
Response to Reviewer 1

We would like to sincerely thank the reviewer for the thorough evaluation of our manuscript
and for the constructive comments and suggestions provided. We deeply appreciate the
time and effort devoted to reviewing our work. The feedback has contributed significantly to
improving the quality and clarity of the manuscript. Below, we address each of the comments
in detail.

Major Comments

• Reviewer Comment: First, while the authors provide general background
on radiative transfer models and cite CRTM and previous versions of
RTTOV, there is no direct comparison or benchmarking of their approach
against existing fast RTMs. This omission limits the reader’s ability to
evaluate the benefits or drawbacks of the proposed method relative to es-
tablished techniques.

Authors Response: The referee is right in noting that a benchmark comparison
between established fast RT models—such as CRTM and RTTOV with LASSO-induced
sparsity—is of interest. However, this falls outside the intended scope of the present
study. Such a comparison would require a dedicated and thorough analysis, given the
fundamental differences in their core parameterization strategies: RTTOV employs an
additive gas-by-gas optical depth parameterization, whereas CRTM relies on a joint,
global parameterization of gas absorptions.

The main goal of this work is a methodological approach to evaluate and improve
the computational efficiency of the optical depth parameterization in the RTTOV v13
model. This is achieved by replacing the standard least-squares regression with a
LASSO regression to induce sparsity, using inferential statistical techniques to discard
gases that are not relevant for the numerical approximation of transmittances, and
assessing the advantages and limitations of this approach within the RTTOV scheme.

Nevertheless, we acknowledge the value of such a comparative study and aim to extend
our approach in the future to develop sparsity-driven parameterizations for joint gas
absorption schemes, which may be applicable to CRTM or similar frameworks.

• Reviewer Comment: Second, the method relies on threshold parameters to
determine the relevance of gases, yet there is no guidance or sensitivity
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analysis provided on their selection. Since the method’s validity depends
on safely discarding certain absorbers, this is a critical omission..

Authors Response: We agree that performing a sensitivity analysis on the inclusion
or exclusion of individual gases can provide additional insight into their relevance, as has
been done in other studies that assess gas importance based on brightness temperature
variability.

In our approach, the decision to discard a gas is not based on arbitrarily chosen statisti-
cal thresholds, but rather on the structure of RTTOV’s optical depth parameterization.
This decision is implemented automatically through a statistical framework based on
confidence intervals, as detailed in Subsection 4.1.

Specifically, we compare the results of RTTOV using all gases that exhibit absorption
lines in a given channel against those obtained using only the subset selected via our
method. In our statistical thresholding approach, we construct confidence intervals
for the transmittance at each pressure level for each gas, aiming to contain the true
transmittance value with a high confidence level of p = 1 − α = 1 − 10−6. This is a
deliberately strict threshold, ensuring reliable inferences.

A gas is considered negligible at a given pressure level only if two conditions are si-
multaneously satisfied: (1) the confidence interval length (or standard deviation of
transmittance) is smaller than a relative tolerance ϵ1 = 10−6, which is stringent con-
sidering transmittance lies within the range (0, 1]; and (2) the corresponding optical
depth is smaller than ϵ2 = 10−6, allowing us to approximate the transmittance by 1
with a relative error less than ϵ2, as explained in Case III (2.2.5). Both ϵ1 and ϵ2 are
fixed relative tolerances, and any future adjustment would likely involve even stricter
values.

For a gas to be entirely discarded, both conditions must be satisfied across all pressure
levels, meaning that the gas must exhibit transmittance values close to 1 throughout
the atmospheric column with a confidence probability of (1−α)100 ≈ 0.9999 (assuming
independence between layers, consistent with the RTTOV parameterization scheme).
This constitutes a qualitative assessment informed by rigorous statistical inference, and
not a direct exclusion based solely on the numerical values of threshold parameters.

Authors Change: In the revised version of the manuscript, we extend our numerical
results using smaller statistical threshold tolerances, from 10−6 to 10−9, which allow
for better fits to LBLRTM output and results comparable to RTTOV v13, while main-
taining a good sparsity level that translates into reduced runtime. We provide the
corresponding analysis for these smaller tolerances.

Reviewer Comment: Additionally, the manuscript does not discuss sce-
narios where the assumptions of the method might break down — for
example, in unusual atmospheric compositions, extreme pollution events,
or volcanic emissions.

Authors Response: This is an important and insightful point for the development
of a robust Fast-RT framework. The proposed approach could indeed be extended to
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handle more complex scenarios, such as treating SO2 as a variable gas as in RTTOV
for volcanic environments (rather than a fixed gas as in our current setting), incorpo-
rating additional aerosol types to account for extreme pollution events, or refining the
treatment of the water vapor continuum, which is not included in our current configu-
ration. Nonetheless, the core idea of our methodology—based on a separation between
six variable gases and 22 fixed gases identified as the dominant absorbers—remains
valid as the foundation for the proposed absorption parameterization scheme. These
potential extensions represent promising directions for future development within the
same methodological framework.

As stated in our response to the first comment, the present work is primarily a method-
ological proposal aimed at improving the computational performance of RTTOV by
introducing a sparse regression-based optical depth parameterization for gas absorp-
tion and enabling automatic gas selection. The study is not intended to enhance the
classical RTTOV performance under diverse or extreme atmospheric conditions. For
such considerations, we refer to the official RTTOV v13 Science and Validation Report
by Saunders (2020), which defines the core assumptions and validation framework of
the model.

• Reviewer Comment: Third, LASSO parameter tuning is conducted via a
basic grid search, but the authors do not provide any justification for
this choice nor discuss why alternative standard methods (such as cross-
validation) were not pursued.

Authors Response: We appreciate the reviewer’s insightful comment regarding our
use of grid search to tune the LASSO regularization parameter. Our initial approach
aimed to provide a baseline method that is straightforward and widely understood. We
acknowledge that alternative techniques, such as cross-validation, are commonly used
for parameter tuning. In our specific context, cross-validation is not directly applicable.
A brief discussion of this point has been added in the revised manuscript.

Authors Changes: In the revised version of the manuscript, we replace the grid search
strategy with a bilevel optimization one to optimize the regularization parameter in the
LASSO regression model. We propose two variants of the bilevel approach: one inspired
by model selection criteria such as the Bayesian Information Criterion (BIC), and the
other using an ℓ0 regression for the upper level of the bilevel optimization. One of the
authors has worked extensively on these approaches in recent years, and they provide
promising avenues for efficiently and reliably selecting the optimal regularization pa-
rameters. We also provide extensive numerical experiments demonstrating significant
improvements in both model fitting and runtime using this approach.

• Reviewer Comment: Finally, while the authors claim that their approach
leads to a “substantial reduction in computational cost,” no quantitative
analysis is provided to support this. There are no measurements or esti-
mates of runtime or memory savings, nor is there any discussion of what
constitutes an acceptable or unacceptable reduction in accuracy for prac-
tical applications. The results show mixed performance — with improved
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RMSE in some VIIRS bands but increased errors in others — but there
is no clear guidance on when the method is expected to perform well or
poorly.

Author Response: Our claim is grounded in the observed sparsity level achieved in
the transmittance parameterization. Specifically, the reduction in runtime for evaluat-
ing the parameterized transmittance function is directly proportional to the reduction
in the number of active parameters, as fewer predictor evaluations are required. Sim-
ilarly, memory usage is also reduced proportionally; however, in this context, memory
savings are of limited practical relevance due to the inherently low memory require-
ments of a full parameterization. In the revised version of the manuscript, we refine
Section Sparsity pattern in the parametrization of optical depths to improve clarity
by incorporating a quantitative comparison between the percentage reduction in the
number of parameters and the corresponding decrease in runtime.

Regarding model performance, we agree that the RMSE of transmittance and BT alone
are insufficient to determine whether a Fast-RT model performs well or poorly. For this
reason, a second level of validation was included in the revised manuscript, consisting
of the computation of relative errors in BT estimation: average between O(10−5) and
O(10−3), and maximum relative errors which are between O(10−2) and O(10−4). From
this error, M7 performs poorly for all methods due to an unacceptably large error;
the rest of the methods perform comparably to standard RTTOV. These errors are
obtained by comparing the BTs predicted by the Fast-RT models against those derived
from radiances computed using a Line-by-Line model, which serves as the reference
or ’ground truth’. This approach aligns with the core objective of Fast-RT methods:
approximating the output of LBL models.

Authors Changes: In the revised version of the manuscript:

1. We include a comparison of the runtime with the sparsity induced by the different
proposed methods, showing the percentage reduction in time relative to the RT-
TOV v13 scheme as a function of the induced sparsity when varying the statistical
threshold tolerance. The corresponding analysis is also provided.

2. The water vapor continuum absorption was disabled in the LBLRTM output to
clarify the comparison and improve consistency between simulations, since this
absorption component is not explicitly parameterized in the Fast-RT models under
evaluation. This modification enables a more accurate benchmarking of the line-
by-line reference against the Fast-RT approximations for a baseline model.

3. Additionally, we included an analysis comparing the brightness temperature resid-
uals with the Noise-Equivalent Differential Temperature (NEdT) of the M-Band
VIIRS sensors. This evaluation framework serves as an effective diagnostic for
validating the performance of the Fast-RT schemes and provides guidance on the
sensitivity of the different models to simulate small radiances, even those that
cannot be measured with instruments.

These modifications, along with the extensive experiments and different levels of vali-
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dation, show results more consistent with those obtained using the standard RTTOV
v13, and demonstrate the potential of our proposed methods for simulating radiances
with practical applications in satellite data assimilation.

Structural Comment

Reviewer Comment: The manuscript currently devotes substantial space in Sec-
tions 2 and 3 to background material on radiative transfer theory, line-by-
line modeling, and general Fast-RT model formulations. While this content is
clearly written and technically accurate, much of it summarizes well-established
concepts that are not essential for understanding the specific methodological
contribution of this paper. The level of detail presented here feels more ap-
propriate for a thesis or tutorial-style document rather than a journal article
focused on a specific methodological advance. To improve readability and fo-
cus, I recommend substantially condensing these sections in the main text or
moving parts of them to an appendix. This would allow the reader to reach the
core methodological development (Section 4) more efficiently, without sacrific-
ing completeness for readers who may need additional background.

Author Response: We agree with this observation. In the revised manuscript, we present
the relevant theoretical background on radiative transfer and Fast RT models in a more
concise manner, in order to improve readability without sacrificing the necessary foundations
to understand the methodological development.

Authors Changes: Sections 2 and 3 were combined into a single section in a more compact
and concise manner.

Minor Comments

• L.10: retrieval → retrievals
Done.

• L.28: model → modeling
Done.

• L.38: add PCRTM reference:
Liu, X., Smith, W. L., Zhou, D. K., Larar, A. M., Huang, H.-L., Ma, X., & Strow, L. L.
(2006). Retrieval of atmospheric profiles and cloud properties from IASI spectra using
super-channels. Atmospheric Chemistry and Physics, 6, 255–265. https://doi.org/10.5194/acp-
6-255-2006
Done.

• L.39: Even though RTTOV is more efficient than line-by-line models, it remains pro-
hibitively expensive for operational use in small to medium-sized agency use cases.
Done.

• L.42: RT model, similar to models based on neural networks.
Done.
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• L.43: model further less computationally
Done.

• L.44: These decisions must account for the multitude of possible combinations and
trade-offs, which is why large meteorological agencies rely on and are typically made
by expert teams to identify an optimal configuration of parameters and gases for the
Fast RT model.
Done.

• L.50: cite or remove ‘various large-scale applications’
Response: We have added related citations concerning large-scale applications of the
LASSO problem.

• L.51–57: mentions multiple papers that perform ‘variable selection’ without much con-
text. Not sure what to do with this information.
Response: Since the paragraph begins with ’In the context of radiative transfer,’ the
citations in lines 51–5 refer to large-scale applications of LASSO problem.

• L.58: specify what those ‘parameters’ are in Fast RT models.
Changes: ...we target the automatic selection of gases and optical depth predic-
tors parameters in Fast RT models by inducing sparsity in the weight predictors
parameters using LASSO regression.

• L.64: Has LASSO been applied to other RTM models?
Response: To the best of the authors’ knowledge, the use of LASSO regression specif-
ically for modeling optical depth or transmittance within radiative transfer models has
not been previously documented in the literature.

• L.65: Remove section 1.1 title.
Done.

• L.82: what is ‘carbon powder’?
Response: “Carbon powder” is a fine particulate form of elemental carbon, typically
produced by incomplete combustion or pyrolysis, and includes substances like soot and
black carbon that contribute to atmospheric aerosols.

• L.135: ml is de the number
Done.

• L.245: how was that value chosen? mse(λ) < 2mse(0)
Response: This represents a relative tolerance that specifies how close the mean
squared error (MSE) of the LASSO solution should be to that of the ordinary least
squares solution. Since mse(λ) > mse(0) > 0, the condition can be rewritten as
mse(λ)−mse(0)

mse(0)
< 1. We then select the largest value of λ among the candidates that

satisfies this inequality. This was replaced by a model selector based on a bilevel ap-
proach.

• L.291–299: move to appendix
Response We thank the reviewer for the suggestion. However, we prefer to keep
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this description in the main text, as it is essential for understanding the experimental
settings and for maintaining clarity and reproducibility.

• L.375: “This suggests that the inclusion of statistical thresholds and LASSO regression
in RTTOV v13 slightly affects the accuracy of the transmittance approximation, either
improving or worsening it, but the overall variation in error remains negligible.”
The error in M7 and M8 increases by about 40% with the LASSO method. Why is
that negligible?
Response: We acknowledge the increase in error for M7 and M8; however, the ab-
solute values of the errors remain small. The overall accuracy of the transmittance
approximation is not significantly affected, so we consider the variation to be minor in
practical terms.

• L.395: Don’t understand the ‘order of magnitude’ comparison. For M10 the error
increases from 0.89 to 1.4
Response: We agree with the observation. The error difference in M10 does not
represent an order of magnitude. Therefore, this channel has been excluded from the
statement in the revised manuscript.

• L.406: “These findings suggest that while the proposed methods are generally compara-
ble to RTTOV v13 in terms of accuracy, there are specific channels where improvements
or further adjustments in the statistical threshold parameters may be necessary to en-
hance precision if needed.”
This work should have been part of this study.
Response: We agree with the observation. We have added the numerical results for
different values of ϵ1 in the revised manuscript.
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Response to Reviewer 2

We would like to sincerely thank Reviewer 2 for their thorough evaluation of our manuscript
and for the constructive comments and suggestions provided. We deeply appreciate the
time and effort devoted to reviewing our work. The feedback has contributed significantly to
improving the quality and clarity of the manuscript. Below, we address each of the comments
in detail.

Major Comments

• Reviewer Comment: Application to satellite data assimilation: The au-
thors suggest that their approach is intended for use in satellite data as-
similation. However, they do not present any data assimilation experi-
ments. Such experiments are important, as there may be problems when
using this approach in such applications. In data assimilation, the differ-
ence between observed satellite radiances and those simulated from model
state variables (via RTTOV) is used to update the relevant model state
variables. If LASSO induces sparsity by zeroing out many regression pa-
rameters, it removes the sensitivity of radiances to certain model variables
or layers. As a result, assimilating those radiances may influence fewer
aspects of the model state in terms of both variable type and vertical level.
This could be undesirable. Therefore, data assimilation experiments are
necessary to assess how the induced sparsity affects the assimilation of
radiances.

Authors Response: We thank the reviewer for this insightful and important com-
ment, which touches on a key consideration in the practical application of our method.
We fully agree that the use of sparsity-inducing models such as ours in the context of
satellite data assimilation requires careful evaluation, especially regarding the sensitiv-
ity of simulated radiances to the underlying model state variables.

As correctly pointed out, LASSO-based regularization, by setting many regression co-
efficients to zero, may reduce the sensitivity of the forward model to certain variables or
atmospheric layers. This could, in turn, limit the ability of the data assimilation system
to propagate observational information through the model state, both vertically and
across variable types. Therefore, conducting assimilation experiments is indeed crucial
to assess how this sparsity impacts the effectiveness of radiance assimilation.
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To address this concern and strengthen the manuscript, we incorporate a new section
in the revised version, where we evaluate the performance of Fast-RT as a forward
operator. While a full data assimilation experiment is beyond the scope of the present
study, this first evaluation step aims to provide a diagnostic of the model’s realism in
simulating satellite radiances.

In particular, we compare the brightness temperatures (BTs) produced by Fast-RT
to those obtained from high-fidelity simulations from LBLRTM. The key criterion we
propose is that the absolute difference in BT must be lower than the instrument’s noise
level: the Noise Equivalent Delta Temperature (NEdT) for the thermal emissive bands
(M12–M16), and the Noise Equivalent Delta Radiance (NEdR) for the solar reflective
bands (M7–M11). It is clear that any radiance below the instrument noise cannot be
detected by it, so the assimilation of these satellite data is sufficient as long as the
models, whether Fast-RT or line-by-line, are as accurate as what the instrument can
measure.

We consider that the percentage of atmospheric profiles for which this condition is
satisfied constitutes a meaningful and practical metric to evaluate the quality of the
forward model. A high proportion of profiles with errors below these thresholds in-
dicates that the model error is smaller than the sensor noise and, therefore, that the
simulated radiances are sufficiently accurate for use in satellite retrievals and poten-
tially for data assimilation. This criterion provides a quantitative benchmark aligned
with the capabilities of the instrument and the intended application.

We acknowledge that this evaluation does not replace the need for actual data assim-
ilation experiments, which will be an essential next step in future work. Nevertheless,
we believe that the proposed analysis offers a relevant and informative proxy for as-
sessing Fast-RT’s suitability in assimilation contexts and complements the objectives
of reducing computational cost in operational or research-oriented problems.

We clearly state these points in the revised manuscript, along with the corresponding
validation with respect to the VIIRS instrument noise level, and include the results of
this performance assessment as a foundation for further developments.

Authors Changes: We included exhaustive numerical results comparing the bright-
ness temperature residuals with the Noise-Equivalent Differential Temperature (NEdT)
of the M-Band VIIRS sensors. The results show that our proposal is efficient and
provides simulations comparable to RTTOV in its standard form, while also offering
guidance on the sensitivity of the different models to simulate small radiances, even
those that cannot be measured with instruments.

• Reviewer Comment: Further explanation and interpretation of results: In
Sections 5.3 and 5.4, the authors provide a numerically detailed discussion
of the approximation errors introduced by LASSO. However, it would be
beneficial to provide a theoretical interpretation of these results. Specifi-
cally, is there a link between the approximation error and the number of
non-zero parameters and the characteristics of individual channels? Do
the authors believe that the observed variations in performance are largely
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due to random effects?

Authors Response: We thank the reviewer for this insightful comment, which deep-
ens the understanding of our model’s behavior and highlights an important area for
further analysis. We agree that providing a theoretical interpretation of the approx-
imation errors induced by LASSO regularization is essential, especially in relation to
the sparsity level and the specific characteristics of each spectral channel.

In particular, and in connection with our first reviewer comment on evaluating model
errors relative to instrument noise, we extend the revised manuscript to include a
comprehensive theoretical discussion focused on how the inclusion or exclusion of gases
and predictors affects the approximation error. This discussion will clarify how the error
depends on the number of non-zero regression parameters and the modeling choices
made. We emphasize that the observed differences in error between RTTOV and our
Fast-RT model are largely attributable to the tuning of the tolerance parameters ϵ1
and ϵ2. To demonstrate this, we include more exhaustive experiments varying the
statistical threshold tolerance, showing that reducing these thresholds results in lower
approximation errors and highlighting the trade-off between achieving sparsity and
maintaining accuracy.

Furthermore, for channels close to the visible spectrum (solar reflective bands), the
larger errors observed with respect to LBLRTM are not primarily caused by the sparsity
induced by LASSO, but rather by simplifications in our radiative transfer model—most
notably, the omission of the solar radiation component. Addressing this limitation by
explicitly incorporating solar radiation effects is part of our planned future work, which
we expect will substantially improve the physical realism and accuracy of our model in
these spectral regions.

Authors Changes: The water vapor continuum absorption was disabled in the LBLRTM
output to clarify the comparison and improve consistency between simulations, since
this absorption component is not explicitly parameterized in the Fast-RT models under
evaluation. This modification enables a more accurate benchmarking of the line-by-line
reference against the Fast-RT approximations for a baseline model. Under these set-
tings, we extend our numerical results by using smaller statistical threshold tolerances,
from 10−6 to 10−9 for each proposal, which allow for better fits to the LBLRTM out-
put and results comparable to RTTOV v13, while maintaining a good level of sparsity
that translates into reduced runtime. We provide the corresponding analysis for these
smaller tolerances.

These modifications and the extension of the numerical results, together with the ex-
tensive experiments and different levels of validation, yield outcomes that are more
consistent with those obtained using the standard RTTOV v13 and demonstrate the
potential of our proposed approach for simulating radiances with practical applications
in satellite data assimilation.

• Reviewer Comment: Acronyms: There are lots of acronyms used in the
paper. While some might be familiar to many readers, it would be helpful
if the authors could provide the full name where they first appear. This
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applies to both the abstract and the main text.

Authors Response: We thank the reviewer for this helpful suggestion. We acknowl-
edge that the excessive use of acronyms can hinder readability, especially for readers
who may not be familiar with all terms.

Authors Changes: In the revised manuscript, we will ensure that all acronyms are
fully spelled out with their corresponding definitions at their first appearance. This
will improve the clarity and accessibility of the paper.

• Reviewer Comment: Formatting issue with citations: This issue appears
in many places (e.g., lines 20-24, lines 32-35 and lines 54-57). For exam-
ple, on line 54, it should be “. . . optical images (Hong and Kong, 2021)
. . .

Authors Changes: We thank the reviewer for identifying these specific instances.
We carefully revised the manuscript to correct the mentioned issues and ensure that
citations and phrasing are accurate and consistent throughout the text.

Specific comments:

1. Line 1: This sentence is slightly misleading. In data assimilation, radiative transfer
models map model state variables (e.g., temperature) onto the radiances measured
by the satellite. It is the radiances that are assimilated, rather than the retrieved
temperature.
Response: The first sentence of the abstract has been revised to: The assimilation of
satellite spectral sounder data requires fast and accurate radiative transfer models for
retrieving surface and atmospheric variables relies on fast and accurate radiative
transfer models to simulate satellite radiances.

2. Line 11: Move “(RT)” forward to be after “radiative transfer”
Done.

3. Line 11: Again, this sentence is a bit confusing. What the authors describe in the
following two paragraphs is exactly what the reviewer expected!
Changes: In satellite data assimilation and remote sensing retrieval, as well as their ap-
plications in numerical weather prediction (NWP), the radiative transfer equation (RT)
is the principal model used to retrieve global atmospheric variables, such as temperature
and trace gases concentrations, including water vapor, ozone, carbon dioxide, and other
atmospheric constituents. (RT) equation is the forward model relating atmo-
spheric state variables to satellite-observed top-of-atmosphere (TOA) radi-
ances across different electromagnetic spectrum channels.

4. Lines 39-40: Even for large centres where RTTOV is being used operationally, the pro-
posed approach has benefits if it reduces computation costs while maintaining accuracy.
Response: We appreciate the reviewer’s comment. Although RTTOV is used opera-
tionally in large centers, our approach offers computational savings while maintaining
accuracy, benefiting both large centers and smaller agencies.
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5. Line 64: Could the authors provide slightly more clarification at line 50, where it states
that LASSO regression has been applied in the context of radiative transfer in Cardall
et al. (2023).
Response: The input data used in the mentioned reference were not raw radiance
values, but rather reflectance products and other variables derived from different Land-
sat spectral bands, including ratios and transformations relevant for chlorophyll-a and
turbidity detection. While the approach does not model radiative transfer explicitly, it
leverages empirical relationships between surface reflectance and in-water constituents.
Changes: LASSO regression was applied by Cardall et al. (2023) to improve and
estimate parameters in water quality monitoring models with optically complex properties
to estimate water quality parameters such as clarity, temperature, and
chlorophyll-a, based on correlations with in situ measurements and near-
coincident Landsat spectral data, with a focus on model explainability.

6. Section 1.1: The reviewer recommend reformatting this subsection to the last paragraph
of Section 1, as there is no Section 1.2.
Done.

7. Line 74: Reference for the monochromatic radiative transfer equation (Equation 1).
Response: referenced to Weinreb et al. (1981).

8. Line 134: Could the authors provide an example of the predictors for a given instrument
and gas?
Response: Appendix 2 has been added to provide the RTTOV v13 predictors for the
gases considered in this study.

9. Equation (12): The second case is confusing because it states that d1 = d̄1. How is d1
on the right-hand calculated?
Response: If this case occurs, i.e., transmittance shows low variability with respect
to atmospheric variables but is not close to 1, then d̄1 = − ln(τ̄1), where τ̄1 is the mean
transmittance computed across all 83 profiles and all 6 view angles at level 1 of the
discretized atmospheric model.

10. Line 232: Readers could benefit from some further discussion on the selection of the
thresholds ϵ1 and ϵ2.
Response: These statistical threshold tolerances should be close to zero. This clari-
fication is included in the manuscript, and the numerical experiments show results for
different values of these tolerances. Moreover, a corresponding analysis is carried out
to assess the impact of varying these parameters.

11. Line 245: Why is a factor of 2 used?
Response: This represents a relative tolerance that specifies how close the mean
squared error (MSE) of the LASSO solution should be to that of the ordinary least
squares solution. Since mse(λ) > mse(0) > 0, the condition can be rewritten as
mse(λ)−mse(0)

mse(0)
< 1. We then select the largest value of λ among the candidates that sat-

isfies this inequality. This was replaced, in the revised manuscript, by a model selector
based on a bilevel optimization approach.
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12. Line 261: The full name of VIIRS should be provided earlier in the text.
Done. The full name of VIIRS has been added in line 62.

13. Line 267: What does “SRF” stand for? Does it stand for “Spectral Response Function”?
Change: Spectral Response Function (SRF). This is clarified in the revised version of
the manuscript.

Minor Comments

1. Line 135: “de number of predictor” → “the number of predictors”
Done.

2. Caption of Table 9: “Maximun Relative Errors” → “Maximum Relative Errors”
Done.

3. Line 172: “. . . predicted by the model (8).” → “. . . predicted by the model (Equation
8).”
Done.

4. Line 207: “. . . considering M angles and N atmospheric profiles . . . ” → “. . . consid-
ering N angles and M atmospheric profiles . . . ”
Done.

5. Line 264: “In this study, we use the VIIRS SRF J2 and can be downloaded from
the following link: . . . ” → “In this study, we use the VIIRS SRF J2, which can be
downloaded from the following link: . . . ”
Done.
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