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alpine treeline ecotone (ATE)Faiwa

reters-in-elevation—The-Alpine Treeline-Ecotone {ATE) is a transitional zone between different vegetation types. The species

distribution, range variations, and movement patterns of vegetation within the ATE are crucial indicators for assessing the

impact of climate change and warming on alpine ecosystems. Therefore, this study focuses on the Xue Mountain glacial cirques
in Taiwan (approximately 4 km3 and utilizes WorldView-2 satellite images from 2012 and 2021 to compute various vegetation
indices and texture features (GLCM). By integrating these features with-the Random Forest (RF) and U-Net models, we
developed a classification map of the ATEalpine-treeline-ecotone(ATE)-in Xue Mountain. We analyzed changes in bare land,
forest, krummholz, and shadows within the ATE from 2012 to 2021. The results indicate that the classification accuracy
reached an overall accuracy (OA) of 0.838 when incorporating raw spectral bands along with vegetation indices and texture
features (GLCM) (77 features in total). Feature importance ranking and selection reduced training time by 14.3% while
ensuring alignment between field survey treeline positions and classification results. From 2012 to 2021, tree cover density
increased, with the total forest area expanding by approximately 0.101 km2 The elevation of tree distribution rose by 32.00 +

4.00 m*4-m, with the most significant area changes occurring between 3,500 and 3,600 m, while the 3,700 to 3,800 m range

remained relatively stable. This study integrates remote sensing imagery with deep learning classification methods to establish
a large-scale alpine—treeline—ecotore{ATE}ATE classification map. The findings provide a valuable reference for the
sustainable management of alpine ecosystems in the Xue Mountain glacial cirques in Taiwan.
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1 Introduction

Taiwan is located in the subtropical region of Southeast Asia, with an elevation range of nearly 4,000 m, fostering diverse
ecosystem types and rich biodiversity (Lin et al., 2021). The island contains more than 200 mountains exceeding 3,000 meters
in elevation (Kuo et al., 2022), making it the highest-density alpine island in the world. Alpine zone ecosystems are particularly

vulnerable to environmental change due to their high environmental heterogeneity and limited species migration distances,
especially when compared to broader latitudinal climate gradients and more resilient lowland regionsAlpine-zene-ecosystems
are-susceptible-to-environmen al-changes—compared-to-otherregions (Engler et al., 2011; Huss et al., 2017; Li et al., 2018;
Zheng et al., 2020). The transition zone between trees and treeless vegetation in alpine ecosystems is known as the alpine

treeline or the Alpine Treeline Ecotone (ATE) (Kdrner 2012). The ecological processes and changes in this zone are considered
indicators of climate change (Chen et al., 2022), reflecting the interactions of climate, topography, species composition, and
disturbance history (Loranger et al., 2016; Johnson et al., 2017; Mohapatra et al., 2019; Bader et al., 20216). Based on many
studies, changes in the alpine treeline ecotone (ATE) illustrate the impacts of climate change on mountain ecosystems, such

as the upward migration of tree species and increased tree density. However, these shifts are also influenced by other drivers,

including land-use history, altered disturbance regimes (e.g., fire disturbance), herbivory pressure, and species-specific
physiological traits i i i i

etal., 2019).

Recent advancements in remote sensing technology have empowered extensive studies on alpine treelines using various

imagery sources with diverse spatial resolutions (Garbarino et al., 2023). Xu et al. (2020) utilized Landsat satellite imagery

(30 m resolution) from 1987 to 2018 for Wuyishan National Park, China to examine the relationship between treeline position

and climate based on the local indicator of spatial autocorrelation (LISA). They found that for every 1°C increase in

temperature from 1987 to 2018, the treeline shifted upward by approximately 50 meters. At medium to high resolution, Résch

et al. (2022) used PlanetScope (3 m) and Sentinel-2 (10 m) imagery from 2020, incorporating texture features from the gray

level co-occurrence matrix (GLCM), topographic features, and the canopy height model (CHM) to map the distribution of

mountain pine (Pinus mugo ssp. Mugo Turra) in the Sarntal Alps. Their study achieved classification accuracies of 90.9%

(PlanetScope) and 90.6% (Sentinel-2), demonstrating the value of multi-source data fusion. At very high resolution, Terskaia

et al. (2020) combined orthophoto aerial images (1-2 m) from 1952 and 1979 with WorldView-2 imagery (0.5 m resolution)

from 2015 to assess shrub and tree encroachment in the western Brooks Range, Alaska. They reported significant changes in

vegetation over 63 years, including the loss of tundra and an increase in forest and shrub coverage. While the study reported

percentage changes in land cover types (e.g., an 84% increase in forest), it is essential to note that the reference areas for these

changes were derived from historical photo interpretation and may not be directly comparable to current conditions.

Collectively, these studies illustrate the potential and versatility of remote sensing at various resolutions and through diverse
methods in detecting changes in alpine treeline ecotones.ta-rece i i
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The integration of machine learning with remote sensing has also been successfully applied to forest studies, with many
scholars reporting promising classification resultsfaverable resuits using the Random Forest (RF) and U-Net models. Jombo et al. (2020) used
WorldView-2 imagery with RF and Support Vector Machines (SVM) models to classify five types of street trees in the complex
urban environment of Randburg municipalitymunicipal, achieving overall accuracies of 84.2% and 81.2%, respectively. Similarly,
Jackson and Adam (2021) employed WorldView-2 imagery with RF and SVM to classify endangered tree species in the Mount
Kenya Forest Reserve (MKFR), finding that RF outperformed SVM. Wagner et al. (2019) applied a U-Net convolutional

network to identify forests in the Atlantic rainforest region of Brazil using ultra-high-resolution WorldView-3 satellite imagery.

Freudenberg et al. (2019) used WorldView-2 and WorldView-3 imagery in Indonesia to detect Oil and coconut palm tree

distribution. In addition to evaluating U-Net’s detection accuracy, they assessed its processing speed, finding that the U-Net-
based model achieved a maximum throughput of 235 hectares per second at a 40 cm resolution. The model demonstrated high
generalizability, with detection accuracies ranging from 89% to 92% across different regions. Their study suggested that this
method could be used for rapid nationwide detection of oil palm distribution. Based on these studies, we conclude that applyingBaseetenthese stulies;applying
high-resolution WorldView satellite imagery combined with RF and U-Net machine learning models offers accuracy, cost

efficiency, and generalizability advantages for ecological remote sensing classification. Therefore, this study will integrate
WorldView-2 satellite imagery with RF and U-Net models to classify alpine treelines, find important features, and understand

the change and spatial patterns in the Xue Mountain glacial cirques region in Taiwan.
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2 Materials and methods
2.1 Study site

The Xue Mountain glacial cirques are located in Shei-Pa National Park in north-central Taiwan, covering an area of
approximately 4 km2 The central peak of Xueshan has an elevation of 3,886 m. The cirque serves as a crucial habitat for
Taiwan's endemic species, the Yushan Juniper (Juniperus morrisonicola), Yushan rhododendron (Rhododendron
pseudochrystam), and the Taiwan fir (Abies kawakamii), which is primarily distributed at elevations between 3,000 and 3,600

m. Most ecological studies conducted in this research area have focused on Taiwan fir forests, with several researchers

estimating wood volumes, competitive pressure, forest structure, and spatial distribution of the species primarily through field

surveys conducted below the alpine treeline ecotone (Li et al., 2021; Wang et al., 2021; Chiu et al., 2022; Liao et al., 2023a;

Liao et al., 2023b). In contrast, relatively little attention has been given to the dynamics of treeline ecotone shifts.

In this study, we define the treeline ecotone not as a fixed linear boundary but as a transitional zone where krummholz,

such as Yushan Juniper and Yushan rhododendron, begin to appear within the alpine talus slope (Liao. 2016; Liao et al., 2023a).

This ecotone represents an area of ecological transition from subalpine forest to alpine vegetation.Several-researchers-have
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Figure 1. Geographic location of the treeline ecotone study area in the Xue Mountain glacial cirques in Shei-Pa National Park (top-
right map) in north-central Taiwan (top-left map). The red marker in the Worldview-2 image (bottom-left map) indicates the
research area. The digital elevation model shown in the bottom-right image shows the same area as the Worldview-2 image and
covers the entire study areaFigure-1:-study-site
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2.2 Research flow

This study utilized utitizes WorldView-2 satellite imagery from 2021 to extract raw spectral bands, vegetation indices, and texture
features. Starting with the eight spectral bands, vegetation indices, and texture features were are-sequentially added to form four
different feature combinations. Classification models were are-developed using the RF and U-Net models, and the optimal model
is selected. This model is then applied to 2012 imagery to map the distribution of the alpine treeline and analyzed changes
over the decade. The research workflow was is-illustrated in Fig. 2.

ATE area extraction Feature extraction

1. Spectral Bands

Combination 2
2. Vegetation indices

0 321 M

Worldview-2 imagery (2021)

3. Texture features

|
GRS daa Experty : : el Combination 4

ATE map 2021  ATE map 2012 ATE change map
Figure 2. Research flow for classifying WorldView-2 images of a treeline ecotone on Mt. Xue in Taiwan to detect treeline changes.
The process begins with WorldView-2 satellite image acquisition, followed by feature extraction (spectral bands, vegetation indices,

and texture features), model training using Random Forest (RF) and U-Net, accuracy evaluation, feature selection, and temporal
analysis of alpine treeline changes between 2012 and 2021.

The research data sources were are-categorized into satellite imagery and field surveys, with satellite imagery as the primary
source and field surveys used as supplementary validation to ensure the accuracy of the treeline boundary. WorldView-2 was
is-an environmental monitoring satellite operated by Maxar Technologies Inc. (Colorado, USA). It was launched on October 8,
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2009, and its geolocation accuracy, even without any ground control points, is reported to be within 3 metersiswithin-3 meters. Depending on the

spatial resolution, the revisit time ranges from 1.1 to 3.7 days.
-The satellite provided previdestwo imaging modes: panchromatic and multispectral. The spatial resolution was is0.41 min the
panchromatic mode, and the spectral range spans 450-800 nm. This mode offered effers-high spatial resolution, allowing for detailed

image representation. In the multispectral mode, the spatial resolution was is-1.64 m, and the spectral range extended extendsfrom 400 to

1040 nm, covering eight spectral bands, as shown in Table 1. To enhance spatial detail, all multispectral bands were

pansharpening using the corresponding high-resolution panchromatic band, yielding a uniform spatial resolution of 0.4 meters

across all datasets used for feature extraction. The pansharpened multispectral imagery was the basis for deriving vegetation

indices and texture features.

Two orthorectified, cloud-free WorldView-2 images acquired on November 3, 2012, and September 26, 2021, were

obtained from RiChi Technology Co., Ltd. (New Taipei City, Taiwan). Both images were captured in the autumn season when

vegetation had entered dormancy, minimizing the influence of phenological variability such as flowering. Histogram matching

was applied to ensure radiometric consistency across the two images. In addition, GPS devices were used to record field survey

points, which were subsequently used to verify ATE positions and assist in manual ground truth labeling.For-this-study-twe

Table 1. Spectral characteristics of WorldView-2 satellite bands:\Aerldview-2-Satellite-image-band-introduction

Band Spectral range (nm) Data quantization (Bits)

Costal Blue (CB) 400-450
Blue (B) 450-510
Green (G) 510-580

Yellow (Y) 585-625 n
Red (R) 630-690
Red Edge (RE) 703-745
Near Infrared 1 (NIR1) 770-895
Near Infrared 2 (NIR2) 860-1040

2.4 Vegetation indices Hdex

The reflectance spectrum of plant leaves can reflect their internal physiological status, such as chlorophyll content, water
content, intercellular spaces, and cell walls. The frequently discussed spectral bands include red (R), the red edge (RE), and

the near-infrared (NIR) bands. Derived vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and

(it 7REw AB




155

160

165

the Enhanced Vegetation Index (EVI), have been widely used (Rouse et al., 1974; Huete et al., 2002). Additionally, some
studies have suggested that the blue (B) and green (G) bands can be used to monitor vegetation phenology and forests. For
example, indices such as the Green Chromatic Coordinate (GCC) and the Excess Green Index (ExG) have been developed for
this purpose (Sonnentag et al., 2012; Larrinaga and Brotons, 2019). Since image acquisition was is-affected by terrain, leading
to shadow occurrences that influence classification accuracy, this study also planned plans-to adopt the Shadow-Eliminated

Vegetation Index (SEVI) (Jiang et al., 2019). This study will utilize 11 vegetation indices, as summarized in Table 2.

Table 2:-\/egetation-indices-and-theirformulas, List of vegetation indices and their formulas derived from spectral bands.

Vegetation Index Formula Reference
Difference Vegetation Index (DV1) NIR — R Richardson and Wiegand, 1977
Enhanced vegetation index (EVI 2.5 % (NIR = R) Huete et al., 2002
nhanced vegetation index (EV1) SX NRT6xR-75xB+1D) uete et al.,
. 1.4xB—-G
Excess Blue Vegetation Index (ExB) _— Mao et al., 2003
G+R+B
2xG—R-B
Excess Green Index (ExG) _— Woebbecke et al., 1995
G+R+B
Excess Green minus Excess Red (EXGR) ExG- ExR Meyer and Neto, 2008
14xR—
Excess Red Vegetation Index (ExR) LAXR-G Meyer et al., 1999
G+R+B
The Green Chromatic Coordinate (GCC) G/(R+G+B) Gillespie et al., 1987
. . . G-R .
Normalized difference index (NDI) o Gitelson and Merzlyak, 1994
. . Lo NIR - R
Normalized difference vegetation index (NDVI) _— Rouse et al., 1974
NIR +R
. . NIR
Ratio Vegetation Index (RVI) e Jordan, 1969
Shadow- Eliminated Vegetation Index (SEVI) RVI + £(4) x% Jiang et al., 2019

2.5 Texture Feature

With the improvement in the spatial resolution of satellite imagery, most ground objects are composed of multiple pixels,
making the spatial attributes of images increasingly important (Wang et al., 2015). Texture features extract the structural and
arrangement properties of ground objects, which describe the spatial attributes of objects in an image. As one of the key
features for image interpretation, texture helps distinguish land cover types with similar spectral characteristics. Texture

analysis methods can be categorized into spectral, statistical, and structural approaches, with the Gray Level Co-occurrence



Matrix (GLCM) in statistical approaches being the most commonly used (Hsu, 1978). Guo et al. (2020) applied texture features
to map the forest-tundra ecotone in central Eurasia. They found that texture-based classification maps performed better than
previous methods, achieving an average classification accuracy of 0.826. Similarly, Sibiya et al. (2021) used WorldView-2
170 satellite imagery to classify forest species in South Africa. They found that texture features improved overall classification
accuracy by approximately 8% compared to vegetation indices and 13% compared to original spectral bands. Their study also
observed that a moving window size of 7 x 7 produced the best results. Therefore, this study adopted a 7 x 7 moving window
to compute the GLCM matrix for each of the eight bands, analysing seven statistical metrics, resulting in 56 texture features.
The seven statistical metrics used in this study are listed in Table 3.
175
Table 3—FextureFeatureandtheirformulas. Description of texture features calculated using the gray-level co-occurrence matrix (GLCM).

Texture Feature Formula Reference
N-1
Contrast (Con) z P (i —j)? Yuan et al., 1991
i,j=0
N-1
Dissimilarity (Dis) Z Pyjli =l Rubner et al., 2002
i,j=0
N-1
Energy (Ene) Z % Hall-Beyer, 2017
ij=0
N-1
Entropy (Ent) Z P, ;(—nP;;) Yuan et al., 1991
0,j=0
N-1 I3
. ij i
Homogeneity (Hom) / TTG-72 G-z Hall-Beyer, 2017
i,j=0
N-1
Mean (M) Z iP; Materka and Strzelecki, 1998
i,j=0
N-1
Variance (Var) Z P; (i — Mean)? Materka and Strzelecki, 1998
i,j=0

P; j is the gray-level co-occurrence matrix after normalization.



180

185

190

195

200

205

2.6 Methods
2.6.1 Random Forest (RF)

Random Forests (RF) was is-an ensemble classifier widely used in remote sensing due to its ability to handle high-
dimensional data. It generates multiple decision trees (DTs), where each tree made makes-predictions based on observed
features through a series of decision-making steps, ultimately concluding the target variable. Decision trees, also known as
classification trees, were are-a type of predictive model. Random forests used use-the Bagging algorithm (Bootstrap
Aggregating) as their core classification mechanism. The process began begins-by randomly sampling the data to create
training datasets. After each sampling, the selected data points were are-returned to the dataset for the next round of sampling
(bootstrap sampling). This process was is-repeated multiple times, resulting in several training datasets, which were are-then
used to train multiple decision trees. This approach allowed aHews-for scenarios where specific data points were are-sampled
multiple times while others may not. Each decision tree selected seleets-a random subset of features at each node to determine

the best split, ultimately generating predictions from each tree. The final classification result is determined by aggregating all

decision tree predictions using a majority voting approach. To evaluate the importance of each feature, the Random Forest

model uses the Gini Index, which measures the impurity of a node. A lower Gini value indicates better class separation. The

Gini Index for a node m is calculated as follows:

Giniy, = Zz:‘l Dok (1 = Do) (1)

Where p,,,,_ was the probability of a sample at node m belonging to class k, and K was the total number of classes. The Gini

Index also supported the out-of-bag (OOB) error estimation and was commonly used to determine feature importance in
classification tasks (Belgiu and Dragut, 2016; Breiman, 2001; Chen et al., 2023).Fhe-final-classification-resultis-determined

2.6.2 U-Net

Ronneberger et al. (2015) proposed the original U-Net model, which evolved from the fully connected network (FCN)
and was initially applied to biomedical image segmentation. The model is named U-Net because its architecture resembles a
U-shaped structure. It is also a shallow convolutional neural network (CNN) segmentation model. The U-Net model consists
of a contracting path (downsampling) and an expanding path (upsampling). Similar to FCN, U-Net does not have fully
connected layers, and its use of convolutional layers significantly reduces the amount of training data required while allowing
inputs of different sizes. Before entering the contracting or expanding path, the data undergoes two consecutive convolutional
layers, which help the network extract target features more effectively. This process also enhances the integration of fine
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details with feature maps, thereby improving segmentation quality. Each convolutional layer is followed by a rectified linear
unit (ReLU) activation function, which enhances training efficiency without affecting model accuracy. The pooling layer at
the bottom serves as a nonlinear form of downsampling, reducing the spatial size of the data, decreasing the number of
parameters and computational costs, and helping to control overfitting. Since U-Net lacks fully connected layers, it effectively

minimizes information loss caused by downsampling and preserves finer image details.

2.6.3 Data set

The WorldView-2 satellite imagery consists of eight spectral bands (CB, B, G, Y, R, RE, NIR1, NIR2). Based on these
eight bands, this study derived 13 vegetation indices and 56 texture features, resulting in 77 feature variables. The original
eight bands were incrementally combined with vegetation indices and texture features, forming four different feature
combinations (Table 4)..-as-shewn-in-Table-4-

-Ground truth data in the study area were manually labeled using a pixel-based approach and categorized into four classes:
(1) Bare land, referring to areas of exposed soil, rock surfaces, or sparsely vegetated ground; (2) Forest, defined as regions

with dense, continuous tree canopy cover; (3) Krummholz, representing stunted, shrub-like trees typically found at high

elevations near the treeline and shaped by wind or snow pressure (Liao et al., 2023a); and (4) Shadow, representing regions

with low reflectance caused by topographic shading or solar angle effects. The class definitions were established based on

visual inspection and field knowledge of the study area (Fig. 3). The labeling process was independent and performed by

visually interpreting the pansharpened RGB composite imagery, referencing known terrain characteristics, and assisted by

field-collected GPS survey points.

Each image (5380 x 4671 pixels) was segmented into 110 non-overlapping patches of 512 x 512 pixels. The dataset split

was performed at the patch level, not the pixel level, to avoid spatial autocorrelation and data leakage. Specifically, 80% of

the patches were randomly selected for training and validation (with a 75/25 split), and the remaining 20% were used as an

Table 4. Definitions of the four feature combinations used in model training. The table shows the input feature types and their

corresponding dimensionality.-Cembination-offeatures-designed-in-thisstudy

Feature combinations Input feature Feature Dimension
1 spectral band 8
2 spectral band, vegetation indices 21
3 spectral band, texture features 64

10



4 spectral band, vegetation indices, texture features 77

(a) RGB image

(b) Ground truth
PR

’
)
<

. Forest . Krummholz Shadow

RRRLF? .
. Bare land

240 Figure 3, Ground truth label generation for land cover classification. (a) WorldView-2 RGB composite image from 2021; (b)

manually annotated labels showing four classes: forest, krummholz, bare land, and shadow.:-Sechematic-diagram-of-ground-truth

2.6,43 Evaluation Index

This study uses overall accuracy (OA), Fl-score, and the Kappa coefficient as assessment metrics to evaluate
245  classification accuracy. The formulas for each metric are explained below.

04 = i o
F1 — score = % , 3
Kappa = Pl":: , with @
P, = % ,and )
250 P = e ©

Among them, TP (true positive), TN (true negative), FP (false positive), and FN (false negative).
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3. Results
3.1 Feature Combination Comparison

This study explored four feature combinations, including spectral bands (8 features), vegetation indices (13 features), and

texture features (56 features), for classifying bare land, forest, krummholz, and shadow using both RF and U-Net models. The

Fl-scores, representing the harmonic mean of precision and recall, provided a balanced assessment of classification

performance. All classes achieved F1-scores above 0.6 (Fig. 4). Forest and krummholz were more frequently misclassified

with one another due to their similar vegetation structures, while bare land and shadow were more easily distinguished,

achieving F1-scores above 0.8.

Overall, the different feature combinations produced similar classification performance, with only minor differences

observed across classes and models. In the RF model, bare land and shadow achieved the highest F1-scores (0.905 and 0.866,

respectively) when using Combination 1 (spectral bands only). Forest and krummholz performed slightly better with

Combination 4 (spectral bands, vegetation indices, and texture features), achieving F1-scores of 0.827 and 0.776, respectively.

In the U-Net model, Combination 1 yielded the best result for bare land (F1 = 0.889), while Combination 4 slightly improved

the classification of forest (0.828), krummholz (0.886), and shadow (0.869). These findings suggested that incorporating

vegetation indices and texture features improved model performance for specific vegetation classes, particularly in the U-Net

model, although overall improvements remained relatively modest.

The overall accuracy (OA) and Kappa coefficient for each feature combination were summarized in Table 5. Similar to

the accuracy patterns for the individual classes, in the U-Net models, the OA improved as the number of features increased

whereas for the RF models this was not the case (Table 5). A consistent increase in OA was observed as more features were

incorporated. For both models, Combination 4 yielded the highest OA values: 0.830 for RF and 0.838 for U-Net, representing

improvements of 0.011 and 0.085, respectively, over Combination 1. The Kappa coefficients exhibited similar trends,

increasing from 0.753 to 0.768 in RF and from 0.666 to 0.778 in U-Net. These results confirmed that both OA and Kappa

supported the observed pattern of slightly enhanced classification performance with expanded feature sets. Fhis-study-explores

12
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Combination |

Shadow (spectral bands only)

. Combination 2

Bare land (spectral band, vegetation indices)

Combination 3
(spectral band, texture features)

Combination 4
(spectral band, vegetation indices |, texture features)

Krummbholz

. Random Forest

. U-net

Forest

0 0.2 0.4 0.6 0.8 1.0

Figure 4. F1-scores for four land cover classes (forest, krummholz, bare land, shadow) using RF and U-Net models with different
feature combinations.

Table 5. Evaluation of classification accuracy using different feature combinations and models. Overall accuracy (OA) and Kappa
coefficient are shown for Random Forest (RF) and U-Net models. Numbers in parentheses indicate the number of input features.
Bold values indicate the best results for each metric.

Feature (DIMs) ~ Combinations 1(8) Combinations 2(21) ~ Combinations 3(64)  Combinations 4(77)

Method RF U-Net RF U-Net RF U-Net RF U-Net
OA 0.819 0.753 0.817 0.780 0.812 0.819 0.830 0.838
Kappa 0.753 0.666 0.751 0.703 0.743 0.755 0.768 0.778

3.2 Feature Importance Selection Based on Random Forest Model

The upper limit of the ATE was determined based on the spatial distribution boundary where patches of forest transitioned [%fﬁ{b FRIER: HH)

into krummholz and bare land. This boundary reflected a gradual to abrupt ecological shift in vegetation types and was

identified using classification results derived from satellite imagery., To ensure accuracy, these results were cross-validated [;{:gfc{[:; FHIET: H§)

with GPS-based field survey points. Since forest classification accuracy played a key role in delineating this boundary.

particular emphasis was placed on improving forest classification performance. Therefore, after integrating the results from

Section 3.1, further analysis was conducted using Feature Combination 4 and the U-Net model. As the number of features

increased, model training times also lengthened, making it necessary to evaluate both classification accuracy and

computational cost. To address this, the study employed the feature importance ranking function of the RF model to the 77

features (Fig. 5). Based on the cumulative model interpretability results, 95% cumulative interpretability was achieved using

61 features. Further analysis revealed that the most important features, according to the ranking, were SEVI, Y, B, G, and
NDVI2. In contrast, texture features were relatively less important, as also suggested by the low F1 scores for combination 3

(spectral, texture; Fig. 4). However, for the forest class in particular, texture features significantly improved classification

13



accuracy compared to using only spectral bands, and the inclusion of vegetation indices contributed even more to the

performance.
Using the top 61 selected features based on feature importance, a retraining process was carried out. The classification

results remained similar before and after feature selection (Fig. 6), while training time was reduced by 14.3%. Although

305 improving computational efficiency was not the primary objective, feature selection helps achieve model parsimony, balancing

model complexity with performance, which in turn enhances interpretability and generalization. Notably, the overall accuracy

and Kappa coefficient increased slightly by 0.4% (Table 6). While the numerical gain may appear small, such improvement is

relevant in ecological applications where even minor increases in accuracy can enhance the detection of subtle land cover

changes, such as shifts in forest boundaries over time.Fhe-treeline-is-determined-based-on-the-boundary-between-bare-lan

Feature importance

10 o
095 TR

Figure 5. Feature importance ranking derived from the Random Forest model. Features are ranked based on their contribution to
classification accuracy, with the top-ranked features including SEVI, Y (vellow), B (blue), G (green), and NDVI12. Most of the top
features are spectral bands and vegetation indices, while texture features rank lower.

320 Table 6. Comparison of model performance before and after feature selection. Training time is presented in hours. The results show
reduced training time and slightly improved classification accuracy after feature selection.

14
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Without feature selection With feature selection Difference (%)

D

Training time(hr)Fraini -14.3 LAY HE)
‘— Freining 7.70827750 6.60823789 (st TEeP
Hmes) (i FREY: AW
OA 0.838 0.842 +0.4 sttt PREY: 8
Kappa 0.778 0.784 +0.4
@ (b) ©
OA: 0.82( - OA: 0.8
W saciand [l Foress I Krummholz Shadow
Figure 6: Comparison of 2021 image classification results before and after feature selection. (a) Ground truth; (b) model result using [ Het(r: FRIER: G5 ]
77 features; (c) model result using 61 features.
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to classify satellite images from 2012 and 2021. The classification results were validated against field survey data collected in

2021, which recorded vegetation types and the position of the tree line along an elevational gradient. As shown in Fig. 7, the

tree line derived from the classification closely aligns well with the tree line identified through GPS-based field survey points.

Over the decade, the proportion of forest area increased by 3.4%, indicating a trend of forest expansion. Meanwhile, the

proportion of shadow area also increased by 8.5%:; however, this is likely due to differences in lighting conditions and satellite

viewing angles between the 2012 and 2021 image acquisitions rather than an actual ecological change. Additionally

krummholz and bare land areas decreased by 3.2% and 8.7%, respectively (Table 7). For the forest category, the forest area
expanded by 0.105 km2and was reduced by 0.004 km2between 2012 and 2021 (Fig. 8). Based on the 95th percentile of DEM
elevation values of all pixels classified as forest (Fig. 9), the treeline showed an upward shift of 32.00 meters between 2012
and 2021. The 95% confidence interval (+ 4.00 meters) was estimated using a bootstrap resampling method (5,000 iterations).
Differences in area changes across various elevation ranges are detailed in Table 8, with the most significant changes occurring
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in the 3,600- to 3,700-m range, which corresponds to the primary treeline ecotone change zone in the Xue Mountain region.

In comparison, the most stable area was observed in the 3,700 to 3,800 m range, where minimal forest presence was detected
in both 2012 and 2021, reflecting physiological limits of trees.A-J-Net-meodelwas-trained-using-61-selected-features-based-on

345

350

A Field survey

. Bare land

. Forest

. Krummbholz
Shadow

Figure 7 Comparison of satellite imagery and classification results from 2012 and 2021. Panels (a) and (c) show high-resolution

355 satellite images for 2012 and 2021, respectively. Colored boxes in these images indicate the enlarged areas shown in (b) and (d).
Panels (b) and (d) present the classification results of the corresponding enlarged regions using a U-Net model trained with 61
selected features. Triangles mark field survey locations.

Table 7. Percentage of each land cover class in 2012 and 2021 classification results. Forest and shadow areas increased over time,
while krummbholz and bare land decreased.

Year
Classification percentage (%) Increment / Decrement
2012 2021
Forest 225 25.9 +3.4
Krummholz 36.4 332 -3.2
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Bare land 38.1 29.4 -8.7
Shadow 3.0 115 +8.5
Total 100 100
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Figure 8. The spatial distribution of forest area changes from 2012 to 2021. Forest expansion is marked in blue, reduction is marked [ faat(y: TR Q)

in orange, and persistent is marked in green.
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Bootstrap Distribution of 95th Percentile Elevation
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365 Figure 9. Bootstrap distribution of the 95th percentile elevation of forest cover for 2012 and 2021. The histogram shows the frequency
of estimated 95th percentile elevations (P95) based on resampling. Green bars represent 2012 estimates, while blue bars represent
2021. The dashed vertical lines indicate the mean P95 value for each year.
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3700~3800 0.0002 0.0000

370

18



375

380

4. Discussion
4.1 Treeline change and spatial pattern

Our findings reveal that, from 2012 to 2021, the alpine treeline ecotone (ATE) in the Xue Mountain glacial cirgue

experienced an upward shift of 32.00 + 4.00 meters, along with a pronounced densification of forest cover. This finding aligns

with patterns observed in other mountainous regions worldwide. For example, in Taiwan’s Hehuan Mountain and Yushan,

similar upward shifts in treeline position and increases in forest density have been reported (Greenwood et al., 2014; Chung et

al., 2021). Likewise, Davis et al. (2020) observed an upslope advance of 0.83 + 0.67 m/year for several tree species in the
Rocky Mountains of Canada. In contrast, studies in the European Alps have noted significant reductions in snow cover and

increased alpine vegetation productivity, potentially enhancing local carbon sequestration, although with a limited global

impact (Rumpf et al., 2022). Additionally, in the eastern Himalayas, over 80% of trees have already reached the thermal

treeline, with projected upslope migration of 140 meters by the end of the 21st century due to warming (Wang et al., 2022).

These comparisons support the robustness of our observed treeline dynamics and highlight both global consistency and

regional variation in alpine ecosystems response to climate change.

400

4.2 Feature importance

In this study, we derived 77 features from satellite imagery, including eight spectral bands, 13 vegetation indices, and 56

texture features. To improve model efficiency, we applied feature importance ranking using the Random Forest (RF) model

and selected the top 61 features, which accounted for 95% of the cumulative importance. Among them, SEVI, Yellow (Y),

Blue (B), Green (G), and NDVI2 were identified as the most important for classifying the treeline ecotone. Notably, most of

these were spectral or vegetation index features, while texture features contributed less. This feature selection not only reduced
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training time by 14.3% but also slightly improved the overall accuracy (+0.4%) and Kappa coefficient. While OA was used as

the primary selection criterion, we also confirmed that these top-ranked features maintained or improved F1-scores for the

forest class, which is the primary concern in detecting treeline changes. We recognize that the process of optimizing OA values

may sometimes overlook minority or ecologically important classes. Therefore, we specifically examined the F1-score for the

forest class—our primary concern for treeline detection—and verified that its classification performance was not compromised.

This indicates that our feature selection strategy effectively balanced overall model performance with the accuracy of the most

ecologically relevant land-cover category.

These findings align with previous studies on vegetation classification using multispectral satellite imagery, though the

most informative spectral bands may vary depending on the sensor, study region, and forest type. For instance, studies using
Sentinel-2 imagery (10-20 m resolution) found the shortwave infrared (SWIR), red, and near-infrared (NIR) bands to be

particularly effective in forest classification tasks. Bolyn et al. (2018) identified SWIR, red, and NIR as the most important

features for classifying forest types, while Immitzer et al. (2019) emphasized the role of red and NIR in time-series-based tree

species mapping. Similarly, Hoscito and Lewandowska (2019) reported improved forest type discrimination when using multi-

temporal red, NIR, and red-edge bands. In contrast, studies using WorldView-2 imagery (high-resolution, 0.4-1.6 m) revealed

different key spectral bands. Abutaleb et al. (2021) found that the green, yellow, red, and NIR2 bands were most relevant for

mapping eucalyptus trees in a subtropical environment. On the other hand, Immitzer et al. (2012) reported that blue, green,

red, and NIR1 bands were particularly effective in classifying coniferous forest types in Austria.

These variations underscore the contextual nature of feature importance, suggesting that optimal band selection depends

on factors such as spatial resolution, vegetation structure, and topographic complexity. Our results—emphasizing SEVI, Y, B,

G, and NDVI2 —are well-suited to the alpine treeline environment of Taiwan, where coniferous species such as Abies

kawakamii dominate.A
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5. Conclusions

This study investigates changes in the ATE of the Xue Mountain glacial cirques in Taiwan from 2012 to 2021, utilizing

WorldView-2 imagery in conjunction with Random Forest and U-Net models. By incorporating spectral bands, vegetation

indices, and texture features, we achieved improved classification accuracy and computational efficiency. Feature selection
identified the most important variables as the Shadow-Eliminated Vegetation Index (SEVI), Yellow (), Blue (B), Green (G)
bands, and Normalized Difference Vegetation Index (NDVI2). The treeline was defined not as a fixed linear boundary but as

a_transitional ecotone where krummholz species—such as Yushan juniper (Juniperus morrisonicola) and Yushan

rhododendron (Rhododendron pseudochrysanthum)—begin to appear within the alpine talus slope. This delineation was based

on both satellite classification results and GPS-referenced field survey data. Over the past decade, forest cover in the study

area expanded by approximately 0.101 km2 indicating both denser canopy growth and outward expansion. In addition, the

upper limit of forest distribution rose by 32.00 + 4.00 meters, indicating an upslope shift of the treeline at higher elevations.

These findings provide new insights into treeline dynamics in Taiwan’s alpine environment and demonstrate the potential of

high-resolution satellite imagery for long-term ecological monitoring. Fhis-study-investigates-the-changes-in-the-ATE-of the

e Mountain-g auesin wan-between 20 nd-20 ne v the dv-emplovs the RF and Net modelsto
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