Response to Reviewer 2

We would like to sincerely thank Reviewer 2 for their thorough evaluation of our manuscript
and for the constructive comments and suggestions provided. We deeply appreciate the
time and effort devoted to reviewing our work. The feedback has been invaluable and has
contributed significantly to improving the quality and clarity of the manuscript. Below, we
address each of the comments in detail.

Major Comments

e Reviewer Comment: Application to satellite data assimilation: The au-
thors suggest that their approach is intended for use in satellite data as-
stmilation. However, they do not present any data assimilation experi-
ments. Such experiments are important, as there may be problems when
using this approach in such applications. In data assimilation, the differ-
ence between observed satellite radiances and those simulated from model
state variables (via RTTOYV) is used to update the relevant model state
variables. If LASSO induces sparsity by zeroing out many regression pa-
rameters, it removes the sensitivity of radiances to certain model variables
or layers. As a result, assimilating those radiances may influence fewer
aspects of the model state in terms of both variable type and vertical level.
This could be undesirable. Therefore, data assimilation experiments are
necessary to assess how the induced sparsity affects the assimilation of
radiances.

Authors Response: We thank the reviewer for this insightful and important com-
ment, which touches on a key consideration in the practical application of our method.
We fully agree that the use of sparsity-inducing models such as ours in the context of
satellite data assimilation requires careful evaluation, especially regarding the sensitiv-
ity of simulated radiances to the underlying model state variables.

As correctly pointed out, LASSO-based regularization, by setting many regression co-
efficients to zero, may reduce the sensitivity of the forward model to certain variables or
atmospheric layers. This could, in turn, limit the ability of the data assimilation system
to propagate observational information through the model state, both vertically and
across variable types. Therefore, conducting assimilation experiments is indeed crucial
to assess how this sparsity impacts the effectiveness of radiance assimilation.



To address this concern and strengthen the manuscript, we will incorporate a new
section in the revised version where we evaluate the performance of Fast-RT as a forward
operator. While a full data assimilation experiment is beyond the scope of the present
study, this first evaluation step aims to provide a diagnostic of the model’s realism in
simulating satellite radiances.

In particular, we will compare the brightness temperatures (BTs) produced by Fast-RT
to those obtained from high-fidelity simulations from LBLRTM. The key criterion we
propose is that the absolute difference in BT must be lower than the instrument’s noise
level: the Noise Equivalent Delta Temperature (NEAT) for the thermal emissive bands
(M12-M16), and the Noise Equivalent Delta Radiance (NEdR) for the solar reflective
bands (M7-M11). It is clear that any radiance below the instrument noise cannot be
detected by it, so the assimilation of these satellite data is sufficient as long as the
models, whether Fast-RT or line-by-line, are as accurate as what the instrument can
measure.

We suggest that the percentage of atmospheric profiles for which this condition is satis-
fied constitutes a meaningful and practical metric to evaluate the quality of the forward
model. A high proportion of profiles with errors below these thresholds indicates that
the model error is smaller than the sensor noise and, therefore, that the simulated ra-
diances are sufficiently accurate for use in satellite retrievals and potentially for data
assimilation. This criterion provides a quantitative benchmark aligned with the capa-
bilities of the instrument and the intended application.

We acknowledge that this evaluation does not replace the need for actual data assim-
ilation experiments, which will be an essential next step in future work. Nevertheless,
we believe that the proposed analysis offers a relevant and informative proxy for as-
sessing Fast-RT’s suitability in assimilation contexts and complements the objectives
of reducing computational cost in operational or research-oriented inverse problems.

We will clearly state these points in the revised manuscript, along with the correspond-
ing validation with respect to the VIIRS instrument noise level, and include the results
of this performance assessment as a foundation for further developments.

Reviewer Comment: Further explanation and interpretation of results: In
Sections 5.3 and 5.4, the authors provide a numerically detailed discussion
of the approximation errors introduced by LASSO. However, it would be
beneficial to provide a theoretical interpretation of these results. Specifi-
cally, is there a link between the approximation error and the number of
non-zero parameters and the characteristics of individual channels? Do
the authors believe that the observed variations in performance are largely
due to random effects?

Authors Response: We thank the reviewer for this insightful comment, which deep-
ens the understanding of our model’s behavior and highlights an important area for
further analysis. We agree that providing a theoretical interpretation of the approx-
imation errors induced by LASSO regularization is essential, especially in relation to
the sparsity level and the specific characteristics of each spectral channel.



In particular, and in connection with our first reviewer comment on evaluating model
errors relative to instrument noise, we will extend the revised manuscript to include
a comprehensive theoretical discussion focused on how the inclusion or exclusion of
gases and predictors affects the approximation error. This discussion will clarify how
the error depends on the number of non-zero regression parameters and the modeling
choices made. We emphasize that the observed differences in error between RTTOV and
our Fast-RT model are largely attributable to the tuning of the tolerance parameters
€; and €5. To demonstrate this, we will include a table showing how reducing these
tolerance thresholds results in lower approximation errors, highlighting the trade-off
between achieving sparsity and maintaining accuracy.

Furthermore, for channels close to the visible spectrum (solar reflective bands), the
larger errors observed with respect to LBLRTM are not primarily caused by the sparsity
induced by LASSO, but rather by simplifications in our radiative transfer model-—most
notably, the omission of the solar radiation component. Addressing this limitation by
explicitly incorporating solar radiation effects is part of our planned future work, which
we expect will substantially improve the physical realism and accuracy of our model in
these spectral regions.

By including this theoretical analysis and clarifying these aspects, we aim to provide a
more complete understanding of the error behavior observed in our results and to set
the stage for ongoing improvements.

e Reviewer Comment: Acronyms: There are lots of acronyms used in the
paper. While some might be familiar to many readers, it would be helpful
if the authors could provide the full name where they first appear. This
applies to both the abstract and the main text.

Authors Response: We thank the reviewer for this helpful suggestion. We acknowl-
edge that the excessive use of acronyms can hinder readability, especially for readers
who may not be familiar with all terms. In the revised manuscript, we will ensure
that all acronyms are fully spelled out with their corresponding definitions at their first
appearance. This will improve the clarity and accessibility of the paper.

e Reviewer Comment: Formatting issue with citations: This issue appears
in many places (e.g., lines 20-24, lines 32-35 and lines 54-57). For exam-
ple, on line 54, it should be “... optical images (Hong and Kong, 2021)

Authors Response: We thank the reviewer for identifying these specific instances.
We will carefully review the manuscript to correct the mentioned issues and ensure that
citations and phrasing are accurate and consistent throughout the text.

Specific comments:

1. Line 1: This sentence is slightly misleading. In data assimilation, radiative transfer
models map model state variables (e.g., temperature) onto the radiances measured
by the satellite. It is the radiances that are assimilated, rather than the retrieved



temperature.
Response: The first sentence of the abstract has been revised to: The assimilation of

satellite spectral sounder data requiresfast-and-aceurateradiativetransfermodelsfor
retrievingsurface-and-atmospherievariables relies on fast and accurate radiative

transfer models to simulate satellite radiances from surface and atmospheric
state variables.

. Line 11: Move “(RT)” forward to be after “radiative transfer”
Done.

. Line 11: Again, this sentence is a bit confusing. What the authors describe in the
following two paragraphs is exactly what the reviewer expected!

Changes: In satellite data assimilation and remote sensing retrieval, as well as their ap-
phcatrons in numerical weather predlctlon (NWP) the radiative transfer equation{RFY

&Hﬂespheﬂeeeﬂsﬂmeﬁ%& (RT) equatlon is the forward model relatlng atmo—
spheric state variables to satellite-observed top-of-atmosphere (TOA) radi-

ances across different electromagnetic spectrum channels.

. Lines 39-40: Even for large centres where RTTOV is being used operationally, the pro-
posed approach has benefits if it reduces computation costs while maintaining accuracy.
Response: We appreciate the reviewer’s comment. Although RTTOV is used opera-
tionally in large centers, our approach offers computational savings while maintaining
accuracy, benefiting both large centers and smaller agencies.

. Line 64: Could the authors provide slightly more clarification at line 50, where it states
that LASSO regression has been applied in the context of radiative transfer in Cardall
et al. (2023).

Response: The input data used were not raw radiance values, but rather reflectance
products and other variables derived from different Landsat spectral bands, including
ratios and transformations relevant for chlorophyll-a and turbidity detection. While
the approach does not model radiative transfer explicitly, it leverages empirical rela-

tionships between surface reflectance and in-water constituents.
Changes LASSO regressron was apphed by Cardall et al. (2023) to mprove and

to estimate water quallty parameters such as clarity, temperature, and
chlorophyll-a, based on correlations with in situ measurements and near-
coincident Landsat spectral data, with a focus on model explainability.

. Section 1.1: The reviewer recommend reformatting this subsection to the last paragraph
of Section 1, as there is no Section 1.2.
Done.

. Line 74: Reference for the monochromatic radiative transfer equation (Equation 1).
Response: referenced to Weinreb et al. (1981).

. Line 134: Could the authors provide an example of the predictors for a given instrument



10.

11.

12.

13.

and gas?
Response: Appendix 2 has been added to provide the RT'TOV v13 predictors for the
gases considered in this study.

. Equation (12): The second case is confusing because it states that d; = dy. How is d;

on the right-hand calculated?

Response: If this case occurs, i.e., transmittance shows low variability with respect
to atmospheric variables but is not close to 1, then d; = — In(7;), where 7, is the mean
transmittance computed across all 83 profiles and all 6 view angles at level 1 of the
discretized atmospheric model.

Line 232: Readers could benefit from some further discussion on the selection of the
thresholds €; and e,.

Response: These statistical threshold tolerances should be close to zero. This clari-
fication is included in the manuscript, and the numerical experiments show results for
different values of these tolerances. Moreover, a corresponding analysis is carried out
to assess the impact of varying these parameters.

Line 245: Why is a factor of 2 used?

Response: This represents a relative tolerance that specifies how close the mean
squared error (MSE) of the LASSO solution should be to that of the ordinary least
squares solution. Since mse(A) > mse(0) > 0, the condition can be rewritten as
%{gf@(m < 1. We then select the largest value of A among the candidates that sat-
isfies this inequality. In the revised version of the manuscript, the Bayesian Information

Criterion is used as a model selection tool for the same purpose.

Line 261: The full name of VIIRS should be provided earlier in the text.
Done. The full name of VIIRS has been added in line 62.

Line 267: What does “SRF” stand for? Does it stand for “Spectral Response Function”?
Change: Spectral Response Function (SRF). This is clarified in the revised version of
the manuscript.

Minor Comments

1.

Line 135: “de number of predictor” — “the number of predictors”
Done.

. Caption of Table 9: “Maximun Relative Errors” — “Maximum Relative Errors”

Done.

. Line 172: “... predicted by the model (8).” — “... predicted by the model (Equation

8).”
Done.

Line 207: “... considering M angles and N atmospheric profiles ...” — “... consid-
ering N angles and M atmospheric profiles ...”

Done.



5. Line 264: “In this study, we use the VIIRS SRF J2 and can be downloaded from

the following link: ...” — “In this study, we use the VIIRS SRF J2, which can be
downloaded from the following link: ...”
Done.



