

Emissions from fuel combustion by stoves in residential kitchens in São Paulo - Brazil

Tailine Corrêa dos Santos^{1,*}, Elaine Cristina Araujo^{2,*}, Thaís Andrade da Silva^{2,*}, Enrico Valente Freire³, Eduardo Landulfo², and Maria de Fátima Andrade¹

¹Department of Atmospheric Science, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo, BR

²Laser Environment Applications Laboratory, Lasers and Applications Center, Nuclear and Energy Institute, University of São Paulo, São Paulo, BR

³Environmental Assessment, EBP Brasil Consulting and Environmental Engineering, São Paulo, BR

*These authors contributed equally to this work.

Correspondence: Tailine Corrêa dos Santos (tailine.santos@iag.usp.br), Elaine Cristina Araujo (elaine.c.araujo13@gmail.com), and Thaís Andrade da Silva (thais.andradedasilva@usp.br)

Abstract. This study investigates greenhouse gas (GHG) emissions and indoor air quality associated with residential cooking practices in São Paulo, Brazil. Measurements were conducted in 30 households, focusing on kitchens using natural gas (NG) or liquefied petroleum gas (LPG) stoves. A measurement protocol was developed to assess emissions of carbon dioxide (CO₂), methane (CH₄), and nitrogen oxides (NO_x) under different operational conditions. Emission rates and factors were calculated using mass balance approaches, considering kitchen volume, air exchange rates, and gas concentrations. The results show different behavior for the type of fuel, especially for methane, which has a significant response to the use of NG, unlike LPG. It was also possible to observe a difference between the temporal variability cycles, as the burners responded quickly to the increase in concentration, while the oven showed a delayed increase observed in the environment. There was a high variability in the concentrations in the different residences, which may be associated with factors such as the age of the stove, model, leak and internal influence. The emission factors obtained were three times higher than the IPCC considering only the close values, but when considering the outliers it is up to 10 times higher for CH₄ in the case of NG. For CO₂ the factor obtained was lower than the IPCC. The findings highlight the importance of considering fuel type in evaluating GHG emissions from residential cooking and the need for robust data on residential emissions in Brazil.

1 Introduction

Carbon dioxide (CO₂), methane (CH₄), and nitrogen oxides (NO_x) are emitted during fossil fuel combustion, material production (e.g., steel, cement, plastics), and food cultivation. CO₂ and CH₄ are major greenhouse gases, significantly contributing to global warming (IPCC, 2022b). NO₂ primarily affects health and is a key precursor of tropospheric ozone (IPCC, 2022a; WHO, 2021). Additionally, these gases impact the atmospheric radiation budget (IPCC, 2022a).

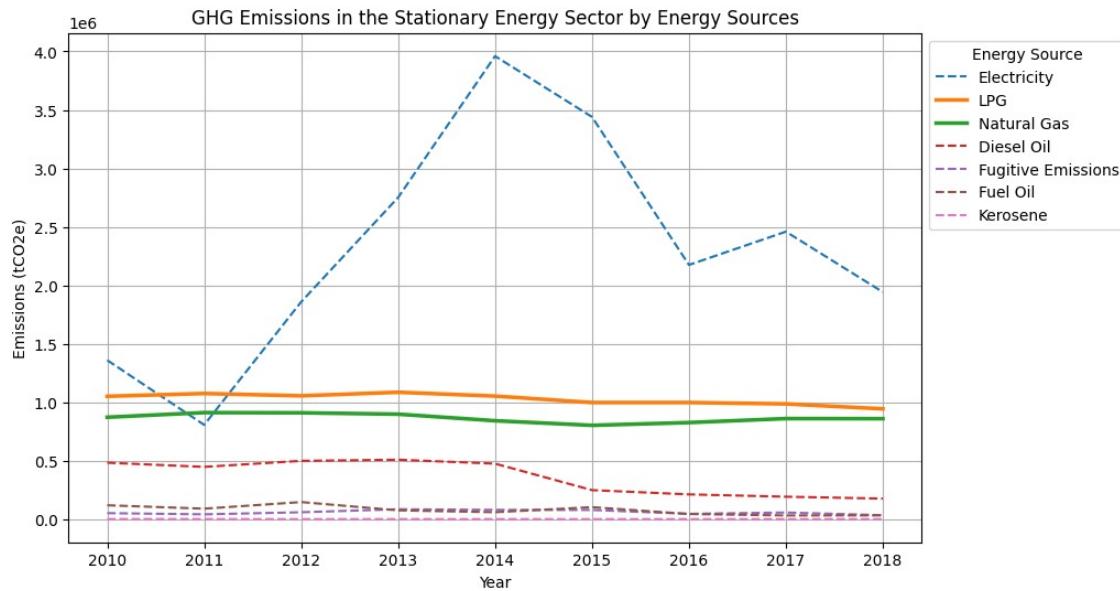
Indoor ambients, such as kitchen, can have their air quality significantly affected by concentrations of compounds such as NO₂, CO₂ and CH₄. These gases can have different impacts on human health depending on their concentration, the time of

exposure, and on climate conditions. NO₂, a pollutant known for its health effects, can cause irritation to the lungs, eyes and throat in high concentrations during short-term exposure, while respiratory effects can be severe in the long term (WHO, 2021). CO₂ and CH₄, although not strongly associated with health risks, can cause fatigue and possible mental confusion in confined environments and in high concentrations (OSHA, 2021; NIOSH, 2022). In the case of CH₄, in cases of cumulative risk, there

25 is also an explosive risk (NIOSH, 2022).

According to the World Meteorological Organization (WMO) Greenhouse Gas Bulletin (No. 20 – October 28, 2024), the global average CO₂ concentration increased from 417.9 ppm, in 2022, to 420.0 ppm in 2023. Methane (CH₄) levels also exhibited a significant increase, going from 1923 ppb to 1934 ppb, between 2022 and 2023 (WMO, 2024). The WMO reports that this persistent increase reflects the ongoing impact of human activities. Anthropogenic sources contribute approximately

30 4.7 billion tonnes of CO₂ annually (WMO, 2024).


As a signatory of the United Nations Framework Convention on Climate Change (UNFCCC), Brazil is committed to submitting its National Inventories of Greenhouse Gas (GHG) Emissions. In its most recent National Inventory published in 2020 with base year up to 2016, Brazil has been committed to the implementation of the "2006 IPCC Guidelines for National Inventories of Greenhouse Gas Emissions", being organized into five sectors: Energy; Industrial Processes And Use Of Products (IPPU); Agricultural; Land Use, Land Use Change And Forests (LULUCF) and Waste. However, Brazil reports Agriculture and LULUCF separately due to their significant impact on the country's emissions, whereas the IPCC groups them under the Agriculture, Forestry, and Other Land Use (AFOLU) sector (MCTI, 2020; IPCC, 2019).

35 The latest National Inventory contemplated in the Fourth National Communication presents the GHG emissions of Brazil from 1990 to 2016. In 2016, Brazil's emissions totaled 1,467 Tg CO₂e, with CO₂ being the most emitted GHG. The Agriculture sector contributed 33.2% of total emissions, the Energy sector 28.9% and the LULUCF sector with 27.1%. IPPU and Waste contributed smaller portions of emissions, representing 6.4% and 4.5%, respectively (MCTI, 2020).

40 In 2016, the state of São Paulo's energy sector was responsible for 59% of GHG emissions, around 90 Mt CO₂e. These emissions are mainly fed by transport (vehicular emissions) - National Inventory of Greenhouse Gas Emissions, Brazil, 2022 (SEEG, 2024). The city of São Paulo follows in the same direction as the state of São Paulo, with the largest emissions from 45 the energy sector, 11 Mt CO₂e in 2023. In this sector, the biggest emitter in the city is transport, followed by air and residential sectors (classified as IPCC Category 1A4b in the national inventory) (SEEG, 2024).

45 According to SEEG (2024) estimates, 2,296 Mt of CO₂e were emitted in 2023, distributed as follows: Deforestation (46%), Agriculture (28%), Power Generation (18%), Waste (4%) and Industrial Processes (4%). Analyzing only the energy sector, we have the following breakdown: Transport (53.3%), Industry (16.2%), Fuel Production (13.2%), Residential (6.4%) and Others (11.2%). The impact of the residential sector on greenhouse gas emissions is approximately 1.2%.

50 The information in the Brazilian Energy Balance summary report for 2020 highlights the diverse sources of energy consumption in residential settings across the country, emphasizing the dominance of electricity at 46%, throughout the entirety of the household premises. However, the reliance on other fuels like firewood (26.6%), Liquefied Petroleum Gas (LPG) (24.4%) and Natural Gas (NG) at 1.5% varies significantly by region (EPE, 2020).

Figure 1. GHG emissions for energy sources (Based on Anthropogenic Emissions and Removals of Greenhouse Gases Inventory in the São Paulo Municipality 2010 – 2018).

55 In the Southern Region, colder climates and traditional practices lead to higher firewood usage, while the North and Northeast Regions show a tendency towards solid fuels due to economic constraints. LPG, although accounting for a smaller percentage of total energy consumption, plays a crucial role, especially as the primary cooking fuel with over 70% of its use in households. This demonstrates how regional characteristics and economic factors shape energy preferences in Brazilian households (Gioda, 2019).

60 The Anthropogenic Emissions and Removals of Greenhouse Gases Inventory in the São Paulo Municipality presented GHG emissions, between 2010 and 2018, from stationary energy sources, including electricity, LPG, natural gas, diesel oil, fugitive emissions, fuel oil, and kerosene (SVMA, 2022). Figure 1 shows electricity emerging as the dominant source, with a notable spike in 2014, due to increased reliance on thermal power plants during a drought, significantly impacting residential emissions. LPG and natural gas show stable trends, reflecting their consistent use in cooking and heating, particularly in the residential 65 sector. Diesel oil, fuel oil, and kerosene contribute minimally but remain relevant for specific applications in rural or less urbanized areas. Fugitive emissions, primarily from natural gas distribution, add a steady but smaller share. The residential sector is a significant contributor to these emissions, driven by its reliance on electricity, LPG, and natural gas (SVMA, 2022).

70 Studies, including the one conducted by Cameron et al. (2022) using the MESSAGE-Access model, emphasize the benefits of induction stoves. These stoves are not only efficient in reducing GHG emissions, but also improve health outcomes by minimizing indoor air pollution. However, they emphasize that this transition depends on reliable electricity and adequate infrastructure, especially in developing regions where energy systems are still evolving (Cameron et al., 2022).

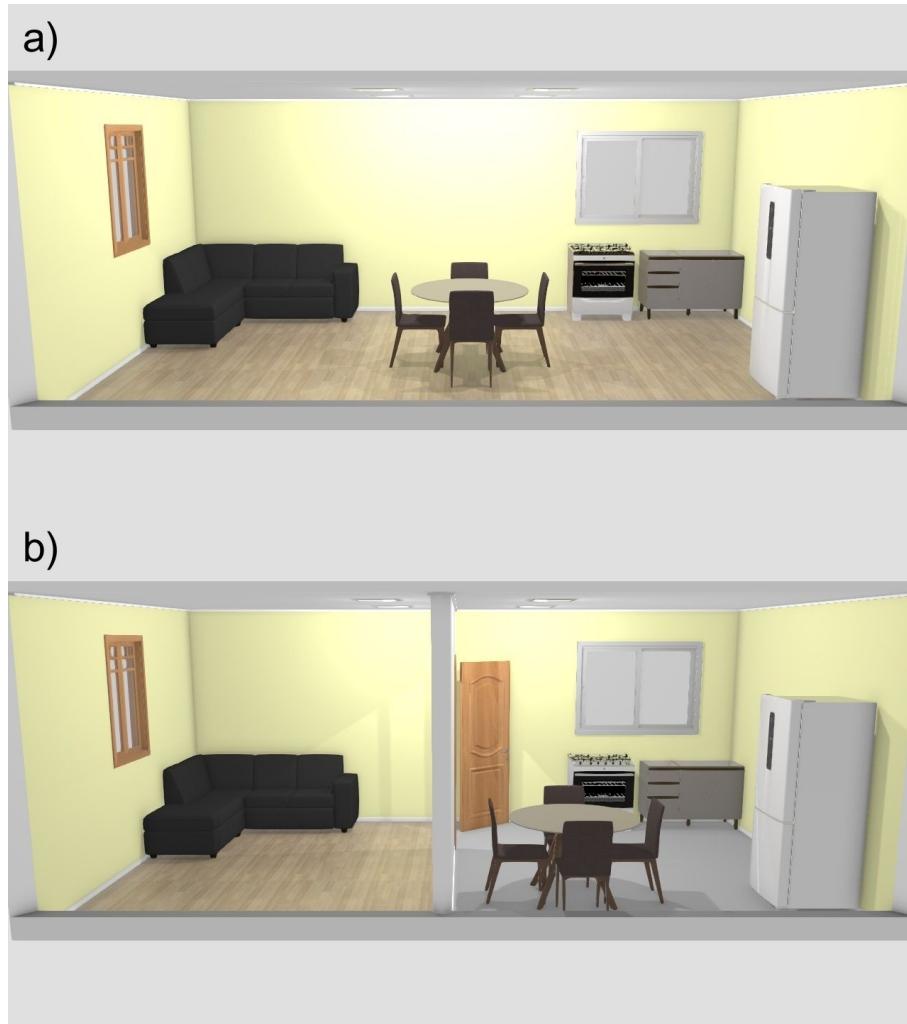
Globally, the residential sector contributes less to GHG emissions than larger sectors such as transport and industry, but it is important to understand its influence on these emissions to address the challenges related to climate change and health (IPCC, 2022a; WRI, 2024). Thus, given the lack of indoor data on both concentration and emissions, this research aims to gather data 75 on cooking fuel usage in Brazilian kitchens, focusing on the two most commonly used sources: liquefied petroleum gas and natural gas. Considering to analyze the emissions of CO₂, CH₄, and NO_x, emitted by the use of gas stoves in cities.

2 Materials and Method

2.1 Definition of sample object components

Measurements were carried out in the kitchens of Brazilian homes, more specifically in the city of São Paulo. This study 80 focused on different types of stoves and specifically analyzed natural gas or LPG-powered stoves, most of which have 2 to 6 individual cooking elements (burners). These burners were the main objects of analysis due to their direct impact on energy consumption and emissions associated with their use.

In addition, two types of kitchens were evaluated during the sampling process: open and closed concepts. Open concept 85 kitchens are integrated with other areas of the house, such as living or dining rooms, without physical partitions between spaces (Fig. 2a); in this case, it was necessary to put a plastic seal. In contrast, closed concept kitchens are entirely separated from other areas by walls and doors, providing a more enclosed environment (Fig. 2b).


2.2 Region of study and distribution of residence

The city of São Paulo is known as the most populous city in Brazil, according to the 2022 census, the population of São 90 Paulo is 11,451,999 people, and adding with the cities of the metropolitan region of São Paulo comes to around 20 million inhabitants (IBGE, 2025). Most of the volunteer residences for the study were located in the city of São Paulo, with additional samples from neighboring cities in the metropolitan region, as shown in the map of participant residences (Figure 3). The map highlights the Metropolitan Area of São Paulo (MASP), with the city of São Paulo marked in red. The triangles represent the distribution of volunteer residences, indicating that most data collection occurred within the city of São Paulo.

The participating residences included apartments and houses, reflecting the variety of housing in São Paulo. 60% of the 95 samples were collected in apartments, while 40% were in houses, which usually had larger kitchens. Approximately 67% of the kitchens were closed concept, while 33% were open concept, requiring sealing with plastic, and the samples of cooking fuels were from Natural Gas (NG), approximately 67% and Liquefied Petroleum Gas (LPG) was approximately 33%.

2.3 Measurement protocol

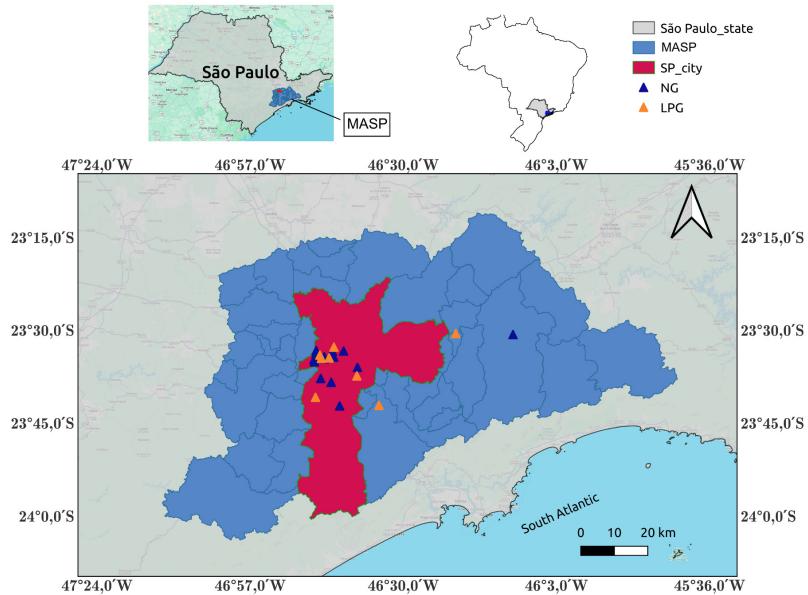

Measurement Protocol for Evaluating Greenhouse Gas (GHG) Emissions in Brazilian Households was developed based on 100 international studies and tailored to local conditions. The methodology applied follows a series of steps to ensure the accuracy and reliability of the data collected and aims to verify the emissions from the use of natural gas in the cooking process. The

Figure 2. Types of kitchen concepts. **(a)** Open concept kitchen design. **(b)** Closet concept kitchen design.

measurements were carried out in kitchens of volunteer residences in the city of São Paulo and region, in total the experiment was conducted in 30 properties. The key stages of the protocol with full description is in the Supplementary Material Section.

The cycles and durations of each module used in the experiments are detailed in Table 1, along with the specific modules assigned to each cycle. The cycle durations were adapted from the study conducted by Lebel et al. (2022) and tailored to the context of Brazilian residences. Preliminary tests conducted prior to the measurements identified patterns that influenced the timing of each module (Lebel et al., 2022). For example, the "Inject Gas" module was performed over a period of 4 minutes at the beginning of the measurements. This duration was selected based on observations that CO₂ concentration values stabilized within this timeframe, allowing for accurate calibration and air exchange rate assessment.

Figure 3. Map of the São Paulo state with highlights of the São Paulo (SP) city and the spatial distribution of residences. Source: Own author, map generated in QGIS 3.22 – QGIS Geographic Information System with shapefile São Paulo City from the Brazilian Institute of Geography and Statistics (IBGE).

110 In the "State ON" module, a duration of 5 minutes was determined to be sufficient for CO₂ and CH₄ concentrations to stabilize while the burner was active. For the "ON" and "OFF" modules, distinct gas behavior patterns were observed: a rapid increase in gas concentrations during the "ON" phase, followed by a gradual decay during the "OFF" phase. These changes were effectively captured within 1 minute for the "ON" module and 2 minutes for the "OFF" module.

115 The modules were distributed across four distinct cycles to evaluate emissions from different sources and scenarios. Cycle 1 focused on the larger burner, Cycle 2 on the smaller burner, Cycle 3 on the oven, and Cycle 4 on the overall kitchen environment.

2.4 Equipments

Nitric oxide (NO), nitrogen dioxide (NO₂), and total nitrogen oxides (NOx) were continuously analyzed by the Serinus 40 analyzer, which employs gas-phase chemiluminescence detection for continuous analysis, with a measurement support of \pm 0 to 20 ppm. Approved by the US EPA as a reference method and certified by the TUV (Technischer Überwachungsverein) according to EN (European Norms), the instrument consists of a pneumatic system, a converter from NO₂ to NO, a reaction cell, a measuring cell (PMT), an ozone generator and a PCA controller.

Chemiluminescence occurs by the emission of light from an activated species of NO₂*, formed by the reaction between NO and O₃ in an evacuated chamber (Ecotech Inc., 2020).

Table 1. Module, cycles, and time of each module performed in the residences.

Module	Cycle	Time	Module	Cycle	Time	Module	Cycle	Time	Module	Cycle	Time
Back	1	2 min	Back	2	2 min	Back	3	2 min	Back	4	2 min
Inj_gas	1	4 min	St_OFF	2	2 min	St_OFF	3	2 min	St_ON	4	5 min
St_OFF	1	2 min	St_ON	2	5 min	St_ON	3	5 min			
St_ON	1	5 min	Off	2	2 min	Off	3	2 min			
Off	1	2 min	On	2	1 min	On	3	1 min			
On	1	1 min	Off	2	2 min	Off	3	2 min			
Off	1	2 min	On	2	1 min	On	3	1 min			
On	1	1 min									
On	1	1 min									

125 Methane (CH₄) and carbon dioxide (CO₂) were measured by the Microportable Greenhouse Gas Analyzer (MGGA), that employs the Integrated Cavity Output Spectroscopy (OA-ICOS) technique, configured to acquire samples of the greenhouse gases, including water vapor, reaching an accuracy of < 0.9 ppb (1 second) for CH₄ and < 350 ppb for CO₂ (1 second). The MGGA has measurement rates ranging from 0.01 to 10 Hz and supports CH₄ concentrations of 0.01 to 100 ppm and CO₂ concentrations of 10 to 20,000 ppm, respectively. The analyzer's optical system consists of two lasers, with specific wavelengths for the detection of CH₄ and H₂Ov (Laser A) and CO₂ (Laser B), respectively (ABB Inc., 2022).

130 Furthermore, some auxiliary materials were used, such as fans, plastic for sealing the open kitchen, a tripod for fixing the equipment tubes, a CO₂ cylinder, and an auxiliary pump.

2.5 Emission rate estimation methodology

135 Accurate measurement of gas concentrations over time enables the determination of the instantaneous emission rate of gas "i". This methodology was applied to different operational modes of stoves, such as the use of individual burners, and the average emission rate was calculated as showed in the Equation 1.

$$\underline{E}_i = V_0 \left(\frac{\Delta C_i}{\Delta t} + \lambda (\underline{C}_i - C_{i,b}) \right) \frac{p}{RT} \quad (1)$$

where:

- $C_{i,b}$ is the gas background concentration;
- V_0 is the kitchen volume (m³);
- 140 - λ is the air exchange rate (ACH), in min⁻¹;
- p is the ambient pressure;
- R is the ideal gas constant;

- T is the ambient temperature.

This method accounts for the environment's volume, baseline and measured concentrations, and the air exchange rate, 145 providing detailed insights into emissions. The environment's volume (in liters) is based on the physical dimensions of the space being measured. The air exchange rate was determined after ventilating the kitchen and ensuring concentrations similar to those of the external environment. A controlled release of CH₄ was then carried out, and the decay rate of the concentration was monitored, enabling the precise calculation of the ACH. This step was essential to validate the measurements and assess the degree of isolation in the environment.

150 The emission factor FE_i for gas "i" was calculated using Equation 2.

$$FE_i = \underline{E}_i / \left(\underline{q}_{GN} \cdot LHV \right) \quad (2)$$

where:

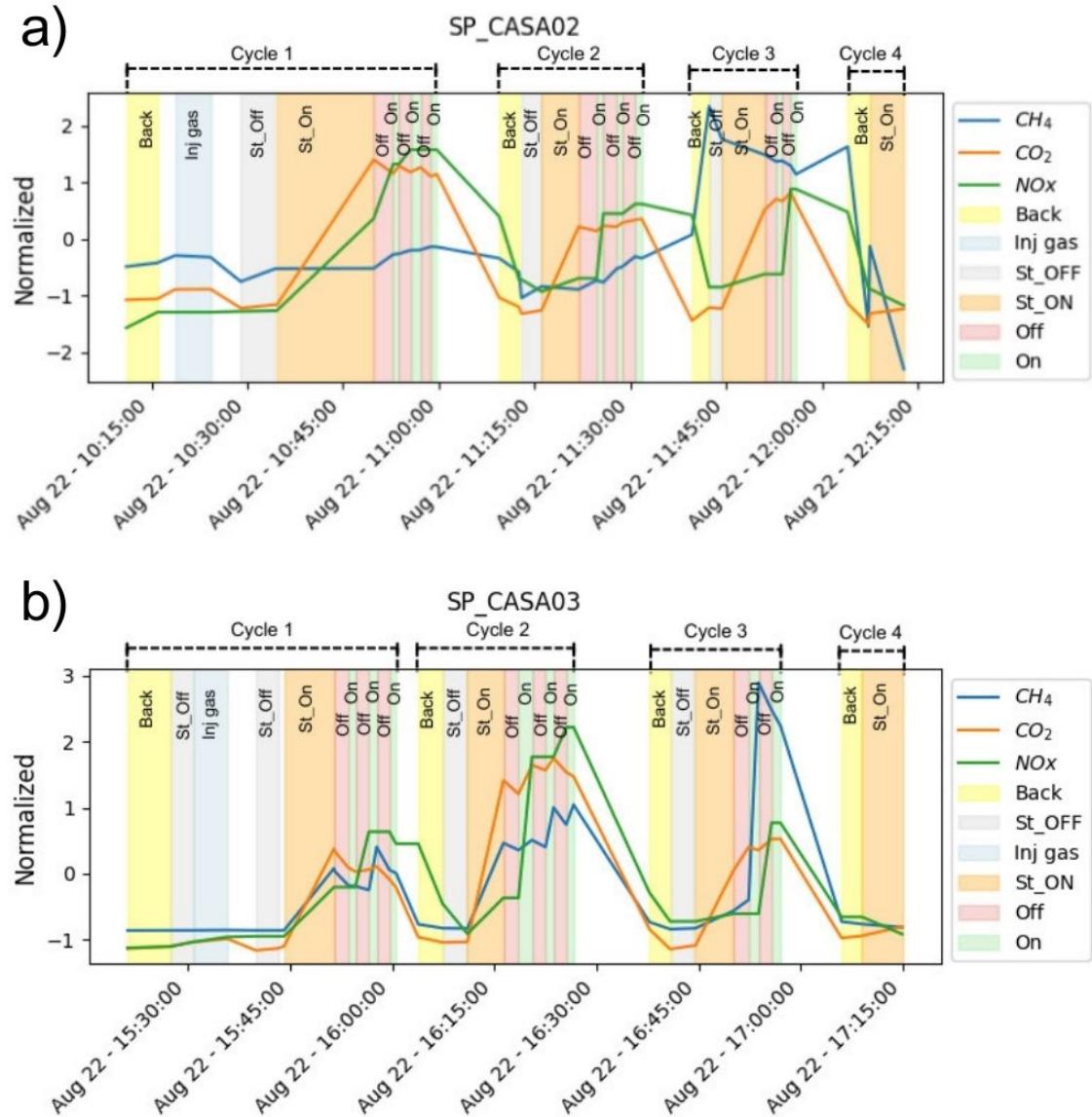
- M_i is the molecular weight of gas "i";
- LHV is the lower heating value of natural gas and glp;
- q is the average gas consumed based 0.25 m³/h (Petrobras, 2022).

155

3 Results

3.1 Normalized concentration

The normalized concentration profiles illustrate the temporal variability differences between two household examples: SP_CASA02 (Fig. 4a), which uses liquefied petroleum gas (LPG), and SP_CASA03 (Fig. 4b), which uses natural gas (NG) for CH₄, CO₂, 160 and NOx. In the LPG case, CO₂ and NOx concentrations increase upon stove ignition (St_ON), except during Cycle 4 (ambient conditions). It is important to notice that, in both examples of Figure 4, the houses had closet concept kitchens, in other words, it was not necessary sealing with plastic.


Methane (CH₄) concentrations remained stable for most of the period in SP_CASA02 but showed variability from Cycle 3 onwards, suggesting an external influence unrelated to the LPG source.

165

Measurements on the large and small burners (cycle 1 and cycle 2) caused immediate responses in all compounds, which means that turning on the burner results in an increase in gas concentrations. Figures 4a and 4b presents time series examples from House SP_CASA02, which utilizes LPG for cooking, and House SP_CASA03, which uses NG.

170

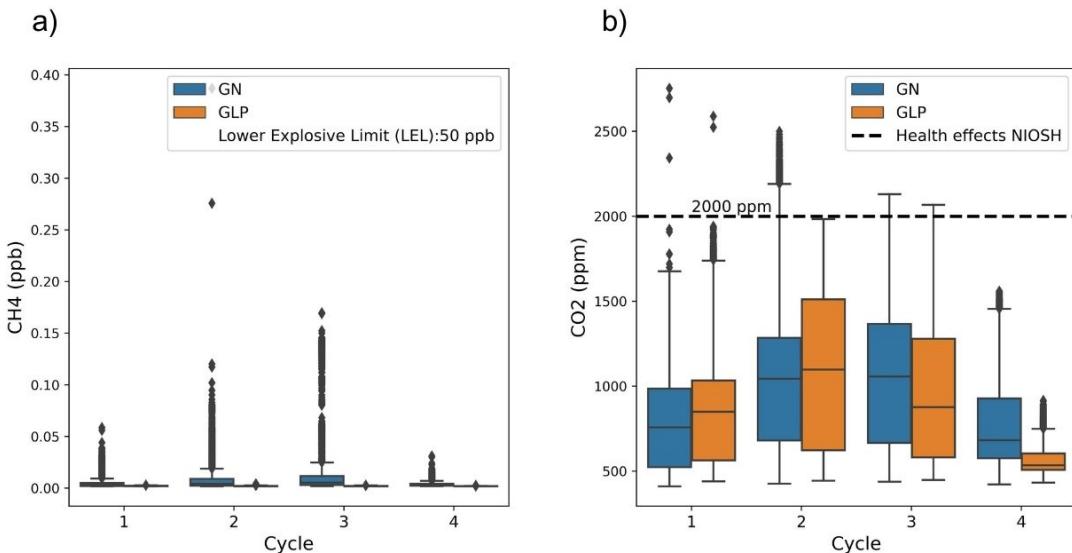

In the case of NG (SP_CASA03), all gases displayed an increase upon stove ignition (St_ON), except in Cycle 4. In Cycle 3 (oven use), the response appeared delayed but resulted in higher CH₄ concentrations. This behavior was observed in other households using NG, although no consistent pattern was identified across all samples, meaning it did not occur universally. Such delays, particularly in ovens, may be associated with leaks, a topic that warrants further investigation.

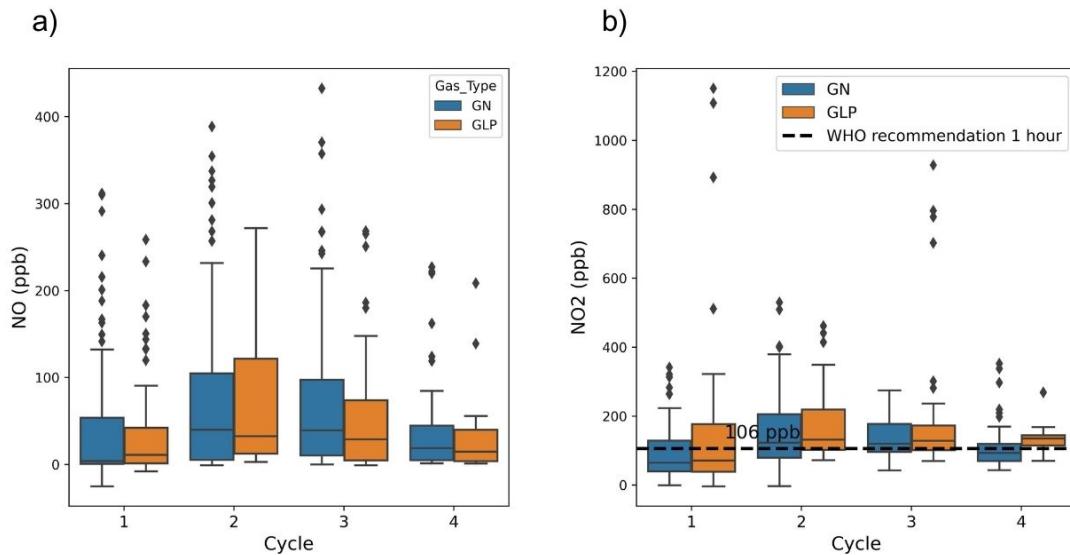
Figure 4. Temporal variability of the normalized concentrations of CH₄, CO₂ and NOx. **(a)** House using Liquefied Petroleum Gas (SP_CASA02). **(b)** House using Natural Gas (SP_CASA03).

3.2 Concentrations by cycles: CH₄, CO₂, NO and NO₂

The concentrations variability in CH₄ (Fig. 5a) and CO₂ (Fig. 5b) is evident across the monitored homes. CH₄ shows the highest values in natural gas (NG) homes, with considerable variability and several outliers, while homes using liquefied petroleum gas (LPG) display relatively stable CH₄ levels. The CO₂ concentration exhibits the greatest variability, particularly

Figure 5. Variability in concentrations across monitored homes. **(a)** For methane. **(b)** For carbon dioxide.

in Cycle 2, in some cases where concentrations often exceed health effect limits. LPG homes show elevated CO₂ levels in both burner cycles (Cycle 1 and Cycle 2).


Figures 6a and 6b presents the NO and NO₂ concentration data for households using natural gas (NG) and liquefied petroleum gas (LPG). NO concentrations show significant variability in both distribution and median values. Although the 180 medians for NG are generally higher than those for LPG in most cycles, along with the presence of outliers, it was not possible to precisely quantify the difference between the two fuels due to the wide data distribution. For NO₂, the concentrations for both LPG and NG during the cycles exceeded the WHO recommendation of 106 ppb for 1-hour exposure. Additionally, a significant increase in concentrations from Cycle 1 to Cycle 2 was observed for both NO and NO₂.

3.3 Emission rate

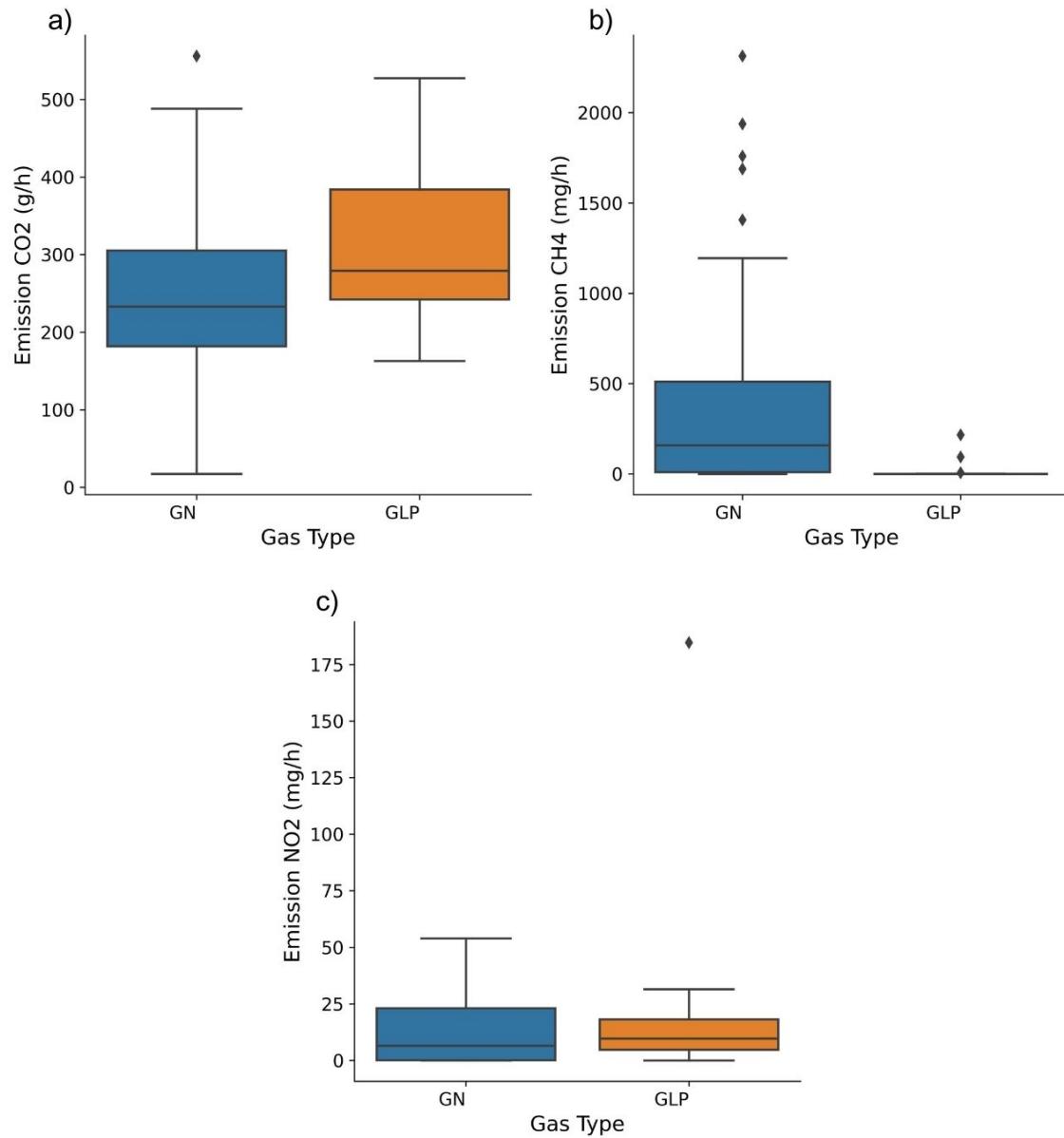
185 The emission rate refers to the amount of pollutant released per unit of time and is commonly used to assess emissions in specific operations or direct measurements at sources. The emission factor, on the other hand, relates the quantity of pollutant emitted to the activity that generated it, such as fuel combustion.

Table 2 contains the average emission rates. These values were calculated during the combustion process (steady state ON) for each gas, natural gas and liquefied petroleum gas. The table shows the averages without the extreme points (outliers) and 190 in parentheses with the outliers.

Although the average emission rates for CO₂ are similar for NG and LPG, the distribution of the rates shows notable differences. For NG, Figure 7a illustrates a range of values from 0 to 600 g/h, while for LPG, the values are consistently higher, ranging from 180 to 700 g/h.

Figure 6. Variability in concentrations across monitored homes. **(a)** For nitric oxide. **(b)** For nitrogen dioxide.

Table 2. Emission rate for CO₂, CH₄, and NO₂.


Compound	Natural Gas (NG)	Liquefied Petroleum Gas (LPG)
CO ₂	207.02 (212.08) g/h	256.33 (270.66) g/h
CH ₄	147.68 (495.34) mg/h	16.57 (16.57) mg/h
NO ₂	2.99 (7.75) mg/h	4.86 (13.65) mg/h

The methane emission rates clearly highlight the difference between NG and LPG (Fig. 7b). For LPG, emissions are almost 195 non-existent, resulting in no distribution. In contrast, NG shows a wide data distribution, with extreme values, including negative emissions and rates exceeding 2000 mg/h, and an even more extreme outlier above 8000 mg/h. It is worth noting that the average emission rate, including outliers, was 406 mg/h.

Figure 7c shows that NO₂ emission rates are similar for NG and LPG. There are no significant differences between these 200 gases in this dataset. However, for LPG, a greater range of values and outliers is observed, reaching levels above 150 mg/h. One hypothesis raised is that LPG is more commonly used in houses rather than apartments. In the sampled houses, close proximity to the street was noted, which may contribute to increased NO₂ levels indoors.

3.4 Emission factor

According to the national greenhouse emission inventory, Brazil could useuses IPCC emission factors to estimate household CO₂ and methane emission values. The factor emission for CO₂ is the same as the IPCC, for GN 56100 kg/TJ and 63100

Figure 7. Emission rate. **(a)** For carbon dioxide in grams per hour (g/h). **(b)** For methane in miligrams per hour (mg/h). **(c)** For nitrogen dioxide in miligrams per hour (mg/h).

205 kg/TJ for GLP. However, the factor adopted in Brazil for CH₄ (LPG = 1.1 kgCH₄/TJ and NG = 1 kgCH₄/TJ), diverges from the IPCC (NG = LPG = 5 kgCH₄/TJ), because of the adaptations of brazilian gas specification and composition (MCTI, 2020; IPCC, 2019).

Table 3. Emission factor for CO₂, CH₄, and NO₂.

Compound	Natural Gas (NG)	Liquefied Petroleum Gas (LPG)
CO ₂	20,440 (20,940) g/MJ	14,580 (20,940) g/MJ
CH ₄	14.58 (48.92) mg/MJ	1.60 (1.60) mg/MJ
NO ₂	0.29 (0.76) mg/MJ	0.46 (1.31) mg/MJ

Considering the values used in the Brazilian inventory and an average gas consumption of 0.25 m³/h (Petrobras, 2022). The average methane emission factor obtained from the measurements by NG taken was 14.58 kg/TJ without the outliers and with 210 one hundred percent of the data was 48.92 g/TJ, 49 times higher than the national factor and 9.8 times higher than the IPCC (2019) value in kg/TJ. And by LPG the average was 1.60 kg/TJ, 1.454 times higher than the Brazilian inventory value and 0.32 times lower than the IPCC value for methane (MCTI, 2020; IPCC, 2019).

The emission factor for CO₂ obtained was around 20,000 kg/TJ for NG and 14,000 kg/TJ for LPG, both lower than the values used in the national inventory, similar to that of the IPCC (MCTI, 2020; IPCC, 2019). For NO₂ the emission was 0.29 g/TJ for NG, and 0.46 kg/TJ without outliers and 1.3 kg/TJ with all data for LPG. Table 3 summarized the emission factor 215 values obtained.

4 Discussion

Liquefied petroleum gas (LPG) and natural gas (NG) are the primary fuels used in residential settings in Brazil, playing a critical role in meeting household energy needs. The residential sector accounts for 78% of the final consumption of LPG in the 220 country (EPE, 2023). Its importance in this sector is highlighted by the fact that, in 2020, LPG was the primary cooking fuel used in 94% of households across Brazil (EPE, 2022). These further underscore the widespread reliance on LPG for cooking in Brazilian homes. In São Paulo, LPG remains the dominant fuel for residential kitchens, particularly in areas lacking the infrastructure for NG distribution. It is widely utilized in both urban and rural regions. However, the use of NG is gradually 225 expanding, especially in urban centers and metropolitan areas where pipeline networks enable its direct delivery to homes (*Associação Brasileira das Empresas Distribuidoras de Gás Canalizado - Abegás*).

The time series analysis highlights distinct response behaviors of gases NO₂, NO_x, CH₄ and CO₂ under closed ambient conditions. For both natural gas (NG) and liquefied petroleum gas (LPG), concentrations of gases such as CH₄ and CO₂ show significant responses under closed environments, whereas their presence under ambient conditions is very low. When comparing NG and LPG, CH₄ concentrations exhibit significant differences. NG homes consistently show higher CH₄ levels, but the 230 concentrations remain far below the lower explosive limit of 50,000 ppm established by the National Fire Protection Association (NFPA). On the other hand, CO₂ concentrations vary among homes but display similar trends between NG and LPG, likely influenced by uncontrolled factors such as device types and operational conditions. Meanwhile, NO₂ values sometimes

exceed WHO's recommended 1-hour limit of 106 ppb even before the stoves are turned on (St_OFF), which may be associated with the main pollution issue in São Paulo: vehicular emissions.

235 This difference between LPG and NG gases primarily lies in the composition specifications related to CH₄. LPG, regulated by the National Agency of Petroleum, Natural Gas, and Biofuels (ANP), is predominantly composed of propane (C₃ H₈) and butane (C₄ H₁₀), with minor amounts of other hydrocarbons such as ethane (C₂ H₆). To enhance safety, a sulfur-based odorant, typically ethyl mercaptan (C₂ H₆S), is added to make leaks easily detectable by smell. LPG is widely distributed in 13 kg (P13) cylinders, which are commonly used for home cooking (EPE, 2023). Natural gas (NG) is primarily composed of methane CH₄, 240 making up over 70% of its composition, followed by smaller proportions of ethane (C₂ H₆) and propane (C₃ H₈). Its gaseous state under normal atmospheric conditions makes it suitable for direct distribution via pipelines.

245 The study further dissects gas concentration behavior across different operational cycles. For CH₄, homes using NG display a clear increase in CH₄ levels during operation cycles, whereas LPG homes maintain concentrations close to ambient levels, reflecting a minimal response. CO₂ present variability in both across cycles and within each cycle, primarily linked to stove burner activity. Elevated CO₂ levels in certain cases during Cycle 2 highlight the influence of cooking on air quality. NG homes exhibit higher NO concentrations compared to LPG, but the difference is not mirrored for NO₂, which remains consistently elevated for both fuels. And, across all cycles, NO₂ concentrations exceed WHO recommendations, underscoring the potential risk associated with residential fuel combustion. In general, Cycle 4 (ambient conditions) recorded the lowest gas concentrations for all compounds and fuels, reaffirming the importance of adequate ventilation in reducing pollutant exposure 250 indoors.

255 From a health perspective, the findings indicate that pollutant concentrations generally remain within safety thresholds under standard operational conditions. For CO₂ typically below the National Institute for Occupational Safety and Health limit of 2,000 ppm, with some exceptions during Cycle 2 (NIOSH, 2022, 2025). NO concentrations stay within the NIOSH recommended exposure limits (RELs), as time-weighted average (TWA) of 25 ppm during normal operations. NO₂: Despite exceeding WHO's recommended values, NO₂ concentrations remain under the NIOSH REL, as a short-term (ST) limit of 1 ppm for occupational exposure.

However, the absence of established air pollutant standards for residential environments, to define the direct assessment of health impacts is complicated by this factor. In addition São Paulo's urban air quality is heavily influenced by traffic-related NO_x emissions, exacerbates the baseline exposure to these pollutants.

260 The study provides important insights into (CO₂, CH₄, and NO₂) emissions associated with residential cooking practices, particularly the differences between homes using Natural Gas (NG) and Liquefied Petroleum Gas (LPG) as a fuel source. Residences relying on NG demonstrated higher mainly methane emissions compared to those using LPG. This finding underscores the importance of considering fuel type when evaluating greenhouse gas (GHG) emissions from residential sectors.

265 Although NG usage for cooking remains limited in São Paulo, its adoption is steadily increasing, driven by the expansion of pipeline infrastructure in urban areas. This trend positions NG as an emerging component of Brazil's energy matrix, though the country still lags behind other Latin American nations in NG penetration. LPG, however, continues to dominate as the primary cooking fuel, reflecting its widespread availability and affordability across urban and rural regions.

270 Transitioning to cleaner cooking technologies, like electric stoves, offers opportunities and challenges. The IPCC highlights that these transitions could significantly reduce methane emissions, which is a major component of natural gas (NG) and a potent greenhouse gas (GHG). However, in Brazil, adopting electric stoves may unintentionally lead to higher residential emissions because of the country's electricity generation mix. Additionally, for low-income households, the financial feasibility of making this transition is uncertain due to the high upfront costs and ongoing expenses associated with electric stoves.

275 The findings also highlight the scarcity of robust statistical data on residential emissions in Brazil, as noted by SEEG (Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa). Emissions are currently estimated using IPCC emission factors. These estimates, although widely used, are sources of data uncertainty due to differences in gas, stove and household characteristics. These differences occur not only from one country to another, but also between smaller regions.

280 In the construction of emission inventories this lack of data presents a significant barrier to fully understanding and addressing the impact of residential energy use on GHG and indoor pollutant emissions. Addressing this gap through targeted research and data collection is essential for developing effective policies and strategies to mitigate residential emissions, particularly as the use of NG continues to expand.

5 Conclusions

285 This study aimed to investigate GHG emissions under conditions related to domestic cooking practices in São Paulo, Brazil, focusing on natural gas (NG) and liquefied petroleum gas (LPG) stoves. The study revealed significant differences in emissions of methane (CH_4), carbon dioxide (CO_2), and nitrogen oxides (NO_2). Stoves using natural gas emitted higher levels of CH_4 compared to those using liquefied petroleum gas (LPG). In addition, NO_2 levels exceeded the standards set by the World Health Organization (WHO) of 106 ppb per hour, indicating probable risks to health, especially indoors.

290 The estimated methane (CH_4) emission factors of natural gas were significantly higher than the values of the national inventories and the IPCC. This would mean that the previous estimates were lower than the actual emission rates for domestic use of natural gas. Emissions of carbon dioxide CO_2 , however, were consistently lower than the IPCC estimates for natural gas and liquefied petroleum gas.

The study also shows the variability of concentrations of these gases (CH_4 , CO_2 , and NO_2) by house, this variability can have various influences such as leaks, age and model of the stove, in addition to external sources such as automotive pollution, which is highly applicable in the case of São Paulo.

295 These results show the need to study domestic emissions in greater detail to elucidate their effects on indoor air quality and climate change. It is worth noting that this work offers a partial view of a broader and more complex issue, indicating the need for new research at state and national levels, as such studies can help in the development of inventories of the residential sector, which would help to obtain strategies for both public health and sustainability for this sector.

300 *Author contributions.* Material preparation, data collection, analysis, edit and interpretation of the result performed by Tailine Corrêa dos Santos (TCS), Elaine Cristina Araujo (ECA) and Thaís Andrade da Silva (TAS). All authors collaborated to interpret the results. The manuscript was written by TCS, ECA and TAS. The authors Enrico Valente Freire, Eduardo Landulfo and Maria de Fátima Andrade reviewed the study. All authors read and approved the final manuscript.

Competing interests. The authors declare that they have no conflict of interest.

305 *Acknowledgements.* We would like to thank the Global Methane Hub and the Latin American Future Foundation (FFLA), EBP Brazil, EBP Chile, Universidad Mayor of Chile, Universidad de los Andes of Colombia, University of São Paulo and Institute of Energy and Nuclear Research.

References

ABB Inc.: GLA131 Series Microportable Analyzers User Manual: Measurement & Analytics, Quebec, 2022.

Cameron, C., Pachauri, S., Rao, N. D., McCollum, D., Rogelj, J., and Riahi, K.: Policy trade-offs between climate mitigation and clean cook-stove access in South Asia, *Environmental Research Letters*, <https://doi.org/10.1088/1748-9326/ac001c>, 2022.

310 Ecotech Inc.: Serinus 40: NOx Oxides of Nitrogen Gas Analyser – Spec Sheet, Ecotech Inc., <https://cleanaireurope.com/wp-content/uploads/2023/03/ACOEM-Ecotech-Serinus-40-NOx-Oxides-of-Nitrogen-Gas-Analyser-spec-sheet-20201014.pdf>, 3.2 version. Accessed: 2025-02-27, 2020.

EPE: Brazilian Energy Balance 2020: Summary Report / Year 2019, Empresa de Pesquisa Energética, 2020.

EPE: Relatório de Análise: Uso de Gás Liquefeito de Petróleo no Brasil, Empresa de Pesquisa Energética, 2022.

315 EPE: Balanço Energético Nacional - Relatório Síntese, Empresa de Pesquisa Energética, 2023.

Gioda, A.: Residential fuelwood consumption in Brazil: Environmental and social implications, *Biomass and Bioenergy*, 120, 367–375, <https://doi.org/https://doi.org/10.1016/j.biombioe.2018.11.014>, 2019.

IBGE: São Paulo - Panorama, Instituto Brasileiro de Geografia e Estatística, accessed January 23, 2025, 2025.

IPCC: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change, 320 <https://www.ipcc-nppg.iges.or.jp/public/2019rf/index.html>, Intergovernmental Panel on Climate Change, 2019.

IPCC: Chapter 3: Mitigation Pathways Compatible with Long-term Goals, in: *Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, Cambridge University Press, Cambridge, <https://www.ipcc.ch/report/ar6/wg3/chapter/chapter-3/>, intergovernmental Panel on Climate Change. Accessed: 2025-02-26, 2022a.

325 IPCC: Chapter 9: Sectoral Approaches to Mitigation, in: *Climate Change 2022: Mitigation of Climate Change*, pp. 1–42, Intergovernmental Panel on Climate Change, 1 edn., <https://www.ipcc.ch/report/ar6/wg3/chapter/chapter-9/>, accessed: 2025-02-26, 2022b.

Lebel, E., Gilman, J., Zebian, H., and Holmquist, B.: Methane and Nitrogen Oxides Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes, *Environmental Science Technology*, 56, 2529–2539, <https://doi.org/10.1021/acs.est.1c04707>, 2022.

MCTI: Relatório de Resultados do Inventário Nacional de Emissões e Remoções de Gases de Efeito Estufa, https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/sirene/publicacoes/LO_GIZ_RESULTADOINVENTARIO_00_PAGINASINDIVIDUAIScompactado.pdf, accessed: 2025-01-23, 2020.

NIOSH: Methane Exposure Limits and Guidelines, U.S. Centers for Disease Control and Prevention (CDC), <https://www.cdc.gov/niosh/>, u.S. National Institute for Occupational Safety and Health. Accessed: 2025-02-24, 2022.

NIOSH: Workplace Safety & Health Topics, U.S. Centers for Disease Control and Prevention (CDC), <https://www.cdc.gov/niosh/topics/default.html>, national Institute for Occupational Safety and Health, 2025.

335 OSHA: Carbon Dioxide – Health Effects and Occupational Exposure Limits, U.S. Occupational Safety and Health Administration, <https://www.osha.gov>, 2021.

Petrobras: Assistência Técnica. GÁS LIQUEFEITO DE PETRÓLEO. Informações Técnicas, Petrobras, available at: <https://petrobras.com.br/quem-somos/assistencia-tecnica>. Accessed January 23, 2025., 2022.

340 SEEG: Sistema de Estimativa de Emissões de Gases de Efeito Estufa. Emissões do Estado e do Município de São Paulo, Observatório do Clima, <https://seeg.eco.br>, 2024.

SVMA: Inventário de Emissões e Remoções Antrópicas de Gases de Efeito Estufa do Município de São Paulo 2010 – 2018, Secretaria Municipal do Verde e do Meio Ambiente. São Paulo (Município), São Paulo, coordenação: Laura Lucia Vieira Ceneviva. Compilação geral: Fábio Pedó. Núcleo de Assessoria Técnica em Mudanças Climáticas da SVMA, 2022.

345 WHO: WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, World Health Organization, <https://www.who.int/publications/item/9789240034228>, 2021.

WMO: No. 20 – 28 October 2024: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2023, <https://library.wmo.int/records/item/69057-no-20-28-october-2024>, 2024.

WRI: 4 Charts Explain Greenhouse Gas Emissions by Sector, World Resources Institute, <https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors>, accessed: 2025-02-25, 2024.

350