

Sedimentary organic carbon dynamics in a glaciated Arctic fjord: tracing contributions of terrestrial and marine sources in the context of Atlantification over recent centuries

Dahae Kim^a, Jung-Hyun Kim^{a,*}, Youngkyu Ahn^a, Matthias Forwick^b, Seung-II Nam^a

^aKorea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea

^bUiT The Arctic University of Norway, Department of Geosciences, NO-9037 Tromsø, Norway

13

14

15

***Correspondence:**

15 Jung-Hyun Kim (jhkim123@kopri.re.kr)

16

17

18

19 *Submitted to Biogeosciences*

20 **Abstract**

21 In this study, we investigated sedimentary organic carbon (OC) dynamics in
22 Kongsfjorden, Svalbard, using three multicores collected during the HH22 and HH23
23 cruises aboard the RV *Helmer Hanssen* in 2022 and 2023. We assessed the relative
24 contributions of petrogenic, soil-derived, plant-derived, and marine OC by applying a
25 four-source apportionment approach based on $\Delta^{14}\text{C}_{\text{org}}$, $\delta^{13}\text{C}_{\text{org}}$, and lignin parameters,
26 including the $(\text{Ad}/\text{Al})_v$ ratio and lignin phenol concentrations, with Monte Carlo (MC)
27 analysis. Age-depth models based on ^{210}Pb and ^{226}Ra data were used to evaluate temporal
28 variations in the accumulation rates (ARs) of sedimentary OC. Our **results** revealed a
29 **marked** increase in marine OC ARs **over the past decades**, closely linked to enhanced
30 Atlantic Water (AW) inflow. **The increasing AW influence in Arctic fjords observed in**
31 **our record points to the potential for continued Atlantification under Arctic warming**, as
32 **retreating sea ice and glaciers lower barriers to AW intrusion, enabling deeper and more**
33 **persistent inflow**. By **placing this recent AW trend into historical context**, our study
34 **provides valuable insights into the biogeochemical consequences of ongoing and future**
35 **climate change in Arctic fjord systems**.

36

37 **Keywords:** Svalbard, Kongsfjorden, organic carbon, stable isotopes, radiocarbon
38 isotopes, lignin phenols

39

40 **1. Introduction**

41 The Arctic region is currently experiencing rapid climate change, with surface air
42 temperatures rising nearly four times faster than the global average since 1979 (Rantanen
43 et al., 2022). This accelerated warming has profound implications for **Arctic** ecosystems
44 and carbon dynamics (Dahlke et al., 2020; Friedlingstein et al., 2020). Arctic fjords, in
45 particular, are recognized for their high sediment accumulation rates, receiving
46 substantial terrestrial input from glacial meltwater and erosion (Winkelmann and Knies,
47 2005). As a result, they function as critical hotspots for global organic carbon (OC) burial
48 and **serve as high-resolution** archives of environmental **change** (Smith et al., 2015;
49 Bianchi et al., 2020). **Given** the extreme rates of warming, Arctic fjords are increasingly
50 vulnerable to climate-**driven transformations that** reflect broader shifts occurring across
51 the Arctic system. **While modern observational records provide valuable but temporally**
52 **constrained insights**, sediment cores and other paleoenvironmental archives are **essential**
53 **for reconstructing long-term trends in** OC dynamics **over the past centuries** (Ingrosso et
54 al., 2025).

55 The **high Arctic** Svalbard archipelago, a key **transitional zone between the North**
56 **Atlantic and Arctic Oceans**, is characterized by **widespread glaciation**, with
57 approximately 57% of its landmass **covered by glaciers** (Nuth et al., 2013). A major driver
58 of **recent** environmental change in **this region** is the enhanced inflow of warm, saline
59 Atlantic Water (AW) **via** the West Spitsbergen Current (WSC), which **strongly** influences
60 the western coast of Spitsbergen, the largest island in the archipelago (De Rovere et al.,
61 2022). This process, termed Atlantification, has intensified **over** recent decades,
62 accelerating the decline of summer sea ice extent, enhancing tidewater glacier melt, and
63 increasing freshwater discharge into fjords (e.g., Jernas et al., 2018; Krajewska et al.,
64 2020; Skogseth et al., 2020). Kongsfjorden, located on the western coast of Spitsbergen,
65 has emerged as a key site for investigating the impacts of recent Arctic warming due to
66 its dynamic oceanographic **regime and sensitivity to AW inflow** (e.g., Tesi et al., 2021).
67 **Although previous studies have characterized** the spatial variability of sedimentary OC in
68 Kongsfjorden using bulk elemental and isotopic parameters (e.g., Winkelmann and Knies,
69 2005; Kuliński et al., 2014; Kumar et al., 2016) molecular-level **assessments** of
70 sedimentary OC sources, espically over **the past centuries**, remain limited.

71 A recent study by Kim et al. (2023) began addressing this gap by analyzing the
72 sources and composition of surface sedimentary OC across eight Svalbard fjords,
73 including Kongsfjorden. Their findings provided valuable insights into the spatial

74 patterns of contemporary OC dynamics. However, the study did not address the
75 progressive shifts in OC dynamics linked to Atlantification since the mid-1990s, an era
76 marked by intensified AW intrusion and ecosystem change. These longer-term
77 oceanographic transformations have been well-documented (e.g., Årthun et al., 2012;
78 Polyakov et al., 2017; Lind et al., 2018; Tesi et al., 2021) but are not yet fully integrated
79 into our understanding of sedimentary OC in Svalbard fjords. The lack of long-term
80 observational and historical data on AW inflow in this region highlights the urgent need
81 for sedimentary records to establish baselines and quantify rates of environmental change
82 (e.g., Cottier et al., 2007; Tesi et al., 2021; Jordà-Molina et al., 2023). Such records are
83 invaluable for distinguishing between natural variability and human-induced changes,
84 providing insights into the mechanisms driving environmental changes in Arctic fjords.

85 Building on the findings of Kim et al. (2023), this study aimed to generate longer-
86 term reconstructed records to fill the current gap in long-term observational and historical
87 data on AW inflow in this region, through the analysis of three multicores collected along
88 a transect from the inner to the outer Kongsfjorden. The primary objectives were to: (1)
89 characterize spatial patterns of sedimentary OC, (2) estimate temporal variations in the
90 relative contributions of sedimentary OC sources over the past centuries, and (3) assess
91 the impact of human-induced climate variability on environmental conditions. To achieve
92 these aims, we applied a multi-proxy approach that integrates bulk geochemical
93 parameters (carbon and nitrogen contents, stable carbon and radiocarbon isotopes),
94 molecular biomarkers (lignin phenols), and sedimentological measurements (bulk dry
95 density, grain size, and surface area). This integrative framework provides critical insights
96 into the coupling between terrestrial and marine systems, and highlights the sensitivity of
97 Arctic fjord environments to both past and ongoing climate change.

98

99 **2. Regional setting**

100 Kongsfjorden and Krossfjorden form the Kongsfjorden–Krossfjorden fjord system,
101 which opens westward into the Kongsfjordrenna, a submarine glacial trough that incises
102 the continental shelf off northwestern Spitsbergen (Fig. 1; Svendsen et al., 2002). This
103 high-latitude fjord complex spans 78°50' to 79°30' N and 11° to 13° E. Kongsfjorden, the
104 southern branch (~20 km long, 4–10 km wide, up to 394 m deep), holds ~29.4 km³ of
105 water, while Krossfjorden, the northern branch (~30 km long, 3–6 km wide, max depth
106 374 m), contains ~25 km³ (Ito and Kudoh, 1997; Svendsen et al., 2002). Kongsfjorden's
107 drainage basin (~1440 km²) is ~80% glaciated (Pramanik et al., 2020), receiving

108 substantial freshwater and sediment from five tidewater glaciers (Kongsvegen,
109 Kronebreen, Kongsbreen, Conwaybreen, and Blomstrandbreen) and the Bayelva River
110 (Zhu et al., 2016; McGovern et al., 2022).

111 The absence of a sill at the mouth of Kongfjorden allows intrusions of warm (~6°C),
112 saline, nutrient-rich AW (Svendsen et al., 2002; Cantoni et al., 2020). These intrusions,
113 driven by variability in the WSC and wind-induced shelf processes, typically enter at
114 intermediate depths (~100–200 m), increasing subsurface temperatures and salinities and
115 altering hydrographic structure (Svendsen et al., 2002; Tverberg et al., 2019; De Rovere
116 et al., 2022). This weakens stratification, enhances vertical mixing, and impacts sea ice
117 dynamics, glacier melting, and biogeochemical cycles. When occurring during the
118 productive season, AW intrusions can also stimulate primary productivity by delivering
119 nutrients to the euphotic zone. During periods of weak AW advection, colder, fresher
120 Arctic Water from the East Spitsbergen Current (ESC) dominates, strengthening
121 stratification and promoting a more Arctic-like regime.

122 In addition to oceanic forcing, glacial meltwater strongly influences fjord
123 hydrography and ecology. Meltwater from tidewater glaciers transports large sediment
124 loads, generating turbid plumes that reduce light penetration and suppress primary
125 productivity, particularly near glacier fronts (Ito and Kudoh, 1997; Svendsen et al., 2002).
126 These inputs also deliver terrestrial organic carbon (OC), including petrogenic OC from
127 eroded bedrock and aged OC from soils. Surface runoff from glacial forefields and
128 surrounding catchments further contributes to sediment and OC input. These effects are
129 sustained by the fjord's long water residence time and limited exchange with the open
130 ocean, which support internal circulation and persistent stratification (Svendsen et al.,
131 2002; Cottier et al., 2005; Tverberg et al., 2019).

132

133 **3. Material and methods**

134 **3.1 Sample collection**

135 Four surface sediment samples were collected from Kongsfjorden and Krossfjorden
136 during the RV *Helmer Hanssen* cruise (HH23) in 2023 (Fig. 1). Three multicores were
137 recovered from Kongsfjorden, Svalbard, at water depths of 81 m (core HH23-1058MUC,
138 hereafter 1058MUC; 45 cm long), 339 m (core HH22-1161MUC, hereafter 1161MUC;
139 44 cm long), and 323 m (core HH22-1159MUC, hereafter 1159MUC; 40 cm long) during
140 the RV *Helmer Hanssen* cruises (HH22 and HH23) in 2022 and 2023 (Fig. 1). The cores
141 were retrieved using a multi-corer (KC Denmark model 72.000, with 6 core liners; 11 cm

142 outer diameter; 10.5 cm inner diameter, and 0.8 m length each). The multicores were
143 sectioned [onboard at 0.5 cm intervals down to 2 cm depth, and at 1 cm intervals thereafter](#)
144 and stored at -20°C . Subsequently, the samples were freeze-dried for further analysis.

145

146 **3.2 Sedimentological analysis**

147 To characterize sedimentary properties associated with OC transport and deposition,
148 we analyzed water content, dry bulk density, grain size distribution, , and specific surface
149 area. Water content was calculated by determining the weight loss of wet bulk samples
150 after freeze-drying. The dry bulk density of homogenized subsamples was measured
151 using an AccuPyc II 1345 pycnometer (Micromeritics, Georgia, USA) at [the Korea Polar](#)
152 [Research Institute \(KOPRI\)](#). The average of three measurements was used for grain
153 density calculations to ensure precision, with an analytical error of less than 0.0032 cm^3
154 observed when employing the 1 cm^3 chamber. Grain size distribution followed the
155 methodology outlined by Ahn et al. (2024). Approximately 130 mg of freeze-dried,
156 unground subsamples were treated with 5 mL of 35% H_2O_2 to oxidize organic matter. A
157 Mastersizer 3000 laser particle size analyzer (Malvern Panalytical B.V., UK) was used
158 for grain size analysis of bulk sediments at KOPRI. Analytical precision was determined
159 as follows: $D(10): 37.5 \pm 0.3 \mu\text{m}$, $D(50): 71.4 \pm 0.2 \mu\text{m}$, $D(90): 104.0 \pm 0.0 \mu\text{m}$. Specific
160 surface area (SA) measurements were conducted following the method described by Kim
161 et al. (2022). Freeze-dried, unground subsamples were first heated at [350°C](#) to remove
162 organic matter and then cooled gradually over 12 hours to room temperature. Prior to
163 analysis, the samples were degassed at 200°C for 2 hours under a constant flow of N_2 gas
164 using a Micromeritics FlowPrep 060 Sample Degas System at the [Korea Basic Science](#)
165 [Institute \(KBSI, Jeonju Center\)](#). Specific SA was measured with N_2 gas as the adsorbate
166 in a He atmosphere, with an analytical precision within $\pm 9\%$. Instrument performance
167 was verified using Carbon Black ($21.0 \pm 0.75 \text{ m}^2/\text{g}$; ISO 9277:2010), a certified reference
168 material provided by Micromeritics.

169

170 **3.3 Radioisotope analysis**

171 To establish sediment chronology and determine sedimentation rates, freeze-dried
172 and ground subsamples ($\sim 5 \text{ g}$) were analyzed for ^{210}Pb and ^{226}Ra activities using gamma
173 spectrometry with a well-type [High-Purity Germanium \(HPGe\)](#) detector at KBSI. The
174 analytical uncertainties averaged $9.6 \pm 2.0 \text{ mBq/g}$ for ^{210}Pb and $2.7 \pm 4.1 \text{ mBq/g}$ for ^{226}Ra .
175 Excess ^{210}Pb ($^{210}\text{Pb}_{\text{ex}}$) activities were calculated by subtracting the ^{226}Ra activity from the

176 total ^{210}Pb ($^{210}\text{Pb}_{\text{tot}}$) activity, following the approach described by Appleby (1998). The
177 apparent sedimentation rate (cm/yr) was calculated from $^{210}\text{Pb}_{\text{ex}}$ with the constant rate of
178 supply (CRS) model (cf. Appleby and Oldfield, 1978) with the following equation:

179

$$180 \text{Apparent sedimentation rate} = -\lambda / b \text{ (cm/yr)} \quad (1)$$

181

182 where λ is the radioisotope decay constant for ^{210}Pb (0.03114 per year), and b is the slope
183 of the regression line.

184

185 **3.4 Bulk elemental and carbon isotope analysis**

186 To determine the content and isotopic composition of OC and to infer its sources,
187 we conducted bulk elemental and carbon isotope analyses, including $\delta^{13}\text{C}_{\text{org}}$ and $\Delta^{14}\text{C}_{\text{org}}$.
188 The bulk elemental and carbon isotopic composition were determined using the
189 procedure based on Kim et al. (2023). In brief, total nitrogen (N_{tot}) and total organic
190 carbon (TOC) contents, as well as carbon isotopic compositions ($\delta^{13}\text{C}_{\text{org}}$), were
191 analyzed using an elemental analyzer (Thermo Electron Corporation Flash EA 2000,
192 Thermo Fisher Scientific, Germany) connected to an isotope ratio mass spectrometer
193 (Finnigan Delta Plus, Thermo Fisher Scientific, Germany). TOC and $\delta^{13}\text{C}_{\text{org}}$ were
194 measured on decalcified samples using 1 M HCl for 24 hours. The $\delta^{13}\text{C}_{\text{org}}$ values were
195 expressed in delta notation (‰) relative to the Vienna Pee Dee Belemnite (VPDB)
196 standard. The analytical precision was within 0.5 wt. % for carbon, 0.5 wt. % for
197 nitrogen, and 0.5‰ for $\delta^{13}\text{C}_{\text{org}}$.

198 Sediment samples were pretreated with HCl and NaOH to remove carbonates and
199 humic acids, followed by drying at 60°C. The alkali-insoluble fraction was combusted
200 at 900°C in sealed ampoules with CuO to produce CO₂, which was then purified and
201 converted to graphite following the method of Vogel et al. (1984). Radiocarbon
202 ($^{14}\text{C}/^{13}\text{C}$) measurements were performed using accelerator mass spectrometry (AMS)
203 at the Center for Applied Isotope Studies (CAIS), University of Georgia, USA. The
204 radiocarbon results were presented in delta notation ($\Delta^{14}\text{C}_{\text{org}}$, ‰), as defined by Stuiver
205 and Polach (1977).

206

207 **3.5 Lignin phenol analysis**

208 To trace terrestrial OC inputs, particularly those derived from vascular plants, we
209 analyzed lignin phenols using CuO oxidation followed by gas chromatography-mass

210 spectrometry. CuO oxidation and subsequent analyses were performed following the
211 procedure described by Kim et al. (2023). In brief, homogenized subsamples (~400 mg)
212 were subjected to alkaline CuO oxidation in the presence of cupric oxide and ammonium
213 iron (II) sulfate hexahydrate. This process was conducted using a Microwave Digestion
214 System (MARS 6 microwave, CEM Corporation, USA) at 150°C for 1.5 hours after
215 adding N₂-purged NaOH solution. After oxidation, a known amount of internal standard
216 (ethyl vanillin) was added to the CuO oxidation products. The resulting products were
217 analyzed at KOPRI using an Agilent 7890B gas chromatograph (GC) coupled to a 5977B
218 Series Mass Selective Detector (MSD) (Agilent Technologies, Santa Clara, CA, USA).
219 Analyses were conducted in single ion monitoring (SIM) mode with a DB1-MS capillary
220 column (30 m × 0.25 mm, 0.25 µm, Agilent J&W). The analytical uncertainty for lignin
221 phenols concentrations, determined through replicate measurements of the same sediment
222 samples, was typically less than 10%. Calibration was performed using commercially
223 available standards.

225 **3.6 Accumulation rates**

226 The accumulation rates (AR) of each OC source in the sediment cores were
227 calculated to investigate OC fluxes over recent timescales. Wet bulk density (WBD) and
228 porosity (PO) were determined using the water content and dry bulk density of the
229 samples, as described by Hamilton (1971). The AR was calculated based on the
230 sedimentation rate (SR), WBD, and PO of each sample, as follows (cf. Gealy, 1971):
231

$$232 AR \left(\frac{g/cm^2}{yr} \right) = SR \times \left[WBD - 1.025 \times \left(\frac{PO}{100} \right) \right] \quad (2)$$

233
234 As the next step, the ARs of bulk OC were calculated using Equation 2, as follows (cf.
235 Nam, 1997):
236

$$237 \text{ Bulk OC AR} = (\text{TOC of sediment sample}/100) \times AR \quad (3)$$

238
239 The ARs of petrogenic, soil-derived, plant-derived, and marine OC were calculated from
240 bulk OC AR using Equation 3, as follows:
241

242 AR of each OC source = (each OC source fraction/100) × bulk OC AR (4)

243

244 4. Results

245 4.1 Sediment properties

246 The depth profiles of water content, dry bulk density, grain size distribution, mean
247 grain size, and specific surface area (SA) for the three cores are shown in Fig. 2. Water
248 content displayed distinct trends across the cores. The highest water content was observed
249 at the outermost site (core 1159MUC), ranging from 30.3% to 47.5%, with an average of
250 $38.5 \pm 3.2\%$. At the middle site (core 1161MUC), water content ranged from 31.7% to
251 42.2%, with an average of $35.3 \pm 2.2\%$. The innermost site (core 1058MUC) exhibited
252 the lowest range, from 19.7% to 32.6%, with an average of $27.9 \pm 2.3\%$.

253 Dry bulk density measurements showed a decreasing trend from the innermost to the
254 outermost core. Core 1058MUC had a dry bulk density ranging from 2.74 g/cc to 2.77
255 g/cc, for core 1161MUC, the range was 2.68 g/cc to 2.80 g/cc. For core 1159MUC, the
256 range was 2.60 g/cc to 2.69 g/cc.

257 In general, silt content was predominant in all three cores, with the highest average
258 observed at the innermost site (core 1058MUC), where it reached $90 \pm 2\%$. Mean grain
259 sizes varied across the sites, with the innermost site (core 1058MUC) showing the largest
260 grain sizes, ranging from 8.8 μm to 13.3 μm . The middle site (core 1161MUC) exhibited
261 a slightly smaller range, from 7.9 μm to 13.0 μm , while the outermost site (core
262 1159MUC) ranged from 8.3 μm to 11.0 μm .

263 Mineral-specific surface area (SA) values decreased with distance from the inner
264 fjord site. Core 1058MUC showed values between 10.0 m^2/g and 16.5 m^2/g , core
265 1161MUC ranged from 8.6 m^2/g to 13.9 m^2/g , and core 1159MUC exhibited the lowest
266 range, from 8.3 m^2/g to 11.0 m^2/g .

267

268 4.2 ^{210}Pb geochronology

269 The depth profiles of total ^{210}Pb ($^{210}\text{Pb}_{\text{tot}}$) and excess ^{210}Pb ($^{210}\text{Pb}_{\text{ex}}$) activities for the
270 two cores are displayed in Fig. 3. A sediment core collected in 2000 by Zaborska et al.
271 (2006) from inner Kongsfjorden, near the core 1058MUC site, showed a sedimentation
272 rate (SR) of $\sim 0.15 \text{ cm/yr}$ based on ^{210}Pb dating. However, core 1058MUC was excluded
273 from ^{210}Pb analysis due to the potential for high sedimentation rates and intense sediment
274 mixing near glacier fronts, which can disrupt sediment stratigraphy and reduce the

275 reliability of age-depth models (e.g., López et al., 2020; Schirone et al., 2022). Core
276 1161MUC exhibited $^{210}\text{Pb}_{\text{tot}}$ values ranging from 89.3 mBq/g to 233.0 mBq/g, while core
277 1159MUC showed a broader range from 22.1 mBq/g to 246.6 mBq/g. For $^{210}\text{Pb}_{\text{ex}}$, core
278 1161MUC had values between 59.6 mBq/g and 207.2 mBq/g, while core 1159MUC
279 displayed a range from 9.3 mBq/g to 216.0 mBq/g. Based on these profiles, the
280 sedimentation rate (SR) was calculated as 0.36 cm/yr at the middle site (core 1161MUC)
281 and 0.12 cm/yr at the outermost site (core 1159MUC).

282

283 **4.3 Bulk elemental and carbon isotopic compositions**

284 The depth profiles of bulk elemental and carbon isotope parameters for the three
285 sediment cores are shown in Fig. 4. The TOC content showed clear trends depending on
286 the core location. Core 1058MUC had values ranging from 0.2 to 0.4 wt.% (average 0.3 ± 0.0 wt.%), while core 1161MUC ranged from 0.9 to 1.5 wt.% (average 1.2 ± 0.1 wt.%),
287 and core 1159MUC exhibited the highest values, ranging from 1.9 to 2.5 wt.% (average
288 2.2 ± 0.2 wt.%). A similar pattern was observed for total nitrogen (N_{tot}) content: core
289 1058MUC ranged from 0.01 to 0.05 wt.%, core 1161MUC ranged from 0.08 to 0.13 wt.%,
290 and core 1159MUC exhibited values from 0.22 to 0.26 wt.%. Previous studies conducted
291 in various Svalbard fjords showed that surface sediments contained a substantial
292 proportion of inorganic nitrogen, up to 70% of the N_{tot} content (Fig. S1A), with a
293 significant correlation between inorganic nitrogen and clay mineral content (Schubert and
294 Calvert, 2001; Winkelmann and Knies, 2005; Knies et al., 2007; Knies and Martinez,
295 2009; Kumar et al., 2016; Kim et al., 2023). Consistent with the strong linear relationship
296 ($R^2 = 0.89$, Fig. S1A) between N_{tot} and organic nitrogen (N_{org}) reported in surface
297 sediments from multiple Svalbard fjords (Kim et al., 2023), our subdataset from
298 Kongsfjorden and Krossfjorden showed an even stronger correlation ($R^2 = 0.96$, Fig.
299 S1B). This high degree of correlation allowed us to estimate N_{org} from N_{tot} using the
300 derived regression equation: $\text{N}_{\text{org}} = 0.7863 \times \text{N}_{\text{tot}} - 0.0096$. Based on this method, the
301 estimated N_{org} content ranged from 0.01 to 0.03 wt.% (average 0.01 ± 0.00 wt.%) for core
302 1058MUC, from 0.05 to 0.09 wt.% (average 0.07 ± 0.01 wt.%) for core 1161MUC, and
303 from 0.14 to 0.17 wt.% (average 0.15 ± 0.01 wt.%) for core 1159MUC. However, it is
304 important to consider that inorganic nitrogen content can vary with sediment type and
305 depth, which may influence the accuracy of the estimated N_{org} . Therefore, although this
306 regression-based method provided a practical approximation, caution was warranted
307

308 when interpreting the estimated N_{org} values, particularly in sediments with heterogeneous
309 stratigraphy or mineral composition.

310 The molar N_{tot}/TOC ratios were lowest in core 1058MUC, varying from 0.04 to
311 0.12 (average 0.06 ± 0.02), followed by core 1161MUC, ranging from 0.06 to 0.11
312 (average 0.07 ± 0.01), and core 1159MUC with values between 0.08 and 0.11 (average
313 0.09 ± 0.01). The N_{org}/TOC ratios showed a similar pattern, being lower than the
314 corresponding N_{tot}/TOC ratios, with core 1058MUC ranging from 0.03 to 0.08, core
315 1161MUC ranging from 0.04 to 0.07, and core 1159MUC ranging from 0.05 to 0.07.

316 The $\delta^{13}C_{org}$ values exhibited a distinct offshore-increasing trend. Core
317 1058MUC displayed values ranging from $-24.6\text{\textperthousand}$ to $-22.5\text{\textperthousand}$ (average $-23.5 \pm 0.5\text{\textperthousand}$).
318 Core 1161MUC values ranged from $-23.9\text{\textperthousand}$ to $-22.3\text{\textperthousand}$ (average $-23.2 \pm 0.3\text{\textperthousand}$), while
319 core 1159MUC showed the most enriched values, ranging from $-23.5\text{\textperthousand}$ to $-22.4\text{\textperthousand}$
320 (average $-22.7 \pm 0.3\text{\textperthousand}$). A similar pattern was observed for $\Delta^{14}C_{org}$ values, which
321 increased from the innermost to the outermost site. Core 1058MUC ranged from $-839.2\text{\textperthousand}$ to $-743.5\text{\textperthousand}$ (average $-793.9 \pm 31.1\text{\textperthousand}$). Core 1161MUC exhibited values from
322 $-555.9\text{\textperthousand}$ to $-405.7\text{\textperthousand}$ (average $-504.9 \pm 44.0\text{\textperthousand}$), and core 1159MUC showed values
323 between $-469.3\text{\textperthousand}$ and $-396.7\text{\textperthousand}$ (average $-433.5 \pm 21.7\text{\textperthousand}$).
325

326 **4.4 Lignin phenol compositions**

327 The depth profiles of the products of alkaline CuO oxidation for the three sediment
328 cores are presented in Fig. 5. Total lignin phenol concentrations, which represent the sum
329 of eight lignin-derived monomeric phenols (vanillyl (V), syringyl (S), and cinnamyl (C)
330 units), normalized to TOC, showed clear variation with depth and location. Core
331 1058MUC had the highest total lignin phenol concentrations, ranging from 0.24 to 0.66
332 mg/gOC (average 0.40 ± 0.12 mg/gOC). Cores 1161MUC and 1159MUC showed similar
333 concentrations, with overlapping ranges and comparable average values. Specifically,
334 core 1161MUC ranged from 0.07 to 0.19 mg/gOC (average 0.14 ± 0.04 mg/gOC), and
335 core 1159MUC ranged from 0.06 to 0.22 mg/gOC (average 0.12 ± 0.04 mg/gOC),
336 indicating no significant difference between the two sites.

337 The S/V and C/V ratios, which reflect the type of organic material derived from
338 vascular plants, followed a consistent pattern, with higher values at the innermost site.
339 For core 1058MUC, the S/V ratio ranged from 0.01 to 0.63, and the C/V ratio ranged
340 from 0.00 to 0.55. At the middle site (core 1161MUC), the S/V ratio ranged from 0.07 to

341 0.36, and the C/V ratio from 0.00 to 0.25, both *decreasing relative to the inner site*. Core
342 1159MUC showed S/V values between 0.13 and 0.49 and C/V values from 0.14 to 0.41,
343 which were higher than those at the middle site but still lower than those at the innermost
344 site.

345 The 3,5-Bd/V ratios, indicative of the extent of lignin degradation, varied
346 significantly *among* the sites. Core 1058MUC *showed* values from 0.06 to 0.55, while
347 core 1161MUC *exhibited a broader* range from 0.47 to 2.59. Core 1159MUC *had* the
348 highest 3,5-Bd/V ratios, ranging from 0.59 to 2.46, indicating more extensive oxidation
349 of lignin-derived compounds at the outer site. *Similarly, the (Ad/Al)v ratios, which*
350 *represent the degree of oxidative alteration of lignin side chains, exhibited a comparable*
351 *trend.* Core 1058MUC showed values between 0.22 and 0.89, while core 1161MUC
352 ranged from 0.40 to 1.60. The highest values were observed in core 1159MUC, ranging
353 from 0.37 to 1.74, further supporting the trend of increased *lignin degradation* in
354 sediments toward the outer fjord.

355

356 **5. Discussion**

357 **5.1 Grain size end-member modelling**

358 Grain-size end-member (EM) modeling identifies representative patterns within a
359 sediment's grain-size distribution, allowing for inferences about the influence of
360 depositional processes based on variations in the relative abundances of each EM (van
361 Hateren et al., 2018). Following the approach used by Ahn et al. (2024) in Wijdefjorden,
362 northern Svalbard, grain-size EM modeling was performed to analyze variations in the
363 grain-size distribution of the three cores investigated in this study. Two candidate Q
364 values were identified (Fig. S2), with R^2 values exceeding 0.6 for each core (Fig. S3).
365 The optimal Q value was selected by comparing the extracted EMs with the analyzed
366 grain-size distribution curves (Fig. S4). From the three cores, a total of eight EMs were
367 extracted (Fig. S5) and subsequently classified into four primary EM groups (Fig. 6A).
368 EM1 primarily consisted of fine-grained sediment (very fine to medium silt, 2–16 μm),
369 with EM1b having a relatively coarser-dominant mode (primary mode: 9.3–15.5 μm , very
370 fine to medium silt: 54.3–59.7%) compared to EM1a (primary mode: 8.2–9.3 μm , very
371 fine to medium silt: 62.2–66.8%). In contrast, EM2 was dominated by coarser grains
372 (medium to very coarse silt, 8–63 μm , 66.4%), with a coarse primary mode of 29.3 μm .
373 Notably, EM3 exhibited a wide range of grain sizes, including both fine and coarse

374 particles, with modes at 9.3 and 81.2 μm .

375 The EM results revealed that EM1a and EM1b, primarily consisting of the finest
376 grains, were present in all three sediment cores (Fig. 6B). These fine-grained sediments
377 are generally deposited through size-dependent settling of suspended particles from
378 meltwater and/or glaciofluvial discharge (Ó Cofaigh and Dowdeswell, 2001; Forwick and
379 Vorren, 2009; Elverhøi et al., 1980). The flocculation in seawater further promotes their
380 settling (Meslard et al., 2018), facilitating the transport of both EM1a and EM1b from the
381 inner to the outer fjord. The distinction between EM1a and EM1b deposition is influenced
382 by the strength of meltwater discharge, with stronger discharge suspending and
383 transporting relatively coarser particles found in EM1b (Ahn et al., 2024). In contrast,
384 coarse-grained sediments, primarily represented by EM2, were observed only at the
385 innermost site (core 1058MUC), situated closest to the glacier front (Fig. 6B). This area
386 is likely influenced by bottom currents driven by subglacial meltwater outflow (Meslard
387 et al., 2018; Torsvik et al., 2019). The scarcity of fine particles in EM2 reflects the
388 winnowing effect of these currents, which preferentially remove finer material and leave
389 behind coarser sediments (Vorren et al., 1984). Such glacially influenced environments
390 are typically characterized by poorly sorted sediments (Hass, 2002), and strong bottom
391 currents (Ahn et al., 2024) that promote coarse-grained deposition near glacier fronts. On
392 the other hand, EM3 contains both fine and coarse particles, with a coarse mode reaching
393 81.2 μm , significantly larger than the principal mode of EM2. EM3 was found exclusively
394 in the middle core (1161MUC), located at the central site of Kongsfjorden. This
395 distribution corresponds to the presence of multiple sediment sources in the mid-fjord
396 region, where fluvial inputs from land-terminating glaciers, such as the Bayelva River
397 near Ny-Ålesund, deliver mixed sediments and terrestrial OC (D'Angelo et al., 2018;
398 Husum et al., 2019).

399

400 **5.2 Source of sedimentary organic carbon: bulk parameters**

401 The TOC values of the three sediment cores varied significantly along
402 Kongsfjorden, with the innermost core (1058MUC) having the lowest TOC (average 0.3
403 ± 0.0 wt.%), and the outermost core (1159MUC) the highest (average 2.2 ± 0.2 wt.%)
404 (Fig. 4). This variation was also reflected in the TOC/SA ratio (Figs. 7A-7B), which
405 indicates OC loading and serves as a measure of OC preservation efficiency (Keil et al.,
406 1994; Mayer et al., 1994; Stein et al., 2004; Zonneveld et al., 1997). Values between 0.4

407 and 1.0 suggest a balance between OC supply and degradation (Keil et al., 1997).
408 However, values below 0.4 are observed in the innermost core. In Kongsfjorden,
409 D'Angelo et al. (2018) reported that lithogenic material accounted for the dominant
410 sediment fraction (64–78%), and Svendsen et al. (2002) highlighted significant deposition
411 of mineral material in the inner fjord. Therefore, the lower OC loading in the innermost
412 core (1058MUC) is likely attributed to the deposition of coarse-grained terrestrial
413 minerals (see Fig. 6B) that dilute the OC content. In contrast, higher OC loading in the
414 middle and outer cores, with values greater than 1.0, suggests enhanced OC preservation
415 efficiency, likely due to adsorption onto fine-grained minerals (see Fig. 6B) that reduce
416 degradation (Keil et al., 1994; Mayer, 1994; Blair and Aller, 2012).

417 Similar to TOC, both N_{tot} and N_{org} values were highest in the outermost core
418 (1159MUC) compared to the middle (1161MUC) and innermost (1058MUC) cores (Fig.
419 7C; see also Fig. 4). TOC and N (both N_{tot} and N_{org}) contents in all three cores largely
420 overlapped with those reported for surface sediments from Kongsfjorden and
421 Krossfjorden (Kim et al., 2023 and references therein). In contrast, small drifted ice
422 samples containing ice-rafted debris (IRD) from the fjords had lower TOC (0.1 ± 0.0
423 wt.%) and N_{tot} (0.04 ± 0.01 wt.%) contents, whereas coal samples from Kongsfjorden
424 exhibited significantly higher values (TOC: 50.8 ± 11.1 wt.%; N_{tot} : 0.86 ± 0.04 wt.%).
425 The N_{tot}/TOC and N_{org}/TOC ratios were also highest in the outermost core (Fig. 7D; see
426 also Fig. 4). Additionally, the $\delta^{13}C_{org}$ values were more enriched in the outermost core
427 (Fig. 7D; see also Fig. 4), suggesting an increased contribution of marine OC to
428 sedimentary OC toward the outer fjord. Notably, the $\delta^{13}C_{org}$ values from all three cores
429 fell within the range observed in the small drifted ice containing IRD samples ($-21.8 \pm$
430 2.1 ‰), coal samples (-24.4 ± 1.6 ‰), and surface sediments from Kongsfjorden (-23.0
431 ± 0.7 ‰). However, the $\delta^{13}C_{org}$ values of most surface sediments and small drifted ice
432 containing IRD samples from Krossfjorden were higher than those from Kongsfjorden,
433 generally falling outside the range observed in all three cores. This difference may be
434 associated with the Quaternary marine deposits exposed in Krossfjorden (Fig. S6,
435 Dallmann and Ellevold, 2015), which could supply older, ^{13}C -enriched marine-derived
436 OC. These observations suggest that the contribution of Krossfjorden to sedimentary OC
437 in all three cores was minimal. The $\Delta^{14}C_{org}$ values of the innermost core (1058MUC) were
438 more depleted than those of the other two cores (Figs. 7E-7F). Similarly, small drifted ice
439 containing IRD and surface sediment samples collected near the marine-terminating
440 glacier front in Kongsfjorden exhibited similarly depleted values. Notably, the $\Delta^{14}C_{org}$

441 values of the other two cores fell between those of the glacier-front samples and those
442 from the outer fjord. These results align with Kim et al. (2023), who suggested that the
443 significant depletion of $\Delta^{14}\text{C}_{\text{org}}$ in the surface sediments of Svalbard fjords indicates that
444 recently fixed terrestrial and marine OC alone cannot account for the sedimentary OC.
445 Instead, a substantial amount of old OC, likely from petrogenic and soil-derived sources,
446 contributes to the sedimentary OC in Kongsfjorden.

447 The relationship between TOC and mean grain size showed no clear correlation,
448 with the sediments predominantly consisting of silt fractions (Fig. S7A). Similarly, TOC
449 content did not exhibit a distinct relationship with sediment sorting values (Fig. S7B).
450 The sediments were generally poorly sorted, with high silt content, a characteristic feature
451 of glacial environments, where deposits are **typically** incompletely sorted due to the **non-**
452 **selective** nature of glacial transport (Singh et al., 2019). **The consistently poor sorting**
453 **observed across all morphological zones, along with the absence of correlation between**
454 **TOC and mean grain size, suggests a glacier-fed depositional system influenced by**
455 **variable hydrodynamic conditions driven by meltwater discharge.** At the middle site, the
456 presence of EM3 indicates a contribution of terrestrial material via fluvial processes.
457 However, the proportion of EM3 was relatively low ($18.2 \pm 14.9\%$) compared to EM1a
458 and EM1b ($81.8 \pm 14.9\%$; Fig. 6), suggesting that glacial meltwater remains the dominant
459 sediment delivery mechanism at this site, with only a minor influence from surface runoff
460 **processes.** Overall, the sedimentary characteristics of Kongsfjorden indicate a fjord
461 environment significantly influenced by glacial input. The repeated cycles of glacial
462 advance and retreat have resulted in the accumulation of sediments with varied grain sizes
463 and sorting patterns, reflecting the dynamic and complex interplay between terrestrial and
464 marine OC processes within this glaciated fjord system.

465

466 **5.3 Source of sedimentary organic carbon: lignin phenol parameters**

467 In a previous study conducted in Svalbard fjords, Kim et al. (2023) defined two OC
468 components (petrogenic OC and biogenic OC) to identify the source of ^{14}C -depleted OC
469 in sedimentary OC. To further investigate the contributions of biogenic OC sources to
470 Kongsfjorden, we analyzed lignin phenols obtained through alkaline CuO oxidation.
471 Lignin phenols serve as valuable terrestrial biomarkers because they are exclusively
472 synthesized by terrestrial higher plants (Hedges and Mann, 1979; Goñi et al., 2005). The
473 ratios of S/V and C/V are used to evaluate the relative contributions of four components:

474 non-woody angiosperms, woody angiosperms, non-woody gymnosperms, and woody
475 gymnosperms (Hedges and Mann, 1979; Goñi and Hedges, 1995). In the three
476 Kongsfjorden cores, lignin phenols primarily consisted of a mixture of non-woody
477 gymnosperm OC with inputs from gymnosperm wood-derived tissues, along with some
478 contributions from non-woody angiosperms, consistent with previous studies (Fig. 8A).
479 The strong gymnosperm signal observed in both surface and downcore sediments, despite
480 the current dominance of angiosperm vegetation in the Svalbard archipelago, suggests a
481 substantial contribution of OC from older terrestrial sources, such as permafrost-stored
482 material. This implies that the terrestrial OC preserved in these sediments likely reflects
483 inputs from past vegetation communities, rather than representing solely contemporary
484 plant cover. Lignin phenol concentrations were highest in the innermost core (1058MUC)
485 compared to the other two cores (Fig. 8B; see also Fig. 5), and fell within the range
486 observed in surface sediments from Svalbard fjords, including Kongsfjorden and
487 Krossfjorden (Figs. S8A and S9A).

488 3,5-Bd is primarily produced during soil degradation processes, leading to its
489 enrichment in soils (e.g., Prahl et al., 1994; Goñi et al., 2000; Houel et al., 2006; Otto and
490 Simpson, 2006). As a result, the 3,5-Bd/V ratio is widely used to assess the extent of
491 lignin degradation and to trace inputs of soil-derived OC to aquatic systems (e.g., Prahl
492 et al., 1994; Goñi et al., 2000; Houel et al., 2006; Otto and Simpson, 2006). Similarly, the
493 (Ad/Al)v ratio reflects lignin oxidation, as the conversion of aldehyde functional groups
494 into acidic phenols through propyl side-chain modification serves as a key indicator of
495 lignin degradation in sedimentary organic matter (e.g., Hedges and Ertel, 1982; Goñi and
496 Hedges, 1992; Otto and Simpson, 2006). (Ad/Al)v ratios below 0.3 typically indicate
497 relatively fresh vascular plant detritus, whereas values exceeding 0.5 are generally
498 associated with extensively altered soils with significantly depleted ^{14}C signatures (e.g.,
499 Hedges and Ertel, 1982; Goñi and Hedges, 1992; Otto and Simpson, 2006). Among the
500 three cores, both 3,5-Bd/V and (Ad/Al)v ratios were lowest in the innermost core
501 (1058MUC) (Figs. 8C and 8D; see also Fig. 5). Notably, coal samples also exhibited
502 relatively low values, averaging 0.48 for the 3,5-Bd/V ratio and 0.49 for the (Ad/Al)v
503 ratio, similar to those of the innermost core (1058MUC). Both the 3,5-Bd/V and (Ad/Al)v
504 ratios were higher in the outermost core (1159MUC) compared to the middle (1161MUC)
505 and innermost (1058MUC) cores, indicating a higher degree of lignin degradation toward
506 the outer fjord. This trend likely reflects cumulative degradation processes occurring
507 during offshore transport rather than differences in terrestrial OC sources alone. Notably,

508 the inter-site variation was more pronounced for the 3,5-Bd/V ratio than for the (Ad/Al)v
509 ratio.

510 Previously, Kim et al. (2023) suggested that biogenic OC includes not only recently
511 fixed terrestrial and marine biomass but also pre-aged OC from soils, which can be
512 transported to fjords through glacial erosion and surface runoff. Therefore, we examined
513 the lignin phenol concentrations and (Ad/Al)v ratios of these biogenic OC sources—
514 plant-derived, soil-derived, and marine OC (Fig. S8). Most core sediments exhibited
515 lower lignin phenol concentrations and (Ad/Al)v ratios compared to the average values
516 of soils collected in the Ny-Ålesund and Longyearbyen regions. Thus, the soil values
517 encompass the range observed in all three cores and most surface sediments collected in
518 Svalbard fjords. However, surface sediments from Krossfjorden exhibited distinct
519 (Ad/Al)v ratios and $\delta^{13}\text{C}_{\text{org}}$ values, which fell outside the soil range. This difference may
520 result from the complex bedrock types present in Svalbard fjords (Fig. S6), which can
521 influence OC characteristics (Kim et al., 2023). These findings suggest that the
522 contribution of Krossfjorden to the sedimentary OC in all three cores was limited.

523

524 **5.4 Four OC source apportionments**

525 In this study, we adopted the OC source classification concept from the surface
526 sediment study in Svalbard fjords (Kim et al., 2023) and defined four distinct sedimentary
527 OC sources: petrogenic, soil-derived, plant-derived, and marine OC. To estimate the
528 relative proportions of these OC sources, we applied a four-source apportionment
529 approach based on $\Delta^{14}\text{C}_{\text{org}}$, $\delta^{13}\text{C}_{\text{org}}$, and lignin parameters such as the (Ad/Al)v ratio and
530 lignin phenol concentrations, using a Monte Carlo (MC) analysis. End-member values
531 for each OC source, as reported in Kim et al. (2023; **Table S1**), were used in the analysis.

532 Firstly, similar to the previous study by Kim et al. (2023), the relative proportions
533 of the four OC sources were calculated using Method 1, based on $\Delta^{14}\text{C}_{\text{org}}$, $\delta^{13}\text{C}_{\text{org}}$, and the
534 (Ad/Al)v ratio (Fig. 9). The petrogenic OC fraction was highest in core 1058MUC,
535 located at the innermost site, **with an average of $79.2 \pm 3.4\%$** . This was followed by core
536 1161MUC (**average $44.7 \pm 5.7\%$**) and core 1159MUC (**average $37.8 \pm 5.0\%$**). In contrast,
537 marine OC fractions were highest in core 1159MUC at the outermost site (**average 44.0**
538 **$\pm 5.2\%$**), followed by core 1161MUC (**average $38.4 \pm 7.8\%$**) and core 1058MUC (**average
539 $19.0 \pm 3.9\%$**).

540 Secondly, we calculated the relative proportions of the four OC sources using
541 Method 2, which is based on $\Delta^{14}\text{C}_{\text{org}}$, $\delta^{13}\text{C}_{\text{org}}$, and lignin phenol concentrations. This

542 method was chosen because previous studies used lignin phenol concentrations for source
543 mixing models, assuming a value of 0 for marine phytoplankton (Tesi et al., 2016;
544 Pempkowiak et al., 2020). To validate this approach, we first applied Method 2 to surface
545 sediments previously investigated by Kim et al. (2023). Overall, the estimated relative
546 contributions of the four OC sources were within a similar range to those reported in the
547 earlier study, and the spatial distribution pattern exhibited similar trends between both
548 approaches (Fig. S10). For the three sediment cores in this study, the results from Method
549 2 also were consistent with those from Method 1. Petrogenic OC fractions were highest
550 in core 1058MUC, located at the innermost site (average $79.2 \pm 3.3\%$), followed by cores
551 1161MUC (average $46.6 \pm 4.4\%$) and 1159MUC (average $40.7 \pm 1.7\%$) (Fig. 9). In
552 contrast, marine OC fractions were greatest in core 1159MUC at the outermost site
553 (average $50.4 \pm 4.7\%$), followed by core 1161MUC (average $42.9 \pm 5.2\%$) and core
554 1058MUC (average $16.5 \pm 3.2\%$). These findings suggest that Method 2 did not
555 significantly alter the trends observed from Method 1. However, it is important to note
556 that some surface sediments from Kongsfjorden and Krossfjorden exhibited (Ad/Al)v
557 ratios outside the range of soil values (Fig. S9B). In contrast, the lignin phenol
558 concentration data were well within the expected range for soils (Fig. S9A). Given this,
559 Method 2 appears to be a more appropriate approach than Method 1 for assessing the
560 relative proportions of the four OC sources in the Svalbard fjords.

561 Nonetheless, both methods showed that the plant-derived OC fraction contributed
562 minimally compared to dominant sources such as petrogenic and marine OC. However,
563 soil-derived OC contributions were higher in the middle (1161MUC) and outer
564 (1159MUC) cores and than in the innermost core (1058MUC), suggesting an additional
565 input likely associated with surface runoff. This is supported by the presence of EM3 in
566 core 1161MUC (Fig. 6B), indicative of significant input of both fine and coarse particles,
567 a feature not observed in the other two cores. Given that core 1161MUC is situated closer
568 to the Byelva River (Fig. 1), the occurrence of EM3 at this site likely reflects the localized
569 influence of surface runoff. This runoff facilitates the transport of terrestrial material,
570 especially soil-derived OC, into the fjord via riverine discharge from the adjacent
571 catchment. This mechanism is consistent with previous studies, which have shown that
572 surface runoff significantly influences the biogeochemical composition of particulate and
573 dissolved matter in Kongsfjorden (e.g., Hop et al., 2002; Svendsen et al., 2002). These
574 inputs are known to deliver high loads of suspended sediments, nutrients, and terrigenous
575 OC, especially during the melt season when hydrological connectivity between the land

576 and fjord is enhanced. The proximity of core 1161MUC to the Byelva River mouth
577 therefore increases its susceptibility to these runoff-derived materials, which can be
578 subsequently advected toward the outer fjord.

579

580 **5.5 Potential future implication on carbon dynamics**

581 The bulk OC AR was $0.47 \pm 0.06 \text{ g/cm}^2/\text{yr}$ at the middle site (core 1161MUC),
582 higher than the outermost site (core 1159MUC), which had a value of $0.26 \pm 0.03 \text{ g/cm}^2/\text{yr}$
583 (data not shown). The ARs of the four OC sources, determined by both Methods 1 and 2,
584 are presented in Fig. 10. For core 1161MUC, petrogenic OC ARs were similar between
585 Method 1 ($0.18 \pm 0.03 \text{ g/cm}^2/\text{yr}$) and Method 2 ($0.18 \pm 0.02 \text{ g/cm}^2/\text{yr}$). Among biogenic
586 sources, marine OC had the highest ARs ($0.15 \pm 0.03 \text{ g/cm}^2/\text{yr}$ for Method 1; 0.17 ± 0.03
587 $\text{g/cm}^2/\text{yr}$ for Method 2), two to four times higher than soil-derived OC and 20–70 times
588 higher than plant-derived OC. Similarly, for core 1159MUC, petrogenic OC ARs were
589 consistent across both methods ($0.05 \pm 0.01 \text{ g/cm}^2/\text{yr}$), with marine OC showing the
590 highest biogenic ARs ($0.05 \pm 0.01 \text{ g/cm}^2/\text{yr}$ for Method 1; $0.06 \pm 0.01 \text{ g/cm}^2/\text{yr}$ for
591 Method 2), exceeding those of soil-derived and plant-derived OC.

592 For all petrogenic and biogenic OC sources, ARs were higher at the middle site
593 (core 1161MUC) than at the outermost site (core 1159MUC) (Fig. 10). This spatial
594 difference likely reflects the middle site's closer proximity to glacial and fluvial sediment
595 inputs, including the tidewater glaciers (e.g., Kronebreen and Kongsbreen) and the
596 Bayelva River near Ny-Ålesund. Its location may have facilitated more efficient delivery
597 and deposition of sediments and associated OC, resulting in higher ARs. Notably, marine
598 OC ARs at core 1161MUC showed an increasing trend since approximately the 1970s,
599 while petrogenic OC ARs decreased over the same period. In contrast, no clear temporal
600 trends were observed in either petrogenic or marine OC ARs at the outermost site (Fig.
601 S11). This increase in marine OC ARs at the middle site (Fig. 11A) coincides with a shift
602 in sediment composition, characterized by increasing relative abundances of EM1b (Fig.
603 11B), suggesting intensified meltwater discharge from marine-terminating glaciers. This
604 discharge was likely driven by increased AW inflow, which enhanced basal melting of
605 tidewater glaciers. Being situated closer to these glaciers, the middle site appears more
606 sensitive to variability in AW inflow. Since increased AW inflow to fjords reduces sea
607 ice cover and delivers nutrients that enhance marine productivity, this process supports
608 greater marine OC burial. In contrast, the outermost site, under more stable AW influence,
609 exhibited relatively consistent marine OC burial over time. Additionally, its lower SRs, a

610 consequence of its greater distance from the glacier front, may obscure short-term
611 variations in OC deposition. Overall, the differing trends in marine OC ARs between the
612 middle and outermost sites likely reflect differences in hydrographic and sedimentary
613 dynamics, with the middle site more responsive to glacial and oceanographic variability
614 associated with AW inflow.

615 The rise in marine OC ARs coincides with broader climatic and environmental
616 changes in the Svalbard region. Since the 1970s, surface air temperatures in Ny-Ålesund
617 have increased at a rate four times faster than the global average from 1975 to 2014 (Fig.
618 11C, Wei et al., 2016). Concurrently, the Barents Sea summer sea ice extent has declined
619 rapidly (Fig. 11D, NSIDC; National Snow and Ice Data Center,
620 http://nsidc.org/data/seaice_index), and the Blomstrandbreen glacier has experienced
621 significant retreat (Fig. 11D, Burton et al., 2016). These changes suggest a strong link
622 between climate warming and shifts in Kongsfjorden's carbon dynamics. Notably, during
623 the same period, integrated temperatures (50 to 300 m water depth) from the transect
624 across 78°N, in the core of the WSC in western Svalbard, also showed an increasing trend
625 (Fig. 11C, Tesi et al., 2021). This suggests a connection between the observed warming
626 of AW and broader regional climatic and environmental changes. Longer-term
627 environmental reconstructions support this connection, with studies reporting increased
628 AW inflow and associated productivity in Kongsfjorden in the early 20th century (Husum
629 et al., 2019; Tesi et al., 2021). Ingrosso et al. (2025) also documented rapid greening of
630 western Svalbard during the same period, which they attributed to extremely low sea ice
631 extent, driven primarily by the strong advection of warm AW into Arctic fjords. This
632 historical context highlights the likely influence of enhanced AW inflow on the rise in
633 marine OC ARs recorded at the middle site (core 1161MUC) since the 1970s, with
634 increased marine productivity and OC burial contributing to this rise while driving the
635 concurrent decline in petrogenic OC ARs.

636

637 **6. Conclusions**

638 In this study, we investigated three multicores collected from Kongsfjorden,
639 Svalbard, to explore the spatial and temporal dynamics of sedimentary OC over recent
640 centuries. Bulk parameter analyses indicate that Kongsfjorden was the primary source of
641 OC in the sediments, with minor contributions from Krossfjorden. Additionally, a
642 substantial amount of old OC, likely derived from petrogenic and soil sources, was
643 present in the sedimentary OC in Kongsfjorden. To estimate the relative proportions of

644 OC sources, we applied a four-source apportionment approach based on $\Delta^{14}\text{C}_{\text{org}}$, $\delta^{13}\text{C}_{\text{org}}$,
645 and lignin parameters, including the (Ad/Al)v ratio and lignin phenol concentrations,
646 using MC analysis. Our results revealed that petrogenic OC fractions were highest at the
647 innermost site, while marine OC fractions dominated at the outermost site. The plant-
648 derived OC fraction contributed minimally compared to petrogenic and marine OC, while
649 soil-derived OC was more substantial at the middle and outermost sites, suggesting
650 enhanced input from surface runoff. For all OC sources, ARs were higher at the middle
651 site than at the outermost site. Notably, marine OC ARs at the middle site showed an
652 increasing trend since approximately the 1970s, likely reflecting enhanced AW inflow,
653 which boosted marine productivity and OC burial. These findings underscore the
654 significant role of AW inflow in reshaping carbon dynamics in Svalbard fjords over the
655 past few decades and highlight the sensitivity of Arctic fjords to climate shifts. **More**
656 **importantly, our study suggests that the marked increase in AW inflow to Kongsfjorden**
657 **during the 20th century likely occurred in two distinct phases, around the early 1900s and**
658 **the 1970s. This pattern reflects a two-step process driven by complex and not yet fully**
659 **understood mechanisms. To better constrain the timing, drivers, and consequences of AW**
660 **variability, we emphasize the need for future research that integrates high-resolution**
661 **climate modeling with sediment core records from Svalbard. Such an integrated approach**
662 **will be essential for improving projections of climate and carbon cycle feedbacks in the**
663 **rapidly warming Arctic. Given their role as critical OC reservoirs, Arctic fjords may**
664 **function as both sources and sinks of carbon in a warming climate, emphasizing the need**
665 **for further research to assess the long-term consequences of climate-induced changes on**
666 **regional carbon cycling.**

667

668 **Data availability**

669 All the primary data related to this article are available online at Korea Polar Data
670 Center (<http://dx.doi.org/doi:10.22663/KOPRI-KPDC-00002831>) or upon request to the
671 corresponding author (Jung-Hyun Kim, jhkim123@kopri.re.kr).

672

673 **Supplement**

674 The supplementary material related to this article is published together with the
675 article.

676

677 **Author contributions**

678 D.K. and J.-H.K. designed the study, interpreted the majority of the data, and wrote
679 the manuscript. Y.K.A., M.F., and S.I.N. contributed to sample acquisition. D.K.
680 conducted the biomarker analyses, while Y.K.A. performed the grain size analyses and
681 the end-member modeling. All authors commented on the manuscript and contributed to
682 its revision.

683

684 **Competing interest**

685 The authors declare that they have no conflict of interest.

686

687 **Acknowledgements**

688 We sincerely thank the two anonymous reviewers for their insightful and
689 constructive comments, which have significantly improved the quality of the manuscript.
690 We thank the captains and crews of R/V *Helmer Hanssen* for their support at sea during
691 sediment core retrievals. We also extend our gratitude to Y. Son and Y. Joe for their
692 analytical assistance in the laboratory at KOPRI.

693

694 **Financial support**

695 This study was fully supported by grants from the National Research Foundation of
696 Korea (NRF), funded by the Ministry of Science and ICT ([RS-2025-24683148](#); KOPRI-
697 [PN25010](#)).

698

699 **References**

700 Ahn, Y., Joe, Y. J., Jang, K., Kim, J.-H., Son, Y. J., Forwick, M., Hong, S., Nam, S.-I.:
701 Post-glaciation depositional changes in Wijdefjorden, northern Svalbard, using
702 grain-size end-member modelling. *Mar. Geol.*, 472, 107306,
703 <https://doi.org/10.1016/j.margeo.2024.107306>, 2024.

704 Appleby, P. G.: Dating recent sediments by ^{210}Pb : problems and solutions. Seminar on
705 Dating of sediments and determination of sedimentation rate, pp p. 7–24,
706 <https://inis.iaea.org/records/vtsmx-fvz88>, 1998.

707 Appleby, P. G., Oldfield, F.: The calculation of lead-210 dates assuming a constant rate
708 of supply of unsupported ^{210}Pb to the sediment. *Catena*, 5, 1–8,
709 [https://doi.org/10.1016/S0341-8162\(78\)80002-2](https://doi.org/10.1016/S0341-8162(78)80002-2), 1978.

710 Årthun, M., Eldevik, T., Smedsrød, L., Skagseth, O., Ingvaldsen, R.: Quantifying the
711 influence of Atlantic heat on Barents Sea ice variability and retreat, *J. Clim.*, 25,
712 4736–4743, <http://doi.org/10.1175/JCLI-D-11-00466.1>, 2012.

713 Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., Galy, V.: Centers of
714 organic carbon burial and oxidation at the land-ocean interface, *Org. Geochem.*,
715 115, 138–155, <https://doi.org/10.1016/j.orggeochem.2017.09.008>, 2017.

716 Bianchi, T. S., Cui, X., Blair, N. E.: Fjords as aquatic critical zones (ACZs), *Earth Sci.
717 Rev.*, 203, 103145, <https://doi.org/10.1016/j.earscirev.2020.103145>, 2020.

718 Blair, N. E., and Aller, R. C.: The fate of terrestrial organic carbon in the marine
719 environment. *Annu. Rev. Mar. Sci.*, 4, 401–423, <https://doi.org/10.1146/annurev-marine-120709-142717>, 2012.

720 Brogi, S. R., Jung, J. Y., Ha, S.-Y., and Hur, J.: Seasonal differences in dissolved organic
721 matter properties and sources in an Arctic fjord: Implications for future conditions,
722 *Sci. Total Environ.*, 694, 133740, <https://doi.org/10.1016/j.scitotenv.2019.133740>,
723 2019.

724 Burton, D. J., Dowdeswell, J. A., Hogan, K. A., Noormets, R.: Marginal fluctuations of a
725 Svalbard surge-type tidewater glacier, Blomstrandbreen, since the Little Ice Age:
726 A record of three surges, *Arctic, Antarctic, and Alpine Research*, 48, 411–426,
727 <http://doi.org/10.1657/AAAR0014-094>, 2016.

728 Cantoni, C., Hopwood, M. J., Clarke, J. S., Chiggiato, J., Achterberg, E. P., Cozzi, S.:
729 Glacial drivers of marine biogeochemistry indicate a future shift to more corrosive
730 conditions in an Arctic fjord, *J. Geophys. Res. Biogeosci.*, 125, e2020JG005633,
731 <https://doi.org/10.1029/2020JG005633>, 2020.

732 Choudhary, S., Neelavanan, K., Saalim, S. M.: Microplastics in the surface sediments of
733 Krossfjord-Kongsfjord system, Svalbard, Arctic, *Mar. Pollut. Bull.*, 176, 113452,
734 <http://doi.org/10.1016/j.marpolbul.2022.113452>, 2022.

735 Cottier, F. R., Nilsen, F., Inall, M. E., Gerland, S., Tverberg, V., Svendsen, H.: Wintertime
736 warming of an Arctic shelf in response to large-scale atmospheric circulation,
737 *Geophys. Res. Lett.*, 34, L10607, <http://doi.org/10.1029/2007GL029948>, 2007.

738 D'Angelo, A., Giglio, F., Miserocchi, S., Sanchez-Vidal, A., Aliani, S., Tesi, T.: Multi-
739 year particle fluxes in Kongsfjorden, Svalbard, *Biogeosciences*, 15, 5343–5363,
740 <https://doi.org/10.5194/bg-15-5343-2018>, 2018.

741

742 Dahlke, F. T., Wohlrab, S., Butzin, M., Pörtner, H.-O.: Thermal bottlenecks in the life
743 cycle define climate vulnerability of fish, *Sciences*, 369, 65–70,
744 <http://doi.org/10.1126/science.aaz3658>, 2020.

745 Dallmann, W. K., Elvevold, S.: Bedrock geology. *Geoscience Atlas of Svalbard*, Re-port
746 Series 148, Norsk Polarinstiutt, Tromsø, pp.133–173,
747 <http://hdl.handle.net/11250/2580810>, 2015.

748 De Rovere, F., Langone, L., Schroeder, K., Miserocchi, S., Giglio, F., Aliani, S., and
749 Chiggiato, J.: Water masses variability in inner Kongsfjorden (Svalbard) during
750 2010–2020, *Front. Mar. Sci.*, 9, 741075,
751 <https://doi.org/10.3389/fmars.2022.741075>, 2022.

752 Elverhøi, A., Liestøl, O. and Nagy, J.: Glacial erosion, sedimentation and microfauna in
753 the inner part of Kongsfjorden, Spitsbergen, *Norsk Polarinstiutt Skrifter*, 172, 33–
754 58, <http://core.ac.uk/reader/30910780#page=35>, 1980.

755 Forwick, M., Vorren, T. O.: Late Weichselian and Holocene sedimentary environments
756 and ice rafting in Isfjorden, Spitsbergen, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,
757 280, 258–274, <http://doi.org/10.1016/j.palaeo.2009.06.026>, 2009.

758 Friedlingstein, P., et al.: Global carbon budget 2020, *Earth Syst. Sci. Data*, 12, 3269–3340,
759 <http://doi.org/10.5194/essd-12-3269-2020>, 2020.

760 Gealy, E. L.: Saturated bulk density, grain density, and porosity of sediment cores from
761 the western equatorial Pacific: Leg 7, Glomar Challenger. *Initial Reports of the*
762 *Deep Sea Drilling Project*, 7, 1081–1104, 1971.

763 Goñi, M. A., and Hedges, J. I.: Lignin dimers: structures, distribution, and potential
764 geochemical applications, *Geochim. Cosmochim. Acta*, 56, 4025–4043,
765 [https://doi.org/10.1016/0016-7037\(92\)90014-A](https://doi.org/10.1016/0016-7037(92)90014-A), 1992.

766 Goñi, M. A., and Hedges, J. I.: Sources and reactivities of marine-derived organic matter
767 in coastal sediments as determined by alkaline CuO oxidation, *Geochim. Cosmochim. Acta*, 59, 2965–2981, [https://doi.org/10.1016/0016-7037\(95\)00188-3](https://doi.org/10.1016/0016-7037(95)00188-3),
769 1995.

770 Goñi, M. A., Yunker, M. B., MacDonald, R. W., and Eglinton, T. I.: Distribution and
771 sources of organic biomarkers in arctic sediments from the Mackenzie River and
772 Beaufort Shelf, *Mar. Chem.*, 71, 23–51, [https://doi.org/10.1016/S0304-4203\(00\)00037-2](https://doi.org/10.1016/S0304-4203(00)00037-2), 2000.

774 Goñi, M. A., Yunker, M. B., MacDonald, R. W., and Eglinton, T. I.: The supply and
775 preservation of ancient and modern components of organic carbon in the Canadian

776 Beaufort Shelf of the Arctic Ocean, *Mar. Chem.*, 93, 53–73,
777 <https://doi.org/10.1016/j.marchem.2004.08.001>, 2005.

778 Hamilton, E. L. 1971 Elastic properties of marine sediments, *J. Geophys. Res.*, 76, 293–
779 635, <https://doi.org/10.1190/1.1440168>, 1971.

780 Hass, H. C.: A method to reduce the influence of ice-rafted debris on a grain size record
781 from northern Fram Strait, Arctic Ocean, *Polar Res.*, 21, 299–306,
782 <http://doi.org/10.1111/j.1751-8369.2002.tb00084.x>, 2002.

783 Hedges, J. I., and Ertel, J. R.: Characterization of lignin by gas capillary chromatography
784 of cupric oxide oxidation products, *Anal. Chem.*, 54, 174–178,
785 <https://doi.org/10.1021/ac00239a007>, 1982.

786 Hedges, J. I., and Mann, D. C.: The characterization of plant tissues by their lignin
787 oxidation products, *Geochim. Cosmochim. Acta*, 43, 1803–1807,
788 [https://doi.org/10.1016/0016-7037\(79\)90028-0](https://doi.org/10.1016/0016-7037(79)90028-0), 1979.

789 Hop, H., et al.: The marine ecosystem of Kongsfjorden, Svalbard, *Polar Res.*, 21, pp.167–
790 208, http://doi.org/10.1007/978-3-319-46425-1_1, 2002.

791 Houel, S., Loucheuarn, P., Lucotte, M., Canuel, R., and Ghaleb, B.: Translocation of soil
792 organic matter following reservoir impoundment in boreal systems: Implications
793 for in situ productivity, *Limnol. Oceanogra.*, 51, 1497–1513,
794 <https://doi.org/10.4319/lo.2006.51.3.1497>, 2006.

795 Husum, K., et al.: The marine sedimentary environments of Kongsfjorden, Svalbard: An
796 archive of polar environmental change, *Polar Res.*, 38, 3380,
797 <https://doi.org/10.33265/polar.v38.3380>, 2019.

798 Ingrosso, G., Ceccarelli, C., Giglio, F., Giordano, P., Hefter, J., Langone, L., Miserocchi,
799 S., Mollenhauer, G., Nogarotto, A., Sabino, M., Tesi, T.: Greening of Svalbard in
800 the twentieth century driven by sea ice loss and glaciers retreat, *Commun. Earth
801 Environ.*, 6, 30, <http://doi.org/10.1038/s43247-025-01994-y>, 2025.

802 Ito, H., and S. Kudoh,: Characteristics of water in Kongsfjorden, Svalbard, *Proc. NIPR
803 Symp. Polar Meteorol. Glaciol.*, 11, 211–232, 1997.

804 Jernas, P., et al.: Annual changes in Arctic fjord environment and modern benthic
805 foraminiferal fauna: Evidence from Kongsfjorden, Svalbard, *Global Planet. Change*,
806 163, 119–140, 2018.

807 Jordà-Molina, È., Renaud, P. E., Silberberger, M. J., Sen, A., Bluhm, B. A., Carroll, M.
808 L., Ambrose Jr., W. G., Cottier, F., Reiss, H.: Seafloor warm water temperature
809 anomalies impact benthic macrofauna communities of a high-Arctic cold-water

810 fjord. Mar. Environ. Res., 189, 106046,
811 <http://doi.org/10.1016/j.marenvres.2023.106046>, 2023.

812 Keil, R. G., Tsamakis, E., Fuh, C. B., Giddings, J. C., Hedges, J. I.: Mineralogical and
813 textural controls on the organic composition of coastal marine sediments:
814 Hydrodynamic separation using SPLITT-fractionation, *Geochim. Cosmochim. Acta*, 58, 879–893, [https://doi.org/10.1016/0016-7037\(94\)90512-6](https://doi.org/10.1016/0016-7037(94)90512-6), 1994.

815 Keil, R. G., Mayer, L. M., Quay, P. D., Richey, J. E., Hedges, J. I.: Loss of organic matter
816 from riverine particles in deltas, *Geochim. Cosmochim. Acta*, 61, 1507–1511,
817 [https://doi.org/10.1016/S0016-7037\(97\)00044-6](https://doi.org/10.1016/S0016-7037(97)00044-6), 1997.

818 Kim, J.-H., Peterse, F., Willmott, V., Klitgaard Kristensen, D., Baas, M., Schouten, S.,
819 Sinninghe Damsté, J.S.: Large ancient organic matter contributions to Arctic marine
820 sediments (Svalbard), *Limnol. Oceanogr.*, 56, 1463–1474,
821 <http://doi.org/10.4319/lo.2011.56.4.1463>, 2011.

822 Kim, D., Kim, J.-H., Tesi, T., Kang, S., Nogarotto, A., Park, K., Lee, D.-H., Jin, Y.K.,
823 Shin, K.-H., Nam, S.-I.: Changes in the burial efficiency and composition of
824 terrestrial organic carbon along the Mackenzie Trough in the Beaufort Sea, *Estuar. Coastal Shelf Sci.*, 275, 107997, <https://doi.org/10.1016/j.ecss.2022.107997>, 2022.

825 Kim, D., Kim, J.-H., Ahn, Y., Jang, K., Jung, J. Y., Bae, M., Nam, S.-I.: Large
826 contributions of petrogenic and aged soil-derived organic carbon to Arctic fjord
827 sediments in Svalbard, *Sci. Rep.*, 13, 17935, <https://doi.org/10.1038/s41598-023-45141-z>, 2023.

828 Knies, J., Martinez, P.: Organic matter sedimentation in the western Barents Sea region:
829 Terrestrial and marine contribution based on isotopic composition and organic
830 nitrogen content. *Nor. J. Geol.*, 89, 79–89, 2009.

831 Knies, J., Brookes, S., Schubert, C. J.: Re-assessing the nitrogen signal in continental
832 margin sediments: New insights from the high northern latitudes, *Earth Planet. Sci. Lett.*, 253, 471–484, <http://doi.org/10.1016/j.epsl.2006.11.008>, 2007.

833 Krajewska, M., Szymczak-Zyla, M., Tylmann, W., Kowalewska, G.: Climate change
834 impact on primary production and phytoplankton taxonomy in Western Spitsbergen
835 fjords based on pigments in sediments, *Global Planet. Change*, 189, 103158,
836 <http://doi.org/10.1016/j.gloplacha.2020.103158>, 2020.

837 Kumar, V., Tiwari, M., Nagoji, S., Tripathi, S.: Evidence of anomalously low $\delta^{13}\text{C}$ of
838 marine organic matter in an Arctic Fjord, *Sci. Rep.*, 6, 36192,
839 <http://10.1038/srep36192>, 2016.

844 Lind, S., Ingvaldsen, R. B., Furevik, T.: Arctic warming hotspot in the northern Barents
845 Sea linked to declining sea-ice import, *Nat. Clim. Change*, 8, 634–639, 2018.

846 Mayer, L. M.: Surface area control of organic carbon accumulation in continental shelf
847 sediments, *Geochim. Cosmochim. Acta*, 58, 1271–1284,
848 [https://doi.org/10.1016/0016-7037\(94\)90381-6](https://doi.org/10.1016/0016-7037(94)90381-6), 1994.

849 McGovern, M., Borgå, K., Heimstad, E., Ruus, A., Christensen, G., Evensen, A.: Small
850 Arctic rivers transport legacy contaminants from thawing catchments to coastal
851 areas in Kongsfjorden, Svalbard, *Environ. Pollut.*, 304, 119191,
852 <https://doi.org/10.1016/j.envpol.2022.119191>, 2022.

853 Meslard, F., Bourrin, F., Many, G., Kerhervé, P.: Suspended particle dynamics and fluxes
854 in an Arctic fjord (Kongsfjorden, Svalbard), *Estuar. Coast. Shelf Sci.*, 204, 212–
855 224, <http://doi.org/10.1016/j.ecss.2018.02.020>, 2018.

856 Nam, S.-I.: Late Quaternary glacial history and paleoceanographic reconstructions along
857 the East Greenland continental marine: evidence from high-resolution records of
858 stable isotopes and ice-rafted debris, *Rep. Polar Res.*, 241, pp. 21,
859 <https://epic.awi.de/id/eprint/26419/1/BerPolarforsch1997241.pdf>, 1997.

860 Nuth, C., Kohler, J., Konig, M., von Deschwanden, A., Hagen, J. O., Kaab, A., Moholdt,
861 G., Pettersson, R.: Decadal changes from a multi-temporal glacier inventory of
862 Svalbard. *The Cryosphere*, 7, 1603–1621, <http://doi.org/10.5194/tc-7-1603-2013>,
863 2013.

864 Ó Cofaigh, C., Dowdeswell, J. A.: Laminated sediments in glacimarine environments:
865 diagnostic criteria for their interpretation, *Quat. Sci. Rev.*, 20, 1411–1436,
866 [http://doi.org/10.1016/S0277-3791\(00\)00177-3](http://doi.org/10.1016/S0277-3791(00)00177-3), 2001.

867 Otto, A., and Simpson, M. J.: Evaluation of CuO oxidation parameters for determining
868 the source and stage of lignin degradation in soil, *Biogeochem.*, 80, 121–142,
869 <https://doi.org/10.1007/s10533-006-9014-x>, 2006.

870 Pempkowiak, J.: Limitation of lignin derivatives as biomarkers of land derived organic
871 matter in the coastal marine sediments, *Oceanologia*, 62, 374–386,
872 <http://doi.org/10.1016/j.oceano.2020.04.004>, 2020.

873 Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack,
874 E. C., Gosczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok,
875 R., Sundfjord, A., Morison, J., Remember, R., Yulin, A.: Greater role for Atlantic
876 inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, *Science*, 356,
877 285–291, 2017.

878 Prahl, F. G., Ertel, J. R., Goñi, M. A., Sparrow, M. A., Eversmeyer, B.: Terrestrial organic
879 carbon contributions to sediments on the Washington margin, *Geochim.*
880 *Cosmochim. Acta*, 58, 3035–3048, [https://doi.org/10.1016/0016-7037\(94\)90177-5](https://doi.org/10.1016/0016-7037(94)90177-5),
881 1994.

882 Pramanik, A., Kohler, J., Lindbeck, K., How, P., Van Pelt, W., Liston, G., Schuler, T. V.:
883 Hydrology and runoff routing of glacierized drainage basins in the Kongsfjord area,
884 northwest Svalbard, *The Cryosphere*, <http://doi.org/10.5174/tc-2020-197>, 2020.

885 Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja,
886 K., Räisänen, J.: The Arctic has warmed nearly four times faster than the globe
887 since 1979, *Commun. Earth Environ.*, 3, 168, <https://doi.org/10.1038/s43247-022-00498-3>, 2022.

888 Saloranta, T. M., Svendsen, H.: Across the Arctic front west of Spitsbergen: high-
889 resolution CTD sections from 1998–2000, *Polar Research*, 20, 177–184,
890 <http://doi.org/10.3402/polar.v20i2.6515>, 2001.

891 Schauer, U., Fahrbach, E., Osterhus, S., Rohardt, G.: Arctic warming through the Fram
892 Strait: Oceanic heat transport from 3 years of measurements, *J. Geophys. Res.*
893 *Oceans*, 109, C06026, <https://doi.org/10.1029/2003JC001823>, 2004.

894 Singh, D. S., Dubey, C. A., Kumar, D., Vishwakarma, B., Singh, A. K., Tripathi, A.,
895 Sharma, R.: Monsoon variability and major climatic events between 25 and 0.05 ka
896 BP using sedimentary parameters in the Gangotri glacier region, Garhwal Himalaya,
897 India. *Quater. Inter.*, 507, 148–155, <https://doi.org/10.1016/j.quaint.2019.06.024>,
898 2019.

899 Skogseth, R., Asplin, L., Budgell, W. P., Eldevik, T., Gerland, S., Haugan, P., Zamelczyk,
900 K.: Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and
901 circulation – An indicator for climate change in the European Arctic, *Progr.*
902 *Oceanogr.*, 187, 102394, <https://doi.org/10.1016/j.pocean.2020.102394>, 2020.

903 Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., Galy, V.: High rates of organic
904 carbon burial in fjord sediments globally, *Nat. Geosci.*, 8, 450–453,
905 <http://doi.org/10.1038/NGEO2421>, 2015.

906 Stein, R., and MacDonald, R. W.: *The organic carbon cycle in the Arctic Ocean*, Springer.
907 <https://doi.org/10.1007/978-3-642-18912-8>, 2004.

908 Stuiver, M., and Polach, H. A.: Discussion: Reporting of ^{14}C data. *Radiocarbon*, 19, 355–
909 363, <https://doi.org/10.1017/S0033822200003672>, 1977.

911 Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V.,
912 Gerland, S., Ørbæk, J. B.: The physical environment of Kongsfjorden–Krossfjorden,
913 an Arctic fjord system in Svalbard, *Polar Res.*, 21, 133–166,
914 <https://doi.org/10.3402/polar.v21i1.6479>, 2002.

915 Tesi, T., Muschitiello, F., Smittenber, R. H., Jakobsson, M., Vonk, J. E., Hill, P.,
916 Andersson, A., Kirchner, N., Noormets, R., Dudarev, O., Semiletov, I., Gustafsson,
917 Ö.: Massive remobilization of permafrost carbon during past-glacial warming, *Nat. Commun.*, 7, 13653, <http://doi.org/10.1038/ncomms13653>, 2016.

919 Tesi, T., Muschitiello, F., Mollenhauer, G., Miserocchi, S., Langone, L., Ceccarelli, C.,
920 Panieri, G., Chiggiato, J., Nogarotto, A., Hefter, J., Ingrosso, G., Giglio, F.,
921 Giordano, P., Capotondi, L.: Rapid atlantification along the Fram Strait at the
922 beginning of the 20th century, *Sci. Advances*, 7, eabj2946,
923 <http://doi.org/10.1126/sciadv.abj2946>, 2021.

924 Torsvik, T., Albretsen, J., Sundfjord, A., Kohler, J., Sandvik, A. D., Skarohamar, J.,
925 Lindback, K., Everett, A.: Impact of tidewater glacier retreat on the fjord system:
926 Modeling present and future circulation in Kongsfjorden, *Svalbard, Estuar. Coast.*
927 *Shelf Sci.*, 220, 152–165, <http://doi.org/10.1016/j.ecss.2019.02.005>, 2019.

928 Tverberg, V., Skogseth, R., Cottier, F., Sundfjord, A., Walczowski, W., Inall, M. E., Falck,
929 E., Pavlova, O., Nilsen, F.: The Kongsfjorden transect: seasonal and inter-annual
930 variability in hydrography, *The Ecosystem of Kongsfjorden, Svalbard*, 49–104,
931 http://doi.org/10.1007/978-3-319-46425-1_3, 2019.

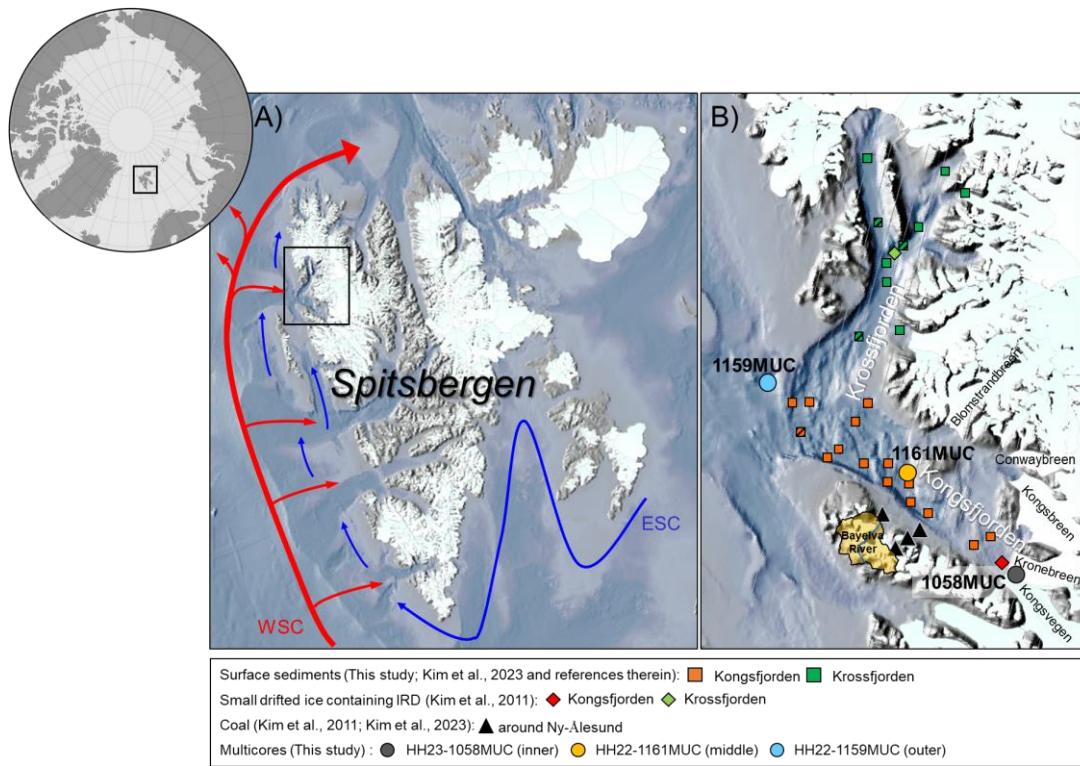
932 van Hateren, J. A., Prins, M. A., van Balen, R. T.: On the genetically meaningful
933 decomposition of grain-size distributions: A comparison of different end-member
934 modelling algorithms, *Sediment. Geol.*, 375, 49–71,
935 <http://doi.org/10.1016/j.sedgeo.2017.12.003>, 2018.

936 Vorren, T. O., Hald, M., Thomsen, E.: Quaternary sediments and environments on the
937 continental shelf off northern Norway, *Mar. Geol.*, 57, 229–257,
938 [http://doi.org/10.1016/0025-3227\(84\)90201-9](http://doi.org/10.1016/0025-3227(84)90201-9), 1984.

939 Wei, T., Ding, M., Wu, B., Lu, C., and Wang, S.: Variations in temperature-related
940 extreme events (1975–2014) in Ny-Ålesund, Svalbard, *Atmos. Sci. Lett.*, 17, 102–
941 108, <https://doi.org/10.1002/asl.632>, 2016.

942 Winkelmann, D., Knies, J.: Recent distribution and accumulation of organic carbon on
943 the continental marine west off Spitsbergen, *Geochem. Geophys. Geosyst.*, 6,
944 Q09012, <http://doi.org/10.1029/2005GC000916>, 2005.

945 Zaborska, A., Pempkowiak, J., Papucci, C.: Some sediment characteristics and
946 sedimentation rates in an Arctic fjord (Kongsfjorden, Svalbard), *Annu. Environ.*
947 *Prot.*, 8, pp.79–96, 2006.

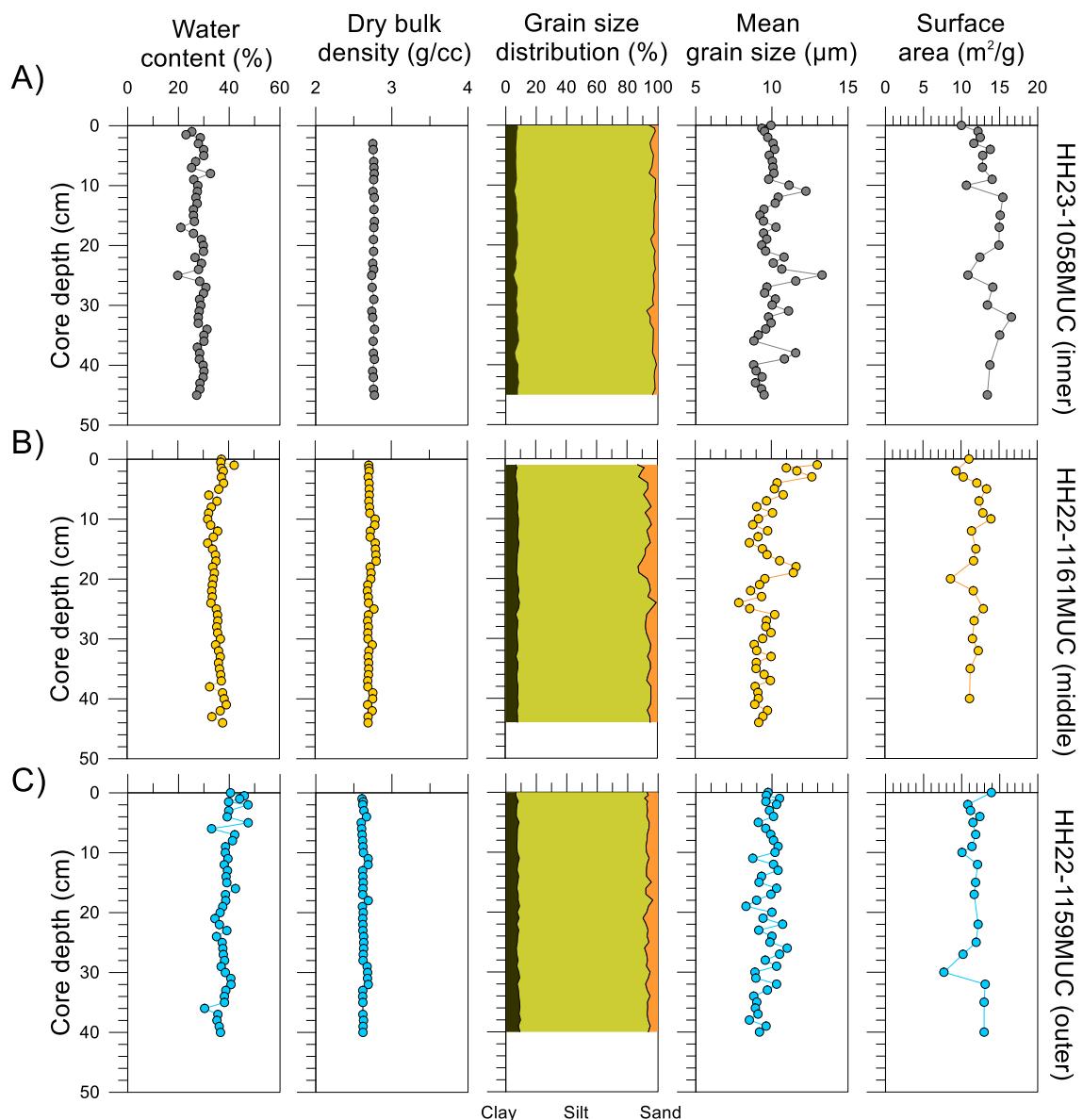

948 Zhu, Z.-Y., Wu, Y., Liu, S.-M., Wenger, F., Hu, J., Zhang, J., Yao, P.: Organic carbon
949 flux and particulate organic matter composition in Arctic valley glaciers: Examples
950 from the Bayelva River and adjacent Kongsfjorden, *Biogeosciences*, 13, 975–987,
951 <https://doi.org/10.5194/bg-13-975-2016>, 2016.

952 Zonneveld, K. A. F., Versteegh, G. J. M., and de Lange, G. J.: Preservation of organic-
953 walled dinoflagellate cysts in different oxygen regimes: A 10,000 years natural
954 experiment. *Mar. Micropaleontol.*, 29, 393–405, [https://doi.org/10.1016/S0377-8398\(96\)00032-1](https://doi.org/10.1016/S0377-8398(96)00032-1), 1997.

956 **Figures**

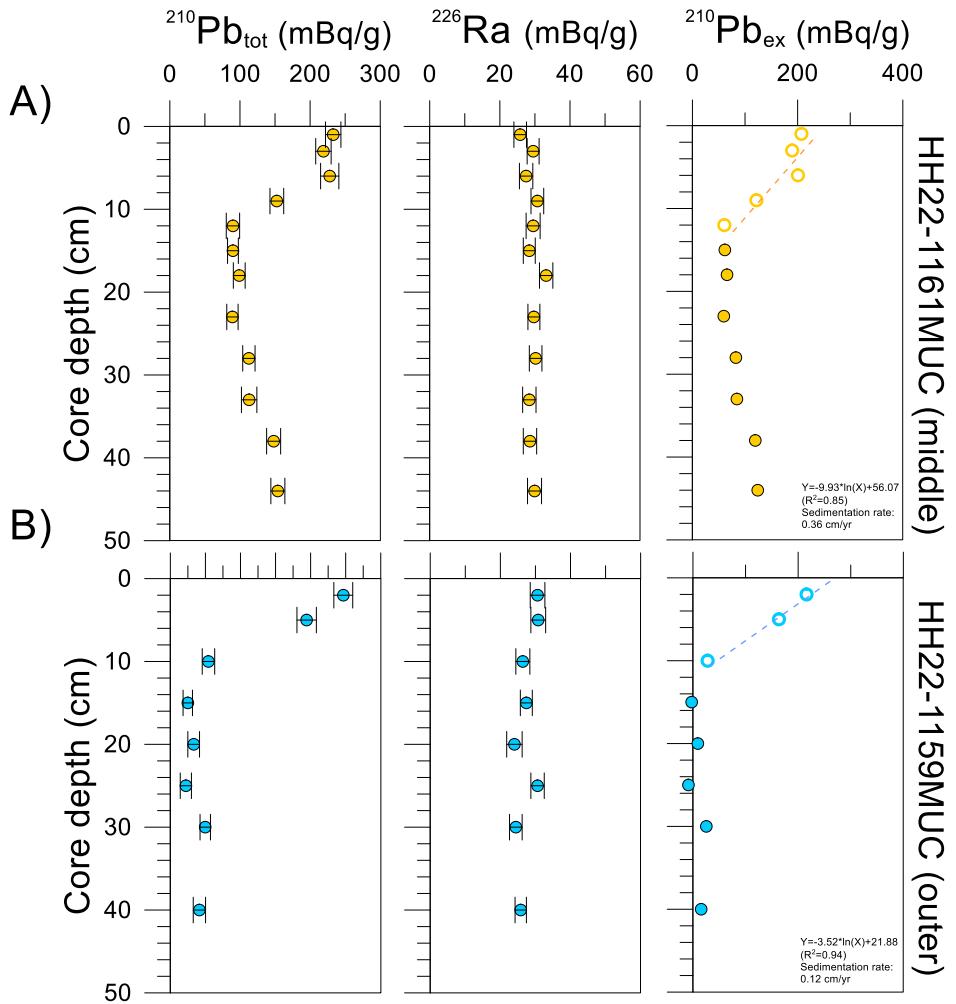
957

958



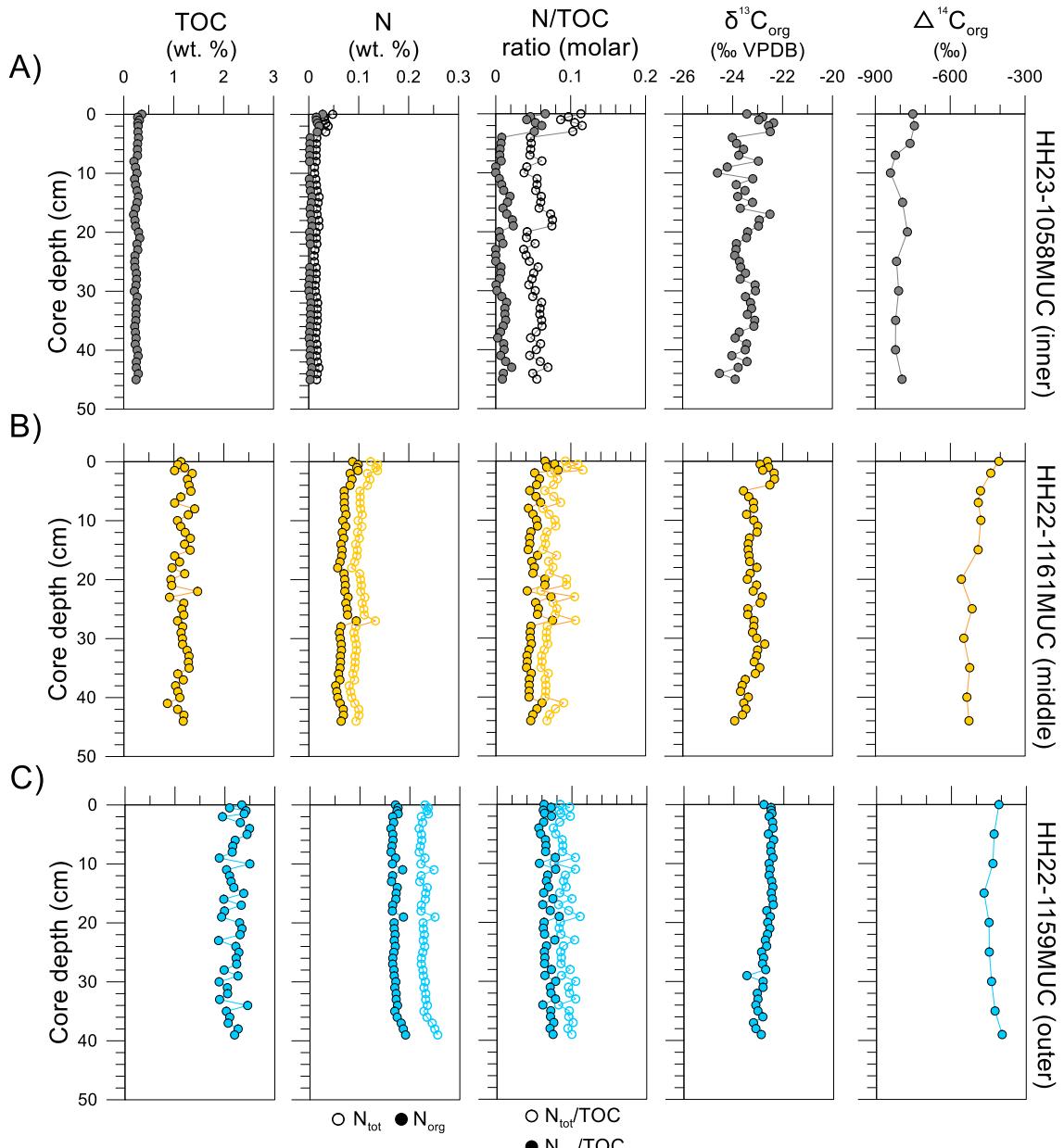
959

960

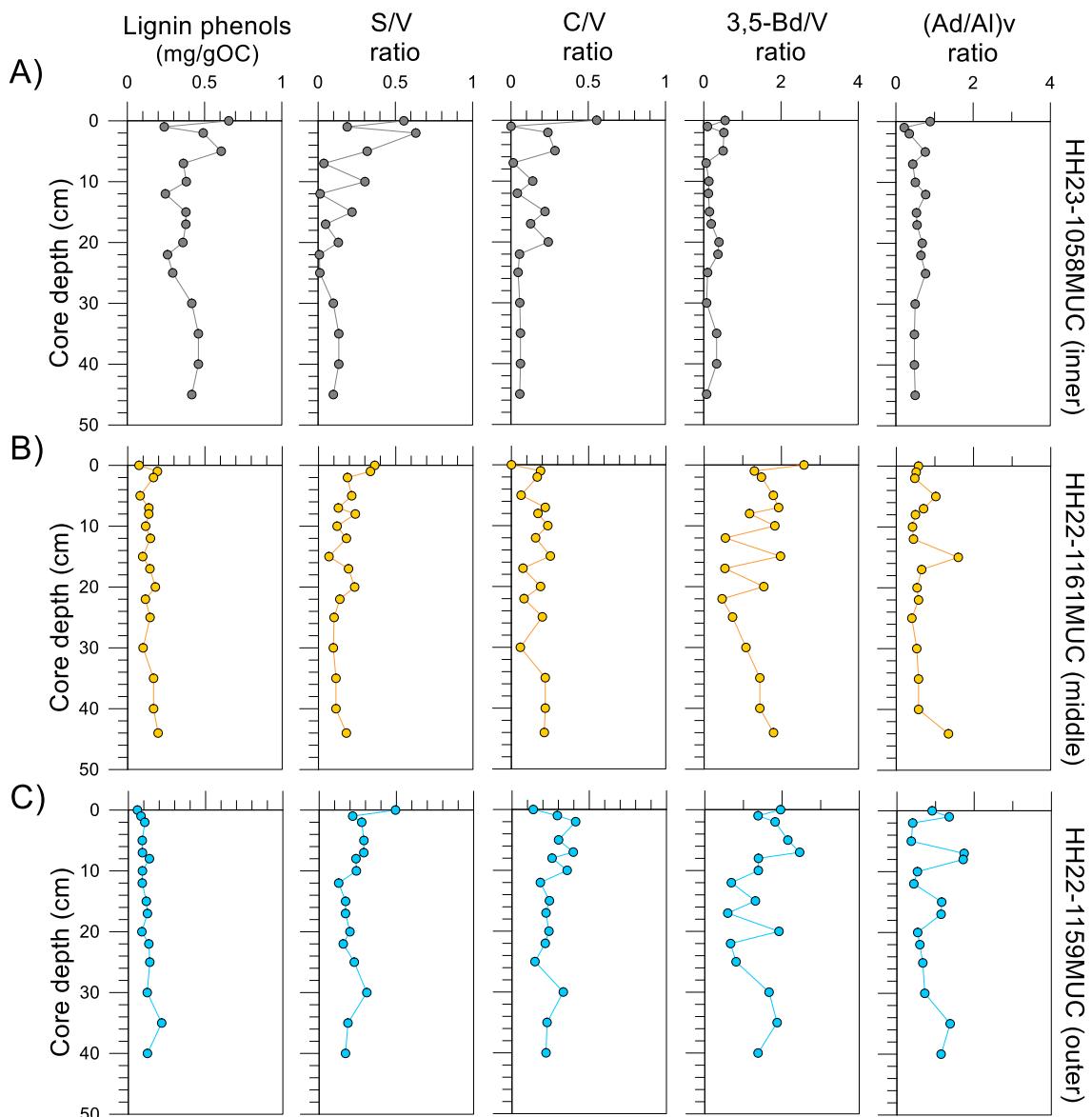

961 Fig. 1. Map of the study area showing (A) the Svalbard archipelago and (B) the sampling
 962 sites in Kongsfjorden and Krossfjorden considered in this study. White land areas indicate
 963 present-day glacier coverage. Red and blue arrows indicate the main Atlantic (West
 964 Spitsbergen Current, WSC) and Arctic (East Spitsbergen Current, ESC) water currents,
 965 respectively. Filled circles represent multicore sampling sites, while filled square,
 966 diamond, and triangle symbols indicate surface sediment, small drifted ice containing
 967 IRD, and coal sampling sites in Kongsfjorden and Krossfjorden. It should be noted that
 968 the surface sediment samples newly analyzed in this study are denoted by hashed square
 969 symbols. The map was generated using QGIS v3.14
 970 (<https://qgis.org/en/site/forusers/visualchangelog314/>) based on IBCAOv4
 971 (<https://www.ngdc.noaa.gov/mgg/bathymetry/arctic/>).
 972

973

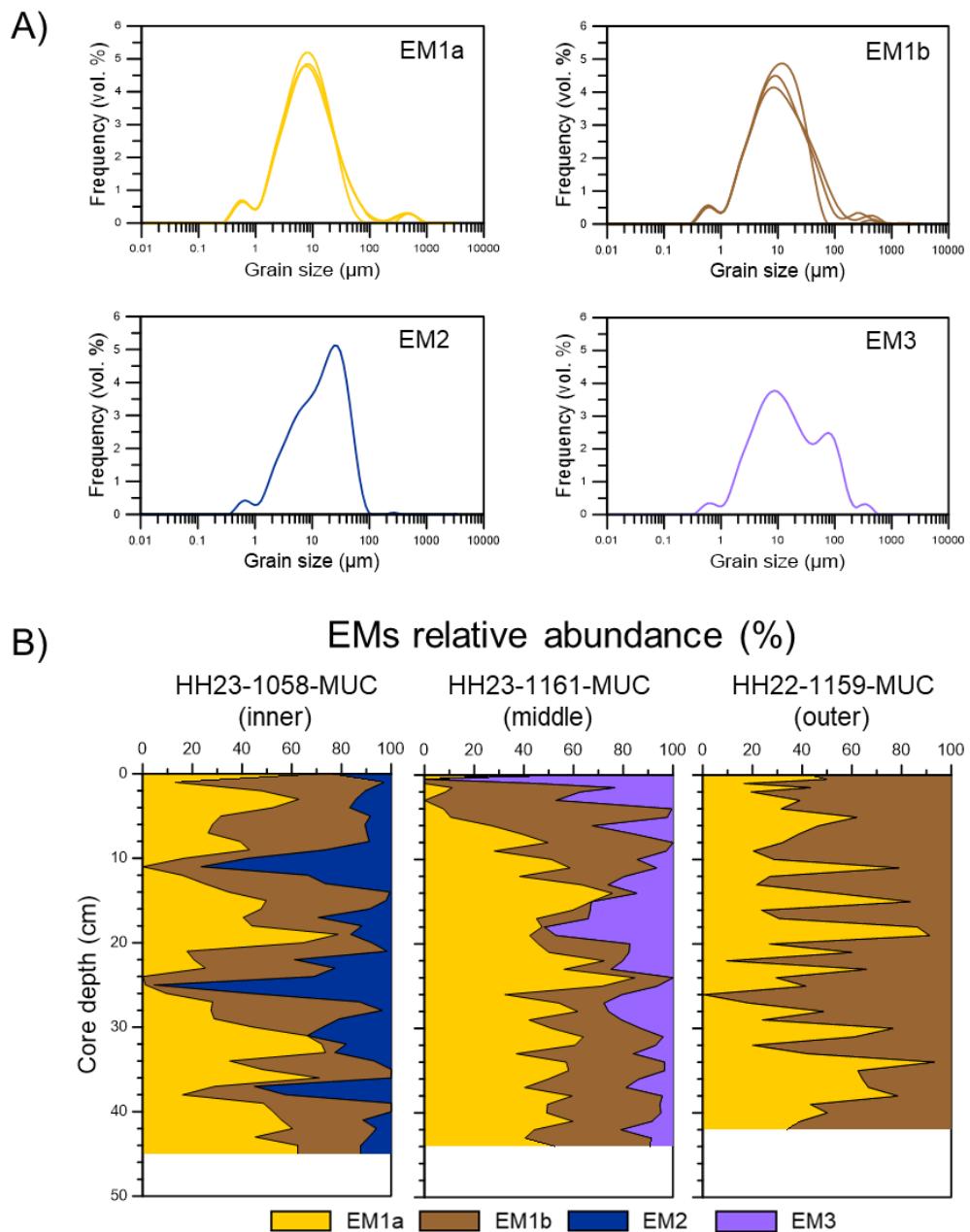
974


975 Fig. 2. Depth profiles of [water content \(%\)](#), dry bulk density (g/cc), grain size distribution
 976 (%)[, mean grain size \(μm\)](#), and surface area (m²/g) for the cores (A) HH23-1058MUC,
 977 (B) HH22-1161MUC, and (C) HH22-1159MUC.

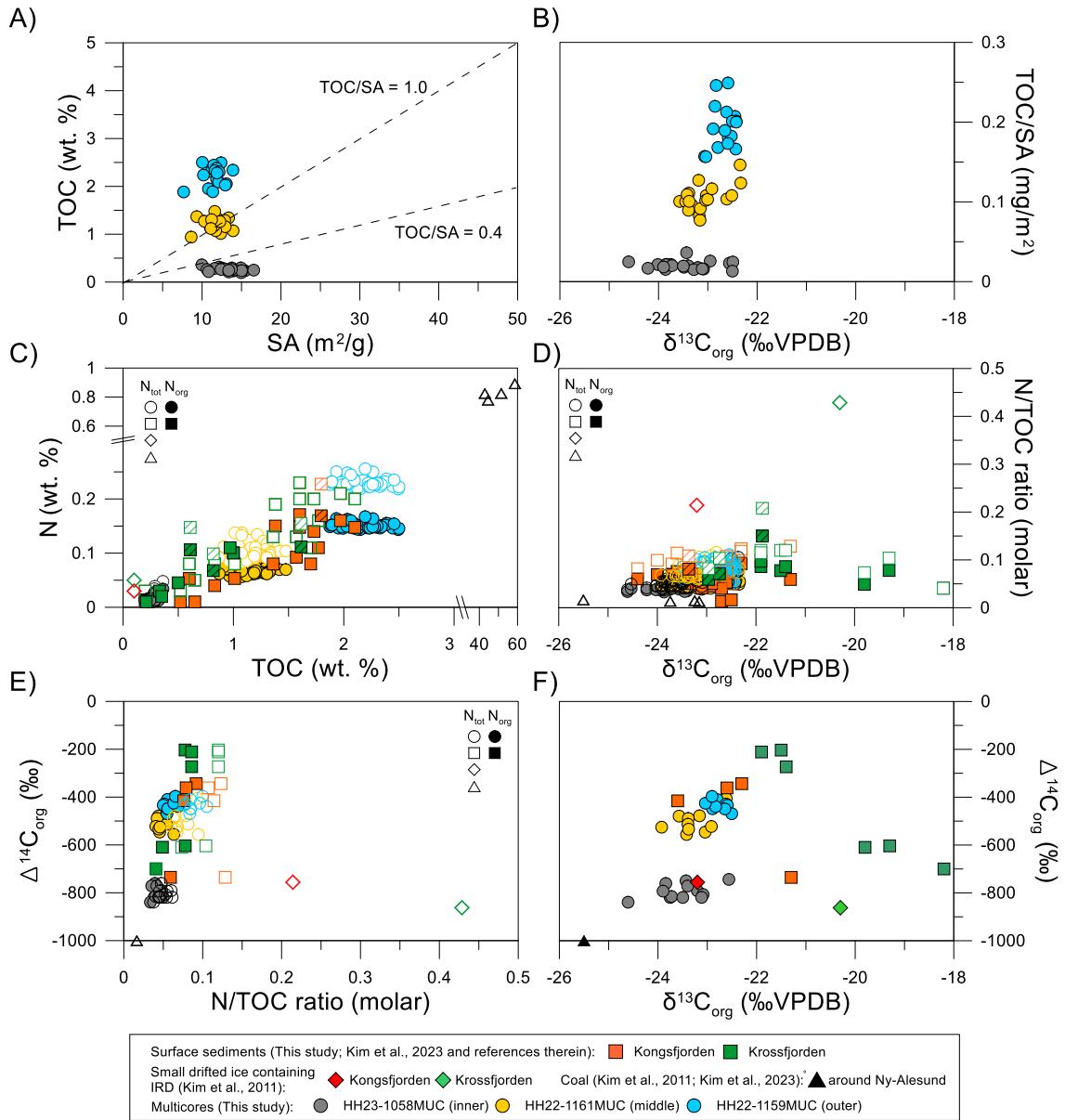
978


979 Fig. 3. Depth profiles of $^{210}\text{Pb}_{\text{tot}}$ (mBq/g), ^{226}Ra (mBq/g), and $^{210}\text{Pb}_{\text{ex}}$ (mBq/g) for the
 980 cores (A) HH22-1161MUC, and (B) HH22-1159MUC. Open circles indicate the data
 981 points used in the linear regressions (yellow and blue dotted lines) of the natural log-
 982 transformed $^{210}\text{Pb}_{\text{ex}}$ versus depth, which were applied to estimate sedimentation rates.

983


984

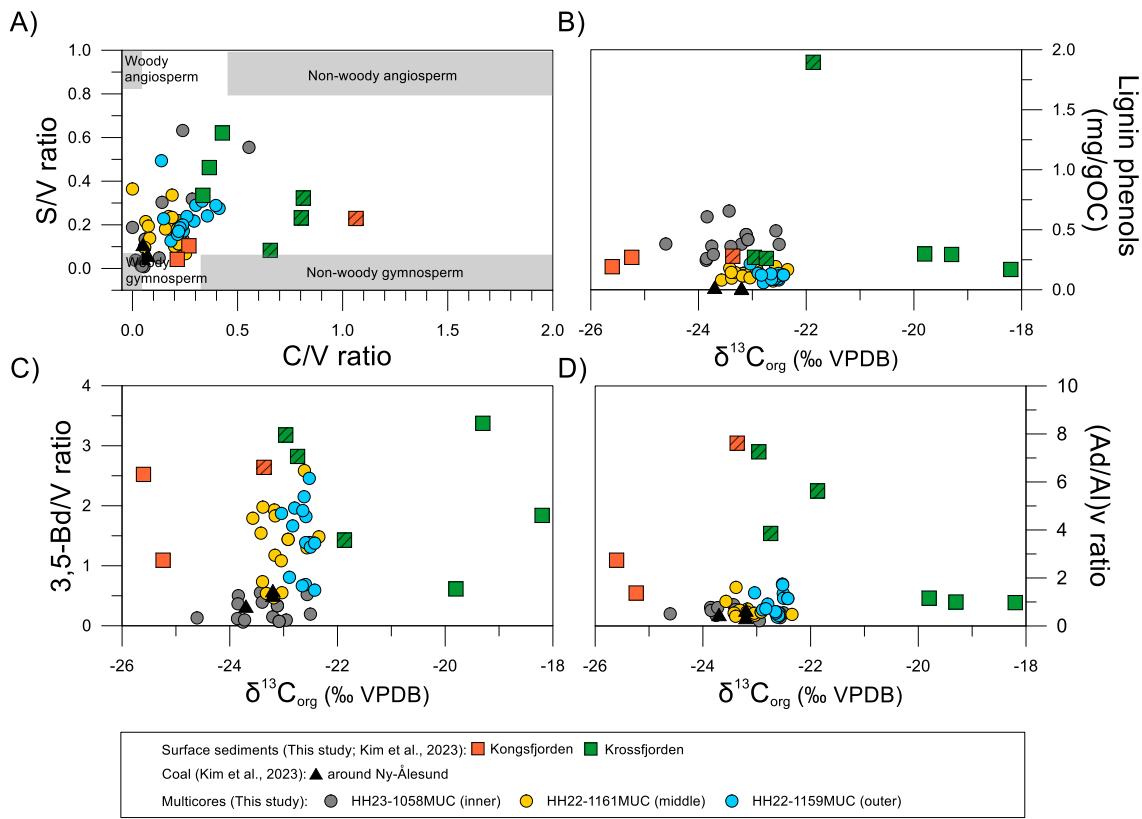
985 Fig. 4. Depth profiles of TOC (wt. %), N (wt. %), N/TOC ratios (molar), $\delta^{13}\text{C}_{\text{org}}$ (‰
 986 VPDB), and $\Delta^{14}\text{C}_{\text{org}}$ (‰) for the cores (A) HH23-1058MUC, (B) HH22-1161MUC, and
 987 (C) HH22-1159MUC.


988

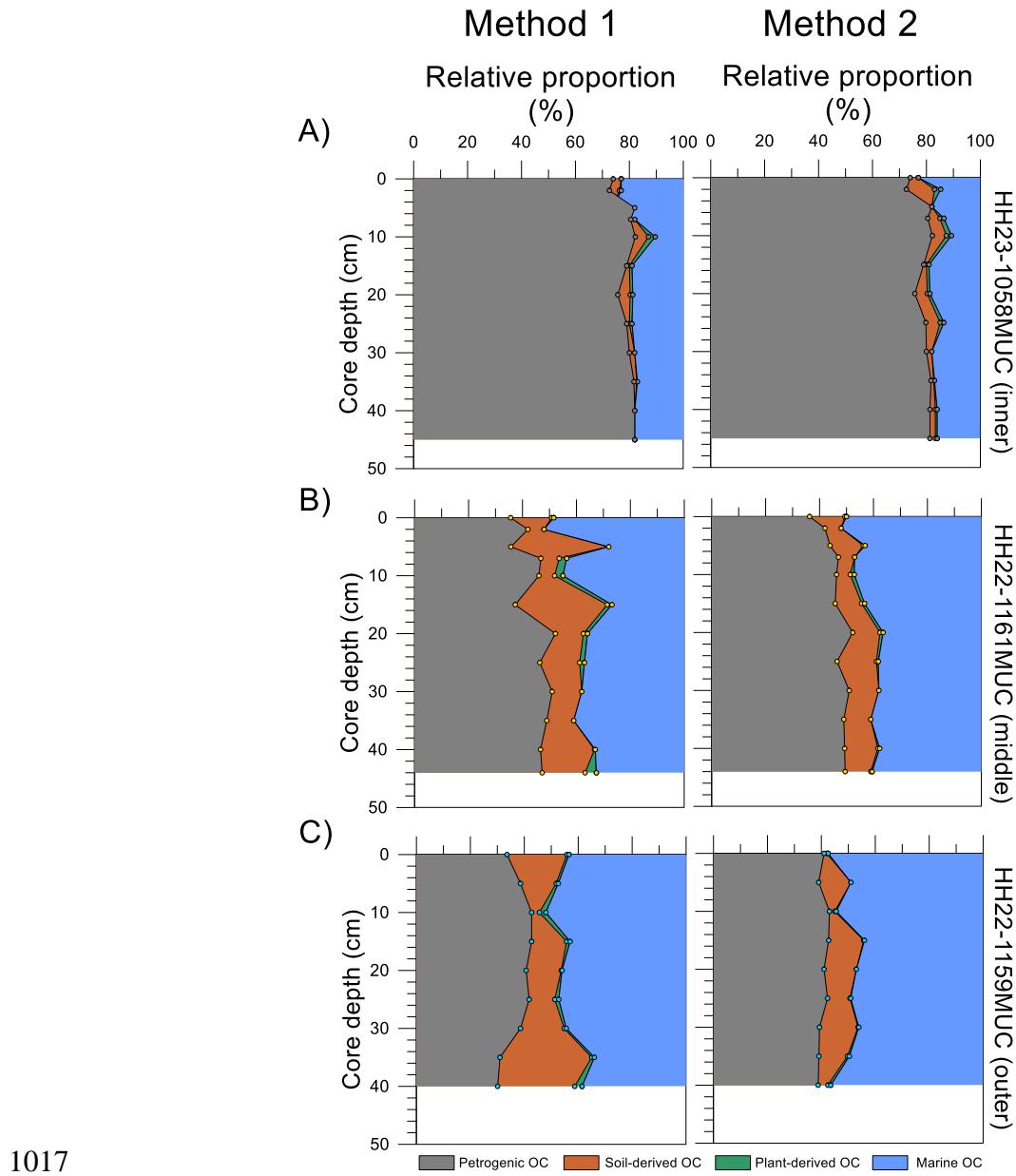
989 Fig. 5. Depth profiles of lignin phenol concentrations (mg/gOC), and S/V, C/V, 3,5-Bd/V,
 990 and (Ad/Al)v ratios for the cores (A) HH23-1058MUC, (B) HH22-1161MUC, and (C)
 991 HH22-1159MUC.

992

993 Fig. 6. (A) Classified grain-size end-member distribution curves from three cores, and (B)
994 depth profiles showing the variation in the relative abundances of grain-size end-members
995 (EM1a, EM1b, EM2, and EM3) in the three cores analyzed in this study.

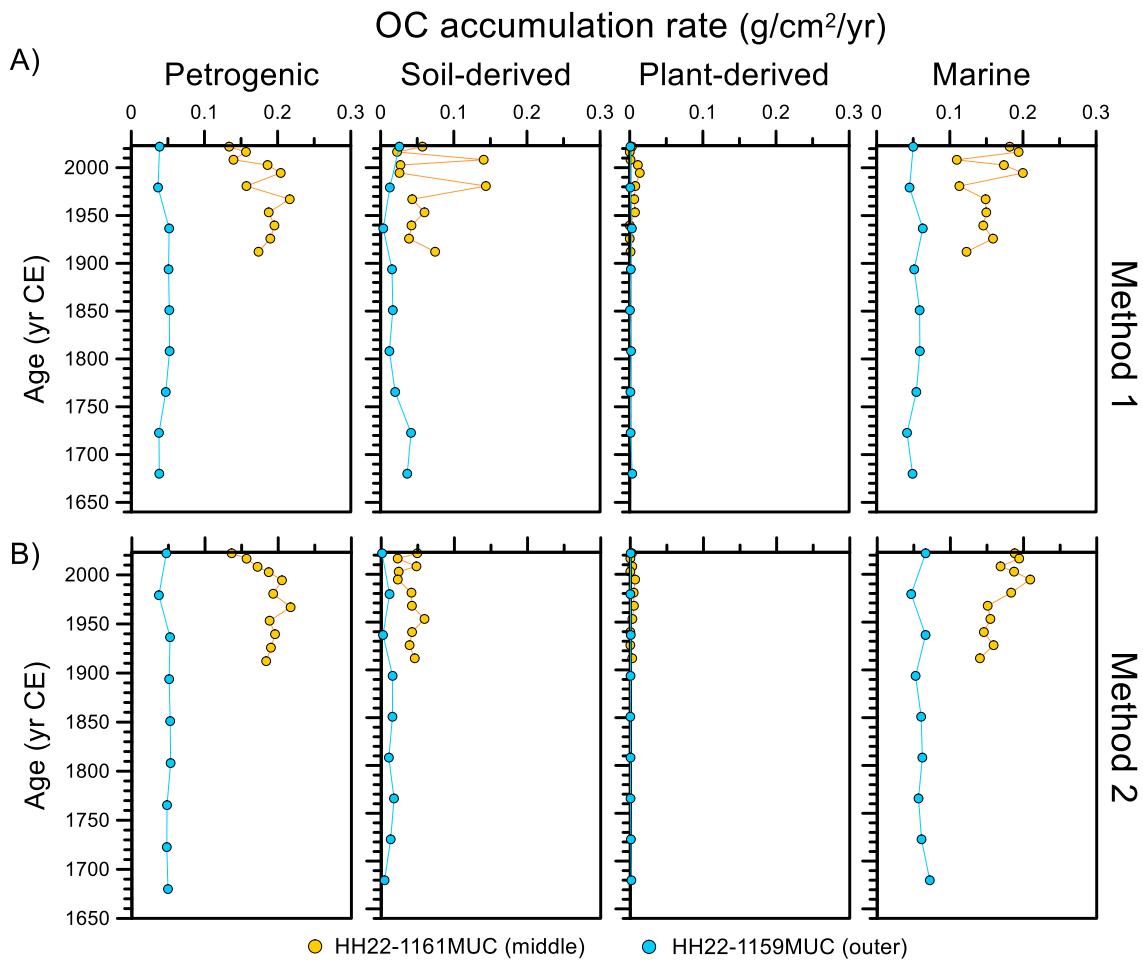


996


997

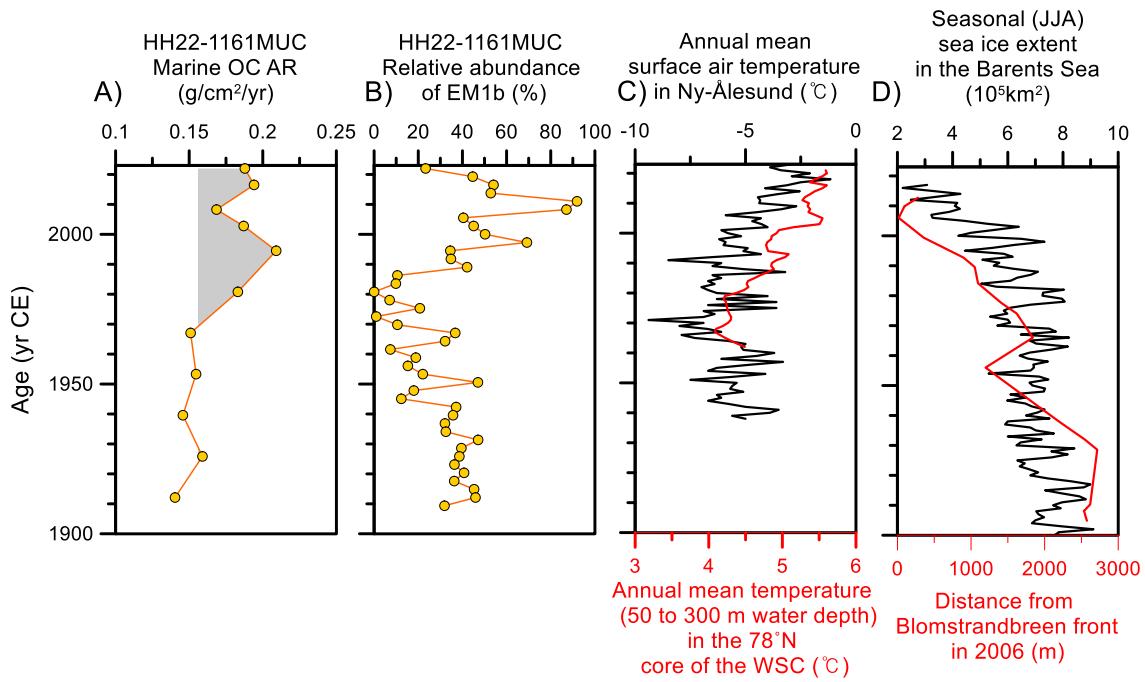
998 Fig. 7. Scatter plots of (A) SA (m^2/g) versus TOC (wt.%), (B) $\delta^{13}\text{C}_{\text{org}}$ (‰ VPDB) versus
999 TOC/SA (mg/m^2), (C) TOC (wt.%) versus N_{tot} or N_{org} (wt.%), (D) $\delta^{13}\text{C}_{\text{org}}$ (‰ VPDB)
1000 versus $\text{N}_{\text{tot}}/\text{TOC}$ (molar) or $\text{N}_{\text{org}}/\text{TOC}$ (molar) ratios, (E) $\text{N}_{\text{tot}}/\text{TOC}$ (molar) ratios or
1001 $\text{N}_{\text{org}}/\text{TOC}$ (molar) ratios versus $\Delta^{14}\text{C}_{\text{org}}$ (‰), and (F) $\delta^{13}\text{C}_{\text{org}}$ (‰ VPDB) versus $\Delta^{14}\text{C}_{\text{org}}$
1002 (‰) for the three cores, compared with data from small drifted ice containing IRD (Kim
1003 et al., 2011), coals (Kim et al., 2011; Kim et al., 2023), and surface sediments (Kim et al.,
1004 2023 and this study). Note that the surface sediment samples newly analyzed in this study
1005 are denoted by hashed square symbols.

1006


1010 Fig. 8. Scatter plots of (A) C/V ratio versus S/V ratio, including the end-members for
 1011 different vascular plant tissues (cf. Goñi et al., 2000), (B) $\delta^{13}\text{C}_{\text{org}}$ (‰ VPDB) versus lignin
 1012 phenols (mg/gOC), (C) $\delta^{13}\text{C}_{\text{org}}$ (‰ VPDB) versus 3,5-Bd/V ratio, and (D) $\delta^{13}\text{C}_{\text{org}}$ (‰
 1013 VPDB) versus (Ad/Al)v ratio for the three cores, compared with data from coals (Kim et
 1014 al., 2023) and surface sediments (Kim et al., 2023 and this study). Note that the surface
 1015 sediment samples newly analyzed in this study are indicated by hashed square symbols.
 1016

1017

1018


1019 Fig. 9. Depth profiles showing the relative proportions of petrogenic, soil-
 1020 derived, plant-derived, and marine OC, as determined using Method 1 (based on $\delta^{13}\text{C}_{\text{org}}$ (‰ VPDB),
 1021 $\Delta^{14}\text{C}_{\text{org}}$ (‰), and (Ad/Al)v ratio) and Method 2 (based on $\delta^{13}\text{C}_{\text{org}}$ (‰ VPDB), $\Delta^{14}\text{C}_{\text{org}}$ (‰),
 1022 and lignin phenols (mg/gOC)), for the cores (A) HH23-1058MUC, (B) HH22-1161MUC,
 1023 and (C) HH22-1159MUC.

1024
1025
1026
1027
1028
1029
1030

Fig. 10. Age profiles of the accumulation rates ($\text{g}/\text{cm}^2/\text{yr}$) of petrogenic, soil-derived, plant-derived, and marine OC, as determined using Method 1 (based on $\delta^{13}\text{C}_{\text{org}}$ (‰ VPDB), $\Delta^{14}\text{C}_{\text{org}}$ (‰), and (Ad/Al)v ratio) and Method 2 (based on $\delta^{13}\text{C}_{\text{org}}$ (‰ VPDB), $\Delta^{14}\text{C}_{\text{org}}$ (‰), and lignin phenols (mg/gOC)), for the cores HH23-1058MUC, HH22-1161MUC, and HH22-1159MUC.

1031

1032

1033

1034 Fig. 11. Age profiles of (A) the accumulation rates of marine OC based on Method 2 for
 1035 core HH22-1161MUC, (B) the relative abundance (%) of EM1b for core HH22-
 1036 1161MUC, (C) annual mean surface air temperatures (°C) in Ny-Ålesund (black; data
 1037 from MOSJ, Environmental monitoring of Svalbard and Jan Mayen) and integrated
 1038 annual mean temperatures (°C) at 50-300 m water depth in the 78°N core of the West
 1039 Spitsbergen Current (red; data from MOSJ), and (D) seasonal (JJA) sea ice extent in the
 1040 Barents Sea (black; data from NSIDC; National Snow and Ice Data Center) and the
 1041 distance from the Blomstrandbreen front in Kongsfjorden in 2006 (red; data from Burton
 1042 et al., 2016).