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Abstract. The development of laser spectroscopic analysers has revolutionized isotope hydrology, dramatically increasing 

accessibility and reducing the cost of sample analysis. Despite their substantial benefits, these instruments are known to suffer 

from spectral interferences caused by small organic molecules that can bias measurements of some samples. Previous research 

has characterized this problem and tested a range of solutions for eliminating, detecting, or correcting influence in experimental 

or natural samples, yet interlaboratory comparisons show that affected data are still being reported. Here, we use paired 10 

spectroscopic (Picarro L2130-i; CRDS) and mass spectrometric (IRMS) data from a diverse suite of soil and plant xylem water 

samples to characterize spectral interference effects on CRDS δ2H and δ18O data. Interference is minimal for soil water but 

widespread in plant samples, with 13% and 54% of samples exhibiting biases larger than 8‰ for δ2H and 1‰ for δ18O, 

respectively. We develop multivariate statistical models that use analyser-reported spectral features to correct for interference. 

These models account for 57% of the observed δ2H bias and 99% of the δ18O bias, and after correction the standard deviation 15 

of the CRDS-IRMS differences for plant samples (4.1‰ for δ2H and 0.4‰ for δ18O) was similar to that for soil samples. 

Applying the models to CRDS measurements of water extracted from 1176 plants and 693 soils collected across diverse 

ecosystems improves the correspondence between plant and source soil water values and shows strong taxonomic differences 

in the prevalence of spectral interference. Our results show that spectral interference remains a significant concern in 

ecohydrology, particularly for plant water extracted from many woody species. The success of our spectral correction models 20 

across a wide range of taxa and data generated from two different CRDS analysers suggests that post-hoc correction of these 

data may be a viable solution to the problem. 

1 Introduction 

The development of commercial laser spectroscopy instruments for the measurement of H and O isotopes in water has 

revolutionized the fields of isotope hydrology and ecohydrology by dramatically reducing the cost and increasing the 25 

accessibility of analyses (Lis et al., 2007; Berman et al., 2009; Gupta et al., 2009; Chesson et al., 2010; Munksgaard et al., 

2011).(Lis et al., 2007; Berman et al., 2009; Gupta et al., 2009; Chesson et al., 2010; Munksgaard et al., 2011). Despite the 

many advantages of these instruments, it was recognized early in their history that they may be susceptible to analytical bia s 

for samples that contain compounds, particularly low-weight organic molecules, with spectral absorption features that overlap 
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those of the water isotopologues (Brand et al., 2009)(Brand et al., 2009). This susceptibility is of particular concern in 30 

ecohydrological research, in which water is commonly extracted from soils and plant tissues, which may contain and contribute 

volatile organic compounds to the extracted sample. The potential impact of these impurities on laser-based isotope analyses 

has been documented extensively and has (understandably) contributed to scepticism of laser isotope analysis in ecohydrology 

and adjacent fields (West et al., 2010)(West et al., 2010). 

 35 

Since its recognition, the spectral interference problem has received substantial attention. This work has led to the proposa l of 

three types of workarounds that attempt to either eliminate interfering compounds prior to analysis, identify and cull affected 

measurements, or correct for interference during post-hoc data processing. Solutions involving elimination of interference 

include off-line chemical purification procedures (West et al., 2010; Chang et al., 2016)(West et al., 2010; Chang et al., 2016) 

and in-line combustion devices that covert organics to water and CO2 (Martín-Gómez et al., 2015; Cui et al., 2021)(Martín-40 

Gómez et al., 2015; Cui et al., 2021). Although these methods have been shown to be effective in some cases, they increase 

the complexity and/or labour involved in the sample preparation workflow and have limitations in terms of the types and/or 

concentrations of compounds that they can effectively remove. Solutions in which contaminated samples are flagged and 

culled from datasets will also largely be instrument system-specific but may be more transferrable and represent a conservative 

approach to quality control. These include commercial software (West et al., 2011)(West et al., 2011) and screening procedures 45 

developed in individual studies (e.g., Schultz et al., 2011; Lazarus et al., 2016).(e.g., Schultz et al., 2011; Lazarus et al., 2016). 

Although these approaches are often successful in identifying contaminated samples testing shows that they are not always 

effective (West et al., 2011)(West et al., 2011), and they may involve substantial data loss if contamination is prevalent. 

Solutions involving post-hoc data correction would be ideal in terms of maximizing the value of data without adding analytical 

overhead. Although effective correction algorithms have been published, these are of limited utility because most are unique 50 

to the specific interfering compound(s), instrument type, or even individual instrument involved (Hendry et al., 2011; Schultz 

et al., 2011; Schmidt et al., 2012; Lazarus et al., 2016; Johnson et al., 2017)(Hendry et al., 2011; Schultz et al., 2011; Schmidt 

et al., 2012; Lazarus et al., 2016; Johnson et al., 2017). Recent work by Herbstritt et al. (Herbstritt et al., 2024)(Herbstritt et 

al., 2024) developed correction equations for current-generation CRDS analysers and suggested that correction based on 

reported CH4 concentrations in the analyser cavity might be broadly useful but would need to be calibrated independently for 55 

different sample types and analysers. This approach has yet to be tested at scale. 

 

Here, we report analyses of cryogenically extracted water from nearly 1,200 plant water and 700 soil water samples made 

using current-generation CRDS instruments. We benchmark these data against IRMS analyses of a subset of samples and 

observe frequent, but not ubiquitous, bias in the CRDS data for plant waters. We develop multivariate models that describe 60 

δ2H and δ18O bias as a function of instrument-reported spectral features and show that these models successfully correct bias 

in δ2H and δ18O values for waters analysed on two different CRDS analysers. Finally, we apply the models to the full dataset 



 

3 

 

to investigate the prevalence of spectral bias and assess the ability of the models to correct for bias across a large and diverse 

ecohydrological dataset. 

2 Methods 65 

Plant and soil samples were collected at 12 U.S. National Ecological Observatory Network (NEON) sites during the 2020 and 

2021 growing seasons. Plant samples consisted of suberized stems, stripped of bark and sectioned, or shallow roots of non-

woody species (grasses). Soil samples were collected from the mineral soil with a hand auger at up to 5 different depths below 

the soil surface, extending as deep as 95 cm at some sites. Samples were collected by NEON staff, stored in sealed 20 ml glass 

vials at room temperature, and returned to the Stable Isotope Facility for Environmental Research (SIRFER) at the University 70 

of Utah. SIRFER staff conducted cryogenic vacuum distillation of all samples using the methods of West et al. (2006). 

 

All extracted samples were analysed for hydrogen (δ2H) and oxygen (δ18O) isotope values via CRDS. Two different Picarro 

L2130-i analysers were used (serial numbers HIDS2046 and HIDS2052), with an approximately equal number of samples 

analysed on each instrument. Plant samples were pretreated with activated charcoal for 48 hours. An inline combustion device 75 

was not used during analysis. The analytical setup and data reduction strategy were as described in Good et al. (2014)(2014), 

and all data processing was conducted using the CRDSutils R-package (Bowen and Blevins, 2024).(Bowen and Blevins, 2024). 

Two laboratory reference waters were used for calibration (PZ: δ2H = 18.1‰, δ18O = 1.93‰; UT2: δ2H = -119.1‰, δ18O = -

15.84‰ relative to the VSMOW2-SLAP scale) and a third (EV: δ2H = -72.3‰, δ18O = -10.16‰) was analysed repeatedly in 

each run to monitor drift and as a quality control. Analytical precision based on the analyses of EV across all analytical batches 80 

was approximately 0.3‰ for δ2H and < 0.1‰ for δ18O (1σ). Raw data files for all runs were screened using Picarro’s 

ChemCorrectTM software. 

 

A subset of 58 plant and 16 soil samples were also analysed by conventional isotope ratio mass spectrometer (IRMS). δ18O 

values were determined by CO2 equilibration followed by chromatographic separation using a ThermoFisher GasBench II 85 

coupled with a MAT253 IRMS. δ2H values were determined by pyrolysis using a ThermoFisher TC/EA coupled with a Delta 

Plus IRMS. Data were calibrated against two reference waters (ZE: δ2H = -0.2‰, δ18O = -0.2‰; DI: δ2H = -123.0‰, δ18O = -

16.5‰) and EV was analysed as a quality control material. Analytical precision (calculated as described above) was 

approximately 1.5‰ for δ2H and 0.15‰ for δ18O. IRMS analyses were conducted on residual water from the CRDS analysis 

vials. The water was transferred to sealed vials and stored for up to 9 months prior to IRMS analyses, creating the potential for 90 

evaporative fractionation from imperfectly sealed vials. IRMS data from 5 samples (4 plant, 1 soil) showed much lower (> 

35‰) deuterium excess values (d = δ2H – 8 x δ18O) than the CRDS analyses, suggesting evaporation during storage. These 

data, along with those from one plant sample with an anomalously high d value (+29.4‰), were excluded from further analysis. 
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We compared CRDS and IRMS results directly and assumed that the IRMS data represented the true sample values. We used 95 

an iterative linear model selection process (regsubsets function; Lumley, 2024)We used an iterative linear model selection 

process (regsubsets function; Lumley, 2024) to optimize models describing the δ2H and δ18O bias of CRDS measurements 

(i.e., δCRDS – δIRMS) as a function of 5 metrics reported in the CRDS output files that reflect the potential presence of contaminant 

compounds and/or their influence on the background absorption spectrum against which the water features are measured 

(Residuals, Baseline Shift, Slope Shift, Baseline Curvature, and CH4; see description in Johnson et al. (2017)(2017)). Values 100 

for each metric were averaged across the injections for each sample and the equivalent value for a pure water sample run at 

the beginning of each run (EV) was subtracted from the sample value to obtain an anomaly value for the sample. Optimal 

 

Figure 1: Comparison of paired CRDS and IRMS measurements for soil (A and B) and plant xylem (C and D) water samples 

before and after correction of the CRDS data for spectral interference. Note that symbols showing the raw values of samples 

with little or no correction are obscured by the corrected data (e.g., all raw data in panel A). The black line in each panel 

shows the 1:1 relationship. RSD: residual standard deviation. 
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models were selected to minimize the Bayes Information Criterion (BIC), with the caveat that highly collinear parameters were 

excluded (VIF function; Signorell, 2024).(VIF function; Signorell, 2024). The stability and performance of the optimal models 

were tested using iterative (n = 1000) split-sample training/testing in which 10% (7) random samples were withheld in the 105 

testing fold for each iteration. The models were then applied to the full dataset, and summaries of the modelled δ2H and δ18O 

bias were generated with reference to taxonomic data obtained from the Global Biodiversity Information Facility database 

(Chamberlain and Boettiger, 2017; Chamberlain et al., 2025).(Chamberlain and Boettiger, 2017; Chamberlain et al., 2025). 

All analyses were conducted in the R software environment (R Core Team, 2024)(R Core Team, 2024) and all data and code 

are available on Zenodo (Bowen, 2025)(Bowen, 2025). 110 

3 Results 

δ2H and δ18O values for soil samples were similar for both analysis methods, with pervasive bias or extreme outlier values 

(Fig. 1A&B). The residual variance for the CRDS-IRMS comparison was somewhat higher than would be expected based 

solely on propagating the analytical uncertainties reported above, which is not unexpected for analysis of complex, real-world 

samples. The CRDS values for extracted plant waters, in contrast, exhibit a wider range of variation relative to the IRMS data 115 

and a tendency for large positive biases (Fig. 1C&D). CRDS δ18O values of some plant samples, in particular, are as much as 

19.6‰ higher than the IRMS values for the same samples. In total, 7 plant samples (13%) have δ2H bias exceeding 8‰ and 

28 (53%) have δ18O bias greater than 1‰ – subjective thresholds which we use as representative of differences that would be 

interpreted as meaningful in most research studies. Most samples with large bias for one or both isotope systems were flagged 

as contaminated (indicated by red highlighting; 23/30) or suspect (yellow; 2/30) by the ChemCorrect software, suggesting that 120 

the CRDS analyses may have been biased by organic contaminants. (Supplementary Figure S1). The vendor’s software also 

yielded many false positives, however, flagging 24 of 38 samples that did not exhibit large magnitude bias as contaminated 

(17) or suspect (7). 
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We found systematic relationships between the magnitude of the CRDS δ2H and δ18O bias and most of the spectral metrics. 125 

For δ2H bias, the optimal model (lowest BIC) was a function of the product of the Slope Shift and CH4 anomalies (Fig. 2A): 

 

𝛿2𝐻𝐶𝑅𝐷𝑆−𝐼𝑅𝑀𝑆 = 0.0588 × ∆𝑆𝑙𝑜𝑝𝑒 𝑆ℎ𝑖𝑓𝑡 × ∆𝐶𝐻4 − 0.32. 

 

 

Figure 2: Relationship between CRDS bias and spectral feature anomalies (relative to a pure water standard analysed in each 

CRDS run) included in the optimal models. A: δ2H bias as a function of the product of baseline slope shift and the spectrally 

detected CH4 concentration in the CRDS cavity. B: Partial response of δ18O bias to CH4 concentration and spectrum fitter residual 

value. C: Partial response of δ18O bias to CH4 concentration and spectral baseline shift. Lines in each panel show the fitted model 

response.  
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This model explained 58% of the variance in δ2H bias, with a residual standard deviation of 4.1‰. For δ18O bias, model 130 

selection including interactions between terms yielded an optimal model with four parameters that were highly collinear. As a 

result, we opted to fit the δ18O bias model without interactions, which gave an optimal model that was a linear combination of 

CH4, Residual, and Baseline Shift anomalies (Fig. 2B&C): 

 

𝛿18𝑂𝐶𝑅𝐷𝑆−𝐼𝑅𝑀𝑆 = −1.295 × ∆𝐶𝐻4 + 2.587 × ∆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 − 0.00130 × ∆𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑆ℎ𝑖𝑓𝑡 + 0.25. 135 

 

 

Figure 3: CRDS data for water extracted from plant xylem and soil samples before (A and C) and after (B and D) model-

based bias correction. Panels A and B show data from all sampling bouts at 12 U.S. National Ecological Observatory 

Network sites; panels C and D show data from a single bout (August 26, 2020) at the Harvard Forest site. The Global 

Meteoric Water Line (δ2H = 8 × δ18O + 10) is shown in each panel. 
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The BIC and adjusted R2 values for this model were only marginally different from those of the best model including 

interactions, and the variables in the model without interactions were not strongly collinear (variable inflation factors ≤ 5). 

This model explained 99% of the variance in δ18O bias, with a residual standard deviation of 0.36‰. The split-sample test 

showed that the optimal models were stable and performed well for out-of-sample prediction: the residual standard deviation 140 

for predictions made on test samples was 4.3‰ for δ2H and 0.38‰ for δ18O, almost equalling the values for the full model. 

 

We applied the optimal models to calculate bias corrections for the full plant and soil dataset. Approximately 33% of the plant 

samples (399 samples) and 1% of the soil samples (7) yielded δ18O bias estimates > 1‰; only 5% of plant samples (62) and 

no soil samples had δ2H bias estimates > 8‰. Our results showed strong but imperfect correspondence with ChemCorrect 145 

screening: the vast majority (94%) of samples with large bias estimates were flagged as contaminated or suspect, but false 

positives may again be prevalent, with 34% of samples with modelled bias lower than 1 and 8‰ (for δ18O and δ2H, 

respectively) being flagged by the vendor’s software. (Supplementary Figure S1). Modelled bias estimates were as high as 

76‰ for δ2H and 33‰ for δ18O, and 15 (13) samples had δ2H (δ18O) bias estimates that exceeded the maximum values in the 

data used to train the model.  150 

 

Prior to bias correction, the dataset included many plant samples with isotopic values that fell well outside of the distribution 

of the soil water data (which presumably represented the water sources used by many of the plants; Fig. 3A and C). After using 

the modelled values to bias-correct the data we found stronger correspondence between plant and soil data, with most plant 

sample values now falling within the envelope defined by the soils (Fig. 3B and D). Corrected data from an example sampling 155 

bout at one NEON site show a dramatic increase in overlap with potential soil water sources (Fig. 3C and D), with a small 

 

Figure 2: Relationship between CRDS bias and spectral feature anomalies (relative to a pure water standard analysed in each 

CRDS run) included in the optimal models. A: δ2H bias as a function of the product of baseline slope shift and the spectrally 

detected CH4 concentration in the CRDS cavity. B: Partial response of δ18O bias to CH4 concentration and spectrum fitter residual 

value. C: Partial response of δ18O bias to CH4 concentration and spectral baseline shift (R2 value is shown for the full multivariate 

model). Lines in each panel show the fitted model response.  
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number of plant data showing low δ2H and δ18O values that might reflect uptake of unsampled deep soil water derived from 

cool-season precipitation. 

4 Discussion 

Our results are consistent with other studies (e.g., Lazarus et al., 2016; Johnson et al., 2017; Herbstritt et al., 2024)(e.g., Lazarus 160 

et al., 2016; Johnson et al., 2017; Herbstritt et al., 2024) in confirming that spectral bias is a persistent problem in CRDS 

 

Figure 3: CRDS data for water extracted from plant xylem and soil samples before (A and C) and after (B and D) model-

based bias correction. Panels A and B show data from all sampling bouts at 12 U.S. National Ecological Observatory 

Network sites; panels C and D show data from a single bout (August 26, 2020) at the Harvard Forest site. The Global 

Meteoric Water Line (δ2H = 8 × δ18O + 10) is shown in each panel. 
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isotope analysis of plant water samples but is rare for water extracted from soils. The data set reported here represents what is, 

to our knowledge, the most extensive and diverse assessment of spectral bias in such measurements, and the bias values 

modelled using the CRDS spectral parameters show that the prevalence of bias varies dramatically across taxa (Table 1). High 

magnitude δ18O bias is most frequent in woody taxa and appears to be particularly common in genera such as Pinus, Quercus, 165 

and Artemisia, although not all species are equally affected. Although many of these taxa are resinous or aromatic no single 

trait seems to unite them and others that show a tendency for δ18O bias. Strong δ18O bias is uncommon in waters extracted 

from grass roots. High magnitude bias for δ2H is much less common, and although it also shows strong taxonomic preference, 

this does not fully parallel that for δ18O bias. Strong δ2H bias is essentially absent among taxa which exhibit infrequent (20% 

of samples or fewer) δ18O bias, but many species which commonly show bias for δ18O exhibit none for δ2H. 170 

 

Differences in the prevalence of spectral interference for different plant sample types have been demonstrated previously (e.g., 

Schultz et al., 2011; Nehemy et al., 2019; Herbstritt et al., 2024)(e.g., Schultz et al., 2011; Nehemy et al., 2019; Herbstritt et 

al., 2024) and likely reflect differences in the composition and abundance of volatile organic compounds susceptible to 

extraction from these samples. Collectively, these results suggest that the potential for spectral interference to compromise 175 

isotope-based ecohydrological studies will vary markedly depending on the study system. Although researchers should 

exercise caution and consider conducting their own tests, the results shown here may help identify taxa with limited potential 

for spectral bias in measurements made with current-generation CRDS instruments (Picarro L2130-i and potentially L2140-i, 

which uses the same spectral absorption features when run in non-17O mode). 

 180 

That said, our results also suggest that spectral interference bias in CRDS measurements may be correctable. We extended on 

the recent work of Herbstritt et al. (2024)(2024), who developed a set of correction equations using the CH4 spectral metric, 

and show that the inclusion of other spectral metrics reported by the CRDS software can improve isotopic bias corrections 

(Fig. 2). Although methane has known interference in the wavelengths measured by the CRDS analysers, the utility of this 

metric for bias correction is most likely as a proxy for the presence of other interfering volatile organic compounds which are 185 

more common in plant tissue (Herbstritt et al., 2024)(Herbstritt et al., 2024). As such, it makes sense that other metrics which 

further describe changes in the shape of the absorption spectrum could provide additional information useful in detecting and 

correcting interference. The details of how these metrics are calculated are not publicly available from the instrument vendor 

and we can only speculate on their mechanistic connection to the observed isotopic data biases. They each describe deviations 

between the measured absorption spectrum and that expected for pure water and/or the factory-calibrated spectral baseline and 190 

their relationship to isotopic bias most likely reflects systematic patterns of distortion in the spectrum associated with common 

contaminant phases. 

 

A common concern that has likely limited the use of post-hoc correction for CRDS spectral interference is that corrections 

may be application and/or instrument specific. Although we cannot confidently argue that the correction approach developed 195 
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here will be globally applicable, we note that the same correction equations appear, based on direct (Fig. 1) and indirect 

evidence (Fig. 3), to successfully correct bias for vacuum-extracted water from a large and diverse range of plants and soils. 

Given the inevitable wide variation in VOC composition and concentration among these samples this result suggests that a 

single correction framework may be applicable across most ecohydrological applications and systems. It is more difficult to 

judge whether the model parameter values calibrated here will be applicable to other analysers given variation in instrument 200 

optics and calibrations, but we found that a single model calibration could successfully be applied to data generated on  

two different L2130-i analysers: the difference in the mean model residuals for samples run on the two instruments was small 

relative to the dispersion of the residuals (0‰ for δ2H and 0.16‰ for δ18O) and not significantly different from zero (t-test, p 

= 0.99 for δ2H; Wilcoxon rank sum test, p = 0.09 for δ18O), suggesting that the same optimal models accurately corrected bias 

on both instruments. That said, the coefficient describing CH4 sensitivity of δ18O bias on our analysers is similar but not 205 

identical to that fit by Herbstritt et al. (2024)(2024), suggesting that some variability may exist even between analysers of the 

same model. Further testing and comparative calibration of bias-correction algorithms is thus warranted. 

5 Conclusion 

Our survey of > 1800 samples shows that spectral bias is prevalent in CRDS δ2H and δ18O measurements of water extracted 

from plant tissues, that this bias varies substantially between plant types, and that soil-extracted waters are largely immune 210 

from bias. We also show that robust bias-correction algorithms can be developed using commonly reported spectral metrics 

and applied successfully across sample types on data from two different analysers. Although we advocate for further testing 

and comparison across laboratories, this work supports results from other groups (Schultz et al., 2011; Herbstritt et al., 

2024)(Schultz et al., 2011; Herbstritt et al., 2024) in suggesting that spectroscopic measurement, combined with post-hoc bias 

correction, may be a robust, effective, and efficient method for isotope ratio analysis of water samples in ecohydrology and 215 

related fields. 

Code and data availability 

All data and code used to analyse the data and create the figures is archived on Zenodo (Bowen, 2025). 

All data and code used to analyse the data and create the figures is archived on Zenodo (Bowen, 2025). 

Author contribution 220 

GJB: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Software, Writing – original draft 

preparation. SB: Investigation, Data curation, Writing – review & editing. SC: Investigation, Data curation, Writing – review 

& editing.  



 

12 

 

Table 1: Taxonomic composition and prevalence of high-magnitudestatistics for bias, as values modelled based onfrom spectral 

features, in the plant dataset. Taxa marked with * are also represented in the CRDS-IRMS model calibration dataset. SD = standard 225 
deviation. 

   Modelled bias 

   δ2H δ18O 

Taxon Vernacular Count Mean (‰) SD (‰) δ2H > 8 Mean (‰) SD (‰) δ18O > 1 

Geum rossii Ross's avens 15 5.4 6.2 33% 8.6 5.4 100% 

Pinus contorta Lodgepole pine 19 -0.1 1.9 0% 1.5 2.3 79% 

Diosypros virginiana Persimmon 15 0%.0 1.3 0% 1.5 1.0 73% 

Medicago sativa* Alfalfa 29 16.6 18.0 69% 11.8 9.9 72% 

Pinus palustris Longleaf pine 35 -0.1 0.5 0% 1.3 1.3 71% 

Quercus falcata* Spanish oak 20 0.1 1.3 0% 1.3 1.3 70% 

Artemisia frigida Fringed sage 29 1.5 9.3 21% 5.0 7.5 69% 

Pinus sabiniana* Gray pine 6 0.4 1.9 0% 1.2 1.9 67% 

Liquidambar styraciflua* Alligator wood 20 1.2 2.0 0% 1.7 1.4 65% 

Pinus strobus* Weymouth pine 30 0.1 4.3 7% 1.9 3.9 63% 

Juglans nigra Black walnut 30 0.8 3.0 13% 1.4 1.5 60% 

Betula alleghaniensis Yellow birch 30 0.8 5.4 3% 1.3 1.7 60% 

Artemisia absinthium* Wormwood 28 4.3 15.4 32% 5.7 8.6 57% 

Pseudotsuga menziesii Douglas fir 34 -0%.1 1.4 0% 1.0 1.6 50% 

Artemisia tridentata Big sagebrush 19 -0.2 3.8 11% 0.5 2.9 47% 

Quercus laevis Catesby's oak 15 -0%.2 1.1 0% 1.0 0.6 47% 

Picea mariana* Black spruce 33 -0%.3 0.1 0% 0.9 0.5 42% 

Liriodendron tulipifera* Tulip poplar 30 2.1 2.3 7% 0.8 0.8 40% 

Gaultheria shallon Shallon 15 0%.2 1.1 0% 0.9 0.6 40% 

Quercus wislizeni* Interior live oak 10 -0%.1 2.8 0% 0.9 1.5 40% 

Quercus douglasii* Blue oak 8 2.5 4.4 13% 0.8 2.2 38% 

Quercus rubra* Red oak 60 0.7 3.4 7% 0.7 1.2 37% 

Minuartia obtusiloba Alpine stitchwort 15 0%.2 0.9 0% 0.8 0.4 33% 

Quercus stellata* Post oak 15 -0%.3 1.0 0% 0.4 2.6 33% 

Vaccinium arboreum* Farkleberry 20 0%.0 0.5 0% 0.8 0.5 30% 

Bromus hordaceus* Soft brome 7 -0.3 4.6 14% 0.4 1.8 29% 

Abies balsamea* Balsam Fir 28 -0%.3 0.1 0% 0.8 0.6 29% 

Tsuga canadensis Black hemlock 30 -0%.3 0.1 0% 0.4 0.6 27% 

Acer rubrum* Red maple 60 0.5 2.9 5% 0.7 1.8 25% 

Quercus alba* Stave oak 28 -0.2 2.7 4% 0.6 1.1 25% 

Acer saccharum* Sugar maple 30 -0%.1 0.6 0% 0.7 0.7 23% 

Abies lesiocarpa Alpine fir 15 0%.0 2.0 0% 0.7 0.4 20% 

Sorghastrum nutans* Indiangrass 15 -0%.3 0.1 0% 0.7 0.5 20% 

Bouteloua curtipendula Sideoats grama 14 -0%.1 1.2 0% 0.5 0.4 14% 

Aristida beyrichiana Wiregrass 15 -0%.2 0.2 0% 0.5 0.7 13% 

Salix sp. Willow 15 -0%.3 0.1 0% 0.6 0.3 13% 

Tsuga heterophylia Western hemlock 15 -0%.2 0.4 0% 0.7 0.5 13% 

Poa pratensis* Kentucky bluegrass 28 4%-0.3 7.2 4% 0.4 4.7 11% 

Bromus inermis* Hungarian brome 29 -0%.3 0.5 0% 0.3 0.7 10% 

Quercus germinata Sand live oak 15 -0%.3 7%0.3 0% 0.3 0.4 7% 

Schizachyrium scoparium* Little bluestem 43 -0%.3 7%0.2 0% 0.4 0.6 7% 

Taxus brevifolia Pacific yew 15 -0%.2 7%0.2 0% 0.6 0.5 7% 

Betula papyrifera* Paper birch 31 -0%.3 3%0.2 0% 0.3 0.3 3% 

Eriogonum effusum Spreading buckwheat 29 -0%.2 3%0.5 0% 0.5 1.3 3% 

Bouteloua gracilis Blue grama 19 -0%.2 0%.1 0% 0.4 0.2 0% 

Carex rupestris Curly sedge 15 -0%.3 0%.0 0% 0.2 0.4 0% 

Elymus elymoides Bottlebrush squirreltail 15 -0%.3 0%.1 0% 0.3 0.2 0% 

Festuca spp. Fescue 19 -0%.3 0%.4 0% 0.3 0.2 0% 

Hesperostipa comata Needle-and-thread grass 17 -0%.3 0%.5 0% 0.3 0.2 0% 

Poaceae sp. Grass 19 -0%.3 0%.0 0% 0.3 0.2 0% 

Smilax bona-nox* Catbrier 15 -0%.3 0%.0 0% 0.3 0.1 0% 

Thuja plicata Pacific red cedar 15 -0%.3 0%.1 0% 0.2 0.2 0% 
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