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Abstract. The assimilation of satellite spectral sounder data requires fast and accurate radiative transfer models. This study

proposes a novel methodology to automatically parameterize atmospheric optical depths within the Radiative Transfer for

TOVS (RTTOV) version 13 scheme using statistical thresholds across pressure levels and Least Absolute Shrinkage and Se-

lection Operator (LASSO) regression to induce sparsity. Numerical experiments with Visible Infrared Imaging Radiometer

Suite (VIIRS) infrared channels demonstrate that this approach significantly reduces computational costs while maintaining5

accuracy. The sparsity also facilitates the automatic selection of absorbing gases and predictors by channel and pressure level,

making it particularly effective for multispectral instruments with numerous atmospheric variables. These findings highlight

the potential of sparse regression methods to enhance the efficiency of radiative transfer models for satellite data assimilation.

1 Introduction

In satellite data assimilation and remote sensing retrievals, as well as their applications in numerical weather prediction (NWP),10

the radiative transfer equation (RT) is the main model used to retrieve global atmospheric variables, such as temperature and

trace gases concentrations, including water vapor, ozone, carbon dioxide, and other atmospheric constituents. This is achieved

by utilizing top of the atmosphere (TOA) radiance measurements from satellite sounders operating across different channels of

the electromagnetic spectrum. The numerical implementation of the RT equation as a forward model can primarily be carried

out using two approaches: Line-by-Line (LBL) Radiative Transfer models and Fast Radiative Transfer models (Fast-RT).15

Line-by-line models simulate satellite radiance by rigorously integrating atmospheric physics and chemical phenomena.

These models are highly accurate in replicating the precision of modern instruments, such as hyperspectral sounders like

AIRS, CrIS and IASI. However, they are characterized by significant computational demands in terms of CPU time and

memory, making them impractical for use in operational data assimilation. Some of the most well-known models in this

category include: LBLRTM, developed at Atmospheric and Environmental Research, Inc. (AER) (Clough et al., 1992; Clough20

and Iacono, 1995; Clough et al., 2005); AMSUTRAN, developed at the Met Office (UK) (Turner et al., 2019); and GENLN2,

developed at the National Center for Atmospheric Research (NCAR) (Edwards, 1992). A comparison between LBLRTM and

GENLN2 is presented in (Matricardi, 2007). Another software worth mentioning is kCARTA (DeSouza-Machado et al., 2020),
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a pseudo Line-by-Line model that uses precomputed and compressed physically intensive processes in RT model to compute

radiances more quickly while maintaining accuracy.25

On the other hand, the most common Fast-RT models estimate the expected radiance in a channel (what a sensor actually

measures) and are typically based on statistical approaches. In these models, the complex and computationally costly physical

processes of RT modeling, the calculation of atmospheric transmittances, are parameterized using statistical models and trained

with output from Line-by-Line software on real atmospheric profile databases. The parameters are adjusted using standard

linear regression models or other machine learning techniques. While these methods sacrifice a small degree of accuracy,30

they significantly reduce computational costs, making them practical for use in operational data assimilation. Some of the

most well-known models in this category include: OPTRAN, developed by the NESDIS-NCEP community (McMillin et al.,

1995; Kleespies et al., 2004; McMillin et al., 2006); The Joint Center for Satellite Data Assimilation (JCSDA) Community

Radiative Transfer Model (CRTM) (Han et al., 2006; Chen et al., 2008); and the RTTOV model, see (Saunders et al., 2018)

and the references therein. Other studies using statistical approaches include (Matricardi, 2010), which incorporates principal35

component analysis in RTTOV, as well as (Liu et al., 2006; Krishnan et al., 2012; Cao et al., 2021; Stegmann et al., 2022;

Mauceri et al., 2022; Su et al., 2023), which apply machine learning techniques for parametrization, feature reduction, and

sampling strategies.

Even though RTTOV is more efficient than line-by-line models, it remains prohibitively expensive for operational use cases1.

Indeed, in current Fast RT models based on linear regression, such as OPTRAN and RTTOV, training is performed separately40

for each gas type and pressure level, resulting in an over-parametrization of the RT model. To reduce the number of parameters

and make the evaluation of the trained RT model less computationally expensive, it is essential to carefully select the most

significant gases for each spectral channel of each instrument type, reduce the number of pressure levels, and implement other

ad hoc strategies. These decisions must account for the large number of possible combinations and trade-offs, and are typically

made by expert teams.45

One promising approach to reducing the number of parameters without relying on expert committees is the use of opti-

mization methods that induce sparsity in the parameters. In particular, the use of LASSO regression, a regularization method

that penalizes the regression coefficients with the ℓ1-norm, has proven effective for variable selection and model complexity

reduction in various large-scale applications (see, e.g., Heilemann et al., 2024; Pak et al., 2025). In the context of radiative

transfer, LASSO regression was applied by (Cardall et al., 2023) to estimate water quality parameters such as clarity, tem-50

perature, and chlorophyll-a, based on correlations with in-situ measurements and near-coincident Landsat spectral data, with

a focus on model explainability. In (Li et al., 2020), the authors proposed an algorithm for detecting hazardous clouds using

passive infrared remote sensing technology with variable selection. Other studies that combine or compare LASSO with ma-

chine learning methods for remote sensing include: the removal of redundant features in PolSAR and optical images (Hong

and Kong, 2021); estimation of aboveground forest biomass with variable selection (Wang et al., 2022a); identification of55

important environmental variables for retrieving soil moisture content (Wang et al., 2022b); evaluation of the accuracy and

1This is the case for Ecuador’s METEO operational system, which currently relies on an HPC with only 700 cores.
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generalization capacity of grassland models (Smith et al., 2023); and a comparison of different machine learning methods for

predicting soybean yield (Joshi et al., 2023).

Building on this approach, in this paper we target the automatic selection of gases and optical depth predictors in Fast RT

models by inducing sparsity in the weight predictors using LASSO regression. We propose a parametrization of transmittances60

based on statistical thresholds to automatically select the appropriate gases by channel and pressure level, and to induce sparsity

in the parameters by replacing the classical regression problem with a LASSO problem within the RTTOV framework. The

proposed methodology is tested with VIIRS infrared channels, and the results are compared with the standard RTTOV model.

To the best of the authors’ knowledge, this is the first time that LASSO regression has been applied to the RTTOV model to

automate the selection of gases and parameters.65

One of the key aspects in LASSO models is the choice of the regularization weight in front of the ℓ1-norm. This weight

controls the trade-off between fitting the training data well and keeping the model simple by reducing the number of non-zero

coefficients. In our context, selecting an appropriate regularization weight is crucial for effectively identifying the most relevant

gases and optical depth predictors while avoiding overfitting.

To establish a rigorous criterion for choosing this parameter—rather than relying on a tedious trial-and-error process—we70

propose a bilevel optimization approach (see, e.g., De los Reyes and Villacís (2022); De los Reyes (2023)). The idea is to

formulate an upper-level optimization problem that encodes a model quality criterion, while the LASSO problem serves as the

lower-level constraint. In this article, we successfully test two types of loss functions: the first, based on an ℓ0 seminorm that

prescribes the number of non-zero predictors; and the second, inspired by a Bayesian Information Criterion-type objective.

This manuscript is organized as follows: Section 2 outlines the theoretical framework for the RT equation in Line-By-75

Line models and details the general scheme of Fast-RT methods, focusing on RTTOV. Section 3 introduces the proposed

transmittance parametrization using statistical inference and LASSO regression model, as well as the bilevel optimization

approach for selecting the regularization weight. Section 4 presents the experimental settings and numerical results comparing

RTTOV with the proposed method. Finally, Section 5 offers conclusions of the performance of the proposed approach.

2 Radiative Transfer Equation80

The monochromatic radiative transfer equation for the upwelling radiance in a clear sky, without solar radiation contribution,

for a non-scattering atmosphere and in local thermodynamic equilibrium, is given by:

I(ν,θ) = τs(ν,θ)ϵs(ν,θ)B(ν,Ts)+

1∫
τs

B(ν,T (p)) dτ +(1− ϵs(ν,θ))τ
2
s (ν,θ)

1∫
τs

B(ν,T (p))

τ2
dτ, (1)

where I(ν,θ) is the monochromatic TOA radiance at wavenumber ν and satellite zenith angle θ; B(ν,T ) is the Planck function

at temperature T ; τ(ν,θ,p,T,q) denotes the layer-to-space transmittance dependent on pressure p, temperature T , and gas85

concentration q. Here, Ts, ϵs, and τs represent surface skin temperature, emissivity, and transmittance respectively, (Weinreb

et al., 1981).
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The terms correspond to surface emission, upward atmospheric emission, and downward atmospheric emission reflected at

the surface (assuming specular reflection). Surface emissivity can be close to 1 for ν between 714-1250 cm−1 and for surfaces

such as bodies of water, ice and healthy plant leaves, carbon powder, allowing the last term to be discarded.90

The model described above, computed for each wavenumber ν is called the Line-by-Line model, and the resulting radiance

is monochromatic.

Satellite-measured radiance is polychromatic, simulated by convolving Eq. (1) with the instrument’s Normalized Spectral

Response Function (NSRF):

I(ν∗,θ) =

νb∫
νa

ϕ(ν,ν∗)I(ν,θ) dν, (2)95

where ϕ(ν,ν∗) is the NSRF, representing the sensitivity to radiance within the spectral channel [νa,νb], with ν∗ representing

the centroid of the response. Using the expression (2) in Eq. (1), the polychromatic radiance for the spectral channel identified

with ν∗, assuming ϵs = 1, can be written as (see Weinreb et al., 1981):

I(ν∗,θ) = τs(ν
∗,θ)B(ν,Tes)+

1∫
τs

B(ν∗,Te(p)) dτ, (3)

where Tes and Te are empirical effective temperatures obtained via regression. The polychromatic transmittance is given by:100

τ(ν∗,θ,p,T,q) =

νb∫
νa

ϕ(ν,ν∗)τ(ν,θ,p,T,q)dν. (4)

Transmittance follows Beer-Lambert law τ = e−d, with optical depth d(ν,θ,p,T,q) accounting for absorption by gases (e.g.,

H2O, O3, CO2, CH4) and continuum effects. The monochromatic optical depth for a set of gases g1, . . . ,gs is:

d(ν,θ,p,T,q) =− sec(θ)

g

s∑
l=1

p∫
0

Kgl(ν,p′,T (p′))qgl(p′)dp′, (5)

where g is gravitational acceleration, Kgl is the absorption function modeled via Voigt profiles (see Lavrentieva et al., 2011).105

2.1 Fast Radiative Transfer Model

Fast RT models discretize the atmosphere into L layers:

p0 < p1 < · · ·< pL,

where p0 is the top-of-atmosphere and pL the surface pressure. Polychromatic radiance Eq. (3) is computed numerically,

requiring parameterization of polychromatic transmittance to reduce computational cost. In Fast-RT models, the polychromatic110

optical depth is parameterized and fitted via linear regression to approximate Eq. (5), following ideas from McMillin and

Fleming (McMillin and Fleming, 1976; Fleming and McMillin, 1977; McMillin et al., 1979).
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The polychromatic optical depth from layer i to the top of the atmosphere, for a single channel and gas gl, is:

dgl

i = dgl

i−1 +

ml∑
j=1

wgl

ijX
gl

ij , dgl

0 = 0, i= 1, . . . ,L, (6)

where Xgl

ij are predictors depending on view angle, temperature, and gas concentration. The parameters wgl

ij define the model.115

Appendix B provides details on the RTTOV v13 predictors, and further information can be found in Saunders et al. (2017).

This parametrization includes a fixed gas mixture—whose spatio-temporal variations minimally affect radiance—and vari-

able gases, primarily H2O, optionally including O3, CO2, N2O, CO, CH4, and SO2, varying by channel. Water vapor absorption

may be split into line and continuum components.

The polychromatic transmittance of layer i for gas gl is approximated by:120

τgl

(i,0) = exp(−dgl

i ), (7)

and total transmittance approximated as:

τTOT
(i,0) =

s∏
l=1

τgl

(i,0). (8)

Parameters are fitted using a database of M vertical atmospheric profiles:

(pi,Tij , q
g1

ij , . . . , q
gs

ij ), i= 0, . . . ,L, j = 1, . . . ,M,125

with polychromatic transmittances computed with Line-by-Line software for N view angles θk:

(τg1

ijk, . . . , τ
gs

ijk), i= 1, . . . ,L, j = 1, . . . ,M, k = 1, . . . ,N. (9)

Since total polychromatic transmittance is not simply the product of individual gases transmittances (unlike the monochro-

matic case), data (9) are corrected following (Xiong and McMillin, 2005; McMillin et al., 2006), as in RTTOV v13 (Hocking

et al., 2021), by introducing a corrective term τCOR
(i,0) :130

τTOT
(i,0) = τCOR

(i,0)

s∏
l=1

τgl

(i,0), (10)

which is parameterized similarly to Eq. (6) and (7). The corrective transmittance for training is:

τCOR
ijk =

τTOT
ijk

τ̂TOT
ijk

,

where τTOT
ijk is the Line-by-Line polychromatic transmittance including all absorbers, and τ̂TOT

ijk is the modeled transmittance

from Eq. (8).135

The linear regression fitting problem for gas gl and layer i is:

(LSgl
) min

w
gl
i ∈Rml

1

2MN
∥Agl

i wgl

i −Y gl

i ∥22 , (11)
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where Agl

i ∈ RMN×ml contains predictors Xgl

ij for angles, temperatures, and concentrations across profiles, and Y gl

i ∈ RMN

the corresponding optical depths.

In RTTOV v13, parameter counts per channel reach nearly 11,000, considering variable and fixed gases, layers, and correc-140

tions. Reduction is achieved by expert-based gas selection, layer thinning, and thresholding (see Saunders et al., 2017).

3 A Sparse Parametrization of Optical Depths

In this section, we present a methodology to significantly reduce the number of parameters used in optical depth parametrization

within the RTTOV v13 framework. The methodology involves automatically selecting absorbing gases per channel and pressure

level, as well as identifying the most important predictors for each atmospheric layer. This approach induces sparsity in the145

regression parameters by combining two tools: statistical inference to determine whether a given gas at a particular layer

requires no parametrization, a parametrization with a single predictor, or a more complex parametrization as described in Eq.

(6). In the latter case, the classic linear regression problem is replaced with a LASSO regression problem to select predictors

and induce sparsity in the parameter vectors.

3.1 Parametrization Based on Statistical Inference150

The aim here is to preprocess the data of the polychromatic transmittances in a channel to determine which atmospheric layers

require optical depth parametrization and to automatically exclude gases that do not significantly contribute to the radiance

absorption in that channel. To achieve this, we will use confidence intervals to estimate the true polychromatic transmittances.

For a gas gl or correction term in a fixed layer i, we construct a confidence interval for the mean of the polychromatic

transmittances of the layer i. This is given by:155

[τgl

i −Egl

i , τgl

i +Egl

i ]

where

Egl

i = Z1−α
2

sgl

i√
NM

,

τgl

i is the mean polychromatic transmittance for layer i, considering N angles and M atmospheric profiles, sgl

i is the corre-

sponding standard deviation, and Z1−α
2

is the critical value of a distribution for a confidence level of 1−α. Given that the160

number of data points in each layer is NM , which is usually sufficiently large (in our experiments, for N = 6 angles and

M = 83 profiles, NM = 498), the standard normal distribution is used to obtain the critical value. Thus, the absolute error in

approximating the true value of the polychromatic transmittance of gas gl in layer i with τgl

i is at most Egl

i , with a probability

of α that the absolute error exceeds this value. In our case, the confidence level is set to α= 10−6.

Based on the above, the following statistical thresholds for optical depth parametrizations are proposed. Let ϵ1 and ϵ2 be165

positive and sufficiently small values, these will be used as thresholds to determine whether τgli is close to the true value or

close to 1. Define the mean optical depth for layer i as d
gl

i =− ln(τgl

i ), and consider the following three cases:
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– Case I: If Egl

i > ϵ1, the polychromatic transmittance due to gas gl in layer i has high variability with respect to the value

of the atmospheric variables in that layer. In this case, the optical depth parametrization follows as in Eq. (6) for layer i.

– Case II: If Egl
i ≤ ϵ1 and d

gl

i > ϵ2, unlike the previous case, the polychromatic transmittance due to gas gl in layer i has170

low variability with respect to the value of the atmospheric variables in that layer, and can be estimated by τgl

i , but is not

close to 1. Thus, the optical depth can be parameterized with a single predictor as follows:

dgl

i = dgl

i−1 +wgl

i0X
gl

i0 ,

where, X0i = 1 and wgl

i0 = d
gl

i . If this occurs in all layers, and since the parametrization does not depend on atmospheric

variables, the gas gl can be included with fixed gases.175

– Case III: If Egl

i ≤ ϵ1 and d
gl

i ≤ ϵ2, the polychromatic transmittance in layer i can not only be estimated by τgl

i but is also

close to 1, meaning that gas gl does not cause significant absorbance in this layer. The relative error of approximating

τgl

i with 1 is given by:

1− τ i
τ i

= ed
gl
i − 1 = d

gl

i eξ ≤ ϵ2e
ϵ2 ≈ ϵ2,

for some ξ ∈ (0,d
gl

i ). If this condition is met for all layers, then gas gl is automatically discarded.180

To summarize the above, the parametrization of optical depths based on statistical thresholds is as follows:

dgl

0 = 0

dgl

i = dgl

i−1 +



ml∑
j=1

wgl

ijX
gl

ij , Egl

i > ϵ1,

d
gl

i , Egl

i ≤ ϵ1 and d
gl

i > ϵ2,

0, otherwise,

(12)

for i= 1,2, . . . ,L. The transmittances from layer i to the top of the atmosphere are still calculated using (7).

The statistical threshold tolerances ϵ1 and ϵ2 should be sufficiently small. In our experiments, we set ϵ2 = ϵ1 and evaluate185

the model performance for different small values of ϵ1.

3.2 LASSO Regression and optimal choice of regularization parameter

After discarding parameter groups using the previous statistical approach with Eq. (12), in Case I, the remaining parameters

are typically estimated by solving an ordinary least squares (OLS) problem, which involves a large number of parameters.

To reduce the number of parameters, we propose to induce sparsity in the parameter vector wgl

i by solving the LASSO190

problem. This is done by replacing the OLS problem (11) with the following optimization problem:

(LASSOgl
) wgl

i = arg min
w∈Rml

Lλ(w) (13)
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where

Lλ(w) =
1

MN
∥Agl

i w−Y gl

i ∥22 +λ∥w∥1

and λ≥ 0 is the regularization parameter. As λ→+∞, high sparsity is induced, and as λ→ 0, sparsity is low. Specifically, if195

λ= 0, the problem reduces to the least squares problem (11).

The regularization parameter λ has to be carefully selected to ensure that the approximation of the transmittance in layer i

maintains a high level of accuracy relative to the least squares solution (11), while achieving a model with fewer parameters.

Although standard techniques such as cross-validation exist for tuning λ, they may not always be appropriate, especially when

alternative loss criteria are more relevant to the specific modeling goals. To address this choice, we adopt a bilevel optimization200

approach (see, e.g., (De los Reyes and Villacís, 2022; De los Reyes, 2023)), where the LASSO problem forms the lower-level

constraint and the upper-level objective reflects a model quality criterion. This results in the following bilevel problem:

min
λ∈R

F (w(λ))

s.t. w(λ) = arg min
w∈Rml

Lλ(w),

0≤ λ≤ λ0,

(14)

where λ0 > 0 is a given upper bound. In the following, we show how to reduce this bilevel problem to a standard nonlinear

optimization problem. For the sake of clarity, we omit the indices corresponding to gas and pressure level.205

Under the assumption that matrix A is full rank, problem (13) has a unique solution for each λ≥ 0, denoted by w(λ). The

collection of these solutions as λ varies over the positive real numbers, is called the regularization path P = {w(λ) : λ > 0}. A

key structural property of the regularization path is that it is well-defined, unique, and continuous piecewise linear. Moreover,

and it can be computed using the homotopy algorithm for the LASSO problem (Osborne et al., 2000), an algorithm with

exponential complexity but low computational cost, that returns the vertices of the regularization path; both the properties and210

the algorithm are described in Mairal and Yu (2012). The algorithm constructs a finite, monotonically decreasing sequence

of values {λk}rk=0, with λ0 = ∥ATY ∥∞ and λr = 0. For each λk in this sequence, the corresponding solution to the LASSO

problem, w(λk), is a vertex of the regularization path P , and it can be shown that w(λ) = 0, for all λ≥ λ0. In each line segment

of this path, the sparsity pattern of w(λ) does not change; that is, the support set S(w(λ)) = {j ∈ {1,2, . . . ,ml} :wj(λ) ̸= 0}
remains fixed for all λ ∈ (λk+1,λk].215

These properties of the regularization path allow the bilevel problem (14) to be reduced to a standard one-dimensional

optimization problem with bound constraints:

min
λ∈[0,λ0]

F (w(λ)). (15)

We still need to establish the upper-level loss function F , which serves as a model quality criterion for the LASSO regulariza-

tion path. To this end, we propose two formulations for empirical comparison: the first is based on the optimal selection of the220

regularization parameter in the LASSO problem using an ℓ0-regression cost function; the second is based on a well-established

statistical tool for optimal model selection, the Bayesian Information Criterion (BIC).
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3.2.1 Bilevel formulation based on the ℓ0 regression

The best subset selection problem (Bertsimas et al., 2016; Miller, 2002) consists of solving a least squares formulation that

allows explicit control of sparsity through the choice of the number of predictors, this is:225

min
w∈Rml

1

MN
∥Aw−Y ∥22

s.t. card(S(w))≤ k,

(16)

for k ∈ {1, . . . ,ml} given. As this problem is NP-hard, the computational loss can be prohibitive, especially when several

subset sizes must be tested without prior knowledge of k. To mitigate this, more tractable relaxations have been proposed, such

as the ℓ0 regression, obtained from a penalized formulation of the problem (16):

min
w∈Rml

1

NM
∥Aw−Y ∥22 + γ

(
card(S(w))− k

)
,230

where γ > 0 is the penalty parameter. Motivated by this problem, we propose as the merit function

Fℓ0(w) =
1

NvMv
∥Avw−Yv∥22 + γ(β)card(S(w)),

which is used in the bilevel problem (14) to assess LASSO solutions on validation data, balancing generalization and com-

plexity through a weighting parameter β ∈ (0,1]. As a reference, w(0) (the OLS solution) achieves the best fit but maximum

complexity (β = 1), while w(λ0) = 0 is the opposite (β = 0). Consequently, the penalty is defined as235

γ(β) = 1
NM

(
1
β − 1

)(
∥Y ∥22 −∥Aw(0)−Y ∥22

)
.

To prioritize model data fidelity over low complexity, β should be close to 1. In our experimental setting, we choose β =

1− 10−4.

With Fℓ0(w(λ)) as the objective function of (15), it is a piecewise continuous objective function, smooth along each linear

segment of the regularization path and with discontinuities at {λk}rk=0. Moreover, Fℓ0(w(λ)) is a quadratic polynomial for240

λ ∈ (λk+1,λk], since card(S(w(λ))) remains constant within this interval. If we denote λ̃k as the minimizer of this polynomial

over the closure of this interval, then problem (15) reduces to a discrete parameter optimization problem:

min
0≤k≤r

Fℓ0(w(λ̃k)). (17)

3.2.2 Bilevel formulation based on the Bayesian Information Criterion

In this case, the choice of the loss function F (w) is inspired by the Bayesian Information Criterion for model selection245

(Schwarz, 1978). Similar to ℓ0-regression, it penalizes model complexity but does not require a tuning parameter. Given a

collection P of candidate models, and letting σ(w) denote the maximum likelihood under model w ∈ P , the BIC-based

objective is given by

min
w∈P

n ln
(
σ(w)

)
+ ln(n)K(w),
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where K(w) denotes the number of explanatory variables in model w (or a measure of model complexity), and n is the number250

of data points used to construct model w. If the “true model” belongs to P , then the probability that BIC selects this model

approaches 1 as the number of data points increases.

In our context, the model set P consists of LASSO solutions for each λ≥ 0, built using n=NM data points, and a good

approximation to the true model is given by the ordinary least squares solution w(0). We define:

σ(w) = 1
NM ∥Aw−Y ∥22 and K(w) = card(S(w)), for w ∈ P,255

The BIC-based objective function is then defined as:

FBIC(w) =NM ln
(

1
NM ∥Aw−Y ∥22

)
+ ln(NM)card(S(w)).

This is a piecewise continuous objective function, smooth along each linear segment of the regularization path and with discon-

tinuities at {λk}rk=0. It can be verified that FBIC(w(λ)) is monotonically increasing in λ ∈ (λk+1,λk] since card(S(w(λ)))

remains constant within this interval. Therefore, the solution of the bilevel problem (15) with the BIC-based merit function260

occurs at one of the discontinuity points λk. Consequently, problem (15) reduces to the discrete model selection problem:

min
0≤k≤r

FBIC(w(λk)). (18)

3.2.3 Post-LASSO for model bias reduction

An important characteristic of LASSO solutions is that they are biased toward zero whenever λ > 0. As a result, the mean

squared error of w(λ) may not accurately reflect the true likelihood of the model, particularly in the context of the BIC-based265

formulation. To address this, we use a post-penalized estimator, namely an ordinary least squares regression restricted to the

set of predictors selected by LASSO (Belloni and Chernozhukov, 2011). This approach is known as the Post-LASSO problem.

As a direct consequence of the predictor set remaining fixed within each line segment of the LASSO regularization path, the

Post-LASSO problems can be formulated for each k = 0,1, . . . , r as:

min
w∈Rml

1

NM
∥Aw−Y ∥22

s.t. wj = 0, for j /∈ S(w(λk)).

270

Let
{
wk

LS

}r

k=0
denote the set of Post-LASSO solutions corresponding to the sequence {λk}rk=0. Instead of using solutions

from the LASSO regularization path in the ℓ0-regression (17) or BIC-based (18) formulations, we employ the Post-LASSO

solutions wk
LS, which provides an alternative model selector with reduced bias:

min
0≤k≤r

F (wk
LS). (19)

Finally, this formulation is used to select the weights for the optical depth parametrization for each gas and pressure level,275

using either the bilevel ℓ0+LASSO regression or the bilevel BIC+LASSO regression formulations.
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4 Numerical Results

This section evaluates the performance of the proposed parametrization compared to the standard RTTOV v13. Specifically, it

studies the level of sparsity achieved and its impact on accuracy relative to RTTOV v13 and Line-by-Line calculations using

LBLRTM. Performance is measured via the root mean square error (RMSE) of the transmittances compared to Line-by-Line280

transmittances, and by assessing the brightness temperature (BT) approximation error from the Fast-RT models against Line-

by-Line results. Additionally, the BT error is compared to the Noise-Equivalent Delta Temperature (NEdT) of the M-band

VIIRS instrument to assess the proportion of profiles for which the model error remains below the instrument noise.

4.1 Experiment settings

For training the RTTOV parametrizations and the proposed sparse variants, six variable gases are considered: H2O, O3, CO2,285

N2O, CO, and CH4. The Fast-RT model can additionally consider SO2 as a variable gas, but here it will be treated as a fixed

gas among the total of 22 fixed gases considered. No distinction is made between water vapor absorption lines and continuum

absorption. For the viewing angle, we consider 6 path secant angles from 1 to 2.25 with step 0.25 (from 0◦ to 63.61◦).

4.1.1 Spectral Response Functions of VIIRS M-bands:

The VIIRS is an instrument on NOAA’s Suomi NPP and NOAA-20 satellites, part of the Joint Polar Satellite System (JPSS). It290

features 16 moderate resolution bands (M-bands) that cover visible and infrared spectra. This study focuses on spectral response

functions for bands M7 to M16, which cover the near (NIR), medium (MIR), and long (LIR) infrared ranges. In this study, we

use the VIIRS SRF J2, which can be downloaded from the following link: https://ncc.nesdis.noaa.gov/NOAA-21/index.php.

Details on the centers and spectral ranges of these bands can be found in Tables 1 and 2 in Cao et al. (2017).

For each channel, the wavenumber ν and the corresponding Spectral Response Function (SRF) values are tabulated. The295

wavenumber tabulation typically covers a broader spectral range, denoted as [νa,νb], with noisy SRF values at the extremes

of this interval. Therefore, the SRF must be truncated to a smaller interval that retains most of the relevant SRF information.

Instead of using Tables 1 and 2 from Cao et al. (2017) for our calculations, we utilize channels with a spectral range broader

than those. These channels are defined as [ν∗ − νl,ν
∗ + νu], where ν∗ is the centroid of SRF in [νa,νb], νl and νu are the

tabulated wavenumber values closest to ν∗ below and above, respectively, such that the relative truncation error does not300

exceed ϵ= 9× 10−4. Specifically:

(1− ϵ)

νb∫
νa

ϕ(ν∗,ν) dν ≤
ν∗+νu∫

ν∗−νl

ϕ(ν∗,ν) dν.

The integrals are calculated using the composite trapezoidal rule. The SRF data are then truncated and normalized within this

new interval, and the centroid ν∗ is recalculated. The updated channels and centroids are presented in Table 1.
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Band Centroid (cm−1) Spectral Range (cm−1) IR

M7 11525.42 11070.96 – 12048.02 NIR

M8 8056.98 7924.69 – 8170.62 NIR

M9 7235.57 7134.59 – 7373.52 NIR

M10 6199.43 5853.32 – 6522.30 NIR

M11 4442.00 4342.01 – 4549.99 NIR

M12 2711.61 2545.18 – 2867.98 MIR

M13 2489.30 2354.64 – 2607.44 MIR

M14 1166.76 1111.73 – 1235.32 LIR

M15 939.82 875.89 – 1008.36 LIR

M16 839.10 782.35 – 896.29 LIR
Table 1. VIIRS IR M-bands (wavenumber)

By truncating the noisy tails of the SRF in this way, the resulting NSRF for each channel is interpolated using natural cubic305

splines to be used for calculating polychromatic transmittances with a much finer spectral resolution than the tabulated NSRF

data. It can be shown that the error made by approximating the polychromatic transmittance with the truncated NSRF does not

exceed ϵ.

4.1.2 Vertical profile database ECMWF83:

For training the optical depth parametrization, we use the ECMWF83 database, which includes 83 vertical profiles with tem-310

perature and gas concentrations for H2O, O3, CO2, N2O, CO and CH4, across 101 pressure levels, originally created to train

RTTOV (Matricardi, 2008). A separate database with 22 vertical profiles covers fixed gases. These datasets are available from

NWP SAF of EUMETSAT and can be downloaded at https://nwp-saf.eumetsat.int/site/.

4.1.3 Line-by-Line Transmitances with LBLRTM:

In this study, LBLRTM v12.15.1 (February 2023) will be employed for Line-by-Line calculations. The software uses AER315

Continuum MT CKD v4.1.1. for continuum models of water vapor and other gases and the AER Line Parameter Database

v3.8.1. for line parameters, which consolidates various line spectral databases, primarily HITRAN 2016 (Gordon et al., 2017).

The principal parameter in the LBLRTM calculation, to generate the optical depths for training and top-of-atmosphere

radiances, are the following:

– The continuum absorption is not activated for isolated gases and fixed gases, nor when all gases are included.320

– The Voigt profile is chosen for the shape of spectral lines,
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– The spectral resolution is set to dν = ᾱν/1.5 where ᾱν is the average value of the Voigt halfwidth for the layer. Con-

sequently, the spectral resolution is not homogeneous across channels, achieving an average spectral resolution from

7.1× 10−3 for M7 to 4.1× 10−4 for M16.

– The calculation of optical depths with the software is performed only for the observation point at nadir. For other angles,325

variations are made directly in the calculation of polychromatic transmittances.

4.1.4 RTTOV v13 and Proposals Settings:

For short, we will abbreviate Fast-RT models as follows: RTTOV13 for the standard RTTOV v13; SI for RTTOV13 with

statistical threshold and ordinary least squares for parameterization; BIC+L1 for RTTOV13 with statistical threshold and

BIC+LASSO regression for parameterization; and L0+L1 for RTTOV13 with statistical threshold and ℓ0+LASSO regression330

for parameterization

We implemented the transmittance parametrization of RTTOV v13 as described in (Saunders et al., 2020), using the same

predictors, except for the method of selecting gases per channel, which is detailed below.

In RTTOV v13 in the standard form, regression parameters are obtained by including only the gases that exhibit absorption

lines in each channel, as shown in Table 2. In the proposed RTTOV variants, using statistical inference and LASSO regression,335

all gases are included in the training.

Additionally, there are other criteria for selecting predictors in the correction term and training data by level, which are listed

below:

– Threshold for gases correction term: Predictors for fixed gases are always included in the correction term. For other

gases, predictors for a specific gas in a layer are included only if any of the corresponding optical depths in the training340

profile for that layer exceed a threshold 0.01 for CH4 and 0.005 for the other gases. As a result, for all the VIIRS channels

studied, only predictors for fixed gases and water vapor are included in the correction term.

– Threshold for Optical Depth Data Training: Optical depth data in a layer for a gas is omitted if the corresponding

transmittance from the layer to the surface is less than 3×10−6. As a result, only channel M10 is affected by this selection

criterion.345

Channels Gases
M7 H2O, CO2, CH4
M8 H2O, CO2, CO, CH4
M9 H2O, CO2, NO2, CH4

M10-M11 H2O, O3, CO2, N2O, CO, CH4
M12-M16 H2O, O3, CO2, N2O, CH4

Table 2. Gases considered in RTTOV v13 for VIIRS M-bands.

The performance of the three proposed models, SI, BIC+L1, and L0+LASSO, is evaluated using different statistical threshold

parameters ϵ1 ∈ {10−9,10−8,10−7,10−6}. Since the L0+LASSO bilevel model is based on a validation data criterion for the
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upper-level merit function, we split the NM data randomly in half, using one half for training the LASSO problems and the

other half as validation data for evaluating model quality using the ℓ0 regression.

4.2 Sparsity Pattern in the parametrization of optical depths350

Table 3 summarizes the percentage of non-zero parameters (%NZ) out of a total of 11,000 parameters (worst-case scenario)

for each type of optical depth model: RTTOV13, SI, BIC+L1, and L0+L1. Figures 1 and 2 show the percentage of parameter

usage and computation time relative to RTTOV13. Tables 4, 5, 6, and 7 provide details on the number of non-zero parameters

(NNZ) for each gas type and correction factor, for ϵ1 = 10−6.

In Table 3, the increase in sparsity for the proposed parametrizations compared to the general RTTOV v13 scheme is evident.355

RTTOV v13 induces sparsity by manually selecting gases and applying optical depth thresholds to include predictors in the

correction factor. Using ϵ1 = 10−6 as a reference, in the best-case scenario with channel M7, where greater sparsity is achieved

with RTTOV13, the sparsity level of RTTOV13 (53.64%) increases to 93.66% for SI, 94.39% for BIC+L1, and 96.22% for

L0+L1. Conversely, in the worst-case scenario with channels M10 and M11, where RTTOV13 achieves lower sparsity (20%),

the levels increase to 76.49% and 77.13% for SI, 80.12% and 81.30% for BIC+L1, and 90.50% and 89.89% for L0+L1. As the360

statistical threshold tolerances decrease, sparsity levels also decrease; however, they remain higher than those of RTTOV13,

suggesting that the computational cost benefits are preserved while achieving better sparsity results with the proposed L0+L1

model.

Fast-RT M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

RTTOV13 46.36 46.47 59.77 80.00 80.00 69.95 68.18 70.00 69.41 69.77

10−6 6.34 9.17 24.49 23.51 22.87 34.20 30.55 37.95 34.43 27.83
SI 10−7 13.05 20.23 27.85 28.80 28.69 53.49 46.34 50.64 44.38 39.35

10−8 24.09 32.67 35.28 36.99 41.61 64.95 57.72 56.59 50.86 46.32
10−9 37.76 40.36 47.10 56.57 55.13 68.29 62.51 62.69 57.75 47.95

10−6 5.61 8.31 18.37 19.88 18.70 27.94 25.21 30.36 29.76 23.15
BIC+L1 10−7 10.33 17.17 20.63 23.96 22.10 43.84 37.26 38.77 37.25 32.60

10−8 17.87 25.01 26.31 30.40 32.22 52.51 45.03 43.58 42.47 36.50
10−9 26.39 29.46 36.24 44.93 42.48 54.45 48.39 48.79 47.48 37.67

10−6 3.78 6.14 12.18 9.50 10.11 16.85 15.68 19.63 23.87 16.71
L0+L1 10−7 7.20 11.39 13.79 11.99 12.99 22.07 21.39 24.55 29.61 23.50

10−8 11.00 15.73 15.93 15.34 16.96 24.59 23.53 27.63 33.95 27.38
10−9 14.98 18.78 18.51 20.76 21.03 25.70 25.41 31.38 37.59 28.35

Table 3. Percentage of nonzero parameters in RTTOV v13 for each channel, for the standard configuration, SI with OLS regression,

BIC+LASSO regression, and ℓ0+LASSO regression. The second column represents the different statistical thresholds ϵ1 used for the pro-

posed RTTOV v13 variants.

In Figures 1 and 2, we present the percentage of parameter usage in the proposed optical depth approximations within

RTTOV, relative to the number of parameters used in the standard RTTOV configuration, and the percentage of runtime re-365
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quired by the proposed schemes compared to standard RTTOV. The measured runtime corresponds to the average time of 200

evaluations of the parameterized function used to compute approximate transmittances for the 83 atmospheric profiles with 6

different viewing angles. For the following comparisons, we use ϵ1 = 10−6 as a reference. For the SI configuration, parameter

usage across all channels ranges from 13.67% to 54.21% relative to standard RTTOV, corresponding to a runtime ranging from

29.99% to 58.32%; for the BIC+L1 configuration, usage ranges from 12.10% to 43.38%, with runtime from 26.75% to 48.64%;370

and for the L0+L1 configuration, usage ranges from 8.16% to 34.39%, with runtime from 13.77% to 41.39%. These results

suggest that the computational cost of evaluating parameterized transmittances is significantly and proportionally reduced with

the proposed parametrizations.

Although the absolute runtime difference is small for this limited number of profiles, in practical scenarios where trans-

mittance functions must be evaluated for hundreds of thousands of atmospheric profiles, as required in satellite data retrieval375

applications, the reduction in computational time becomes highly significant for the efficiency of the retrieval process.

As an illustrative example, from Figure 2, for channel M15, for each 100 time units required to compute transmittances

with the RTTOV13 model, the L0+L1 model takes only 41.69 time units with ϵ1 = 10−6, and 59.63 time units with ϵ1 = 10−9

(worst-case), representing a significant reduction in runtime.

Figure 1. Parameter usage (left) and runtime (right) of the SI method, expressed as percentages relative to those of RTTOV v13 (fixed at

100%) for different values of ϵ1.

Figure 2. Parameter usage (left) and runtime (right) of the BIC+LASSO method, expressed as percentages relative to those of RTTOV v13

(fixed at 100%) for different values of ϵ1.

15



Figure 3. Parameter usage (left) and runtime (right) of the L0+LASSO method, expressed as percentages relative to those of RTTOV v13

(fixed at 100%) for different values of ϵ1.

In Tables 5, 6, and 7, the effectiveness of introducing statistical thresholds to discard irrelevant gases by channel is evident380

compared to Table 4. A number of non-zero parameters below 100 for a specific gas corresponds to Case II of the statistical

threshold parameterization, suggesting that the corresponding gas can be included with the fixed gases.

Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
FIX 900 900 900 900 900 900 900 900 900 900
H2O 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400
O3 0 0 0 1200 1200 1200 1200 1200 1200 1200

CO2 1300 0 1300 1300 1300 1300 1300 1300 1300 1300
N2O 0 12 1200 1200 1200 1200 1200 1200 1200 1200
CO 0 1300 0 1300 1300 0 0 0 0 0
CH4 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100
COR 400 400 675 400 400 595 400 600 535 575

Table 4. Number of nonzero parameters by gas type and channel in RTTOV13.

Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
FIX 18 247 0 0 15 145 52 134 478 599
H2O 619 618 1374 618 604 775 576 802 687 716
O3 0 0 0 0 0 644 19 1120 1096 466

CO2 0 56 0 1142 0 212 724 0 1213 911
N2O 0 0 0 0 897 640 1024 1024 33 0
CO 0 0 0 0 0 0 0 0 0 0

CH4 47 0 778 768 995 964 819 678 0 0
COR 13 88 542 58 5 382 147 416 280 369

Table 5. Number of nonzero parameters by gas type and channel in SI for ϵ1 = 10−6.
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Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
FIX 18 244 0 0 15 125 52 134 463 534
H2O 542 545 1102 535 531 704 475 732 653 670
O3 0 0 0 0 0 531 19 969 904 382

CO2 0 56 0 1024 0 196 648 0 1114 850
N2O 0 0 0 0 799 624 901 913 33 0
CO 0 0 0 0 0 0 0 0 0 0

CH4 47 0 567 576 707 759 559 402 0 0
COR 10 69 352 52 5 134 119 190 107 111

Table 6. Number of nonzero parameters by gas type and channel in BIC+L1 for ϵ1 = 10−6.

Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
FIX 18 187 0 0 15 54 52 92 116 154
H2O 342 351 763 239 385 556 281 663 506 590
O3 0 0 0 0 0 238 19 451 826 268

CO2 0 56 0 394 0 96 497 0 977 661
N2O 0 0 0 0 244 268 411 348 33 0
CO 0 0 0 0 0 0 0 0 0 0
CH4 47 0 203 355 463 443 317 353 0 0
COR 9 81 374 57 5 199 148 252 168 165

Table 7. Number of nonzero parameters by gas type and channel in L0+L1 for ϵ1 = 10−6.

To illustrate in more detail, we reference channels M11 and M12 and compare the sparsity patterns in Figs. 4 and 5 among

the four parameterizations using ϵ1 = 10−6 as a reference. For the L0+L1 model and the remaining channels, see Appendix

A, Figs. A1 and A2. The numbering of predictors and correctors follows RTTOV v13 (Saunders et al., 2020), see Appendix385

B, except for predictor 0, which corresponds to the predictor in Case II of the statistical inference proposal. Each column

represents the parameters of a predictor for each pressure level, and each point in a column represents a non-zero parameter

associated with that predictor at the corresponding pressure level.

For channel M11 with SI model (upper-middle Fig. 4), gases O3, CO2, and CO are automatically discarded, and fixed gases

only need one predictor. Meanwhile, gases H2O, N2O, and CH4 exhibit block-like sparsity patterns from surface pressure390

approximately to 200 hPa, 19 hPa, and 0.8 hPa, respectively, where concentrations of these gases are important and cause

significant radiance absorption. For these gases with block-like sparsity patterns, replacing classical linear regression with

L0+LASSO regression (bottom figure) clearly discards some predictors across all levels or shows them as less relevant, as seen

in the sparsity patterns for CH4 and N2O. However, H2O still shows sparsity, but it is difficult for this channel to determine if

any predictor can be discarded at all levels due to the importance of this gas and the strong non-linear relationship among the395

secant angle, temperature, and gas concentration in the predictors defined for it. Using BIC+LASSO regression (lower-middle

figure) highlights less relevant predictors for CH4, but does not entirely discard it or any other gas predictor retained in the

SI model. For the proposed models, no correction term is needed at all, showing that a good fit of the total transmittance is

obtained by considering only the approximation of the individual gas transmittances.
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For channel M12 with SI model (upper-middle Fig. 4), only CO is automatically discarded, which is expected since this400

gas has no absorption lines in this channel. The SI model still clearly reveals the block-like sparsity patterns of predictors and

correctors for each gas at the pressure levels where they contribute to absorption (upper-middle figure). From the figure, CO2

appears to be relevant at high pressures, approximately above 767 hPa, while O3 seems relevant between about 2 hPa and 260

hPa. Using L0+LASSO regression (bottom figure) for these important pressure levels demonstrates that some predictors can be

entirely discarded or downweighted, as seen for fixed gases, O3, N2O, and CH4. Similarly, the BIC+L1 model (lower-middle405

figure) highlights less relevant predictors but does not completely discard any predictor retained in the SI model, except in the

corrector terms.

A similar analysis can be performed for each channel, as shown in the appendix, where Figs. A1 and A2 display the sparsity

patterns for all channels using the L0+L1 model. These figures clearly indicate which gases are relevant in each channel,

the pressure level ranges where they play a significant role, and which predictors are most important for reconstructing the410

transmittance of each gas.
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Figure 4. Sparsity pattern for channel M11, comparing RTTOV13 (Top), SI (Upper-middle), BIC+L1 (Lower-middle), L0+L1 (Bottom) for

ϵ1 = 10−6.
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Figure 5. Sparsity pattern for channel M12, comparing RTTOV13 (Top), SI (Upper-middle), BIC+L1 (Lower-middle), L0+L1 (Bottom) for

ϵ1 = 10−6.
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4.3 Validation of transmittances

To validate the proposed RTTOV v13 variants, we calculated the root mean square error (RMSE) of the total transmittance for

all atmospheric layers, vertical profiles, and viewing angles, as shown in the following formula:

RMSE =

 1

LMN

L∑
i=1

M∑
j=1

N∑
k=1

(τTOT
ijk − τ̃TOT

ijk )2

 1
2

,415

where L= 100, M = 83, and N = 6. Here, τTOT
ijk and τ̃TOT

ijk represent the polychromatic transmittances calculated using

LBLRTM optical depths and their corresponding approximations obtained from Eq. (10) using the training data. The results

are shown in Table 8. The values in the table correspond to RMSE× 104.

Fast-RT M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

RTTOV13 0.0126 0.0224 102.4458 0.0133 0.1341 0.7334 0.1128 0.8514 0.3340 0.7794

10−6 0.0160 0.0332 102.4442 0.0245 0.1320 0.7298 0.1130 0.8504 0.3325 0.7779
SI 10−7 0.0128 0.0229 102.4455 0.0134 0.1336 0.7334 0.1155 0.8513 0.3339 0.7795

10−8 0.0126 0.0228 102.4457 0.0133 0.1340 0.7334 0.1128 0.8514 0.3340 0.7794
10−9 0.0126 0.0228 102.4458 0.0133 0.1341 0.7334 0.1128 0.8514 0.3340 0.7794
10−6 0.0160 0.0333 95.1889 0.0245 0.1321 0.7329 0.1132 0.8606 0.3345 0.7792

BIC+L1 10−7 0.0128 0.0231 95.1962 0.0136 0.1341 0.7372 0.1155 0.8610 0.3355 0.7842
10−8 0.0127 0.0230 95.1988 0.0135 0.1345 0.7372 0.1128 0.8610 0.3356 0.7842
10−9 0.0127 0.0230 95.1977 0.0135 0.1345 0.7372 0.1127 0.8610 0.3356 0.7842
10−6 0.0173 0.0343 165.5327 0.0262 0.1398 0.7384 0.1149 0.8758 0.3392 0.7829

L0+L1 10−7 0.0143 0.0246 165.5344 0.0175 0.1420 0.7406 0.1183 0.8767 0.3399 0.7854
10−8 0.0142 0.0245 165.5347 0.0174 0.1423 0.7407 0.1155 0.8767 0.3400 0.7853
10−9 0.0142 0.0245 165.5348 0.0174 0.1423 0.7407 0.1156 0.8767 0.3400 0.7854

Table 8. RMSE of total transmittance for each channel, scaled by 104, for the proposed RTTOV v13 variants. The second column indicates

the statistical threshold ϵ1 used for each variant.

In Table 8, the RMSE for transmittance errors generally ranges between O(10−6) and O(10−5) across all Fast-RT methods

and channels, except for channel M9, where errors are larger, in the range O(10−2) to O(10−3). All three proposed models420

slightly degrade the precision of RTTOV13, but this degradation diminishes as the statistical threshold decreases. Comparing

RTTOV13 with the SI model, the error difference reduces from O(10−7) to O(10−9) on average across channels, again except

for M9. With BIC+LASSO, the difference remains around O(10−7), while for channel M9 it is O(10−4). Similarly, with

L0+L1 the difference is about O(10−7) for most channels, but O(10−3) for M9. Among the three, the L0+L1 model shows

the lowest precision, as expected due to its more aggressive sparsity, yet the errors remain comparable in order of magnitude425

to RTTOV13.

Overall, these results indicate that including statistical thresholds in RTTOV v13 has minimal impact on the transmittance

approximation. Values remain very close to the standard RTTOV13 configuration for statistical threshold tolerances below
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10−6 (Table 8). Combining thresholds with LASSO regression in a bilevel framework for parameter selection, using either

BIC-based or ℓ0-regularization, slightly modifies the approximation, improving or worsening it, but variations remain small.430

The approximated transmittances closely match those from LBLRTM, with the added benefit of a significant runtime reduction.

4.4 Validation of brightness temperatures

To achieve a higher level of validation for the proposed transmittance parametrization, the brightness temperatures of the

profiles used for training are calculated. The approximated brightness temperatures at the top of the atmosphere were calculated

using polychromatic radiances from Eq. (3), applying the approximate transmittances provided by the RTTOV v13 scheme and435

the proposed variants, separately. To compare these results, brightness temperatures at the top of the atmosphere were calculated

using the polychromatic radiances with Eq. (2), using the monochromatic radiances calculated with LBLRTM. In all cases, the

integrals were approximated using composite trapezoidal formulas, with the spacing determined by the pressure levels of the

data. In each case, the resulting brightness temperatures were averaged over all profiles and viewing angles. The relative errors

in BT obtained with the Fast-RT models and those obtained with LBLRTM were then calculated, which are shown in Table 9440

(×104). The maximum relative error for brightness temperature, determined for each profile and viewing angle, is presented in

Table 10 (×103).

Fast-RT M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

RTTOV13 3.8967 0.3357 7.5875 2.1803 0.5966 1.0472 0.6429 0.5221 0.7386 0.6715

10−6 4.7551 0.5896 7.6048 2.2527 0.5833 1.0181 0.6672 0.5088 0.7521 0.7512
SI 10−7 4.7488 0.4203 7.5838 2.1820 0.5985 1.0419 0.6421 0.5198 0.7414 0.6723

10−8 4.3021 0.3429 7.5878 2.1799 0.5970 1.0470 0.6430 0.5218 0.7389 0.6716
10−9 3.8726 0.3348 7.5875 2.1803 0.5966 1.0472 0.6429 0.5221 0.7386 0.6715
10−6 4.7552 0.5896 7.6185 2.2526 0.5832 1.0220 0.6672 0.5109 0.7509 0.7557

BIC+L0 10−7 4.7490 0.4203 7.5975 2.1819 0.5980 1.0492 0.6421 0.5229 0.7425 0.6742
10−8 4.3022 0.3429 7.6035 2.1797 0.5964 1.0549 0.6426 0.5257 0.7411 0.6730
10−9 3.8726 0.3348 7.6027 2.1802 0.5962 1.0550 0.6425 0.5258 0.7407 0.6730
10−6 4.7572 0.5896 7.8953 2.2525 0.5819 1.0270 0.6568 0.5145 0.7575 0.7399

L0+L1 10−7 4.7503 0.4202 7.8756 2.1824 0.5974 1.0509 0.6309 0.5190 0.7434 0.6632
10−8 4.3030 0.3425 7.8858 2.1799 0.5962 1.0570 0.6324 0.5199 0.7414 0.6623
10−9 3.8738 0.3343 7.8860 2.1800 0.5959 1.0572 0.6324 0.5201 0.7406 0.6626

Table 9. Average Relative Errors in Brightness Temperature (K), scaled by 104, between the Fast-RT and LBLRTM models. The second

column indicates the statistical threshold ϵ1 used for each variant.
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Fast-RT M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

RTTOV13 2.2108 0.3612 1.4245 0.8689 0.4965 0.4082 0.2817 0.2182 0.3501 0.2602

10−6 5.9256 2.0416 1.4218 1.3972 0.4918 0.4143 0.2967 0.1852 0.3549 0.2787
SI 10−7 5.9259 1.2130 1.4243 0.8691 0.4946 0.4066 0.2819 0.2171 0.3501 0.2602

10−8 3.5565 0.4896 1.4245 0.8689 0.4967 0.4082 0.2817 0.2182 0.3500 0.2602
10−9 2.3083 0.3655 1.4245 0.8689 0.4965 0.4082 0.2817 0.2182 0.3501 0.2602
10−6 5.9256 2.0416 1.3104 1.3972 0.4918 0.4197 0.2969 0.1802 0.3559 0.2807

BIC+L0 10−7 5.9259 1.2130 1.3127 0.8687 0.4943 0.4120 0.2820 0.2115 0.3515 0.2660
10−8 3.5565 0.4896 1.3129 0.8686 0.4962 0.4125 0.2816 0.2131 0.3513 0.2650
10−9 2.3085 0.3654 1.3129 0.8687 0.4960 0.4126 0.2817 0.2131 0.3514 0.2650
10−6 5.9256 2.0415 1.5482 1.3993 0.4891 0.4348 0.3036 0.1998 0.3629 0.2851

L0+L1 10−7 5.9259 1.2130 1.5535 0.8686 0.4912 0.4255 0.2892 0.2246 0.3579 0.2692
10−8 3.5565 0.4882 1.5532 0.8684 0.4932 0.4270 0.2891 0.2256 0.3575 0.2683
10−9 2.3116 0.3636 1.5531 0.8684 0.4930 0.4270 0.2892 0.2258 0.3573 0.2681

Table 10. Maximum Relative Errors in Brightness Temperature (K), scaled by 103, between the Fast-RT and LBLRTM models. The second

column indicates the statistical threshold ϵ1 used for each variant.

In Table 9, a similar behavior is observed in the errors when approximating transmittances. The average relative error of

brightness temperature generally ranges from O(10−5) to O(10−4) across all channels and Fast-RT methods. The order of

magnitude of the average relative error remains consistent when comparing the four methods by channel. The differences445

in average relative BT errors between RTTOV13 and the SI model decrease from O(10−5) to O(10−7) when lowering the

statistical threshold tolerance. Similarly, the differences between RTTOV13 and the BIC+L1 model decrease in the same

manner. For the L0+L1 model, the differences decrease from O(10−5) to O(10−6).

Turning to the maximum errors, for all channels the sparse approximations of optical depth for RTTOV13 show minimal

deviation from the BT results of standard RTTOV13 when ϵ1 ≤ 10−7. Table 10 shows maximum relative BT errors ranging450

from O(10−4) to O(10−3) across all channels and Fast-RT methods. Comparing the maximum absolute error by channel for

the four methods, errors remain of the same order of magnitude for M7, M9, and M11–M16 (ϵ1 ≤ 10−6), M8 (ϵ1 ≤ 10−8), and

M10 (ϵ1 ≤ 10−7); in other cases, standard RTTOV13 may yield up to one order of magnitude lower errors.

Observe in Table 9 that, for some channels, the errors with the proposed methods are slightly lower than those of RTTOV13.

With the L0+L1 model at ϵ1 = 10−9 this happens for channels M7, M8, M10, M11, M13, M14, and M16, and with the BIC+L1455

model at the same tolerance for channels M7, M8, M10, M11, and M13. Also note that, although the BIC+L1 model gives a

better transmittance fit than RTTOV13 for channel M9, its brightness temperature error is not improved. These findings suggest

that using merit functions based on radiances or BT, together with model complexity penalization, instead of relying only on

optical depth fitting, could improve the results of Fast-RT models within the RTTOV13 framework.

Figure 6 (left) shows the average absolute BT error between the LBLRTM model and the Fast-RT models for ϵ1 = 10−6,460

while Fig. 6 (right) shows the maximum absolute error across all profiles and viewing angles. The average brightness temper-

ature shows some degradation in the proposed methods compared to RTTOV v13: in the worst case, 0.021 K for M7, 0.008 K
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for M8, 0.20 K for M9, while the other channels remain below 0.003 K for all proposals. For the maximum absolute error per

profile and viewing angle, the worst cases are 0.961 K for M7, 0.405 K for M8, and 0.375 K for M9, with the other channels

below 0.15 K. These variations are not significant in relative terms, as shown in Table 9, and decrease with a lower statistical465

threshold, illustrated in Fig. 7 for ϵ1 = 10−9. Under this setting, the average BT error worsens by only 5.7× 10−4 K for M7,

3.7×10−5 K for M8, and 7.5×10−3 K for M9, while the others remain below 3.2×10−4 K. The maximum error increases by

2.1×10−2 K for M7, 1.0×10−3 K for M8, and 1.0×10−3 K for M9, with the other channels remaining below 1.5×10−3 K.

Figure 6. Average Absolute Errors (left) and Maximum Absolute Errors (right) in Brightness Temperature (K) between the Fast-RT and

LBLRTM models for ϵ1 = 10−6.

Figure 7. Average Absolute Errors (left) and Maximum Absolute Errors (right) in Brightness Temperature (K) between the Fast-RT and

LBLRTM models for ϵ1 = 10−9.

These findings confirm that the proposed methods achieve an accuracy level comparable to RTTOV v13 across most chan-

nels, with only minimal degradation observed in a few cases under stringent statistical threshold tolerances.470

4.5 Validation of Brightness Temperature Against Instrument Noise Characteristics

To evaluate the accuracy of the Fast RT model, we compare the brightness temperatures it generates with those from high-

fidelity simulations using LBLRTM. A standard validation criterion requires that the absolute difference in brightness temper-

ature remains below the instrument’s noise level (Garand et al., 2001). Specifically, this involves comparing against the Noise

Equivalent Delta Temperature (NEdT) for the thermal emissive bands (M12 to M16), and against the Noise Equivalent Delta475
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Radiance (NEdR) for the solar reflective bands (M7 to M11). For the VIIRS M-bands, Table 11 presents the NEdT values and

the signal-to-noise ratios (SNR) used to compute the corresponding NEdR values, as reported in Table 1 of the manual Cao

et al. (2017).

Channel SNR Ityp Channel NEdT Ttyp

M7 L 340 33.4 M12 0.396 270
M7 H 215 6.4 M13 L 0.423 380
M8 74 5.4 M13 H 0.107 300
M9 83 6.0 M14 0.091 270
M10 342 7.3 M15 0.070 300
M11 10 0.12 M16 0.072 300

Table 11. SNR and NEdT Values for VIIRS IR M-Bands (L: Low Gain Mode, H: High Gain Mode).

For each channel from M7 to M11, the table reports the SNR at the reference radiance Ityp (W/m2 ·sr ·µm), and for channels

M12 to M16, it reports the NEdT at the reference temperature Ttyp (K). For a thermal emissive band, the NEdT at temperature480

T is defined as

NEdT(T ) = NEdT(Ttyp) ·
B′(Ttyp)

B′(T )

where B′ is the derivative of the Planck function with respect to temperature. For solar reflective bands, the Noise Equivalent

Delta Radiance (NEdR) at radiance I is defined as

NEdR(I) =
I

SNR
.485

Let Iij and Ĩij denote the top of atmosphere polychromatic radiances obtained using LBLRTM and the Fast RT model, respec-

tively, for atmospheric profile i and observation angle θj , and let Tij and T̃ij be the corresponding brightness temperatures. For

emissive bands, the following condition must be satisfied:

|Tij − T̃ij | ≤ NEdT(Tij),

and for solar reflective bands, we require:490

|Iij − Ĩij | ≤ NEdR(Iij).

The percentage of atmospheric profiles for which these conditions are satisfied serves as a practical metric to evaluate the

quality of the forward model. A high proportion of cases meeting the criterion indicates that the modeling error is smaller

than the instrument noise, ensuring that the simulated radiances are sufficiently accurate for satellite retrievals and potentially

suitable for data assimilation. Table 12 reports the percentage of cases, computed over 83 atmospheric profiles and 6 viewing495

angles, for which the corresponding noise threshold condition is met.
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Fast-RT M7L M7H M8 M9 M10 M11 M12 M13L M13H M14 M15 M16

RTTOV13 6.63 10.84 100.0 97.99 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10−6 6.83 10.24 97.19 97.99 61.24 100.0 100.0 100.0 100.0 100.0 100.0 99.60
SI 10−7 6.63 10.24 98.80 97.99 63.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10−8 6.63 10.24 99.80 97.99 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−9 6.83 10.84 100.0 97.99 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−6 6.83 10.24 97.19 98.39 61.24 100.0 100.0 100.0 100.0 100.0 100.0 99.60

BIC+L1 10−7 6.63 10.24 98.80 98.39 63.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−8 6.63 10.24 99.80 98.19 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−9 6.83 10.64 100.0 98.19 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−6 6.83 10.24 97.19 97.79 61.24 100.0 100.0 100.0 100.0 100.0 100.0 100.0

L0+L1 10−7 6.63 10.24 98.80 97.59 63.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−8 6.63 10.24 99.80 97.59 63.86 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−9 6.83 10.64 100.0 97.59 63.86 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 12. Percentage of absolute differences in radiance below the NEdR threshold for channels M7–M11, and percentage of absolute

differences in brightness temperature below the NEdT threshold for channels M12–M16. The second column indicates the statistical threshold

ϵ1 used for each variant.

In the table 12, it can be observed that for channels M11 to M16, all methods fully satisfy the noise condition, and the

proposed methods are comparable to standard RTTOV13 for a statistical tolerance threshold of ϵ1 ≤ 10−6. For channels M7

to M10, a stricter statistical tolerance threshold is required to achieve percentages comparable to RTTOV13. For channels M7

and M10, the fulfillment of the noise criterion is quite poor; we infer that this is due to the lack of solar radiation inclusion500

in the various Fast-RT methods. However, the results obtained with the proposed methods are similar to RTTOV13 for small

statistical thresholds. For channel M9, the proposed BIC+L1 model slightly improve the percentage of profiles that meet

the noise threshold compared to standard RTTOV13. It is clear that the proposed methods reproduce the results of standard

RTTOV13 for large statistical thresholds in the emissive bands and for smaller statistical thresholds in the solar reflective bands,

while offering the advantage of greater computational efficiency due to the induced sparsity.505

5 Conclusions

This study presents an automatic and sparse optical depth parametrization method for the RTTOV v13 model, aimed at opti-

mizing parameter adjustment. The method applies statistical thresholding across different pressure levels, followed by LASSO

regression, instead of the traditional least squares approach in the RTTOV v13 framework. A bilevel optimization approach is

used to select the optimal regularization parameter, employing different model validation criteria: one based on ℓ0 regression510

and another on the Bayesian Information Criterion (BIC). These alternatives enforce significant sparsity across all optical depth

regression parameters, substantially reducing the computational cost of the Fast-RT model without compromising accuracy,

demonstrating strong potential for satellite data assimilation applications.
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Validation experiments were conducted on the infrared channels of the M-bands for the VIIRS instrument. Different vali-

dation criteria were considered, including transmitance fitting against LBLRTM transmitance, brightness temperature fitting515

against LBLRTM transmitance, and the difference between brightness temperature and the instrument’s Noise Equivalent Delta

Temperature. The results show consistency with RTTOV v13, while providing improved runtime performance in the evaluation

of parameterized transmitances.

The induced sparsity automatically excludes gases with negligible absorptivity in a channel, identifies pressure levels where

gases significantly absorb radiance, highlights the most relevant predictors for each gas type, and classifies gases as either520

fixed or variable. This technique is particularly advantageous for multispectral instruments where multiple gases exhibit strong

correlations in radiance absorption, especially in large-scale variable retrievals for inverse problems. The proposed method

may be extended to other Fast-RT models, such as CRTM, and to other satellite instruments, such as the Advanced Technology

Microwave Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS), to enhance both the computational efficiency of

radiative transfer models and the accuracy of retrieved atmospheric profiles.525
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Appendix A: Sparsity Pattern for RTTOV13+SI+LASSO
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Figure A1. Sparsity pattern for channels M7 to M11 in L0-L1 for ϵ1 = 10−6.
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Figure A2. Sparsity pattern for channels M13 to M16 in L0-L1 for ϵ1 = 10−6.
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Appendix B: RTTOV v3 Predictors
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15 - sec(θ)
√
Ww - -

OD 1–9 1–14 1–12 1–13
COR 2, 3, 4, 10 2, 4, 5, 6, 15 13 14, 8, 9

N0 N2O CO CH4

1 sec(θ)N2Or sec(θ)COr sec(θ)CH4r

2
√
sec(θ)N2Or

√
sec(θ)COr

√
sec(θ)CH4r

3 sec(θ)N2OrδT sec(θ)COrδT sec(θ)CH4rδT

4 (sec(θ)N2Or)
2 (sec(θ)COr)

2 (sec(θ)CH4r )
2

5 N2OrδT
√
sec(θ)COrδT CH4rδT

6 4
√
sec(θ)N2Or

4
√

sec(θ)COr
4
√
sec(θ)CH4r

7 sec(θ)N2Ow sec(θ)COrδT |δT | sec(θ)CH4wt

8 sec(θ)N2Owt sec(θ)CO2
r/COw CH4wt

9
√
sec(θ)N2OrN2Or/N2Ow

√
sec(θ)COrCOr/COw (sec(θ)CH4w)

2

10 (sec(θ)N2Owt)
2 sec(θ)CO2

r/
√
COw sec(θ)CH4w

11 (sec(θ)N2Owt)
3 (sec(θ)COw)

0.4
√

sec(θ)CH4rCH4r/CH4w

12 sec2(θ)N2OwtδT
4
√
sec(θ)COwt (sec(θ)CH4w)

1.25

13 - sec2(θ)COrCOw -
14 - sec(θ)COw -
15 - sec(θ)COwt -
16 - (sec(θ)COw)

2 -
OD 1–12 1–13 1–11

COR 7, 8, 10, 11, 12 12, 14, 15, 16 7, 9, 10, 12
Table B1. Predictors for RTTOV v13, (Saunders et al., 2017).
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pδp(l) = p(l+1)(p(l+1)− p(l)), pδp(0) = p(1)(p(2)− p(1)),

T (l) =
1

2
(T prof(l)+T prof(l+1)), T ∗(l) =

1

2
(T ref(l)+T ref(l+1)), Tr(l) =

T (l)

T ∗(l)
,

Tw(l) =

∑l
i=1 pδp(l− 1)T (l)∑l
i=1 pδp(l− 1)T ∗(l)

, δT (l) = T (l)−T ∗(l),

G(l) =
1

2
(Gprof(l)+Gprof(l+1)), G∗(l) =

1

2
(Gref(l)+Gref(l+1)), Gr(l) =

G(l)

G∗(l)
,

Gw(l) =

∑l
i=1 pδp(l− 1)G(l)∑l
i=1 pδp(l− 1)G∗(l)

, Gwt(l) =

∑l
i=1 pδp(l− 1)T (l)G(l)∑l

i=1 pδp(l− 1)T ∗(l)G∗(l)
.

Where p(l) is the pressure (hPa) at level l, T prof(l) is the temperature (K) at level l of the input profile, T ref(l) is the tempera-

ture (K) at level l of the reference profile which is the mean over the training profile set, G ∈ {W =H2O,O3,CO2,N2O,CO,CH4}530

represents gas concentration (ppmv over dry air), Gprof(l) are the gas concentrations at level l of the input profile and Gref(l)

are the gas concentrations at level l of the reference profile which is the mean over the training profile set.
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