -22 dB. Similar signal saturation
between -20 and -25 dB) in the C-band in vertical co-
of Strozzi et al. (1997); Strozzi and Matzler (1998). Matching the recorded S1 gy would require an imaginary part of €.
similar to that at 1 GHz ;— this would imply unrealistic penetration depths atfor the C-band, contradicting field obser-
vations (Ulaby and Herschel Stiles, 1981; Shi and Dozier, 1995; Ulaby et al., 2014; Lodigiani et al., 2025). Despite—this

olarizations are confirmed by the tower-based radiometric studies

ar-Sapes

Hmitations—in-We conclude that one possible explanation to the observed deviations is the overestimated absorption loss in
the existing permittivity formulations. In view of the described inherent limitations of existing wet snow permittivity modeks
prevented-formulations, a detailed quantitative analysis of individual-seattering-eontributions—This-scattering contributions
from individual snow layers was not possible. As previously noted in Sec. 3.2, the absence of a unified permittivity model for
wet snow remains an important area-direction for future research — not only for RT modelling, but also for field measurements,
since dielectric methods depend on such models to derive LWC.

Later in the melting season, the effects of the uncertainties associated to LWC become weaker, because the snowpack
surface becomes wetter and the scattering is mostly dominated by surface effects (Shi and Dozier, 1992) — this can be ob-
served in Fig. 12en-dates—where-the-variabilities—, as variability associated to LWC deerease-gradually-as-a-funetion-of-time-
On-these-stagesdecreases gradually with time. Simultaneously, deviations between radiative-transfersimulations-and-satelite

isitions-modelled and recorded g’V _decrease sensibly (groups 3-4a and 4-5b in Fig. 12). Here, deviations are mostly
explained by inaceuracies—in—surface-roughness—measurementsinaccurate surface roughness quantification. This is elearly
ated-by-cases-where-there-is-anotable-Joss-of simulation-aceuracy-following-particularly evident on instances where
simulation accuracy drops after a spring snowfall --aftersurface-roughness-on a surface that had already begun te-develop
developing marked roughness (see "buried surface roughness" instances in Fig. 12). However, at these later stages of the melt-

ing process, simulations reproduce the recorded backseattering-backscatter generally well. Further-This is confirmed by the
low RMSE values reported in Tab. 4 for the runoff phase, which we redefined as a phase dominated by surface roughness

effects. Here, further deviations can be attributed to
roughness-panel measurements possibly not capturing fully the large-scale roughness features observed by the satellite. This
hypothesis seems to be confirmed by the very recent results of Barella et al. (2025), which show that panel sizes practical for
field measurements may be insufficient to capture the roughness features of wider areas. Additionally, the IEM model, which
translates roughness parameters into scattering, could be affected by inaccuracies, partietdarty-especially when the roughness

is-high-eneugh-to-approach-the-timits-of-values approach or exceed the model’s validity-(see-Fig—3-2)range of validity.
In other words, with Fig. 12, we tried to reproduce the recorded S1 oV over a 20 x 20 m cell using physicatly-based

physics-based averages of fine, detailed snow properties measured at the point scale. At wider scales, the relative importance of
very specific information on the state of the snowpack may decrease compared to more influential large-scale scattering drivers,

namely the development of internal snowpack structures (e.g. ice lenses and crusts), the soil features in the case of an isothermal
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955 but predominantly dry snowpack, and large-scale surface roughness. Although the modularity and comprehensiveness of SMRT
theoretically allows most of these scenarios to be medeledmodelled, the problem of how to quantify them on a large scale
persists.

In Fig. 14, we selected a realistic snowpack layering observed in the field and used the full range of measured values of sur-

face roughness to repeat the experiments done in the past by Shi-and-Dezier{1992)-Shi and Dozier (1992); Strozzi et al. (1997); Strozzi anc
960 . These simulations aimed to characterize the scattering response to-increasing-surfaceroughness-on-of a wet snow cover to

increasing surface roughness, while varying the incidence angle to match the range observed across the relative S1 orbits
covering the study area. Since the relationship between co-polarized signals and snow wetness is controlled by the scatter-

ing mechanisms, the type of correlation between superficial LWC and surface roughness expresses the relative contribution

of volume rather than surface scattering mechanisms (Shi and Dozier, 1992). Shi and Dozier (1992) found negative corre-

965 lations with surface roughness for LWC between 2 and 4% and a positive correlation with increasing surface wetness at an
incidence angle of 50°°. Similar results were also found by Ulaby and Herschel Stiles (1981) at frequencies of 8.6 GHz and
incidence angles greater than 50°°. Our results generally confirm these findings, but the wider range of explored combinations

of surface roughness and LWC reveals that the correlation tilt does not occur at a specific LWC value. For RMSH values
simply "roughness" hereafter) between 2 and 10 mm, typical of snow during most of the melting period, the tilt depends

970 on both LWC and RMSHroughness, shifting towards higher LWC with lower RMSHroughness. Specifically, backseattering
backscatter strongly depends on LWC when #A-SH-<roughness values exceed 3 mm. FerdtowRMSH-values{1—2-Again,

for smooth surfaces (1-2 mm), both permittivity models saturate o¢'¥ below -30 dB, a value never recorded by S1;-even-in

Wi . ieswl . | 20-dB.

An interesting finding-result from Fig. 12 is that the most accurate simulations of S1 recordings happen with-when measured
975 values of surface RMSH-above-erequal-roughness equal or exceed the threshold value of 3 mm. The experimental analyses in
Fig. 14 shews-show that, for relative low values of LWC between 1 and 1.5%, the backseattering-backscatter response increases

by approximately 6 dB when the roughness RMSH-increases from 2 to 3 mm. The value of 6 dB is almost exactly the bias we

observed in Fig. 12 between S1 recordings and our simulations, especially with increasing LWC. Similar-As mentioned, similar

deviations were found by Veyssiere et al. (2019)using

980 Adlpine-areas. Additionally, for LWC values >1.5% and RMSHroughness between 3 and 4 mm, the simulated a(‘)/ V saturates at
values that are comparable to those recorded by S1. This raises the point that more representative estimates of surface roughness
for the entire S1 cell, and/or improved IEM medeling-modelling to translate this information into baekseattering-backscatter
signals, could be just as crucial as rigorous permittivity formulations for accurately reproducing and better interpreting mul-
titemporal S1 of"". FinatyRecent findings by Barella et al. (2025) also point to this direction, suggesting that commonly

985 used transect extraction algorithms may filter out some small-scale roughness features. In general, the experiments in Fig. 14
represent a substantial advancement with respect to Shi and Dozier (1992); Strozzi et al. (1997); Strozzi and Matzler (1998).

In these earlier experiments, surface roughness was either not quantitatively measured (being only qualitatively assessed)

and/or evaluated over a very limited set of scenarios, overlooking intermediate conditions that, as our measurements prove
characterize the majority of the melting period.
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Fig. 14¢,f show that for smooth surfaces and for LWC values as low as 1.5% ~ i.e., when the melting process is likely in its
initial stage — the variation in backscatter across the range of incidence angles overlooking the reference cell is comparable to
or even exceeds the threshold used in Nagler and Rott (2000); Nagler et al. (2016); Marin et al. (2020) for wet snow detection.
This angular dependence constitutes an additional uncertainty factor in wet snow detection, which overlaps with the previously
discussed effects of diurnal variability in snowpack properties. On the other hand, for LWC values higher than 2% on smooth
surfaces, the angular dependence increases up to 3 dB. This result supports the hypothesis that two distinct scattering mechanisms
observed across the two seasons are directly linked to incidence angle effects. The first is a persistent 3-5 dB difference in o "
between the two ascending tracks, recorded from mid-April to early June 2023 (see Fig. 8a). This spread was not observed
in_the following year. Our LWC measurements indicate that the snowpack surface was wetter in 2023 than in 2024, likely.
due to the presence of ice lenses acting as drainage barriers for meltwater and favoring the formation of a wetter layer above
them (see Fig. 13 and Tab. 5). Consequently, and in line with the results in Fig. 14, the smoother and wetter snow surface in
2023 led to a stronger angular dependence compared to 2024. Additionally, the angular dependence decreases with increasing.
surface roughness. The second observed feature is the sharp decrease in backscatter between consecutive acquisitions of both
ascending and descending tracks in 2024 — from June 15 to 22 and from June 19 to 26, respectively. Our measurements
indicate conditions of high snowpack saturation and surface roughness values equal to or exceeding 10 mm (see Fig. 13 and
Tab. 3). Consistent with the results shown in Fig. 14b.e, we interpret this decrease as the result of suncups formation on
a saturated snow surface. The enhanced surface roughness likely increased diffuse scattering and reduced the proportion of
energy reflected back to the sensor, thereby explaining the observed backscatter decrease. These findings indicate that, despite
all the aforementioned challenges in deriving LWC from backscatter and vice versa, the multitemporal analysis of angular
dependence may carry valuable additional information. Unfortunately, further analysis in this direction was limited by the

reduced revisit frequency of S1 during the period of this study.
Ultimately, Fig. 14 suggests that with an estimate of the surface LWC from a detailed snow model and recorded values of

S1 backseatteringbackscatter, it is in principle possible to give an estimate of the surface roughness. This would inform on two
interesting points. On the one hand, based on the position with respect to the curve tilt, it would be possible to have information
about the dominance of the volume versus surface scattering mechanism. A prevalence of volume scattering would mean that
the snowpack has not yet become a complete black body for C-band radar backseatteringbackscatter. On the other hand, the
value of surface roughness could be assimilated in physicalty-based-physics-based snow models to estimate important metrics
for the computation of turbulent heat fluxes, such as the aerodynamic roughness length (Lehning et al., 2011).

Although promising for future research, this paper comes with a number of limitations. LWC is a key variable for inter-
preting and reproducing S1 acquisitions using radiative transfer models. However, despite ongoing advancements, accurately
measuring LWC in the field, modeling-it-within-physieally-based-modelling it within physics-based snow models, and account-
ing for it into permittivity models remain significant challenges which need to be solved individually. The halved availability of
satellite data acquisitions due to the failure of Sentinel-1B in the exact time span when this study was carried out hindered the
possibility to obtain more information than those presented on the relationship between melting proeesses-snowpack properties
and the multitemporal SAR baekseatteringbackscatter. Finally, despite this study enhanced significantly the understanding of

39



1025

1030

1035

1040

1045

1050

1055

the interaction of SAR baekseattering-backscatter with wet snow, these findings are likely valid for high-Alpine-high-alpine re-
gions, i.e. homogeneously covered by a rather high amount of snow, and where surface roughness can develop before the snow
cover disappears in patches. However, the launch of the Sentinel-1C satellite will shortly restore the mission’s full capabilities;
providing-enhanced-data-availability. This development will hopefully spark greater interest in the field, driving research ef-
forts to address the above mentioned limitations, explore mechanisms-in-environments-outside-scattering mechanisms in other
environments than the one explored in this study, and potentially establish a new role for radiative transfer modeling-modelling

— specifically, to inform physicatly-based-physics-based snow models for hydrological applications.

6 Conclusions

In this paper, we presented a unique dataset of wet snow scattering properties collected at a high vertical and temporal resolution
over two snow seasons at the high-Alpine-high-alpine field site of Weissfluhjoch, Davos, Switzerland. Using this dataset,
we analyzed the correlation between melting snow properties and multitemporal SAR backseattering-backscatter from S1,
and reproduced-the-acquired-modelled the satellite signals using the radiative-transfer model SMRT. Our data show that the
moistening and the ripening phase, being mostly related to the presence of liquid water in the snowpack, are generally well
recognized-identified using time series of multitemporal SAR baekseattering-backscatter from S1. The runoff onset, often
associated with local minima in multitemporal SAR backseatteringbackscatter, is not detectable by the satellite. With our
measurements, we showed that these local minima result from a combination of surface wetting, which reduces baeckseattering
backscatter until the S1 signal saturates, and the development of surface roughness before the snow cover begins to disappear
in patches, leading to an increase in backseatteringbackscatter. Therefore, it is important to rethink how this information is
used for hydrological applications at high elevations and mid-latitudes, especially when counting on reduced satellite revisit
times, like in this study. Then, we used our dataset as input to the SMRT model to reproduce the S1 backseattering-backscatter
signal. The simulations were-generalty-affeeted-by-generally showed a negative bias with respect to the-sateHite-datasatellite
acquisitions, with the most significant drivers being LWC in earlier stages of the meltmelting process and the surface roughness
later on. Furthermere-we-highlighted-key-difficulties-in-eleetromagnetic-modeling This mismatch led to the insight that, rather
than melting phases, the multitemporal S1 backscatter time series reveal two dominant scattering regimes: one dominated by
LWC and the other by surface roughness. These two regimes also represent the main sources of uncertainty in electromagnetic
modelling of melting snowpacksbased-on-field-measurements. These challenges include uneertainties-primarily-deriving-from
the spatial and temporal variability of LWC between field measurements and satellite acquisitionsoverpasses, inaccuracies in
surface roughness measurements;-and-the-validity-of-estimation, and limitations in the permittivity and roughness models for

wet-snow-at-applicable to wet snow in the C-band. Despite these uncertainties, radiative transfer medelingforeed-modelling
driven by ground measurements allowed in-depth physical interpretations-interpretation of scattering mechanisms at different

melting—stages. Specifically, the unprecedented time series of measured surface roughness parameters made—it-peossible—te

explore-and-define-allowed exploring and defining the scattering effect of roughness over wetting snowpacks. Our findings
suggest that accurately quantifying surface roughness and/or improving the transfer function in IEM medeling-modelling could
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be as critical as developing new, rigorous permittivity formulations to enhance S1 retrievals and enhanee-the understanding of
scattering mechanisms on wet snow at these wavelengths. With improved process understanding, the imminent restoration of
the the-Sentinel-S1 mission full capabilities, and further validation efforts in radiative transfer sub-modules, the use of C-band

satellite radar signals for snow hydrology applications could proceed further, with radiative transfer models possibly informing

physteally-based-physics-based snow models.

Code and data availability. The code to reproduce the simulations and plot of Fig. 12 is available on GitHub (https://github.com/carlettit/
multitemporal-s1-backscattering). The SMRT model code is available on GitHub (https:/github.com/smrt-model/smrt/releases/tag/v1.1).
The manually measured and automatically recorded data used in this paper are available on Envidat (https://doi.org/10.16904/envidat.574).

All Sentinel-1 data is freely available at https://dataspace.copernicus.eu/ upon registration.
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temperature. Panet(bc) shows-the-manuaty-Manually measured EWE-profiles of snow liquid water content (LWC). PanelH(ed) shows-the-air
Air temperature at hourly resolutionas-, measured by the automatic sensor at WFJ. Panel-(de) shows-the-measured-Measured total water

content (TWC) (light blue);-the-; runoff time series automatically recorded by the lysimeter at WEJ (dark blue);-the-; snow water equivalent
(SWE) both automatically recorded by the snow scale (black line) and manually measured (black-pointswhite circles). Panel-(e) shows-the
meastred-time-Time series of measured surface roughness by-means-of-the-two-indices parameters - RMSH and CL.Panel-(f)-shows-the

Data-overviewfor-the-spow-seasenof2023-2024—Panel-(ab) shows-the-manually-Manually measured temperature-profiles

of snow temperature. Panel-(bc) shows-the-manuatty-Manually measured EWEprofiles of snow liquid water content (LWC).
Panel-(ed) shows-the-air-Air temperature at hourly resolutionas-, measured by the automatic sensor at WF]. Panel-(de) shows

the-measured-Measured total water content (TWC) (light blue)gﬁhe; , runoff time series automatically recorded by the lysimeter
at WF] (dark blue);-the-; snow water equivalent (SWE) both automatically recorded by the snow scale (black line) and man-
ually measured (black-pointswhite circles). Panet-(e) shows-the-measured-time-Time series of measured surface roughness by



Mar 20th, 2024

RMSH = 1.1 mm
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Figure 10. The panels illustrate some representative surface roughness conditions as qualitatively observed on the field (panoramic pictures)
together with one of the panel measurements performed on the same day (bottom right of each panel, where the mean roughness RMSH
measured on that day is also reported). Panel-(a) shows—a-smeoth-Smooth surface typical of dry snowpack conditions. Parel-(b) shows
earky-stage-Early-stage development of surface roughness deriving from melt-refreeze cycles. Panel-(c) showsfutty-formed-Fully-formed
suncups over a homogeneous snow cover, at least among the considered S1 cell. Panel-(d) shews-fulty-formed-Fully-formed suncups over a
mesthy-patchy snow cover.
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Figure 11. Bias between liquid-watercontent-LWC measurements with dielectric devices and melting calorimetry for snow seasons of
2023 (a) 2623-and 2024 (b)2624-, In 2024, direct comparisons between simultaneous (brown) and co-located (light blue) measurements are

avaitablewere also performed.
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Figure 12. Recorded-S+-Comparison between the recorded multitemporal S1 oV (lightblue-andtight-brown-triangles and shaded areas)
compared-against- SMRT-modelted-values-and the time series of o'V using-modelled with SMRT, for year 2023 (a) and 2024 (b). Results
are shown for both permittivity formulations — MEMLSv3 (dark gray boxplots) and H-86 (light gray boxplots)permittivity-medets. The box-
plots indicate the variability ef-associated to the resuttseonsidering-an-LWC uncertainty of +1% in-the EW-E-vatues-for each layertsee, as

discussed in Sec. 4.2). The shaded areas of the recorded S1 multitemporal oy V represent the range of e values obtained by connecting the

consecutive Stpassages by direction of orbits, i.e. by connecting all the morning/descending and the afternoon/ascending acquisitions. The
triangles represent the exact values of the acquisitions. For clarity, exact values are only shown for days where snow prefites-measurements
were carried outand-thereforesimutation—and-, thus allowing direct comparisonis-pessible. Biue-Colored boxes group similar simulation
results togetherand are labeled with codes (e.Yeltow-bold-textindieatesg., 1a, 2a), which refer to Tab. 3 for details on the corresponding mea-
sured snow propertiesfor-eachresutt-group, whereas-blue-itatie-text-explains-possible-backseattering-dominant scattering mechanismswhich
may-have-originated-, and potential sources of error. At the {spread-top of )-simutated-resultseach panel, the time series are further segmented
into the melting phases identified in Sec. 4.1 - as well as the main scattering regimes, which are influenced by LWC, surface roughness. and
buried surface roughness.
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Figure 13. Ensemble of all the measured-LWC profiles measured with dielectric instruments (light blue) from Apr 24#04/, 2023 and Apr
047644, 2024, i.e. the first dates for which a-significant diserepaneies-mismatches between modeled-modelled and S1-acquired oV val-

ues are-reeorded-in 2023 (top row) and 2024 (bottom row), respectively. Melting calorimetry measurements ( redark blue), includin

their associated uncertainty (dark blue shaded areas) as described in Barella et al. (2024), are shown for comparison. +2In 2024, a second

simultaneous LWC profile using dielectric instruments (brown) was also carried out.
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Figure 14. Sensitivity of the C-band radar backseatteringsensitivity-backscatter to the coupled evolution of surface roughness (expressed by
RMSH) and LW Caeeording-to-. Panels (a, b, d, e) illustrate differences between two dielectric permittivity formulations - MEMLSv3 (a, b)

and H-86 (c, d) — as well as the sensitivity to the local incidence angle (LIA) over cell 40. o'V responses are shown for 40° (solid lines) and

30° (bdotted lines) MEMESv3-formutationsincidence angles. Fhe-top-part-Panels (c, f) show values of eaeh—paﬁekshewﬂég\é/\ﬁw

ie., the seﬁﬁﬁwfye#ﬁ)—{&eeﬁseeaﬁveﬁymheﬁe%ﬂewpaele«faﬁaﬁensdlfferences between backscatter coefficients in (a, b) and (d, e),
respectively. The real reference case is the snowpack layering observed on Apr 16/64/, 2024: a melt event in the superficial 45 cm and an

otherwise dry snowpack. The bettom-part-ef-each-panel-shows-the-reported results are consecutive snewpaek-synthetic variations in-terms-of
surface-LWC and roughness of the surface layer.
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Figure Al. Empirical logarithmic relationship fitted on field data between the surface roughness parameters of RMSH and CL, based on a

total of N=75 values over the measurement campaigns of 2023 (yellow) and 2024 (light blue).
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