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Abstract. Taiwan is characterized by high mountains density, with over 200 peaks exceeding 3,000 meters in elevation. The 

alpine treeline ecotone (ATE)Taiwan has the highest density of high mountains globally, with over 200 peaks exceeding 3,000 

meters in elevation. The Alpine Treeline Ecotone (ATE) is a transitional zone between different vegetation types. The species 15 

distribution, range variations, and movement patterns of vegetation within the ATE are crucial indicators for assessing the 

impact of climate change and warming on alpine ecosystems. Therefore, this study focuses on the Xue Mountain glacial cirques 

in Taiwan (approximately 4 km²) and utilizes WorldView-2 satellite images from 2012 and 2021 to compute various vegetation 

indices and texture features (GLCM). By integrating these features with the Random Forest (RF) and U-Net models, we 

developed a classification map of the ATEalpine treeline ecotone (ATE) in Xue Mountain. We analyzed changes in bare land, 20 

forest, krummholz, and shadows within the ATE from 2012 to 2021. The results indicate that the classification accuracy 

reached an overall accuracy (OA) of 0.838 when incorporating raw spectral bands along with vegetation indices and texture 

features (GLCM) (77 features in total). Feature importance ranking and selection reduced training time by 14.3% while 

ensuring alignment between field survey treeline positions and classification results. From 2012 to 2021, tree cover density 

increased, with the total forest area expanding by approximately 0.101 km². The elevation of tree distribution rose by 32.00 ± 25 

4.00 m14 m, with the most significant area changes occurring between 3,500 and 3,600 m, while the 3,700 to 3,800 m range 

remained relatively stable. This study integrates remote sensing imagery with deep learning classification methods to establish 

a large-scale alpine treeline ecotone (ATE)ATE classification map. The findings provide a valuable reference for the 

sustainable management of alpine ecosystems in the Xue Mountain glacial cirques in Taiwan. 
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1 Introduction 

Taiwan is located in the subtropical region of Southeast Asia, with an elevation range of nearly 4,000 m, fostering diverse 

ecosystem types and rich biodiversity (Lin et al., 2021). The island contains more than 200 mountains exceeding 3,000 meters 

in elevation (Kuo et al., 2022), making it the highest-density alpine island in the world. Alpine zone ecosystems are particularly 

vulnerable to environmental change due to their high environmental heterogeneity and limited species migration distances, 35 

especially when compared to broader latitudinal climate gradients and more resilient lowland regionsAlpine zone ecosystems 

are susceptible to environmental changes compared to other regions (Engler et al., 2011; Huss et al., 2017; Li et al., 2018; 

Zheng et al., 2020). The transition zone between trees and treeless vegetation in alpine ecosystems is known as the alpine 

treeline or the Alpine Treeline Ecotone (ATE) (Körner 2012). The ecological processes and changes in this zone are considered 

indicators of climate change (Chen et al., 2022), reflecting the interactions of climate, topography, species composition, and 40 

disturbance history (Loranger et al., 2016; Johnson et al., 2017; Mohapatra et al., 2019; Bader et al., 20210). Based on many 

studies, changes in the alpine treeline ecotone (ATE) illustrate the impacts of climate change on mountain ecosystems, such 

as the upward migration of tree species and increased tree density. However, these shifts are also influenced by other drivers, 

including land-use history, altered disturbance regimes (e.g., fire disturbance), herbivory pressure, and species-specific 

physiological traits Furthermore, ATE changes illustrate the impact of climate change on the environment, such as the upward 45 

migration of tree species and an increase in tree density (Wang et al., 2016; Johnson et al., 2017; Du et al., 2018; Mohapatra 

et al., 2019). 

Recent advancements in remote sensing technology have empowered extensive studies on alpine treelines using various 

imagery sources with diverse spatial resolutions (Garbarino et al., 2023). Xu et al. (2020) utilized Landsat satellite imagery 

(30 m resolution) from 1987 to 2018 for Wuyishan National Park, China to examine the relationship between treeline position 50 

and climate based on the local indicator of spatial autocorrelation (LISA). They found that for every 1°C increase in 

temperature from 1987 to 2018, the treeline shifted upward by approximately 50 meters. At medium to high resolution, Rösch 

et al. (2022) used PlanetScope (3 m) and Sentinel-2 (10 m) imagery from 2020, incorporating texture features from the gray 

level co-occurrence matrix (GLCM), topographic features, and the canopy height model (CHM) to map the distribution of 

mountain pine (Pinus mugo ssp. Mugo Turra) in the Sarntal Alps. Their study achieved classification accuracies of 90.9% 55 

(PlanetScope) and 90.6% (Sentinel-2), demonstrating the value of multi-source data fusion. At very high resolution, Terskaia 

et al. (2020) combined orthophoto aerial images (1–2 m) from 1952 and 1979 with WorldView-2 imagery (0.5 m resolution) 

from 2015 to assess shrub and tree encroachment in the western Brooks Range, Alaska. They reported significant changes in 

vegetation over 63 years, including the loss of tundra and an increase in forest and shrub coverage. While the study reported 

percentage changes in land cover types (e.g., an 84% increase in forest), it is essential to note that the reference areas for these 60 

changes were derived from historical photo interpretation and may not be directly comparable to current conditions. 

Collectively, these studies illustrate the potential and versatility of remote sensing at various resolutions and through diverse 

methods in detecting changes in alpine treeline ecotones.In recent years, with the advancement of remote sensing technology, 
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many scholars have employed remote sensing imagery to study alpine treelines. Xu et al. (2020) utilized Landsat satellite 

imagery from 1987 to 2018 for Wuyishan National Park, China. They examined the relationship between treeline position and 65 

climate based on the local indicator of spatial autocorrelation (LISA). Their study found that from 1987 to 2018, for every 1°C 

increase in temperature, the treeline shifted upward by 50 m. Rösch et al. (2022) used 2020 PlanetScope and Sentinel-2 satellite 

imagery, incorporating texture features from the gray level co-occurrence matrix (GLCM), topographic features, and the 

canopy height model (CHM) to map the distribution of mountain pine (Pinus mugo ssp. Mugo Turra) in the Sarntal Alps. Their 

results indicated that combining satellite images with all features could accurately map the distribution of mountain pine forests, 70 

with an accuracy of 90.96% for PlanetScope imagery and 90.65% for Sentinel-2 imagery. Terskaia et al. (2020) analyzed the 

invasion of trees and tall shrubs into the tundra in the western Brooks Range, Alaska, using orthophoto aerial images from 

1952 and 1979, along with WorldView-2 satellite imagery from 2015. Their study found that between 1952 and 2015, arctic 

and alpine tundra areas decreased by 31% and 15%, respectively, while tall shrubs, mixed tree-shrub areas, and forests 

increased by 86%, 385%, and 84%, respectively. The average treeline was located at an elevation of 202 meters. These studies 75 

collectively confirm the reliability of remote sensing technology in researching alpine treeline changes. 

The integration of machine learning with remote sensing has also been successfully applied to forest studies, with many 

scholars reporting promising classification resultsfavorable results using the Random Forest (RF) and U-Net models. Jombo et al. (2020) used 

WorldView-2 imagery with RF and Support Vector Machines (SVM) models to classify five types of street trees in the complex 

urban environment of Randburg municipalitymunicipal, achieving overall accuracies of 84.2% and 81.2%, respectively. Similarly, 80 

Jackson and Adam (2021) employed WorldView-2 imagery with RF and SVM to classify endangered tree species in the Mount 

Kenya Forest Reserve (MKFR), finding that RF outperformed SVM. Wagner et al. (2019) applied a U-Net convolutional 

network to identify forests in the Atlantic rainforest region of Brazil using ultra-high-resolution WorldView-3 satellite imagery. 

They classified artificial forests, natural forests, and the Cecropia hololeuca, achieving a high overall segmentation accuracy.Wagner et al. (2019) applied a U-Net convolutional network to identify forests in the Atlantic rainforest region of Brazil using ultra-high-resolution WorldView-3 satellite imagery. They classified artificial forests, natural forests, and the Cecropia hololeuca, achieving an overall segmentation accuracy of over 95%, with an Intersection-over-Union (IoU) of 0.96. The classification accuracy for Cecropia hololeuca species reached 97%, with an IoU of 0.86. 

Freudenberg et al. (2019) used WorldView-2 and WorldView-3 imagery in Indonesia to detect Oil and coconut palm tree 85 

distribution. In addition to evaluating U-Net’s detection accuracy, they assessed its processing speed, finding that the U-Net-

based model achieved a maximum throughput of 235 hectares per second at a 40 cm resolution. The model demonstrated high 

generalizability, with detection accuracies ranging from 89% to 92% across different regions. Their study suggested that this 

method could be used for rapid nationwide detection of oil palm distribution. Based on these studies, we conclude that applyingBased on these studies, applying 

high-resolution WorldView satellite imagery combined with RF and U-Net machine learning models offers accuracy, cost 90 

efficiency, and generalizability advantages for ecological remote sensing classification. Therefore, this study will integrate 

WorldView-2 satellite imagery with RF and U-Net models to classify alpine treelines, find important features, and understand 

the change and spatial patterns in the Xue Mountain glacial cirques region in Taiwan. 
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2 Materials and methods 

2.1 Study site 95 

The Xue Mountain glacial cirques are located in Shei-Pa National Park in north-central Taiwan, covering an area of 

approximately 4 km². The central peak of Xueshan has an elevation of 3,886 m. The cirque serves as a crucial habitat for 

Taiwan's endemic species, the Yushan Juniper (Juniperus morrisonicola), Yushan rhododendron (Rhododendron 

pseudochrystam), and the Taiwan fir (Abies kawakamii), which is primarily distributed at elevations between 3,000 and 3,600 

m. Most ecological studies conducted in this research area have focused on Taiwan fir forests, with several researchers 100 

estimating wood volumes, competitive pressure, forest structure, and spatial distribution of the species primarily through field 

surveys conducted below the alpine treeline ecotone (Li et al., 2021; Wang et al., 2021; Chiu et al., 2022; Liao et al., 2023a; 

Liao et al., 2023b). In contrast, relatively little attention has been given to the dynamics of treeline ecotone shifts. 

In this study, we define the treeline ecotone not as a fixed linear boundary but as a transitional zone where krummholz, 

such as Yushan Juniper and Yushan rhododendron, begin to appear within the alpine talus slope (Liao. 2016; Liao et al., 2023a). 105 

This ecotone represents an area of ecological transition from subalpine forest to alpine vegetation.Several researchers have 

been conducting studies on the volume estimation, competitive pressure, forest structure, and spatial distribution of the Taiwan 

fir, primarily through field surveys (Li et al., 2021; Wang et al., 2021; Chiu et al., 2022; Liao et al., 2023a; Liao et al., 2023b). The study area is shown in Fig. 1. 

 

Figure 1. Geographic location of the treeline ecotone study area in the Xue Mountain glacial cirques in Shei-Pa National Park (top-110 
right map) in north-central Taiwan (top-left map). The red marker in the Worldview-2 image (bottom-left map) indicates the 

research area. The digital elevation model shown in the bottom-right image shows the same area as the Worldview-2 image and 

covers the entire study areaFigure 1: study site 
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2.2 Research flow 

This study utilized utilizes WorldView-2 satellite imagery from 2021 to extract raw spectral bands, vegetation indices, and texture 115 

features. Starting with the eight spectral bands, vegetation indices, and texture features were are sequentially added to form four 

different feature combinations. Classification models were are developed using the RF and U-Net models, and the optimal model 

is selected. This model is then applied to 2012 imagery to map the distribution of the alpine treeline and analyzed changes 

over the decade. The research workflow was is illustrated in Fig. 2. 

 120 

Figure 2. Research flow for classifying WorldView-2 images of a treeline ecotone on Mt. Xue in Taiwan to detect treeline changes. 

The process begins with WorldView-2 satellite image acquisition, followed by feature extraction (spectral bands, vegetation indices, 

and texture features), model training using Random Forest (RF) and U-Net, accuracy evaluation, feature selection, and temporal 

analysis of alpine treeline changes between 2012 and 2021. 

Figure 2: Research flow 125 

The research data sources were are categorized into satellite imagery and field surveys, with satellite imagery as the primary 

source and field surveys used as supplementary validation to ensure the accuracy of the treeline boundary. WorldView-2 was 

is an environmental monitoring satellite operated by Maxar Technologies Inc. (Colorado, USA). It was launched on October 8, 
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2009, and its geolocation accuracy, even without any ground control points, is reported to be within 3 metersis within 3 meters. Depending on the 

spatial resolution, the revisit time ranges from 1.1 to 3.7 days. 130 

 The satellite provided provides two imaging modes: panchromatic and multispectral. The spatial resolution was is 0.41 m in the 

panchromatic mode, and the spectral range spans 450–800 nm. This mode offered offers high spatial resolution, allowing for detailed 

image representation. In the multispectral mode, the spatial resolution was is 1.64 m, and the spectral range extended extends from 400 to 

1040 nm, covering eight spectral bands, as shown in Table 1. To enhance spatial detail, all multispectral bands were 

pansharpening using the corresponding high-resolution panchromatic band, yielding a uniform spatial resolution of 0.4 meters 135 

across all datasets used for feature extraction. The pansharpened multispectral imagery was the basis for deriving vegetation 

indices and texture features.  

Two orthorectified, cloud-free WorldView-2 images acquired on November 3, 2012, and September 26, 2021, were 

obtained from RiChi Technology Co., Ltd. (New Taipei City, Taiwan). Both images were captured in the autumn season when 

vegetation had entered dormancy, minimizing the influence of phenological variability such as flowering. Histogram matching 140 

was applied to ensure radiometric consistency across the two images. In addition, GPS devices were used to record field survey 

points, which were subsequently used to verify ATE positions and assist in manual ground truth labeling.For this study, two 

cloud-free WorldView-2 orthorectified images with a spatial resolution of 0.4 meters, acquired on November 3, 2012, and 

September 26, 2021, were obtained through RiChi Technology Co., Ltd. (New Taipei City, Taiwan), and GPS was used to 

record survey points. 145 

Table 1. Spectral characteristics of WorldView-2 satellite bands: Worldview-2 Satellite image band introduction 

Band Spectral range (nm) Data quantization (Bits) 

Costal Blue (CB) 400-450 

11 

Blue (B) 450-510 

Green (G) 510-580 

Yellow (Y) 585-625 

Red (R) 630-690 

Red Edge (RE) 703-745 

Near Infrared 1 (NIR1) 770-895 

Near Infrared 2 (NIR2) 860-1040 

 

2.4 Vegetation indices Index 

The reflectance spectrum of plant leaves can reflect their internal physiological status, such as chlorophyll content, water 

content, intercellular spaces, and cell walls. The frequently discussed spectral bands include red (R), the red edge (RE), and 150 

the near-infrared (NIR) bands. Derived vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and 
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the Enhanced Vegetation Index (EVI), have been widely used (Rouse et al., 1974; Huete et al., 2002). Additionally, some 

studies have suggested that the blue (B) and green (G) bands can be used to monitor vegetation phenology and forests. For 

example, indices such as the Green Chromatic Coordinate (GCC) and the Excess Green Index (ExG) have been developed for 

this purpose (Sonnentag et al., 2012; Larrinaga and Brotons, 2019). Since image acquisition was is affected by terrain, leading 155 

to shadow occurrences that influence classification accuracy, this study also planned plans to adopt the Shadow-Eliminated 

Vegetation Index (SEVI) (Jiang et al., 2019). This study will utilize 11 vegetation indices, as summarized in Table 2. 

 

Table 2: Vegetation indices and their formulas. List of vegetation indices and their formulas derived from spectral bands. 

Vegetation Index Formula Reference 

Difference Vegetation Index (DVI) NIR − R Richardson and Wiegand, 1977 

Enhanced vegetation index (EVI) 2.5 ×
(NIR − R)

(NIR + 6 × R − 7.5 × B + 1)
 Huete et al., 2002 

Excess Blue Vegetation Index (ExB) 
1.4 × B − G

G + R + B
 Mao et al., 2003 

Excess Green Index (ExG)  
2 × G − R − B

G + R + B
 Woebbecke et al., 1995 

Excess Green minus Excess Red (ExGR) ExG–ExR Meyer and Neto, 2008 

Excess Red Vegetation Index (ExR) 
1.4 × R − G

G + R + B
 Meyer et al., 1999 

The Green Chromatic Coordinate (GCC) G/(R + G + B) Gillespie et al., 1987 

Normalized difference index (NDI) 
G − R

G + R
 Gitelson and Merzlyak, 1994 

Normalized difference vegetation index (NDVI) 
NIR − R

NIR + R
 Rouse et al., 1974 

Ratio Vegetation Index (RVI) 
NIR

R
 Jordan, 1969 

Shadow- Eliminated Vegetation Index (SEVI) RVI + 𝑓(∆) ×
1

R
 Jiang et al., 2019 

 160 

2.5 Texture Feature 

With the improvement in the spatial resolution of satellite imagery, most ground objects are composed of multiple pixels, 

making the spatial attributes of images increasingly important (Wang et al., 2015). Texture features extract the structural and 

arrangement properties of ground objects, which describe the spatial attributes of objects in an image. As one of the key 

features for image interpretation, texture helps distinguish land cover types with similar spectral characteristics. Texture 165 

analysis methods can be categorized into spectral, statistical, and structural approaches, with the Gray Level Co-occurrence 
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Matrix (GLCM) in statistical approaches being the most commonly used (Hsu, 1978). Guo et al. (2020) applied texture features 

to map the forest-tundra ecotone in central Eurasia. They found that texture-based classification maps performed better than 

previous methods, achieving an average classification accuracy of 0.826. Similarly, Sibiya et al. (2021) used WorldView-2 

satellite imagery to classify forest species in South Africa. They found that texture features improved overall classification 170 

accuracy by approximately 8% compared to vegetation indices and 13% compared to original spectral bands. Their study also 

observed that a moving window size of 7 × 7 produced the best results. Therefore, this study adopted a 7 × 7 moving window 

to compute the GLCM matrix for each of the eight bands, analysing seven statistical metrics, resulting in 56 texture features. 

The seven statistical metrics used in this study are listed in Table 3. 

 175 

Table 3: Texture Feature and their formulas. Description of texture features calculated using the gray-level co-occurrence matrix (GLCM). 

Texture Feature Formula Reference 

Contrast (Con) ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2
𝑁−1

𝑖,𝑗=0

 Yuan et al., 1991 

Dissimilarity (Dis) ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 Rubner et al., 2002 

Energy (Ene) ∑ 𝑃𝑖,𝑗
2

𝑁−1

𝑖,𝑗=0

 Hall-Beyer, 2017 

Entropy (Ent) ∑ 𝑃𝑖,𝑗(−𝑙𝑛𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 Yuan et al., 1991 

Homogeneity (Hom) ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 Hall-Beyer, 2017 

Mean (M) ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 Materka and Strzelecki, 1998 

Variance (Var) ∑ 𝑃𝑖,𝑗(𝑖 − Mean)2
𝑁−1

𝑖,𝑗=0

 Materka and Strzelecki, 1998 

𝑃𝑖,𝑗 is the gray-level co-occurrence matrix after normalization. 
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2.6 Methods 

2.6.1 Random Forest (RF) 

Random Forests (RF) was is an ensemble classifier widely used in remote sensing due to its ability to handle high-180 

dimensional data. It generates multiple decision trees (DTs), where each tree made makes predictions based on observed 

features through a series of decision-making steps, ultimately concluding the target variable. Decision trees, also known as 

classification trees, were are a type of predictive model. Random forests used use the Bagging algorithm (Bootstrap 

Aggregating) as their core classification mechanism. The process began begins by randomly sampling the data to create 

training datasets. After each sampling, the selected data points were are returned to the dataset for the next round of sampling 185 

(bootstrap sampling). This process was is repeated multiple times, resulting in several training datasets, which were are then 

used to train multiple decision trees. This approach allowed allows for scenarios where specific data points were are sampled 

multiple times while others may not. Each decision tree selected selects a random subset of features at each node to determine 

the best split, ultimately generating predictions from each tree. The final classification result is determined by aggregating all 

decision tree predictions using a majority voting approach. To evaluate the importance of each feature, the Random Forest 190 

model uses the Gini Index, which measures the impurity of a node. A lower Gini value indicates better class separation. The 

Gini Index for a node m is calculated as follows:  

𝐺𝑖𝑛𝑖𝑚 = ∑ 𝑝̂𝑚𝑘(1 − 𝑝̂𝑚𝑘)
𝑘
𝑘=1  ,          (1) 

Where 𝑝̂𝑚𝑘 was the probability of a sample at node m belonging to class k, and K was the total number of classes. The Gini 

Index also supported the out-of-bag (OOB) error estimation and was commonly used to determine feature importance in 195 

classification tasks (Belgiu and Drăguţ, 2016; Breiman, 2001; Chen et al., 2023).The final classification result is determined 

by aggregating all decision tree predictions using a majority voting approach. The model also utilizes the Gini Index, calculated 

using the following formula: the Gini Index represents the out-of-bag (OOB) error rate. This metric is used to assess the 

contribution of each feature to the model, serving as an indicator of feature importance (Belgiu and Drăguţ, 2016; Breiman, 

2001; Chen et al., 2023). 200 

2.6.2 U-Net 

Ronneberger et al. (2015) proposed the original U-Net model, which evolved from the fully connected network (FCN) 

and was initially applied to biomedical image segmentation. The model is named U-Net because its architecture resembles a 

U-shaped structure. It is also a shallow convolutional neural network (CNN) segmentation model. The U-Net model consists 

of a contracting path (downsampling) and an expanding path (upsampling). Similar to FCN, U-Net does not have fully 205 

connected layers, and its use of convolutional layers significantly reduces the amount of training data required while allowing 

inputs of different sizes. Before entering the contracting or expanding path, the data undergoes two consecutive convolutional 

layers, which help the network extract target features more effectively. This process also enhances the integration of fine 
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details with feature maps, thereby improving segmentation quality. Each convolutional layer is followed by a rectified linear 

unit (ReLU) activation function, which enhances training efficiency without affecting model accuracy. The pooling layer at 210 

the bottom serves as a nonlinear form of downsampling, reducing the spatial size of the data, decreasing the number of 

parameters and computational costs, and helping to control overfitting. Since U-Net lacks fully connected layers, it effectively 

minimizes information loss caused by downsampling and preserves finer image details. 

2.6.3 Data set 

The WorldView-2 satellite imagery consists of eight spectral bands (CB, B, G, Y, R, RE, NIR1, NIR2). Based on these 215 

eight bands, this study derived 13 vegetation indices and 56 texture features, resulting in 77 feature variables. The original 

eight bands were incrementally combined with vegetation indices and texture features, forming four different feature 

combinations (Table 4)., as shown in Table 4. 

 Ground truth data in the study area were manually labeled using a pixel-based approach and categorized into four classes: 

(1) Bare land, referring to areas of exposed soil, rock surfaces, or sparsely vegetated ground; (2) Forest, defined as regions 220 

with dense, continuous tree canopy cover; (3) Krummholz, representing stunted, shrub-like trees typically found at high 

elevations near the treeline and shaped by wind or snow pressure (Liao et al., 2023a); and (4) Shadow, representing regions 

with low reflectance caused by topographic shading or solar angle effects. The class definitions were established based on 

visual inspection and field knowledge of the study area (Fig. 3). The labeling process was independent and performed by 

visually interpreting the pansharpened RGB composite imagery, referencing known terrain characteristics, and assisted by 225 

field-collected GPS survey points. 

Each image (5380 × 4671 pixels) was segmented into 110 non-overlapping patches of 512 × 512 pixels. The dataset split 

was performed at the patch level, not the pixel level, to avoid spatial autocorrelation and data leakage. Specifically, 80% of 

the patches were randomly selected for training and validation (with a 75/25 split), and the remaining 20% were used as an 

independent test set. In total, 66 patches were used for training, 22 for validation, and 22 for testing.were labeled using a pixel-230 

based approach and categorized into four classes: bare land, forest, krummholz, and shadow (Fig. 3). Each image (5380 × 4671 

pixels) was segmented into smaller images of 512 × 512 pixels, yielding a total of 110 images. The dataset was randomly split, 

with 80% used for training and validation and 75% and 25% allocated for training and validation, respectively. The remaining 

20% was designated as the test dataset. The number of images used for training, validation, and testing was 66, 22, and 22, 

respectively. 235 

Table 4. Definitions of the four feature combinations used in model training. The table shows the input feature types and their 

corresponding dimensionality.: Combination of features designed in this study 

Feature combinations Input feature Feature Dimension 

1 spectral band 8 

2 spectral band, vegetation indices 21 

3 spectral band, texture features 64 
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4 spectral band, vegetation indices, texture features 77 

 

 

Figure 3. Ground truth label generation for land cover classification. (a) WorldView-2 RGB composite image from 2021; (b) 240 
manually annotated labels showing four classes: forest, krummholz, bare land, and shadow.: Schematic diagram of ground truth 

label categories. (a) Original data (RGB image), (b) Ground truth labels. 

2.6.43 Evaluation Index 

This study uses overall accuracy (OA), F1-score, and the Kappa coefficient as assessment metrics to evaluate 

classification accuracy. The formulas for each metric are explained below. 245 

𝑂𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 ,           (2) 

F1 − score =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 ,          (3) 

Kappa =
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
 , with           (4) 

𝑃𝑜 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 , and           (5) 

𝑃𝑒 =
(𝑇𝑃+𝐹𝑁)×(𝑇𝑃+𝐹𝑃)+(𝐹𝑃+𝑇𝑁)×(𝐹𝑁+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)2
 ,         (6) 250 

Among them, TP (true positive), TN (true negative), FP (false positive), and FN (false negative). 
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3. Results 

3.1 Feature Combination Comparison 

This study explored four feature combinations, including spectral bands (8 features), vegetation indices (13 features), and 

texture features (56 features), for classifying bare land, forest, krummholz, and shadow using both RF and U-Net models. The 255 

F1-scores, representing the harmonic mean of precision and recall, provided a balanced assessment of classification 

performance. All classes achieved F1-scores above 0.6 (Fig. 4). Forest and krummholz were more frequently misclassified 

with one another due to their similar vegetation structures, while bare land and shadow were more easily distinguished, 

achieving F1-scores above 0.8. 

Overall, the different feature combinations produced similar classification performance, with only minor differences 260 

observed across classes and models. In the RF model, bare land and shadow achieved the highest F1-scores (0.905 and 0.866, 

respectively) when using Combination 1 (spectral bands only). Forest and krummholz performed slightly better with 

Combination 4 (spectral bands, vegetation indices, and texture features), achieving F1-scores of 0.827 and 0.776, respectively. 

In the U-Net model, Combination 1 yielded the best result for bare land (F1 = 0.889), while Combination 4 slightly improved 

the classification of forest (0.828), krummholz (0.886), and shadow (0.869). These findings suggested that incorporating 265 

vegetation indices and texture features improved model performance for specific vegetation classes, particularly in the U-Net 

model, although overall improvements remained relatively modest. 

The overall accuracy (OA) and Kappa coefficient for each feature combination were summarized in Table 5. Similar to 

the accuracy patterns for the individual classes, in the U-Net models, the OA improved as the number of features increased, 

whereas for the RF models this was not the case (Table 5). A consistent increase in OA was observed as more features were 270 

incorporated. For both models, Combination 4 yielded the highest OA values: 0.830 for RF and 0.838 for U-Net, representing 

improvements of 0.011 and 0.085, respectively, over Combination 1. The Kappa coefficients exhibited similar trends, 

increasing from 0.753 to 0.768 in RF and from 0.666 to 0.778 in U-Net. These results confirmed that both OA and Kappa 

supported the observed pattern of slightly enhanced classification performance with expanded feature sets.This study explores 

four feature combinations using spectral bands, vegetation indices, and texture features for classifying bare land, forest, 275 

krummholz, and shadow with the RF and U-Net models. The F1-score results are shown in Fig. 4. Overall, the F1-score 

exceeds 0.6 for all classes. Since forest and krummholz are both vegetation types, they tend to influence each other more, 

whereas the classification accuracy for bare land and shadow is higher, reaching over 0.8. Comparing the RF and U-Net models, 

the RF model exhibits more stable F1-score differences across the four feature combinations. In contrast, the U-Net model 

shows more significant variability in F1-scores.  280 
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Figure 4. F1-scores for four land cover classes (forest, krummholz, bare land, shadow) using RF and U-Net models with different 

feature combinations. 

Table 5. Evaluation of classification accuracy using different feature combinations and models. Overall accuracy (OA) and Kappa 

coefficient are shown for Random Forest (RF) and U-Net models. Numbers in parentheses indicate the number of input features. 285 
Bold values indicate the best results for each metric. 

Feature (DIMs) Combinations 1(8) Combinations 2(21) Combinations 3(64) Combinations 4(77) 

Method RF U-Net RF U-Net RF U-Net RF U-Net 

OA 0.819 0.753 0.817 0.780 0.812 0.819 0.830 0.838 

Kappa 0.753 0.666 0.751 0.703 0.743 0.755 0.768 0.778 

 

3.2 Feature Importance Selection Based on Random Forest Model 

The upper limit of the ATE was determined based on the spatial distribution boundary where patches of forest transitioned 

into krummholz and bare land. This boundary reflected a gradual to abrupt ecological shift in vegetation types and was 290 

identified using classification results derived from satellite imagery.  To ensure accuracy, these results were cross-validated 

with GPS-based field survey points. Since forest classification accuracy played a key role in delineating this boundary, 

particular emphasis was placed on improving forest classification performance. Therefore, after integrating the results from 

Section 3.1, further analysis was conducted using Feature Combination 4 and the U-Net model. As the number of features 

increased, model training times also lengthened, making it necessary to evaluate both classification accuracy and 295 

computational cost. To address this, the study employed the feature importance ranking function of the RF model to the 77 

features (Fig. 5). Based on the cumulative model interpretability results, 95% cumulative interpretability was achieved using 

61 features. Further analysis revealed that the most important features, according to the ranking, were SEVI, Y, B, G, and 

NDVI2. In contrast, texture features were relatively less important, as also suggested by the low F1 scores for combination 3 

(spectral, texture; Fig. 4). However, for the forest class in particular, texture features significantly improved classification 300 
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accuracy compared to using only spectral bands, and the inclusion of vegetation indices contributed even more to the 

performance.  

Using the top 61 selected features based on feature importance, a retraining process was carried out. The classification 

results remained similar before and after feature selection (Fig. 6), while training time was reduced by 14.3%. Although 

improving computational efficiency was not the primary objective, feature selection helps achieve model parsimony, balancing 305 

model complexity with performance, which in turn enhances interpretability and generalization. Notably, the overall accuracy 

and Kappa coefficient increased slightly by 0.4% (Table 6). While the numerical gain may appear small, such improvement is 

relevant in ecological applications where even minor increases in accuracy can enhance the detection of subtle land cover 

changes, such as shifts in forest boundaries over time.The treeline is determined based on the boundary between bare land, 

forests, and krummholz. Therefore, after integrating the results from Section 3.1, further analysis was conducted using Feature 310 

Combinations 4 and the U-Net model. Since an increase in the number of features leads to longer model training times, it is 

necessary to evaluate both classification accuracy and computational time costs. To address this, this study utilized the feature 

importance ranking function of the RF model to rank the importance of the 77 features. The feature ranking results are shown 

in Fig. 5. Based on cumulative model interpretability, 95% cumulative interpretability can be obtained by 61 features. Further 

analysis revealed that according to the ranking, the most important features were SEVI, Y, B, G, and NDVI2. 315 

 

Figure 5. Feature importance ranking derived from the Random Forest model. Features are ranked based on their contribution to 

classification accuracy, with the top-ranked features including SEVI, Y (yellow), B (blue), G (green), and NDVI2. Most of the top 

features are spectral bands and vegetation indices, while texture features rank lower. 

Table 6. Comparison of model performance before and after feature selection. Training time is presented in hours. The results show 320 
reduced training time and slightly improved classification accuracy after feature selection. 



15 

 

 Without feature selection With feature selection Difference (%) 

Training time(hr)Training 

time(s) 
7.70827750 6.60823789 

-14.3 

OA 0.838 0.842 +0.4 

Kappa 0.778 0.784 +0.4 

 

 

Figure 6: Comparison of 2021 image classification results before and after feature selection. (a) Ground truth; (b) model result using 

77 features; (c) model result using 61 features. 325 

Figure 6: Model classification results with/without feature selection (a) Ground truth (b) Without feature selection (c) With feature 

selection 

3.3 Decadale cChanges of in the treeline ecotone 

A U-Net model was trained using 61 selected features derived based on feature importance. The trained model was applied 

to classify satellite images from 2012 and 2021. The classification results were validated against field survey data collected in 330 

2021, which recorded vegetation types and the position of the tree line along an elevational gradient. As shown in Fig. 7, the 

tree line derived from the classification closely aligns well with the tree line identified through GPS-based field survey points. 

Over the decade, the proportion of forest area increased by 3.4%, indicating a trend of forest expansion. Meanwhile, the 

proportion of shadow area also increased by 8.5%; however, this is likely due to differences in lighting conditions and satellite 

viewing angles between the 2012 and 2021 image acquisitions rather than an actual ecological change. Additionally, 335 

krummholz and bare land areas decreased by 3.2% and 8.7%, respectively (Table 7). For the forest category, the forest area 

expanded by 0.105 km² and was reduced by 0.004 km² between 2012 and 2021 (Fig. 8). Based on the 95th percentile of DEM 

elevation values of all pixels classified as forest (Fig. 9), the treeline showed an upward shift of 32.00 meters between 2012 

and 2021. The 95% confidence interval (± 4.00 meters) was estimated using a bootstrap resampling method (5,000 iterations). 

Differences in area changes across various elevation ranges are detailed in Table 8, with the most significant changes occurring 340 
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in the 3,600- to 3,700-m range, which corresponds to the primary treeline ecotone change zone in the Xue Mountain region. 

In comparison, the most stable area was observed in the 3,700 to 3,800 m range, where minimal forest presence was detected 

in both 2012 and 2021, reflecting physiological limits of trees.A U-Net model was trained using 61 selected features based on 

feature importance, and the trained model was then used to classify the images from 2012 and 2021. The classification results 

from 2012 and 2021 were compared with field survey data, as shown in Fig. 7. The results indicate that the tree line derived 345 

from the classification aligns with the tree line edge identified in the field survey. Over a decade, the proportion of forest and 

shadow areas increased by 3.4% and 8.5%, respectively, while krummholz decreased by 3.2% and bare land decreased by 

8.7% (Table 7). For the forest category, changes in forest area showed an expansion of 0.105 km² and a reduction of 0.004 

km² between 2012 and 2021 (Fig. 8). The elevation distribution of the forest area shifted from 3,699 m to 3,713 m, reflecting 

a 14 m rise, as shown in Table 8. The differences in area changes across different elevation ranges are detailed in Table 9, with 350 

the most significant changes occurring in the 3,500 to 3,600 m range. In comparison, the most stable area was observed in the 

3,700 to 3,800 m range. 

 

Figure 7 Comparison of satellite imagery and classification results from 2012 and 2021. Panels (a) and (c) show high-resolution 

satellite images for 2012 and 2021, respectively. Colored boxes in these images indicate the enlarged areas shown in (b) and (d). 355 
Panels (b) and (d) present the classification results of the corresponding enlarged regions using a U-Net model trained with 61 

selected features. Triangles mark field survey locations. 

Table 7. Percentage of each land cover class in 2012 and 2021 classification results. Forest and shadow areas increased over time, 

while krummholz and bare land decreased. 

Classification percentage (%) 
Year 

Increment / Decrement 
2012 2021 

Forest 22.5 25.9 +3.4 

Krummholz 36.4 33.2 -3.2 
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Bare land 38.1 29.4 -8.7 

Shadow 3.0 11.5 +8.5 

Total 100 100  

 360 

 

Figure 8. The spatial distribution of forest area changes from 2012 to 2021. Forest expansion is marked in blue, reduction is marked 

in orange, and persistent is marked in green. 
格式化: 字型色彩: 自動



18 

 

 

Figure 9. Bootstrap distribution of the 95th percentile elevation of forest cover for 2012 and 2021. The histogram shows the frequency 365 
of estimated 95th percentile elevations (P95) based on resampling. Green bars represent 2012 estimates, while blue bars represent 

2021. The dashed vertical lines indicate the mean P95 value for each year. 

Figure 8: Forest area changes in 2021 and 2012 

 

Elevations (m) Forest Area in 2012 (ha) Expansion area (ha) Reduction area (ha) Net Change (ha)  Change (%) 

3300~3400 6.99 0.28 0.03 0.25 3.6 

3400~3500 12.43 2.21 0.08 2.13 17.1 

3500~3600 8.40 5.10 0.23 4.87 58.0 

3600~3700 3.26 2.88 0.06 2.82 86.4 

3700~3800 0.78 0.02 0.00 0.02 2.5 

Elevations (m) Expansion area (km2) Reduction area (km2) 

3300~3400 0.0028 0.0003 

3400~3500 0.0221 0.0008 

3500~3600 0.0510 0.0023 

3600~3700 0.0288 0.0006 

3700~3800 0.0002 0.0000 

 370 
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4. Discussion 

4.1 Treeline change and spatial pattern 

Our findings reveal that, from 2012 to 2021, the alpine treeline ecotone (ATE) in the Xue Mountain glacial cirque 

experienced an upward shift of 32.00 ± 4.00 meters, along with a pronounced densification of forest cover. This finding aligns 

with patterns observed in other mountainous regions worldwide. For example, in Taiwan’s Hehuan Mountain and Yushan, 375 

similar upward shifts in treeline position and increases in forest density have been reported (Greenwood et al., 2014; Chung et 

al., 2021). Likewise, Davis et al. (2020) observed an upslope advance of 0.83 ± 0.67 m/year for several tree species in the 

Rocky Mountains of Canada. In contrast, studies in the European Alps have noted significant reductions in snow cover and 

increased alpine vegetation productivity, potentially enhancing local carbon sequestration, although with a limited global 

impact (Rumpf et al., 2022). Additionally, in the eastern Himalayas, over 80% of trees have already reached the thermal 380 

treeline, with projected upslope migration of 140 meters by the end of the 21st century due to warming (Wang et al., 2022). 

These comparisons support the robustness of our observed treeline dynamics and highlight both global consistency and 

regional variation in alpine ecosystems response to climate change. 

Observing the ecological processes and changes of the alpine treeline (ATE) can help assess the impacts of climate change 

in different regions. In the Rocky Mountains of Canada, Davis et al. (2020) investigated the changes in four tree species (Abies 385 

lasiocarpa, Larix lyallii, Picea engelmannii, Pinus albicaulis). They found that overall forest stand density increased, with 

tree distribution advancing upslope toward the treeline at an average rate of 0.83 ± 0.67 m/year. In the European Alps, 

researchers observed a significant reduction in snow cover. At the same time, the productivity of alpine treeline vegetation 

increased, enhancing the ability to sequester atmospheric CO₂ and mitigating the effects of climate change (Rumpf et al., 2022). 

In the Himalayas of Asia, climate impacts have led to more than 80% of trees in the eastern region reaching the thermal treeline, 390 

the potential upper range limit set by the growing season temperature. It is predicted that by the end of the 21st century, trees 

in the east region will migrate upslope by 140 meters (Wang et al., 2022). Similarly, in Taiwan's Hehuan Mountain and Yushan, 

studies have also found that alpine treelines are shifting to higher elevations, accompanied by a significant increase in forest 

density (Greenwood et al., 2014; Chung et al., 2021). This study also found that the alpine treeline's elevation in the Xue 

Mountain glacial cirque increased by 14 meters between 2012 and 2021, which aligns with the findings of previous studies. 395 

 

4.2 Feature importance 

In this study, we derived 77 features from satellite imagery, including eight spectral bands, 13 vegetation indices, and 56 

texture features. To improve model efficiency, we applied feature importance ranking using the Random Forest (RF) model 

and selected the top 61 features, which accounted for 95% of the cumulative importance. Among them, SEVI, Yellow (Y), 400 

Blue (B), Green (G), and NDVI2 were identified as the most important for classifying the treeline ecotone. Notably, most of 

these were spectral or vegetation index features, while texture features contributed less. This feature selection not only reduced 
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training time by 14.3% but also slightly improved the overall accuracy (+0.4%) and Kappa coefficient. While OA was used as 

the primary selection criterion, we also confirmed that these top-ranked features maintained or improved F1-scores for the 

forest class, which is the primary concern in detecting treeline changes. We recognize that the process of optimizing OA values 405 

may sometimes overlook minority or ecologically important classes. Therefore, we specifically examined the F1-score for the 

forest class—our primary concern for treeline detection—and verified that its classification performance was not compromised. 

This indicates that our feature selection strategy effectively balanced overall model performance with the accuracy of the most 

ecologically relevant land-cover category. 

These findings align with previous studies on vegetation classification using multispectral satellite imagery, though the 410 

most informative spectral bands may vary depending on the sensor, study region, and forest type. For instance, studies using 

Sentinel-2 imagery (10–20 m resolution) found the shortwave infrared (SWIR), red, and near-infrared (NIR) bands to be 

particularly effective in forest classification tasks. Bolyn et al. (2018) identified SWIR, red, and NIR as the most important 

features for classifying forest types, while Immitzer et al. (2019) emphasized the role of red and NIR in time-series-based tree 

species mapping. Similarly, Hościło and Lewandowska (2019) reported improved forest type discrimination when using multi-415 

temporal red, NIR, and red-edge bands. In contrast, studies using WorldView-2 imagery (high-resolution, 0.4–1.6 m) revealed 

different key spectral bands. Abutaleb et al. (2021) found that the green, yellow, red, and NIR2 bands were most relevant for 

mapping eucalyptus trees in a subtropical environment. On the other hand, Immitzer et al. (2012) reported that blue, green, 

red, and NIR1 bands were particularly effective in classifying coniferous forest types in Austria. 

These variations underscore the contextual nature of feature importance, suggesting that optimal band selection depends 420 

on factors such as spatial resolution, vegetation structure, and topographic complexity. Our results—emphasizing SEVI, Y, B, 

G, and NDVI2 —are well-suited to the alpine treeline environment of Taiwan, where coniferous species such as Abies 

kawakamii dominate.A total of 77 features were derived from the satellite images, including eight spectral bands, 13 vegetation 

indices, and 56 texture features. Different features have varying degrees of importance for image classification; therefore, an 

analysis of feature importance must be conducted based on the classification target. In the alpine treeline (ATE) of Xue 425 

Mountain, the primary tree species is Taiwan fir (Abies kawakamii), which belongs to coniferous forests. Numerous studies 

have explored the contribution of satellite image bands to conifer species classification and forest land cover mapping. Several 

researchers using Sentinel-2 imagery have found that shortwave infrared, red, and near-infrared bands are particularly suitable 

for identifying land cover and different tree species, with the red band being the most effective for coniferous tree indices 

(Bolyn et al., 2018; Immitzer et al., 2019; Hościło and Lewandowska, 2019). Using WorldView-2 imagery to study 430 

Johannesburg, South Africa, other researchers identified the green, yellow, red, and near-infrared-2 bands as the most critical 

features for vegetation classification (Abutaleb et al., 2021). Similarly, a study classifying natural forests based on WorldView-

2 images in eastern Austria found that the blue, green, red, and near-infrared-1 bands were the most significant (Immitzer et 

al., 2012). In this study, the most important bands identified were SEVI, Y, B, G, and NDVI2. Most top-ranked features were 

spectral bands and vegetation indices, while texture features were less important. Based on these findings, this study concludes 435 

that the importance of features varies depending on the region characteristics and classification target. 
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5. Conclusions 

This study investigates changes in the ATE of the Xue Mountain glacial cirques in Taiwan from 2012 to 2021, utilizing 

WorldView-2 imagery in conjunction with Random Forest and U-Net models. By incorporating spectral bands, vegetation 

indices, and texture features, we achieved improved classification accuracy and computational efficiency. Feature selection 440 

identified the most important variables as the Shadow-Eliminated Vegetation Index (SEVI), Yellow (Y), Blue (B), Green (G) 

bands, and Normalized Difference Vegetation Index (NDVI2). The treeline was defined not as a fixed linear boundary but as 

a transitional ecotone where krummholz species—such as Yushan juniper (Juniperus morrisonicola) and Yushan 

rhododendron (Rhododendron pseudochrysanthum)—begin to appear within the alpine talus slope. This delineation was based 

on both satellite classification results and GPS-referenced field survey data. Over the past decade, forest cover in the study 445 

area expanded by approximately 0.101 km², indicating both denser canopy growth and outward expansion. In addition, the 

upper limit of forest distribution rose by 32.00 ± 4.00 meters, indicating an upslope shift of the treeline at higher elevations. 

These findings provide new insights into treeline dynamics in Taiwan’s alpine environment and demonstrate the potential of 

high-resolution satellite imagery for long-term ecological monitoring.This study investigates the changes in the ATE of the 

Xue Mountain glacial cirques in Taiwan between 2012 and 2021. Specifically, the study employs the RF and U-Net models to 450 

generate classification maps of the ATE and analyse changes in bare land, forest, krummholz, and shadow areas based on 

WorldView-2 satellite imagery-derived vegetation indices and texture features. The results show that incorporating vegetation 

indices and texture features alongside the spectral bands improves classification accuracy. The best result is the U-Net model 

with OA 0.838, which is 0.085 higher than the model using spectral bands alone, and the Kappa coefficient is 0.112 higher. 

With the selection of feature importance, training time was reduced by 14.3%, with a slight improvement in accuracy. The 455 

most significant features were SEVI, Y, B, G, and NDVI2. Comparing the classification results from 2012 and 2021 with field 

surveys, the treeline edges in the classification maps aligned well with surveyed locations. Over a decade, the spatial coverage 

of trees increased by approximately 0.101 km², indicating a denser forest situation. Additionally, the elevation of forest 

distribution is found in higher elevations (rise by 14 meters), representing a gradual upward treeline shift. The most significant 

changes occurred between 3,500 m and 3,600 m, while the 3,700 m to 3,800 m range remained relatively stable. These findings 460 

provide essential scientific insights for future ecosystem management in Xue Mountain and demonstrate the effectiveness of 

satellite imagery in monitoring alpine treeline ATE dynamics, highlighting its significance for biodiversity conservation and 

sustainable environmental development. 
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