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Abstract. The assimilation of satellite spectral sounder data requires fast and accurate radiative transfer models. This study
proposes a novel methodology to automatically parameterize atmospheric optical depths within the Radiative Transfer for
TOVS (RTTOV) version 13 scheme using statistical thresholds across pressure levels and Least Absolute Shrinkage and Se-
lection Operator (LASSO) regression to induce sparsity. Numerical experiments with Visible Infrared Imaging Radiometer
Suite (VIIRS) infrared channels demonstrate that this approach significantly reduces computational costs while maintaining
accuracy. The sparsity also facilitates the automatic selection of absorbing gases and predictors by channel and pressure level,
making it particularly effective for multispectral instruments with numerous atmospheric variables. These findings highlight

the potential of sparse regression methods to enhance the efficiency of radiative transfer models for satellite data assimilation.

1 Introduction

In satellite data assimilation and remote sensing retrievals, as well as their applications in numerical weather prediction (NWP),
the radiative transfer equation (RT) is the main model used to retrieve global atmospheric variables, such as temperature and
trace gases concentrations, including water vapor, ozone, carbon dioxide, and other atmospheric constituents. This is achieved
by utilizing top of the atmosphere (TOA) radiance measurements from satellite sounders operating across different channels of
the electromagnetic spectrum. The numerical implementation of the RT equation as a forward model can primarily be carried
out using two approaches: Line-by-Line (LBL) Radiative Transfer models and Fast Radiative Transfer models (Fast-RT).
Line-by-line models simulate satellite radiance by rigorously integrating atmospheric physics and chemical phenomena.
These models are highly accurate in replicating the precision of modern instruments, such as hyperspectral sounders like
AIRS, CrIS and IASI. However, they are characterized by significant computational demands in terms of CPU time and
memory, making them impractical for use in operational data assimilation. Some of the most well-known models in this
category include: LBLRTM, developed at Atmospheric and Environmental Research, Inc. (AER) (Clough et al., 1992; Clough
and Tacono, 1995; Clough et al., 2005); AMSUTRAN, developed at the Met Office (UK) (Turner et al., 2019); and GENLN?2,
developed at the National Center for Atmospheric Research (NCAR) (Edwards, 1992). A comparison between LBLRTM and
GENLN?2 is presented in (Matricardi, 2007). Another software worth mentioning is KCARTA (DeSouza-Machado et al., 2020),
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a pseudo Line-by-Line model that uses precomputed and compressed physically intensive processes in RT model to compute
radiances more quickly while maintaining accuracy.

On the other hand, the most common Fast-RT models estimate the expected radiance in a channel (what a sensor actually
measures) and are typically based on statistical approaches. In these models, the complex and computationally costly physical
processes of RT modeling, the calculation of atmospheric transmittances, are parameterized using statistical models and trained
with output from Line-by-Line software on real atmospheric profile databases. The parameters are adjusted using standard
linear regression models or other machine learning techniques. While these methods sacrifice a small degree of accuracy,
they significantly reduce computational costs, making them practical for use in operational data assimilation. Some of the
most well-known models in this category include: OPTRAN, developed by the NESDIS-NCEP community (McMillin et al.,
1995; Kleespies et al., 2004; McMillin et al., 2006); The Joint Center for Satellite Data Assimilation (JCSDA) Community
Radiative Transfer Model (CRTM) (Han et al., 2006; Chen et al., 2008); and the RTTOV model, see (Saunders et al., 2018)
and the references therein. Other studies using statistical approaches include (Matricardi, 2010), which incorporates principal
component analysis in RTTOV, as well as (Liu et al., 2006; Krishnan et al., 2012; Cao et al., 2021; Stegmann et al., 2022;
Mauceri et al., 2022; Su et al., 2023), which apply machine learning techniques for parametrization, feature reduction, and
sampling strategies.

Even though RTTOV is more efficient than line-by-line models, it remains prohibitively expensive for operational use cases'.
Indeed, in current Fast RT models based on linear regression, such as OPTRAN and RTTOV, training is performed separately
for each gas type and pressure level, resulting in an over-parametrization of the RT model. To reduce the number of parameters
and make the evaluation of the trained RT model less computationally expensive, it is essential to carefully select the most
significant gases for each spectral channel of each instrument type, reduce the number of pressure levels, and implement other
ad hoc strategies. These decisions must account for the large number of possible combinations and trade-offs, and are typically
made by expert teams.

One promising approach to reducing the number of parameters without relying on expert committees is the use of opti-
mization methods that induce sparsity in the parameters. In particular, the use of LASSO regression, a regularization method
that penalizes the regression coefficients with the /1-norm, has proven effective for variable selection and model complexity
reduction in various large-scale applications (see, e.g., Heilemann et al., 2024; Pak et al., 2025). In the context of radiative
transfer, LASSO regression was applied by (Cardall et al., 2023) to estimate water quality parameters such as clarity, tem-
perature, and chlorophyll-a, based on correlations with in-situ measurements and near-coincident Landsat spectral data, with
a focus on model explainability. In (Li et al., 2020), the authors proposed an algorithm for detecting hazardous clouds using
passive infrared remote sensing technology with variable selection. Other studies that combine or compare LASSO with ma-
chine learning methods for remote sensing include: the removal of redundant features in PoISAR and optical images (Hong
and Kong, 2021); estimation of aboveground forest biomass with variable selection (Wang et al., 2022a); identification of

important environmental variables for retrieving soil moisture content (Wang et al., 2022b); evaluation of the accuracy and

IThis is the case for Ecuador’s METEO operational system, which currently relies on an HPC with only 700 cores.
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generalization capacity of grassland models (Smith et al., 2023); and a comparison of different machine learning methods for
predicting soybean yield (Joshi et al., 2023).

Building on this approach, in this paper we target the automatic selection of gases and optical depth predictors in Fast RT
models by inducing sparsity in the weight predictors using LASSO regression. We propose a parametrization of transmittances
based on statistical thresholds to automatically select the appropriate gases by channel and pressure level, and to induce sparsity
in the parameters by replacing the classical regression problem with a LASSO problem within the RTTOV framework. The
proposed methodology is tested with VIIRS infrared channels, and the results are compared with the standard RTTOV model.
To the best of the authors’ knowledge, this is the first time that LASSO regression has been applied to the RTTOV model to
automate the selection of gases and parameters.

One of the key aspects in LASSO models is the choice of the regularization weight in front of the ¢;-norm. This weight
controls the trade-off between fitting the training data well and keeping the model simple by reducing the number of non-zero
coefficients. In our context, selecting an appropriate regularization weight is crucial for effectively identifying the most relevant
gases and optical depth predictors while avoiding overfitting.

To establish a rigorous criterion for choosing this parameter—rather than relying on a tedious trial-and-error process—we
propose a bilevel optimization approach (see, e.g., De los Reyes and Villacis (2022); De los Reyes (2023)). The idea is to
formulate an upper-level optimization problem that encodes a model quality criterion, while the LASSO problem serves as the
lower-level constraint. In this article, we successfully test two types of loss functions: the first, based on an ¢y seminorm that
prescribes the number of non-zero predictors; and the second, inspired by a Bayesian Information Criterion-type objective.

This manuscript is organized as follows: Section 2 outlines the theoretical framework for the RT equation in Line-By-
Line models and details the general scheme of Fast-RT methods, focusing on RTTOV. Section 3 introduces the proposed
transmittance parametrization using statistical inference and LASSO regression model, as well as the bilevel optimization
approach for selecting the regularization weight. Section 4 presents the experimental settings and numerical results comparing

RTTOV with the proposed method. Finally, Section 5 offers conclusions of the performance of the proposed approach.

2 Radiative Transfer Equation

The monochromatic radiative transfer equation for the upwelling radiance in a clear sky, without solar radiation contribution,

for a non-scattering atmosphere and in local thermodynamic equilibrium, is given by:

I1(v,0) =75(v,0)es(v,0) B(v, Ts) + /B(V,T(p)) dr+(1- es(uﬁ))rf(y, 9)/

Ts Ts

B(v,T
w0, 0

where I(v,0) is the monochromatic TOA radiance at wavenumber v and satellite zenith angle 8; B(v, T) is the Planck function
at temperature T; 7(v,0,p,T,q) denotes the layer-to-space transmittance dependent on pressure p, temperature 7', and gas
concentration q. Here, T§, €5, and 7, represent surface skin temperature, emissivity, and transmittance respectively, (Weinreb

etal., 1981).
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The terms correspond to surface emission, upward atmospheric emission, and downward atmospheric emission reflected at
the surface (assuming specular reflection). Surface emissivity can be close to 1 for v between 714-1250 ¢m ™! and for surfaces
such as bodies of water, ice and healthy plant leaves, carbon powder, allowing the last term to be discarded.

The model described above, computed for each wavenumber v is called the Line-by-Line model, and the resulting radiance
is monochromatic.

Satellite-measured radiance is polychromatic, simulated by convolving Eq. (1) with the instrument’s Normalized Spectral

Response Function (NSRF):
I(v*,0)= /d)(l/,l/*)[(l/,ﬁ) dv, 2)

where ¢(v,v*) is the NSRF, representing the sensitivity to radiance within the spectral channel [v,,v;], with v* representing
the centroid of the response. Using the expression (2) in Eq. (1), the polychromatic radiance for the spectral channel identified
with v*, assuming €, = 1, can be written as (see Weinreb et al., 1981):

1

I(v*,6) :?s(y*,G)B(V,Tes)—|—/B(1/*,Te(p))d?, 3)

Ts

where T, and T, are empirical effective temperatures obtained via regression. The polychromatic transmittance is given by:

70*,0,p.T,q) = / (.Y 7 (1,0,p,T,q) dv. 4

Va

Transmittance follows Beer-Lambert law 7 = e~¢, with optical depth d(v, 0, p, T, q) accounting for absorption by gases (e.g.,

H>0, O3, CO2, CHy) and continuum effects. The monochromatic optical depth for a set of gases g1,...,gs is:
O~ |
sec
d(V797p7Ta q) = _T Z /Kgl (VaplaT(p/))qgl (p/> dp,? (5)
=17

where g is gravitational acceleration, K8 is the absorption function modeled via Voigt profiles (see Lavrentieva et al., 2011).
2.1 Fast Radiative Transfer Model
Fast RT models discretize the atmosphere into L layers:

po<p1<---<pr,

where pg is the top-of-atmosphere and pj, the surface pressure. Polychromatic radiance Eq. (3) is computed numerically,
requiring parameterization of polychromatic transmittance to reduce computational cost. In Fast-RT models, the polychromatic
optical depth is parameterized and fitted via linear regression to approximate Eq. (5), following ideas from McMillin and

Fleming (McMillin and Fleming, 1976; Fleming and McMillin, 1977; McMillin et al., 1979).
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The polychromatic optical depth from layer ¢ to the top of the atmosphere, for a single channel and gas g;, is:

my
g1 __ 81 g1 v 8
d; _di71+§ wis X;

J g

a8 =0, i=1,...,L, (6)

j=1

where X igjl are predictors depending on view angle, temperature, and gas concentration. The parameters wigj’ define the model.

Appendix B provides details on the RTTOV v13 predictors, and further information can be found in Saunders et al. (2017).
This parametrization includes a fixed gas mixture—whose spatio-temporal variations minimally affect radiance—and vari-

able gases, primarily H,O, optionally including O3, CO4, N2 O, CO, CHy, and SO,, varying by channel. Water vapor absorption

may be split into line and continuum components.

The polychromatic transmittance of layer ¢ for gas g; is approximated by:
T(gil,o) = exp(fdzgl )7 @)

and total transmittance approximated as:
S
TOT _ g
ooy =176 ®)
=1
Parameters are fitted using a database of M vertical atmospheric profiles:
(pi,ﬂj,qigjl,...,qigjs), i:o,...,L, j:l,...,M,
with polychromatic transmittances computed with Line-by-Line software for N view angles 6j:
(7-51,6,...,75‘}6), i=1,....,.L, j=1,....M, k=1,...,N. O]

Since total polychromatic transmittance is not simply the product of individual gases transmittances (unlike the monochro-

matic case), data (9) are corrected following (Xiong and McMillin, 2005; McMillin et al., 2006), as in RTTOV v13 (Hocking

et al., 2021), by introducing a corrective term Tg %R:

o =760y 1760 "
=1

which is parameterized similarly to Eq. (6) and (7). The corrective transmittance for training is:

sror
+COR _ ijk
ijk T ATOT

ijk

~TOT

where 7797 is the Line-by-Line polychromatic transmittance including all absorbers, and ;i is the modeled transmittance

ijk
from Eq. (8).
The linear regression fitting problem for gas g; and layer ¢ is:

(LSg,) min b

8l 8 &2
A o AT W YR (b
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where AF' € RMN>™ contains predictors X[ for angles, temperatures, and concentrations across profiles, and Y;# € R~
the corresponding optical depths.
In RTTOV v13, parameter counts per channel reach nearly 11,000, considering variable and fixed gases, layers, and correc-

tions. Reduction is achieved by expert-based gas selection, layer thinning, and thresholding (see Saunders et al., 2017).

3 A Sparse Parametrization of Optical Depths

In this section, we present a methodology to significantly reduce the number of parameters used in optical depth parametrization
within the RTTOV v13 framework. The methodology involves automatically selecting absorbing gases per channel and pressure
level, as well as identifying the most important predictors for each atmospheric layer. This approach induces sparsity in the
regression parameters by combining two tools: statistical inference to determine whether a given gas at a particular layer
requires no parametrization, a parametrization with a single predictor, or a more complex parametrization as described in Eq.
(6). In the latter case, the classic linear regression problem is replaced with a LASSO regression problem to select predictors

and induce sparsity in the parameter vectors.
3.1 Parametrization Based on Statistical Inference

The aim here is to preprocess the data of the polychromatic transmittances in a channel to determine which atmospheric layers
require optical depth parametrization and to automatically exclude gases that do not significantly contribute to the radiance
absorption in that channel. To achieve this, we will use confidence intervals to estimate the true polychromatic transmittances.

For a gas g; or correction term in a fixed layer ¢, we construct a confidence interval for the mean of the polychromatic

transmittances of the layer ¢. This is given by:

=81 81 =81 81
7 — BT+ B

where
g1
S
BS =7 5l
' *VNM
g1 g1

72" is the mean polychromatic transmittance for layer i, considering N angles and M atmospheric profiles, s3* is the corre-

sponding standard deviation, and Z;_¢ is the critical value of a distribution for a confidence level of 1 — cv. Given that the
number of data points in each layer is NM, which is usually sufficiently large (in our experiments, for N = 6 angles and
M = 83 profiles, N M = 498), the standard normal distribution is used to obtain the critical value. Thus, the absolute error in

=81

approximating the true value of the polychromatic transmittance of gas g; in layer ¢ with 7;

! is at most E¥', with a probability

of « that the absolute error exceeds this value. In our case, the confidence level is set to o = 106,
Based on the above, the following statistical thresholds for optical depth parametrizations are proposed. Let ¢; and €5 be
positive and sufficiently small values, these will be used as thresholds to determine whether ﬂgl is close to the true value or

close to 1. Define the mean optical depth for layer ¢ as Elgl = —In(7%"), and consider the following three cases:
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— Case I If E®' > ¢, the polychromatic transmittance due to gas g in layer 7 has high variability with respect to the value

of the atmospheric variables in that layer. In this case, the optical depth parametrization follows as in Eq. (6) for layer s.

— Case II: If Efl <€ and Efl > €9, unlike the previous case, the polychromatic transmittance due to gas g; in layer ¢ has
low variability with respect to the value of the atmospheric variables in that layer, and can be estimated by 75', but is not

close to 1. Thus, the optical depth can be parameterized with a single predictor as follows:
5 = ol X,

where, Xo; =1 and w§ = ﬁfl. If this occurs in all layers, and since the parametrization does not depend on atmospheric

variables, the gas g; can be included with fixed gases.

- Case lII' If E¥' < ¢ and Efl < €9, the polychromatic transmittance in layer i can not only be estimated by 75" but is also
close to 1, meaning that gas g; does not cause significant absorbance in this layer. The relative error of approximating
75! with 1 is given by:

]. _?i 781 —g1
=k —1=d, e < epe? X e,
Ti

for some £ € (O,E;gl ). If this condition is met for all layers, then gas g; is automatically discarded.

To summarize the above, the parametrization of optical depths based on statistical thresholds is as follows:

& =0

d¥ =d¥ + &, Ef <e and dy' > e, (12)
0, otherwise,

fori=1,2,..., L. The transmittances from layer i to the top of the atmosphere are still calculated using (7).

The statistical threshold tolerances €; and e, should be sufficiently small. In our experiments, we set es = €; and evaluate

the model performance for different small values of €; .
3.2 LASSO Regression and optimal choice of regularization parameter

After discarding parameter groups using the previous statistical approach with Eq. (12), in Case I, the remaining parameters
are typically estimated by solving an ordinary least squares (OLS) problem, which involves a large number of parameters.

To reduce the number of parameters, we propose to induce sparsity in the parameter vector w#' by solving the LASSO
problem. This is done by replacing the OLS problem (11) with the following optimization problem:

(LASSOg) wi' =arg min Ly(w) (13)



195

200

205

210

215

220

where
1 2
Ly(w) = UN [ A w — Y5+ Alwl],

and A > 0 is the regularization parameter. As A — 400, high sparsity is induced, and as A — 0, sparsity is low. Specifically, if
A = 0, the problem reduces to the least squares problem (11).

The regularization parameter A has to be carefully selected to ensure that the approximation of the transmittance in layer ¢
maintains a high level of accuracy relative to the least squares solution (11), while achieving a model with fewer parameters.
Although standard techniques such as cross-validation exist for tuning A, they may not always be appropriate, especially when
alternative loss criteria are more relevant to the specific modeling goals. To address this choice, we adopt a bilevel optimization
approach (see, e.g., (De los Reyes and Villacis, 2022; De los Reyes, 2023)), where the LASSO problem forms the lower-level

constraint and the upper-level objective reflects a model quality criterion. This results in the following bilevel problem:

min  F(w())

s.t. w(\)=arg min Ly(w), (14)

weR™!

OS)\SA07

where )¢ > 0 is a given upper bound. In the following, we show how to reduce this bilevel problem to a standard nonlinear
optimization problem. For the sake of clarity, we omit the indices corresponding to gas and pressure level.

Under the assumption that matrix A is full rank, problem (13) has a unique solution for each A > 0, denoted by w(\). The
collection of these solutions as A varies over the positive real numbers, is called the regularization path P = {w(\) : A > 0}. A
key structural property of the regularization path is that it is well-defined, unique, and continuous piecewise linear. Moreover,
and it can be computed using the homotopy algorithm for the LASSO problem (Osborne et al., 2000), an algorithm with
exponential complexity but low computational cost, that returns the vertices of the regularization path; both the properties and
the algorithm are described in Mairal and Yu (2012). The algorithm constructs a finite, monotonically decreasing sequence
of values { A\t }5_,, with \g = || ATY||c and A, = 0. For each )\, in this sequence, the corresponding solution to the LASSO
problem, w(\), is a vertex of the regularization path P, and it can be shown that w(\) = 0, for all A > A¢. In each line segment
of this path, the sparsity pattern of w(\) does not change; that is, the support set S(w(\)) = {j € {1,2,...,my} : w; () # 0}
remains fixed for all A € (Agy1, Ag]-

These properties of the regularization path allow the bilevel problem (14) to be reduced to a standard one-dimensional
optimization problem with bound constraints:

Agl[ol,rAlo] F(w(X)). (15)

We still need to establish the upper-level loss function £, which serves as a model quality criterion for the LASSO regulariza-
tion path. To this end, we propose two formulations for empirical comparison: the first is based on the optimal selection of the
regularization parameter in the LASSO problem using an £y-regression cost function; the second is based on a well-established

statistical tool for optimal model selection, the Bayesian Information Criterion (BIC).
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3.2.1 Bilevel formulation based on the £, regression

The best subset selection problem (Bertsimas et al., 2016; Miller, 2002) consists of solving a least squares formulation that

allows explicit control of sparsity through the choice of the number of predictors, this is:

. 1
min WHAW—YH%

WER""Z (16)
s.t. card(S(w)) <k,
for k € {1,...,m;} given. As this problem is NP-hard, the computational loss can be prohibitive, especially when several

subset sizes must be tested without prior knowledge of k. To mitigate this, more tractable relaxations have been proposed, such
as the ¢, regression, obtained from a penalized formulation of the problem (16):
1 2
WO T [Aw =Y |15+ y(card(S(w)) — k),
where v > 0 is the penalty parameter. Motivated by this problem, we propose as the merit function

1

(W)= §ar,

[ Auw =Yy |13 +5(B)card(S(w)),

which is used in the bilevel problem (14) to assess LASSO solutions on validation data, balancing generalization and com-
plexity through a weighting parameter 8 € (0, 1]. As a reference, w(0) (the OLS solution) achieves the best fit but maximum
complexity (8 = 1), while w(\g) = 0 is the opposite (5 = 0). Consequently, the penalty is defined as

18) = w4 (5=1) (IVIB = 1 Aw(0) - Y |3) .

To prioritize model data fidelity over low complexity, 3 should be close to 1. In our experimental setting, we choose 8 =
1—-10"%

With Fy, (w(\)) as the objective function of (15), it is a piecewise continuous objective function, smooth along each linear
segment of the regularization path and with discontinuities at {\;}},_,. Moreover, Fy,(w())) is a quadratic polynomial for
A € (Aks1, M), since card(S(w()\))) remains constant within this interval. If we denote )\, as the minimizer of this polynomial

over the closure of this interval, then problem (15) reduces to a discrete parameter optimization problem:

omin Fyy (w(Ar))- (17)

3.2.2 Bilevel formulation based on the Bayesian Information Criterion

In this case, the choice of the loss function F'(w) is inspired by the Bayesian Information Criterion for model selection
(Schwarz, 1978). Similar to ¢y-regression, it penalizes model complexity but does not require a tuning parameter. Given a
collection P of candidate models, and letting o(w) denote the maximum likelihood under model w € P, the BIC-based
objective is given by

gvnel% nln (o(w)) 4+ 1In(n) K (w),
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where K (w) denotes the number of explanatory variables in model w (or a measure of model complexity), and n is the number
of data points used to construct model w. If the “true model” belongs to P, then the probability that BIC selects this model
approaches 1 as the number of data points increases.

In our context, the model set P consists of LASSO solutions for each A > 0, built using n = N M data points, and a good

approximation to the true model is given by the ordinary least squares solution w(0). We define:
o(w) = o7 [[Aw — Y7 and K(w)=card(S(w)), forw e P,

The BIC-based objective function is then defined as:

Fpro(w)=NMn (ﬁ |Aw — Y||§) +1In(N M) card(S(w)).

This is a piecewise continuous objective function, smooth along each linear segment of the regularization path and with discon-
tinuities at {\;}}_,. It can be verified that Fpro(w(\)) is monotonically increasing in X € (A1, Ax] since card(S(w(A)))
remains constant within this interval. Therefore, the solution of the bilevel problem (15) with the BIC-based merit function
occurs at one of the discontinuity points \;. Consequently, problem (15) reduces to the discrete model selection problem:

OISHkiISlTFBIC(W()\k))- (18)

3.2.3 Post-LASSO for model bias reduction

An important characteristic of LASSO solutions is that they are biased toward zero whenever A > 0. As a result, the mean
squared error of w(\) may not accurately reflect the true likelihood of the model, particularly in the context of the BIC-based
formulation. To address this, we use a post-penalized estimator, namely an ordinary least squares regression restricted to the
set of predictors selected by LASSO (Belloni and Chernozhukov, 2011). This approach is known as the Post-LASSO problem.
As a direct consequence of the predictor set remaining fixed within each line segment of the LASSO regularization path, the
Post-LASSO problems can be formulated for each kK =0,1,...,r as:
min LHAW—YH;
werR™  NM

st. w; =0, forj¢S(w(ig)).

Let {wl’fs };:0 denote the set of Post-LASSO solutions corresponding to the sequence {A}},_,. Instead of using solutions
from the LASSO regularization path in the ¢y-regression (17) or BIC-based (18) formulations, we employ the Post-LASSO

solutions wf's, which provides an alternative model selector with reduced bias:

: k
OrgnkungF(wLS). (19)

Finally, this formulation is used to select the weights for the optical depth parametrization for each gas and pressure level,

using either the bilevel £p+LASSO regression or the bilevel BIC+LASSO regression formulations.

10
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4 Numerical Results

This section evaluates the performance of the proposed parametrization compared to the standard RTTOV v13. Specifically, it
studies the level of sparsity achieved and its impact on accuracy relative to RTTOV v13 and Line-by-Line calculations using
LBLRTM. Performance is measured via the root mean square error (RMSE) of the transmittances compared to Line-by-Line
transmittances, and by assessing the brightness temperature (BT) approximation error from the Fast-RT models against Line-
by-Line results. Additionally, the BT error is compared to the Noise-Equivalent Delta Temperature (NEdT) of the M-band

VIIRS instrument to assess the proportion of profiles for which the model error remains below the instrument noise.
4.1 Experiment settings

For training the RTTOV parametrizations and the proposed sparse variants, six variable gases are considered: H20, O3, CO2,
N20, CO, and CH4. The Fast-RT model can additionally consider SO2 as a variable gas, but here it will be treated as a fixed
gas among the total of 22 fixed gases considered. No distinction is made between water vapor absorption lines and continuum

absorption. For the viewing angle, we consider 6 path secant angles from 1 to 2.25 with step 0.25 (from 0° to 63.61°).
4.1.1 Spectral Response Functions of VIIRS M-bands:

The VIIRS is an instrument on NOAA’s Suomi NPP and NOAA-20 satellites, part of the Joint Polar Satellite System (JPSS). It
features 16 moderate resolution bands (M-bands) that cover visible and infrared spectra. This study focuses on spectral response
functions for bands M7 to M 16, which cover the near (NIR), medium (MIR), and long (LIR) infrared ranges. In this study, we
use the VIIRS SRF J2, which can be downloaded from the following link: https://ncc.nesdis.noaa.gov/NOAA-21/index.php.
Details on the centers and spectral ranges of these bands can be found in Tables 1 and 2 in Cao et al. (2017).

For each channel, the wavenumber v and the corresponding Spectral Response Function (SRF) values are tabulated. The
wavenumber tabulation typically covers a broader spectral range, denoted as [V, V], with noisy SRF values at the extremes
of this interval. Therefore, the SRF must be truncated to a smaller interval that retains most of the relevant SRF information.
Instead of using Tables 1 and 2 from Cao et al. (2017) for our calculations, we utilize channels with a spectral range broader
than those. These channels are defined as [v* — v;,v* + 1], where v* is the centroid of SRF in [v,,v], v, and v, are the
tabulated wavenumber values closest to v* below and above, respectively, such that the relative truncation error does not

exceed € = 9 x 1074, Specifically:

vy v vy,
(1- e)/qb(y*,v) dv < / o(v*,v)dv.

The integrals are calculated using the composite trapezoidal rule. The SRF data are then truncated and normalized within this

new interval, and the centroid v* is recalculated. The updated channels and centroids are presented in Table 1.
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Band | Centroid (cm™!) | Spectral Range (cm~!) | IR
M7 11525.42 11070.96 — 12048.02 NIR
M8 8056.98 7924.69 — 8170.62 NIR
M9 7235.57 7134.59 —7373.52 NIR
M10 6199.43 5853.32 - 6522.30 NIR
Mi11 4442.00 4342.01 — 4549.99 NIR
M12 2711.61 2545.18 — 2867.98 MIR
M13 2489.30 2354.64 — 2607.44 MIR
M14 1166.76 1111.73 - 1235.32 LIR
M15 939.82 875.89 — 1008.36 LIR
M16 839.10 782.35 -896.29 LIR

Table 1. VIIRS IR M-bands (wavenumber)

By truncating the noisy tails of the SRF in this way, the resulting NSRF for each channel is interpolated using natural cubic
splines to be used for calculating polychromatic transmittances with a much finer spectral resolution than the tabulated NSRF
data. It can be shown that the error made by approximating the polychromatic transmittance with the truncated NSRF does not

exceed e.
4.1.2 Vertical profile database ECMWF83:

For training the optical depth parametrization, we use the ECMWF83 database, which includes 83 vertical profiles with tem-
perature and gas concentrations for H20, O3, CO2, N20, CO and CH4, across 101 pressure levels, originally created to train
RTTOV (Matricardi, 2008). A separate database with 22 vertical profiles covers fixed gases. These datasets are available from
NWP SAF of EUMETSAT and can be downloaded at https://nwp-saf.eumetsat.int/site/.

4.1.3 Line-by-Line Transmitances with LBLRTM:

In this study, LBLRTM v12.15.1 (February 2023) will be employed for Line-by-Line calculations. The software uses AER
Continuum MT CKD v4.1.1. for continuum models of water vapor and other gases and the AER Line Parameter Database
v3.8.1. for line parameters, which consolidates various line spectral databases, primarily HITRAN 2016 (Gordon et al., 2017).

The principal parameter in the LBLRTM calculation, to generate the optical depths for training and top-of-atmosphere

radiances, are the following:
— The continuum absorption is not activated for isolated gases and fixed gases, nor when all gases are included.

— The Voigt profile is chosen for the shape of spectral lines,
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— The spectral resolution is set to dv = &, /1.5 where @, is the average value of the Voigt halfwidth for the layer. Con-
sequently, the spectral resolution is not homogeneous across channels, achieving an average spectral resolution from
7.1 x 1073 for M7 to 4.1 x 10~* for M16.

— The calculation of optical depths with the software is performed only for the observation point at nadir. For other angles,

variations are made directly in the calculation of polychromatic transmittances.
4.1.4 RTTOV v13 and Proposals Settings:

For short, we will abbreviate Fast-RT models as follows: RTTOV 13 for the standard RTTOV v13; SI for RTTOV13 with
statistical threshold and ordinary least squares for parameterization; BIC+L1 for RTTOV13 with statistical threshold and
BIC+LASSO regression for parameterization; and LO+L1 for RTTOV13 with statistical threshold and £y+LASSO regression
for parameterization

We implemented the transmittance parametrization of RTTOV v13 as described in (Saunders et al., 2020), using the same
predictors, except for the method of selecting gases per channel, which is detailed below.

In RTTOV v13 in the standard form, regression parameters are obtained by including only the gases that exhibit absorption
lines in each channel, as shown in Table 2. In the proposed RTTOV variants, using statistical inference and LASSO regression,
all gases are included in the training.

Additionally, there are other criteria for selecting predictors in the correction term and training data by level, which are listed

below:

— Threshold for gases correction term: Predictors for fixed gases are always included in the correction term. For other
gases, predictors for a specific gas in a layer are included only if any of the corresponding optical depths in the training
profile for that layer exceed a threshold 0.01 for CH4 and 0.005 for the other gases. As a result, for all the VIIRS channels

studied, only predictors for fixed gases and water vapor are included in the correction term.

— Threshold for Optical Depth Data Training: Optical depth data in a layer for a gas is omitted if the corresponding
transmittance from the layer to the surface is less than 3x 1075, As a result, only channel M 10 is affected by this selection

criterion.

Channels | Gases

M7 H20, CO2, CH4
M8 H20, CO2, CO, CH4
M9 H20, CO2, NO2, CH4

MI10-M11 | H20, 03, CO2, N20, CO, CH4
MI12-M16 | H20, 03, CO2, N20, CH4
Table 2. Gases considered in RTTOV v13 for VIIRS M-bands.

The performance of the three proposed models, SI, BIC+L1, and LO+LASSO, is evaluated using different statistical threshold
parameters €; € {1072,1078,10~7,107%}. Since the LO+LASSO bilevel model is based on a validation data criterion for the
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upper-level merit function, we split the N M data randomly in half, using one half for training the LASSO problems and the

other half as validation data for evaluating model quality using the £, regression.
350 4.2 Sparsity Pattern in the parametrization of optical depths

Table 3 summarizes the percentage of non-zero parameters (%NZ) out of a total of 11,000 parameters (worst-case scenario)
for each type of optical depth model: RTTOV 13, SI, BIC+L1, and LO+L1. Figures 1 and 2 show the percentage of parameter
usage and computation time relative to RTTOV13. Tables 4, 5, 6, and 7 provide details on the number of non-zero parameters
(NNZ) for each gas type and correction factor, for ¢; = 1076,

355 In Table 3, the increase in sparsity for the proposed parametrizations compared to the general RTTOV v13 scheme is evident.
RTTOV v13 induces sparsity by manually selecting gases and applying optical depth thresholds to include predictors in the
correction factor. Using e; = 1075 as a reference, in the best-case scenario with channel M7, where greater sparsity is achieved
with RTTOV13, the sparsity level of RTTOV13 (53.64%) increases to 93.66% for SI, 94.39% for BIC+L1, and 96.22% for
LO+L1. Conversely, in the worst-case scenario with channels M10 and M11, where RTTOV 13 achieves lower sparsity (20%),

360 the levels increase to 76.49% and 77.13% for SI, 80.12% and 81.30% for BIC+L1, and 90.50% and 89.89% for LO+L1. As the
statistical threshold tolerances decrease, sparsity levels also decrease; however, they remain higher than those of RTTOV 13,
suggesting that the computational cost benefits are preserved while achieving better sparsity results with the proposed LO+L1

model.

| FastRT | M7 | M8 | M9 | MIO | MII | MI2 | MI3 [ MI4 [ MI5 [ MI6 |
| RTTOVI3 | 46.36 [ 46.47 | 59.77 | 80.00 | 80.00 [ 69.95 | 68.18 [ 70.00 | 69.41 [ 69.77 |

1076 | 634 | 9.17 | 24.49 | 23.51 | 22.87 | 34.20 | 30.55 | 37.95 | 34.43 | 27.83
SI 1077 | 13.05 | 20.23 | 27.85 | 28.80 | 28.69 | 53.49 | 46.34 | 50.64 | 44.38 | 39.35
1078 | 24.09 | 32.67 | 35.28 | 36.99 | 41.61 | 64.95 | 57.72 | 56.59 | 50.86 | 46.32
1072 | 37.76 | 40.36 | 47.10 | 56.57 | 55.13 | 68.29 | 62.51 | 62.69 | 57.75 | 47.95

107° 5.61 831 | 1837 | 19.88 | 18.70 | 27.94 | 25.21 | 30.36 | 29.76 | 23.15
BIC+L1 | 1077 | 10.33 | 17.17 | 20.63 | 23.96 | 22.10 | 43.84 | 37.26 | 38.77 | 37.25 | 32.60
1078 | 17.87 | 25.01 | 26.31 | 30.40 | 32.22 | 52.51 | 45.03 | 43.58 | 42.47 | 36.50
1079 | 26.39 | 29.46 | 36.24 | 44.93 | 42.48 | 54.45 | 48.39 | 48.79 | 47.48 | 37.67

1076 378 | 6.14 | 12.18 | 9.50 | 10.11 | 16.85 | 15.68 | 19.63 | 23.87 | 16.71
LO+L1 | 1077 | 7.20 | 11.39 | 13.79 | 11.99 | 12.99 | 22.07 | 21.39 | 24.55 | 29.61 | 23.50
1078 | 11.00 | 15.73 | 15.93 | 1534 | 16.96 | 24.59 | 23.53 | 27.63 | 33.95 | 27.38
1072 | 14.98 | 18.78 | 18.51 | 20.76 | 21.03 | 25.70 | 25.41 | 31.38 | 37.59 | 28.35

Table 3. Percentage of nonzero parameters in RTTOV v13 for each channel, for the standard configuration, SI with OLS regression,

BIC+LASSO regression, and £o+LASSO regression. The second column represents the different statistical thresholds €; used for the pro-
posed RTTOV v13 variants.

In Figures 1 and 2, we present the percentage of parameter usage in the proposed optical depth approximations within

365 RTTOV, relative to the number of parameters used in the standard RTTOV configuration, and the percentage of runtime re-
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quired by the proposed schemes compared to standard RTTOV. The measured runtime corresponds to the average time of 200
evaluations of the parameterized function used to compute approximate transmittances for the 83 atmospheric profiles with 6
different viewing angles. For the following comparisons, we use €¢; = 10~ as a reference. For the SI configuration, parameter
usage across all channels ranges from 13.67% to 54.21% relative to standard RTTOV, corresponding to a runtime ranging from
29.99% to 58.32%; for the BIC+L1 configuration, usage ranges from 12.10% to 43.38%, with runtime from 26.75% to 48.64%;
and for the LO+L1 configuration, usage ranges from 8.16% to 34.39%, with runtime from 13.77% to 41.39%. These results
suggest that the computational cost of evaluating parameterized transmittances is significantly and proportionally reduced with
the proposed parametrizations.

Although the absolute runtime difference is small for this limited number of profiles, in practical scenarios where trans-
mittance functions must be evaluated for hundreds of thousands of atmospheric profiles, as required in satellite data retrieval
applications, the reduction in computational time becomes highly significant for the efficiency of the retrieval process.

As an illustrative example, from Figure 2, for channel M15, for each 100 time units required to compute transmittances
with the RTTOV 13 model, the LO+L1 model takes only 41.69 time units with ¢; = 1075, and 59.63 time units with e; = 1072

(worst-case), representing a significant reduction in runtime.

100 = 100
80 80
60 60
40 40
20 20
M7 M8 MS M10 M1l MI12 M13 M14  M15  MI16 M7 M8 M3 M0 M1l M12  M13 M14  M15 M6
—RTTOV13 1,00E-06 1,00E-07 s 1, 00 08 s 1 OOE-09 —RTTOV13 1,00E-06 1,00- 07 w1, 00E-08 mmmmm 1 00E-09

Figure 1. Parameter usage (left) and runtime (right) of the SI method, expressed as percentages relative to those of RTTOV v13 (fixed at
100%) for different values of €.

100 100
80 80
40 40
M7 M8 M3 M10 M11 Mi2 M13 M14 M15 M16 M7 M8 M9 M16
— RTTOV13 1,00E-06 1,00E-07 — RTTOV13

Figure 2. Parameter usage (left) and runtime (right) of the BIC+LASSO method, expressed as percentages relative to those of RTTOV v13
(fixed at 100%) for different values of €;.
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Figure 3. Parameter usage (left) and runtime (right) of the LO+LASSO method, expressed as percentages relative to those of RTTOV v13
(fixed at 100%) for different values of €;.

380

In Tables 5, 6, and 7, the effectiveness of introducing statistical thresholds to discard irrelevant gases by channel is evident

compared to Table 4. A number of non-zero parameters below 100 for a specific gas corresponds to Case II of the statistical

threshold parameterization, suggesting that the corresponding gas can be included with the fixed gases.

Gas | M7 | M8 | M9 | MIO | MII | MI2 [ MI3 [ MI4 | MI5 | MI6 |

FIX | 900 | 900 | 900 | 900 | 900 | 900 | 900 | 900 | 900 | 900
H20 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400

03 0 0 0 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200
CO2 | 1300 0 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 1300
N20 0 12 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200

Cco 0 1300 0 1300 | 1300 0 0 0 0 0
CH4 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100
COR | 400 | 400 | 675 | 400 | 400 | 595 | 400 | 600 | 535 | 575

Table 4. Number of nonzero parameters by gas type and channel in RTTOV13.

Gas | M7 | M8 | M9 | MIO0 [ MII | MI2 [ MI3 | MI4 | MI5 | MI6 |

FIX | 18 | 247 0 0 15 145 52 134 | 478 | 599
H20 | 619 | 618 | 1374 | 618 | 604 | 775 | 576 | 802 | 687 | 716

03 0 0 0 0 0 644 19 1120 | 1096 | 466
CO2 0 56 0 1142 0 212 | 724 0 1213 | 911
N20 | O 0 0 0 897 | 640 | 1024 | 1024 | 33 0
CO 0 0 0 0 0 0 0 0 0 0
CH4 | 47 0 778 | 768 | 995 | 964 | 819 | 678 0 0
COR | 13 88 | 542 58 5 382 | 147 | 416 | 280 | 369

Table 5. Number of nonzero parameters by gas type and channel in SI for ¢; = 107°.
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[[Gas [ M7 [ M8 | M9 | MIO [ MII | MI2 | MI3 [ MI4 | MI5 | MI6 |
FIX | 18 [ 244 0 0 | 15 | 125 ] 52 | 134 | 463 | 534
H20 | 542 | 545 | 1102 | 535 | 531 | 704 | 475 | 732 | 653 | 670
03 | 0| 0] 0 0 0 | 531 | 19 | 969 | 904 | 382
Co2| 0 | 56| 0 |[1024| 0 | 196 | 648 | 0 | 1114 | 850
N20 | 0 | 0| 0 0 | 799 | 624 | 901 | 913 | 33 | 0
co| 0| 0] 0 0 0| 0o | o] o0 0 0
CH4 | 47 | 0 | 567 | 576 | 707 | 759 | 559 | 402 | © 0
COR | 10 | 69 | 352 | 52 | 5 | 134 | 119 | 190 | 107 | 111

Table 6. Number of nonzero parameters by gas type and channel in BIC+L1 for e; = 10~°.

| Gas [ M7 [ M8 [ M9 | MIO | MI1 [ MI2 [ MI3 [ M14 | M15 | MI6 |
FIX | 18 | 187 | O 0 15 54 52 92 116 | 154
H20 | 342 | 351 | 763 | 239 | 385 | 556 | 281 | 663 | 506 | 590
03 0 0 0 0 0 238 19 451 | 826 | 268
CO2 0 56 0 394 0 96 497 0 977 | 661
N20 | O 0 0 0 244 | 268 | 411 | 348 33 0
CcO 0 0 0 0 0 0 0 0 0 0
CH4 | 47 0 | 203 | 355 | 463 | 443 | 317 | 353 0 0
COR | 9 81 | 374 | 57 5 199 | 148 | 252 | 168 | 165

Table 7. Number of nonzero parameters by gas type and channel in LO+L1 for e; = 1075,

To illustrate in more detail, we reference channels M11 and M12 and compare the sparsity patterns in Figs. 4 and 5 among
the four parameterizations using ¢; = 1075 as a reference. For the LO+L1 model and the remaining channels, see Appendix
A, Figs. Al and A2. The numbering of predictors and correctors follows RTTOV v13 (Saunders et al., 2020), see Appendix
B, except for predictor 0, which corresponds to the predictor in Case II of the statistical inference proposal. Each column
represents the parameters of a predictor for each pressure level, and each point in a column represents a non-zero parameter
associated with that predictor at the corresponding pressure level.

For channel M11 with SI model (upper-middle Fig. 4), gases O3, CO2, and CO are automatically discarded, and fixed gases
only need one predictor. Meanwhile, gases H20, N20, and CH4 exhibit block-like sparsity patterns from surface pressure
approximately to 200 hPa, 19 hPa, and 0.8 hPa, respectively, where concentrations of these gases are important and cause
significant radiance absorption. For these gases with block-like sparsity patterns, replacing classical linear regression with
LO+LASSO regression (bottom figure) clearly discards some predictors across all levels or shows them as less relevant, as seen
in the sparsity patterns for CH4 and N20. However, H2O still shows sparsity, but it is difficult for this channel to determine if
any predictor can be discarded at all levels due to the importance of this gas and the strong non-linear relationship among the
secant angle, temperature, and gas concentration in the predictors defined for it. Using BIC+LASSO regression (lower-middle
figure) highlights less relevant predictors for CH4, but does not entirely discard it or any other gas predictor retained in the
SI model. For the proposed models, no correction term is needed at all, showing that a good fit of the total transmittance is

obtained by considering only the approximation of the individual gas transmittances.
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For channel M12 with SI model (upper-middle Fig. 4), only CO is automatically discarded, which is expected since this
gas has no absorption lines in this channel. The SI model still clearly reveals the block-like sparsity patterns of predictors and
correctors for each gas at the pressure levels where they contribute to absorption (upper-middle figure). From the figure, CO2
appears to be relevant at high pressures, approximately above 767 hPa, while O3 seems relevant between about 2 hPa and 260
hPa. Using LO+LASSO regression (bottom figure) for these important pressure levels demonstrates that some predictors can be
entirely discarded or downweighted, as seen for fixed gases, O3, N20, and CH4. Similarly, the BIC+L1 model (lower-middle
figure) highlights less relevant predictors but does not completely discard any predictor retained in the SI model, except in the
corrector terms.

A similar analysis can be performed for each channel, as shown in the appendix, where Figs. Al and A2 display the sparsity
patterns for all channels using the LO+L1 model. These figures clearly indicate which gases are relevant in each channel,
the pressure level ranges where they play a significant role, and which predictors are most important for reconstructing the

transmittance of each gas.
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e =10"°
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4.3 Validation of transmittances

To validate the proposed RTTOV v13 variants, we calculated the root mean square error (RMSE) of the total transmittance for

all atmospheric layers, vertical profiles, and viewing angles, as shown in the following formula:

L M N 2

_ 1 TOT _ ~TOT\2
RMSE = m;z;(%k — Tijk ) )
=1 j=1k=

where L =100, M = 83, and N = 6. Here, 7,°°7 and 7,07 represent the polychromatic transmittances calculated using

LBLRTM optical depths and their corresponding approximations obtained from Eq. (10) using the training data. The results
are shown in Table 8. The values in the table correspond to RMSE x 10%.

| FastRT | M7 | M8 | M9 [ MI0O | MIl [ MI2 | MI3 | MI4 [ MI5 | M6 |
| RTTOVI3 | 0.0126 | 0.0224 | 102.4458 | 0.0133 | 0.1341 | 0.7334 | 0.1128 | 0.8514 | 0.3340 | 0.7794

1076 | 0.0160 | 0.0332 | 102.4442 | 0.0245 | 0.1320 | 0.7298 | 0.1130 | 0.8504 | 0.3325 | 0.7779
SI 1077 | 0.0128 | 0.0229 | 102.4455 | 0.0134 | 0.1336 | 0.7334 | 0.1155 | 0.8513 | 0.3339 | 0.7795
1078 | 0.0126 | 0.0228 | 102.4457 | 0.0133 | 0.1340 | 0.7334 | 0.1128 | 0.8514 | 0.3340 | 0.7794
1079 | 0.0126 | 0.0228 | 102.4458 | 0.0133 | 0.1341 | 0.7334 | 0.1128 | 0.8514 | 0.3340 | 0.7794
1075 | 0.0160 | 0.0333 95.1889 | 0.0245 | 0.1321 | 0.7329 | 0.1132 | 0.8606 | 0.3345 | 0.7792
BIC+L1 | 10~7 | 0.0128 | 0.0231 95.1962 | 0.0136 | 0.1341 | 0.7372 | 0.1155 | 0.8610 | 0.3355 | 0.7842
1078 | 0.0127 | 0.0230 95.1988 | 0.0135 | 0.1345 | 0.7372 | 0.1128 | 0.8610 | 0.3356 | 0.7842
1079 | 0.0127 | 0.0230 95.1977 | 0.0135 | 0.1345 | 0.7372 | 0.1127 | 0.8610 | 0.3356 | 0.7842
1075 | 0.0173 | 0.0343 | 165.5327 | 0.0262 | 0.1398 | 0.7384 | 0.1149 | 0.8758 | 0.3392 | 0.7829
LO+L1 | 1077 | 0.0143 | 0.0246 | 165.5344 | 0.0175 | 0.1420 | 0.7406 | 0.1183 | 0.8767 | 0.3399 | 0.7854
1078 | 0.0142 | 0.0245 | 165.5347 | 0.0174 | 0.1423 | 0.7407 | 0.1155 | 0.8767 | 0.3400 | 0.7853
1079 | 0.0142 | 0.0245 | 165.5348 | 0.0174 | 0.1423 | 0.7407 | 0.1156 | 0.8767 | 0.3400 | 0.7854
Table 8. RMSE of total transmittance for each channel, scaled by 10?, for the proposed RTTOV v13 variants. The second column indicates

the statistical threshold €; used for each variant.

In Table 8, the RMSE for transmittance errors generally ranges between O(107%) and O(10~?) across all Fast-RT methods
and channels, except for channel M9, where errors are larger, in the range O(1072) to O(10~2). All three proposed models
slightly degrade the precision of RTTOV13, but this degradation diminishes as the statistical threshold decreases. Comparing
RTTOV 13 with the SI model, the error difference reduces from O(10~7) to O(10~?) on average across channels, again except
for M9. With BIC+LASSO, the difference remains around O(10~7), while for channel M9 it is O(10~%). Similarly, with
LO+L1 the difference is about O(10~7) for most channels, but O(10~2) for M9. Among the three, the LO+L1 model shows
the lowest precision, as expected due to its more aggressive sparsity, yet the errors remain comparable in order of magnitude
to RTTOV13.

Overall, these results indicate that including statistical thresholds in RTTOV v13 has minimal impact on the transmittance

approximation. Values remain very close to the standard RTTOV13 configuration for statistical threshold tolerances below
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10~ (Table 8). Combining thresholds with LASSO regression in a bilevel framework for parameter selection, using either
BIC-based or ¢y-regularization, slightly modifies the approximation, improving or worsening it, but variations remain small.

The approximated transmittances closely match those from LBLRTM, with the added benefit of a significant runtime reduction.
4.4 Validation of brightness temperatures

To achieve a higher level of validation for the proposed transmittance parametrization, the brightness temperatures of the
profiles used for training are calculated. The approximated brightness temperatures at the top of the atmosphere were calculated
using polychromatic radiances from Eq. (3), applying the approximate transmittances provided by the RTTOV v13 scheme and
the proposed variants, separately. To compare these results, brightness temperatures at the top of the atmosphere were calculated
using the polychromatic radiances with Eq. (2), using the monochromatic radiances calculated with LBLRTM. In all cases, the
integrals were approximated using composite trapezoidal formulas, with the spacing determined by the pressure levels of the
data. In each case, the resulting brightness temperatures were averaged over all profiles and viewing angles. The relative errors
in BT obtained with the Fast-RT models and those obtained with LBLRTM were then calculated, which are shown in Table 9
(x10%). The maximum relative error for brightness temperature, determined for each profile and viewing angle, is presented in
Table 10 (x103).

] Fast-RT \ M7 \ M8 \ M9 \ M10 \ M1l \ M12 \ M13 \ Ml4 \ M15 \ M16 \
] RTTOV13 \ 3.8967 \ 0.3357 \ 7.5875 \ 2.1803 \ 0.5966 \ 1.0472 \ 0.6429 \ 0.5221 \ 0.7386 \ 0.6715

1076 | 4.7551 | 0.5896 | 7.6048 | 2.2527 | 0.5833 | 1.0181 | 0.6672 | 0.5088 | 0.7521 | 0.7512
SI 1077 | 4.7488 | 0.4203 | 7.5838 | 2.1820 | 0.5985 | 1.0419 | 0.6421 | 0.5198 | 0.7414 | 0.6723
1078 | 4.3021 | 0.3429 | 7.5878 | 2.1799 | 0.5970 | 1.0470 | 0.6430 | 0.5218 | 0.7389 | 0.6716
1079 | 3.8726 | 0.3348 | 7.5875 | 2.1803 | 0.5966 | 1.0472 | 0.6429 | 0.5221 | 0.7386 | 0.6715
1076 | 4.7552 | 0.5896 | 7.6185 | 2.2526 | 0.5832 | 1.0220 | 0.6672 | 0.5109 | 0.7509 | 0.7557
BIC+LO | 1077 | 4.7490 | 0.4203 | 7.5975 | 2.1819 | 0.5980 | 1.0492 | 0.6421 | 0.5229 | 0.7425 | 0.6742
1078 | 4.3022 | 0.3429 | 7.6035 | 2.1797 | 0.5964 | 1.0549 | 0.6426 | 0.5257 | 0.7411 | 0.6730
1079 | 3.8726 | 0.3348 | 7.6027 | 2.1802 | 0.5962 | 1.0550 | 0.6425 | 0.5258 | 0.7407 | 0.6730
1076 | 4.7572 | 0.5896 | 7.8953 | 2.2525 | 0.5819 | 1.0270 | 0.6568 | 0.5145 | 0.7575 | 0.7399
LO+L1 1077 | 4.7503 | 0.4202 | 7.8756 | 2.1824 | 0.5974 | 1.0509 | 0.6309 | 0.5190 | 0.7434 | 0.6632
1078 | 4.3030 | 0.3425 | 7.8858 | 2.1799 | 0.5962 | 1.0570 | 0.6324 | 0.5199 | 0.7414 | 0.6623
1079 | 3.8738 | 0.3343 | 7.8860 | 2.1800 | 0.5959 | 1.0572 | 0.6324 | 0.5201 | 0.7406 | 0.6626
Table 9. Average Relative Errors in Brightness Temperature (K), scaled by 10*, between the Fast-RT and LBLRTM models. The second

column indicates the statistical threshold e; used for each variant.
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| FastRT | M7 | M8 | M9 | MIO [ MII | MI2 [ MI3 | MI4 | MI5 [ MI6 |
| RTTOVI3 | 2.2108 | 0.3612 | 1.4245 | 0.8689 | 0.4965 | 0.4082 [ 0.2817 | 0.2182 [ 0.3501 | 0.2602

1076 | 5.9256 | 2.0416 | 1.4218 | 1.3972 | 0.4918 | 0.4143 | 0.2967 | 0.1852 | 0.3549 | 0.2787
SI 1077 | 5.9259 | 1.2130 | 1.4243 | 0.8691 | 0.4946 | 0.4066 | 0.2819 | 0.2171 | 0.3501 | 0.2602
1078 | 3.5565 | 0.4896 | 1.4245 | 0.8689 | 0.4967 | 0.4082 | 0.2817 | 0.2182 | 0.3500 | 0.2602
1079 | 2.3083 | 0.3655 | 1.4245 | 0.8689 | 0.4965 | 0.4082 | 0.2817 | 0.2182 | 0.3501 | 0.2602
1076 | 5.9256 | 2.0416 | 1.3104 | 1.3972 | 0.4918 | 0.4197 | 0.2969 | 0.1802 | 0.3559 | 0.2807
BIC+LO | 1077 | 5.9259 | 1.2130 | 1.3127 | 0.8687 | 0.4943 | 0.4120 | 0.2820 | 0.2115 | 0.3515 | 0.2660
1078 | 3.5565 | 0.4896 | 1.3129 | 0.8686 | 0.4962 | 0.4125 | 0.2816 | 0.2131 | 0.3513 | 0.2650
1079 | 2.3085 | 0.3654 | 1.3129 | 0.8687 | 0.4960 | 0.4126 | 0.2817 | 0.2131 | 0.3514 | 0.2650
1076 | 5.9256 | 2.0415 | 1.5482 | 1.3993 | 0.4891 | 0.4348 | 0.3036 | 0.1998 | 0.3629 | 0.2851
LO+L1 1077 | 5.9259 | 1.2130 | 1.5535 | 0.8686 | 0.4912 | 0.4255 | 0.2892 | 0.2246 | 0.3579 | 0.2692
1078 | 3.5565 | 0.4882 | 1.5532 | 0.8684 | 0.4932 | 0.4270 | 0.2891 | 0.2256 | 0.3575 | 0.2683
1079 | 2.3116 | 0.3636 | 1.5531 | 0.8684 | 0.4930 | 0.4270 | 0.2892 | 0.2258 | 0.3573 | 0.2681
Table 10. Maximum Relative Errors in Brightness Temperature (K), scaled by 10%, between the Fast-RT and LBLRTM models. The second

column indicates the statistical threshold e¢; used for each variant.

In Table 9, a similar behavior is observed in the errors when approximating transmittances. The average relative error of
brightness temperature generally ranges from O(107°) to O(10~%) across all channels and Fast-RT methods. The order of
magnitude of the average relative error remains consistent when comparing the four methods by channel. The differences
in average relative BT errors between RTTOV 13 and the SI model decrease from O(107%) to O(10~7) when lowering the
statistical threshold tolerance. Similarly, the differences between RTTOV13 and the BIC+L1 model decrease in the same
manner. For the LO+L1 model, the differences decrease from O(10~°) to O(107°).

Turning to the maximum errors, for all channels the sparse approximations of optical depth for RTTOV13 show minimal
deviation from the BT results of standard RTTOV13 when €; < 10~7. Table 10 shows maximum relative BT errors ranging
from O(10~%) to O(1073) across all channels and Fast-RT methods. Comparing the maximum absolute error by channel for
the four methods, errors remain of the same order of magnitude for M7, M9, and M11-M16 (e; < 1075), M8 (¢; < 10~8), and
M10 (e; < 10~7); in other cases, standard RTTOV 13 may yield up to one order of magnitude lower errors.

Observe in Table 9 that, for some channels, the errors with the proposed methods are slightly lower than those of RTTOV13.
With the LO+L1 model at e; = 10~? this happens for channels M7, M8, M10, M11, M13, M14, and M16, and with the BIC+L1
model at the same tolerance for channels M7, M8, M10, M11, and M13. Also note that, although the BIC+L1 model gives a
better transmittance fit than RTTOV 13 for channel M9, its brightness temperature error is not improved. These findings suggest
that using merit functions based on radiances or BT, together with model complexity penalization, instead of relying only on
optical depth fitting, could improve the results of Fast-RT models within the RTTOV 13 framework.

Figure 6 (left) shows the average absolute BT error between the LBLRTM model and the Fast-RT models for ¢; = 107,
while Fig. 6 (right) shows the maximum absolute error across all profiles and viewing angles. The average brightness temper-

ature shows some degradation in the proposed methods compared to RTTOV v13: in the worst case, 0.021 K for M7, 0.008 K
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for M8, 0.20 K for M9, while the other channels remain below 0.003 K for all proposals. For the maximum absolute error per
profile and viewing angle, the worst cases are 0.961 K for M7, 0.405 K for M8, and 0.375 K for M9, with the other channels
below 0.15 K. These variations are not significant in relative terms, as shown in Table 9, and decrease with a lower statistical
threshold, illustrated in Fig. 7 for ¢; = 10~ Under this setting, the average BT error worsens by only 5.7 x 10~% K for M7,
3.7%x107° K for M8, and 7.5 x 1073 K for M9, while the others remain below 3.2 x 10~* K. The maximum error increases by
2.1 x 1072 K for M7, 1.0 x 1073 K for M8, and 1.0 x 1073 K for M9, with the other channels remaining below 1.5 x 1073 K.
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Figure 6. Average Absolute Errors (left) and Maximum Absolute Errors (right) in Brightness Temperature (K) between the Fast-RT and
LBLRTM models for e¢; = 107°.
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Figure 7. Average Absolute Errors (left) and Maximum Absolute Errors (right) in Brightness Temperature (K) between the Fast-RT and
LBLRTM models for e; = 107,

These findings confirm that the proposed methods achieve an accuracy level comparable to RTTOV v13 across most chan-

nels, with only minimal degradation observed in a few cases under stringent statistical threshold tolerances.
4.5 Validation of Brightness Temperature Against Instrument Noise Characteristics

To evaluate the accuracy of the Fast RT model, we compare the brightness temperatures it generates with those from high-
fidelity simulations using LBLRTM. A standard validation criterion requires that the absolute difference in brightness temper-
ature remains below the instrument’s noise level (Garand et al., 2001). Specifically, this involves comparing against the Noise

Equivalent Delta Temperature (NEdT) for the thermal emissive bands (M12 to M16), and against the Noise Equivalent Delta
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Radiance (NEdR) for the solar reflective bands (M7 to M11). For the VIIRS M-bands, Table 11 presents the NEdT values and
the signal-to-noise ratios (SNR) used to compute the corresponding NEdR values, as reported in Table 1 of the manual Cao
et al. (2017).

| Channel | SNR | Iy, || Channel | NEdT | T,

M7L 340 | 334 M12 0.396 | 270
M7H 215 | 64 MI3L | 0423 | 380
M8 74 54 MI13H | 0.107 | 300
M9 83 6.0 M14 0.091 | 270
MI10 342 | 7.3 MI15 0.070 | 300

Mil1 10 0.12 M16 0.072 | 300
Table 11. SNR and NEdT Values for VIIRS IR M-Bands (L: Low Gain Mode, H: High Gain Mode).

For each channel from M7 to M11, the table reports the SNR at the reference radiance Iy, (W / m? - sr- um), and for channels
M12 to M16, it reports the NEdT at the reference temperature 71y, (K). For a thermal emissive band, the NEdT at temperature
T is defined as

B'(Typ)

NEAT(T) = NEAT(Tyy,) - —, T

where B’ is the derivative of the Planck function with respect to temperature. For solar reflective bands, the Noise Equivalent
Delta Radiance (NEdR) at radiance [ is defined as

NEAR(T) = oo

Let I;; and I; ; denote the top of atmosphere polychromatic radiances obtained using LBLRTM and the Fast RT model, respec-
tively, for atmospheric profile ¢ and observation angle 6, and let T;; and Tij be the corresponding brightness temperatures. For

emissive bands, the following condition must be satisfied:
|T;; — Tij| < NEAT(T};),

and for solar reflective bands, we require:

1;; — I;;| < NEAR(I,;).

The percentage of atmospheric profiles for which these conditions are satisfied serves as a practical metric to evaluate the
quality of the forward model. A high proportion of cases meeting the criterion indicates that the modeling error is smaller
than the instrument noise, ensuring that the simulated radiances are sufficiently accurate for satellite retrievals and potentially
suitable for data assimilation. Table 12 reports the percentage of cases, computed over 83 atmospheric profiles and 6 viewing

angles, for which the corresponding noise threshold condition is met.
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| FastRT  [M7L | M7H [ M8 [ M9 | MIO | MIl [ MI2 [ MI3L | MI3H | M14 | MI5 | MI6 |
| RTTOVI3 | 6.63 | 10.84 [ 100.0 [ 97.99 | 63.45 | 100.0 | 100.0 | 100.0 [ 100.0 | 100.0 [ 100.0 [ 100.0 |

1076 | 6.83 | 10.24 | 97.19 | 97.99 | 61.24 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.60
SI 1077 | 6.63 | 10.24 | 98.80 | 97.99 | 63.25 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
1078 | 6.63 | 10.24 | 99.80 | 97.99 | 63.45 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
1072 | 6.83 | 10.84 | 100.0 | 97.99 | 63.45 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
1076 | 6.83 | 10.24 | 97.19 | 98.39 | 61.24 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.60
BIC+L1 | 1077 | 6.63 | 10.24 | 98.80 | 98.39 | 63.25 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
1078 | 6.63 | 10.24 | 99.80 | 98.19 | 63.45 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
1072 | 6.83 | 10.64 | 100.0 | 98.19 | 63.45 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
107¢ | 6.83 | 10.24 | 97.19 | 97.79 | 61.24 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
LO+L1 | 1077 | 6.63 | 10.24 | 98.80 | 97.59 | 63.25 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
1078 | 6.63 | 10.24 | 99.80 | 97.59 | 63.86 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0

107° | 6.83 | 10.64 | 100.0 | 97.59 | 63.86 | 100.0 | 100.0 | 100.0 100.0 | 100.0 | 100.0 | 100.0
Table 12. Percentage of absolute differences in radiance below the NEdR threshold for channels M7-M11, and percentage of absolute

differences in brightness temperature below the NEdT threshold for channels M12-M16. The second column indicates the statistical threshold

€1 used for each variant.

In the table 12, it can be observed that for channels M11 to M16, all methods fully satisfy the noise condition, and the
proposed methods are comparable to standard RTTOV 13 for a statistical tolerance threshold of €; < 107, For channels M7
to M10, a stricter statistical tolerance threshold is required to achieve percentages comparable to RTTOV13. For channels M7

500 and M10, the fulfillment of the noise criterion is quite poor; we infer that this is due to the lack of solar radiation inclusion
in the various Fast-RT methods. However, the results obtained with the proposed methods are similar to RTTOV 13 for small
statistical thresholds. For channel M9, the proposed BIC+L1 model slightly improve the percentage of profiles that meet
the noise threshold compared to standard RTTOV13. It is clear that the proposed methods reproduce the results of standard
RTTOV 13 for large statistical thresholds in the emissive bands and for smaller statistical thresholds in the solar reflective bands,

505 while offering the advantage of greater computational efficiency due to the induced sparsity.

5 Conclusions

This study presents an automatic and sparse optical depth parametrization method for the RTTOV v13 model, aimed at opti-
mizing parameter adjustment. The method applies statistical thresholding across different pressure levels, followed by LASSO
regression, instead of the traditional least squares approach in the RTTOV v13 framework. A bilevel optimization approach is
510 used to select the optimal regularization parameter, employing different model validation criteria: one based on £ regression
and another on the Bayesian Information Criterion (BIC). These alternatives enforce significant sparsity across all optical depth
regression parameters, substantially reducing the computational cost of the Fast-RT model without compromising accuracy,

demonstrating strong potential for satellite data assimilation applications.
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Validation experiments were conducted on the infrared channels of the M-bands for the VIIRS instrument. Different vali-
515 dation criteria were considered, including transmitance fitting against LBLRTM transmitance, brightness temperature fitting
against LBLRTM transmitance, and the difference between brightness temperature and the instrument’s Noise Equivalent Delta
Temperature. The results show consistency with RTTOV v13, while providing improved runtime performance in the evaluation

of parameterized transmitances.
The induced sparsity automatically excludes gases with negligible absorptivity in a channel, identifies pressure levels where
520 gases significantly absorb radiance, highlights the most relevant predictors for each gas type, and classifies gases as either
fixed or variable. This technique is particularly advantageous for multispectral instruments where multiple gases exhibit strong
correlations in radiance absorption, especially in large-scale variable retrievals for inverse problems. The proposed method
may be extended to other Fast-RT models, such as CRTM, and to other satellite instruments, such as the Advanced Technology
Microwave Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS), to enhance both the computational efficiency of

525 radiative transfer models and the accuracy of retrieved atmospheric profiles.
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Appendix A: Sparsity Pattern for RTTOV13+SI+LASSO
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Figure Al. Sparsity pattern for channels M7 to M11 in LO-L1 for ¢; = 107°.
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Appendix B: RTTOV v3 Predictors

[N ] FIX \ Hy0 \ O3 CO,
1 sec(0) (sec(6)W,.)? sec(0)O0s, sec(0)COq,
2 sec?(6) sec(6)W,, sec(0)Os,. T2
3 sec(6)T, (sec(0)W,)? sec(0)0s, 6T sec()T
4 sec(0)T? sec(0)W,.6T sec(0)Os3, /Oy, sec(0)T?
5 T. sec(6)W,. (sec(8)0s, ) T,
6 T? V/sec(0)W,. sec(0)03 Oy sec(0) Ty,
7 sec(0)T,, sec(0)W, V/sec(0)O03,03,. /0, | (sec(6)COaq,)?
8 sec(0)T3 (sec(0)Wy)'? sec(0)O03, 0y, sec()Ty/T)
9 sec(6)+/sec(0)T, (sec(@)W,)"° (sec(9)03,)" ™ sec(6)COqy
10 1 (sec()W,) P 8T | sec(0)Os, \/sec(9)Os, T3
11 - V/sec(0)W,.6T (sec(6)0s,)? sec(0)T3
12 - (sec(B) W, )" 2° V/sec(9)O3 6T \/sec(0)T2T3
13 - sec(0)W2 /W, sec(6)O0s,, T2T?
14 - \/sec(OYW, . W, /Wy - sec(0)COqy,
15 - sec(0)vW.,, - -
oD 1-9 1-14 1-12 1-13
COR 2,3,4,10 2,4,5,6,15 13 14, 8,9
N N,O CcO CH4
1 sec(6)N>O, sec(0)CO,. sec(0)CHy,
2 sec(0)N2O,. sec(6)CO, sec(6)CHy,
3 sec(0)N20O,.0T sec(8)C O, 6T sec(§)CHy 0T
4 (sec(8) N2O,.)? (sec(0)CO,.)? (sec(9)C'Hy, )?
5 N>O,.6T \/sec(0)CO,.6T CH,, 0T
6 v/ sec(0)N2O, v/sec(6)CO, v/sec(0)CHy,
7 sec(8)N2O,, sec(6)C O, 6T 0T sec(6)CHy,,
8 sec(8) NaO,yy sec(0)COZ2/CO,, CHy,,
9 sec(0)N2O, N2O,./NoOy, | \/sec(0)CO,.CO,./CO,, (sec(§)CHy,, )?
10 (sec(0)NoOyt)? sec(0)CO?%/\/CO,, sec(0)CHy,
11 (sec(8)N2Oyy)? (sec(0)CO,,)°4 \/sec()CHy, CHy, /CHy,
12 sec?(0)N20 10T v/5ec(0)C Oy (sec(f)CHy, )'2°
13 - sec?(0)CO,CO,, -
14 - sec(0)C Oy, -
15 - sec(0)C Oyt -
16 - (sec(0)CO,,)? -
oD 1-12 1-13 1-11
COR 7,8,10,11, 12 12, 14, 15, 16 7,9, 10, 12

Table B1. Predictors for RTTOV v13, (Saunders et al., 2017).
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pop(l) =p(l+1)(p(l+1) —p(1)), pdp(0) =p(1)(p(2) —p(1)),

T() = %(Tpmf(l) +TProf(l +1)), T*)= %(Ttef(l) +Tref(l +1)), T.(1) = 71;(&)),
i pop(l = DT () *
T, (1) = =4 , ST(1) =T(1) —T*(]),
( S pop(l—1)T*(1) =T -1°¢)
G = 5 (G () + G+ 1), G (1) = 5(G™(1) +C (1 +1), Gr() = oy

Gull) = > pOp(l = 1G(D) Gun(l) = > iz PPl - DTG
S i1 pop(l = 1)G* () Sy pop(l = DT ()G (1)
Where p(1) is the pressure (hPa) at level I, TP™f(]) is the temperature (K) at level  of the input profile, 7™([) is the tempera-
ture (K) at level [ of the reference profile which is the mean over the training profile set, G € {W = H20,035,CO5,N2O,CO,CH,}

represents gas concentration (ppmv over dry air), GP™f([) are the gas concentrations at level [ of the input profile and G™f(I)

are the gas concentrations at level [ of the reference profile which is the mean over the training profile set.
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