

1 **Multichannel Analysis of Surface Waves (MASW) for the
2 internal characterisation of the Flüela rock glacier:
3 overcoming the limitations of seismic refraction tomography**

4 Ilaria Barone¹, Alexander Bast^{2,3}, Mirko Pavoni¹, Steven Javier Gaona Torres¹, Luca Peruzzo¹
5 and Jacopo Boaga¹

6 ¹Department of Geosciences, University of Padova, Padua, Italy

7 ²WSL Institute for Snow and Avalanche Research SLF, Permafrost Research Group, Davos Dorf, Switzerland

8 ³ Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf,
9 Switzerland

10 *Correspondence to:* Ilaria Barone (ilaria.barone@unipd.it) and Mirko Pavoni (mirko.pavoni@unipd.it)

11 **Abstract.** A multi-method geophysical campaign was carried out to characterize the subsurface of the Flüela rock
12 glacier, in Grisons, Switzerland, using electrical resistivity tomography (ERT), seismic refraction tomography
13 (SRT), and multichannel analysis of surface waves (MASW). Surface wave analysis is not commonly applied in
14 mountain permafrost environments, although it can be used on any dataset acquired for conventional SRT when
15 low-frequency geophones are employed. Here, we show that the MASW method can be effectively used to
16 highlight the presence of an ice-bearing layer, thereby overcoming potential limitations of conventional SRT in
17 these environments, such as noisy first arrivals, attenuation effects, and velocity inversions at depth. Our results
18 are corroborated by synthetic ERT and full-wave seismic modelling, which independently support our subsurface
19 interpretation.

20
21 Keywords: multichannel analysis of surface waves (MASW); electrical resistivity tomography (ERT); seismic
22 refraction tomography (SRT); mountain permafrost hydrology; rock glacier hydrology; ground ice content.

23 **1 Introduction**

24 The warming and degradation of European mountain permafrost (PERMOS, 2020; Noetzli et al., 2024) facilitates
25 the formation and dynamics of alpine mass movements such as rock falls, landslides or debris flows (Arenson and
26 Jakob, 2014; Kofler et al., 2021; Bast et al., 2024a; Jacquemart et al., 2024), and hence, may impact human safety
27 and infrastructure (Arenson and Jakob, 2017; Duvillard et al., 2019). Consequently, in densely populated
28 mountain regions such as the European Alps, there is a significant demand for reliable tools to map and
29 characterise permafrost environments, accurately assess associated risks, and apply practical solutions for the
30 construction and maintenance of durable infrastructure (e.g., Bommer et al., 2010).

31 Rock glaciers are common, widespread, often tongue-shaped debris landforms found in periglacial mountain
32 environments containing ice, rocks, air and water (Kellerer-Pirklbauer et al., 2024; Haeberli et al., 2006;

ha eliminato: ,
ha eliminato:)
ha eliminato:
ha eliminato: used
ha eliminato: could
ha eliminato: applied to
ha eliminato: analysis if collected with
ha eliminato: .
ha eliminato: use of the
ha eliminato: efficiently applied
ha eliminato: thus
ha eliminato: the common
ha eliminato: analysis
ha eliminato: tackling
ha eliminato: or identifying layers which are invisible due to the lack of head wave arrivals.
ha eliminato: models that simulate the propagation of
ha eliminato: waves in a mountain permafrost environment with changing ice and water contents

52 RGIK, 2022). They form in the deposition zones of snow avalanches and rock fall (Kenner et al. 2019) and
53 develop over centuries to millennia (Krainer et al., 2015; Haeberli et al., 1999) due to past or ongoing creep
54 (RGIK, 2022), resulting from internal deformation within the ground ice and shearing at distinct horizons
55 (Arenson et al., 2002; Cicoira et al., 2021). In the past two decades, the creep rate of rock glaciers has generally
56 increased, and this is often linked to climate change (Kellerer-Pirklbauer et al., 2024; PERMOS 2020, Hu et al.
57 2025).

58 Rock glaciers have primarily been studied from geomorphological, climatic, and kinematic perspectives, with less
59 focus on their hydrological aspects (e.g., Bast et al., 2024b; Cicoira et al., 2019; Haeberli et al., 2006; Hu et al.,
60 2025; Kellerer-Pirklbauer et al., 2024; Kenner et al., 2020), as also highlighted by recent reviews by Arenson et
61 al. (2022) and Jones et al. (2019). This gap in understanding arises because of the complexity of the distribution
62 of ice and water in rock glaciers. The relation between rock glacier kinematics and their hydrology is also complex,
63 influenced by factors such as variable surface cover and groundwater flow, which affect infiltration rates, heat
64 transfer and reaction times (Arenson et al., 2022). Nevertheless, understanding rock glacier hydrology is essential
65 to comprehend rock glacier velocities, i.e. kinematics, and their potential impacts on alpine mass movements.

66 Water can exist within rock glaciers as seasonally frozen in the active layer, as perennially frozen ice in the
67 permafrost body, or perennially unfrozen in liquid form in taliks. Permafrost primarily influences water flow paths
68 by acting as a physical barrier that restricts movement (Arenson et al., 2022). Conceptual models (Giardino et al.,
69 1992), alongside geochemical (Krainer and Mostler, 2002; Krainer et al., 2007) and geophysical studies (Pavoni
70 et al., 2023a), suggest that a continuous ice-rich frozen layer functions as an aquiclude, separating supra-
71 permafrost flow caused by snow and ice melt, as well as precipitation, from a deeper sub-permafrost flow (Jones
72 et al. 2019). However, the stratigraphy and the bedrock under rock glaciers are often very heterogeneous over
73 short distances, complicating the hydrology (Bast et al., 2024b; Boaga et al., 2020). The thermal state of the
74 ground also plays a critical role, as liquid water can exist below 0°C due to factors such as water salinity, high
75 clay content, or pressure (Arenson et al., 2022; Arenson and Sego, 2006; Bast et al., 2024b; Williams, 1964). This
76 affects the unfrozen water content and hydraulic conductivity and may lead to intra-permafrost flow, confined
77 water layers or water pockets. Furthermore, heat transport by flowing water can facilitate thawing in specific
78 regions, for instance, leading to the development of taliks (Arenson et al., 2022).

79 Although boreholes provide the most accurate information on the internal structure of rock glaciers (Arenson et
80 al., 2002) and allow the monitoring of subsurface properties through specialised sensors such as high-accuracy
81 piezoresistive level probes with temperature sensors or inclinometers (Bast et al., 2024b; Phillips et al., 2023;
82 Arenson et al., 2002), they only offer point data, they are expensive and are challenging to install in high mountain
83 environments. Geophysical methods are, therefore, often used to achieve a more detailed characterisation of the
84 subsurface and a spatial extent (e.g., Scott et al., 1990; Hauck and Kneisel, 2008).

85 Among the different geophysical techniques, electrical resistivity tomography (ERT) and seismic refraction
86 tomography (SRT) methods are widely used to estimate the structure and internal composition of rock glaciers
87 (Wagner et al., 2019; Pavoni et al., 2023b; Hauck et al., 2011; ~~de Pasquale et al., 2022~~). Single-station passive
88 seismic methods such as HVSR (Horizontal-to-Vertical Spectral Ratio) are also increasingly popular for
89 permafrost characterization and monitoring (Kula et al. 2018), including in rock glacier environments (Guillemot
90 et al. 2020, Guillemot et al. 2021, Colombero et al. 2025). Among the advantages of passive seismic methods
91 there is the simplified logistics, which is counterbalanced by the point-station character of the measurement and

ha eliminato:). Also single

93 the lack of high frequencies, resulting in a reduced sensitivity in the very near surface. On the other hand, the
94 multichannel analysis of surface waves (MASW; Park et al., 1999), commonly applied for civil engineering
95 purposes (Park et al., 2018; Olafsdottir et al., 2024) and recently used in permafrost studies in Arctic regions
96 (Glazer et al. 2020, Liu et al. 2022, Tourei et al. 2024), has rarely been applied in mountain permafrost
97 environments (Guillemot et al., 2021; Kuehn et al., 2024). Nevertheless, a seismic shot gather acquired with low-
98 frequency vertical geophones (e.g., with a 4.5 Hz natural frequency) not only records the first arrivals of direct
99 and refracted P-waves but also Rayleigh waves, whose propagation is mainly sensitive to S-wave velocities (Vs).
100 Thus, the application of the MASW method can potentially allow the retrieval of a Vs profile (Socco et al., 2010),
101 complementing the SRT method, which typically focuses on P-wave velocities (Vp). The MASW method offers
102 several advantages over the SRT technique: i) it can reveal velocity inversions in the subsurface, such as a lower
103 velocity layer between two higher velocity layers, ii) the retrieved S-wave velocities are insensitive to the liquid
104 phase present in the medium, and iii) it can provide quantitative information regarding the subsurface mechanical
105 properties like the shear modulus and Young's modulus, for geotechnical characterisation (Park et al., 2007).

106 In this study, we applied the MASW method along a seismic line ~~acquired next to an ERT line at the Flüela rock~~
107 glacier, Grisons, Switzerland. ERT suggests the presence of an ice-bearing layer in the upper part of the rock
108 glacier tongue, which disappears towards the front. The SRT analysis clearly detects the basal bedrock but
109 surprisingly does not reveal the typical P-wave velocities of the ice-bearing layer. In fact, the SRT results ~~indicate~~
110 Vp values ~~typical~~ of liquid water, ~~thereby~~ masking the presence of the ice-bearing layer. ~~In contrast~~, the Vs models
111 obtained from the MASW results are in very good agreement with the ERT findings. ~~We therefore~~ hypothesis
112 ~~that the difficulties encountered in the SRT analysis in detecting the ice-bearing layer are due to~~ the presence of
113 a thin water-saturated sediment layer ~~overlying~~ the ice-bearing layer (supra-permafrost flow), which would inhibit
114 P-wave propagation, as well as relatively high picking uncertainties. To support our hypothesis, we ~~performed~~
115 both full-wave seismic forward modelling, ~~producing~~ synthetic shot gathers, ~~for comparison~~ of surface-wave
116 dispersion and P-wave first-arrival times, ~~and synthetic ERT modelling to evaluate the capacity of the adopted~~
117 ERT array to resolve the thin water-saturated layer above the permafrost.

118 2 Study site and data acquisition

119 The lower lobe of the Flüelapass rock glacier complex (referred to here as the Flüela rock glacier; 46.746° N,
120 9.951° E) is located in the Eastern Swiss Alps, next to the Flüelapass road in the Community of Zernez, Grisons,
121 at the top of the mountain pass (Figs. 1a and 1b). The active rock glacier, ranging from 2380-2500 m asl., is
122 nourished by the surrounding steep rock walls, which are composed of amphibolite and paragneiss
123 (Bast et al., 2025). The lower investigated tongue of the rock glacier (Fig. 1c) creeps downwards with surface
124 velocities ranging between ~ 10 and ~ 30 cm/year (R. Kenner, SLF, personal communication, based on annual
125 terrestrial laser scans, 2024). The surface material consists of rock debris and boulders of various sizes, along with
126 smaller isolated patches of finer sediments and sparse vegetation (Figs. 1c and 1d).
127 A first study of the Flüela rock glacier by Haeberli (1975) applied refraction seismics to investigate the presence
128 of ground ice. The seismic profiles obtained indicated permafrost at around 10 m depth in the rock glacier front
129 and ice-rich ground below approximately 4 m towards the central lower area of the rock glacier. More recent

ha eliminato: that was

ha eliminato: suggest the typical

ha eliminato: thus

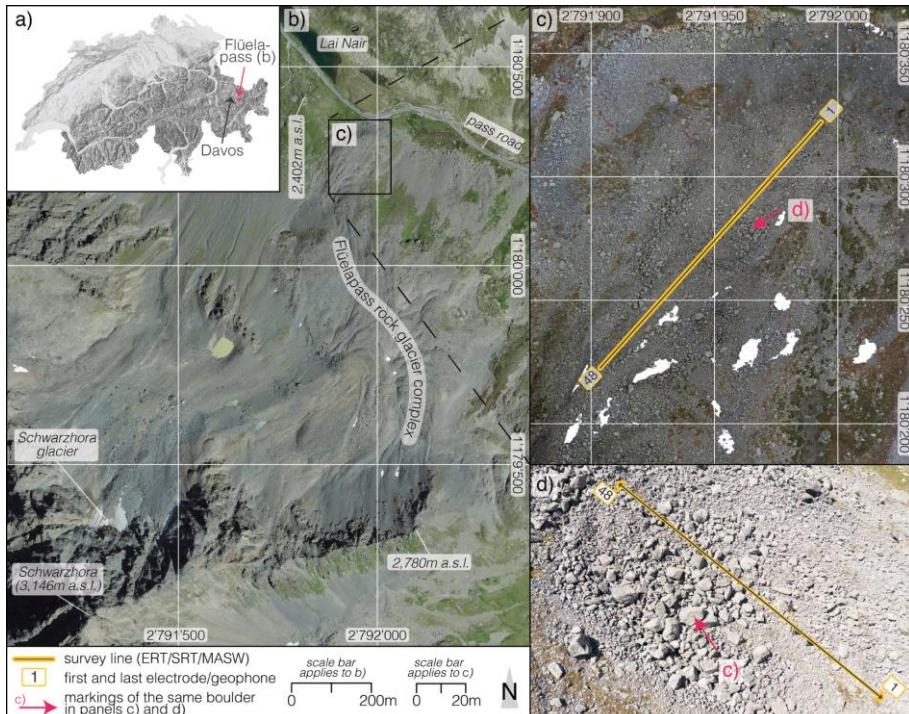
ha eliminato: On the other hand

ha eliminato: Therefore, we

ha eliminato: atop

ha eliminato: the penetration of P-waves.

ha eliminato: carried out a


ha eliminato: and produced

ha eliminato: . Subsequently, we compared synthetic with field data, both in terms

ha eliminato:

ha eliminato:

144 geophysical research by Boaga et al. (2024) and Bast et al. (2025) confirmed the presence of the ice-bearing layer.
 145 Research on permafrost distribution and evolution at the Flüelapass primarily concentrated on a talus slope located
 146 approximately 500 m west-northwest, where two boreholes were drilled in 2002 (Lerjen et al., 2003; Phillips et
 147 al., 2009; Kenner et al., 2017). As for the lower tongue investigated here, no borehole information is available.
 148

149
 150 **Figure 1:** (a) Location of the Flüela rock glacier complex in Switzerland. (b) Aerial image of the Flüelapass featuring
 151 the Flüela rock glacier complex, with markers for orientation (summit, lake, road) and elevation points. (c) A zoomed-
 152 in drone ortho mosaic (flight date 28 June 2023) of the investigated lower lobe of the rock glacier complex, highlighting
 153 the survey line (electrical resistivity and seismic data, yellow-grey line). The red arrow indicates the same boulder as
 154 in the oblique drone image (d). The drone image reveals the coarse and rough surface within the middle section of the
 155 survey line (please note that the survey line extends further NW and SW). Basemaps in a) SwissAlti3D multidirectional
 156 hillshade and b) SwissImage (flight year 2022) are provided by swisstopo (<https://map.geo.admin.ch>). Note that the
 157 legend and North arrow applies to all map sections (a-c).

158 On 03 August 2024, we collected both electrical resistivity tomography (ERT) and seismic data on the rock
 159 glacier. The measurements were collected along a line of approximately 133 m in the middle of the lobe (Figs. 1c
 160 and 1d). For data collection, we used 48 electrodes for the ERT and 48 geophones for the seismics, with a spacing
 161 of 3 m. We measured all electrode/geophone positions with a Stonex S800 GNSS instrument (Stonex, Paderno
 162 Dugnano, Italy; www.stonex.it) to obtain a detailed topographic profile along the survey line.

163 The ERT dataset was collected with a Syscal Pro Switch 48 resistivity meter (IRIS Instruments, Orléans, France;
164 www.iris-instruments.com). This was done with a dipole-dipole multi-skip acquisition scheme
165 (Pavoni et al., 2023a), with reciprocal measurements and stacking ranging from 3 to 6 (Day-Lewis et al., 2008),
166 for a total of 3542 measured data points. To ensure a good galvanic coupling, i.e., optimal contact resistances, and
167 to obtain a high-quality dataset (Pavoni et al., 2022), conductive textile sachets, wet with salt water, were used as
168 electrodes (Buckel et al., 2023; Bast et al., 2025).

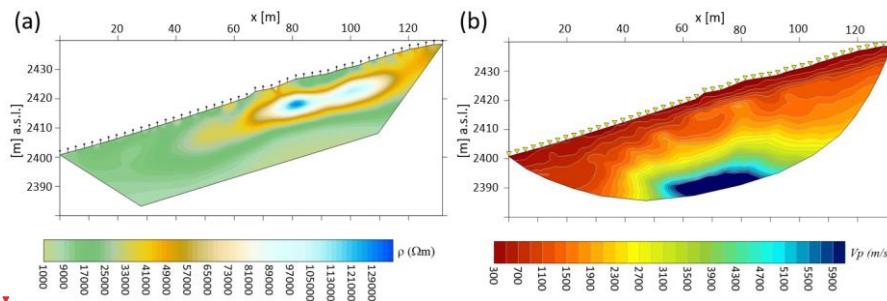
169 The seismic data were collected with two Geode seismographs (Geometrics, San Jose, USA;
170 <http://www.geometrics.com>), using vertical low-frequency geophones with a natural frequency of 4.5 Hz and a
171 20 kg sledgehammer as a seismic source. The source was moved from the first to the last geophone with a distance
172 of six metres between each position, resulting in a total of 24 acquisition positions. At each position, the shot was
173 repeated twice to stack the seismograms and enhance the signal-to-noise ratio.

174 3 MASW Method

175 Surface waves are seismic waves that travel along the Earth's surface, characterised primarily by dispersion, i.e.,
176 different frequencies propagate at different velocities (Everett, 2013). By analysing surface wave dispersion, it is
177 possible to infer different mechanical properties of the medium through which the surface waves propagate (Socco
178 et al., 2010). The depth of investigation of surface waves is associated with the seismic wavelength; a general rule
179 of thumb is to consider one-third to one-half of the seismic wavelength of the lowest frequency component as the
180 maximum penetration depth (Foti et al., 2015). Surface waves are also characterised by multi-modal propagation,
181 meaning they can propagate in multiple modes simultaneously, including the fundamental mode and higher-order
182 modes. The fundamental mode is the simplest form of wave propagation, with higher sensitivity near the surface,
183 typically showing lower propagation velocities and higher amplitudes. Higher-order modes involve more complex
184 sensitivity patterns with depth, can penetrate deeper layers, and usually exhibit higher velocities and lower
185 amplitudes. However, the energy distribution of surface waves over different modes strongly depends on the
186 subsurface conditions, and if higher modes with significant amplitude are present, special attention must be
187 devoted to identifying the different modes (Boaga et al., 2013).

188 Surface wave analysis allows the retrieval of the dispersion relation (phase/group velocity versus frequency). In
189 particular, the Multichannel Analysis of Surface Waves (MASW; Park et al., 1999) uses linear arrays to record
190 the surface wave propagation from an active source in the time-space domain (seismogram). The acquisition setup
191 is identical to SRT, but low-frequency geophones, having typically a natural frequency of 4.5 Hz, are essential
192 for MASW surveys. The seismogram is converted into a frequency-wavenumber (f-k) or frequency-velocity (f-v)
193 spectrum, where the energy maxima corresponding to the different modes are picked. Depth inversion is finally
194 needed to retrieve a 1D Vs profile. Inversion is a non-linear ill-posed problem that can be solved deterministically
195 using the linearized iterative least-squares approach (Herrmann, 1987), or with a stochastic search method, such
196 as the neighbourhood algorithm (Sambridge, 1999). In both cases, some preliminary information is needed to
197 define the starting model (deterministic approach) or the parameter space (stochastic approach).

198 The MASW method assumes homogeneous lateral conditions under the recording array. This condition is hardly
199 met in nature, and when strong lateral heterogeneities are present, the complexity of the resulting spectra could
200 challenge the picking process. For this reason, MASW is sometimes applied using moving windows. In this case,
201 a quasi-2D Vs profile is retrieved, and smooth lateral velocity variations can be identified (Bohlen et al., 2004;


202 Boiero and Socco, 2011). The selection of the moving window length is crucial and requires preliminary testing:
203 a shorter window length causes an increase in lateral resolution but decreases the spectral resolution.
204

205 **4 ERT, SRT and MASW data processing, results and interpretation**

206 **4.1 ERT and SRT**

209 The ERT data processing was conducted using the open-source Python-based software *ResIPy*
210 (Blanchy et al., 2020), filtering the quadrupoles with reciprocal and stacking errors exceeding 5 %, which was
211 considered as the expected data error in the inversion modelling (Day-Lewis et al., 2008). This resulted in the
212 removal of 344 quadrupoles over 1324. The inverted resistivity model (Fig. 2a) was found in two iterations and
213 with a final RMS (Root-Mean Square) misfit of 1.17.

214 SRT data processing was performed with two open-source tools. Geogiga Front End Express v. 10.0, from
215 Geogiga Technology Corp. (<https://geogiga.com/products/frontend/>), was used for the picking of first arrivals,
216 while the C++/Python-based library *pyGIMLi* (Rücker et al., 2017) was used for data inversion. For each
217 seismogram, first arrivals were picked multiple times for the same shot and also considering reciprocal shots along
218 the array, in order to estimate the picking error (1 ms) to be used in the inversion process (Bauer et al., 2010). The
219 inverted P-wave velocity (Vp) model (Fig. 2b) was obtained after five iterations, with a final χ^2 (chi-square) misfit
220 of 1.31.

221
222 **Figure 2:** (a) The inverted ERT section, after two iterations, has an expected data error of 5% and a final RMS misfit
223 of 1.17. The black markers along the surface indicate the positions of the electrodes. (b) The inverted P-wave velocity
224 model (SRT), after five iterations, has a picking error of 1 ms and a final χ^2 misfit of 1.31. The yellow triangular
225 markers along the surface indicate the positions of the geophones.

226 In the upper 4 - 5 m of the ground, electrical resistivity values are relatively high (~ 20 k Ω m), and Vp values are
227 particularly low (< 600 m/s). This indicates a highly porous layer composed of blocks and debris with low fine
228 sediment content. Towards the front of the rock glacier ($x < 40$ m) and at greater depths, the electrical resistivity
229 decreases (< 10 k Ω m), and the Vp values gradually increase, reaching 1200-1500 m/s at the bottom of the model.
230 Here, the substrate appears more heterogeneous, consisting of a mix of coarse debris and finer sediments. Towards
231 the upper section of the rock glacier lobe, at 4 - 5 m depth, resistivities increase (~ 40 k Ω m) for $40 \text{ m} < x < 60 \text{ m}$,
232 with an even sharper rise to values > 80 k Ω m for $x > 60$ m. These values are typical for an ice-bearing frozen

ha eliminato: (<https://geogiga.com/products/frontend/>),
ha eliminato:
ha formattato: Tipo di carattere: Non Corsivo
ha eliminato:
ha eliminato:
ha eliminato: In
ha eliminato: the
ha eliminato: -arrival times
ha eliminato: three
ha eliminato: to calculate
ha eliminato: standard deviation
ha eliminato: define
ha eliminato: for
ha eliminato: found in
ha eliminato: and
ha eliminato: χ^2
ha eliminato: -
ha eliminato:
ha eliminato: ¶

251 layer (Hauck and Kneisel, 2008; [de Pasquale et al., 2022](#)). This layer extends to a depth of 10 - 12 m before
252 resistivities clearly decrease to a few Ωm at the bottom of the model. In the V_p model, values increase at greater
253 depths, with a steep gradient at ~ 20 m depth ($50 < x < 80$ m), where V_p Values reach 6000 m/s, indicating the
254 bedrock. In the upper part of the section, between 4 - 5 m and 10 - 12 m depth, no typical V_p values of an ice-
255 bearing frozen layer are reached ($V_p > 2500$ m/s, Hauck and Kneisel, 2008). Therefore, in this area, the ERT and
256 SRT results are inconsistent: while the inverted resistivity model clearly indicates an ice-bearing layer, the V_p
257 model shows a moderate increase, peaking at V_p values ~ 1500 m/s, likely corresponding to a liquid water-
258 saturated layer.

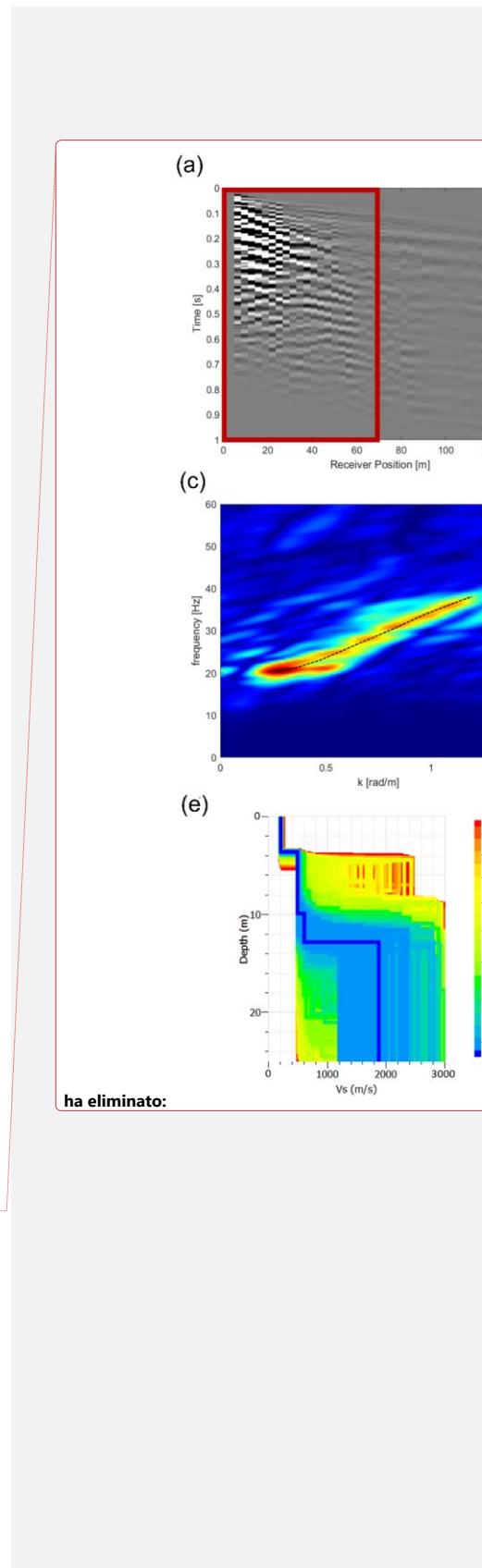
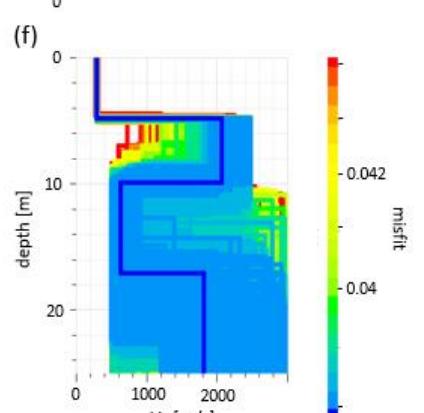
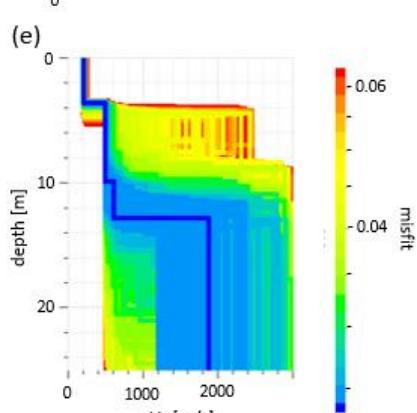
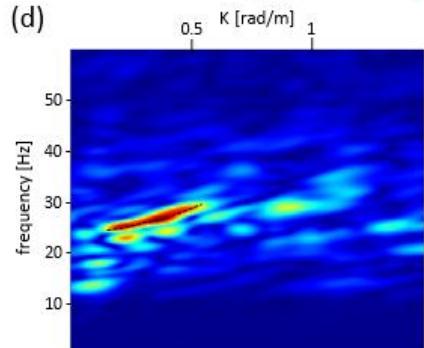
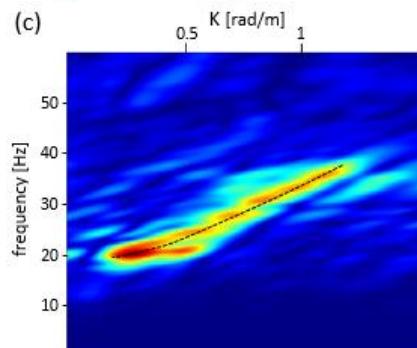
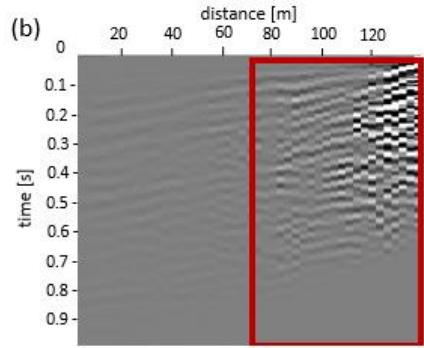
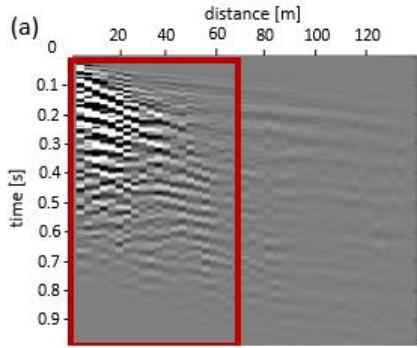
259 ha eliminato:).

260 4.2 MASW

261 The MASW analysis was performed using a moving window of 24 channels, striking a balance between spatial
262 and spectral resolution. An offset-dependent mute was applied to those shot gathers that presented at least one
263 source bounce as this could significantly impact the subsequent phase measurements. The time of occurrence of
264 the source bounces was automatically identified through the auto-correlation of the near-offset traces. The mute
265 was finally applied to the seismogram to mask the source bounce. Each shot gather was then Fourier transformed
266 in both time and space to obtain the corresponding f - k spectrum, from which the fundamental mode was manually
267 picked. The retrieved dispersion curves were depth inverted using *Dinver* (Wathelet, 2008), an open-source tool
268 included in *Geopsy* (<https://www.geopsy.org/>; last access: 28 February 2025) that performs a stochastic inversion
269 based on the neighbourhood algorithm (Cambridge, 1999). *Dinver* requires the definition of the model space with
270 a fixed number of layers. We used a four-layer model and parameterized each layer with a wide range of seismic
271 velocities and Poisson ratios, while keeping the density constant (Tab. 1). This choice was guided by the
272 preliminary information we gained from ERT and SRT sections, that would indicate two to three layers, depending
273 on the presence of permafrost, and a relatively shallow seismic bedrock. *Dinver* generates a multitude of random
274 models within the model space and calculates for each of these models [a dimensionless](#) misfit between observed
275 and modelled dispersion curves ([Wathelet et al., 2004](#)). The final model is characterised by the minimum misfit.
276 ha eliminato: the
ha eliminato: .

277 **Table 1: Parameter space used for the dispersion curve inversion with the open-source tool *Dinver* (Wathelet, 2008).**

278 Abbreviations: V_p : P-wave velocities, V_s : S-wave velocities, ρ : density.








	Thickness [m]	V_p [m/s]	V_s [m/s]	Poisson ratio	ρ [kg/m ³]
1	2 - 12	400 - 1000	200- 500	0.2 - 0.45	1800
2	2 - 12	800 - 5000	500 - 2500	0.2 - 0.45	2000
3	2 - 12	800 - 5000	500 - 2500	0.2 - 0.45	2000
Bedrock	Infinite	2400 - 6000	1200- 3000	0.2 - 0.45	2200

279 Tabella formattata

280 Figure 3 shows the results of the picking (Figs. 3c and 3d) and the V_s models (Figs. 3e and 3f) derived from the
281 inversion of two dispersion curves. The first curve refers to a shot placed on the left side and the first 24 geophones
282 (Fig. 3a), while the second curve relates to a shot on the right side and the last 24 geophones (Fig. 3b). Despite

286 the noisy character of the seismograms, where strong scattering is observed, the f-k spectra show coherent energy
287 and at least one mode of propagation is clearly recognisable, assumed to be the fundamental mode (Figs. 3c
288 and 3d). The two spectra show different frequency and wavenumber distributions, indicating different subsurface
289 conditions. The maximum penetration depth, which is approximately half of the wavelength, can be computed
290 from the minimum picked frequency, and it is about 15 m. The inversion results reveal a smooth increase of
291 velocity with depth in the left part of the section, i.e., towards the front of the rock glacier (Fig. 3e), while it clearly
292 highlights a shallow (5 m depth) high-velocity layer (2000 m/s) on the right side, i.e., the upper part of the rock
293 glacier (Fig. 3f). The high-velocity layer has a thickness of approximately 5 m. At a depth of 10 m, a clear and
294 sharp decrease in the velocity is observed. Good convergence is reached in the inversion down to the maximum
295 sensitivity of 15 m. Below this depth, results should be treated with caution. The lack of convergence manifests
296 as a wide velocity range with a similar misfit: most models in this depth range are equally plausible. Lower-
297 frequency data is needed to constrain the inversion at greater depths. It is important to note that the limited
298 frequency range characterising the picked dispersion curves is partly due to the loss of high frequency from
299 scattering and partly to the presence of a high-impedance boundary (the top of the bedrock in the left half of the
300 section and the top of the frozen layer on the right) that likely prevents most of the low-frequency energy from
301 penetrating below.

302

303

304

305

306

307

308

309

310

312 **4.3 Interpretation**

313 The obtained Vs models align well with the inverted resistivity section (Fig. 2a). The Vs values of the shallow
314 (5 - 10 m depth) high-velocity (2000 m/s) layer observed in the right part of the section (Fig. 3f) are indeed
315 consistent with the presence of an ice-bearing permafrost layer (Kuehn et al., 2024) that overlies a lower velocity
316 layer of unfrozen sediments. Conversely, at depths of 5 m and below, the inverted SRT model indicates Vp values
317 that are too low to support this conclusion, with a maximum value of 1500 m/s, which is characteristic of liquid
318 water-saturated sediments. This suggests the presence of a supra-permafrost water layer, which can be commonly
319 found in rock glacier environments where the frozen layer acts as an aquiclude (Krainer et al., 2007;
320 Pavoni et al., 2023; Arenson et al., 2022, Jones et al., 2019). The ERT model does not resolve the presence of this
321 (thin) water-saturated layer, likely considering the relatively large spacing of 3 m between the electrodes, nor does
322 the MASW, which is sensitive to S-waves and thus insensitive to fluids. However, the ~1500 m/s P-wave
323 velocities retrieved by the SRT method may indicate the presence of a (thin) water-saturated layer. In fact, such a
324 layer may strongly attenuate body wave transmission and mask further impedance contrasts at depth (Pride et al.,
325 2004). To assess the reliability of our subsurface hypothesis, we conducted both full-wave (FW) seismic
326 modelling and synthetic ERT modelling (Chapter 5).

327 **5 Seismic and ERT Synthetic Modelling**

328 **5.1 Seismic synthetic modelling**

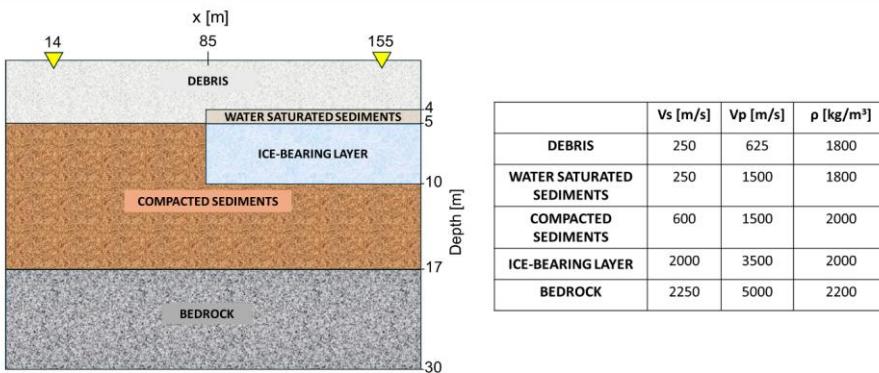
329 To verify the reliability of the obtained results, we generated synthetic seismograms based on a simplified
330 subsurface model derived from the joint interpretation of ERT, SRT and MASW results. Synthetic shot gathers
331 are compared to the real ones in terms of surface waves and first-arrival times.
332 Synthetic seismic data are generated using SW4 3.0 (Petersson and Sjögren, 2023), which solves the seismic
333 wave equations in Cartesian coordinates for 3D heterogeneous media (Sjögren and Petersson, 2012;
334 Zhang et al., 2021). The conceptual model for the simulation is shown in Fig. 4. The left part of the model is
335 characterised by three main layers: (i) a 5 m-thick debris layer, (ii) a 12 m-thick layer of more compacted
336 sediments and (iii) the bedrock. On the right side of the section, we included a 5 m-thick ice-bearing layer, and
337 we hypothesised a 1 m-thick water-saturated layer above it. This model serves as a simplified representation of
338 the assumed real subsurface, where clearly, the shape, thickness, and composition of the different layers are not
339 regular and homogeneous. Moreover, it does not reproduce the small-scale heterogeneities in the model that are
340 beyond the resolution of our field surveys. However, it represents the main structures highlighted by the MASW,
341 ERT and SRT results, with the velocity and thickness of the different layers compatible with the results illustrated
342 in Chapter 4. ▲

ha eliminato: a

ha eliminato: given a

ha eliminato: (see the "ERT Synthetic (Forward) Modeling" section in the Supplementary Material),

ha eliminato: verify this


ha eliminato: performed

ha eliminato: data generation and comparison to field data...

ha eliminato: Synthetic

ha formattato: Non Evidenziato

ha formattato: Non Evidenziato

354

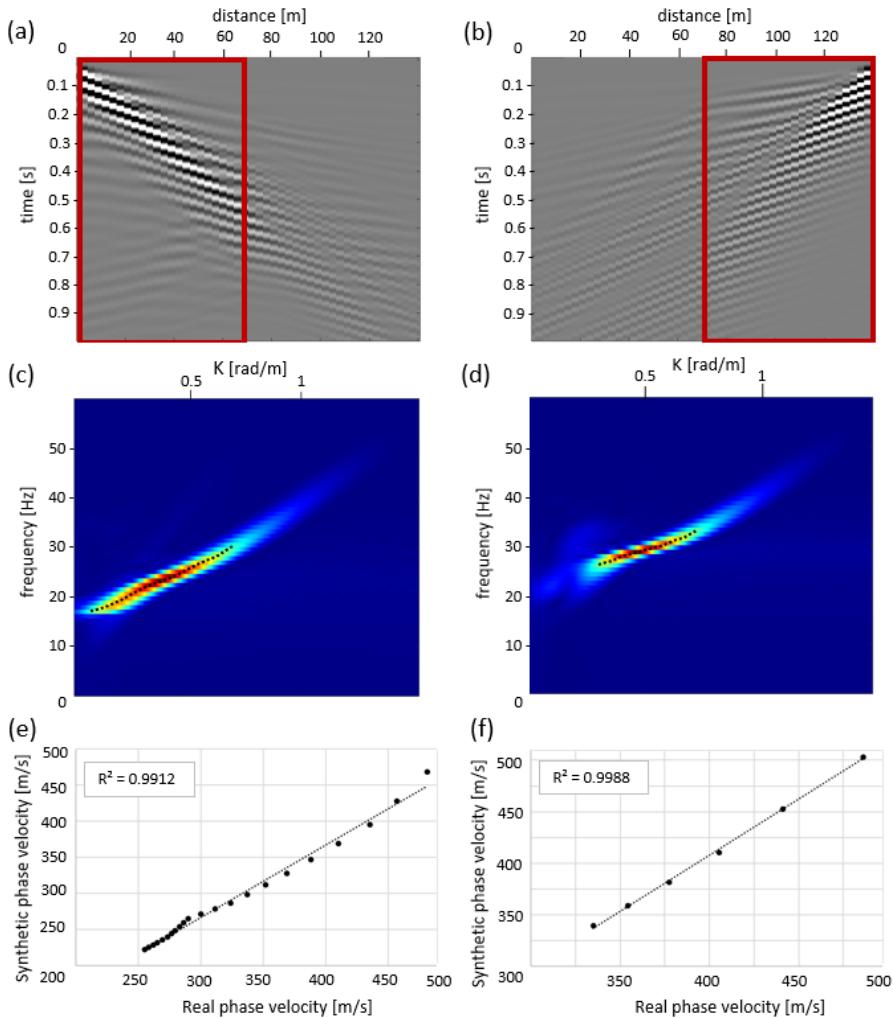
355 **Figure 4:** Conceptual model used for the synthetic seismic modelling with the SW4 software (Petersson and Sjögren,
 356 2023). The two yellow triangles denote the first and the last geophones in the array. Abbreviations as in Tab. 1.

357 The simulation domain is 170 x 30 x 30 m in the x, y and z directions. Absorbing boundaries were included in the
 358 model to prevent the generation of reflections from the model edges, both at its bottom and laterally, while a free
 359 surface condition was set at the top. The grid step used was 0.5 m, and the time step automatic setting was 0.87
 360 ms, to comply with the stability criteria. The source was a vertical point load at the surface with central frequency
 361 and maximum frequency of 15 Hz and 50 Hz, respectively. This choice was again imposed by the numerical
 362 stability of the forward simulation. An array composed of 48 vertical receivers, with a spacing of 3 m, was placed
 363 in the middle of the model ($14 \text{ m} \leq x \leq 155 \text{ m}$, $y = 15 \text{ m}$) to reproduce the real case geometry. Two simulations
 364 were run, corresponding to a shot on the left side of the array at the location of the first receiver and a shot on the
 365 right side at the last receiver location.

366 Figures 5a and 5b show the synthetic shot gathers as grayscale plots. When compared to Figs. 3a and 3b, it is clear
 367 how much noisier the field data are compared to the synthetic ones. This is the effect of scattering caused by the
 368 boulders and coarse debris at the surface of the rock glacier. Consequently, the real f-k spectra (Figs. 3c and 3d)
 369 are also noisier than the synthetic ones (Figs. 5c and 5d). However, the frequency and wavenumber distribution
 370 of the fundamental mode in the modelled data is similar to the field observations. This is confirmed by comparing
 371 the picking of modelled and real spectra (Figs. 5e and 5f). As highlighted in the scatterplots, the phase velocity
 372 values obtained by sampling the fundamental mode in the synthetic spectra show a high correlation with the
 373 corresponding values obtained from the field spectra (R^2 value ~ 0.99). Note that the comparison was made by
 374 considering the phase velocity values obtained in the common frequency range in sampling the field spectrum
 375 (Figs. 3c and 3d) and the synthetic spectrum (Figs. 5c and 5d), i.e., 20-35 Hz on the left side and 25-30 Hz on the
 376 right side.

ha spostato in basso [1]: The grid step used was 0.5 m, and the time step automatic setting was 0.87 ms, to comply with the stability criteria.

Formattato: SpazioDopo: 0 pt


ha spostato (inserimento) [1]

ha eliminato: The source was a vertical point load at the surface with a central frequency of 15 Hz.

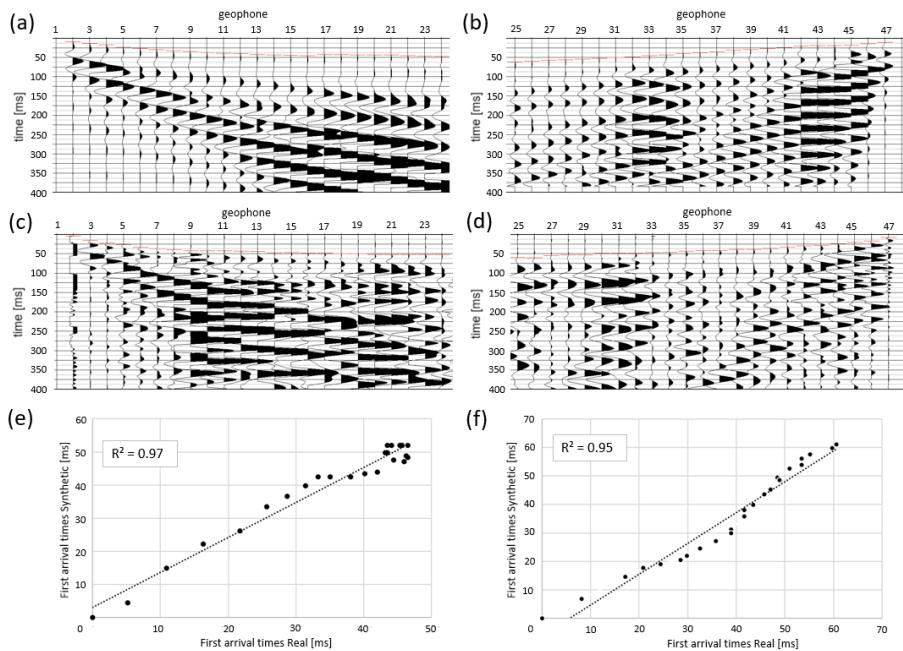
ha formattato: Tipo di carattere: Grassetto, Non Corsivo

ha eliminato: 5.2 Comparison between synthetic and field data ¶

ha formattato: Non Evidenziato

385
386 Figure 5: (a) Synthetic seismogram (grayscale plot) of the left shot, where the red rectangle indicates the selected
387 receivers for analysis. (c) Frequency-wavenumber (f-k) spectrum of the traces highlighted in (a), with the fundamental
388 mode marked by a black dotted curve. (e) Scatterplot of the phase velocity picking obtained from the real (Fig. 3c) and
389 synthetic spectrum (Fig. 5c). The black dotted lines show a simple linear regression line with corresponding R^2 values.
390 (b), (d), and (f) correspond to (a), (c), and (e), respectively, but for the rightmost shot.

391 First-arrival times picked on the modelled data are highly consistent with the field ones. Figure 6a shows the
392 synthetic shot gathers (wiggle mode, normalized trace by trace) for sources on the left side of the geophone array,
393 with the synthetic first arrivals (red lines) closely matching those in the field seismogram (Fig. 6c), as confirmed
394 by a scatterplot and a high R^2 value (0.97; Fig. 6e). Similarly, for sources on the right side, synthetic (Fig. 6b) and
395 field (Fig. 6d) shot gathers exhibit comparable first-arrival times (red lines), with a high R^2 value (0.95; Fig. 6f).


ha eliminato: The modelled first
ha eliminato: very
ha eliminato: in
ha eliminato: and
ha eliminato: produced with the source positions at
ha eliminato: . The
ha eliminato: -arrival times
ha eliminato: in Fig. 6a) align with
ha eliminato: detected
ha eliminato: obtained from the same shot position
ha eliminato:). This is also illustrated by the
ha eliminato: R^2
ha eliminato:) indicating a high correlation (

ha eliminato: Even considering the source
ha eliminato: of the geophone array
ha eliminato: real
ha eliminato: show very similar
ha eliminato: in Figs. 6b and 6d), as also confirmed by the scatterplot and the high R^2

ha formattato: Non Apice / Pedice

415 It is important to notice that synthetic first-arrival traveltimes were not merely modelled kinematically, but with
 416 a full-wave simulation which takes into account attenuation. In principle, kinematic modelling should generate
 417 traveltimes whose slopes are compatible with the presence of the ice-bearing layer. Full-wave modelling is
 418 instead reproducing the attenuation effects of real data. Moreover, the low-frequency content of the source wavelet
 419 used for the simulation, imposed by the stability criteria, results in a rather low temporal resolution of first arrivals,
 420 which may generate uncertainties in picking comparable to the observed ones.

421

422

423 Figure 6: Considering the conceptual model of Fig. 4a, (a) synthetic seismogram of the left shot plotted in wiggle mode
 424 (normalized trace by trace) and the picking (red lines in the traces) of first-arrival times for the first 24 traces; (c) field
 425 seismogram on the left shot plotted in wiggle mode and the picking (red lines in the traces) of first-arrival times for the
 426 first 24 traces; (e) scatterplot of synthetic first-arrival times and field ones for the left shot. The black dotted lines show
 427 a simple linear regression line with corresponding R^2 values. (b), (d), and (f) correspond to (a), (c), and (e), respectively,
 428 but for the rightmost shot.

429 The good agreement between synthetic and field data regarding surface wave dispersion and first-arrival times,
 430 demonstrates the validity of the simple conceptual model presented in Fig. 4, which was used for the forward
 431 simulation. However, slight differences in the synthetic and field picking of the fundamental mode and first-arrival
 432 times may relate to the simplification of the synthetic model, which could not account for the highly complex
 433 topography and the heterogeneities of shape, thickness, and composition in the different layers.

434 5.2 ERT synthetic modelling

ha eliminato: However, in both the

ha eliminato: (Fig. 6b) and the acquired shot gather (Fig. 6d), the

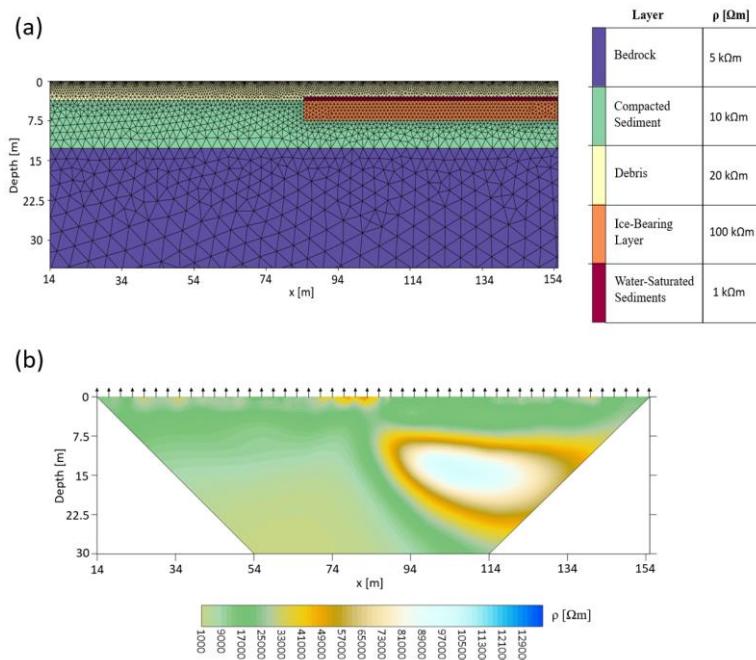
ha eliminato: of the refractions

ha eliminato: P-wave velocity of water ($V_p = 1500$ m/s), even though the synthetic model contains a higher-velocity layer ($V_p = 3500$ m/s) representing the

ha eliminato: permafrost (Fig. 4). This supports the hypothesis that a supra-permafrost water-saturated layer

ha eliminato: have prevented the compressional wave transmission in greater depth, hiding refraction arrivals from deeper impedance contrasts

Formattato: SpazioDopo: 12 pt

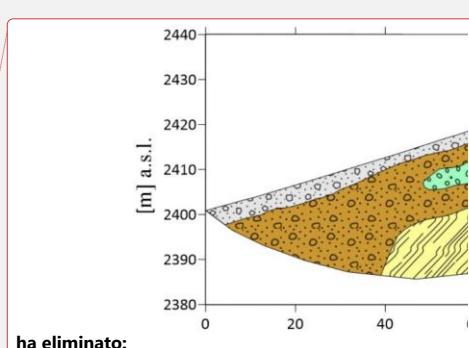
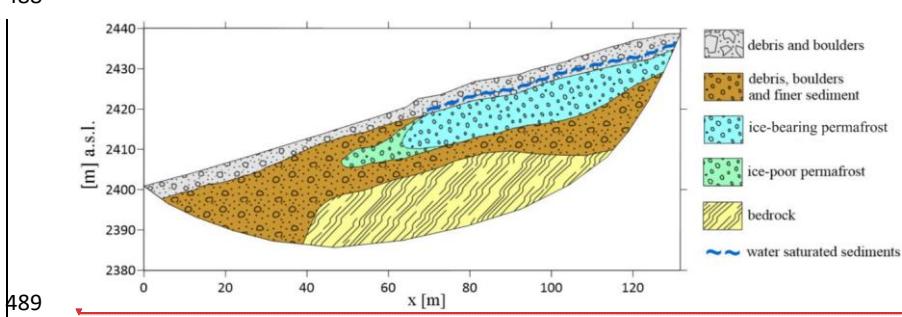

ha eliminato: small-scale

448 ERT synthetic modelling involves the numerical simulation of the electrical potential distribution in the
449 subsurface based on a known resistivity model. This process requires solving Poisson's equation, which describes
450 the behavior of the electric field generated by current injection through electrodes placed on the surface or in
451 boreholes (Binley & Slater, 2020). In this study, the process was performed using the open-source software ResIPy
452 (Blanchy et al., 2020) and the objective was to evaluate whether the electrode array and acquisition configuration
453 used during the measurement campaign at the Flüela rock glacier provided sufficient resolution to detect a thin
454 layer of water-saturated sediment overlying the permafrost. We hypothesize that this layer may have contributed
455 to the attenuation of P-wave propagation at depth.

456 The synthetic modelling was based on the subsurface structure shown in Fig. 4, with electrical resistivity values
457 assigned to each layer according to the inverted resistivity model derived from field data (Fig. 2a). Specifically,
458 resistivities of 20 kΩ·m, 10 kΩ·m, 5 kΩ·m, and 100 kΩ·m were assigned to the surface debris layer, compact
459 sediment, bedrock, and frozen layer, respectively (Fig. 7a). A representative value of 1 kΩ·m was assigned to the
460 water-saturated sediment layer. In rock glacier environments, such layers can exhibit resistivities depending on
461 factors such as material composition, water chemistry, and temperature. The assigned value is plausible
462 particularly when the substrate consists of coarse, blocky debris with large pore spaces and low clay content,
463 which tends to maintain relatively high resistivity even under saturated conditions (Hauck & Vonder Mühl, 2003;
464 Hilbich et al., 2021). Additionally, if the pore water has low ionic content—as is typical of glacial meltwater—
465 the resulting resistivity remains relatively high (Hauck, 2002).

466 The synthetic dataset was generated using a dipole-dipole multi-skip acquisition scheme identical to that
467 employed in the field survey, with an array of 48 electrodes spaced 3 meters apart. A 5% noise level was added
468 to the synthetic measurements, consistent with the estimated noise in the real dataset. The synthetic data were
469 then inverted using the same parameters applied to the inversion of the real dataset, resulting in the resistivity
470 model shown in Fig. 7b. The result does not clearly reveal the presence of the thin water-saturated sediment layer
471 overlying the frozen layer, confirming that the ERT survey conducted at the Flüela rock glacier site lacked the
472 resolution and configuration necessary to resolve such a feature. This limitation is likely due to the relatively large
473 electrode spacing.

474 Compared to the real electrical resistivity model (Fig. 2a), slight deviations can be observed, which can be
475 attributed to the simplifications adopted in the conceptual model which does not account for the natural
476 heterogeneity typically encountered in the field, including lateral and vertical variations in layer thickness,
477 composition, and continuity. As in the seismic synthetic modelling, we assumed laterally homogeneous, planar
478 layers and excluded surface topography, resulting in an idealized representation intended to enhance the
479 theoretical detectability of the target layer.



480
481 **Figure 7: (a) Conceptual model used for the synthetic ERT modelling; (b) Synthetic electrical resistivity**
482 **model derived from forward modelling applied to the conceptual model presented in Fig. 7a.**

483 **6 Discussion**

484 **6.1 Rock glacier subsurface model and rock glacier hydrology**

485
486 Based on our presented ERT, SRT, MASW field data results, and [ERT and FW seismic synthetic modelling](#), we
487 constructed a subsurface model of the Flüela rock glacier (Fig. 8).
488

ha eliminato: 7

492 **Figure 8: Interpreted subsurface model of the Flüela rock glacier along the geophysical measuring line, derived from**
493 **results of Electrical Resistivity Tomography (ERT), Seismic Refraction Tomography (SRT), Multichannel Analysis of**
494 **Surface Waves (MASW), and Full-Wave (FW) seismic synthetic modelling.**

ha eliminato: 7

495 Four main units were identified. The uppermost layer, showing relatively high resistivity values (20 - 40 kΩm;
496 Fig. 2a) and low seismic velocities ($V_p < 600$ m/s and $V_s \sim 250$ m/s; Fig. 2b and Figs. 3e-f), was interpreted as
497 mainly composed of debris and blocks, with high porosity (air) and poor regarding fine sediments. The deeper
498 unfrozen sediment layer, with lower resistivities (< 10 kΩm) and relatively higher seismic velocities
499 ($V_p = 1200 - 1500$ m/s and $V_s \sim 500$ m/s), was interpreted as a more heterogeneous compacted layer with both
500 coarse and fine sediments. At the bottom of the model, the presence of bedrock was hypothesized, considering
501 the sharp increase of V_p from 1200 - 1500 m/s to values > 3000 m/s (up to 6000 m/s), and of V_s values from
502 ~ 500 m/s to ~ 2000 m/s at ~ 14 m depth for the left part of the section, and ~ 18 m depth for the right part.
503 Considering that MASW applies a 1D approximation, the V_p model was mainly used to define the bedrock depth
504 spatially. Finally, the high resistivity values (> 80 kΩm) identified in the right part of the resistivity model between
505 ~ 5 m and ~ 10 m depth, corresponding to a sharp increase of V_s values (up to 2000 m/s), were interpreted as an
506 ice-bearing permafrost layer. It should be noted that the high resistive layer also propagates beyond the middle of
507 the array ($50 < x < 65$ m), but with lower values (~ 40 kΩm), probably linked to a decrease in the ice content or
508 an increase in temperature.

509 Considering that an ice-rich layer typically acts as an aquiclude (Giardino et al., 1992;
510 Krainer et al., 2007; Pavoni et al., 2023a; Arenson et al., 2022), we hypothesized the presence of a water-saturated
511 layer above the permafrost. The ice-bearing layer is likely not detected in the V_p model because of (i) high picking
512 uncertainties, due to the challenging environment (high level of scattering, wind noise) and (ii) the presence of a
513 liquid-saturated layer that, in SRT studies, can obstruct energy transmission and mask additional impedance
514 contrasts at depth (Carcione and Picotti, 2006; Picotti et al., 2007; Shi et al., 2024). This hypothesis can be further
515 supported by the presence of a thin layer of fine-to-coarse sediments above a thicker, ice-bearing permafrost layer,
516 as proposed by Boaga et al. (2024). These finer sediments are known to retain more water due to their smaller
517 particle size, particularly if clay or silt is present (Hillel, 2003). However, without ground truthing, particularly
518 drilling, we cannot obtain detailed subsurface information to confirm the exact structure and stratigraphy.
519 Definitive statements regarding the ice and water content or the flow of water within the ice-bearing layer, such
520 as intra-permafrost flow or the presence of taliks, cannot yet be made. Recent drilling in a rock glacier has revealed
521 that areas identified as ice-rich using ERT and SRT methods can also contain significant amounts of liquid water
522 and very fine sediments (personal observations by M. Phillips and A. Bast, SLF, 2024). Combining our methods
523 with additional techniques could provide further insights into the hydrology of rock glaciers in the future. For
524 example, Boaga et al. (2020) demonstrated that highly conductive anomalies in the subsurface, detected using
525 Frequency Domain Electromagnetometry (FDEM) on a rock glacier, can indicate taliks or areas rich in liquid
526 water.

527 6.2 Advancements and challenges in using MASW for rock glacier characterisation

529
530 Currently, the only two existing examples of MASW used for rock glacier characterisation are those by (i)
531 Guillemot et al. (2021) at the Laurichard rock glacier, France, and (ii) Kuehn et al. (2024) at the Sourdough Rock

ha eliminato: , in SRT studies,

ha eliminato: in the deeper layers, thereby masking

ha eliminato: This behaviour was also reproduced in the synthetic seismic data, where the first-arrival times show typical velocities of liquid phases despite the presence of the ice-bearing layer. ¶

539 Glacier, Alaska. However, in the first study, MASW was used in combination with other techniques to constrain
540 a reference model of the unfrozen conditions for mechanical modelling of the rock glacier. In the second study,
541 the aim of the study was to characterise the first few meters of a debris layer, achieved through a high-resolution
542 seismic acquisition with sub-metre geophone spacing. Therefore, to our knowledge, the study presented here is
543 the first successful application of MASW to derive structural information about rock glaciers, particularly
544 concerning the presence of the frozen layer. Indeed, surface wave analysis in periglacial environments is not
545 straightforward. Surface wave penetration depends on the ability to generate low frequencies, which in turn
546 requires heavy sources. The logistical constraints due to the high-mountain environments might hinder this
547 method. Seismic datasets acquired in these contexts are also very noisy due to the scattering produced by debris
548 and boulders and are highly attenuated, which reflects unclear modal distribution and narrow usable frequency
549 bands. The mountainous environment may also affect data quality due to harsh weather conditions, particularly
550 wind, and complex topography. Furthermore, rock glaciers are often highly heterogeneous media that vary
551 significantly in both space and depth; complex 2D/3D structures could generate dispersion images that are difficult
552 to interpret, which challenges data processing and interpretation. For this reason, the choice of the spatial window
553 for the analysis should be made carefully to achieve the best lateral resolution without compromising spectral
554 resolution. In the case of the Flüela rock glacier, the most natural choice was to perform MASW on the lower and
555 upper halves of the line due to the relatively homogeneous conditions on each side. At locations with greater
556 heterogeneity, selecting a suitable window length may be more difficult.

557 **7 Conclusions**

558 In this study, we highlighted the potential limitations of the SRT technique in accurately imaging ice-bearing
559 layers in high-mountain rock glaciers, a limitation that may also apply to other permafrost environments. This
560 limitation can be particularly relevant when a supra-permafrost water-saturated layer is present, acting as a
561 preferential waveguide for seismic refractions and masking the underlying structures. Moreover, in these
562 environments relatively high travel-time errors can further reduce the visibility of velocity contrasts. Another
563 well-known limitation of the SRT method is its inability to image velocity inversions in the subsurface, such as
564 an unfrozen sediment layer between the ice-bearing layer and the bottom bedrock.

565 As shown in our study, the surface wave analysis has the potential to overcome both of these limitations. Surface
566 waves can be recorded simultaneously with the collection of seismic refraction data as long as low-frequency
567 geophones are used for the acquisition. The analysis of surface wave dispersion in the frequency-wavenumber (f-
568 k) spectrum, followed by the inversion of dispersion curves, enables the retrieval of Vs profiles, which are
569 insensitive to the liquid phase (i.e., they are not affected by the presence of a supra-permafrost water-saturated
570 layer). Moreover, surface wave dispersion analysis can retrieve velocity inversions with depth and resolve the
571 presence of a low-velocity layer between high-velocity layers. This method is also less sensitive to random seismic
572 noise due to scattering and external noise sources, which can interfere with the accurate picking of first-time
573 arrivals in SRT analysis, providing an alternative and reliable solution for the analysis of seismic datasets affected
574 by relatively high noise levels. At the Flüela rock glacier, the dispersion images of the left and right sides of the
575 seismic section look different in terms of frequency content and velocity distribution. The Vs profile produced by
576 the inversion of the right-side dispersion curve clearly shows an increase of velocities at 5 m depth, attributed to
577

ha eliminato: may
ha eliminato: arise in cases where
ha eliminato: exists
ha eliminato: This phenomenon has been observed at
ha eliminato: Flüela rock glacier and has been reproduced through a full-wave forward seismic simulation based on a simplified conceptual model

ha eliminato: -

ha eliminato: the
ha eliminato: in

588 the ice-bearing layer, and a decrease at about 10 m, compatible with the presence of unfrozen sediments. This
589 demonstrates the effectiveness of MASW for imaging the ice-bearing layer and the underlying unfrozen
590 sediments, even in the presence of a supra-permafrost water layer *and with a relatively noisy dataset*, as well as
591 the potential to retrieve the thickness of the ice-bearing layer to support the ERT findings.

592 In the future, we plan to implement the MASW technique across various locations, particularly where we have
593 borehole information on the subsurface stratigraphy, to further validate our findings. Additionally, we aim to
594 enhance the surface wave analysis by incorporating passive seismic data, such as ambient seismic noise captured
595 by seismic nodes, to extend our depth of penetration beneath the ice-rich layer to the seismic bedrock.

596 We recommend using low-frequency geophones and appropriate heavy sources whenever possible when
597 collecting SRT profiles. This approach will enable complementary MASW analysis and provide valuable
598 experience, which will undoubtedly benefit mountain permafrost research and enhance our understanding of ice
599 and water content in mountain permafrost, i.e., mountain permafrost hydrology.

600
601 *Data Availability Statement:* The datasets used to obtain the results presented in this work are available at the
602 open-source repository <https://zenodo.org/uploads/14803564>. Furthermore, the ERT datasets will also be included
603 in the International Database of Geoelectrical Surveys on Permafrost (IDGSP).

604 *Author contributing:* IB and MP developed the concept of the study; MP, JB, and AB collected the data; MP
605 performed the data processing of ERT and SRT data; IB and SJGT performed the MASW analysis; all authors
606 contributed to the interpretation of the results, writing and editing of the manuscript.

607 *Competing interests:* The contact author has declared that none of the authors has any competing interests.

608 *Acknowledgements:* The authors want to thank Dr Marcia Phillips for her valuable help and for pre-reviewing the
609 manuscript.

610
611 *Financial support:* The project “Cold spot” is part of the excellence program: “The Geosciences for Sustainable
612 Development” project (Budget Ministero dell’Università e della Ricerca - Dipartimenti di Eccellenza 2023–2027
613 C93C23002690001).

614 **References**

615 Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation measurements and internal structure of some
616 rock glaciers in Switzerland, *Permafrost and Periglacial Processes*, 13(2), 117–135,
617 <https://doi.org/10.1002/ppp.414>, 2002.

618 Arenson, L., and Jakob, M.: Periglacial geohazard risks and ground temperature increases, *Eng. Geol. Soc.*
619 *Territory*, 1, 233–237, https://doi.org/10.1007/978-3-319-09300-0_44, 2014.

620 Arenson, L.U., and Jakob, M.: Permafrost-related geohazards and infrastructure construction in mountainous
621 environments, *Oxf. Res. Encycl. Nat. Hazard Sci.*, 30, <https://doi.org/10.1093/acrefore/9780199389407.013.292>,
622 2017.

623 Arenson, L. U., and Sego, D. C.: The effect of salinity on the freezing of coarse-grained sands, *Can. Geotech. J.*,
624 43, 325–337, <https://doi.org/10.1139/t06-006>, 2006.

Formattato: SpazioDopo: 0 pt

625 Arenson, L. U., Harrington, J. S., Koenig, C. E. M., and Wainstein, P. A.: Mountain Permafrost Hydrology—A
626 Practical Review Following Studies from the Andes, *Geosciences*, 12, 48,
627 <https://doi.org/10.3390/geosciences12020048>, 2022.

628 Bast, A., Bründl, M., and Phillips, M.: CCAMM - A research program for studying the impacts of climate change
629 on mass movements in alpine regions, *Interpraevent 2024. Conference proceedings*, 37–39, 2024a.

630 Bast, A., Kenner, R., and Phillips, M.: Short-term cooling, drying, and deceleration of an ice-rich rock glacier,
631 *The Cryosphere*, 18, 3141–3158, <https://doi.org/10.5194/tc-18-3141-2024>, 2024b.

632 Bast, A., Pavoni, M., Lichtenegger, M., Buckel, J., and Boaga, J.: The use of textile electrodes for electrical
633 resistivity tomography in periglacial, coarse blocky terrain: a comparison with conventional steel electrodes,
634 *Permafrost and Periglacial Processes*, 36(1), 110-122, <https://doi.org/10.1002/ppp.2257>, 2025.

635 Bauer, K., Moeck, I., Norden, B., Schulze, A., Weber, M., and Wirth, H.: Tomographic P wave velocity and
636 vertical velocity gradient structure across the geothermal site Groß Schönebeck (NE German Basin): relationship
637 to lithology, salt tectonics, and thermal regime, *J. Geophys. Res. Solid Earth*, 115, B08312,
638 <https://doi.org/10.1029/2009JB006895>, 2010.

639 [Binley, A., and Slater, L.: Resistivity and Induced Polarization: Theory and Practice, Cambridge University Press,](#)
640 <https://doi.org/10.1017/9781108685955>, 2020.

641 Blanchy, G., Saneian, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy, an intuitive open source software for
642 complex geoelectrical inversion/modelling, *Computers & Geosciences*, 137, 104423.
643 <https://doi.org/10.1016/j.cageo.2020.104423>, 2020.

644 Boaga, J., Cassiani, G., Strobbia, C., and Vignoli, G.: Mode misidentification in Rayleigh waves: Ellipticity as a
645 cause and a cure. *Geophysics* 78(4): EN17-EN28, <https://doi.org/10.1190/GEO20120194.1>, 2013.

646 Boaga, J., Phillips, M., Noetzli, J., Haberkorn, A., Kenner, R., and Bast, A.: A comparison of frequency domain
647 electro-magnetometry, electrical resistivity tomography and borehole temperatures to assess the presence of ice
648 in a rock glacier, *Frontiers in Earth Science*, 8, 586430, <https://doi.org/10.3389/feart.2020.586430>, 2020.

649 Boaga, J., Pavoni, M., Bast, A., and Weber, S.: Brief communication: On the potential of seismic polarity reversal
650 to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers, *The Cryosphere*, 18,
651 3231–3236, <https://doi.org/10.5194/tc-18-3231-2024>, 2024.

652 Bohlen, T., Kugler, S., Klein, G., and Theilen, F.: 1.5D inversion of lateral variation of Scholte-wave dispersion,
653 *Geophysics*, 69, 330344, <https://doi.org/10.1190/1.1707052>, 2004.

654 Boiero, D., and Socco, L.V.: The meaning of surface wave dispersion curves in weakly laterally varying
655 structures, *Near Surface Geophysics*, 9, 561570, <https://doi.org/10.3997/1873-0604.2011042>, 2011.

656 Bommer, C., Phillips, M., and Arenson, L. U.: Practical recommendations for planning, constructing and
657 maintaining infrastructure in mountain permafrost, *Permafrost and Periglacial Processes*, 21, 97–104,
658 <https://doi.org/10.1002/ppp.679>, 2010.

659 Buckel, J., Mudler, J., Gardeweg, R., Hauck, C., Hilbich, C., Frauenfelder, R., Kneisel, C., Buchelt, S., Blöthe, J.
660 H., Hördt, A., and Bücker, M.: Identifying mountain permafrost degradation by repeating historical electrical
661 resistivity tomography (ERT) measurements, *The Cryosphere*, 17(7), 2919-2940, <https://doi.org/10.5194/tc-17-2919-2023>, 2023.

663 Carcione, J. M., and Picotti, S.: P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous
664 rock properties, *Geophysics*, 71(3), O1-O8, <https://doi.org/10.1190/1.2194512>, 2006.

665 Cicoira, A., Marcer, M., Gärtner-Roer, I., Bodin, X., Arenson, L. U., and Vieli, A.: A general theory of rock
666 glacier creep based on in-situ and remote sensing observations, *Permafrost and Periglacial Processes*, 32(1), 139-
667 153, <https://doi.org/10.1002/ppp.2090>, 2021.

668 Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the seasonal rhythm of rock glacier flow, *Earth and Planetary Science Letters*, 528, 115844, <https://doi.org/10.1016/j.epsl.2019.115844>, 2019.

670 Colombero, C., Di Toro, L., Khosro Anjom, F., Godio, A., and Morra Di Cella, U.: Ambient Seismic Noise and 671 Microseismicity Monitoring of Periglacial Bodies: A Case Study on the Gran Sometta Rock Glacier (NW Italian 672 Alps), *Permafrost and Periglacial Processes*, 0:1–16, <https://doi.org/10.1002/ppp.22862025>, 2025.

673 Day-Lewis, F. D., Johnson, C. D., Singha, K., Lane, J.W.J.: Best practices in electrical resistivity imaging: Data 674 collection and processing, and application to data from Corinna, Maine, EPA Report, Boston, MA, 2008.

675 [De Pasquale, G., Valois, R., Schaffer, N., and MacDonell, S.: Contrasting geophysical signatures of a relict and 676 an intact Andean rock glacier, *The Cryosphere*, 16\(5\), 1579–1596, https://doi.org/10.5194/tc-16-1579-2022, 2022.](#)

677 Duvillard, P. A., Ravanel, L., Marcer, M., and Schoeneich, P.: Recent evolution of damage to infrastructure on 678 permafrost in the French Alps, *Reg. Environ. Change*, 19 (5), 1281–1293, <https://doi.org/10.1007/s10113-019-01465-z>, 2019.

680 Everett, M. E.: *Near-Surface Applied Geophysics*. Cambridge University Press, 681 <https://doi.org/10.1017/CBO9781139088435>, 2013.

682 Foti, S., Lai, C. G., Rix, G. J., and Strobbia, C.: *Surface wave methods for near-surface site characterization*, CRC 683 Press, ISBN: 9781138077737, 2015.

684 Giardino, J.R., Vitek, J.D., and Demorett, J.L.: A model of water movement in rock glaciers and associated water 685 characteristics, in: *Periglacial Geomorphology*, edited by: Dixon, J.C., and Abrahams, A.D., Routledge, London, 686 159–184, <https://doi.org/10.4324/9781003028901-7>, 1992.

687 Glazer, M., Dobiński, W., Marciniak, A., Majdański, M., and Błaszczyk, M.: Spatial distribution and controls of 688 permafrost development in non-glacial Arctic catchment over the Holocene, *Fuglebekken, SW Spitsbergen, 689 Geomorphology*, 358, 107128, <https://doi.org/10.1016/j.geomorph.2020>, 2020.

690 Guillemot, A., Helmstetter, A., Larose, E., Baillet, L., Garambois, S., Mayoraz, R., and Delaloye, R.: Seismic 691 monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modeling, *Geophysical Journal International*, 221 (3), 1719–1735, <https://doi.org/10.1093/gji/ggaa097>, 2020.

693 Guillemot, A., Baillet, L., Garambois, S., Bodin, X., Helmstetter, A., Mayoraz, R., and Larose, E.: Modal 694 sensitivity of rock glaciers to elastic changes from spectral seismic noise monitoring and modelling, *The 695 Cryosphere*, 15, 501–529, <https://doi.org/10.5194/tc-15-501-2021>, 2021.

696 Haeberli, W.: Untersuchungen zur Verbreitung von Permafrost zwischen Flüelapass und Piz Grailetsch 697 (Graubünden), *Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie*, ETH Zurich, Zurich, 698 1975.

699 Haeberli, W., Käab, A., Wagner, S., Mühl, D. V., Geissler, P., Haas, J. N., ... and Wagenbach, D.: Pollen analysis 700 and 14C age of moss remains in a permafrost core recovered from the active rock glacier Murtèl-Corvatsch, Swiss 701 Alps: geomorphological and glaciological implications, *Journal of Glaciology*, 45(149), 1–8, 702 <https://doi.org/10.3189/S0022143000002975>, 1999.

703 Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Käab, A., and Mühl, D. V.: Permafrost creep 704 and rock glacier dynamics, *Permafrost and Periglacial Processes*, 17(3), 189–214, <https://doi.org/10.1002/ppp.561>, 705 2006.

706 Hauck, C.: [Frozen ground monitoring using DC resistivity tomography, *Geophysical Research Letters*, 29\(21\), 12-1-12-4, https://doi.org/10.1029/2002GL014995, 2002.](#)

708 Hauck, C., & Vonder Mühl, D.: [Detecting seasonal changes in permafrost using geophysical methods, *Permafrost and Periglacial Processes*, 14\(3\), 213–222, https://doi.org/10.1002/ppp.451, 2003.](#)

710 Hauck, C., and Kneisel, C.: *Applied Geophysics in Periglacial Environments*, Cambridge University Press., 2008.

ha formattato: Tipo di carattere: Times New Roman, 10 pt, Sottolineato, Colore carattere: Colore personalizzato(RGB(17,85,204))

ha formattato: Sottolineato, Colore carattere: Colore personalizzato(RGB(17,85,204)), Inglese (Regno Unito)

ha formattato: Sottolineato, Colore carattere: Colore personalizzato(RGB(17,85,204)), Inglese (Regno Unito)

711 Hauck, C., Böttcher, M., and Maurer, H.: A new model for estimating subsurface ice content based on combined
712 electrical and seismic data sets, *The Cryosphere*, 5, 453–468, <https://doi.org/10.5194/tc-5-453-2011>, 2011.

713 Herrmann, R. B.: Computer Programs in Seismology, St Louis University, 1987.

714 [Hilbich, C., Fuss, C., Mollaret, C., Hauck, C., and Hoelzle, M.: Multi-decadal geophysical monitoring of](https://doi.org/10.5194/tc-15-5121-2021)
715 [permafrost evolution in mountain terrain – The PACE legacy. The Cryosphere](https://doi.org/10.5194/tc-15-5121-2021), 15(11), 5121–5145,

716 <https://doi.org/10.5194/tc-15-5121-2021>, 2021.

717 Hu, Y., Arenson, L. U., Barboux, C., Bodin, X., Cicoira, A., Delaloye, R., Gärtner-Roer, I., Kääb, A., Kellerer-
718 Pirklbauer, A., Lambiel, C., Liu, L., Pellet, C., Rouyet, L., Schoeneich, P., Seier, G., and Strozzi, T.: Rock Glacier
719 Velocity: An Essential Climate Variable Quantity for Permafrost, *Reviews of Geophysics*, 63, e2024RG000847,
720 <https://doi.org/10.1029/2024RG000847>, 2025.

721 Janke, J.R., Regmi, N.R., Giardino, J.R., and Vitek, J.D.: Rock glaciers, in: *Treatise on Geomorphology*, Elsevier
722 Inc., Amsterdam, The Netherlands, 238–273, <https://doi.org/10.1016/B978-0-444-63369-9.00012-4>, 2013.

723 Jacquemart, M., Weber, S., Chiarle, M., Chmiel, M., Cicoira, A., Corona, C., Eckert, N., Gaume, J., Giacoma, F.,
724 Hirschberg, J., Kaitna, R., Magnin, F., Mayer, S., Moos, C., van Herwijnen, A., and Stoffel, M.: Detecting the
725 impact of climate change on alpine mass movements in observational records from the European Alps, *Earth-
726 Science Reviews*, 258, 104886, <https://doi.org/10.1016/j.earscirev.2024.104886>, 2024.

727 Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers and mountain hydrology: A review,
728 *Earth-Science Reviews*, 193, 66–90, <https://doi.org/10.1016/j.earscirev.2019.04.001>, 2019.

729 Kellerer-Pirklbauer, A., Bodin, X., Delaloye, R., Lambiel, C., Gärtner-Roer, I., Bonnefoy-Demongeot, M., ... and
730 Zumiani, M.: Acceleration and interannual variability of creep rates in mountain permafrost landforms (rock
731 glacier velocities) in the European Alps in 1995–2022, *Environmental Research Letters*, 19(3), 034022,
732 <https://doi.org/10.1088/1748-9326/ad25a4>, 2024.

733 Kenner, R., Phillips, M., Hauck, C., Hilbich, C., Mulsow, C., Bühl, Y., ... and Buchroithner, M.: New insights
734 on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland,
735 *Geomorphology*, 290, 101–113, <https://doi.org/10.1016/j.geomorph.2017.04.011>, 2017.

736 Kenner, R., Noetzli, J., Hoelzle, M., Raetzo, H., and Phillips, M.: Distinguishing ice-rich and ice-poor permafrost
737 to map ground temperatures and ground ice occurrence in the Swiss Alps. *The Cryosphere*, 13(7), 1925–1941,
738 <https://doi.org/10.5194/tc-13-1925-2019>, 2019.

739 Kenner, R., Pruessner, L., Beutel, J., Limpach, P., and Phillips, M.: How rock glacier hydrology, deformation
740 velocities and ground temperatures interact: Examples from the Swiss Alps, *Permafrost Periglac*, 31, 3–14,
741 <https://doi.org/10.1002/ppg.2023>, 2020.

742 Kofler, C., Mair, V., Gruber, S., Todisco, M. C., Nettleton, I., Steger, S., ... and Comiti, F.: When do rock glacier
743 fronts fail? Insights from two case studies in South Tyrol (Italian Alps), *Earth Surface Processes and Landforms*,
744 46(7), 1311–1327, <https://doi.org/10.1002/esp.5099>, 2021.

745 Krainer, K. and Mostler, W.: Hydrology of Active Rock Glaciers: Examples from the Austrian Alps, Arctic,
746 Antarctic, and Alpine Research, 34, 142–149, <https://doi.org/10.1080/15230430.2002.12003478>, 2002.

747 Krainer, K., Mostler, W., and Spötl, C.: Discharge from active rock glaciers, Austrian Alps: a stable isotope
748 approach, *Austrian Journal of Earth Sciences*, 100, 102–112, 2007.

749 Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K., ... and Tonidandel, D.: A 10,300-year-old
750 permafrost core from the active rock glacier Lazau, southern Ötztal Alps (South Tyrol, northern Italy),
751 *Quaternary Research*, 83(2), 324–335, <https://doi.org/10.1016/j.yqres.2014.12.005>, 2015.

752 Kuehn, T., Holt, J. W., Johnson, R., and Meng, T.: Active seismic refraction, reflection, and surface wave surveys
753 in thick debris-covered glacial environments, *Journal of Geophysical Research: Earth Surface*, 129,
754 e2023JF007304, <https://doi.org/10.1029/2023JF007304>, 2024.

755 Kula, D., Olszewska, D., Dobński, W., and Glazer, M.: Horizontal-to-vertical spectral ratio variability in the
756 presence of permafrost, *Geophysical Journal International*, 214, 219–231, <https://doi.org/10.1093/gji/ggy118>,
757 2018.

758 Lerjen, M., Kääb, A., Hoelzle, M., and Haeberli, W.: Local distribution pattern of discontinuous mountain
759 permafrost. a process study at Flüela Pass, Swiss Alps, in: *Proceedings of the 8th International Conference on*
760 *Permafrost*, Zurich, Switzerland, 667-672, ISBN: 90 5809 582 7, 2003.

761 Liu, H., Maghoul, P., and Shalaby, A.: Seismic physics-based characterization of permafrost sites using surface
762 waves, *The Cryosphere*, 16, 1157–1180, <https://doi.org/10.5194/tc-16-1157-2022>, 2022.

763 Mair, V., Zischg, A., Lang, K., Tonidandel, D., Krainer, K., Kellerer-Pirklbauer, A., ... and Böckli, L.: *PermaNET-
764 Permafrost Long-term Monitoring Network. Synthesis report (Vol. 1)*, International Research Society
765 INTERPRAEVENT, ISBN 978-3-901164-14-9, 2011.

766 Noetzli, J., Isaksen, K., Barnett, J., Christiansen, H. H., Delaloye, R., Etzelmüller, B., ... and Phillips, M.: Enhanced warming of European mountain permafrost in the early 21st century, *Nature Communications*, 15(1),
767 1-15, <https://doi.org/10.1038/s41467-024-54831-9>, 2024.

769 Olafsdottir, E. A., Bessason, B., Erlingsson, S., and Kaynia, A. M.: A Tool for Processing and Inversion of MASW
770 Data and a Study of Inter-session Variability of MASW, *Geotechnical Testing Journal*, 47(5), 1006-1025,
771 <https://doi.org/10.1520/GTJ20230380>, 2024.

772 Park, C. B., Miller, R. D., and Xia, J.: Multichannel analysis of surface waves, *Geophysics*, 64(3), 800808,
773 <https://doi.org/10.1190/1.1444590>, 1999.

774 Park, C. B., Miller, R. D., Xia, J., and Ivanov, J.: Multichannel analysis of surface waves (MASW) - active and
775 passive methods, *The Leading Edge*, 26(1), 60-64, <https://doi.org/10.1190/1.2431832>, 2007.

776 Park, C., Richter, J., Rodrigues, R., and Cirone, A.: MASW applications for road construction and maintenance,
777 *The Leading Edge*, 37(10), 724-730, <https://doi.org/10.1190/tle37100724.1>, 2018.

778 Pavoni, M., Carrera, A., and Boaga, J.: Improving the galvanic contact resistance for geoelectrical measurements
779 in debris areas: A case study, *Near Surface Geophysics*, 20(2), 178-191, <https://doi.org/10.1002/nsg.12192>, 2022.

780 Pavoni, M., Boaga, J., Carrera, A., Zuecco, G., Carturan, L., and Zumiani, M.: Brief communication: Mountain
781 permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography
782 time-lapse measurements, *The Cryosphere*, 17, 1601–1607, <https://doi.org/10.5194/tc-17-1601-2023>, 2023a.

783 Pavoni, M., Boaga, J., Wagner, F. M., Bast, A., and Phillips, M.: Characterization of rock glaciers environments
784 combining structurally-coupled and petrophysically-coupled joint inversions of electrical resistivity and seismic
785 refraction datasets, *Journal of Applied Geophysics*, 215, 105097, <https://doi.org/10.1016/j.jappgeo.2023.105097>,
786 2023b.

787 Petersson, N.A., and Sjögren, B.: User's guide to SW4, version 3.0, LLNL-SM-741439 (LLNL-SM-741439),
788 2023.

789 PERMOS 2020: Swiss Permafrost Bulletin 2018/2019. Pellet, C. and Noetzli, J. (eds.), 20 pp.,
790 doi.org/10.13093/permos-bull-2020, 2020.

791 Phillips, M., Mutter, E. Z., Kern-Luetschg, M., and Lehning, M.: Rapid degradation of ground ice in a ventilated
792 talus slope: Flüela Pass, Swiss Alps, *Permafrost and Periglacial Processes*, 20, 1–14, <https://doi.org/10.1002/ppp.638>, 2009.

793 Phillips, M., Buchli, C., Weber, S., Boaga, J., Pavoni, M., and Bast, A.: Brief communication: Combining
794 borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to
795 investigate seasonal changes in ice-rich mountain permafrost, *The Cryosphere*, 17, 753–760,
796 <https://doi.org/10.5194/tc-17-753-2023>, 2023.

797 Picotti, S., Carcione, J. M., Germán Rubino, J., and Santos, J. E.: P-wave seismic attenuation by slow-wave
 798 diffusion: Numerical experiments in partially saturated rocks, *Geophysics*, 72(4), N11-N21,
 799 <https://doi.org/10.1190/1.2740666>, 2007.

800 Pride, S.R., Berryman, J.G., and Harris, J.M.: Seismic attenuation due to wave-induced flow, *Journal of
 801 Geophysical Research*, 109, B01201, <https://doi.org/10.1029/2003JB002639>, 2004.

802 RGIK. Towards standard guidelines for inventorying rock glaciers: baseline concepts (version 4.2.2), IPA Action
 803 Group Rock glacier inventories and kinematics, 13 pp, 2022.

804 Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An open-source library for modelling and inversion in
 805 geophysics, *Computers & Geosciences*, 109, 106-123, <https://doi.org/10.1016/j.cageo.2017.07.011>, 2017.

806 Cambridge, M.: Geophysical inversion with a neighbourhood algorithm: I. Searching a parameter space,
 807 *Geophysical Journal International*, 138(2), 479–494, <https://doi.org/10.1046/j.1365-246X.1999.00876.x>, 1999.

808 Scott, W. J., Sellmann, P., and Hunter, J. A.: Geophysics in the study of permafrost, *Geotechnical and
 809 environmental geophysics*, 1, 355-384, <https://doi.org/10.1190/1.9781560802785.ch13>, 1990.

810 Shi Z., He X., Chen D., and Wang X.: Seismic wave dispersion and attenuation resulting from multiscale wave-
 811 induced fluid flow in partially saturated porous media, *Geophysical Journal International*, 236, 1172–1182,
 812 <https://doi.org/10.1093/gji/ggad475>, 2024.

813 Sjögreen, B., and Petersson, N.A.: A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave
 814 Equation in Second Order Formulation, *Journal of Scientific Computing*, 52(1), 17-48,
 815 <https://doi.org/10.1007/s10915-011-9531-1>, 2012.

816 Socco, L. V., Foti, S. and Boiero, D.: Surface-wave analysis for building near-surface velocity models -
 817 Established approaches and new perspectives, *Geophysics*, 75(5), 75A83–75A102,
 818 <https://doi.org/10.1190/1.3479491>, 2010.

819 Tourei, A., Ji, X., Rocha dos Santos, G., Czarny, R., Rybakov, S., Wang, Z., Hallissey, M., Martin, E. R., Xiao
 820 M., Zhu, T., Nicolsky, D., and Jensen, A.: Mapping Permafrost Variability and Degradation Using Seismic
 821 Surface Waves, Electrical Resistivity, and Temperature Sensing: A Case Study in Arctic Alaska, *Journal of
 822 Geophysical Research: Earth Surface*, 129, e2023JF007352, <https://doi.org/10.1029/2023JF007352>,
 823 2024.

824 Wagner, F.M., Mollaret, C., Günther, T., Kemna, A., and Hauck, C.: Quantitative imaging of water, ice and air in
 825 permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data,
 826 *Geophys. J. Int.*, 219(3), 1866–1875, <https://doi.org/10.1093/gji/ggz402>, 2019.

827 Wathélet, M., Jongmans D., and Ohrnberger, M.: Surface-wave inversion using a direct search algorithm and its
 828 application to ambient vibration measurements, *Near Surface Geophysics*, 2(4), 211-221,
 829 <https://doi.org/10.3997/1873-0604.2004018>, 2004.

830 Wathélet, M.: An improved neighborhood algorithm: Parameter conditions and dynamic scaling, *Geophysical
 831 Research Letters*, 35(9), L09301, <https://doi.org/10.1029/2008GL033256>, 2008.

832 Williams, P. J.: Unfrozen Water Content of Frozen Soils and Soil Moisture Suction, *Géotechnique*, 14, 231–246,
 833 <https://doi.org/10.1680/geot.1964.14.3.231>, 1964.

834 Zhang, L., Wang, S., and Petersson, N.A.: Elastic Wave Propagation in Curvilinear Coordinates with Mesh
 835 Refinement Interfaces by a Fourth Order Finite Difference Method, *SIAM J. Sci. Comp.*, 43(2), A1472-A1496,
 836 <https://doi.org/10.1137/20M1339702>, 2021.

Formattato: Allineato a sinistra, SpazioPrima: 0 pt
ha eliminato: .. An improved neighborhood algorithm: Parameter conditions and dynamic scaling, *Geophysical Research Letters*, 35(9), L09301, <https://doi.org/10.1029/2008GL033256>, 2008

ha formattato: Tipo di carattere: Aptos, 12 pt