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Abstract. Taiwan is characterized by high mountains density, with over 200 peaks exceeding 3,000 meters in elevation. The 

alpine treeline ecotone (ATE) is a transitional zone between different vegetation types. The species distribution, range 

variations, and movement patterns of vegetation within the ATE are crucial indicators for assessing the impact of climate 15 

change and warming on alpine ecosystems. Therefore, this study focuses on the Xue Mountain glacial cirques in Taiwan 

(approximately 400 hectares) and utilizes WorldView-2 satellite images from 2012 and 2021 to compute various vegetation 

indices and texture features (GLCM). By integrating these features with Random Forest (RF) and U-Net models, we developed 

a classification map of the ATE in Xue Mountain. We analyzed changes in bare land, forest, krummholz, and shadows within 

the ATE from 2012 to 2021. The results indicate that the classification accuracy reached an overall accuracy (OA) of 0.838 20 

when incorporating raw spectral bands along with vegetation indices and texture features (GLCM) (77 features in total). 

Feature importance ranking and selection reduced training time by 14.3% while ensuring alignment between field survey 

treeline positions and classification results. From 2012 to 2021, tree cover density increased, with the total forest area 

expanding by approximately 10.09 hectares. The upper limit of forest distribution shifted upslope by 32.00 ± 4.00 m, with the 

most significant area changes occurring between 3,500 and 3,600 m, while the 3,700 to 3,800 m range remained relatively 25 

stable. This study integrates remote sensing imagery with deep learning classification methods to establish a large-scale ATE 

classification map. The findings provide a valuable reference for the sustainable management of alpine ecosystems in the Xue 

Mountain glacial cirques in Taiwan. 

 

1 Introduction 30 

Taiwan is located in the subtropical region of Southeast Asia, with elevations ranging from nearly 4,000 m, fostering 

diverse ecosystems types and rich biodiversity (Lin et al., 2021). The island contains more than 200 mountains exceeding 

3,000 meters in elevation (Kuo et al., 2022), making it one of the highest-density alpine islands in the world (Chen, 2017). 

Alpine zone ecosystems are particularly vulnerable to environmental change due to their high environmental heterogeneity 

and limited species migration distances, especially when compared to broader latitudinal climate gradients and more resilient 35 

lowland regions (Engler et al., 2011; Huss et al., 2017; Li et al., 2018; Zheng et al., 2020). The transition zone between trees 

and treeless vegetation in alpine ecosystems is known as the alpine treeline or the alpine treeline ecotone  (ATE) (Körner 2012). 

The ecological processes and changes in this zone are considered indicators of climate change (Chen et al., 2022), reflecting 

the interactions of climate, topography, species composition, and disturbance history (Loranger et al., 2016; Johnson et al., 

2017; Mohapatra et al., 2019; Bader et al., 2021). Based on many studies, changes in the ATE illustrate the impacts of climate 40 

change on mountain ecosystems, such as the upward migration of tree species and increased tree density. However, these shifts 



2 

 

are also influenced by other drivers, including land-use history, altered disturbance regimes (e.g., fire, landslide, windthrows), 

herbivory pressure, and species-specific physiological traits. Moreover, cascading effects among these disturbances can further 

amplify ecological responses and accelerate treeline dynamics (Wang et al., 2016; Johnson et al., 2017; Du et al., 2018; 

Mohapatra et al., 2019, Stritih et al., 2024; Lu et al., 2025). 45 

Machine learning is increasingly being combined with high-resolution remote sensing to enhance land-cover and forest-

type classification. Among the numerous algorithms, each model has its own strengths. Random forests (RF) and support 

vector machines (SVM) have gained widespread use due to their robustness and effectiveness in processing multispectral data 

with limited training samples (Belgiu and Drăguţ, 2016; Jombo et al., 2020; Jackson and Adam, 2021). RF, in particular, 

exhibits strong interpretability and stability in heterogeneous environments. In contrast, deep learning models such as U-Net 50 

demonstrate superior ability to capture both spectral and spatial information, achieving high segmentation accuracy in complex 

landscapes (Ronneberger et al., 2015; Freudenberg et al., 2019; Wagner et al., 2019). Recent comparative studies further 

demonstrate that RF and SVM remain reliable and interpretable choices for multispectral classification when training data is 

limited or imbalanced. At the same time, U-Net and other convolutional neural network (CNN) architectures generally provide 

superior spatial accuracy and boundary delineation in high-resolution or well-labeled datasets. Furthermore, transferability 55 

analysis shows that U-Net models generally have better generalization capabilities in large or heterogeneous regions, while 

RFs tend to perform more consistently in small sample or sparsely labeled scenarios (Boston et al., 2022; Ge et al., 2021; Nigar 

et al., 2024). 

In Taiwan, many alpine forest studies have been conducted through field surveys using an ecological approach at 

relatively small spatial scales, focusing on flowering phenology and growth assessment for specific tree species (Chiu et al., 60 

2022; Liao et al., 2023a; Kudo et al., 2024). In recent years, Chung et al. (2021) used Landsat 8 imagery combined with support 

vector machine (SVM) classification to examine timberline dynamics on Taiwan’s highest peak, Yushan, revealing the 

influence of temperature on timberline shifts. The Xue Mountain, Taiwan’s second-highest peak, has also been the subject of 

long-term ecological monitoring (Chung et al., 2021; Liao et al., 2023b). However, extensive targeting alpine treeline ecotone 

(ATE) dynamics remains lacking. This study provides the first comprehensive analysis of changes in the ATE landscape in 65 

Taiwan’s Xue Mountain glacial cirque region. It uses ultra-high-resolution WorldView-2 satellite imagery with Random Forest 

(RF) and U-Net models. The aim is to quantify spatiotemporal changes between 2012 and 2021. 

2 Materials and methods 

2.1 Study site 

The Xue Mountain glacial cirques are located in Shei-Pa National Park in north-central Taiwan, covering an area of 70 

approximately 400 hectares (Fig. 1). The central peak of Xueshan has an elevation of 3,886 m. The cirque serves as a crucial 

habitat for Taiwan's endemic species, the Yushan Juniper (Juniperus morrisonicola), Yushan rhododendron (Rhododendron 

pseudochrystam), and the Taiwan fir (Abies kawakamii), which is primarily distributed at elevations between 3,000 and 3,600 

m. Most ecological studies conducted in this research area have focused on Taiwan fir forests, with several researchers 

estimating wood volumes, competitive pressure, forest structure, and spatial distribution of the species primarily through field 75 

surveys conducted below the alpine treeline ecotone (Li et al., 2021; Wang et al., 2021; Chiu et al., 2022; Liao et al., 2023a; 

Liao et al., 2023b). In contrast, relatively little attention has been given to the dynamics of treeline ecotone shifts. 

In this study, we define the treeline ecotone not as a fixed linear boundary but as a transitional zone where krummholz, 

such as Yushan Juniper and Yushan rhododendron, begin to appear within the alpine talus slope (Liao. 2016; Liao et al., 2023a). 

This ecotone represents an area of ecological transition from subalpine forest to alpine vegetation. 80 



3 

 

 

Figure 1. Study area. (a) Geographic location of Shei-Pa National Park in north-central Taiwan. (b) Treeline ecotone study area 

located in the Xue Mountain glacial cirques within Shei-Pa National Park. (c) WorldView-2 image showing the research area with 

topographic contours. 

2.2 Research flow 85 

This study utilized WorldView-2 satellite imagery from 2021 to extract raw spectral bands, vegetation indices, and texture 

features. Starting with the eight spectral bands, vegetation indices, and texture features were sequentially added to form four 

different feature combinations. Classification models were developed using the RF and U-Net models, and the optimal model 

is selected. This model is then applied to 2012 imagery to map the distribution of the alpine treeline and analyzed changes 

over the decade. The research workflow was illustrated in Fig. 2. 90 
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Figure 2. Research flow for classifying WorldView-2 images of a treeline ecotone on Mt. Xue in Taiwan to detect treeline changes. 

The process begins with WorldView-2 satellite image acquisition, followed by feature extraction (spectral bands, vegetation indices, 

and texture features), model training using Random Forest (RF) and U-Net, accuracy evaluation, feature selection, and temporal 

analysis of alpine treeline changes between 2012 and 2021. 95 

2.3 Research data 

The research data sources were categorized into satellite imagery and field surveys, with satellite imagery as the primary 

source and field surveys used as supplementary validation to ensure the accuracy of the treeline boundary. WorldView-2 was 

an environmental monitoring satellite operated by Maxar Technologies Inc. (Colorado, USA). It was launched on October 8, 

2009, and its geolocation accuracy, is reported to be within 3 meters. Depending on the spatial resolution, the revisit time ranges 100 

from 1.1 to 3.7 days. 

The satellite provided two imaging modes: panchromatic and multispectral. The spatial resolution was 0.41 m in the 

panchromatic mode, and the spectral range spans 450–800 nm. This mode offered high spatial resolution, allowing for detailed 

image representation. In the multispectral mode, the spatial resolution was 1.64 m, and the spectral range extended from 400 to 

1040 nm, covering eight spectral bands, as shown in Table 1. To enhance spatial detail, all multispectral bands were 105 

pansharpening using the corresponding high-resolution panchromatic band, yielding a uniform spatial resolution of 0.4 meters 

across all datasets used for feature extraction. The pansharpened multispectral imagery was the basis for deriving vegetation 

indices and texture features.  

Two orthorectified, cloud-free WorldView-2 images acquired on November 3, 2012, and September 26, 2021, were 

obtained from RiChi Technology Co., Ltd. (New Taipei City, Taiwan). Due to partial cloud coverage in the 2012 imagery, 110 

only approximately 150 ha of cloud-free area was used for subsequent temporal comparisons. In contrast, the 2021 imagery 

covered the entire study region (about 400 ha) (Fig. 3). The 2021 image was therefore used for model training and feature 

optimization, and both images were used for analysis within the common cloud-free area to ensure comparability. Both images 

were captured in the autumn season when vegetation had entered its dormant phase, minimizing the influence of phenological 

variability. Histogram matching was applied to ensure radiometric consistency across the two images. In addition, Global 115 
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Navigation Satellite System (GNSS) devices were used to record field survey points in 2023, which were subsequently used 

to verify alpine treeline ecotone (ATE) positions and assist in manual ground truth labeling. 

Table 1. Spectral characteristics of WorldView-2 satellite bands 

Band Spectral range (nm) 

Costal Blue (CB) 400-450 

Blue (B) 450-510 

Green (G) 510-580 

Yellow (Y) 585-625 

Red (R) 630-690 

Red Edge (RE) 703-745 

Near Infrared 1 (NIR1) 770-895 

Near Infrared 2 (NIR2) 860-1040 

 

 120 

Figure 3. Extent of the 2012 and 2021 WorldView-2 images in the Xue Mountain glacial cirques. (a) 2021 image and (b) 2012 image. 

The red polygon shows the full 2021 coverage (400 ha), while the transparent area indicates the 2012 image affected by cloud 

contamination. The purple outline delineates the cloud-free overlap area (150 ha) used for temporal change analysis. 

2.4 Vegetation indices  

The reflectance spectrum of plant leaves can reflect their internal physiological status, such as chlorophyll content, water 125 

content, intercellular spaces, and cell walls (Croft et al., 2014; Xu et al., 2023; Neuwirthová et al., 2024; Špundová et al., 2024). 

The frequently discussed spectral bands include red (R), the red edge (RE), and the near-infrared (NIR) bands. Derived 

vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), 

have been widely used (Rouse et al., 1974; Huete et al., 2002). Additionally, some studies have suggested that the blue (B) 

and green (G) bands can be used to monitor vegetation phenology and forests. For example, indices such as the Green 130 

Chromatic Coordinate (GCC) and the Excess Green Index (ExG) have been developed for this purpose (Sonnentag et al., 2012; 

Larrinaga and Brotons, 2019). Since image acquisition was affected by terrain, leading to shadow occurrences that influence 

classification accuracy, this study also planned to adopt the Shadow-Eliminated Vegetation Index (SEVI) (Jiang et al., 2019). 

In this study, 11 vegetation indices were used, as summarized in Table 2. 
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Table 2. List of vegetation indices and their formulas derived from spectral bands. 135 

Vegetation Index Formula Reference 

Difference Vegetation Index (DVI) NIR − R Richardson and Wiegand, 1977 

Enhanced vegetation index (EVI) 2.5 ×
(NIR − R)

(NIR + 6 × R − 7.5 × B + 1)
 Huete et al., 2002 

Excess Blue Vegetation Index (ExB) 
1.4 × B − G

G + R + B
 Mao et al., 2003 

Excess Green Index (ExG)  
2 × G − R − B

G + R + B
 Woebbecke et al., 1995 

Excess Green minus Excess Red (ExGR) ExG–ExR Meyer and Neto, 2008 

Excess Red Vegetation Index (ExR) 
1.4 × R − G

G + R + B
 Meyer et al., 1999 

The Green Chromatic Coordinate (GCC) G/(R + G + B) Gillespie et al., 1987 

Normalized difference index (NDI) 
G − R

G + R
 Gitelson and Merzlyak, 1994 

Normalized difference vegetation index (NDVI) 
NIR − R

NIR + R
 Rouse et al., 1974 

Ratio Vegetation Index (RVI) 
NIR

R
 Jordan, 1969 

Shadow- Eliminated Vegetation Index (SEVI) RVI + 𝑓(∆) ×
1

R
 Jiang et al., 2019 

 

2.5 Texture Feature 

With improvements in satellite image resolution, a single ground object may consist of multiple pixels, making spatial 

information increasingly important for image interpretation (Wang et al., 2015). Texture features describe the spatial 

arrangement and structural patterns of objects within an image, providing complementary information to spectral reflectance. 140 

This allows for better discrimination of land cover types with similar spectral characteristics. Texture analysis methods can be 

categorized into spectral, statistical, and structural approaches, with the Gray Level Co-occurrence Matrix (GLCM) in 

statistical approaches being the most commonly used (Hsu, 1978). Following the parameter settings suggested by previous 

studies (Guo et al., 2020; Sibiya et al., 2021), texture features were extracted to enhance spatial information for classification. 

In this study, a moving window size of 7 × 7 was applied based on their findings, which provided an effective balance between 145 

detail and noise in texture analysis. Therefore, this study adopted a 7 × 7 moving window to compute the GLCM matrix for 

each of the eight bands, analysing seven statistical metrics, resulting in 56 texture features. The seven statistical metrics used 

in this study are listed in Table 3. 

Table 3. Description of texture features calculated using the gray-level co-occurrence matrix (GLCM). 

Texture Feature Formula Reference 

Contrast (Con) ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2
𝑁−1

𝑖,𝑗=0

 Yuan et al., 1991 

Dissimilarity (Dis) ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 Rubner et al., 2002 

Energy (Ene) ∑ 𝑃𝑖,𝑗
2

𝑁−1

𝑖,𝑗=0

 Hall-Beyer, 2017 
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Entropy (Ent) ∑ 𝑃𝑖,𝑗(−𝑙𝑛𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 Yuan et al., 1991 

Homogeneity (Hom) ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 Hall-Beyer, 2017 

Mean (M) ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 Materka and Strzelecki, 1998 

Variance (Var) ∑ 𝑃𝑖,𝑗(𝑖 − Mean)2
𝑁−1

𝑖,𝑗=0

 Materka and Strzelecki, 1998 

𝑃𝑖,𝑗 is the gray-level co-occurrence matrix after normalization. 

 150 

2.6 Methods 

2.6.1 Random Forest (RF) 

Random Forests (RF) was an ensemble classifier widely used in remote sensing due to its ability to handle high-

dimensional data. It generates multiple decision trees (DTs), where each tree made predictions based on observed features 

through a series of decision-making steps, ultimately concluding the target variable. Decision trees, also known as 155 

classification trees, were a type of predictive model. Random forests used the Bagging algorithm (Bootstrap Aggregating) as 

their core classification mechanism. The process began by randomly sampling the data to create training datasets. After each 

sampling, the selected data points were returned to the dataset for the next round of sampling (bootstrap sampling) (Breiman, 

2001). This process was repeated multiple times, resulting in several training datasets, which were then used to train multiple 

decision trees. This approach allowed for scenarios where specific data points were sampled multiple times while others may 160 

not. Each decision tree selected a random subset of features at each node to determine the best split, ultimately generating 

predictions from each tree. The final classification result was determined by aggregating the predictions of all decision trees 

through a majority voting approach, which means that each tree casts one “vote” for a class label, and the class receiving the 

most votes becomes the final prediction. To evaluate the importance of each feature, the Random Forest model uses the Gini 

Index (Breiman, 2001), which measures the impurity of a node. A node represents a point in the tree where the dataset is split 165 

based on a feature, with each node divided using the best split among a random subset of explanatory variables (Breiman, 

2001). A lower Gini value indicates better class separation. The Gini Index for a node m is calculated as follows:  

𝐺𝑖𝑛𝑖𝑚 = ∑ 𝑝̂𝑚𝑘(1 − 𝑝̂𝑚𝑘)
𝑘
𝑘=1  ,          (1) 

Where 𝑝̂𝑚𝑘  was the probability of a sample at node m belonging to class k, and K was the total number of classes. The Gini 

Index also supported the out-of-bag (OOB) error estimation and was commonly used to determine feature importance in 170 

classification tasks. Feature importance quantifies how much each variable reduces node impurity and contributes to improving 

classification accuracy across all trees in the forest (Belgiu and Drăguţ, 2016; Breiman, 2001; Chen et al., 2023). 

2.6.2 U-Net 

Ronneberger et al. (2015) proposed the original U-Net model, which was devolved from the fully convolutional network 

(FCN) and was initially designed for biomedical image segmentation. The U-Net model consists of a contracting path 175 

(downsampling) and an expanding path (upsampling) (Ronneberger et al., 2015). Similar to FCN, U-Net did not use fully 

connected layers, and its convolutional layers significantly reduced the amount of training data required while allowing inputs 

of different sizes. Before entering the contracting or expanding path, the data underwent two consecutive convolutional layers, 
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which helped the network extract target features more effectively. This process also enhanced the integration of fine details 

with feature maps, thereby improving segmentation quality. Each convolutional layer was followed by a rectified linear unit 180 

(ReLU) activation function, which enhances training efficiency without affecting model accuracy. The pooling layer at the 

bottom served as a nonlinear form of downsampling, reducing the spatial size of the data, decreasing the number of parameters 

and computational costs, and helping to control overfitting. Since U-Net lacked fully connected layers, it effectively 

minimized information loss caused by downsampling while preserving finer image details. 

2.6.3 Data set 185 

The WorldView-2 satellite imagery consists of eight spectral bands. Based on these eight bands, this study derived 13 

vegetation indices and 56 texture features, resulting in 77 feature variables. The original eight bands were incrementally 

combined with vegetation indices and texture features, forming four different feature combinations (Table 4). 

Ground truth data in the study area were manually labeled using a pixel-based approach and categorized into four classes: 

(1) Bare land, referring to areas of exposed soil, rock surfaces, or sparsely vegetated ground; (2) Forest, defined as regions 190 

with dense, continuous tree canopy cover; (3) Krummholz, representing stunted, shrub-like trees typically found at high 

elevations near the treeline and shaped by wind or snow pressure (Liao et al., 2023a); and (4) Shadow, representing regions 

with low reflectance caused by topographic shading or solar angle effects. The class definitions were established based on 

visual inspection and field knowledge of the study area (Fig. 4). The labeling process was independent and performed by 

visually interpreting the pansharpened RGB composite imagery, referencing known terrain characteristics, and assisted by 195 

field-collected GNSS survey points. 

Each image (5380 × 4671 pixels) was segmented into 110 non-overlapping patches of 512 × 512 pixels. The dataset split 

was performed at the patch level, to avoid spatial autocorrelation and data leakage (Roberts et al., 2017). Specifically, 80% of 

the patches were randomly selected for training and validation (with a 75/25 split), and the remaining 20% were used as an 

independent test set. In total, 66 patches were used for training, 22 for validation, and 22 for testing. 200 

Table 4. Definitions of the four feature combinations used in model training. The table shows the input feature types and their 

corresponding dimensionality. 

Feature combinations Input feature Feature Dimension 

1 spectral band 8 

2 spectral band, vegetation indices 21 

3 spectral band, texture features 64 

4 spectral band, vegetation indices, texture features 77 
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Figure 4. Ground truth label generation for land cover classification. (a) WorldView-2 RGB composite image from 2021; (b) 205 
manually annotated labels showing four classes: forest, krummholz, bare land, and shadow. 

2.6.4 Evaluation Index 

This study uses overall accuracy (OA), F1-score, and the Kappa coefficient as assessment metrics to evaluate 

classification accuracy. The formulas for each metric are explained below. 

𝑂𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 ,           (2) 210 

F1 − score =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 ,          (3) 

Kappa =
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
 , with           (4) 

𝑃𝑜 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 , and           (5) 

𝑃𝑒 =
(𝑇𝑃+𝐹𝑁)×(𝑇𝑃+𝐹𝑃)+(𝐹𝑃+𝑇𝑁)×(𝐹𝑁+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)2
 ,         (6) 

Among them, TP (true positive), TN (true negative), FP (false positive), and FN (false negative). 215 

2.6.5 Bootstrapping 

The bootstrap resampling method was a nonparametric approach used to estimate the variability and confidence intervals 

(CIs) of a statistic by repeatedly resampling with replacement from the original dataset. It enabled robust inference without 

assuming a specific data distribution (Efron and Tibshirani, 1993). The percentile method was commonly used, in which the 

2.5th and 97.5th percentiles of the bootstrap distribution defined the 95% CI (Davison and Hinkley, 1997). To ensure stable 220 

and reliable estimates, between 1000 and 10,000 bootstrap iterations were generally recommended (Davison and Hinkley, 

1997), with at least 5000 replicates providing sufficient accuracy for most applications (Carpenter and Bithell, 2000). 

3. Results 

3.1 Feature combination and feature importance analysis 

This study employed Random Forest (RF) and U-Net models with four feature combinations to examine land cover 225 

classes in Taiwan's Xue Mountain glacial cirques in the alpine treeline ecotone (ATE) region. Four land cover classes —bare 

land, forest, krummholz, and shadow —were investigated using feature combinations of spectral bands (8 features), vegetation 

indices (13 features), and texture features (56 features). The classification results of the RF and U-Net models with four feature 
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combinations were compared in detail (Fig. 5 and Table 5). In general, the RF model demonstrated stable, robust classification 

performance across various feature dimensions. Specifically, the average F1-score of the RF model ranged from 0.823 to 0.839, 230 

the overall accuracy (OA) ranged from 0.817 to 0.830, and the Kappa coefficient ranged from 0.751 to 0.768 (Table 5). Among 

all classes, shadow and bare land achieved the highest F1-scores, both exceeding 0.85, while forest and krummholz maintained 

moderate but stable accuracy, ranging from 0.75 to 0.83. Additionally, the combination 4 yielded the highest F-1 score in forest 

and krummholz classes, indicating that the RF model improved when vegetation indices and texture features were combined 

with spectral information. 235 

Furthermore, the U-Net model exhibited a marked improvement after incorporating more features. The F1-score for the 

forest class increased significantly from 0.609 for feature combination 1 (spectral bands only) to 0.828 for combination 4 

(spectral, vegetation indices, and texture features). Likewise, the F1-score for krummholz improved from 0.696 to 0.778. Bare 

land and shadow also maintained high accuracy above 0.82 across all combinations. The U-Net's overall performance metrics 

(F1-score of 0.840, OA of 0.838, and Kappa of 0.778 in combination 4) surpassed those of RF, indicating that the U-Net model 240 

benefited substantially from integrating spectral, vegetation, and texture information.  

Overall, the results showed that incorporating vegetation indices and texture features improved classification performance, 

particularly for vegetation classes in the U-Net model. Based on the higher F1-score in combination 2 than combination 3, it 

implied that vegetation indices contributed more than texture features. However, the highest F1-score was obtained in 

combination 4, indicating a complementary effect from vegetation indices and texture features. Additionally, the consistency 245 

between the classified ATE and field-observed forest–krummholz transitions further confirmed the classification's reliability. 

Overall, both models maintained stable performance across different feature combinations, supporting the robustness of the 

proposed approach. 

 

Figure 5. F1-scores for four land cover classes (forest, krummholz, bare land, shadow) using RF and U-Net models with different 250 
feature combinations. 

Table 5. Evaluation of classification accuracy using different feature combinations and models. Average F1-score, Overall accuracy 

(OA) and Kappa coefficient are shown for Random Forest (RF) and U-Net models. Numbers in parentheses indicate the number of 

input features. Bold values indicate the best results for each metric. 

Feature (DIMs) Combinations 1(8) Combinations 2(21) Combinations 3(64) Combinations 4(77) 

Method RF U-Net RF U-Net RF U-Net RF U-Net 

Average F1-score 0.831 0.765 0.823 0.823 0.826 0.782 0.839 0.840 

OA 0.819 0.753 0.817 0.780 0.812 0.819 0.830 0.838 

Kappa 0.753 0.666 0.751 0.703 0.743 0.755 0.768 0.778 

 255 

 Based on the RF and U-Net model results, a further feature importance analysis was conducted to assess individual 

features in combination 4, comprising 77 features, including spectral bands, vegetation indices, and texture features. The 
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feature importance analysis results revealed that the cumulative contribution achieved 95% interpretability with 61 features. 

Additionally, the OA and Kappa values improved slightly to 0.842 and 0.784, respectively. Moreover, computation time was 

reduced by 14.3% due to fewer features (Table 6). According to the feature ranking results, spectral bands and vegetation 260 

indices ranked higher than texture features, with SEVI, Y, B, G, and NDVI2 identified as the top five features (Fig. 6). 

 

Table 6. Comparison of model performance before and after feature selection. Training time is presented in hours. The results show 

reduced training time and slightly improved classification accuracy after feature selection. 

 Without feature selection With feature selection Difference (%) 

Training time(hr) 7.708 6.608 -14.3 

OA 0.838 0.842 +0.4 

Kappa 0.778 0.784 +0.4 

 265 

 

Figure 6. Feature importance ranking derived from the Random Forest model. Features are ranked based on their contribution to 

classification accuracy, with the top-ranked features including SEVI, Y (yellow), B (blue), G (green), and NDVI2. Most of the top 

features are spectral bands and vegetation indices, while texture features rank lower. 

3.2 Decadal changes in the alpine treeline ecotone (ATE) 270 

The U-Net model was trained using the 2021 imagery (covering ~400 ha) and applied to classify both the 2012 and 2021 

datasets. However, since the 2012 image was affected by cloud cover, only the 150 ha of overlapping cloud-free area was used 

for the decadal change analysis. The classification results were validated against field survey data collected in 2021, which 

recorded vegetation types and tree positions for two tracks in the study area. As shown in Fig. 7, the classification results 

closely align well with the GNSS-measured tree coordinates recorded during the 2023 field survey. Over the decade, the 275 

proportion of forest area increased by 3.4%, indicating a possible trend of green coverage expansion associate with tree growth, 

denser canopy, or growing saplings. Meanwhile, the proportion of shadow area also increased by 8.5%. which may associate 

with possible tree growth. Additionally, krummholz and bare land areas decreased by 3.2% and 8.7%, respectively (Table 7). 



12 

 

For the forest category, the forest area expanded by 10.49 hectares and was reduced by 0.4 hectares between 2012 and 2021 

(Fig. 8 and Table 8). 280 

Based on the 95th percentile of DEM elevation values for all pixels classified as forest (Fig. 9), the elevation difference 

increased by 32.00 meters between 2012 and 2021. The 95% confidence interval (± 4.00 meters) was estimated using a 

bootstrap resampling method (5,000 iterations). Differences in area changes across various elevation ranges are detailed in 

Table 8, with the most significant changes occurring in the 3,600- to 3,700-m range, which corresponds to the primary treeline 

ecotone change zone in the Xue Mountain region. In comparison, the most stable area was observed in the 3,700 to 3,800 m 285 

range, where minimal forest presence was detected in both 2012 and 2021, reflecting physiological limits of trees. 

 

Figure 7 Comparison of satellite imagery and classification results from 2012 and 2021. Panels (a) and (c) show high-resolution 

satellite images for 2012 and 2021, respectively. Colored boxes in these images indicate the enlarged areas shown in (b) and (d). 

Panels (b) and (d) present the classification results of the corresponding enlarged regions using a U-Net model trained with 61 290 
selected features. Triangles mark field survey locations. 

Table 7. Percentage of each land cover class in 2012 and 2021 classification results. Forest and shadow areas increased over time, 

while krummholz and bare land decreased. 

Classification percentage (%) 
Year 

Increment / Decrement 
2012 2021 

Forest 22.5 25.9 +3.4 

Krummholz 36.4 33.2 -3.2 

Bare land 38.1 29.4 -8.7 

Shadow 3.0 11.5 +8.5 
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 295 

Figure 8. The spatial distribution of ATE area changes from 2012 to 2021. ATE expansion is marked in dark cyan, reduction is 

marked in dark red, persistence is marked in dark blue, and field survey point in purple. 

Table 8. Forest area, expansion, and reduction across different elevation from 2012 to 2021. The table includes forest area in 2012, 

net changes in area, and corresponding percentage changes. 

Elevations (m) Forest Area in 2012 (ha) Expansion area (ha) Reduction area (ha) Net Change (ha)  Change (%) 

3300~3400 6.99 0.28 0.03 0.25 3.6 

3400~3500 12.43 2.21 0.08 2.13 17.1 

3500~3600 8.40 5.10 0.23 4.87 58.0 

3600~3700 3.26 2.88 0.06 2.82 86.4 

3700~3800 0.78 0.02 0.00 0.02 2.5 

 300 

 

Figure 9. Bootstrap distribution of the 95th percentile elevation of forest cover for 2012 and 2021. The histogram shows the frequency 

of estimated 95th percentile elevations (P95) based on resampling. Green bars represent 2012 estimates, while blue bars represent 

2021. The dashed vertical lines indicate the mean P95 value for each year. 
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4. Discussion 305 

4.1 Comparison with previous alpine treeline ecotone remote sensing studies 

Recent advancements in remote sensing technology have enabled extensive studies on alpine treelines using imagery at 

various spatial resolutions (Garbarino et al., 2023). For example, Xu et al. (2020) employed Landsat (30 m) data to assess 

treeline–climate relationships in China, reporting an upward shift of ~50 m per 1°C increase in temperature. At medium to 

high resolution, Rösch et al. (2022) achieved over 90% classification accuracy for Pinus mugo in the Alps using PlanetScope 310 

(3 m) and Sentinel-2 (10 m) data, emphasizing the value of multi-source data fusion. At very high resolution, Terskaia et al. 

(2020) combined aerial orthophotos (1–2 m) and WorldView-2 imagery (0.5 m) to quantify shrub and tree encroachment in 

Alaska, detecting substantial vegetation transitions over six decades. 

Building on prior work, fine-scale mapping of alpine treeline ecotones (ATEs) remains difficult because transitional 

vegetation is spatially heterogeneous, often includes stunted or shrubby forms such as krummholz, and exhibits subtle 315 

spectral/structural gradients at meter scales (e.g., Bader et al., 2021; Nguyen et al., 2022). Our study uses ultra-high-resolution 

WorldView-2 imagery (0.4 m) and machine learning workflows to detect fine-scale transitions within the ATE (~400 ha) in 

Taiwan. Concretely, we show that integrating spectral bands, vegetation indices, and texture (GLCM) features at sub-meter 

resolution enables reliable separation of krummholz from closed-canopy forest—an underrepresented class distinction in many 

alpine studies (cf. Korznikov et al., 2021; Nguyen et al., 2022). This demonstrates the novelty and practical value of combining 320 

modern machine-learning segmentation with ultra-high-resolution imagery to fine-scale analyze the alpine treeline ecotone 

(ATE) in subtropical mountain environments. Related recent work similarly highlights the need for meter-scale approaches to 

capture ATE patterns and dynamics (Zou et al., 2022; Carrieri et al., 2024). 

4.2 Alpine treeline ecotone changes and spatial patterns 

Our findings reveal that, from 2012 to 2021, the forest class of alpine treeline ecotone (ATE) in the Xue Mountain glacial 325 

cirque shifted upward by 32.00 ± 4.00 meters, accompanied by a pronounced densification of forest cover. This finding aligns 

with patterns observed in other mountainous regions worldwide. For example, in Taiwan’s Hehuan Mountain and Yushan, 

similar upward shifts in treeline position and increases in forest density have been reported (Greenwood et al., 2014; Chung et 

al., 2021). Likewise, Davis et al. (2020) observed an upslope advance of 0.83 ± 0.67 m/year for several tree species in the 

Rocky Mountains of Canada. In contrast, studies in the European Alps have noted significant reductions in snow cover and 330 

increased alpine vegetation productivity, potentially enhancing local carbon sequestration, although with a limited global 

impact (Rumpf et al., 2022). Additionally, in the eastern Himalayas, over 80% of trees have already reached the thermal 

treeline, with projected upslope migration of 140 meters by the end of the 21st century due to warming (Wang et al., 2022). 

These comparisons support the robustness of our observed treeline ecotone dynamics and highlight both global consistency 

and regional variation in alpine ecosystems response to climate change. It should be noted that the temporal comparison was 335 

limited to the ~150 ha cloud-free overlap between 2012 and 2021 imagery, which may slightly underestimate the total forest 

expansion within the broader 400 ha study area. 

Despite the overall satisfactory classification performance, some confusion between forest and krummholz was observed 

due to their similar canopy structures and spectral reflectance. This misclassification occurred mainly along the transition 

between dense forest to stunted krummholz. However, this issue had only a limited influence on the overall outcomes. Field 340 

survey validation confirmed that the classified treeline boundaries were consistent with the observed forest–krummholz 

transitions in situ, and both RF and U-Net models maintained high accuracies (OA > 0.83, Kappa > 0.76). Therefore, the local 

confusion slightly affected boundary precision but did not alter the overall trend of the alpine treeline ecotone. To further 

minimize this effect in future work, incorporating structural features, such as LiDAR-derived canopy height models, could 

improve discrimination between forest and krummholz and enhance classification reliability. 345 
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Regarding alpine treeline ecotone spatial patterns, Bader et al. (2021) classified alpine treeline patterns into discrete and 

gradual categories, further distinguishing them into gradual, diffuse, abrupt-diffuse, abrupt, and tree island treelines. Based on 

the classification results derived from high-resolution satellite imagery, this study identified the treeline patterns in the Xue 

Mountain glacial cirque as abrupt and tree island treeline patterns. However, additional long-term field observations are 

required to further investigate the underlying treeline dynamics and demographic processes (Liao et al., unpublished data). 350 

4.3 Feature importance 

In this study, a total of 77 features were derived from the satellite imagery, including 8 spectral bands, 13 vegetation 

indices, and 56 texture features. To improve model efficiency, we ranked features using the Random Forest (RF) model and 

selected the top 61 features, which accounted for 95% of the cumulative importance. Among them, SEVI, Yellow (Y), Blue 

(B), Green (G), and NDVI2 were identified as the most important for classifying the treeline ecotone. Notably, most of the 355 

top-ranked features were spectral or vegetation index variables, whereas texture features contributed less to the classification. 

The feature selection slightly improved the overall accuracy (+0.4%) and the Kappa coefficient. Although OA was used as the 

primary selection criterion, the analysis also confirmed that the selected features maintained or improved F1-scores for the 

forest class, the primary focus of detecting treeline changes. It should be noted that optimizing overall accuracy (OA) values 

may sometimes overlook minority or ecologically important classes. Therefore, we specifically examined the F1-score for the 360 

forest class—our primary concern for treeline detection—and verified that its classification performance was not compromised. 

This indicates that our feature selection strategy effectively balanced overall model performance with the accuracy of the most 

ecologically relevant land-cover category. 

Although the numerical improvement in overall accuracy appears modest, such enhancement is ecologically meaningful. 

Even slight gains in classification precision can improve the detection of subtle land cover transitions, particularly the 365 

identification of forest expansion boundaries in alpine treeline ecotones. These improvements strengthen the ecological 

interpretation of spatial change dynamics and provide a more reliable foundation for long-term monitoring (e.g., Bader et al., 

2021; Wang et al., 2022). 

These findings align with previous studies on vegetation classification using multispectral satellite imagery, though the 

most informative spectral bands may vary depending on the sensor, study region, and forest type. For instance, studies using 370 

Sentinel-2 imagery (10–20 m resolution) found the shortwave infrared (SWIR), red, and near-infrared (NIR) bands to be 

particularly effective in forest classification tasks. Bolyn et al. (2018) identified SWIR, red, and NIR as the most important 

features for classifying forest types, while Immitzer et al. (2019) emphasized the role of red and NIR in time-series-based tree 

species mapping. Similarly, Hościło and Lewandowska (2019) reported improved forest type discrimination when using multi-

temporal red, NIR, and red-edge bands. In contrast, studies using WorldView-2 imagery (high-resolution, 0.4–1.6 m) revealed 375 

different key spectral bands. Abutaleb et al. (2021) found that the green, yellow, red, and NIR2 bands were most relevant for 

mapping eucalyptus trees in a subtropical environment. On the other hand, Immitzer et al. (2012) reported that blue, green, 

red, and NIR1 bands were particularly effective in classifying coniferous forest types in Austria. 

These variations underscore the contextual nature of feature importance, suggesting that optimal band selection depends 

on factors such as spatial resolution, vegetation structure, and topographic complexity. Our results—emphasizing SEVI, Y, B, 380 

G, and NDVI2 —are well-suited to the alpine treeline ecotone in Taiwan, where coniferous species such as Abies kawakamii 

dominate. 

5. Conclusions 

This study investigates changes in the alpine treeline ecotone (ATE) of the Xue Mountain glacial cirques in Taiwan from 

2012 to 2021, utilizing WorldView-2 imagery integrated with Random Forest and U-Net models. The alpine treeline ecotone 385 
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(ATE) in Xue Mountain glacial cirques was a transitional ecotone where krummholz species—such as Yushan juniper 

(Juniperus morrisonicola) and Yushan rhododendron (Rhododendron pseudochrysanthum)—begin to appear within the alpine 

talus slope. By incorporating spectral bands, vegetation indices, and texture features, we achieved high classification accuracy 

and computational efficiency for detailed delineation, supported by both satellite classification results and GNSS-referenced 

field survey data. The classification results could provide a basis for further analysis, including ATE patterns, 390 

microenvironment conditions, and how vegetation interacts with the microenvironment under climate change scenarios. 

Feature selection identified the most important variables as the Shadow-Eliminated Vegetation Index (SEVI), Yellow (Y), 

Blue (B), Green (G) bands, and Normalized Difference Vegetation Index (NDVI2), which can serve as key information for 

forest management and monitoring.  Over the past decade, the study area gained approximately 10.09 hectares of forest cover, 

indicating that trees grew, canopies became denser, or saplings increased. Additionally, the upper limit of forest distribution 395 

shifted upslope by 32.00 ± 4.00 meters, revealing that forests expanded to higher elevations. These findings offer new insights 

into ATE dynamics in Taiwan’s alpine environment and demonstrate the potential of integrating machine learning techniques 

with high-resolution satellite imagery for long-term ecological monitoring. 
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