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Abstract. The assimilation of satellite spectral sounder data requires fast and accurate radiative transfer modelsfor retrieving

surface and atmospheric variables. This study proposes a novel methodology to automatically parameterize atmospheric optical

depths within the RTTOV
::::::::
Radiative

:::::::
Transfer

:::
for

::::::
TOVS

::::::::
(RTTOV)

:::::::
version

::
13

:
scheme using statistical thresholds across pres-

sure levels and LASSO
:::::
Least

::::::::
Absolute

::::::::
Shrinkage

::::
and

::::::::
Selection

:::::::
Operator

:::::::::
(LASSO) regression to induce sparsity. Numerical

experiments with VIIRS
::::::
Visible

:::::::
Infrared

:::::::
Imaging

::::::::::
Radiometer

::::
Suite

:::::::
(VIIRS)

:
infrared channels demonstrate that this approach5

significantly reduces computational costs while maintaining accuracy. The sparsity also facilitates the automatic selection of

absorbing gases and predictors by channel and pressure level, making it particularly effective for multispectral instruments with

numerous atmospheric variables. These findings highlight the potential of sparse regression methods to enhance the efficiency

of radiative transfer models for satellite data assimilation.

1 Introduction10

In satellite data assimilation and remote sensing retrieval
:::::::
retrievals, as well as their applications in numerical weather prediction

(NWP), the radiative transfer equation (RT) is the principal
::::
main

:
model used to retrieve global atmospheric variables, such as

temperature and trace gases concentrations, including water vapor, ozone, carbon dioxide, and other atmospheric constituents.

This is achieved by utilizing top of the atmosphere (TOA) radiance measurements from satellite sounders operating across

different channels of the electromagnetic spectrum. The numerical implementation of the RT equation as a forward model can15

primarily be carried out using two approaches: Line-by-Line
:::::
(LBL)

:
Radiative Transfer models and Fast Radiative Transfer

models (Fast-RT).

Line-by-line models simulate satellite radiance by rigorously integrating atmospheric physics and chemical phenomena.

These models are highly accurate in replicating the precision of modern instruments, such as hyperspectral sounders like AIRS,

CrIS and IASI. However, they are characterized by significant computational demands in terms of CPU time and memory, mak-20

ing them impractical for use in
:::::::::
operational data assimilation. Some of the most well-known models in this category include:

LBLRTM, developed at Atmospheric and Environmental Research, Inc. (AER) Clough et al. (1992); Clough and Iacono (1995); Clough et al. (2005)

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Clough et al., 1992; Clough and Iacono, 1995; Clough et al., 2005); AMSUTRAN, developed at the Met Office (UK) Turner et al. (2019)
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::::::::::::::::
(Turner et al., 2019); and GENLN2, developed at the National Center for Atmospheric Research (NCAR) Edwards (1992)

:::::::::::::
(Edwards, 1992). A comparison between LBLRTM and GENLN2 is presented in Matricardi (2007)

::::::::::::::
(Matricardi, 2007). An-25

other software worth mentioning is kCARTA DeSouza-Machado et al. (2020)
::::::::::::::::::::::::::
(DeSouza-Machado et al., 2020), a pseudo Line-

by-Line model that uses precomputed and compressed physically intensive processes in RT model to compute radiances more

quickly while maintaining accuracy.

On the other hand, the most common Fast-RT models estimate the expected radiance in a channel (what a sensor actu-

ally measures) and are typically based on statistical approaches. In these models, the complex and computationally costly30

physical processes of RT model
::::::::
modeling, the calculation of atmospheric transmittances, are parameterized using statistical

models and trained with output from Line-by-Line software on real atmospheric profile databases. The parameters are ad-

justed using standard linear regression models or other machine learning techniques. While these methods sacrifice a small

degree of accuracy, they significantly reduce computational costs, making them practical for use in
:::::::::
operational

:
data assimila-

tion. Some of the most well-known models in this category include: OPTRAN, developed by the NESDIS-NCEP community35

McMillin et al. (1995a); Kleespies et al. (2004); McMillin et al. (2006)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(McMillin et al., 1995a; Kleespies et al., 2004; McMillin et al., 2006)

; The Joint Center for Satellite Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) Han et al. (2006); Chen et al. (2008)

:::::::::::::::::::::::::::::
(Han et al., 2006; Chen et al., 2008); and the Radiative Transfer for TOVS model (RTTOV ), see Saunders et al. (2018)

:::::::
RTTOV

::::::
model,

:::
see

:::::::::::::::::::
(Saunders et al., 2018) and the references cited therein. Other studies using statistical approaches include Matricardi (2010)

:::::::::::::::
(Matricardi, 2010), which incorporates principal component analysis in RTTOV, as well as Krishnan et al. (2012), Cao et al. (2021)40

, Stegmann et al. (2022), Mauceri et al. (2022), and Su et al. (2023),
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Liu et al., 2006; Krishnan et al., 2012; Cao et al., 2021; Stegmann et al., 2022; Mauceri et al., 2022; Su et al., 2023)

:
, which apply machine learning techniques for parametrization, feature reduction, and sampling strategies.

Even though RTTOV is more efficient than line-by-line models, it remains prohibitively expensive for operational use in

small to medium-sized agencies
::::
cases1. Indeed, in current Fast RT models based on linear regression, such as OPTRAN and

RTTOV, training is performed separately for each gas type and pressure level, resulting in an over-parametrization of the RT45

model, similar to models based on neural networks. To reduce the number of parameters and make the evaluation of the trained

RT model further less computationally expensive, it is essential to carefully select the most significant gases for each spectral

channel of each instrument type, reduce the number of pressure levels, and implement other ad hoc strategies. These decisions

must account for the multitude
::::
large

:::::::
number

:
of possible combinations and trade-offs, which is why large meteorological

agencies rely on expert teamsto identify an optimal configuration of parameters and gases for the Fast RT model
::
and

::::
are50

:::::::
typically

:::::
made

::
by

::::::
expert

:::::
teams.

One promising approach to reducing the number of parameters without relying on expert committees is the use of optimiza-

tion methods that induce sparsity in the parameters. In particular, the use of LASSO regression, a regularization method that

penalizes the regression coefficients with the ℓ1-norm, has proven effective for variable selection and model complexity re-

duction in various large-scale applications
::::::::::::::::::::::::::::::::::::::::
(see, e.g., Heilemann et al., 2024; Pak et al., 2025). In the context of radiative trans-55

fer, LASSO regression was applied by Cardall et al. (2023) to improve and estimate parameters in water quality monitoring

models with optically complex properties. In Li et al. (2020)
:::::::::::::::::
(Cardall et al., 2023)

::
to

:::::::
estimate

:::::
water

::::::
quality

:::::::::
parameters

:::::
such

::
as

1This is the case for Ecuador’s METEO operational system, which currently relies on an HPC with only 700 cores.
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:::::
clarity,

:::::::::::
temperature,

::::
and

:::::::::::
chlorophyll-a,

:::::
based

:::
on

::::::::::
correlations

::::
with

::::::
in-situ

::::::::::::
measurements

:::
and

:::::::::::::
near-coincident

:::::::
Landsat

:::::::
spectral

::::
data,

::::
with

::
a
:::::
focus

:::
on

:::::
model

::::::::::::
explainability.

:::
In

:::::::::::::
(Li et al., 2020), the authors proposed an algorithm for detecting hazardous

clouds using passive infrared remote sensing technology with variable selection. Other studies that combine or compare60

LASSO with machine learning methods for remote sensing include: the removal of redundant features in PolSAR and op-

tical images Hong and Kong (2021)
:::::::::::::::::::
(Hong and Kong, 2021); estimation of aboveground forest biomass with variable selec-

tion Wang et al. (2022a)
:::::::::::::::::
(Wang et al., 2022a); identification of important environmental variables for retrieving soil moisture

content Wang et al. (2022b)
:::::::::::::::::
(Wang et al., 2022b); evaluation of the accuracy and generalization capacity of grassland models

Smith et al. (2023)
:::::::::::::::
(Smith et al., 2023); and a comparison of different machine learning methods for predicting soybean yield65

Joshi et al. (2023)
:::::::::::::::
(Joshi et al., 2023).

Building on this approach, in this paper we target the automatic selection of gases and parameters
:::::
optical

:::::
depth

:::::::::
predictors in

Fast RT models by inducing sparsity in the parameters
:::::
weight

:::::::::
predictors using LASSO regression. We propose a parametriza-

tion of transmittances based on statistical thresholds to automatically select the appropriate gases by channel and pressure

level, and to induce sparsity in the parameters by replacing the classical regression problem with a LASSO problem within the70

RTTOV framework. The proposed methodology is tested with VIIRS infrared channels, and the results are compared with the

standard RTTOV model. To the best of the authors’ knowledge, this is the first time that LASSO regression has been applied

to the RTTOV model to automate the selection of gases and parameters.

1.1 Organization of the Manuscript

This
:::
One

:::
of

:::
the

:::
key

::::::
aspects

::
in
:::::::

LASSO
:::::::
models

::
is

:::
the

:::::
choice

:::
of

:::
the

:::::::::::
regularization

::::::
weight

::
in

:::::
front

::
of

:::
the

::::::::
ℓ1-norm.

::::
This

::::::
weight75

::::::
controls

:::
the

::::::::
trade-off

:::::::
between

:::::
fitting

:::
the

:::::::
training

::::
data

::::
well

:::
and

:::::::
keeping

:::
the

:::::
model

::::::
simple

:::
by

:::::::
reducing

:::
the

:::::::
number

::
of

::::::::
non-zero

::::::::::
coefficients.

::
In

:::
our

:::::::
context,

:::::::
selecting

::
an

::::::::::
appropriate

:::::::::::
regularization

::::::
weight

::
is

::::::
crucial

:::
for

:::::::::
effectively

:::::::::
identifying

:::
the

::::
most

:::::::
relevant

::::
gases

::::
and

::::::
optical

:::::
depth

::::::::
predictors

:::::
while

:::::::
avoiding

::::::::::
overfitting.

::
To

::::::::
establish

:
a
:::::::
rigorous

::::::::
criterion

:::
for

:::::::
choosing

::::
this

:::::::::::::::
parameter—rather

::::
than

::::::
relying

:::
on

::
a

::::::
tedious

::::::::::::
trial-and-error

:::::::::::
process—we

::::::
propose

::
a
::::::
bilevel

:::::::::::
optimization

::::::::
approach

:::::
(see,

::::
e.g.,

:::::::::::::::::::::::::::::::::::::::::::::
De los Reyes and Villacís (2022); De los Reyes (2023)

:
).
::::
The

::::
idea

::
is
:::

to80

::::::::
formulate

::
an

::::::::::
upper-level

:::::::::::
optimization

:::::::
problem

::::
that

:::::::
encodes

:
a
::::::

model
::::::
quality

::::::::
criterion,

:::::
while

:::
the

:::::::
LASSO

::::::::
problem

:::::
serves

:::
as

::
the

::::::::::
lower-level

:::::::::
constraint.

::
In

::::
this

::::::
article,

:::
we

::::::::::
successfully

:::
test

::::
two

:::::
types

::
of

::::
loss

::::::::
functions:

:::
the

:::::
first,

:::::
based

::
on

:::
an

::
ℓ0:::::::::

seminorm

:::
that

:::::::::
prescribes

::
the

:::::::
number

::
of

::::::::
non-zero

:::::::::
predictors;

:::
and

:::
the

::::::
second,

:::::::
inspired

:::
by

:
a
::::::::
Bayesian

::::::::::
Information

::::::::::::
Criterion-type

::::::::
objective.

::::
This manuscript is organized as follows: Section 2 outlines the theoretical framework for the RT equation in Line-By-85

Line models . Section 3
:::
and details the general scheme of Fast-RT methods, focusing on RTTOV. Section 4

:
3 introduces

the proposed transmittance parametrization using statistical inference and LASSO regression model. Section 5
:
,
::
as

::::
well

:::
as

::
the

:::::::
bilevel

::::::::::
optimization

::::::::
approach

::::
for

:::::::
selecting

::::
the

:::::::::::
regularization

:::::::
weight.

:::::::
Section

::
4 presents the experimental settings and

numerical results comparing RTTOV with the proposed method. Finally, Section 6
:
5 offers conclusions of the performance of

the proposed approach.90
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2 Radiative Transfer Equation

The monochromatic radiative transfer equation for the upwelling radiance in a clear sky, without solar radiation contribution,

for a non-scattering atmosphere and in local thermodynamic equilibrium, is given by:

I(ν,θ) = τs(ν,θ)ϵs(ν,θ)B(ν,Ts)+

1∫
τs

B(ν,T (p)) dτ +(1− ϵs(ν,θ))τ
2
s (ν,θ)

1∫
τs

B(ν,T (p))

τ2
dτ, (1)

where I(ν,θ) represents
:::::
I(ν,θ)

::
is
:
the monochromatic TOA radiance , at wave number ν and the

::
at

:::::::::::
wavenumber

:
ν
::::
and satel-95

lite zenith angle θ. B(ν,T ) denotes
:
θ;
:::::::
B(ν,T )

::
is
:

the Planck function , where T is the layer temperature in Kelvin. The
::
at

::::::::::
temperature

::
T ;

::::::::::::
τ(ν,θ,p,T,q)

::::::
denotes

:::
the

:
layer-to-space atmospheric transmittance is given by τ = τ(ν,θ,p,T,q), where p is

the pressure (hPa) and q is the concentration (ppmv) of the constituent gases of the atmosphere. In this equation, Ts represents

the
:::::::::::
transmittance

::::::::
dependent

:::
on

:::::::
pressure

::
p,

::::::::::
temperature

:::
T ,

:::
and

:::
gas

::::::::::::
concentration

::
q.

::::
Here,

:::
Ts,

:::
ϵs,

::::
and

::
τs ::::::::

represent surface skin

temperature, ϵs is the surface emissivity, and τs is the surface transmittance
::::::::::
transmittance

:::::::::::
respectively,

::::::::::::::::::
(Weinreb et al., 1981).100

The first term in Eq. (1) is the upwelling radiance emitted from the surface , the second term is upward atmospheric radiance

::::
terms

::::::::::
correspond

::
to

::::::
surface

::::::::
emission,

:::::::
upward

::::::::::
atmospheric

:
emission, and the last term is the downward atmospheric radiance

emission reflected by the surface ,
::::::::
downward

:::::::::::
atmospheric

::::::::
emission

:::::::
reflected

::
at
::::

the
::::::
surface

:
(assuming specular reflection).

Surface emissivity can be close to 1 for ν between 714-1250 cm−1 and for surfaces such as bodies of water, ice and healthy

plant leaves, carbon powder, allowing the last term to be discarded.105

The radiance measured by a satellite instrument is polychromatic in nature and can be
:::::
model

::::::::
described

::::::
above,

::::::::
computed

:::
for

::::
each

::::::::::
wavenumber

::
ν
::
is

:::::
called

:::
the

:::::::::::
Line-by-Line

::::::
model,

::::
and

:::
the

:::::::
resulting

:::::::
radiance

::
is
::::::::::::::
monochromatic.

:::::::::::::::
Satellite-measured

:::::::
radiance

::
is

::::::::::::
polychromatic,

:
simulated by convolving the monochromatic radiance from Eq.

:::
Eq.

:
(1) with the

instrument’
:
’s Normalized Spectral Response Function (NSRF), which accounts for the efficiency within the channel [νa,νb].

This is given by:110

I(ν∗,θ) =

νb∫
νa

ϕ(ν,ν∗)I(ν,θ) dν, (2)

where ϕ(ν,ν∗) is the NSRF, representing the sensitivity to radiance within the spectral range
::::::
channel [νa,νb], with ν∗ ∈ [νa,νb]

::
ν∗

:
representing the centroid of the response. The NSRF characterizes how the detectors and spectral components integrate the

incoming radiance. Its shape is determined by factors such as the spectral bandwidth, the characteristics of any filters employed,

and it can vary over time as the instrument degrades. The function is normalized such that:115

νb∫
νa

ϕ(ν,ν∗) dν = 1.
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Using the expression (2) in Eq. (1), the polychromatic radiance for the spectral channel identified with ν∗, assuming ϵs = 1,

can be written as (see Weinreb et al. (1981))
:::::::::::::::::::::
(see Weinreb et al., 1981):

I(ν∗,θ) = τs(ν
∗,θ)B(ν,Tes)+

1∫
τs

B(ν∗,Te(p)) dτ, (3)

where Tes and Te are the so-called (Superficial) Effective Temperatures, obtained empirically by linear regressionusing measured120

temperatures T , to correct the fact that (3) does not necessarily hold for ν∗ using directly Ts and T , but rather for some unknown

ν ∈ [νa,νb].

In Eq. (3), τ represents the layer-to-space atmospheric polychromatic transmittance , which
:::
Tes:::

and
:::
Te :::

are
:::::::
empirical

::::::::
effective

::::::::::
temperatures

::::::::
obtained

:::
via

:::::::::
regression.

:::
The

:::::::::::::
polychromatic

:::::::::::
transmittance is given by:

τ(ν∗,θ,p,T,q) =

νb∫
νa

ϕ(ν,ν∗)τ(ν,θ,p,T,q) dν. (4)125

2.1 Atmospheric Transmittances

The transmittance in a gaseous medium is described by the
:::::::::::
Transmittance

::::::
follows

:
Beer-Lambert law as follows:

τ = e−d,

where d= d(ν,θ,p,T,q) is the optical depth of the medium.

The transmittance in the monochromatic case results from multiplying the individual transmittances originating from each130

atmospheric absorption source. Among the most important sources are: the spectral absorption lines of absorbent gases such

as H2O, O3, CO2, CO, N2O, CH4, SO2 and other gases; continuum spectral absorption such as water vapor self-broadened

and foreign-broadened; collision induced bands; aerosol extinction, among other types of absorbances.

The monochromatic layer-to-space
:::::::
τ = e−d,

:::::
with

::::::
optical

:::::
depth

::::::::::::
d(ν,θ,p,T,q)

::::::::::
accounting

:::
for

:::::::::
absorption

:::
by

:::::
gases

:::::
(e.g.,

::::
H2O,

::::
O3,

::::
CO2,

:::::
CH4)

::::
and

:::::::::
continuum

::::::
effects.

::::
The

:::::::::::::
monochromatic optical depth for the spectral absorption line due to a set of135

s relevant gases g1,g2, . . . ,gs that most contribute to line absorption, isgiven by:
::::
gases

:::::::::
g1, . . . ,gs::

is:
:

d(ν,θ,p,T,q) =−sec(θ)

g

sec(θ)

g
:::::

∑
l=1

ss

p∫
0

Kgl(ν,p′,T (p′))qgl(p′) dp′, (5)

where g is the
:
g
::
is gravitational acceleration, Kgl and qgl are

:::
Kgl

::
is
:
the absorption function and the concentration of the gas

gl respectively.
:::::::
modeled

:::
via

::::
Voigt

:::::::
profiles

::::::::::::::::::::::::
(see Lavrentieva et al., 2011).

:

In the absorption function, the Voigt line shape is commonly used, representing a convolution of a Gaussian profile and a140

Lorentzian profile to model Doppler and pressure broadening, respectively, see Lavrentieva et al. (2011). This convolution is

applied to each absorption line and are weighted and summed according to their line strength to produce the absorption function

for each gas. Within a channel, the number of these lines can range from thousands to several hundred thousand, making the

computation highly demanding. This is further compounded by the computational cost associated with the complex calculation

of numerous nested integrals required to obtain the polychromatic radiance.145
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3 Fast Radiative Transfer Model

The most well-known Fast Radiative Transfer Models begin by discretizing

2.1
:::

Fast
:::::::::
Radiative

::::::::
Transfer

::::::
Model

:::
Fast

:::
RT

:::::::
models

::::::::
discretize the atmosphere into L layers, characterized by the pressure points:

p0 < p1 < · · ·< pL,150

:
L
::::::
layers:

:

p0 < p1 < · · ·< pL,
::::::::::::::::

where p0 is the top of atmosphere pressure and pL is
::
p0 :

is
:::
the

:::::::::::::::
top-of-atmosphere

::::
and

::
pL:the surface pressure. The calculation of

polychromatic radiance is obtained by numerically approximating
::::::::::::
Polychromatic

:::::::
radiance Eq. (3) using composite trapezoidal

integral formulas. However, to do this, the polychromatic transmittance for each layer needs to be parameterized with simpler155

models due to the computational expense of using rigorous physical representations. For this purpose, in
::
is

::::::::
computed

::::::::::
numerically,

:::::::
requiring

::::::::::::::
parameterization

:::
of

::::::::::::
polychromatic

:::::::::::
transmittance

::
to
::::::

reduce
::::::::::::

computational
:::::

cost.
::
In

:
Fast-RT methods like OPTRAN

and RTTOV
::::::
models, the polychromatic optical depth is parameterized and fitted using linear regression models

::
via

::::::
linear

::::::::
regression

:
to approximate Eq. (5), following the ideas of

::::
ideas

::::
from McMillin and Fleming McMillin and Fleming (1976); Fleming and McMillin (1977); McMillin et al. (1979)

. The polychromatic transmittance is then computed by applying the Beer-Lambert law.160

2.2 Parametrization of Optical Depths and Transmittance

The parametrization of the polychromatic optical depth , in the OPTRAN and RTTOV schemes, from layer i
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(McMillin and Fleming, 1976; Fleming and McMillin, 1977; McMillin et al., 1979)

:
.

:::
The

::::::::::::
polychromatic

::::::
optical

:::::
depth

:::::
from

::::
layer

:
i
:
to the top of the atmosphere, for a single channel and for a gas gl (or type of

absorption), isas follows:
::
gas

:::
gl,::

is:
:

165

dgl

i = dgl

i−1 +

ml∑
j=1

wgl

ijX
gl

ij ,::
dgl

0 = 0, i= 1,2, . . . ,L, (6)

where Xgl

ij are predictors that depend
::::
Xgl

ij :::
are

::::::::
predictors

:::::::::
depending on view angle, temperatureand gas gl ,

::::
and

:::
gas concentra-

tion. The model parameters are wgl

ij and ml is de number of predictor for gas gl :::::::::
parameters

:::
wgl

ij::::::
define

::
the

::::::
model.

:::::::::
Appendix

::
B

:::::::
provides

::::::
details

::
on

:::
the

:::::::
RTTOV

:::
v13

:::::::::
predictors,

::::
and

::::::
further

::::::::::
information

:::
can

::
be

::::::
found

::
in

::::::::::::::::::
Saunders et al. (2017).

In these parametrizations for spectral line absorption, there is one parametrization for a mixture of fixed gases
::::
This

:::::::::::::
parametrization170

:::::::
includes

:
a
:::::
fixed

:::
gas

::::::
mixture—those whose spatio-temporal concentration variations do not significantly contribute to changes

in
::::::::
variations

:::::::::
minimally

:::::
affect

:
radiance—and one parametrization for each variable gas, primarily H2O, with the optional

inclusion of O3, CO2, N2O
::::::
variable

::::::
gases,

::::::::
primarily

:::::
H2O,

:::::::::
optionally

::::::::
including

:::
O3,

:::::
CO2,

:::::
N2O, CO, CH4, and SO2. These

sets of fixed and variable gases may change depending on the channel. The parametrization of water vapor absorption can

6



optionally separate into line absorption and continuum absorption
::::
CH4,

::::
and

::::
SO2,

:::::::
varying

::
by

:::::::
channel.

::::::
Water

:::::
vapor

:::::::::
absorption175

:::
may

:::
be

::::
split

:::
into

::::
line

:::
and

:::::::::
continuum

::::::::::
components.

The polychromatic transmittance of layer i to the top of the atmosphere of the gas gl is parameterized
:
i
:::
for

:::
gas

:::
gl ::

is

:::::::::::
approximated by:

τgl

(i,0) = exp(−dgl

i ), (7)

and the corresponding total polycromatic transmittance (4) is approximated by:
:::
total

::::::::::::
transmittance

:::::::::::
approximated

:::
as:180

τTOT
(i,0) =

s∏
l=1

τgl

(i,0). (8)

To fit the parameterized transmittance Eq. (6) and (7), using linear regression approach, a database consisting of M atmospheric

vertical profiles is used. Each vertical profile contains, for each pressure level, the measurements of temperature and the

concentration of a set of s gases that contribute to radiance absorption. This database, derived from historical vertical profiles

of atmospheric variables, is homogenized by pressure levels for the observations of these variables, can be expressed as:185

(pi,Tij , q
g1

ij , q
g2

ij , . . . , q
gs

ij ), i= 0,1,2, . . . ,L, j = 1,2, . . . ,M.

:::::::::
Parameters

:::
are

::::
fitted

:::::
using

::
a

:::::::
database

::
of

:::
M

::::::
vertical

:::::::::::
atmospheric

:::::::
profiles:

(pi,Tij , q
g1

ij , . . . , q
gs

ij ), i= 0, . . . ,L, j = 1, . . . ,M,
::::::::::::::::::::::::::::::::::::::::::

These is complemented with the calculation of the polychromatic transmittances obtained for a set of N view angles θ1,θ2, . . . ,θN

and for each gas gl, which is expressed as:
:::
with

:::::::::::::
polychromatic

::::::::::::
transmittances

::::::::
computed

::::
with

::::::::::::
Line-by-Line

:::::::
software

:::
for

:::
N190

::::
view

:::::
angles

:::
θk:

:

(τg1

ijk, τ
g2

ijk, . . . , τ
gs

ijk), i= 1,2, . . . ,L,
::
j = 1,2, . . . ,M,

::
k = 1,2, . . . ,N. (9)

These are calculated using numerical integration of Eq. (4), with the monochromatic transmittances obtained from Line-by-Line

software.

Since the total polychromatic transmittance is not necessarily
:::::
simply the product of individual gases polychromatic transmittances195

, as it is in
::::::::::::
transmittances

::::::
(unlike

:
the monochromatic case, the polychromatic transmittances

::
), data (9) are corrected using

different strategies, which are shown below.

The first one is the calculation of the so-called effective polychromatic transmittance by McMillin et al. (1995b) for OPTRAN

and adopted in RTTOV up to v12 Saunders et al. (2017). Let gl be an individual gas and a set of gases G⊆ {g1,g2, . . . ,gs} \gl,

the effective polychromatic transmittance of gas gl is defined by:200

τgl

ijk =
τG+gl

ijk

τGijk
,

7



where τGijk is the polychromatic transmittance obtained from Eq. (4) for the set of gases G included simultaneously in the

Line-by-Line monochromatic transmittance calculation. The term τG+gl

ijk is similar to the previous one, including gases in G

and gl in the Line-by-Line transmittance calculation.

The second approach Xiong and McMillin (2005) and McMillin et al. (2006), for OPTRAN v7 and adopted in RTTOV205

::::::::
following

:::::::::::::::::::::::::::::::::::::::::
(Xiong and McMillin, 2005; McMillin et al., 2006)

:
,
::
as

::
in

:::::::
RTTOV v13 Hocking et al. (2021), consists of calculating

the polychromatic transmittances for each individual absorber, and the total polychromatic transmittance Eq. (8) is multiplied

by
:::::::::::::::::

(Hocking et al., 2021)
:
,
::
by

::::::::::
introducing a corrective term τCOR

(0,i) ,

:::::
τCOR
(i,0) :

:

τTOT
(i,0) = τCOR

(i,0)

s∏
l=1

τgl

(i,0), (10)210

which is parameterized similarly to Eq. (6) and (7)with crossed gases predictors. The transmittance for the training of corrective

term isgiven by:

τCOR
ijk =

τTOT
ijk

τ̂TOT
ijk

,

:
.
:::
The

:::::::::
corrective

:::::::::::
transmittance

:::
for

::::::
training

:::
is:

τCOR
ijk =

τTOT
ijk

τ̂TOT
ijk

,

:::::::::::::

215

where τTOT
ijk is the polychromatic

:::::
τTOT
ijk :

is
:::
the

:
Line-by-Line

::::::::::::
polychromatic transmittance including all absorber and τ̂TOT

ijk is

the polychromatic transmittance predicted by the model
::::::::
absorbers,

::::
and

:::::
τ̂TOT
ijk ::

is
:::
the

:::::::
modeled

:::::::::::
transmittance

:::::
from

:::
Eq.

:
(8).

2.2 Linear Regresion Problems for Optical Depths

The linear regression problem for fitting Eq. (6) and (7) for a gas gl and atmospheric layer i can be written as the optimization

problem:
:::::
fitting

:::::::
problem

::
for

::::
gas

::
gl:::

and
:::::
layer

:
i
::
is:

:
220

(LSgl
) min

w
gl
i ∈Rml

1

2MN
∥Agl

i wgl

i −Y gl

i ∥22 , (11)

where Agl

i ∈ RMN×ml , Y gl

i ∈ RMN , and wgl

i ∈ Rml is the parameter vector. A column j of Agl

i contains the values resulting

from the predictor Xgl

ij for different values of angle, temperature, and gas gl concentration for layer i and for each profile.

Similarly, the entries of Y gl

i contain the polychromatic optical depth values for layer i
:::::::::::::
Agl

i ∈ RMN×ml
:::::::
contains

:::::::::
predictors

::::
Xgl

ij

::
for

::::::
angles,

::::::::::::
temperatures,

:::
and

::::::::::::
concentrations

::::::
across

:::::::
profiles,

:::
and

:::::::::::
Y gl

i ∈ RMN
:::
the

::::::::::::
corresponding

::::::
optical

:::::
depths.225

When counting the total number of parameters in the optical depth parametrization in
::
In RTTOV v13, considering 6 variable

gases (H2O
::::::::
parameter

::::::
counts

:::
per

:::::::
channel

:::::
reach

:::::
nearly

:::
11,O3

:::
000,

::::::::::
considering

:::::::
variable

:::
and

:::::
fixed

:::::
gases,

:::::
layers, CO2, N2O, CO

and CH4, with 14, 12, 13, 12, 13 and 11 predictors,respectively), fixed gas (with 9 predictors), and the correction term (with

8



26 predictors), across 100 atmospheric layers, the total can reach up to 11,000 parameters per channel. This increases with the

inclusion of SO2 as a variable gas and the incorporation of the water vapor continuum parametrization.230

Up to now, in all versions of RTTOV, the number of parameters has been reduced by manually selecting the variable

absorbing gases for a given channel, reducing the pressure levels to 54 for most multispectral sounders and to 101 for

hyperspectral sounders. Additionally, in RTTOV v13, a threshold based on optical depths has been applied to exclude gases

per layer in the correction term, among other techniques based on expert knowledge
:::::::::
corrections.

:::::::::
Reduction

::
is
::::::::
achieved

:::
by

::::::::::
expert-based

:::
gas

::::::::
selection,

:::::
layer

::::::::
thinning,

:::
and

:::::::::::
thresholding

:::::::::::::::::::::
(see Saunders et al., 2017).235

3 A Sparse Parametrization of Optical Depths

In this section, we present a methodology to significantly reduce the number of parameters used in optical depth parametrization

within the RTTOV v13 framework. The methodology involves automatically selecting absorbing gases per channel and pressure

level, as well as identifying the most important predictors for each atmospheric layer. This approach induces sparsity in the

regression parameters by combining two tools: statistical inference to determine whether a given gas at a particular layer240

requires no parametrization, a parametrization with a single predictor, or a more complex parametrization as described in Eq.

(6). In the latter case, the classic linear regression problem is replaced with a LASSO regression problem to select predictors

and induce sparsity in the parameter vectors.

3.1 Parametrization Based on Statistical Inference

The aim here is to preprocess the data of the polychromatic transmittances in a channel to determine which atmospheric layers245

require optical depth parametrization and to automatically exclude gases that do not significantly contribute to the radiance

absorption in that channel. To achieve this, we will use confidence intervals to estimate the true polychromatic transmittances.

For a gas gl or correction term in a fixed layer i, we construct a confidence interval for the mean of the polychromatic

transmittances of the layer i. This is given by:

[τgl

i −Egl

i , τgl

i +Egl

i ]250

where

Egl

i = Z1−α
2

sgl

i√
NM

,

τgl

i is the mean polychromatic transmittance for layer i, considering M angles and N
::
N

:::::
angles

::::
and

::
M

:
atmospheric profiles,

sgl

i is the corresponding standard deviation, and Z1−α
2

is the critical value of a distribution for a confidence level of 1−α. Given

that the number of data points in each layer is NM , which is usually sufficiently large (in our experiments, for N = 6 angles255

and M = 83 profiles, NM = 498), the standard normal distribution is used to obtain the critical value. Thus, the absolute

error in approximating the true value of the polychromatic transmittance of gas gl in layer i with τgl

i is at most Egl

i , with a

probability of α that the absolute error exceeds this value. In our case, the confidence level is set to α= 10−6.

9



Based on the above, the following statistical thresholds for optical depth parametrizations are proposed. Let ϵ1 and ϵ2 be

positive and sufficiently small values, these will be used as thresholds to determine whether τgli is close to the true value or260

close to 1. Define the mean optical depth for layer i as d
gl

i =− ln(τgl

i ), and consider the following three cases:

– Case I: If Egl

i > ϵ1, the polychromatic transmittance due to gas gl in layer i has high variability with respect to the value

of the atmospheric variables in that layer. In this case, the optical depth parametrization follows as in Eq. (6) for layer i.

– Case II: If Egl
i ≤ ϵ1 and d

gl

i > ϵ2, unlike the previous case, the polychromatic transmittance due to gas gl in layer i has

low variability with respect to the value of the atmospheric variables in that layer, and can be estimated by τgl

i , but is not265

close to 1. Thus, the optical depth can be parameterized with a single predictor as follows:

dgl

i = dgl

i−1 +wgl

i0X
gl

i0 ,

where, X0i = 1 and wgl

i0 = d
gl

i . If this occurs in all layers, and since the parametrization does not depend on atmospheric

variables, the gas gl can be included with fixed gases.

– Case III: If Egl

i ≤ ϵ1 and d
gl

i ≤ ϵ2, the polychromatic transmittance in layer i can not only be estimated by τgl

i but is also270

close to 1, meaning that gas gl does not cause significant absorbance in this layer. The relative error of approximating

τgl

i with 1 is given by:

1− τ i
τ i

= ed
gl
i − 1 = d

gl

i eξ ≤ ϵ2e
ϵ2 ≈ ϵ2,

for some ξ ∈ (0,d
gl

i ). If this condition is met for all layers, then gas gl is automatically discarded.

To summarize the above, the parametrization of optical depths based on statistical thresholds is as follows:275

dgl

0 = 0

dgl

i = dgl

i−1 +



ml∑
j=1

wgl

ijX
gl

ij , Egl

i > ϵ1,

d
gl

i , Egl

i ≤ ϵ1 and d
gl

i > ϵ2,

0, otherwise,

(12)

for i= 1,2, . . . ,L. Experimentally, ϵ1 = ϵ2 = 10−6 are used. The transmittances from layer i to the top of the atmosphere are

still calculated using (7).

:::
The

::::::::
statistical

::::::::
threshold

:::::::::
tolerances

::
ϵ1::::

and
::
ϵ2::::::

should
:::
be

:::::::::
sufficiently

::::::
small.

::
In

:::
our

:::::::::::
experiments,

:::
we

:::
set

::::::
ϵ2 = ϵ1::::

and
:::::::
evaluate280

::
the

::::::
model

:::::::::::
performance

::
for

::::::::
different

:::::
small

:::::
values

::
of

:::
ϵ1.

3.2 Linear Regression with LASSO
:::::::::
Regression

::::
and

:::::::
optimal

::::::
choice

::
of

:::::::::::::
regularization

:::::::::
parameter

After discarding parameter groups using the previous statistical approach with Eq. (12), in Case I, the parameters must be

obtained by solving the least squares problem. Alternatively, it is proposed
::::::::
remaining

:::::::::
parameters

:::
are

::::::::
typically

::::::::
estimated

:::
by

::::::
solving

::
an

::::::::
ordinary

::::
least

::::::
squares

::::::
(OLS)

:::::::
problem,

::::::
which

:::::::
involves

:
a
:::::
large

::::::
number

:::
of

:::::::::
parameters.

:
285
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::
To

::::::
reduce

:::
the

:::::::
number

::
of

::::::::::
parameters,

:::
we

:::::::
propose

:
to induce sparsity in the parameter vector wgl

i to discard predictors per

atmospheric layer by solving the LASSO problem: .
:::::

This
::
is

:::::
done

::
by

::::::::
replacing

::::
the

::::
OLS

::::::::
problem

::::
(11)

::::
with

:::
the

:::::::::
following

::::::::::
optimization

::::::::
problem:

(LASSOgl
) minwgl

i ∈Rml

1

2MN
Agl

i wgl

i −Y gl

i
2
2 +λiw

gl

i 1w
gl

i = arg min
w∈Rml

Lλ(w)
:::::::::::::::::::

(13)

where λi ≥ 0290

Lλ(w) =
1

MN
∥Agl

i w−Y gl

i ∥22 +λ∥w∥1
::::::::::::::::::::::::::::::::::

:::
and

:::::
λ≥ 0 is the regularization parameter.

As λi →+∞
::
As

:::::::::
λ→+∞, high sparsity is induced, and as λi → 0

:::::
λ→ 0, sparsity is low. Specifically, if λi = 0

::::
λ= 0, the

problem reduces to the least squares problem (11). The selection of this regularization parameter is carried out to ensure that

there is no significant loss of precision in approximating295

:::
The

::::::::::::
regularization

::::::::
parameter

::
λ
:::
has

::
to
:::
be

::::::::
carefully

:::::::
selected

::
to

:::::
ensure

::::
that

:::
the

::::::::::::
approximation

::
of

:
the transmittance in layer i

compared
::::::::
maintains

::
a

::::
high

::::
level

::
of

::::::::
accuracy

::::::
relative

:
to the least squares problem

::::::
solution

:
(11), while achieving a model with

fewer parameters. Since there is no prior information to estimate this parameter, a Grid Search strategy is employed.
::::::::
Although

:::::::
standard

:::::::::
techniques

::::
such

::
as

:::::::::::::
cross-validation

::::
exist

:::
for

::::::
tuning

::
λ,

::::
they

:::
may

:::
not

::::::
always

:::
be

::::::::::
appropriate,

::::::::
especially

:::::
when

:::::::::
alternative

:::
loss

::::::
criteria

:::
are

:::::
more

:::::::
relevant

::
to

:::
the

::::::
specific

::::::::
modeling

::::::
goals.

::
To

:::::::
address

:::
this

::::::
choice,

:::
we

:::::
adopt

:
a
::::::
bilevel

:::::::::::
optimization

::::::::
approach300

::::
(see,

::::
e.g.,

:::::::::::::::::::::::::::::::::::::::::::
(De los Reyes and Villacís, 2022; De los Reyes, 2023)

::
),

:::::
where

:::
the

:::::::
LASSO

:::::::
problem

:::::
forms

:::
the

:::::::::
lower-level

:::::::::
constraint

:::
and

:::
the

:::::::::
upper-level

::::::::
objective

::::::
reflects

::
a
:::::
model

::::::
quality

::::::::
criterion.

::::
This

::::::
results

::
in

:::
the

::::::::
following

::::::
bilevel

::::::::
problem:

min
λ∈R

F (w(λ))

s.t. w(λ) = arg min
w∈Rml

Lλ(w),

0≤ λ≤ λ0,
:::::::::::::::::::::::::::

(14)

:::::
where

::::::
λ0 > 0

::
is

:
a
:::::

given
::::::

upper
::::::
bound.

::
In

:::
the

:::::::::
following,

:::
we

:::::
show

::::
how

::
to

::::::
reduce

:::
this

::::::
bilevel

:::::::
problem

:::
to

:
a
::::::::
standard

::::::::
nonlinear

::::::::::
optimization

::::::::
problem.

:::
For

:::
the

::::
sake

::
of

::::::
clarity,

:::
we

::::
omit

:::
the

::::::
indices

::::::::::::
corresponding

::
to

:::
gas

::::
and

:::::::
pressure

:::::
level.305

We start by searching through a sequence λi ∈ {10−3,10−4, . . . ,10−12,0} in this order, until the following condition is met:

:::::
Under

:::
the

::::::::::
assumption

:::
that

::::::
matrix

::
A
::

is
::::

full
:::::
rank,

:::::::
problem

::::
(13)

:::
has

::
a

::::::
unique

:::::::
solution

:::
for

::::
each

::::::
λ≥ 0,

:::::::
denoted

::
by

::::::
w(λ).

::::
The

::::::::
collection

::
of

:::::
these

:::::::
solutions

::
as

::
λ

:::::
varies

::::
over

:::
the

:::::::
positive

:::
real

::::::::
numbers,

::
is

:::::
called

:::
the

:::::::::::
regularization

::::
path

:::::::::::::::::
P = {w(λ) : λ > 0}.

::
A

:::
key

::::::::
structural

:::::::
property

::
of

:::
the

::::::::::::
regularization

::::
path

::
is

:::
that

::
it
::
is

:::::::::::
well-defined,

::::::
unique,

::::
and

:::::::::
continuous

::::::::
piecewise

::::::
linear.

:::::::::
Moreover,

:::
and

::
it

:::
can

:::
be

:::::::::
computed

:::::
using

:::
the

:::::::::
homotopy

::::::::
algorithm

::::
for

:::
the

:::::::
LASSO

:::::::
problem

:::::::::::::::::::
(Osborne et al., 2000),

:::
an

::::::::
algorithm

:::::
with310

:::::::::
exponential

::::::::::
complexity

:::
but

:::
low

::::::::::::
computational

::::
cost,

::::
that

::::::
returns

:::
the

:::::::
vertices

::
of

:::
the

:::::::::::
regularization

:::::
path;

::::
both

:::
the

::::::::
properties

::::
and

::
the

:::::::::
algorithm

:::
are

::::::::
described

:::
in

::::::::::::::::::
Mairal and Yu (2012).

::::
The

::::::::
algorithm

:::::::::
constructs

::
a
:::::
finite,

::::::::::::
monotonically

::::::::::
decreasing

::::::::
sequence

::
of

:::::
values

::::::::
{λk}rk=0,

:::::
with

:::::::::::::
λ0 = ∥ATY ∥∞ :::

and
:::::::
λr = 0.

:::
For

::::
each

:::
λk::

in
:::
this

:::::::::
sequence,

:::
the

::::::::::::
corresponding

:::::::
solution

::
to

:::
the

:::::::
LASSO

11



:::::::
problem,

::::::
w(λk),::

is
:
a
::::::
vertex

::
of

:::
the

:::::::::::
regularization

::::
path

::
P ,

::::
and

:
it
:::
can

:::
be

:::::
shown

::::
that

::::::::
w(λ) = 0,

:::
for

:::
all

::::::
λ≥ λ0.

::
In

::::
each

::::
line

:::::::
segment

::
of

:::
this

::::
path,

:::
the

:::::::
sparsity

::::::
pattern

::
of

:::::
w(λ)

::::
does

:::
not

:::::::
change;

::::
that

::
is,

:::
the

::::::
support

:::
set

:::::::::::::::::::::::::::::::::::::
S(w(λ)) = {j ∈ {1,2, . . . ,ml} :wj(λ) ̸= 0}315

::::::
remains

:::::
fixed

:::
for

::
all

:::::::::::::
λ ∈ (λk+1,λk].

:::::
These

:::::::::
properties

::
of

:::
the

::::::::::::
regularization

::::
path

:::::
allow

::::
the

::::::
bilevel

:::::::
problem

::::
(14)

::
to
:::

be
:::::::
reduced

::
to
::

a
::::::::
standard

::::::::::::::
one-dimensional

::::::::::
optimization

:::::::
problem

::::
with

::::::
bound

::::::::::
constraints:

min
λ∈[0,λ0]

F (w(λ)).

::::::::::::::

(15)

:::
We

:::
still

:::::
need

:::
to

:::::::
establish

::::
the

::::::::::
upper-level

::::
loss

:::::::
function

:::
F ,

::::::
which

::::::
serves

::
as

::
a
::::::
model

::::::
quality

::::::::
criterion

:::
for

::::
the

:::::::
LASSO320

:::::::::::
regularization

:::::
path.

:::
To

:::
this

::::
end,

::::
we

:::::::
propose

:::
two

:::::::::::
formulations

:::
for

:::::::::
empirical

::::::::::
comparison:

::::
the

:::
first

:::
is

:::::
based

:::
on

:::
the

:::::::
optimal

:::::::
selection

::
of

:::
the

::::::::::::
regularization

::::::::
parameter

::
in

:::
the

:::::::
LASSO

:::::::
problem

:::::
using

::
an

::::::::::::
ℓ0-regression

:::
cost

::::::::
function;

:::
the

::::::
second

::
is

:::::
based

::
on

::
a

:::::::::::::
well-established

::::::::
statistical

::::
tool

::
for

:::::::
optimal

::::::
model

::::::::
selection,

:::
the

:::::::
Bayesian

:::::::::::
Information

:::::::
Criterion

::::::
(BIC).

3.2.1
::::::
Bilevel

::::::::::
formulation

::::::
based

::
on

::::
the

::
ℓ0:::::::::

regression

:::
The

::::
best

::::::
subset

::::::::
selection

:::::::
problem

:::::::::::::::::::::::::::::::
(Bertsimas et al., 2016; Miller, 2002)

::::::
consists

:::
of

::::::
solving

::
a
::::
least

:::::::
squares

::::::::::
formulation

::::
that325

:::::
allows

:::::::
explicit

::::::
control

::
of

:::::::
sparsity

::::::
through

:::
the

::::::
choice

::
of

:::
the

:::::::
number

::
of

:::::::::
predictors,

:::
this

:::
is:

min
w∈Rml

1

MN
∥Aw−Y ∥22

s.t. card(S(w))≤ k,
:::::::::::::::::::::

(16)

::
for

::::::::::::::
k ∈ {1, . . . ,ml} :::::

given.
:::
As

::::
this

:::::::
problem

::
is
::::::::

NP-hard,
::::

the
::::::::::::
computational

::::
loss

:::
can

:::
be

::::::::::
prohibitive,

::::::::
especially

:::::
when

:::::::
several

:::::
subset

::::
sizes

:::::
must

::
be

:::::
tested

:::::::
without

::::
prior

:::::::::
knowledge

::
of

::
k.
:::
To

:::::::
mitigate

::::
this,

::::
more

::::::::
tractable

:::::::::
relaxations

::::
have

::::
been

:::::::::
proposed,

::::
such

::
as

:::
the

::
ℓ0:::::::::

regression,
:::::::
obtained

:::::
from

:
a
::::::::
penalized

::::::::::
formulation

::
of
:::
the

::::::::
problem

::::
(16):330

min
w∈Rml

1

NM
∥Aw−Y ∥22 + γ

(
card(S(w))− k

)
,

::::::::::::::::::::::::::::::::::::::

:::::
where

:::::
γ > 0

::
is

:::
the

::::::
penalty

:::::::::
parameter.

:::::::::
Motivated

::
by

::::
this

:::::::
problem,

:::
we

:::::::
propose

::
as

:::
the

:::::
merit

:::::::
function

Fℓ0(w) =
1

NvMv
∥Avw−Yv∥22 + γ(β)card(S(w)),

::::::::::::::::::::::::::::::::::::::::::

:::::
which

::
is

::::
used

::
in

::
the

::::::
bilevel

:::::::
problem

::::
(14)

::
to

:::::
assess

:::::::
LASSO

:::::::
solutions

:::
on

::::::::
validation

::::
data,

:::::::::
balancing

:::::::::::
generalization

:::
and

::::::::::
complexity

::::::
through

:
a
:::::::::
weighting

::::::::
parameter

:::::::::
β ∈ (0,1].

::
As

::
a

::::::::
reference,

:::::
w(0)

:::
(the

::::
OLS

::::::::
solution)

:::::::
achieves

:::
the

:::
best

::
fit

:::
but

:::::::::
maximum

:::::::::
complexity335

:::::::
(β = 1),

::::
while

::::::::::
w(λ0) = 0

::
is

::
the

::::::::
opposite

:::::::
(β = 0).

::::::::::::
Consequently,

:::
the

::::::
penalty

::
is

::::::
defined

::
as

:

γ(β) = 1
NM

(
1
β − 1

)(
∥Y ∥22 −∥Aw(0)−Y ∥22

)
.

:::::::::::::::::::::::::::::::::::::::

::
To

::::::::
prioritize

:::::
model

::::
data

::::::
fidelity

::::
over

:::
low

::::::::::
complexity,

:
β
::::::
should

::
be

:::::
close

::
to

::
1.

::
In

:::
our

:::::::::::
experimental

::::::
setting,

:::
we

:::::
choose

::::::::::::
β = 1− 10−4.
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::::
With

:::::::::
Fℓ0(w(λ))

::
as

:::
the

::::::::
objective

:::::::
function

:::
of

::::
(15),

::
it

:
is
::

a
::::::::
piecewise

::::::::::
continuous

:::::::
objective

::::::::
function,

::::::
smooth

:::::
along

:::::
each

:::::
linear340

:::::::
segment

::
of

:::
the

::::::::::::
regularization

::::
path

:::
and

::::
with

:::::::::::::
discontinuities

::
at

::::::::
{λk}rk=0.

:::::::::
Moreover,

:::::::::
Fℓ0(w(λ))

::
is
::

a
::::::::
quadratic

::::::::::
polynomial

:::
for

::::::::::::
λ ∈ (λk+1,λk],:::::

since
:::::::::::::
card(S(w(λ)))

::::::
remains

:::::::
constant

::::::
within

:::
this

:::::::
interval.

::
If

:::
we

::::::
denote

::
λ̃k::

as
:::
the

:::::::::
minimizer

::
of

:::
this

::::::::::
polynomial

:::
over

:::
the

:::::::
closure

::
of

:::
this

:::::::
interval,

::::
then

:::::::
problem

::::
(15)

:::::::
reduces

::
to

:
a
:::::::
discrete

:::::::::
parameter

::::::::::
optimization

::::::::
problem:

min
0≤k≤r

Fℓ0(w(λ̃k)).
:::::::::::::::

(17)

3.2.2
::::::
Bilevel

::::::::::
formulation

::::::
based

::
on

::::
the

::::::::
Bayesian

:::::::::::
Information

::::::::
Criterion345

::
In

:::
this

:::::
case,

:::
the

::::::
choice

:::
of

:::
the

::::
loss

:::::::
function

::::::
F (w)

::
is
:::::::
inspired

:::
by

:::
the

:::::::::
Bayesian

::::::::::
Information

::::::::
Criterion

:::
for

::::::
model

::::::::
selection

:::::::::::::
(Schwarz, 1978)

:
.
::::::
Similar

:::
to

:::::::::::
ℓ0-regression,

::
it
::::::::
penalizes

::::::
model

::::::::::
complexity

:::
but

::::
does

::::
not

::::::
require

::
a

:::::
tuning

::::::::::
parameter.

:::::
Given

::
a

::::::::
collection

::
P

:::
of

::::::::
candidate

:::::::
models,

::::
and

::::::
letting

:::::
σ(w)

::::::
denote

:::
the

:::::::::
maximum

:::::::::
likelihood

::::::
under

:::::
model

:::::::
w ∈ P ,

:::
the

::::::::::
BIC-based

:::::::
objective

::
is

:::::
given

::
by

:

min
w∈P

n ln
(
σ(w)

)
+ ln(n)K(w),

::::::::::::::::::::::::::

350

:::::
where

:::::
K(w)

:::::::
denotes

:::
the

::::::
number

::
of

::::::::::
explanatory

::::::::
variables

::
in

:::::
model

::
w

:::
(or

:
a
::::::::
measure

::
of

:::::
model

:::::::::::
complexity),

:::
and

::
n

:
is
:::
the

:::::::
number

::
of

::::
data

:::::
points

::::
used

:::
to

:::::::
construct

::::::
model

:::
w.

::
If

:::
the

::::
“true

:::::::
model”

:::::::
belongs

::
to

:::
P ,

::::
then

:::
the

:::::::::
probability

::::
that

::::
BIC

::::::
selects

:::
this

::::::
model

:::::::::
approaches

:
1
:::
as

:::
the

::::::
number

::
of

::::
data

::::::
points

::::::::
increases.

::
In

:::
our

:::::::
context,

:::
the

:::::
model

:::
set

::
P
:::::::
consists

:::
of

::::::
LASSO

::::::::
solutions

:::
for

::::
each

::::::
λ≥ 0,

::::
built

:::::
using

::::::::
n=NM

::::
data

::::::
points,

::::
and

:
a
:::::
good

::::::::::::
approximation

::
to

:::
the

:::
true

::::::
model

::
is

::::
given

:::
by

:::
the

:::::::
ordinary

::::
least

:::::::
squares

:::::::
solution

:::::
w(0).

:::
We

::::::
define:

:
355

mseσ
:
(λiw: )≤ 2mse(0)=

:

1
NM

∥∥∥∥Aw−Y
:::::::

∥∥∥∥2
2 and K(w) = card(S(w))
::::::::::::::::::::::::

, for w ∈ P,
::::::::::

where
:::
The

::::::::::
BIC-based

:::::::
objective

:::::::
function

::
is
::::
then

:::::::
defined

::
as:

:

mseFBIC
::::

(λiw: ) =
1

NM
∥NM ln

:::::

(
1

NM

∥∥∥∥Agl

i w∗gl

i (λi)−Y gl

i ∥
∥∥∥∥2
2

)
+ln(NM)card(S(w)).
:::::::::::::::::::

and w∗gl

i (λi) is the optimal
::::
This

::
is

::
a

::::::::
piecewise

::::::::::
continuous

::::::::
objective

::::::::
function,

:::::::
smooth

:::::
along

::::
each

::::::
linear

:::::::
segment

::
of
::::

the

:::::::::::
regularization

::::
path

::::
and

::::
with

::::::::::::
discontinuities

::
at
:::::::::
{λk}rk=0.

::
It

:::
can

:::
be

::::::
verified

::::
that

:::::::::::
FBIC(w(λ))

::
is
:::::::::::::

monotonically
:::::::::
increasing

::
in360

::::::::::::
λ ∈ (λk+1,λk]::::

since
:::::::::::::
card(S(w(λ)))

:::::::
remains

:::::::
constant

::::::
within

:::
this

:::::::
interval.

:::::::::
Therefore,

:::
the solution of the LASSO problem (13)

with regularization parameter λi. :::::
bilevel

:::::::
problem

::::
(15)

::::
with

:::
the

::::::::::
BIC-based

::::
merit

::::::::
function

::::::
occurs

::
at

:::
one

:::
of

:::
the

:::::::::::
discontinuity

:::::
points

:::
λk.

::::::::::::
Consequently,

:::::::
problem

::::
(15)

:::::::
reduces

::
to

:::
the

::::::
discrete

::::::
model

:::::::
selection

::::::::
problem:

:

min
0≤k≤r

FBIC(w(λk)).
:::::::::::::::::

(18)

3.2.3
:::::::::::
Post-LASSO

:::
for

::::::
model

::::
bias

::::::::
reduction365
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::
An

:::::::::
important

:::::::::::
characteristic

:::
of

:::::::
LASSO

:::::::
solutions

::
is
::::

that
::::
they

:::
are

::::::
biased

::::::
toward

::::
zero

:::::::::
whenever

::::::
λ > 0.

::
As

::
a
::::::
result,

:::
the

:::::
mean

::::::
squared

:::::
error

::
of

:::::
w(λ)

::::
may

:::
not

:::::::::
accurately

:::::
reflect

:::
the

::::
true

::::::::
likelihood

::
of

:::
the

::::::
model,

::::::::::
particularly

::
in

:::
the

:::::::
context

::
of

:::
the

:::::::::
BIC-based

::::::::::
formulation.

:::
To

::::::
address

::::
this,

:::
we

:::
use

::
a
::::::::::::
post-penalized

:::::::::
estimator,

::::::
namely

:::
an

:::::::
ordinary

::::
least

:::::::
squares

:::::::::
regression

::::::::
restricted

::
to

:::
the

::
set

::
of

:::::::::
predictors

:::::::
selected

::
by

:::::::
LASSO

::::::::::::::::::::::::::::
(Belloni and Chernozhukov, 2011)

:
.
::::
This

::::::::
approach

:
is
::::::
known

::
as

:::
the

:::::::::::
Post-LASSO

::::::::
problem.

::
As

::
a

:::::
direct

:::::::::::
consequence

::
of

:::
the

::::::::
predictor

::
set

:::::::::
remaining

:::::
fixed

:::::
within

:::::
each

:::
line

:::::::
segment

:::
of

:::
the

:::::::
LASSO

:::::::::::
regularization

:::::
path,

:::
the370

::::::::::
Post-LASSO

::::::::
problems

::::
can

::
be

:::::::::
formulated

:::
for

::::
each

::::::::::::
k = 0,1, . . . , r

:::
as:

min
w∈Rml

1

NM
∥Aw−Y ∥22

s.t. wj = 0, for j /∈ S(w(λk)).
::::::::::::::::::::::::::::::

:::
Let

:::::::::

{
wk

LS

}r
k=0::::::

denote
:::
the

:::
set

::
of

:::::::::::
Post-LASSO

:::::::
solutions

::::::::::::
corresponding

:::
to

:::
the

:::::::
sequence

:::::::::
{λk}rk=0.

::::::
Instead

::
of

:::::
using

::::::::
solutions

::::
from

:::
the

:::::::
LASSO

::::::::::::
regularization

::::
path

::
in

:::
the

:::::::::::
ℓ0-regression

::::
(17)

::
or
::::::::::

BIC-based
::::
(18)

:::::::::::
formulations,

:::
we

:::::::
employ

:::
the

:::::::::::
Post-LASSO

:::::::
solutions

:::::
wk

LS,
:::::
which

:::::::
provides

:::
an

:::::::::
alternative

:::::
model

:::::::
selector

::::
with

:::::::
reduced

::::
bias:375

min
0≤k≤r

F (wk
LS).

::::::::::::

(19)

::::::
Finally,

:::
this

:::::::::::
formulation

:
is
:::::
used

::
to

:::::
select

:::
the

:::::::
weights

:::
for

:::
the

::::::
optical

:::::
depth

:::::::::::::
parametrization

:::
for

::::
each

:::
gas

::::
and

:::::::
pressure

:::::
level,

::::
using

:::::
either

:::
the

::::::
bilevel

::::::::::
ℓ0+LASSO

:::::::::
regression

::
or

:::
the

::::::
bilevel

:::::::::::
BIC+LASSO

:::::::::
regression

:::::::::::
formulations.

4 Numerical Results

This section aims to evaluate
:::::::
evaluates

:
the performance of the proposed parametrization compared to the standard form of380

RTTOV v13. Specifically, the goal is to study the
::
it

::::::
studies

:::
the

:
level of sparsity achieved with the proposal and its impact

on accuracy when compared
::::::
relative to RTTOV v13 and Line-by-Line calculations using LBLRTM. To accomplish this, the

performance of each parametrization is evaluated by measuring
::::::::::
Performance

::
is

::::::::
measured

::::
via the root mean square error

(RMSE) of the transmittances compared to the Line-by-Line transmittances, and by assessing the approximation error of

the brightness temperature
::::::::
brightness

::::::::::
temperature

:::::
(BT)

::::::::::::
approximation

::::
error

:
from the Fast-RT against those obtained

::::::
models385

::::::
against Line-by-Line .

:::::
results.

:::::::::::
Additionally,

:::
the

::::
BT

::::
error

::
is

::::::::
compared

:::
to

:::
the

::::::::::::::
Noise-Equivalent

:::::
Delta

:::::::::::
Temperature

::::::
(NEdT)

:::
of

::
the

:::::::
M-band

::::::
VIIRS

::::::::::
instrument

::
to

:::::
assess

::::
the

:::::::::
proportion

::
of

:::::::
profiles

:::
for

:::::
which

::::
the

:::::
model

:::::
error

:::::::
remains

:::::
below

:::
the

::::::::::
instrument

:::::
noise.

4.1 Experiment settings

For training the RTTOV parametrizations and the proposed sparse variants, six variable gases are considered: H2O, O3, CO2,390

N2O, CO, and CH4. The Fast-RT model can additionally consider SO2 as a variable gas, but here it will be treated as a fixed

gas among the total of 22 fixed gases considered. No distinction is made between water vapor absorption lines and continuum

absorption. For the viewing angle, we consider 6 path secant angles from 1 to 2.25 with step 0.25 (from 0◦ to 63.61◦).
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4.1.1 Spectral Response Functions of VIIRS M-bands:

The Visible Infrared Imaging Radiometer Suite (VIIRS )
:::::
VIIRS

:
is an instrument on NOAA’s Suomi NPP and NOAA-20395

satellites, part of the Joint Polar Satellite System (JPSS). It features 16 moderate resolution bands (M-bands) that cover visible

and infrared spectra. This study focuses on spectral response functions for bands M7 to M16, which cover the near (NIR),

medium (MIR), and long (LIR) infrared ranges. In this study, we use the VIIRS SRF J2and
:
,
:::::
which

:
can be downloaded from

the following link: https://ncc.nesdis.noaa.gov/NOAA-21/index.php. Details on the centers and spectral ranges of these bands

can be found in Tables 1 and 2 in Cao et al. (2017)
::::::::::::::
Cao et al. (2017).400

For each channel, the wavenumber ν and the corresponding SRF
:::::::
Spectral

::::::::
Response

::::::::
Function

::::::
(SRF) values are tabulated.

The wavenumber tabulation typically covers a broader spectral range, denoted as [νa,νb], with noisy SRF values at the extremes

of this interval. Therefore, the SRF must be truncated to a smaller interval that retains most of the relevant SRF information.

Instead of using Tables 1 and 2 from Cao et al. (2017)
::::::::::::::
Cao et al. (2017) for our calculations, we utilize channels with a spectral

range broader than those. These channels are defined as [ν∗ − νl,ν
∗ + νu], where ν∗ is the centroid of SRF in [νa,νb], νl and405

νu are the tabulated wavenumber values closest to ν∗ below and above, respectively, such that the relative truncation error does

not exceed ϵ= 9× 10−4. Specifically:

(1− ϵ)

νb∫
νa

ϕ(ν∗,ν) dν ≤
ν∗+νu∫

ν∗−νl

ϕ(ν∗,ν) dν.

The integrals are calculated using the composite trapezoidal rule. The SRF data are then truncated and normalized within this

new interval, and the centroid ν∗ is recalculated. The updated channels and centroids are presented in Table 1.410

Band Centroid (cm−1) Spectral Range (cm−1) IR

M7 11525.42 11070.96 – 12048.02 NIR

M8 8056.98 7924.69 – 8170.62 NIR

M9 7235.57 7134.59 – 7373.52 NIR

M10 6199.43 5853.32 – 6522.30 NIR

M11 4442.00 4342.01 – 4549.99 NIR

M12 2711.61 2545.18 – 2867.98 MIR

M13 2489.30 2354.64 – 2607.44 MIR

M14 1166.76 1111.73 – 1235.32 LIR

M15 939.82 875.89 – 1008.36 LIR

M16 839.10 782.35 – 896.29 LIR
Table 1. VIIRS IR M-bands (wavenumber)

By truncating the noisy tails of the SRF in this way, the resulting NSRF for each channel is interpolated using natural cubic

splines to be used for calculating polychromatic transmittances with a much finer spectral resolution than the tabulated NSRF

15
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data. It can be shown that the error made by approximating the polychromatic transmittance with the truncated NSRF does not

exceed ϵ.

4.1.2 Vertical profile database ECMWF83:415

For training the optical depth parametrization, we use the ECMWF83 database, which includes 83 vertical profiles with tem-

perature and gas concentrations for H2O, O3, CO2, N2O, CO and CH4, across 101 pressure levels, originally created to train

RTTOV Matricardi (2008)
:::::::::::::::
(Matricardi, 2008). A separate database with 22 vertical profiles covers fixed gases. These datasets

are available from NWP SAF of EUMETSAT and can be downloaded at https://nwp-saf.eumetsat.int/site/.

4.1.3 Line-by-Line Transmitances with LBLRTM:420

In this study, LBLRTM v12.15.1 (February 2023) will be employed for Line-by-Line calculations. The software uses AER

Continuum MT CKD v4.1.1. for continuum models of water vapor and other gases and the AER Line Parameter Database

v3.8.1. for line parameters, which consolidates various line spectral databases, primarily HITRAN 2016 Gordon et al. (2017)

:::::::::::::::::
(Gordon et al., 2017).

The principal parameter in the LBLRTM calculation, to generate the optical depths for training and top-of-atmosphere425

radiances, are the following:

– The continuum absorption is not activated for isolated gases and fixed gases; it is only activated ,
::::
nor when all gases are

included: the 22 fixed gases plus the 6 variable gases,
:
.

– The Voigt profile is chosen for the shape of spectral lines,

– The spectral resolution is set to dν = ᾱν/1.5 where ᾱν is the average value of the Voigt halfwidth for the layer. Con-430

sequently, the spectral resolution is not homogeneous across channels, achieving an average spectral resolution from

7.1× 10−3 for M7 to 4.1× 10−4 for M16.

– The calculation of optical depths with the software is performed only for the observation point at nadir. For other angles,

variations are made directly in the calculation of polychromatic transmittances.

4.1.4 RTTOV v13
:::
and

:::::::::
Proposals Settings:435

:::
For

:::::
short,

:::
we

::::
will

:::::::::
abbreviate

:::::::
Fast-RT

:::::::
models

::
as

:::::::
follows:

:::::::::
RTTOV13

::::
for

:::
the

:::::::
standard

:::::::
RTTOV

:::::
v13;

::
SI

:::
for

:::::::::
RTTOV13

:::::
with

::::::::
statistical

::::::::
threshold

:::
and

::::::::
ordinary

:::::
least

::::::
squares

:::
for

:::::::::::::::
parameterization;

::::::::
BIC+L1

:::
for

:::::::::
RTTOV13

::::
with

:::::::::
statistical

::::::::
threshold

::::
and

:::::::::::
BIC+LASSO

:::::::::
regression

::
for

:::::::::::::::
parameterization;

:::
and

:::::::
L0+L1

:::
for

::::::::
RTTOV13

:::::
with

::::::::
statistical

::::::::
threshold

:::
and

::::::::::
ℓ0+LASSO

:::::::::
regression

::
for

::::::::::::::
parameterization

:

We implemented the transmittance parametrization of RTTOV v13 as described in Saunders et al. (2020)
::::::::::::::::::
(Saunders et al., 2020)440

, using the same predictors, except for the method of selecting gases per channel, which is detailed below.
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In RTTOV v13 in the standard form, regression parameters are obtained by including only the gases that exhibit absorption

lines in each channel, as shown in Table 2. In the proposed RTTOV variants, using statistical inference and LASSO regression,

all gases are included in the training.

Additionally, there are other criteria for selecting predictors in the correction term and training data by level, which are listed445

below:

– Threshold for gases correction term: Predictors for fixed gases are always included in the correction term. For other

gases, predictors for a specific gas in a layer are included only if any of the corresponding optical depths in the training

profile for that layer exceed a threshold 0.01 for CH4 and 0.005 for the other gases. As a result, for all the VIIRS channels

studied, only predictors for fixed gases and water vapor are included in the correction term.450

– Threshold for Optical Depth Data Training: Optical depth data in a layer for a gas is omitted if the corresponding

transmittance from the layer to the surface is less than 3×10−6. As a result, only channel M10 is affected by this selection

criterion.

Channels Gases
M7 H2O, CO2, CH4
M8 H2O, CO2, CO, CH4
M9 H2O, CO2, NO2, CH4

M10-M11 H2O, O3, CO2, N2O, CO, CH4
M12-M16 H2O, O3, CO2, N2O, CH4

Table 2. Gases considered in RTTOV v13 for VIIRS M-bands.

:::
The

:::::::::::
performance

::
of

::
the

:::::
three

::::::::
proposed

::::::
models,

:::
SI,

:::::::
BIC+L1,

::::
and

::::::::::
L0+LASSO,

::
is

::::::::
evaluated

:::::
using

:::::::
different

::::::::
statistical

::::::::
threshold

:::::::::
parameters

::::::::::::::::::::::::::
ϵ1 ∈ {10−9,10−8,10−7,10−6}.

:::::
Since

:::
the

::::::::::
L0+LASSO

::::::
bilevel

:::::
model

::
is
:::::
based

:::
on

:
a
:::::::::
validation

::::
data

:::::::
criterion

:::
for

:::
the455

:::::::::
upper-level

:::::
merit

::::::::
function,

::
we

::::
split

:::
the

:::::
NM

::::
data

::::::::
randomly

::
in

:::::
half,

::::
using

::::
one

::::
half

::
for

:::::::
training

:::
the

:::::::
LASSO

::::::::
problems

::::
and

:::
the

::::
other

::::
half

::
as

::::::::
validation

::::
data

:::
for

:::::::::
evaluating

:::::
model

::::::
quality

:::::
using

:::
the

::
ℓ0:::::::::

regression.
:

4.2 Sparsity Pattern in the parametrization of optical depths

Table 3 summarizes the percentage of non-zero parameters (%NZ) based on
::
out

:::
of

:
a total of 11,000 parameters (worse

case
:::::::::
worst-case

:::::::
scenario) for each type of optical depth model: RTTOV v13 in its standard form (RTTOV13), RTTOV v13460

with statistical thresholds and standard regression (RTTOV13+SI), and RTTOV v13 with statistical thresholds and LASSO

regression (RTTOV13+
:
,
:
SI

:
,
::::
BIC+LASSO)

:::
L1,

::::
and

::::::
L0+L1.

:::::::
Figures

::
1
::::
and

::
2

:::::
show

:::
the

:::::::::
percentage

:::
of

:::::::::
parameter

:::::
usage

::::
and

::::::::::
computation

::::
time

:::::::
relative

::
to

:::::::::
RTTOV13. Tables 4, 5, and 6

:
6,

::::
and

:
7
:

provide details on the number of non-zero parameters

(NNZ) used for each gas type and correction factor,
:::
for

:::::::::
ϵ1 = 10−6.

In Table 3, the increase in sparsity for the proposed parametrizations compared to the general RTTOV v13 scheme is evident.465

RTTOV v13 induces sparsity by manually selecting gases and using criteria based on
:::::::
applying

:
optical depth thresholds to

include predictors in the correction factor. Comparing the different approaches
::::
Using

:::::::::
ϵ1 = 10−6

::
as

::
a

:::::::
reference, in the best-case
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scenario for
::::
with channel M7,

:::::
where

::::::
greater

:::::::
sparsity

::
is

:::::::
achieved

::::
with

::::::::::
RTTOV13, the sparsity level of RTTOV v13 (65.45%)

improves to 94.20% with RTTOV13+SI
::::::::
RTTOV13

:::::::::
(53.64%)

::::::::
increases

::
to

:::::::
93.66%

:::
for

:::
SI,

:::::::
94.39%

:::
for

::::
BIC+LASSO

:::
L1,

::::
and

::::::
96.22%

:::
for

:::::::
L0+L1. Conversely, in the worst-case scenario for

::::
with channels M10 and M11, the sparsity level of RTTOV470

v13
::::
where

:::::::::
RTTOV13

::::::::
achieves

:::::
lower

:::::::
sparsity (20%)increases to 86.20% and 90.02% respectively, with RTTOV13

:
,
:::
the

:::::
levels

:::::::
increase

::
to

:::::::
76.49%

:::
and

:::::::
77.13%

:::
for

:::
SI,

:::::::
80.12%

:::
and

:::::::
81.30%

:::
for

::::
BIC+SI

:::
L1,

:::
and

:::::::
90.50%

::::
and

:::::::
89.89%

:::
for

:::
L0+LASSO. This

suggests
:::
L1.

:::
As

:::
the

::::::::
statistical

::::::::
threshold

:::::::::
tolerances

::::::::
decrease,

:::::::
sparsity

:::::
levels

::::
also

::::::::
decrease;

::::::::
however,

::::
they

::::::
remain

::::::
higher

::::
than

::::
those

:::
of

:::::::::
RTTOV13,

::::::::::
suggesting that the computational cost of evaluating parameterized transmittances is significantly and

proportionally reduced
::::::
benefits

:::
are

::::::::
preserved

:::::
while

:::::::::
achieving

:::::
better

::::::
sparsity

::::::
results

:
with the proposed parametrization

::::::
L0+L1475

:::::
model.

::::::
Fast-RT

: :::
M7

:::
M8

:::
M9

::::
M10

::::
M11

::::
M12

::::
M13

::::
M14

::::
M15

::::
M16

RTTOV13 34.55 46.36
:::::
46.47 59.77 80.00 80.00 69.95 68.18 70.00 69.41 69.77

::::
10−6

::::
6.34

::::
9.17

:::::
24.49

:::::
23.51

:::::
22.87

:::::
34.20

:::::
30.55

:::::
37.95

:::::
34.43

:::::
27.83

SI 8.80
::::
10−7 10.05

:::::
13.05 24.64

:::::
20.23 24.79

:::::
27.85 25.13

:::::
28.80 32.98

:::::
28.69 31.06

:::::
53.49

:::::
46.34

:::::
50.64

:::::
44.38

:::::
39.35

::::
10−8

:::::
24.09

:::::
32.67

:::::
35.28

:::::
36.99

:::::
41.61

:::::
64.95

:::::
57.72

:::::
56.59

:::::
50.86

:::::
46.32

::::
10−9 37.76 34.26

:::::
40.36 27.30

:::::
47.10

:::::
56.57

:::::
55.13

:::::
68.29

:::::
62.51

:::::
62.69

:::::
57.75

:::::
47.95

LASSO 5.80
::::
10−6 6.50

::::
5.61 12.08

::::
8.31 13.80

:::::
18.37 9.98

:::::
19.88 16.78

:::::
18.70 14.02

:::::
27.94 16.32

:::::
25.21 20.72

:::::
30.36 15.43

:::::
29.76

:::::
23.15

:::::::
BIC+L1

::::
10−7

:::::
10.33

:::::
17.17

:::::
20.63

:::::
23.96

:::::
22.10

:::::
43.84

:::::
37.26

:::::
38.77

:::::
37.25

:::::
32.60

::::
10−8

:::::
17.87

:::::
25.01

:::::
26.31

:::::
30.40

:::::
32.22

:::::
52.51

:::::
45.03

:::::
43.58

:::::
42.47

:::::
36.50

::::
10−9

:::::
26.39

:::::
29.46

:::::
36.24

:::::
44.93

:::::
42.48

:::::
54.45

:::::
48.39

:::::
48.79

:::::
47.48

:::::
37.67

::::
10−6

::::
3.78

::::
6.14

:::::
12.18

::::
9.50

:::::
10.11

:::::
16.85

:::::
15.68

:::::
19.63

:::::
23.87

:::::
16.71

::::::
L0+L1

: ::::
10−7

::::
7.20

:::::
11.39

:::::
13.79

:::::
11.99

:::::
12.99

:::::
22.07

:::::
21.39

:::::
24.55

:::::
29.61

:::::
23.50

::::
10−8

:::::
11.00

:::::
15.73

:::::
15.93

:::::
15.34

:::::
16.96

:::::
24.59

:::::
23.53

:::::
27.63

:::::
33.95

:::::
27.38

::::
10−9

:::::
14.98

:::::
18.78

:::::
18.51

:::::
20.76

:::::
21.03

:::::
25.70

:::::
25.41

:::::
31.38

:::::
37.59

:::::
28.35

Table 3. Percentage of nonzero parameters in RTTOV v13 for each channel, for the standard
::::::::::
configuration, RTTOV v13 + SI

:::
with

::::
OLS

:::::::
regression,

:::::::::
BIC+LASSO

:::::::::
regression,

:
and RTTOV v13

:
ℓ0+SI + LASSO parameterizations

:::::::
regression.

:::
The

::::::
second

::::::
column

::::::::
represents

:::
the

::::::
different

:::::::
statistical

::::::::
thresholds

::
ϵ1::::

used
:::
for

::
the

:::::::
proposed

:::::::
RTTOV

:::
v13

::::::
variants.

:

In Tables 5 and 6,
::::::
Figures

::
1

:::
and

::
2,

::
we

:::::::
present

::
the

:::::::::
percentage

::
of

:::::::::
parameter

:::::
usage

::
in

:::
the

:::::::
proposed

::::::
optical

:::::
depth

:::::::::::::
approximations

:::::
within

:::::::
RTTOV,

:::::::
relative

::
to

:::
the

::::::
number

::
of

::::::::::
parameters

::::
used

::
in

:::
the

:::::::
standard

:::::::
RTTOV

:::::::::::
configuration,

::::
and

:::
the

:::::::::
percentage

::
of

:::::::
runtime

:::::::
required

::
by

:::
the

::::::::
proposed

:::::::
schemes

::::::::
compared

::
to

:::::::
standard

:::::::
RTTOV.

::::
The

::::::::
measured

:::::::
runtime

::::::::::
corresponds

::
to

:::
the

::::::
average

::::
time

::
of

::::
200

:::::::::
evaluations

::
of

:::
the

::::::::::::
parameterized

:::::::
function

:::::
used

::
to

:::::::
compute

:::::::::::
approximate

::::::::::::
transmittances

:::
for

:::
the

::
83

:::::::::::
atmospheric

::::::
profiles

::::
with

::
6480

:::::::
different

:::::::
viewing

::::::
angles.

:::
For

:::
the

::::::::
following

:::::::::::
comparisons,

:::
we

:::
use

:::::::::
ϵ1 = 10−6

::
as

::
a

::::::::
reference.

:::
For

:::
the

:::
SI

:::::::::::
configuration,

:::::::::
parameter

:::::
usage

:::::
across

::
all

::::::::
channels

::::::
ranges

::::
from

:::::::
13.67%

::
to

::::::
54.21%

:::::::
relative

::
to

:::::::
standard

:::::::
RTTOV,

::::::::::::
corresponding

::
to

:
a
:::::::
runtime

::::::
ranging

:::::
from

::::::
29.99%

::
to

:::::::
58.32%;

:::
for

:::
the

:::::::
BIC+L1

::::::::::::
configuration,

:::::
usage

:::::
ranges

::::
from

:::::::
12.10%

::
to

:::::::
43.38%,

::::
with

:::::::
runtime

::::
from

:::::::
26.75%

::
to

:::::::
48.64%;

:::
and

:::
for

:::
the

::::::
L0+L1

::::::::::::
configuration,

:::::
usage

::::::
ranges

::::
from

::::::
8.16%

::
to
::::::::

34.39%,
::::
with

:::::::
runtime

::::
from

:::::::
13.77%

::
to

:::::::
41.39%.

::::::
These

::::::
results

::::::
suggest

:::
that

:::
the

::::::::::::
computational

::::
cost

::
of

:::::::::
evaluating

::::::::::::
parameterized

::::::::::::
transmittances

:
is
:::::::::::
significantly

:::
and

::::::::::::
proportionally

:::::::
reduced

::::
with485

::
the

::::::::
proposed

:::::::::::::::
parametrizations.
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::::::::
Although

::
the

:::::::
absolute

:::::::
runtime

::::::::
difference

::
is
:::::
small

:::
for

:::
this

::::::
limited

::::::
number

::
of

:::::::
profiles,

::
in

::::::::
practical

:::::::
scenarios

::::::
where

:::::::::::
transmittance

:::::::
functions

:::::
must

::
be

::::::::
evaluated

:::
for

:::::::
hundreds

::
of

:::::::::
thousands

::
of

::::::::::
atmospheric

:::::::
profiles,

::
as

:::::::
required

::
in

:::::::
satellite

:::
data

:::::::
retrieval

:::::::::::
applications,

::
the

::::::::
reduction

:::
in

:::::::::::
computational

:::::
time

:::::::
becomes

::::::
highly

::::::::
significant

:::
for

:::
the

:::::::::
efficiency

::
of

:::
the

:::::::
retrieval

:::::::
process.

::
As

:::
an

:::::::::
illustrative

::::::::
example,

::::
from

::::::
Figure

:::
2,

:::
for

::::::
channel

:::::
M15,

:::
for

:::::
each

:::
100

:::::
time

::::
units

::::::::
required

::
to

:::::::
compute

:::::::::::::
transmittances490

::::
with

::
the

:::::::::
RTTOV13

::::::
model,

:::
the

::::::
L0+L1

::::::
model

::::
takes

::::
only

:::::
41.69

::::
time

:::::
units

::::
with

:::::::::
ϵ1 = 10−6,

::::
and

::::
59.63

:::::
time

::::
units

::::
with

:::::::::
ϵ1 = 10−9

::::::::::
(worst-case),

:::::::::::
representing

:
a
:::::::::
significant

::::::::
reduction

::
in

:::::::
runtime.

:

Figure 1.
:::::::

Parameter
::::
usage

:::::
(left)

:::
and

::::::
runtime

:::::
(right)

::
of

:::
the

::
SI

:::::::
method,

:::::::
expressed

::
as

:::::::::
percentages

::::::
relative

::
to

::::
those

:::
of

::::::
RTTOV

:::
v13

:::::
(fixed

::
at

:::::
100%)

::
for

:::::::
different

:::::
values

::
of

::
ϵ1.

Figure 2.
::::::::
Parameter

::::
usage

::::
(left)

:::
and

::::::
runtime

::::::
(right)

::
of

::
the

::::::::::
BIC+LASSO

:::::::
method,

:::::::
expressed

::
as
:::::::::
percentages

::::::
relative

::
to

::::
those

::
of

:::::::
RTTOV

:::
v13

::::
(fixed

::
at

:::::
100%)

:::
for

::::::
different

:::::
values

::
of

:::
ϵ1.
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Figure 3.
::::::::
Parameter

::::
usage

:::::
(left)

:::
and

::::::
runtime

:::::
(right)

::
of

:::
the

:::::::::
L0+LASSO

::::::
method,

::::::::
expressed

::
as

:::::::::
percentages

::::::
relative

::
to

::::
those

::
of

::::::
RTTOV

::::
v13

::::
(fixed

::
at

:::::
100%)

:::
for

::::::
different

:::::
values

::
of

:::
ϵ1.

::
In

:::::
Tables

:::
5,

::
6,

:::
and

::
7,
:

the effectiveness of introducing statistical thresholds to discard irrelevant gases by channel is clear

::::::
evident compared to Table 4. The

:
A

:
number of non-zero parameters below 100 for a specific gas corresponds to case II

::::
Case

:
II of the statistical threshold parametrization

:::::::::::::
parameterization, suggesting that the corresponding gas can be included with the495

fixed gases.

Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
FIX 900 900 900 900 900 900 900 900 900 900
H2O 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400
O3 0 0 0 1200 1200 1200 1200 1200 1200 1200

CO2 0
::::
1300 0 1300 1300 1300 1300 1300 1300 1300 1300

N2O 0 0
::
12 1200 1200 1200 1200 1200 1200 1200 1200

CO 0 1300 0 1300 1300 0 0 0 0 0
CH4 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100
COR 400 400 675 400 400 595 400 600 535 575

Table 4. Number of nonzero parameters by gas type and channel in RTTOV v13
:::::::
RTTOV13.

Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
FIX 18 247 0 0 15 145 52 134 494

:::
478 615

:::
599

H2O 619 618 1374 618 604 775 576 802 687 716
O3 0 0 0 0 0 655

:::
644 19 1120 1096 488

:::
466

CO2 0 56 0 1142 0 212 724 0 1213 911
N2O 0 0 0 0 897 640 1024 1024 33 0
CO 0 0 0 0 0 0 0 0 0 0

CH4 47 0 778 768 995 964 819 678 0 0
COR 362

::
13 319

::
88 596

:::
542 267

::
58 296

:
5 463

:::
382 350

:::
147 545

:::
416 340

:::
280 409

:::
369

Table 5. Number of nonzero parameters by gas type and channel in RTTOV13+SI
::
for

::::::::
ϵ1 = 10−6.
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Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
FIX 18 220

:::
244 0 0 15 103

:::
125 52 103

:::
134 386

:::
463

:
405

:::
534

H2O 411
:::
542 393

:::
545 743

::::
1102 329

:::
535

:
396

:::
531 461

:::
704 346

:::
475 473

:::
732 419

:::
653

:
357

:::
670

O3 0 0 0 0 0 387
:::
531 19 680

:::
969 596

:::
904

:
277

:::
382

CO2 0 56 0 651
::::
1024 0 212

:::
196 580

:::
648 0 748

::::
1114 603

:::
850

N2O 0 0 0 0 109
:::
799 100

:::
624 139

:::
901 139

:::
913 33 0

CO 0 0 0 0 0 0 0 0 0 0
CH4 47 0 318

:::
567

:
478

:::
576

:
527

:::
707 605

:::
759 381

:::
559 307

:::
402 0 0

COR 240
::
10

:
181

::
69

:
306

:::
352

:
128

::
52 94

:
5
:

172
:::
134 172

:::
119 241

:::
190 204

:::
107

:
194

:::
111

Table 6. Number of nonzero parameters by gas type and channel in RTTOV13
:::

BIC+SI+LASSO
::
L1

::
for

:::::::::
ϵ1 = 10−6.

It is observed that in channels M7-M9, the use of parameters in RTTOV13 is lower compared to channels M10-M16,

which exhibit a higher level of parameter usage. In channels M10-M16, RTTOV13 has an average parameter usage of 72.47%

(M10-M16 %NNZ average), justifying the need to discard gases and predictors to reduce the computational impact of evaluating

transmittance once the model is trained. This is achieved by incorporating statistical thresholds that automatically discard gases500

by channel or across all channels (as with CO ) and by pressure level where the gas concentration is not relevant, reducing the

average parameter usage to 30.38%. Additionally, replacing classical linear regression with LASSO regression, further reduces

parameter usage to 15.29% by discarding predictors used by gas and by each level.

:::
Gas

:::
M7

: :::
M8

: :::
M9

: ::::
M10

::::
M11

::::
M12

::::
M13

::::
M14

::::
M15

::::
M16

:::
FIX

::
18

:::
187

: :
0
: :

0
::
15

: ::
54

: ::
52

: ::
92

: :::
116

:::
154

::::
H2O

: :::
342

: :::
351

: :::
763

: :::
239

:::
385

:::
556

:::
281

:::
663

:::
506

:::
590

:::
O3

:
0
: :

0
: :

0
: :

0
:
0

:::
238

::
19

: :::
451

:::
826

:::
268

::::
CO2

: :
0
: ::

56
:
0
: :::

394
:
0

::
96

: :::
497

:
0

:::
977

:::
661

::::
N2O

: :
0
: :

0
: :

0
: :

0
:::
244

:::
268

:::
411

:::
348

::
33

: :
0

:::
CO

:
0
: :

0
: :

0
: :

0
:
0

:
0

:
0

:
0

:
0

:
0

::::
CH4

: ::
47

:
0
: :::

203
: :::

355
:::
463

:::
443

:::
317

:::
353

:
0

:
0

::::
COR

: :
9
: ::

81
:::
374

: ::
57

: :
5

:::
199

:::
148

:::
252

:::
168

:::
165

Table 7.
::::::
Number

::
of
:::::::
nonzero

::::::::
parameters

::
by

:::
gas

::::
type

:::
and

::::::
channel

::
in

:::::
L0+L1

:::
for

::::::::
ϵ1 = 10−6.

To illustrate in more detail, we reference channels M11 and M12 and compare the sparsity patterns among the three

parametrizations in Fig.
::
in

:::::
Figs. 4 and 5 . For RTTOV13

::::::
among

:::
the

::::
four

:::::::::::::::
parameterizations

:::::
using

:::::::::
ϵ1 = 10−6

::
as
::

a
:::::::::
reference.505

:::
For

:::
the

:::
L0+SI+LASSO

::
L1

::::::
model and the remaining channels, see Appendix Figs.

::
A,

:::::
Figs.

:
A1 and A2. The numbering of

predictors and correctors follows RTTOV v13 Saunders et al. (2020),
::::::::::::::::::
(Saunders et al., 2020)

:
,
:::
see

::::::::
Appendix

::
B,

:
except for pre-

dictor 0
:
0, which corresponds to the predictor in Case II

::::
Case

:
II of the statistical inference proposal. Each column represents

the parameters of a predictor for each pressure level, and each point in a column represents a non-zero parameter associated

with that predictor at the corresponding pressure level.510

In the middle
:::
For

::::::
channel

:::::
M11

::::
with

:::
SI

:::::
model

:::::::::::::
(upper-middle Fig. 4, note that

:
),
:

gases O3, CO2, and CO are discarded

and FIX gas only needs
:::::::::::
automatically

::::::::
discarded,

::::
and

::::
fixed

:::::
gases

::::
only

:::::
need one predictor. Meanwhile, gases H2O, N2O, and

CH4 exhibit block-like sparsity patterns from surface pressure approximately
::
to

:
200 hPa, 19 hPa, and 0.8 hPa,

::::::::::
respectively,
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where concentrations of these gases are important and cause significant radiance absorption. Fixed gases also show block-like

sparsity patterns in the correction term. For these gases with block-like sparsity patterns, replacing classical linear regression515

with
:::
L0+LASSO regression (bottom figure) clearly discards some predictors across all levels or shows them as less relevant,

as seen in the sparsity patterns for N2O, CH4 , and fixed gas correctors
:::
and

::::
N2O. However, H2O still shows sparsity, but it

is difficult for this channel to determine if any predictor can be discarded at all levels due to the importance of this gas and

the strong non-linear relationship among the secant angle, temperature, and gas concentration in the predictors defined for it.

:::::
Using

:::::::::::
BIC+LASSO

:::::::::
regression

::::::::::::
(lower-middle

::::::
figure)

::::::::
highlights

::::
less

::::::
relevant

:::::::::
predictors

:::
for

:::::
CH4,

:::
but

::::
does

:::
not

::::::
entirely

:::::::
discard520

:
it
::
or

::::
any

:::::
other

:::
gas

::::::::
predictor

:::::::
retained

::
in

:::
the

::
SI

::::::
model.

::::
For

:::
the

::::::::
proposed

:::::::
models,

::
no

:::::::::
correction

::::
term

::
is

::::::
needed

::
at
:::
all,

::::::::
showing

:::
that

:
a
:::::
good

::
fit

::
of

:::
the

::::
total

:::::::::::
transmittance

::
is

:::::::
obtained

:::
by

::::::::::
considering

::::
only

::
the

:::::::::::::
approximation

::
of

:::
the

::::::::
individual

:::
gas

:::::::::::::
transmittances.

f01. pdfSparsity pattern for channel M11, comparing RTTOV v13 (top), RTTOV v13 + SI (middle), and RTTOV v13 + SI +

LASSO (bottom).525

For channel M12 , shown in Fig. 5, only one gas, CO ,
:::
with

:::
SI

:::::
model

:::::::::::::
(upper-middle

:::
Fig.

:::
4),

:::::
only

:::
CO

:
is automatically

discarded, which was already known a priori due to the fact that this gas does not have
:
is

::::::::
expected

:::::
since

:::
this

::::
gas

:::
has

:::
no

absorption lines in this channel. However, with the proposed statistical threshold parametrization, the block sparsity structure

of the
:::
The

:::
SI

:::::
model

::::
still

::::::
clearly

::::::
reveals

:::
the

:::::::::
block-like

:::::::
sparsity

:::::::
patterns

::
of

:
predictors and correctors for each gas at different

atmospheric pressure levels , where they are relevant for absorption , is still evident (see the middle
::
the

:::::::
pressure

:::::
levels

::::::
where530

:::
they

:::::::::
contribute

::
to

:::::::::
absorption

::::::::::::
(upper-middle figure). In this channel

:::::
From

::
the

::::::
figure, CO2 as a variable gas is

::::::
appears

::
to

:::
be rele-

vant at high pressure levels
::::::::
pressures, approximately above 767 hPa. Regarding the use of LASSO regression for these pressure

levels, where the atmospheric variables of each gas are important, it continues to show
:
,
:::::
while

:::
O3

:::::
seems

:::::::
relevant

::::::::
between

::::
about

::
2
::::
hPa

:::
and

::::
260

::::
hPa.

:::::
Using

::::::::::
L0+LASSO

:::::::::
regression

:::::::
(bottom

::::::
figure)

:::
for

::::
these

:::::::::
important

:::::::
pressure

:::::
levels

:::::::::::
demonstrates

:
that

some predictors can be entirely discarded or are less relevant, as observed for gases
::::::::::::
downweighted,

:::
as

::::
seen

:::
for

::::
fixed

::::::
gases,535

O3, N2O, CH4, and the correctors for fixed gases and H2O. For H2O, some predictors begin to lose relevance in this channel,

showing a sparser structure by column compared to what was observed in channel M11
:::
and

:::::
CH4.

::::::::
Similarly,

:::
the

:::::::
BIC+L1

::::::
model

:::::::::::
(lower-middle

::::::
figure)

:::::::::
highlights

:::
less

:::::::
relevant

::::::::
predictors

:::
but

::::
does

:::
not

::::::::::
completely

::::::
discard

:::
any

::::::::
predictor

:::::::
retained

::
in

:::
the

::
SI

::::::
model,

:::::
except

::
in

:::
the

::::::::
corrector

:::::
terms.

f02.pdfSparsity pattern for channel M12, comparing RTTOV v13 (top), RTTOV v13 + SI (middle), and RTTOV v13 + SI +540

LASSO (bottom).

A similar analysis can be conducted
::::::::
performed for each channel, as referenced

:::::
shown

:
in the appendix, where Fig

:::
Figs. A1 and

A2 display the sparsity patterns for all channels using RTTOV13
::
the

:::
L0+SI+LASSO. From these figures , it can be appreciated

::
L1

::::::
model.

:::::
These

::::::
figures

::::::
clearly

:::::::
indicate

:
which gases are relevant for

::
in

:
each channel, the pressure level ranges where they are

important
:::
play

::
a
:::::::::
significant

:::
role, and which predictors are most relevant

::::::::
important

:
for reconstructing the transmittance for

::
of545

each gas.
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Figure 4.
::::::
Sparsity

::::::
pattern

::
for

::::::
channel

:::::
M11,

::::::::
comparing

::::::::
RTTOV13

:::::
(Top),

::
SI

::::::::::::
(Upper-middle),

::::::
BIC+L1

:::::::::::::
(Lower-middle),

:::::
L0+L1

:::::::
(Bottom)

:::
for

::::::::
ϵ1 = 10−6.
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Figure 5.
::::::
Sparsity

::::::
pattern

::
for

::::::
channel

:::::
M12,

::::::::
comparing

::::::::
RTTOV13

:::::
(Top),

::
SI

::::::::::::
(Upper-middle),

::::::
BIC+L1

:::::::::::::
(Lower-middle),

:::::
L0+L1

:::::::
(Bottom)

:::
for

::::::::
ϵ1 = 10−6.
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4.3 Validation of transmittances

To validate the proposed RTTOV v13 variants, we calculated the root mean square error (RMSE) of the total transmittance for

all atmospheric layers, vertical profiles, and viewing angles, as shown in the following formula:

RMSE =

 1

LMN

L∑
i=1

M∑
j=1

N∑
k=1

(τTOT
ijk − τ̃TOT

ijk )2

 1
2

,550

where L= 100, M = 83, and N = 6. Here, τTOT
ijk and τ̃TOT

ijk represent the polychromatic transmittances calculated using

LBLRTM optical depths and their corresponding approximations obtained from Eq. (10) using the training data. The results

are shown in Table 8.
:::
The

:::::
values

::
in

:::
the

:::::
table

:::::::::
correspond

::
to

::::::::::::
RMSE× 104.

::::::
Fast-RT

: :::
M7

:::
M8

:::
M9

::::
M10

::::
M11

::::
M12

::::
M13

::::
M14

::::
M15

::::
M16

RTTOV13 0.043 0.071
::::::
0.0126 5.919

::::::
0.0224 0.062

::::::::
102.4458 1.648

::::::
0.0133 0.223

::::::
0.1341 1.880

::::::
0.7334 1.826

::::::
0.1128 3.663

::::::
0.8514 4.574

::::::
0.3340

::::::
0.7794

::::
10−6

: ::::::
0.0160

::::::
0.0332

::::::::
102.4442

::::::
0.0245

::::::
0.1320

::::::
0.7298

::::::
0.1130

::::::
0.8504

::::::
0.3325

::::::
0.7779

SI 0.044
::::
10−7

:
0.072

::::::
0.0128 5.920

::::::
0.0229 0.067

::::::::
102.4455 1.649

::::::
0.0134 0.223

::::::
0.1336 1.881

::::::
0.7334 1.831

::::::
0.1155 3.662

::::::
0.8513 4.574

::::::
0.3339

::::::
0.7795

LASSO 0.063
::::
10−8

:
0.109

::::::
0.0126 5.535

::::::
0.0228 0.078

::::::::
102.4457 2.046

::::::
0.0133 0.298

::::::
0.1340 1.966

::::::
0.7334 1.643

::::::
0.1128 3.364

::::::
0.8514 3.597

::::::
0.3340

::::::
0.7794

::::
10−9

: ::::::
0.0126

::::::
0.0228

::::::::
102.4458

::::::
0.0133

::::::
0.1341

::::::
0.7334

::::::
0.1128

::::::
0.8514

::::::
0.3340

::::::
0.7794

::::
10−6

: ::::::
0.0160

::::::
0.0333

:::::::
95.1889

::::::
0.0245

::::::
0.1321

::::::
0.7329

::::::
0.1132

::::::
0.8606

::::::
0.3345

::::::
0.7792

:::::::
BIC+L1

::::
10−7

: ::::::
0.0128

::::::
0.0231

:::::::
95.1962

::::::
0.0136

::::::
0.1341

::::::
0.7372

::::::
0.1155

::::::
0.8610

::::::
0.3355

::::::
0.7842

::::
10−8

: ::::::
0.0127

::::::
0.0230

:::::::
95.1988

::::::
0.0135

::::::
0.1345

::::::
0.7372

::::::
0.1128

::::::
0.8610

::::::
0.3356

::::::
0.7842

::::
10−9

: ::::::
0.0127

::::::
0.0230

:::::::
95.1977

::::::
0.0135

::::::
0.1345

::::::
0.7372

::::::
0.1127

::::::
0.8610

::::::
0.3356

::::::
0.7842

::::
10−6

: ::::::
0.0173

::::::
0.0343

::::::::
165.5327

::::::
0.0262

::::::
0.1398

::::::
0.7384

::::::
0.1149

::::::
0.8758

::::::
0.3392

::::::
0.7829

::::::
L0+L1

: ::::
10−7

: ::::::
0.0143

::::::
0.0246

::::::::
165.5344

::::::
0.0175

::::::
0.1420

::::::
0.7406

::::::
0.1183

::::::
0.8767

::::::
0.3399

::::::
0.7854

::::
10−8

: ::::::
0.0142

::::::
0.0245

::::::::
165.5347

::::::
0.0174

::::::
0.1423

::::::
0.7407

::::::
0.1155

::::::
0.8767

::::::
0.3400

::::::
0.7853

::::
10−9

: ::::::
0.0142

::::::
0.0245

::::::::
165.5348

::::::
0.0174

::::::
0.1423

::::::
0.7407

::::::
0.1156

::::::
0.8767

::::::
0.3400

::::::
0.7854

Table 8. RMSE of total transmittance for each channel, scaled by 10−3
:::
104, for the proposed RTTOV v13 variants.

:::
The

::::::
second

::::::
column

::::::
indicates

:::
the

:::::::
statistical

:::::::
threshold

::
ϵ1::::

used
:::
for

::::
each

:::::
variant.

In Table 8, the RMSE for transmittance generally errors ranges between O(10−5) and O(10−3) across all channels and
:::::
errors

:::::::
generally

::::::
ranges

::::::::
between

:::::::
O(10−6)

::::
and

::::::::
O(10−5)

:::::
across

:::
all

:
Fast-RT methods . Comparing the error of the three methods by555

channel, the order of magnitude remains the same, except for the
:::
and

::::::::
channels,

::::::
except

::
for

:::::::
channel

::::
M9,

:::::
where

:::::
errors

:::
are

::::::
larger,

::
in

::
the

:::::
range

::::::::
O(10−2)

::
to

::::::::
O(10−3).

:::
All

:::::
three

::::::::
proposed

::::::
models

::::::
slightly

:::::::
degrade

:::
the

::::::::
precision

::
of RTTOV13+SI+LASSO method

for channel M8, which shows an increase in error by one order of magnitude. When comparing RTTOV13 with RTTOV13+SI

, the difference in errors ranges between O(10−7) and O(10−6) for all channels.
:
,
:::
but

::::
this

::::::::::
degradation

:::::::::
diminishes

:::
as

:::
the

::::::::
statistical

:::::::
threshold

:::::::::
decreases.

:
Comparing RTTOV13 with RTTOV13

:::
the

::
SI

::::::
model,

:::
the

::::
error

:::::::::
difference

:::::::
reduces

::::
from

::::::::
O(10−7)560

::
to

:::::::
O(10−9)

:::
on

::::::
average

::::::
across

::::::::
channels,

::::
again

::::::
except

:::
for

::::
M9.

::::
With

::::
BIC+SI+LASSO, the error difference increases by between

O(10−5) and
::::::::
difference

:::::::
remains

::::::
around

:::::::::
O(10−7),

:::::
while

:::
for

:::::::
channel

:::
M9

::
it

:
is
:
O(10−4)for channels M7, M8, and M10-M12,

while it decreases by between O(10−6) and O(10−4) .
:::::::::
Similarly,

::::
with

::::::
L0+L1

::::
the

:::::::::
difference

::
is

:::::
about

::::::::
O(10−7)

:::
for

:::::
most
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:::::::
channels,

::::
but

::::::::
O(10−3) for channels M9and M13-M16. This suggests that the inclusion of statistical thresholds and LASSO

regression .
:::::::
Among

::
the

:::::
three,

:::
the

::::::
L0+L1

::::::
model

:::::
shows

:::
the

::::::
lowest

::::::::
precision,

::
as

::::::::
expected

:::
due

::
to

::
its

:::::
more

:::::::::
aggressive

:::::::
sparsity,

:::
yet565

::
the

::::::
errors

::::::
remain

:::::::::
comparable

:::
in

::::
order

::
of

:::::::::
magnitude

::
to
::::::::::
RTTOV13.

::::::
Overall,

:::::
these

::::::
results

::::::
indicate

::::
that

::::::::
including

::::::::
statistical

::::::::
thresholds

:
in RTTOV v13 slightly affects the accuracy of the transmittance

approximation, either
:::
has

::::::::
minimal

::::::
impact

:::
on

:::
the

::::::::::::
transmittance

:::::::::::::
approximation.

::::::
Values

::::::
remain

::::
very

:::::
close

:::
to

:::
the

::::::::
standard

::::::::
RTTOV13

:::::::::::
configuration

:::
for

::::::::
statistical

::::::::
threshold

::::::::
tolerances

::::::
below

::::
10−6

::::::
(Table

::
8).

::::::::::
Combining

::::::::
thresholds

::::
with

:::::::
LASSO

::::::::
regression

::
in

:
a
::::::
bilevel

:::::::::
framework

::
for

:::::::::
parameter

::::::::
selection,

::::
using

:::::
either

:::::::::
BIC-based

::
or

:::::::::::::::
ℓ0-regularization,

::::::
slightly

:::::::
modifies

:::
the

:::::::::::::
approximation,570

improving or worsening it, but the overall variation in error remains negligible
::::::::
variations

:::::::
remain

:::::
small.

::::
The

::::::::::::
approximated

::::::::::::
transmittances

::::::
closely

:::::
match

:::::
those

::::
from

:::::::::
LBLRTM,

::::
with

:::
the

:::::
added

::::::
benefit

:::
of

:
a
:::::::::
significant

:::::::
runtime

::::::::
reduction.

4.4 Validation of brightness temperatures

To achieve a higher level of validation for the proposed transmittance parametrization, the brightness temperatures (BT) of

the profiles used for training are calculated. The approximated brightness temperatures at the top of the atmosphere were575

calculated using polychromatic radiances from Eq. (3), applying the approximate transmittances provided by the RTTOV v13

scheme and the proposed variants, separately. To compare these results, brightness temperatures at the top of the atmosphere

were calculated using the polychromatic radiances with Eq. (2), using the monochromatic radiances calculated with LBLRTM.

In all cases, the integrals were approximated using composite trapezoidal formulas, with the spacing determined by the pressure

levels of the data. In each case, the resulting brightness temperatures were averaged over all profiles and viewing angles. The580

relative errors in BT obtained with the Fast-RT models and those obtained with LBLRTM were then calculated, which are

shown in Table 9
::::::
(×104). The maximum relative error for brightness temperature, determined for each profile and viewing

angle, is presented in Table 10
::::::
(×103).
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:::::::
Fast-RT

:::
M7

:::
M8

:::
M9

::::
M10

::::
M11

::::
M12

::::
M13

::::
M14

::::
M15

::::
M16

RTTOV13 3.708 0.411
::::::
3.8967 9.459

::::::
0.3357 2.202

::::::
7.5875 3.204

::::::
2.1803 0.585

::::::
0.5966 5.990

::::::
1.0472 5.384

::::::
0.6429 11.254

::::::
0.5221 8.592

::::::
0.7386

::::::
0.6715

IS 4.977
::::
10−6

:
0.619

::::::
4.7551 9.477

::::::
0.5896 2.281

::::::
7.6048 3.188

::::::
2.2527 0.564

::::::
0.5833 6.001

::::::
1.0181 5.421

::::::
0.6672 11.248

::::::
0.5088 8.585

::::::
0.7521

::::::
0.7512

LASSO
::
SI 4.971

::::
10−7

:
0.669

::::::
4.7488 9.469

::::::
0.4203 2.304

::::::
7.5838 3.782

::::::
2.1820 0.614

::::::
0.5985 6.220

::::::
1.0419 6.681

::::::
0.6421 11.578

::::::
0.5198 8.970

::::::
0.7414

::::::
0.6723

::::
10−8

: ::::::
4.3021

::::::
0.3429

::::::
7.5878

::::::
2.1799

::::::
0.5970

::::::
1.0470

::::::
0.6430

::::::
0.5218

::::::
0.7389

::::::
0.6716

::::
10−9

: ::::::
3.8726

::::::
0.3348

::::::
7.5875

::::::
2.1803

::::::
0.5966

::::::
1.0472

::::::
0.6429

::::::
0.5221

::::::
0.7386

::::::
0.6715

::::
10−6

: ::::::
4.7552

::::::
0.5896

::::::
7.6185

::::::
2.2526

::::::
0.5832

::::::
1.0220

::::::
0.6672

::::::
0.5109

::::::
0.7509

::::::
0.7557

:::::::
BIC+L0

::::
10−7

: ::::::
4.7490

::::::
0.4203

::::::
7.5975

::::::
2.1819

::::::
0.5980

::::::
1.0492

::::::
0.6421

::::::
0.5229

::::::
0.7425

::::::
0.6742

::::
10−8

: ::::::
4.3022

::::::
0.3429

::::::
7.6035

::::::
2.1797

::::::
0.5964

::::::
1.0549

::::::
0.6426

::::::
0.5257

::::::
0.7411

::::::
0.6730

::::
10−9

: ::::::
3.8726

::::::
0.3348

::::::
7.6027

::::::
2.1802

::::::
0.5962

::::::
1.0550

::::::
0.6425

::::::
0.5258

::::::
0.7407

::::::
0.6730

::::
10−6

: ::::::
4.7572

::::::
0.5896

::::::
7.8953

::::::
2.2525

::::::
0.5819

::::::
1.0270

::::::
0.6568

::::::
0.5145

::::::
0.7575

::::::
0.7399

:::::
L0+L1

: ::::
10−7

: ::::::
4.7503

::::::
0.4202

::::::
7.8756

::::::
2.1824

::::::
0.5974

::::::
1.0509

::::::
0.6309

::::::
0.5190

::::::
0.7434

::::::
0.6632

::::
10−8

: ::::::
4.3030

::::::
0.3425

::::::
7.8858

::::::
2.1799

::::::
0.5962

::::::
1.0570

::::::
0.6324

::::::
0.5199

::::::
0.7414

::::::
0.6623

::::
10−9

: ::::::
3.8738

::::::
0.3343

::::::
7.8860

::::::
2.1800

::::::
0.5959

::::::
1.0572

::::::
0.6324

::::::
0.5201

::::::
0.7406

::::::
0.6626

Table 9. Average Relative Errors in Brightness Temperature (K), scaled by 10−4
:::
104, between the Fast-RT and LBLRTM models.

::
The

::::::
second

:::::
column

:::::::
indicates

:::
the

:::::::
statistical

:::::::
threshold

::
ϵ1::::

used
:::
for

:::
each

::::::
variant.

:::::::
Fast-RT

:::
M7

::
M8

: :::
M9

:::
M10

: :::
M11

: :::
M12

: :::
M13

: :::
M14

: :::
M15

: ::::
M16

RTTOV13 2.486 0.649
::::::
2.2108 12.637

::::::
0.3612 0.896

::::::
1.4245 1.915

::::::
0.8689 0.401

::::::
0.4965 3.492

::::::
0.4082 2.719

::::::
0.2817 6.940

::::::
0.2182 4.896

::::::
0.3501

::::::
0.2602

IS 9.652
::::
10−6

:
2.273

::::::
5.9256 12.637

::::::
2.0416 1.401

::::::
1.4218 1.924

::::::
1.3972 0.360

::::::
0.4918 3.502

::::::
0.4143 2.713

::::::
0.2967 6.959

::::::
0.1852 4.877

::::::
0.3549

::::::
0.2787

LASSO
::
SI 9.749

::::
10−7

:
2.270

::::::
5.9259 3.865

:::::
1.2130

:
1.401

::::::
1.4243 3.080

::::::
0.8691 0.487

::::::
0.4946 2.901

::::::
0.4066 3.256

::::::
0.2819 8.279

::::::
0.2171 5.811

::::::
0.3501

::::::
0.2602

::::
10−8

:::::
3.5565

: ::::::
0.4896

:::::
1.4245

: :::::
0.8689

: :::::
0.4967

: :::::
0.4082

: :::::
0.2817

: :::::
0.2182

: :::::
0.3500

: ::::::
0.2602

::::
10−9

:::::
2.3083

: ::::::
0.3655

:::::
1.4245

: :::::
0.8689

: :::::
0.4965

: :::::
0.4082

: :::::
0.2817

: :::::
0.2182

: :::::
0.3501

: ::::::
0.2602

::::
10−6

:::::
5.9256

: ::::::
2.0416

:::::
1.3104

: :::::
1.3972

: :::::
0.4918

: :::::
0.4197

: :::::
0.2969

: :::::
0.1802

: :::::
0.3559

: ::::::
0.2807

:::::::
BIC+L0

::::
10−7

:::::
5.9259

: ::::::
1.2130

:::::
1.3127

: :::::
0.8687

: :::::
0.4943

: :::::
0.4120

: :::::
0.2820

: :::::
0.2115

: :::::
0.3515

: ::::::
0.2660

::::
10−8

:::::
3.5565

: ::::::
0.4896

:::::
1.3129

: :::::
0.8686

: :::::
0.4962

: :::::
0.4125

: :::::
0.2816

: :::::
0.2131

: :::::
0.3513

: ::::::
0.2650

::::
10−9

:::::
2.3085

: ::::::
0.3654

:::::
1.3129

: :::::
0.8687

: :::::
0.4960

: :::::
0.4126

: :::::
0.2817

: :::::
0.2131

: :::::
0.3514

: ::::::
0.2650

::::
10−6

:::::
5.9256

: ::::::
2.0415

:::::
1.5482

: :::::
1.3993

: :::::
0.4891

: :::::
0.4348

: :::::
0.3036

: :::::
0.1998

: :::::
0.3629

: ::::::
0.2851

:::::
L0+L1

: ::::
10−7

:::::
5.9259

: ::::::
1.2130

:::::
1.5535

: :::::
0.8686

: :::::
0.4912

: :::::
0.4255

: :::::
0.2892

: :::::
0.2246

: :::::
0.3579

: ::::::
0.2692

::::
10−8

:::::
3.5565

: ::::::
0.4882

:::::
1.5532

: :::::
0.8684

: :::::
0.4932

: :::::
0.4270

: :::::
0.2891

: :::::
0.2256

: :::::
0.3575

: ::::::
0.2683

::::
10−9

:::::
2.3116

: ::::::
0.3636

:::::
1.5531

: :::::
0.8684

: :::::
0.4930

: :::::
0.4270

: :::::
0.2892

: :::::
0.2258

: :::::
0.3573

: ::::::
0.2681

Table 10. Maximun
::::::::
Maximum

:
Relative Errors in Brightness Temperature (K), scaled by 10−3

::
103, between the Fast-RT and LBLRTM

models.
:::
The

:::::
second

::::::
column

:::::::
indicates

:::
the

:::::::
statistical

:::::::
threshold

::
ϵ1::::

used
::
for

::::
each

::::::
variant.

In Table 9, a similar behavior is observed in the errors when approximating transmittances. The average relative error of

brightness temperature generally ranges from O(10−5) to O(10−3)
::::::::
O(10−5)

::
to

::::::::
O(10−4)

:
across all channels and Fast-RT585

methods. The order of magnitude of the average relative error remains consistent when comparing the three
::::
four methods by

channel. The differences in average relative BT errors between RTTOV13 and RTTOV13+SI range from O(10−7) to O(10−4),

while those
::
the

::
SI

::::::
model

:::::::
decrease

:::::
from

::::::::
O(10−5)

::
to

::::::::
O(10−7)

::::
when

::::::::
lowering

:::
the

::::::::
statistical

::::::::
threshold

::::::::
tolerance.

:::::::::
Similarly,

:::
the
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:::::::::
differences between RTTOV13 and RTTOV13

::
the

::::
BIC+SI

::
L1

::::::
model

:::::::
decrease

::
in

:::
the

:::::
same

:::::::
manner.

:::
For

:::
the

:::
L0+LASSO range

from O(10−6) to O(10−4) across all channels
::
L1

::::::
model,

:::
the

:::::::::
differences

:::::::
decrease

:::::
from

::::::::
O(10−5)

::
to

:::::::
O(10−6).590

::::::
Turning

:::
to

:::
the

::::::::
maximum

::::::
errors,

:::
for

:::
all

:::::::
channels

:::
the

::::::
sparse

:::::::::::::
approximations

::
of

:::::::
optical

:::::
depth

:::
for

:::::::::
RTTOV13

::::
show

::::::::
minimal

:::::::
deviation

:::::
from

:::
the

:::
BT

::::::
results

:::
of

:::::::
standard

:::::::::
RTTOV13

:::::
when

::::::::::
ϵ1 ≤ 10−7. Table 10 shows that the maximum relative errors of

BT range
::::::::
maximum

:::::::
relative

:::
BT

:::::
errors

::::::
ranging

:
from O(10−4) to O(10−2)

:::::::
O(10−3)

:
across all channels and Fast-RT methods.

When comparing
:::::::::
Comparing

:
the maximum absolute error by channel for the three methods, the

::::
four

:::::::
methods,

:
errors remain of

the same order of magnitude for channels M7and M11-M16, for channels
:
,
::::
M9,

:::
and

:::::::::
M11–M16

:::::::::::
(ϵ1 ≤ 10−6), M8

::::::::::
(ϵ1 ≤ 10−8),595

and M10 , the
::::::::::
(ϵ1 ≤ 10−7);

::
in

:::::
other

:::::
cases,

:
standard RTTOV13 version has an

::::
may

::::
yield

:::
up

::
to

::::
one order of magnitude lower

error compared to the proposed variants, and in channel M9,
:::::
errors.

:::::::
Observe

::
in

:::::
Table

:
9
::::
that,

:::
for

::::
some

::::::::
channels,

:::
the

:::::
errors

::::
with

:::
the

::::::::
proposed

:::::::
methods

:::
are

:::::::
slightly

:::::
lower

::::
than

::::
those

::
of

:
RTTOV13

:
.

::::
With

:::
the

:::
L0+IS

::
L1

::::::
model

::
at

:::::::::
ϵ1 = 10−9

:::
this

::::::::
happens

:::
for

:::::::
channels

::::
M7,

::::
M8,

:::::
M10,

:::::
M11,

:::::
M13,

:::::
M14,

::::
and

:::::
M16,

:::
and

:::::
with

:::
the

:::
BIC+LASSO has an order of magnitude lower error compared to

::
L1

::::::
model

:
at
:::

the
:::::
same

::::::::
tolerance

:::
for

:::::::
channels

::::
M7,

::::
M8,

:::::
M10,600

::::
M11,

::::
and

:::::
M13.

::::
Also

::::
note

::::
that,

::::::::
although

:::
the

:::::::
BIC+L1

::::::
model

:::::
gives

:
a
:::::
better

::::::::::::
transmittance

::
fit

::::
than

:
RTTOV13

::
for

:::::::
channel

::::
M9,

::
its

:::::::::
brightness

::::::::::
temperature

::::
error

::
is
:::
not

:::::::::
improved.

:::::
These

:::::::
findings

:::::::
suggest

:::
that

:::::
using

:::::
merit

::::::::
functions

:::::
based

:::
on

::::::::
radiances

::
or

::::
BT,

:::::::
together

::::
with

::::::
model

:::::::::
complexity

:::::::::::
penalization,

:::::::
instead

::
of

::::::
relying

:::::
only

::
on

:::::::
optical

:::::
depth

::::::
fitting,

:::::
could

:::::::
improve

:::
the

::::::
results

:::
of

::::::
Fast-RT

:::::::
models

:::::
within

:::
the

:::::::::
RTTOV13

:::::::::
framework.

Figure 6
::::
(left)

:
shows the average absolute BT error between the Fast-RT

::::::::
LBLRTM

:
model and the LBLRTM model

:::::::
Fast-RT605

::::::
models

:::
for

:::::::::
ϵ1 = 10−6, while Fig. 7 as

:
6
::::::

(right)
::::::
shows the maximum absolute error across all profiles and viewing angles. It

can be observed that the
:::
The

:
average brightness temperature shows a

::::
some

:
degradation in the proposed methods compared to

RTTOV v13. In
:
:
::
in

:
the worst case, the degradation is 0.03 K for channel

::::
0.021

::
K

:::
for

:
M7, while

::::
0.008

::
K

:::
for

::::
M8,

::::
0.20

::
K

:::
for

:::
M9,

:::::
while

:::
the

:::::
other

:::::::
channels

::::::
remain

::::::
below

:::::
0.003

::
K

::
for

:::
all

:::::::::
proposals.

:::
For the improvement/degradation for the other channels

remains below 0.005 K for RTTOV13+SI and 0.038 K for RTTOV13+SI+LASSO. Regarding the maximum absolute error610

per profile and viewing angle, the predictions of the proposed methods for brightness temperature compared to RTTOV v13

worsen by 1.85 K for channel
:::::
worst

:::::
cases

::
are

:::::
0.961

::
K
:::
for

:
M7and 0.41 K for channel ,

:::::
0.405

::
K

:::
for M8, the worst cases, while

there is an improvement of 1.65 K in BT prediction with RTTOV13+SI+LASSO for channel M9. For the remaining channels,

the improvement/degradation stays below 0.15 K
:::
and

:::::
0.375

::
K
:

for RTTOV13+SI and 0.38 K for RTTOV13+SI+LASSO. In

relative terms, these
::::
M9,

::::
with

:::
the

::::
other

::::::::
channels

:::::
below

::::
0.15

:::
K.

:::::
These variations are not significant

::
in

::::::
relative

:::::
terms, as shown615

in Table 9.
:
,
:::
and

:::::::
decrease

:::::
with

:
a
:::::
lower

::::::::
statistical

:::::::::
threshold,

::::::::
illustrated

::
in

::::
Fig.

:
7
:::

for
::::::::::
ϵ1 = 10−9.

:::::
Under

::::
this

::::::
setting,

:::
the

:::::::
average

:::
BT

::::
error

:::::::
worsens

:::
by

::::
only

::::::::::
5.7× 10−4

::
K

:::
for

::::
M7,

:::::::::
3.7× 10−5

:::
K

:::
for

::::
M8,

:::
and

::::::::::
7.5× 10−3

::
K

:::
for

::::
M9,

:::::
while

:::
the

::::::
others

::::::
remain

:::::
below

:::::::::
3.2× 10−4

:::
K.

:::
The

:::::::::
maximum

::::
error

::::::::
increases

:::
by

:::::::::
2.1× 10−2

::
K

:::
for

:::
M7,

::::::::::
1.0× 10−3

::
K

:::
for

:::
M8,

::::
and

:::::::::
1.0× 10−3

::
K

:::
for

::::
M9,

::::
with

::
the

:::::
other

::::::::
channels

::::::::
remaining

::::::
below

:::::::::
1.5× 10−3

::
K.

:
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Figure 6. Average Absolute Errors
::::
(left)

:::
and

::::::::
Maximum

:::::::
Absolute

:::::
Errors

::::::
(right) in Brightness Temperature (K) between the Fast-RT and

LBLRTM models
::
for

:::::::::
ϵ1 = 10−6.

Figure 7.
::::::
Average

:::::::
Absolute

:::::
Errors

::::
(left)

:::
and

:
Maximum Absolute Errors

:::::
(right) in Brightness Temperature (K) between the Fast-RT and

LBLRTM models
::
for

:::::::::
ϵ1 = 10−9.

These findings suggest that while
::::::
confirm

::::
that the proposed methods are generally

::::::
achieve

:::
an

:::::::
accuracy

:::::
level comparable620

to RTTOV v13 in terms of accuracy , there are specific channels where improvements or further adjustments in the statistical

threshold parameters may be necessary to enhance precision if needed.
:::::
across

::::
most

::::::::
channels,

::::
with

:::::
only

:::::::
minimal

::::::::::
degradation

:::::::
observed

::
in

::
a

:::
few

:::::
cases

:::::
under

:::::::
stringent

::::::::
statistical

::::::::
threshold

:::::::::
tolerances.

:

4.5
::::::::

Validation
::
of
::::::::::
Brightness

::::::::::::
Temperature

:::::::
Against

::::::::::
Instrument

:::::
Noise

::::::::::::::
Characteristics

::
To

:::::::
evaluate

:::
the

:::::::
accuracy

::
of

:::
the

::::
Fast

:::
RT

::::::
model,

::
we

::::::::
compare

::
the

:::::::::
brightness

:::::::::::
temperatures

:
it
::::::::
generates

::::
with

:::::
those

::::
from

::::::::::
high-fidelity625

:::::::::
simulations

:::::
using

:::::::::
LBLRTM.

:::
A

:::::::
standard

:::::::::
validation

:::::::
criterion

:::::::
requires

::::
that

:::
the

::::::::
absolute

::::::::
difference

:::
in

::::::::
brightness

:::::::::::
temperature

::::::
remains

::::::
below

::
the

:::::::::::
instrument’s

::::
noise

::::
level

:::::::::::::::::
(Garand et al., 2001)

:
.
::::::::::
Specifically,

:::
this

:::::::
involves

:::::::::
comparing

::::::
against

:::
the

:::::
Noise

:::::::::
Equivalent

::::
Delta

:::::::::::
Temperature

:::::::
(NEdT)

:::
for

:::
the

:::::::
thermal

:::::::
emissive

::::::
bands

:::::
(M12

::
to

:::::
M16),

::::
and

::::::
against

:::
the

:::::
Noise

::::::::::
Equivalent

:::::
Delta

::::::::
Radiance

::::::
(NEdR)

:::
for

::::
the

::::
solar

::::::::
reflective

::::::
bands

::::
(M7

::
to

::::::
M11).

:::
For

::::
the

::::::
VIIRS

::::::::
M-bands,

:::::
Table

:::
11

:::::::
presents

:::
the

::::::
NEdT

::::::
values

::::
and

:::
the

::::::::::::
signal-to-noise

:::::
ratios

:::::
(SNR)

::::
used

::
to

::::::::
compute

::
the

::::::::::::
corresponding

::::::
NEdR

::::::
values,

::
as

:::::::
reported

::
in

::::
Table

::
1

::
of

:::
the

::::::
manual

::::::::::::::
Cao et al. (2017)630

:
.
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:::::::
Channel

::::
SNR

: ::
Ityp: :::::::

Channel
:::::
NEdT

: :::
Ttyp:

:::
M7

::
L

:::
340

::::
33.4

:::
M12

: :::::
0.396

:::
270

:

:::
M7

::
H

:::
215

::
6.4

: ::::
M13

:
L
: :::::

0.423
:::
380

:::
M8

: ::
74

: ::
5.4

: :::
M13

::
H
: :::::

0.107
:::
300

:

:::
M9

: ::
83

: ::
6.0

: :::
M14

: :::::
0.091

:::
270

:

::::
M10

:::
342

::
7.3

: :::
M15

: :::::
0.070

:::
300

:

::::
M11

::
10

: ::::
0.12

:::
M16

: :::::
0.072

:::
300

:

Table 11.
::::
SNR

:::
and

:::::
NEdT

:::::
Values

:::
for

:::::
VIIRS

::
IR

:::::::
M-Bands

:::
(L:

:::
Low

::::
Gain

::::::
Mode,

::
H:

::::
High

::::
Gain

:::::
Mode).

:::
For

::::
each

::::::
channel

:::::
from

:::
M7

::
to

:::::
M11,

:::
the

::::
table

::::::
reports

:::
the

::::
SNR

::
at

:::
the

::::::::
reference

:::::::
radiance

:::
Ityp::::::::::::::

(W/m2 · sr ·µm),
::::
and

::
for

::::::::
channels

::::
M12

::
to

:::::
M16,

:
it
::::::
reports

:::
the

::::::
NEdT

::
at

:::
the

:::::::
reference

::::::::::
temperature

::::
Ttyp::::

(K).
:::
For

:
a
:::::::
thermal

::::::::
emissive

::::
band,

:::
the

::::::
NEdT

::
at

::::::::::
temperature

:
T
::
is
:::::::
defined

::
as

NEdT(T ) = NEdT(Ttyp) ·
B′(Ttyp)

B′(T )
::::::::::::::::::::::::::::

635

:::::
where

:::
B′

:
is
:::

the
:::::::::
derivative

::
of

:::
the

::::::
Planck

:::::::
function

::::
with

::::::
respect

:::
to

::::::::::
temperature.

:::
For

:::::
solar

::::::::
reflective

:::::
bands,

:::
the

::::::
Noise

:::::::::
Equivalent

::::
Delta

::::::::
Radiance

:::::::
(NEdR)

::
at

:::::::
radiance

::
I
::
is

::::::
defined

::
as

:

NEdR(I) =
I

SNR
.

::::::::::::::

:::
Let

:::
Iij :::

and
::::
Ĩij ::::::

denote
:::
the

:::
top

:::
of

::::::::::
atmosphere

::::::::::::
polychromatic

:::::::::
radiances

:::::::
obtained

:::::
using

:::::::::
LBLRTM

::::
and

:::
the

::::
Fast

:::
RT

:::::::
model,

::::::::::
respectively,

:::
for

::::::::::
atmospheric

:::::
profile

:
i
::::
and

:::::::::
observation

:::::
angle

:::
θj ,

:::
and

::
let

:::
Tij::::

and
:::
T̃ij ::

be
:::
the

::::::::::::
corresponding

::::::::
brightness

:::::::::::
temperatures.640

:::
For

:::::::
emissive

::::::
bands,

:::
the

::::::::
following

::::::::
condition

::::
must

:::
be

:::::::
satisfied:

:

|Tij − T̃ij | ≤ NEdT(Tij),
::::::::::::::::::::

:::
and

:::
for

::::
solar

::::::::
reflective

::::::
bands,

::
we

:::::::
require:

:

|Iij − Ĩij | ≤ NEdR(Iij).
:::::::::::::::::::

:::
The

:::::::::
percentage

:::
of

::::::::::
atmospheric

:::::::
profiles

:::
for

::::::
which

:::::
these

:::::::::
conditions

:::
are

:::::::
satisfied

::::::
serves

::
as

::
a

:::::::
practical

::::::
metric

::
to

::::::::
evaluate

:::
the645

::::::
quality

::
of

:::
the

:::::::
forward

::::::
model.

::
A
:::::

high
:::::::::
proportion

::
of

:::::
cases

:::::::
meeting

:::
the

::::::::
criterion

:::::::
indicates

::::
that

:::
the

:::::::::
modeling

::::
error

::
is
:::::::
smaller

:::
than

:::
the

::::::::::
instrument

:::::
noise,

:::::::
ensuring

::::
that

:::
the

::::::::
simulated

::::::::
radiances

:::
are

::::::::::
sufficiently

:::::::
accurate

:::
for

::::::
satellite

::::::::
retrievals

::::
and

:::::::::
potentially

::::::
suitable

:::
for

::::
data

:::::::::::
assimilation.

:::::
Table

::
12

::::::
reports

:::
the

:::::::::
percentage

:::
of

:::::
cases,

::::::::
computed

::::
over

:::
83

::::::::::
atmospheric

:::::::
profiles

:::
and

::
6

:::::::
viewing

::::::
angles,

::
for

::::::
which

:::
the

::::::::::::
corresponding

::::
noise

::::::::
threshold

::::::::
condition

::
is
::::
met.

:
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:::::::
Fast-RT

:::
M7

:::
M8

:::
M9

::::
M10

::::
M11

::::
M12

::::
M13

::::
M14

::::
M15

::::
M16

:::::::::
RTTOV13

::::
6.63

:::::
10.84

:::::
100.0

:::::
97.99

:::::
63.45

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

::::
10−6

: ::::
6.83

:::::
10.24

:::::
97.19

:::::
97.99

:::::
61.24

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
99.60

:
SI

: ::::
10−7

: ::::
6.63

:::::
10.24

:::::
98.80

:::::
97.99

:::::
63.25

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

::::
10−8

: ::::
6.63

:::::
10.24

:::::
99.80

:::::
97.99

:::::
63.45

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

::::
10−9

: ::::
6.83

:::::
10.84

:::::
100.0

:::::
97.99

:::::
63.45

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

::::
10−6

: ::::
6.83

:::::
10.24

:::::
97.19

:::::
98.39

:::::
61.24

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
99.60

:::::::
BIC+L1

::::
10−7

: ::::
6.63

:::::
10.24

:::::
98.80

:::::
98.39

:::::
63.25

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

::::
10−8

: ::::
6.63

:::::
10.24

:::::
99.80

:::::
98.19

:::::
63.45

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

::::
10−9

: ::::
6.83

:::::
10.64

:::::
100.0

:::::
98.19

:::::
63.45

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

::::
10−6

: ::::
6.83

:::::
10.24

:::::
97.19

:::::
97.79

:::::
61.24

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
L0+L1

: ::::
10−7

: ::::
6.63

:::::
10.24

:::::
98.80

:::::
97.59

:::::
63.25

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

::::
10−8

: ::::
6.63

:::::
10.24

:::::
99.80

:::::
97.59

:::::
63.86

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

::::
10−9

: ::::
6.83

:::::
10.64

:::::
100.0

:::::
97.59

:::::
63.86

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

:::::
100.0

Table 12.
::::::::
Percentage

::
of

:::::::
absolute

::::::::
differences

::
in
:::::::

radiance
:::::
below

:::
the

:::::
NEdR

:::::::
threshold

:::
for

:::::::
channels

::::::::
M7–M11,

:::
and

:::::::::
percentage

::
of

:::::::
absolute

::::::::
differences

::
in

:::::::
brightness

:::::::::
temperature

:::::
below

:::
the

::::
NEdT

:::::::
threshold

:::
for

:::::::
channels

::::::::
M12–M16.

:::
The

:::::
second

::::::
column

:::::::
indicates

:::
the

:::::::
statistical

:::::::
threshold

::
ϵ1 :::

used
:::
for

::::
each

:::::
variant.

::
In

:::
the

::::
table

::::
12,

:
it
::::

can
::
be

::::::::
observed

::::
that

:::
for

::::::::
channels

::::
M11

:::
to

:::::
M16,

::
all

::::::::
methods

::::
fully

::::::
satisfy

:::
the

:::::
noise

:::::::::
condition,

::::
and

:::
the650

:::::::
proposed

::::::::
methods

:::
are

::::::::::
comparable

::
to

:::::::
standard

:::::::::
RTTOV13

:::
for

::
a

::::::::
statistical

::::::::
tolerance

::::::::
threshold

::
of

:::::::::
ϵ1 ≤ 10−6.

::::
For

:::::::
channels

::::
M7

::
to

::::
M10,

::
a
::::::
stricter

::::::::
statistical

::::::::
tolerance

::::::::
threshold

::
is

:::::::
required

::
to

::::::
achieve

::::::::::
percentages

::::::::::
comparable

::
to

::::::::::
RTTOV13.

:::
For

:::::::
channels

::::
M7

:::
and

:::::
M10,

:::
the

:::::::::
fulfillment

::
of

:::
the

:::::
noise

::::::::
criterion

::
is

::::
quite

:::::
poor;

:::
we

::::
infer

::::
that

::::
this

:
is
::::

due
::
to

:::
the

::::
lack

:::
of

::::
solar

::::::::
radiation

::::::::
inclusion

::
in

:::
the

::::::
various

:::::::
Fast-RT

::::::::
methods.

::::::::
However,

:::
the

::::::
results

:::::::
obtained

::::
with

:::
the

::::::::
proposed

::::::::
methods

:::
are

::::::
similar

::
to

:::::::::
RTTOV13

:::
for

:::::
small

::::::::
statistical

:::::::::
thresholds.

::::
For

:::::::
channel

::::
M9,

:::
the

::::::::
proposed

:::::::
BIC+L1

::::::
model

:::::::
slightly

:::::::
improve

::::
the

:::::::::
percentage

::
of
:::::::

profiles
::::

that
:::::
meet655

::
the

:::::
noise

::::::::
threshold

:::::::::
compared

::
to

:::::::
standard

::::::::::
RTTOV13.

::
It

::
is

::::
clear

::::
that

:::
the

::::::::
proposed

:::::::
methods

:::::::::
reproduce

:::
the

::::::
results

::
of

::::::::
standard

::::::::
RTTOV13

:::
for

:::::
large

:::::::
statistical

:::::::::
thresholds

::
in

:::
the

:::::::
emissive

:::::
bands

::::
and

::
for

:::::::
smaller

::::::::
statistical

::::::::
thresholds

::
in

:::
the

::::
solar

::::::::
reflective

::::::
bands,

::::
while

:::::::
offering

:::
the

:::::::::
advantage

::
of

::::::
greater

::::::::::::
computational

::::::::
efficiency

::::
due

::
to

:::
the

:::::::
induced

:::::::
sparsity.

5 Conclusions

This study introduces
:::::::
presents

:
an automatic and sparse optical depth parametrization method for the RTTOV v13 modelto660

optimize
:
,
:::::
aimed

::
at

:::::::::
optimizing

:
parameter adjustment. The method first applies statistical thresholding across different pressure

levels, followed by LASSO regression,
:
instead of the traditional least squares approach within

::
in the RTTOV v13 framework.

This approach enforces
:
A
::::::

bilevel
:::::::::::

optimization
::::::::

approach
::

is
:::::

used
::
to

:::::
select

::::
the

::::::
optimal

::::::::::::
regularization

:::::::::
parameter,

::::::::::
employing

:::::::
different

:::::
model

:::::::::
validation

::::::
criteria:

::::
one

:::::
based

::
on

::
ℓ0:::::::::

regression
:::
and

:::::::
another

::
on

:::
the

::::::::
Bayesian

::::::::::
Information

::::::::
Criterion

:::::
(BIC).

::::::
These

:::::::::
alternatives

:::::::
enforce

:
significant sparsity across all parameters, leading to a substantial reduction in

::::::
optical

:::::
depth

:::::::::
regression665
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:::::::::
parameters,

:::::::::::
substantially

::::::::
reducing

:
the computational cost of the Fast-RT model without significant loss of

::::::::::::
compromising

accuracy, demonstrating strong potential for satellite data assimilation problems.
::::::::::
applications.

:

Validation experiments were conducted on the infrared channels of the VIIRS instrument, with similar results expected for

all multispectral infrared sounders
:::::::
M-bands

:::
for

:::
the

:::::
VIIRS

::::::::::
instrument.

::::::::
Different

::::::::
validation

::::::
criteria

:::::
were

::::::::::
considered,

::::::::
including

::::::::::
transmitance

::::::
fitting

::::::
against

:::::::::
LBLRTM

:::::::::::
transmitance,

:::::::::
brightness

:::::::::::
temperature

:::::
fitting

:::::::
against

::::::::
LBLRTM

::::::::::::
transmitance,

::::
and

:::
the670

::::::::
difference

:::::::
between

:::::::::
brightness

::::::::::
temperature

:::
and

:::
the

::::::::::
instrument’s

:::::
Noise

:::::::::
Equivalent

:::::
Delta

:::::::::::
Temperature.

:::
The

::::::
results

::::
show

::::::::::
consistency

::::
with

::::::
RTTOV

::::
v13,

:::::
while

:::::::::
providing

::::::::
improved

::::::
runtime

:::::::::::
performance

::
in

:::
the

:::::::::
evaluation

::
of

::::::::::::
parameterized

:::::::::::
transmitances.

The induced sparsity enables the automatic exclusion of
::::::::::
automatically

::::::::
excludes

:
gases with negligible absorptivity in a

channel, identifies pressure levels where gases exhibit significant radianceabsorption
::::::::::
significantly

::::::
absorb

::::::::
radiance, highlights

the most relevant predictors for each gas type, and classifies gases as either fixed or variable. This technique is particularly675

beneficial
:::::::::::
advantageous for multispectral instruments with channels where multiple gases strongly correlate with

:::::
exhibit

::::::
strong

:::::::::
correlations

::
in
:
radiance absorption, especially in large-scale variable retrievals for inverse problems. The proposed method can

:::
may

:
be extended to other Fast-RT models, such as the Community Radiative Transfer Model (CRTM)

::::::
CRTM, and to other

satellite instruments, such as the Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder

(CrIS), to improve
:::::::
enhance

::::
both the computational efficiency of the radiative transfer model

:::::::
radiative

:::::::
transfer

::::::
models

:
and the680

accuracy of the retrieved atmospheric profiles.
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Appendix A: Sparsity Pattern for RTTOV13+SI+LASSO
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Figure A1. Sparsity pattern for channels M7 to M11 in RTTOV13+SI+LASSO
:::::
L0-L1

::
for

:::::::::
ϵ1 = 10−6.
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Figure A2. Sparsity pattern for channels M13 to M16 in RTTOV13+SI+LASSO
:::::
L0-L1

::
for

:::::::::
ϵ1 = 10−6.
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Appendix B:
:::::::
RTTOV

::
v3

::::::::::
Predictors

:::
N0

:::
FIX

::::
H2O

::
O3 :::

CO2:

:
1

:::::
sec(θ)

::::::::::
(sec(θ)Wr)

2
: ::::::::

sec(θ)O3r ::::::::::
sec(θ)CO2r

:
2

::::::
sec2(θ)

: ::::::::
sec(θ)Ww: ::::::::::

√
sec(θ)O3r :::

T 2
r
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3

:::::::
sec(θ)Tr ::::::::::

(sec(θ)Ww)
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: :::::::::::

sec(θ)O3rδT: :::::::
sec(θ)Tr:

:
4

:::::::
sec(θ)T 2

r : ::::::::::
sec(θ)WrδT: ::::::::::::

sec(θ)O3r/Ow :::::::
sec(θ)T 2

r:

:
5

::
Tr: ::::::::::

√
sec(θ)Wr :::::::::::

(sec(θ)O3r )
2
: ::

Tr

:
6

:::
T 2
r ::::::::::

4
√
sec(θ)Wr :::::::::::

sec(θ)O2
3rOw: :::::::

sec(θ)Tw:

:
7

:::::::
sec(θ)Tw: ::::::::

sec(θ)Wr ::::::::::::::::::

√
sec(θ)O3rO3r/Ow :::::::::::::

(sec(θ)CO2w)
2

:
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:::::::
sec(θ)T 3

r : ::::::::::::
(sec(θ)Ww)
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√
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√
sec(θ)CO2r

::
10

: :
1

::::::::::::::
(sec(θ)Wr)

1.5
δT

: :::::::::::::::::::
sec(θ)O3r

√
sec(θ)O3w: :::

T 3
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4
√
sec(θ)CH4r

:
7

::::::::::
sec(θ)N2Ow: :::::::::::::::

sec(θ)COrδT |δT | :::::::::::
sec(θ)CH4wt:

:
8

:::::::::::
sec(θ)N2Owt: :::::::::::::::

sec(θ)CO2
r/COw ::::::

CH4wt

:
9

:::::::::::::::::::::::

√
sec(θ)N2OrN2Or/N2Ow: :::::::::::::::::::::

√
sec(θ)COrCOr/COw :::::::::::::

(sec(θ)CH4w)
2
:

::
10

: ::::::::::::::
(sec(θ)N2Owt)

2
:::::::::::::::::
sec(θ)CO2

r/
√
COw ::::::::::

sec(θ)CH4w:

::
11

: ::::::::::::::
(sec(θ)N2Owt)

3
:::::::::::::
(sec(θ)COw)

0.4
: :::::::::::::::::::::::

√
sec(θ)CH4rCH4r/CH4w:

::
12

: ::::::::::::::
sec2(θ)N2OwtδT :::::::::::::

4
√
sec(θ)COwt :::::::::::::::

(sec(θ)CH4w)
1.25

:

::
13

: :
-
: :::::::::::::::

sec2(θ)COrCOw :
-
:

::
14

: :
-
: :::::::::

sec(θ)COw: :
-
:

::
15

: :
-
: ::::::::::

sec(θ)COwt: :
-
:

::
16

: :
-
: ::::::::::::

(sec(θ)COw)
2
: :

-
:

:::
OD

::::
1–12

::::
1–13

: ::::
1–11

:::::
COR

:
7,

::
8,

:::
10,

:::
11,

:::
12

::
12,

:::
14,

:::
15,

:::
16

::
7,

::
9,

:::
10,

::
12

:

Table B1.
:::::::
Predictors

:::
for

::::::
RTTOV

:::
v13,

:::::::::::::::::
(Saunders et al., 2017).
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::::::::::::::::::::::::::::
pδp(l) = p(l+1)(p(l+1)− p(l)),

: :::::::::::::::::::::::
pδp(0) = p(1)(p(2)− p(1)),

:

:::::::::::::::::::::::::::
T (l) =

1

2
(T prof(l)+T prof(l+1)),

: :::::::::::::::::::::::::::
T ∗(l) =

1

2
(T ref(l)+T ref(l+1)),

::::::::::::
Tr(l) =

T (l)

T ∗(l)
,
:

::::::::::::::::::::::::::
Tw(l) =

∑l
i=1 pδp(l− 1)T (l)∑l
i=1 pδp(l− 1)T ∗(l)

,
: ::::::::::::::::::

δT (l) = T (l)−T ∗(l),
:

::::::::::::::::::::::::::::
G(l) =

1

2
(Gprof(l)+Gprof(l+1)),

:::::::::::::::::::::::::::
G∗(l) =

1

2
(Gref(l)+Gref(l+1)),

: :::::::::::::
Gr(l) =

G(l)

G∗(l)
,

:::::::::::::::::::::::::::
Gw(l) =

∑l
i=1 pδp(l− 1)G(l)∑l
i=1 pδp(l− 1)G∗(l)

,
::::::::::::::::::::::::::::::::
Gwt(l) =

∑l
i=1 pδp(l− 1)T (l)G(l)∑l

i=1 pδp(l− 1)T ∗(l)G∗(l)
.

:::::
Where

::::
p(l)

::
is
::::

the
:::::::
pressure

:::::
(hPa)

::
at
:::::

level
::
l,

:::::::
T prof(l)

::
is

:::
the

::::::::::
temperature

::::
(K)

::
at

:::::
level

:
l
:::

of
:::
the

:::::
input

::::::
profile,

::::::
T ref(l)

::
is
::::

the685

::::::::::
temperature

:::
(K)

::
at

::::
level

:
l
::
of

:::
the

:::::::
reference

::::::
profile

:::::
which

::
is

:::
the

:::::
mean

:::
over

:::
the

:::::::
training

:::::
profile

::::
set,

::::::::::::::::::::::::::::::::::::
G ∈ {W =H2O,O3,CO2,N2O,CO,CH4}

::::::::
represents

:::
gas

::::::::::::
concentration

::::::
(ppmv

::::
over

:::
dry

::::
air),

::::::
Gprof(l)

:::
are

::::
the

:::
gas

::::::::::::
concentrations

::
at

::::
level

::
l
::
of

:::
the

::::
input

::::::
profile

::::
and

::::::
Gref(l)

::
are

:::
the

::::
gas

::::::::::::
concentrations

::
at

::::
level

:
l
::
of

:::
the

::::::::
reference

::::::
profile

:::::
which

::
is

:::
the

:::::
mean

::::
over

:::
the

:::::::
training

:::::
profile

:::
set.

:
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