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Abstract. The assimilation of satellite spectral sounder data requires fast and accurate radiative transfer modelsforretrieving

surface-and-atmospherie-vartables. This study proposes a novel methodology to automatically parameterize atmospheric optical
depths within the RFFOV-Radiative Transfer for TOVS (RTTOV) version 13 scheme using statistical thresholds across pres-

sure levels and EASSO-Least Absolute Shrinkage and Selection Operator (LASSO) regression to induce sparsity. Numerical
experiments with VHRS-Visible Infrared Imaging Radiometer Suite (VIIRS) infrared channels demonstrate that this approach
significantly reduces computational costs while maintaining accuracy. The sparsity also facilitates the automatic selection of
absorbing gases and predictors by channel and pressure level, making it particularly effective for multispectral instruments with
numerous atmospheric variables. These findings highlight the potential of sparse regression methods to enhance the efficiency

of radiative transfer models for satellite data assimilation.

1 Introduction

In satellite data assimilation and remote sensing retrievalretrievals, as well as their applications in numerical weather prediction
(NWP), the radiative transfer equation (RT) is the prineipat-main model used to retrieve global atmospheric variables, such as
temperature and trace gases concentrations, including water vapor, ozone, carbon dioxide, and other atmospheric constituents.
This is achieved by utilizing top of the atmosphere (TOA) radiance measurements from satellite sounders operating across
different channels of the electromagnetic spectrum. The numerical implementation of the RT equation as a forward model can
primarily be carried out using two approaches: Line-by-Line (LBL) Radiative Transfer models and Fast Radiative Transfer
models (Fast-RT).

Line-by-line models simulate satellite radiance by rigorously integrating atmospheric physics and chemical phenomena.
These models are highly accurate in replicating the precision of modern instruments, such as hyperspectral sounders like AIRS,
CrIS and TASI. However, they are characterized by significant computational demands in terms of CPU time and memory, mak-

ing them impractical for use in operational data assimilation. Some of the most well-known models in this category include:

LBLRTM, developed at Atmospheric and Environmental Research, Inc. (AER) Cleugh-et-al-1992);-Clough-andfacone-(1995)-Clough-—et
Clough et al., 1992; Clough and Iacono, 19935; Clough et al., 2005); AMSUTRAN, developed at the Met Office (UK) Turner-et-al--204+9)



Turner et al., 2019); and GENLN?2, developed at the National Center for Atmospheric Research (NCAR) Edwards{1992)

Edwards, 1992). A comparison between LBLRTM and GENLN?2 is presented in Matri i Matricardi, 2007). An-
other software worth mentioning is KCARTA : DeSouza-Machado et al., 2020), a pseudo Line-

by-Line model that uses precomputed and compressed physically intensive processes in RT model to compute radiances more
quickly while maintaining accuracy.
On the other hand, the most common Fast-RT models estimate the expected radiance in a channel (what a sensor actu-
ally measures) and are typically based on statistical approaches. In these models, the complex and computationally costly
physical processes of RT medelmodeling, the calculation of atmospheric transmittances, are parameterized using statistical
models and trained with output from Line-by-Line software on real atmospheric profile databases. The parameters are ad-
justed using standard linear regression models or other machine learning techniques. While these methods sacrifice a small
degree of accuracy, they significantly reduce computational costs, making them practical for use in operational data assimila-
tion. Some of the most well-known models in this category include: OPTRAN, developed by the NESDIS-NCEP community
s i McMillin et al., 1995a; Kleespies et al., 2004; McMillin et al., 20(
; The Joint Center for Satellite Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) Han-et-al-+2006);-Chen-et-al-—2(
(Han et al., 2006; Chen et al., 2008); and the Radiative Transferfor TOV-S-modeHRTTOV-);see-Saunderset-al«(2648) RTTOV
model, see (Saunders et al., 2018) and the references eited-therein. Other studies using statistical approaches include Matricardi-(20+0)
(Matricardi, 2010), which incorporates principal component analysis in RTTOV, as well as Krishnan-et-ak+(2012);Cao-etal(202H
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, which apply machine learning techniques for parametrization, feature reduction, and sampling strategies.

Even though RTTOV is more efficient than line-by-line models, it remains prohibitively expensive for operational use in
smaH%e—medétma—&i—zeelﬂgeﬂeiesc&sAeNs]. Indeed, in current Fast RT models based on linear regression, such as OPTRAN and
RTTOV, training is performed separately for each gas type and pressure level, resulting in an over-parametrization of the RT
model;similarte-models-based-onneuralnetworks. To reduce the number of parameters and make the evaluation of the trained

RT model further-less computationally expensive, it is essential to carefully select the most significant gases for each spectral

channel of each instrument type, reduce the number of pressure levels, and implement other ad hoc strategies. These decisions

must account for the mu}ﬁfud&iag\ggvglvlrvnvbvevr\of poss1b1e combinations and trade-offs, which—is—why large-meteorological

typically made by expert teams.
One promising approach to reducing the number of parameters without relying on expert committees is the use of optimiza-

tion methods that induce sparsity in the parameters. In particular, the use of LASSO regression, a regularization method that
penalizes the regression coefficients with the ¢;-norm, has proven effective for variable selection and model complexity re-

duction in various large-scale applications (see, e.g., Heilemann et al., 2024; Pak et al., 2025). In the context of radiative trans-
fer, LASSO regression was applied by i Htort

models-with-optically-complex-properties—Intietal«(2020)(Cardall et al., 2023) to estimate water quality parameters such as

IThis is the case for Ecuador’s METEO operational system, which currently relies on an HPC with only 700 cores.
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clarity, temperature, and chlorophyll-a, based on correlations with in-situ measurements and near-coincident Landsat spectral
data, with a focus on model explainability. In (Li et al., 2020), the authors proposed an algorithm for detecting hazardous

clouds using passive infrared remote sensing technology with variable selection. Other studies that combine or compare
LASSO with machine learning methods for remote sensing include: the removal of redundant features in PolSAR and op-
tical images Hong-and-Kong-(202H(Hong and Kong, 2021); estimation of aboveground forest biomass with variable selec-
tion Wang-etak(2022a)(Wang et al., 2022a); identification of important environmental variables for retrieving soil moisture
content Wang-et-al«2022b)(Wang et al., 2022b); evaluation of the accuracy and generalization capacity of grassland models
Smith-et-ak+(2623)(Smith et al., 2023); and a comparison of different machine learning methods for predicting soybean yield

sl Joshi et al., 2023).
Building on this approach, in this paper we target the automatic selection of gases and parameters-optical depth predictors in

Fast RT models by inducing sparsity in the parameters-weight predictors using LASSO regression. We propose a parametriza-
tion of transmittances based on statistical thresholds to automatically select the appropriate gases by channel and pressure
level, and to induce sparsity in the parameters by replacing the classical regression problem with a LASSO problem within the
RTTOV framework. The proposed methodology is tested with VIIRS infrared channels, and the results are compared with the
standard RTTOV model. To the best of the authors’ knowledge, this is the first time that LASSO regression has been applied

to the RTTOV model to automate the selection of gases and parameters.

1.1 Organization-of-the Manuseript

“Fhis-One of the key aspects in LASSO models is the choice of the regularization weight in front of the £,-norm. This weight
controls the trade-off between fitting the training data well and keeping the model simple by reducing the number of non-zero
coefficients. In our context, selecting an appropriate regularization weight is crucial for effectively identifying the most relevant
gases and optical depth predictors while avoiding overfitting.

To establish a rigorous criterion for choosing this parameter—rather than relying on a tedious trial-and-error process—we
ropose a bilevel optimization a ., De los Reyes and Villacis (2022); De los Reyes (2023)). The idea is to
formulate an upper-level optimization problem that encodes a model quality criterion, while the LASSO problem serves as
the lower-level constraint. In this article, we successfully test two types of loss functions: the first, based on an fy seminorm
that prescribes the number of non-zero predictors; and the second, inspired by a Bayesian Information Criterion-type objective.

roach (see, e.

This manuscript is organized as follows: Section 2 outlines the theoretical framework for the RT equation in Line-By-
Line models —Seetion3-and details the general scheme of Fast-RT methods, focusing on RTTOV. Section 4-3 introduces
the proposed transmittance parametrization using statistical inference and LASSO regression model—Seetion—5-, as well as
the bilevel optimization approach for selecting the regularization weight. Section 4 presents the experimental settings and
numerical results comparing RTTOV with the proposed method. Finally, Section 6-5 offers conclusions of the performance of

the proposed approach.
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2 Radiative Transfer Equation

The monochromatic radiative transfer equation for the upwelling radiance in a clear sky, without solar radiation contribution,

for a non-scattering atmosphere and in local thermodynamic equilibrium, is given by:

1 1

B(v,T
10.0) = 7 0)es (w0 BW.T) + [ BTG dr+ (- el d)r2(w.0) [ 2T oy m
where £{#-#)represents-I (v, 6) is the monochromatic TOA radiance -at-wave-number+-and-the-at wayenumber v and satel-

lite zenith angle #~B{ 7 -denotes0; B(v,T) is the Planck function We%&ﬂw%ayeﬁemper&&wwﬂ%—%&at
temperature 7'; 7(v,0,p, T, q) denotes the layer—to space

the-transmittance dependent on pressure p, temperature 7, and gas concentration ¢g. Here, 7%, €., and 7, represent surface skin

temperature, €s-is-the-surface-emissivity, and #is-the-surface-transmittanee-transmittance respectively, (Weinreb et al., 1981).
The § . . . . . . . .

terms correspond to surface emission, upward atmospheric emission, and the-last-term-is-the-dewnward-atmespheric radiance
emission—reflected-by-the-surfaces—downward atmospheric emission reflected at the surface (assuming specular reflection).

Surface emissivity can be close to 1 for v between 714-1250 ¢m~! and for surfaces such as bodies of water, ice and healthy
plant leaves, carbon powder, allowing the last term to be discarded.
The radiance-m

model described above, computed for
each wavenumber v is called the Line-by-Line model, and the resulting radiance is monochromatic.

Satellite-measured radiance is polychromatic, simulated by convolving the-monechromaticradiancefrom-Eg:Eq. (1) with the
instrument”’s Normalized Spectral Response Function (NSRF);-which-aceountsfor-the-efficieney-within-the-channel-{ra 4
This isciver by:

I(v*,0)= /d)(l/,l/*)](l/,ﬁ) dv, (2)

where ¢(v, ") is the NSREF, representing the sensitivity to radiance within the spectral range-channel [v,, 3], with y—efy—yg}

v* representing the centroid of the response.




Using the expression (2) in Eq. (1), the polychromatic radiance for the spectral channel identified with v*, assuming €, = 1,

can be written as {see-Weinreb-et-al(1981))(see Weinreb et al., 1981):

1(v*,0) :Fs(y*,G)B(z/,Tes)+/B(1/*,Te(p))dF, 3)

120 where L

temperatures obtained via regression. The polychromatic transmittance is given by:

Vp
125 ?(V*797P7T7q):/¢(V7V*)T(V797P7T7q),dl/' (4)

Va

2.1 Atmospherie-Transmittanees

The-transmittance-in-a-gaseous-medium-is-deseribed-by-the-Transmittance follows Beer-Lambert law as-foHows:

130

The-monochromatictayer-to-space—1 = e~ %, with optical depth d(v,0,p,T,q) accounting for absorption by gases (e.g.
135 H30, O3, CO9, CHy) and continuum effects. The monochromatic optical depth for the-speetral-abserption-tine-due-to-a set of
e sases- g By - that-mestcontribute-to-line-abserption-isgiven-by:-gases g1, . . . is:
P
d(v,0.p,T,q) = —Secg(a) Secg(a) o / K& (v,p/, T(p))g® (') dp’, (5)
=1 }

where ¢-is-the-g is gravitational acceleration, /&-and-¢=—are-K®' is the absorption function and-the-concentration-of-the-gas
grrespeetively-modeled via Voigt profiles (see Lavrentieva et al., 2011).

140 n-the-abserptionftunetion;-the-Voigtline-shape ommonty-used;re




150

155

160

165

170

2.1 Fast Radiative Transfer Model

Fast RT models discretize the atmosphere into L-layers;-characterized-by-the-pressure-points:-

Po<p1 <---<pr,

L layers:
PoSPL<iSPL

where pyis-the-top-of-atmesphere-pressure-and-prisp( is the top-of-atmosphere and py, the surface pressure. The-calenlation-of
hromatieradianceis-obtained-bynumerieally-approximating-Polychromatic radiance Eq. (3) using-compeosite-trapezoidat

requiring parameterization of polychromatic transmittance to reduce computational cost. In Fast-RT methodstike OPTRAN
and-RTTOVmodels, the polychromatic optical depth is parameterized and fitted using-tinearregression—models-via linear

regression to approximate Eq. (5), following the-tdeas-ofideas from McMillin and Fleming MeMitin-and Fleming (1976); Fleming-and-Me

+-(McMillin and Fleming, 1976;

The polychromatic optical depth from layer 7 to the top of the atmosphere, for a single channel and fera-gas—g(ertype-of
abserption);isasfolows:-gas g, is:

d§'=0, i=1,2,...,L, (6)

[V RESN:

my
g1 __ 81 g1 v 8
¥ =d¥ )+ wl X
j=1

rovides details on the RTTOV v13 predictors, and further information can be found in Saunders et al. (2017).

includes a fixed gas mixture—these-whose spatio-temporal

in-variations minimally affect radiance—and ara : o
inehastonof- O3 -CO2-N20variable gases, primarily H,O, optionally including Oz, CO,, N,O, CO, EH4—and-SO2These

primariry O Wit 1 Optrotia

O
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o ) , varying by channel. Water vapor absorption

may be split into line and continuum components.

The polychromatic transmittance of layer + i for gas g; is
approximated by:
T(gil’o) = eXp(_dzgl )7 @)
180
S
TOT _
iy = It ®
=1
185

(pzaTz7>Q§]17qlgfa7Q§f)7 120717277117 ]: 1727/]\4

Parameters are fitted using a database of M vertical atmospheric profiles:

i Tijs a5 - a5), i1=0,...,L, j=1,....M

190 and-for-each-gas—g—which-is-expressed-as--with polychromatic transmittances computed with Line-by-Line software for [V

g1 g2 gs

(Tijk,TUk,...,Tijk), i=12...,L, j=12... M, _k=12..N. (©)]

195 Since the-total polychromatic transmittance is not neeessarity-simply the product of individual gases pelychromatic-transmittanees

sas-iis—n-transmittances (unlike the monochromatic case;-the-pelychromatic-transmittanees-), data (9) are corrected using
e ies—whiel ] below.

200 the-effectivepolychromatictransmittanece-of gas-gris-defined-by:-

G+g
g _ ik
ijk TG )
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Hocking et al,, 2021), by introducing a corrective termf%

S
T =3 Ty 10)
=1

which is parameterized similarly to Eq. (6) and (7)with

.. by
FIoT

+COR _ gk

ijk T RTOT
ijk

. The corrective transmittance for training is:

LTOT
COR _ "ijk
Tijk = =TOT>
Tijk
where g;,?T i i MLine—by-Lme polychromatic transmittance including all abSGf—bef—&ﬂd—ﬂA%iS
i SHH i absorbers, and 7297 is the modeled transmittance from Eq. (8).
2.2 LinearRegresionProblemsfor-Optical Depths

The linear regression

problem:itting problem for gas g; and layer i is:
1

(LSg)  min | A8 wE — Y|, (11)

wigl ER™ 2MN

8!

iAB ¢ RMNXmu contains predictors X 2
for angles, temperatures, and concentrations across profiles, and Y.# € RMN the corresponding optical depths.
i i i ization-inIn RTTOV v13, considering-6-vartable
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expert-based gas selection, layer thinning, and thresholding (see Saunders et al., 2017).

3 A Sparse Parametrization of Optical Depths

In this section, we present a methodology to significantly reduce the number of parameters used in optical depth parametrization
within the RTTOV v13 framework. The methodology involves automatically selecting absorbing gases per channel and pressure
level, as well as identifying the most important predictors for each atmospheric layer. This approach induces sparsity in the
regression parameters by combining two tools: statistical inference to determine whether a given gas at a particular layer
requires no parametrization, a parametrization with a single predictor, or a more complex parametrization as described in Eq.
(6). In the latter case, the classic linear regression problem is replaced with a LASSO regression problem to select predictors

and induce sparsity in the parameter vectors.
3.1 Parametrization Based on Statistical Inference

The aim here is to preprocess the data of the polychromatic transmittances in a channel to determine which atmospheric layers
require optical depth parametrization and to automatically exclude gases that do not significantly contribute to the radiance
absorption in that channel. To achieve this, we will use confidence intervals to estimate the true polychromatic transmittances.

For a gas g; or correction term in a fixed layer ¢, we construct a confidence interval for the mean of the polychromatic

transmittances of the layer <. This is given by:
(7% - BF.7 1 £

where

S
B8 — 7, ot
‘ =5 /NM

7! is the mean polychromatic transmittance for layer ¢, considering #/-angles-and-N-IN_angles and M atmospheric profiles,

s%! is the corresponding standard deviation, and Z; g is the critical value of a distribution for a confidence level of 1 —a. Given
that the number of data points in each layer is N M, which is usually sufficiently large (in our experiments, for N = 6 angles
and M = 83 profiles, N M = 498), the standard normal distribution is used to obtain the critical value. Thus, the absolute
error in approximating the true value of the polychromatic transmittance of gas g; in layer ¢ with 7%' is at most E¥', with a

probability of « that the absolute error exceeds this value. In our case, the confidence level is set to o = 1076,
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Based on the above, the following statistical thresholds for optical depth parametrizations are proposed. Let €; and e be
positive and sufficiently small values, these will be used as thresholds to determine whether ﬂgl is close to the true value or

close to 1. Define the mean optical depth for layer ¢ as Eigl = —In(7%"), and consider the following three cases:

— Case I If E®' > €1, the polychromatic transmittance due to gas g; in layer ¢ has high variability with respect to the value

of the atmospheric variables in that layer. In this case, the optical depth parametrization follows as in Eq. (6) for layer :.

— Case II: If Eigl <€ and Elgl > €9, unlike the previous case, the polychromatic transmittance due to gas g; in layer ¢ has
low variability with respect to the value of the atmospheric variables in that layer, and can be estimated by 7', but is not

close to 1. Thus, the optical depth can be parameterized with a single predictor as follows:
df' = dF +wip X5,

where, X(; = 1 and w§ = 8?. If this occurs in all layers, and since the parametrization does not depend on atmospheric

variables, the gas g; can be included with fixed gases.

- Case lII' If E¥' < ¢ and E;gl < €9, the polychromatic transmittance in layer ¢ can not only be estimated by 7' but is also
close to 1, meaning that gas g; does not cause significant absorbance in this layer. The relative error of approximating
75! with 1 is given by:

1-7; ast 81
L=l —1=d;" et < epe? m ey,

Ti
for some £ € (Oﬁ?l ). If this condition is met for all layers, then gas g; is automatically discarded.

To summarize the above, the parametrization of optical depths based on statistical thresholds is as follows:

8l _
dg' =0
my
> wigijigjl, E% > ¢,
j=1
g _ 81 — —
dit =di_y + 3 E% < and d > e, (12)
0, otherwise,
for i = 1,2,..., L. Experimentally;e—-€;—=10-C-are-used-The transmittances from layer i to the top of the atmosphere are

still calculated using (7).

The statistical threshold tolerances €; and e> should be sufficiently small. In our experiments, we set €5 — €7 and evaluate
the model performance for different small values of ¢;.

3.2 LinearRegression-with- LASSO Regression and optimal choice of regularization parameter

After discarding parameter groups using the previous statistical approach with Eq. (12), in Case I, the parameters-must-be

ed-remaining parameters are typically estimated b
solving an ordinary least squares (OLS) problem, which involves a large number of parameters.

10
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To reduce the number of parameters, we propose to induce sparsity in the parameter vector w' to-diseard-predictorsper
atmespherietayer-by solving the LASSO problem:—. This is done by replacing the OLS problem (11) with the followin
optimization problem:

. 1 .
(LASSOg,)  min s cpm 5oms AP WE = VS + NwE wi —arg min £(w) (13)

where X;—>6-

1 2
La(w) = T A w — VE 24w

and A > 0 is the regularization parameter.
AsA——ocAs A — 400, high sparsity is induced, and as x—-09) — 0, sparsity is low. Specifically, if 2;=0)\ = 0, the
problem reduces to the least squares problem (11). The-selection-of-this-regularization-parameter-is-carried-out-to-ensure-that

| . onif | : S L

The regularization parameter A has to be carefully selected to ensure that the approximation of the transmittance in layer
compared-maintains a high level of accuracy relative to the least squares problem-solution (11), while achieving a model with
fewer parameters. Since-there-is-no-prior-information-to-estimate-this-parameter;-a-Grid-Search-strategy-is-employed-Although
standard techniques such as cross-validation exist for tuning A, they may not always be appropriate, especially when alternative
loss criteria are more relevant to the specific modeling goals. To address this choice, we adopt a bilevel optimization approach
see, e.g., (De los Reyes and Villacis, 2022; De los Reyes, 2023)), where the LASSO problem forms the lower-level constraint

and the upper-level objective reflects a model quality criterion. This results in the following bilevel problem:

I)\neiﬁ F(w(\))

s.t. w(A) =arg min Ly(w), (14)
weR™

R™

OS)\S)\Oa

where \g > 0 is a given upper bound. In the following, we show how to reduce this bilevel problem to a standard nonlinear
optimization problem. For the sake of clarity, we omit the indices corresponding to gas and pressure level.

Under the assumption that matrix A is full rank, problem (13) has a unique solution for each A > 0, denoted by w(A). The
collection of these solutions as \ varies over the positive real numbers, is called the regularization path P = {w(A) : A > 0} A
key structural property of the regularization path is that it is well-defined, unique, and continuous piecewise linear. Moreover,
and it can be computed using the homotopy algorithm for the LASSO problem (Osborne et al., 2000), an algorithm with
exponential complexity but low computational cost, that returns the vertices of the regularization path; both the properties and
the algorithm are described in Mairal and Yu (2012). The algorithm constructs a finite, monotonically decreasing sequence
of values { A o, With Ao = JIATY || and A, = 0. For each ) in this sequence, the corresponding solution to the LASSO

11
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roblem, w (), is a vertex of the regularization path P, and it can be shown that w(\) = 0, for all A > )\q. In each line segment

of this path, the sparsit

remains fixed for all A € (g1, Agl.
These properties of the regularization path allow the bilevel problem (14) to be reduced to a standard one-dimensional
optimization problem with bound constraints:

attern of w(\) does not change; that is, the support set S(w(\

min F(w(\)). (15)
i (w(A))

We still need to establish the upper-level loss function /', which serves as a model quality criterion for the LASSO
regularization path. To this end, we propose two formulations for empirical comparison: the first is based on the optimal
selection of the regularization parameter in the LASSO problem using an ¢y-regression cost function; the second is based on a
well-established statistical tool for optimal model selection, the Bayesian Information Criterion (BIC).

3.2.1 Bilevel formulation based on the £, regression

The best subset selection problem (Bertsimas et al., 2016; Miller, 2002) consists of solving a least squares formulation that
allows explicit control of sparsity through the choice of the number of predictors, this is:

. 1
min WHAW—YH%

wER™!I

s.t. card(S(w)) <k,

subset sizes must be tested without prior knowledge of k. To mitigate this, more tractable relaxations have been proposed, such
as the /) regression, obtained from a penalized formulation of the problem (16):

min ! |Aw — Y||3 + y(card(S(w)) — k),

in —
weR™ NM
where v > 0 is the penalty parameter. Motivated by this problem, we propose as the merit function

1

W)= 53,

[ Auw =Y, |13 +(8)card(S(w)),

which is used in the bilevel problem (14) to assess LASSO solutions on validation data, balancing generalization and complexit

through a weighting parameter 3 € (0, 1]. As areference, w(0) (the OLS solution) achieves the best fit but maximum complexit

= 1), while w(\q) =0 is the penalty is defined as

108) = wr (5= 1) (VI = 11Aw(0) ~ Y |3) .

To prioritize model data fidelity over low complexit should be close to 1. In our experimental setting, we choose 3 = 1 — 10—%.

12
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With F, (w()\)) as the objective function of (15), it is a piecewise continuous objective function, smooth along each linear

3

over the closure of this interval, then problem (15) reduces to a discrete parameter optimization problem:

Oglgngeo(W()\k)) 17

3.2.2 Bilevel formulation based on the Bayesian Information Criterion

In this case, the choice of the loss function F'(w) is inspired by the Bayesian Information Criterion for model selection

Schwarz, 1978). Similar to fy-regression, it penalizes model complexity but does not require a tuning parameter, Given a
collection P of candidate models, and letting o(w) denote the maximum likelihood under model w € P, the BIC-based
objective is given by

where K (w) denotes the number of explanatory variables in model w (or a measure of model complexity). and n is the number
of data points used to construct model w. If the “true model” belongs to P, then the probability that BIC selects this model
approaches 1 as the number of data points increases.

In our context, the model set P consists of LASSO solutions for each A > 0, built using 7 = N M data points, and a good
approximation to the true model is given by the ordinary least squares solution w(0). We define:

mseg (Aiw) < 2mse(0) Aw V|3 and K(w)=card(S(w)), forweP,

__1
~NM

where-The BIC-based objective function is then defined as:

1 2
mseFpro(Aiw) = W”NMIH (Nlj\/l

AFwE () =Y

2

and-w 5L\ -is-the-optimal-This is a piecewise continuous objective function, smooth along each linear segment of the

regularization path and with discontinuities at {\ . It can be verified that F|

A (A Ax] since card(S(w(A))) remains constant within this interval. Therefore, the solution of the EASSO-preblem-13)

with-regularization—parameter-\;—bilevel problem (15) with the BIC-based merit function occurs at one of the discontinuit
oints \x. Consequently, problem (15) reduces to the discrete model selection problem:

OISHgI’SITFB[c(W(Ak)). (18)

3.2.3  Post-LASSQ for model bias reduction

13
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An_important characteristic of LASSO solutions is that they are biased toward zero whenever A > 0. As a result, the mean
squared error of w(\) may not accurately reflect the true likelihood of the model, particularly in the context of the BIC-based
formulation. To address this, we use a post-penalized estimator, namely an ordinary least squares regression restricted to the
set of predictors selected by LASSO (Belloni and Chernozhukoy, 2011). This approach is known as the Post-LASSO problem.
As a direct consequence of the predictor set remaining fixed within each line segment of the LASSO regularization path, the
min o Aw V2

. Instead of using solutions

from the LASSO regularization path in the ¢y-regression (17) or BIC-based (18) formulations, we employ the Post-LASSO
solutions w., which provides an alternative model selector with reduced bias:

F 1
o, I (vis)- )

Finally, this formulation is used to select the weights for the optical depth parametrization for each gas and pressure level
using either the bilevel £o+LASSO regression or the bilevel BIC+LASSO regression formulations.

4 Numerical Results

This section aims-to-evaluate-evaluates the performance of the proposed parametrization compared to the standard form-of

RTTOV v13. Specifically, the-goal-is—to-study—the-it studies the level of sparsity achieved with-the-prepesal-and its impact
on accuracy Wheﬁeempafeekrelatlve to RTTOV v13 and Line-by-Line calculations using LBLRTM. Te-aceomplish-this;-the

ing-Performance is measured via the root mean square error
(RMSE) of the transmittances compared to the-Line-by-Line transmittances, and by assessing the appreximation—error—of
the-brightness-temperatare-brightness temperature (BT) approximation error from the Fast-RT against-these-obtained-models
the M-band VIIRS instrument to assess the proportion of profiles for which the model error remains below the instrument

noise.

4.1 Experiment settings

For training the RTTOV parametrizations and the proposed sparse variants, six variable gases are considered: H20, O3, CO2,
N20, CO, and CH4. The Fast-RT model can additionally consider SO2 as a variable gas, but here it will be treated as a fixed
gas among the total of 22 fixed gases considered. No distinction is made between water vapor absorption lines and continuum

absorption. For the viewing angle, we consider 6 path secant angles from 1 to 2.25 with step 0.25 (from 0° to 63.61°).
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4.1.1 Spectral Response Functions of VIIRS M-bands:

The VisibleInfraredtmaging Radiometer-Suite (VHRS)-VIIRS is an instrument on NOAA’s Suomi NPP and NOAA-20
satellites, part of the Joint Polar Satellite System (JPSS). It features 16 moderate resolution bands (M-bands) that cover visible
and infrared spectra. This study focuses on spectral response functions for bands M7 to M16, which cover the near (NIR),
medium (MIR), and long (LIR) infrared ranges. In this study, we use the VIIRS SRF J2and-, which can be downloaded from
the following link: https://ncc.nesdis.noaa.gov/INOAA-21/index.php. Details on the centers and spectral ranges of these bands
can be found in Tables 1 and 2 in Cae-et-al(264+7)Cao et al. (2017).

For each channel, the wavenumber v and the corresponding SRFE-Spectral Response Function (SRF) values are tabulated.
The wavenumber tabulation typically covers a broader spectral range, denoted as [v,, 1], with noisy SRF values at the extremes
of this interval. Therefore, the SRF must be truncated to a smaller interval that retains most of the relevant SRF information.
Instead of using Tables 1 and 2 from Cao-et-al(264+7)-Cao et al. (2017) for our calculations, we utilize channels with a spectral
range broader than those. These channels are defined as [v* — v;,v* + 1], where v* is the centroid of SRF in [v,, 1], v, and
v, are the tabulated wavenumber values closest to v* below and above, respectively, such that the relative truncation error does

not exceed € = 9 x 10~%. Specifically:

vy v 4y,
(1- e)/d)(y*,v) dv < / o(v*,v)dv.

The integrals are calculated using the composite trapezoidal rule. The SRF data are then truncated and normalized within this

new interval, and the centroid v* is recalculated. The updated channels and centroids are presented in Table 1.

Band | Centroid (cm~!) | Spectral Range (cm~!) | IR
M7 11525.42 11070.96 — 12048.02 NIR
M8 8056.98 7924.69 — 8170.62 NIR
M9 7235.57 7134.59 —7373.52 NIR

M10 6199.43 5853.32 - 6522.30 NIR

Mi11 4442.00 4342.01 — 4549.99 NIR

M12 2711.61 2545.18 — 2867.98 MIR

M13 2489.30 2354.64 — 2607.44 MIR

M14 1166.76 1111.73 - 1235.32 LIR

M15 939.82 875.89 — 1008.36 LIR

M16 839.10 782.35 -896.29 LIR

Table 1. VIIRS IR M-bands (wavenumber)

By truncating the noisy tails of the SRF in this way, the resulting NSRF for each channel is interpolated using natural cubic

splines to be used for calculating polychromatic transmittances with a much finer spectral resolution than the tabulated NSRF
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data. It can be shown that the error made by approximating the polychromatic transmittance with the truncated NSRF does not

exceed €.
415 4.1.2 Vertical profile database ECMWF83:

For training the optical depth parametrization, we use the ECMWF83 database, which includes 83 vertical profiles with tem-
perature and gas concentrations for H20, O3, CO2, N20, CO and CH4, across 101 pressure levels, originally created to train
RTTOV Matricardi-(2008)(Matricardi, 2008). A separate database with 22 vertical profiles covers fixed gases. These datasets
are available from NWP SAF of EUMETSAT and can be downloaded at https://nwp-saf.eumetsat.int/site/.

420 4.1.3 Line-by-Line Transmitances with LBLRTM:

In this study, LBLRTM v12.15.1 (February 2023) will be employed for Line-by-Line calculations. The software uses AER
Continuum MT CKD v4.1.1. for continuum models of water vapor and other gases and the AER Line Parameter Database
v3.8.1. for line parameters, which consolidates various line spectral databases, primarily HITRAN 2016 Gerdon-et-alA(20+7)
425 The principal parameter in the LBLRTM calculation, to generate the optical depths for training and top-of-atmosphere

radiances, are the following:

The continuum absorption is not activated for isolated gases and fixed gases:-itis-enly-activated-, nor when all gases are
included:-the22-fixed-gasesphas-the-6-variable-gases;.

The Voigt profile is chosen for the shape of spectral lines,

430 The spectral resolution is set to dv = @&, /1.5 where @, is the average value of the Voigt halfwidth for the layer. Con-
sequently, the spectral resolution is not homogeneous across channels, achieving an average spectral resolution from

7.1 x 1072 for M7 to 4.1 x 10~* for M16.

The calculation of optical depths with the software is performed only for the observation point at nadir. For other angles,

variations are made directly in the calculation of polychromatic transmittances.
435 4.1.4 RTTOV v13 and Proposals Settings:

For short, we will abbreviate Fast-RT models as follows: RTTOVI3 for the standard RTTOV v13; SI for RTTOVI13 with

statistical threshold and ordinary least squares for parameterization; BIC+L1 for RTTOV13 with statistical threshold and
BIC+LASSO regression for parameterization; and LO+L1 for RTTOV 13 with statistical threshold and ¢o+LASSO regression

for parameterization
440 We implemented the transmittance parametrization of RTTOV v13 as described in Sz s-et-al: Saunders et al., 2020

, using the same predictors, except for the method of selecting gases per channel, which is detailed below.
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In RTTOV v13 in the standard form, regression parameters are obtained by including only the gases that exhibit absorption
lines in each channel, as shown in Table 2. In the proposed RTTOV variants, using statistical inference and LASSO regression,
all gases are included in the training.

Additionally, there are other criteria for selecting predictors in the correction term and training data by level, which are listed

below:

— Threshold for gases correction term: Predictors for fixed gases are always included in the correction term. For other
gases, predictors for a specific gas in a layer are included only if any of the corresponding optical depths in the training
profile for that layer exceed a threshold 0.01 for CH4 and 0.005 for the other gases. As a result, for all the VIIRS channels

studied, only predictors for fixed gases and water vapor are included in the correction term.

— Threshold for Optical Depth Data Training: Optical depth data in a layer for a gas is omitted if the corresponding
transmittance from the layer to the surface is less than 3x 1076, As a result, only channel M 10 is affected by this selection

criterion.

Channels | Gases

M7 H20, CO2, CH4
M8 H20, CO2, CO, CH4
M9 H20, CO2, NO2, CH4

MI10-M11 | H20, 03, CO2, N20, CO, CH4
M12-M16 | H20, 03, CO2, N20, CH4
Table 2. Gases considered in RTTOV v13 for VIIRS M-bands.

The performance of the three proposed models, SI, BIC+L1, and LO+LASSO, is evaluated using different statistical threshold

arameters €; € {107°,1078,10~7,107%1}. Since the LO+LASSO bilevel model is based on a validation data criterion for the

upper-level merit function, we split the N M data randomly in half, using one half for training the LASSO problems and the
other half as validation data for evaluating model quality using the ¢ regression.

4.2 Sparsity Pattern in the parametrization of optical depths

Table 3 summarizes the percentage of non-zero parameters (%NZ) based-on—out of a total of 11,000 parameters (worse

easeworst-case scenario) for each type of optical depth model: RFFOV—13-in-ts-standardform(RTTOV13); RFFOV—13

d—reo on O\, o d R O\ sith hrachold ad T A O

a al-thresholds-and-standard-regressio ;

regression(RTFOVA3+, SI, BIC+EASSO)LI, and LO+L1. Figures 1 and 2 show the percentage of parameter usage and
computation time relative to RTTOV13. Tables 4, 5, and-66, and 7 provide details on the number of non-zero parameters

(NNZ) used-for each gas type and correction factor, for ¢; = 10~°.
In Table 3, the increase in sparsity for the proposed parametrizations compared to the general RTTOV v13 scheme is evident.

RTTOV v13 induces sparsity by manually selecting gases and using-eriteria-based-on-applying optical depth thresholds to
include predictors in the correction factor. Comparing-the-differentapproachesUsing ¢; = 1075 as a reference, in the best-case
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scenario fer-with channel M7, where greater sparsity is achieved with RTTOV13, the sparsity level of RFFOV-v13+(6545%)
improves—to-94-20%with- RFFOVA3+SIRTTOV 13 (53.64%) increases to 93.66% for SI, 94.39% for BIC+EASSOL1, and
96.22% for LO+L1. Conversely, in the worst-case scenario for-with channels M10 and M11, the-sparsttytevel-of RFFOV

v13-where RTTOV 13 achieves lower sparsity (20% )inereases-to-86:20%-and-90-02%-respeetively-with RFFOVA3, the levels
suggests L 1. As the statistical threshold tolerances decrease, sparsity levels also decrease; however, they remain higher than
those of RTTOV 13, suggesting that the computational cost of-evaluating-parameterized-transmittances—is-significanttyand
propertionatty redueed-benefits are preserved while achieving better sparsity results with the proposed parametrizationLO+L1

model.

[ FastRT_| | M7 | M8 | MO  MIO[  MIL[ M2 [  MB|
| RTTOVI3 | 3455 | 46.36 | 4647 | 59.77 | 80.00 | 80.00 | 69.95 | 68.18 |
1072 034 247 2449 2321 2281 3420 3023
SI 8:80-1077 | 40:05-13.05 | 24:64-2023 | 24:7927.85 | 254328.80 | 32:98-28.69 | 3+0653.49 46.34
107° 2409 3261 328 3699 416l 849 3172
102° 37.76 | 34264036 | 27-3047.10 56.57 5513 68.29 6251
EASSO- | 580-10°° | 650561 | 4208831 | 43801837 | 9.98-19.88 | 46:78-18.70 | 44:0227.94 | 46322521
BIC+LL. 1077 1033 BN 2063 2326 2249 4384 37.26
107° L7187 2201 2031 3040 3222 221 .03
1077 2039 2246 3024 443 4248 AL 4839
107° 378 64 1218 220 1041 1683 1368
LoLL 1077 120 1139 372 1129 1229 2201 21.39
1078 11.00 1573 1593 1534 16.96 2459 2353
107" 14.98 1878 1851 2076 21.03 25.70 2541

Table 3. Percentage of nonzero parameters in RTTOV v13 V13 for each channel, annel, for the standard gggiig/lygggg RFFOV—13—+-SI with OLS
sgg@g@g, BIC+LASSO regression, and RT—"FGV—VJ%@%I—HLASSO p&f&mefeﬂ%&ﬁeﬂsrgg/rggs\l/gg. The second column represents the
different statistical thresholds €1 used for the proposed RTTOV v13 variants.

In Tables-S-and-6;Figures 1 and 2, we present the percentage of parameter usage in the proposed optical depth approximations
within RTTOV; relative to the number of parameters used in the standard RTTOV configuration, and the percentage of runtime
required by the proposed schemes compared to standard RTTOV. The measured runtime corresponds to the average time of 200
evaluations of the parameterized function used to compute approximate transmittances for the 83 atmospheric profiles with 6
different viewing angles. For the following comparisons, we use e; = 10_° as a reference. For the SI configuration, parameter
usage across all channels ranges from 13.67% to 54.21% relative to standard RTTOV, corresponding to a runtime ranging from
29.99% to 58.32%; for the BIC+L 1 configuration, usage ranges from 12.10% to 43.38%, with runtime from 26.75% to 48.64%:
and for the LO+L1 configuration, usage ranges from 8.16% to 34.39%. with runtime from 13.77% to 41.39%. These results
suggest that the computational cost of evaluating parameterized transmittances is significantly and proportionally reduced with
the proposed parametrizations._
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Although the absolute runtime difference is small for this limited number of profiles, in practical scenarios where transmittance
functions must be evaluated for hundreds of thousands of atmospheric profiles, as required in satellite data retrieval applications,
the reduction in computational time becomes highly significant for the efficiency of the retrieval process.

490 As an illustrative example, from Figure 2, for channel MI15, for each 100 time units required to compute transmittances
with the RTTOV 13 model, the LO+L 1 model takes only 41,69 time units with e; =10~ and 59.63 time units with ¢, = 1077
(worst-case), representing a significant reduction in runtime.

100 100

80 80

60 60

4 40 ~

0 20

0 0
M7 M8 M§  M10 M1l MI12 M13 M14  M1S  MI16 M7 M8 MS M0 M1l M12  M13  M14  M15 M6
—RTTOV13 1,00E-06 1,00E-07 s 1, 00 08 s 1 0OE-09 —RTTOV13 1,00E-06 1,00- 07 w1, 00 E-08 w1 DOE-09

Figure 1. Parameter usage (left) and runtime (right) of the SI method, expressed as percentages relative to those of RTTOV v13 (fixed at
100%) for different values of ;.

100 100

80 80

60 60

40 40

0 20

0 0
M7 M8 MS  M10 M1l M12 M13 M14  M15 M6 M7 M8 MS M0 M1l M12  MI3 M14  M15 M6
—RTTOV13 1,00E-06 1,00E-07 s 1, 00 08 s 1 0OE-09 —RTTOV13 1,00E-06 1,00- 07 w1, 00 E-08 memmmm 1 O0E-09

Figure 2. Parameter usage (left) and runtime (right) of the BIC+LASSO method, expressed as percentages relative to those of RTTOV v13
fixed at 100%) for different values of €;.
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Figure 3. Parameter usage (left) and runtime (right) of the LO+LASSO method, expressed as percentages relative to those of RTTOV v13
fixed at 100%) for different values of €;.

In Tables 5, 6, and 7, the effectiveness of introducing statistical thresholds to discard irrelevant gases by channel is elear
evident compared to Table 4. The-A number of non-zero parameters below 100 for a specific gas corresponds to ease-H-Case

11 of the statistical threshold parametrizationparameterization, suggesting that the corresponding gas can be included with the
fixed gases.

| Gas [ M7 [ M8 [ M9 [ MI10 [ Mil1 [ MI12 [ MI13 [ M14 [ MI15 [ Mil16 ‘
FIX 900 900 900 900 900 900 900 900 900 900
H20 1400 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400
03 0 0 0 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200
CO2 | 6-1300 0 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 1300
N20 0 6-12 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200
CO 0 1300 0 1300 | 1300 0 0 0 0 0
CH4 1100 1100 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100
COR 400 400 675 400 400 595 400 600 535 575
Table 4. Number of nonzero parameters by gas type and channel in RFFOV-13RTTOV13.

[Gas | M7 | M8 | M9 | MI0 | MII | MI2 | MI3 | MI4 | MI5 | M6 |
FIX | 18 247 0 0 5 145 52 134 | 494478 | 615599
H20 | 619 618 1374 618 | 604 775 576 802 687 716
03 0 0 0 0 0 | 655644 19 1120 1096 | 488466
co2| 0 56 0 1142 0 212 724 0 1213 911
N20 | 0 0 0 0 897 640 1024 1024 33 0
co 0 0 0 0 0 0 0 0 0 0
CH4 | 47 0 778 768 | 995 964 819 678 0 0
COR | 362-13 | 31988 | 596542 | 267-58 | 2965 | 463382 | 350-147 | 545416 | 346280 | 469-369

Table 5. Number of nonzero parameters by gas type and channel in RFFOVA3+SI fgrwgm:/le:fi.
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] Gas [ M7 [ M8 [ M9 [ MI10 [ Mil1 [ MI12 [ MI13 [ M14 [ MI15 [ MIl16 [
FIX 18 220-244 0 0 15 103-125 52 103-134 | 386463 | 405534
o3 0 0 0 0 0 387531 19 686-969 | 596904 | 277382
CO2 0 56 0 6511024 0 212-196 | 586-648 0 748-1114 | 663-850
N20 0 0 0 0 109799 | 166-624 | +39-901 | 439913 33 0
CO 0 0 0 0 0 0 0 0 0 0
CH4 47 0 38567 | 478576 | 527707 | 665759 | 38559 | 367402 0 0
Table 6. Number of nonzero parameters by gas type and channel in m@m&g&%&@%

[Gas [ M7 [ MS [ MO [ MI0 [ MIT [ MI2 [ MI3 [ MI4 [ MI35 [ MIG |
FIX |18 [187.] 0 | O [ 15 | 34 [ 52 | 92 | g | I5&
H20 | 342 | 351|763 | 239 | 385 | 336 | 281 | 663 | 506 | 590
03 [ 0|0 |0 o | o |28 | 19 | 450 | 826 | 268
COox | 0 |56 | 0 | 394 | O | 96 | 497 | 0 | 977 | 66l
N20 | 00| 00| 00| 0 | 244 | 268 | 4L | 348 | 33 | O
oo |ojolao o oo |ol|a]|oaq
CHA | 47 | 0 | 203 | 355 | 463 | 443 | 317 | 353 | O | 0O
COR | 9 | 8 |374 | 57 | 5 | 199 | 148 | 252 | 168 | 165

Table 7. Number of nonzero parameters by gas type and channel in LO+L1 for e; = 107°.

To illustrate in more detail, we reference channels M11 and M12 and compare the sparsity patterns among—the—three
parametrizations-inFig.in Figs 4 and 5 —For RFFOV43among the four parameterizations using e; = 10_° as a reference.
For the LO+SHEASSO-L1 model and the remaining channels, see Appendix Figs—A, Figs. Al and A2. The numbering of
predictors and correctors follows RTTOV v13 Saunders-et-al2020)-(Saunders et al., 2020), see Appendix B, except for pre-
dictor 680, which corresponds to the predictor in €ase-H-Case II of the statistical inference proposal. Each column represents
the parameters of a predictor for each pressure level, and each point in a column represents a non-zero parameter associated
with that predictor at the corresponding pressure level.

In-the-middle-For channel M11 with SI model (upper-middle Fig. 4;note-that-), gases O3, CO2, and CO are disearded
and-FEX-—gas-enly-needs-automatically discarded, and fixed gases only need one predictor. Meanwhile, gases H20, N20, and
CH4 exhibit block-like sparsity patterns from surface pressure approximately to 200 hPa, 19 hPa, and 0.8 hPa, respectively,

21



515

520

525

530

535

540

545

where concentrations of these gases are important and cause significant radiance absorption. Fixed-gases-alse-show-bloek-like
sparsity-patterns-in-the-correetion—term—For these gases with block-like sparsity patterns, replacing classical linear regression
with LO+LASSO regression (bottom figure) clearly discards some predictors across all levels or shows them as less relevant,
as seen in the sparsity patterns for N20;-CH4 -and-fixed-gas-—correetorsand N20. However, H2O still shows sparsity, but it
is difficult for this channel to determine if any predictor can be discarded at all levels due to the importance of this gas and

the strong non-linear relationship among the secant angle, temperature, and gas concentration in the predictors defined for it.
Using BIC+LASSO regression (lower-middle figure) highlights less relevant predictors for CH4, but does not entirely discard

it or any other gas predictor retained in the SI model. For the proposed models, no correction term is needed at all, showin
that a good fit of the total transmittance is obtained by considering only the approximation of the individual gas transmittances.

For channel M12 %Wﬁfrﬁg—é—mﬂwa&gas—QQ—wuh SI model (upper-middle Fig. 4), only CO is automatically

discarded, which was—a

ave-is expected since this gas has no

absorption lines in this channel. H

of-the-The SI model still clearly reveals the block-like sparsity patterns of predictors and correctors for each gas at different

the pressure levels where
they contribute to absorption (upper-middle figure). In-thischannellrom the figure, CO2 as-a-variable-gas-is-appears to be rele-
vant at high pfessufe—}eve}sm approximately above 767 hPa%eWg—ﬂae&&s&ef—bASS%‘gmsstm&—feﬁhese—press&re

about 2 hPa and 260 hPa. Using LO+LASSO regression (bottom figure) for these important pressure levels demonstrates that
some predictors can be entirely discarded or afe«}e%%fe}evam—a%eb%efwd—fer—ga%e%downwel hted, as seen for fixed gases
03, N20,

and CH4. Similarly, the BIC+L 1 model
lower-middle figure) highlights less relevant predictors but does not completely discard any predictor retained in the SI model
except in the corrector terms.

A similar analysis can be eonducted-performed for each channel, as refereneed-shown in the appendix, where FigFigs. Al and

A2 display the sparsity patterns for all channels using RFF6V43the LO+SHEASSOFrom-these figuresitcan-be-appreciated
L1 model. These figures clearly indicate which gases are relevant for-in each channel, the pressure level ranges where they are

impertantplay a significant role, and which predictors are most relevant-important for reconstructing the transmittance fer-of

each gas.
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Figure 4. Sparsity pattern for channel M11, comparing RTTOV 13 (Top), SI (Upper-middle), BIC+L1 (Lower-middle), LO+L1 (Bottom) for
g=10"
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4.3 Validation of transmittances

To validate the proposed RTTOV v13 variants, we calculated the root mean square error (RMSE) of the total transmittance for

all atmospheric layers, vertical profiles, and viewing angles, as shown in the following formula:

L M N 2
LTOT

LMN ZZ uk: ~z,1;kOT) )

=1 j=1k=1

RMSE =

where L =100, M = 83, and N = 6. Here, 7,577 and 7,07 represent the polychromatic transmittances calculated using

LBLRTM optical depths and their corresponding approximations obtained from Eq. (10) using the training data. The results

are shown in Table 8. The values in the table correspond to RMSE x 10%.

[ FastRT | | M7 | M8 M9 MI0 ML M12
| RTTOV13 | 0:043- | 0:671-00126 [ 594900224 | 6:062102.4458 | +64800133 [ 6223-0.1341 | 488007334 | +8
106 0.0160 0.0332 102.4442 0.0245 0.1320 0.7298
SI 0:044-1077 | 0:0720.0128 | 5920:0.0229 | 0:067-102.4455 | 164900134 | 0:2230.1336 | +:881-0.7334 | 18
EASSO- | 6:063-107° | 640900126 | 5:5350.0228 | 0:678:1024457 | 2:046.0.0133 | 629801340 | +:966:0.7334 | +6:
1077 0.0126 0.0228 102.4458 00133 01341 07334
1078, 0.0160 00333 95.1889. 0.0245 01321 07329,
BIC+L1. 1077 0.0128 00231 95,1962 00136 01341 07372
1078 0.0127. 0.0230 95.1988 00135 01345 07372
1070 0.0127, 0.0230 951977, 00135 01345 07372
1078, 00173 00343 165.5327. 0.0262 01398 07384
LO+LL 1077 0.0143 0.0246 165.5344 00175 0.1420 0.7406
1078 0.0142 0.0245 165.5347. 00174 01423 0.7407.
10279 0.0142 0.0245 165.5348 00174 01423 0.7407.

Table 8. RMSE of total transmittance for each channel, scaled by M’—“il/@i, for the proposed RTTOV v13 variants. The second column

In Table 8, the RMSE for transmittance gene

enerally ranges between O(10~%) and O(10~°) across all Fast-RT methods —Comparing-the-error-of-the-three-metheds by
channel-the-order-of magnitude remains-the-same;exeept-for-the-and channels, except for channel M9, where errors are larger.
in the range O(10~2) to O(10~3). All three proposed models slightly degrade the precision of RTTOV 13+SHEASSO-method

s— but this degradation diminishes as the
statistical threshold decreases. Comparing RTTOV13 with RFFOV+3the SI model, the error difference reduces from O(10~7)
to O(10?) on average across channels, again except for M9. With BIC+SHLASSO, the error difference inereases by between
%%WwMMMM&OOO )fefehaﬂﬂek‘rM%M&—a*ﬁMk@Ml%
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channels, but O(10~3) for ehannels-M9an
565 regression- Among the three, the LO+L 1 model shows the lowest precision, as expected due to its more aggressive sparsity, yet
the errors remain comparable in order of magnitude to RTTOV13.

Overall, these results indicate that including statistical thresholds in RTTOV v13 stightly-affeets the aceuracy-of the transmittanee
approximation;—either_has minimal impact on the transmittance approximation. Values remain very close to the standard
RTTOV 13 configuration for statistical threshold tolerances below 10”° (Table 8). Combining thresholds with LASSO regression

570 inapbilevel framework for parameter selection, using either BIC-based or fy-regularization, slightly modifies the approximation,
improving or worsening it, but the-overall-variation—in-error-remains-neglgiblevariations remain small. The approximated
transmittances closely match those from LBLRTM, with the added benefit of a significant runtime reduction.

4.4 Validation of brightness temperatures

To achieve a higher level of validation for the proposed transmittance parametrization, the brightness temperatures (BT)-of
575 the profiles used for training are calculated. The approximated brightness temperatures at the top of the atmosphere were
calculated using polychromatic radiances from Eq. (3), applying the approximate transmittances provided by the RTTOV v13
scheme and the proposed variants, separately. To compare these results, brightness temperatures at the top of the atmosphere
were calculated using the polychromatic radiances with Eq. (2), using the monochromatic radiances calculated with LBLRTM.
In all cases, the integrals were approximated using composite trapezoidal formulas, with the spacing determined by the pressure
580 levels of the data. In each case, the resulting brightness temperatures were averaged over all profiles and viewing angles. The
relative errors in BT obtained with the Fast-RT models and those obtained with LBLRTM were then calculated, which are
shown in Table 9 (x10*). The maximum relative error for brightness temperature, determined for each profile and viewing

angle, is presented in Table 10 (x10?).
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585

FastRT M7 M8 MY M10 MI11 M12
RTTOV13 3708 | 0411-3.8967 | 945903357 | 2:262-7.5875 | 3:204-2.1803 | 6:5850.5966 | 5:996-1.0472 | 5384
15~ %97%}/@:& 0:6194.7551 | 94770.5896 | 2:28+7.6048 | 3+488-2.2527 | 6:564-0.5833 | 6:66+-1.0181 | 5424

10°° 47552 0.5896 76185 22526 0.5832 10220

BIC+LO 1077 47490 04203 7.5975 21819 05980 10492

10°° 43022 03429 7.6035 21797 05964 10549

1020 38726 03348 7.6027 21802 05962 10550

10=° 47572 05896 7.8953 22525 05819 10270

LO+L1 1077 47503 04202 78756 21824 05974 10509

Table 9. Average Relative Errors in Brightness Temperature (K), scaled by Jr@’—{lA(ﬁ, between the Fast-RT and LBLRTM models. The second

FastRT M7 M8 M9 MI0_ M1 MI2_
RTTOV13 2:486- 0:649-2.2108 | 12:637-0.3612 | 0:896-1.4245 | +945-0.8689 | 0:40+-0.4965 | 3:492-0.4082 | 27H
107 23116 03636 15531 0.8684_ 04930 04270_ C

Table 10. Maximun-Maximum Relative Errors in Brightness Temperature (K), scaled by }QiLOj’, between the Fast-RT and LBLRTM

models. The second column indicates the statistical threshold ¢ used for each variant.

In Table 9, a similar behavior is observed in the errors when approximating transmittances. The average relative error of

brightness temperature generally ranges from O{+6="}t0-O{(10=23-0(10~°) to O(10~*) across all channels and Fast-RT

methods. The order of magnitude of the average relative error remains consistent when comparing the three-four methods by

channel. The differences in average relative BT errors between RTTOV 13 and RFFOVA3+Strange from-O{H0—-to-O{1H0—1);
while-these-the SI model decrease from O(10~?) to O(10~7) when lowering the statistical threshold tolerance. Similarly, the
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595

600

605

610

615

differences between RTTOV13 and RFFOVA3the BIC+SIL1 model decrease in the same manner. For the LO+HEASSO-range

from O10=C) to-O(16=")-aeross-ail-channels L1 model, the differences decrease from O(10=) to O(10=°).

Turning to the maximum errors, for all channels the sparse approximations of optical depth for RTTOV13 show minimal
deviation from the BT results of standard RTTOV13 when ¢y <1077, Table 10 shows that-the-maximuns-relative-errors-of
BTrange-maximum relative BT errors ranging from O(10™%) to ©&{16=2}-0(10~3) across all channels and Fast-RT methods.
When-comparing-Comparing the maximum absolute error by channel for the three-methods;-the four methods, errors remain of
the same order of magnitude for channels-M7and MH-M16,forehannels-, M9, and MI11-M16 (e; < 107°), M8 (¢, < 10~%),
and M10 rfh&@mmw%standard RTTOV13 version-has-an-may yield up to one order of magnitude lower

Observe in Table 9 that, for some channels, the errors with the proposed methods are slightly lower than those of RTTOV13,
With the LO+SL1 model at ¢ = 10~ this happens for channels M7, M8, M10, M11, M13, M14, and M16, and with the
BIC+EASSO has-an-order of magnitude lower error compared-to-L.1 model at the same tolerance for channels M7, M8, M10,
MI1, and M13. Also note that, although the BIC+L1 model gives a better transmittance fit than RTTOV13 for channel M9,
its brightness temperature error is not improved. These findings suggest that using merit functions based on radiances or BT,

together with model complexity penalization, instead of relying only on optical depth fitting, could improve the results of
Fast-RT models within the RTTOV13 framework.

Figure 6 (left) shows the average absolute BT error between the Fast-RT-LBLRTM model and the EBERTM-medelFast-RT
models for e, = 105, while Fig. 7-as-6 (right) shows the maximum absolute error across all profiles and viewing angles. ¥t
can-be-observed-that-the-The average brightness temperature shows a-some degradation in the proposed methods compared to
RTTOV v13—In- in the worst case, the-degradation-is-6-03-Kforchannel-0.021 K for M7, while-0.008 K for M8, 0.20 K for
M9, il the other channelsremain below 0003 K. foral proposals, Fot the improvementidegradation-for the-other channels

e-maximum absolute error

per profile and viewing angle, the

worsenby-185-Kfor-channel-worst cases are 0.961 K for M7and-0-41+-KAforchannel, 0.405 K for M8, the-worsteases;while

the-improvement/degradationstays-betow—0-15¥Kand 0.375 K for RFFOVH3+Stand 638 Kfor RFFOVH3+SHEASSO1n

refative-terms;-these M9, with the other channels below 0.15 K. These variations are not significant in relative terms, as shown

in Table 9 and decrease with a lower statistical threshold, illustrated in Fig. 7 for &, = 10~°. Under this setting, the average
BT error worsens by only 5.7 x 10~* K for M7, 3.7 < 10°° K for M8, and 7.5 x 10~% K for M9, while the others remain
below 3.2 x 10 K. The maximum error increases by 2.1 x 10~* K for M7, 1.0 x 10~ K for M8, and 1.0 x 10 K for M9,
with the other channels remaining below 1.5 x 10 K.
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Figure 6. Average Absolute Errors (left) and Maximum Absolute Errors (right) in Brightness Temperature (K) between the Fast-RT and
LBLRTM models for ¢; = 10"°.
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Figure 7. Average Absolute Errors (left) and Maximum Absolute Errors (right) in Brightness Temperature (K) between the Fast-RT and
LBLRTM models for ¢; = 10~ °.

620 These findings suggest-that-while-confirm that the proposed methods are-generally-achieve an accuracy level comparable
to RTTOV v13 in-terms-of-accuracythere-are-specifie-channels-where-improvements-or-further-adjustments-in-the-statisti

—across most channels, with only minimal degradation
observed in a few cases under stringent statistical threshold tolerances.

4.5 YValidation of Brightness Temperature Against Instrument Noise Characteristics

625 Toevaluate the accuracy of the Fast RT model. we compare the brightness temperatures it generates with those from high-fidelity
simulations using LBLRTM. A standard validation criterion requires that the absolute difference in brightness temperature
NEdR) for the solar reflective bands (M7 to M11). For the VIIRS M-bands, Table 11 presents the NEdT values and the

630 signal-to-noise ratios (SNR) used to compute the corresponding NEdR values, as reported in Table 1 of the manual Cao et al. (2017
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635

640

645

Channel | SNR | fyp_ || Channel | NEAT | Ty
MIL [ 340 [334 [ MI2 [039% [ 270
M7H | 215 | 64 | MI3L | 0423 | 380
M8 | 74 | 54 || MI3H | 0107 | 300
MO | 83| 60 || M4 | 0091 | 270
MIO | 342 | 73 || MIS | 0070 | 300
MIL | 10 |02 || MI6 | 0072 | 300

Table 11. SNR and NEdT Values for VIIRS IR M-Bands (L: Low Gain Mode, H: High Gain M:)?dve\)/.v

For each channel from M7 to M11, the table reports the SNR at the reference radiance Iy, (W /m? - sr - um), and for channels

M12 to M16, it reports the NEdT at the reference temperature 7y, (K). For a thermal emissive band, the NEdT at temperature
T is defined as

NEAT(T') = NEAT(T,y,) LZE(T%)

where B’ is the derivative of the Planck function with respect to temperature. For solar reflective bands, the Noise Equivalent
Delta Radiance (NEdR) at radiance [ is defined as

1

Let I,; and I;; denote the top of atmosphere polychromatic radiances obtained using LBLRTM and the Fast RT model
respectively, for atmospheric profile 7 and observation angle 6, and let 7} ; and T:; be the corresponding brightness temperatures.
For emissive bands, the following condition must be satisfied:

and for solar reflective bands, we require:

1 ~ 11| < NEAR(L;).

The percentage of atmospheric profiles for which these conditions are satisfied serves as a practical metric to evaluate the
quality of the forward model. A high proportion of cases meeting the criterion indicates that the modeling error is smaller
than the instrument noise, ensuring that the simulated radiances are sufficiently accurate for satellite retrievals and potentially.
suitable for data assimilation. Table 12 reports the percentage of cases, computed over 83 atmospheric profiles and 6 viewing
angles, for which the corresponding noise threshold condition is met.
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[ Fas-RT | [ M7 [ M8 [ MO MIO [ MIL [ M2 [ MI3 [ M4 MIS | MI6 |
[ RTTOVI3 | [ 663 [10.84 [ 100.0 [97.99 [ 6345 [ 1000 [ 1000 [ 1000 | 100.0 [ 100.0 [ 100.0 [ 1000 |
1075 | 683 | 1024 |97.19 |97.99 | 61.24 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.60
ST 1077 | 6.63 | 1024 | 98.80 | 97.99 | 6325 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
1078 | 6.63 | 1024 | 99.80 | 97.99 | 63.45 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
107° | 6.83 | 10.84 | 100.0 | 97.99 | 63.45 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
10°° | 6.83 | 1024 | 97.19 | 9839 | 6124 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.60
BIC+L1 | 1077 | 6.63 | 10.24 | 98.80 | 98.39 | 6325 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
1078 | 6.63 | 1024 | 99.80 | 98.19 | 63.45 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
107° | 6.83 | 10.64 | 100.0 | 98.19 | 63.45 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
10°% [ 6.83 | 1024 |97.19 | 97.79 | 61.24 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
LO+L1 | 1077 | 6.63 | 1024 | 98.80 | 97.59 | 63.25 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
1078 | 6.63 | 1024 | 99.80 | 97.59 | 63.86 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
10~? 6.83 | 10.64 | 1000 | 97.59 | 63.86 | 100.0 | 100.0 | 100.0 100.0 100.0 | 100.0 | 100.0

Table 12. Percentage of absolute differences in radiance below the NEdR threshold for channels M7-M11, and percentage of absolute
differences in brightness temperature below the NEdT threshold for channels M12-M16. The second column indicates the statistical threshold

€ used for each variant.

650  In the table 12, it can be observed that for channels M11 to M16, all methods fully satisfy the noise condition, and the
proposed methods are comparable to standard RTTOV13 for a statistical tolerance threshold of ¢, < 107°, For channels M7
to M0, a stricter statistical tolerance threshold is required to achieve percentages comparable to RTTOV 13. For channels M7
and M10, the fulfillment of the noise criterion is quite poor; we infer that this is due to the lack of solar radiation inclusion
in the various Fast-RT methods. However, the results obtained with the proposed methods are similar to RTTOV13 for small

655 statistical thresholds. For channel M9, the proposed BIC+L1 model slightly improve the percentage of profiles that meet
the noise threshold compared to standard RTTOV3. It is clear that the proposed methods reproduce the results of standard
RTTOV3 for large statistical thresholds in the emissive bands and for smaller statistical thresholds in the solar reflective bands,
while offering the advantage of greater computational efficiency due to the induced sparsity.

5 Conclusions

660 This study intreduces-presents an automatic and sparse optical depth parametrization method for the RTTOV v13 modelto

optimize, aimed at optimizing parameter adjustment. The method firstapplies statistical thresholding across different pressure
levels, followed by LASSO regression, instead of the traditional least squares approach within-in the RTTOV v13 framework.

This—approach-enforees—A bilevel optimization approach is used to select the optimal regularization parameter, employin

different model validation criteria; one based on ¢, regression and another on the Bayesian Information Criterion (BIC). These

665 alternatives enforce significant sparsity across all parameters;leading—to-a—substantial-reduetion—in-optical depth regression
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parameters, substantially reducing the computational cost of the Fast-RT model without signifieanttoss—of-compromising
accuracy, demonstrating strong potential for satellite data assimilation problems—applications.

Validation experiments were conducted on the infrared channels of the VHRS-instrument;-with-similar results-expeeted-for
att-multispeetrat-infrared soundersM-bands for the VIIRS instrument. Different validation criteria were considered, including

670 transmitance fitting against LBLRTM transmitance, brightness temperature fitting against LBLRTM transmitance, and the

difference between brightness temperature and the instrument’s Noise Equivalent Delta Temperature. The results show consistency
with RTTOV v13, while providing improved runtime performance in the evaluation of parameterized transmitances.

The induced sparsity eﬂab}e%&w—&u{ema&&exelﬂﬁeﬁeﬁ@mgases with negligible absorptivity in a

significantly absorb radiance, highlights
675 the most relevant predictors for each gas type, and classifies gases as either fixed or variable. This technique is particularly

channel, identifies pressure levels where gases

benefietal-advantageous for multispectral instruments with-echannels-where multiple gases strongly-correlate-with-exhibit stron

correlations in radiance absorption, especially in large-scale variable retrievals for inverse problems. The proposed method ean

may be extended to other Fast-RT models, such as the-CommunityRadiativeTransfer Model(CRTM)CRTM, and to other

satellite instruments, such as the Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder
680 (CrlS), to improve-enhance both the computational efficiency of theradiative-transfer-modetradiative transfer models and the

accuracy of theretrieved atmospheric profiles.
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Appendix A: Sparsity Pattern for RTTOV13+SI+LASSO
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Figure A1. Sparsity pattern for channels M7 to M11 in RFFOVH3+SIHEASSOLO-L1 for €;
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Appendix B: RTTOV v3 Predictors

[ N ] FIX | Hy0 | 0y [ CO
2 sec? (0 sec(O)W,, /sec(9)0s3 Tz
4 sec() T2 sec(0)W,.0T sec(0)Q3./Ou, sec(0)T2
5 T, V/sec(O)W, (sec(0)03,)° T
6 7 Usec(O)W, 5ec(0)0F Qs sec(0) Ty
8 sec()T2 (sec(O)Wo) 5ec(0)0s, Qs sec(0)Tun/T;.
9 | seclO)n/secOT: | (sec(@)W,) (sec(0)05,)" " | J5ecl®)CO,,
1 - 3O, 0T (s0c(0)03,)° sec(0)T%.
13 - sec(O)W2 /Wiy sec(0)0s,. 12132
14 Z sec(O) W W/ W, :N sec(0)COaq,
1S = sec(0) Wy, o N
()] 129 =14 =12 1213
COR 2,3,4,10 2,4,5.6,15 13 14,8,9
N N0 &Y CHy
L sec(0) N2 Oy 5ec(0)COr sec(0)CHy,
2 Qgsecw}NéO; Qgsec@é)}CO; Q[sec@HECHz;
3 sec()N20,0T sec(0)COLOT sec()CHy, 0T
5 N2OT /sec(0)CO,6T CHy 0T
6 j‘[sec@@@NéO; \/sec HiC’O; j‘[sec@@jC’H‘;
7 sec(91 V20 5e¢(0)COST|0T| sec(0)CHy,,.
8 sec(0)N2Ous 5ec(0)COZ [C Oy, CHy,e
12 502 () N2 0,y 0T /sec0)C0,; (sec(0)CHy )
13 . 3e¢?(0)CO,COy. o
14 . sec(0)C O e
15 . 5¢(@)COuy. -
16 - (3ec(0)COw)2. o
oD =12 A=13 15953
COR 7,8,10, 11, 12 12,14, 15,16 7,9,10,12

Table B1. Predictors for RTTOV v13, (Saunders ot al., 2017).
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op(l) = p(l+ 1) (p(l+1) —p(l)), op(0) = p(1)(p(2) —p(1)),

1 1 (1
T(1) = = (TP (1) + TP (1 4 1 T*(1) = S (T™(1) + T (1 + 1 L= ey AU

S pdp(l—1)T(1)

R wan e A S
i=1POP\L —
G(l :lerofl —|—Gpmfl+1 G*(l ZlGrefl _|_Grefl+1 , gﬁ%éi%)afz

o) D =DGW) o S pip - )T()G)
i=1DPOP\L — ) i=1POP{t — )
685 Where p(1) is the pressure (hPa) at level I, TP™(]) is the temperature (K) at level [ of the input profile, 7"(1) is the
temperature (K) at level [ of the reference profile which is the mean over the training profile set, G € {W = H,0,03,C0O5,N-O,CO,CHy

represents gas concentration (ppmv over dry air), GP°(1) are the gas concentrations at level { of the input profile and G*'(I

are the gas concentrations at level [ of the reference profile which is the mean over the training profile set.
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