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Technical Note: Spectral correction for cavity ringdown isotope
analysis of plant and soil waters
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Abstract. The development of laser spectroscopic analysers has revolutionized isotope hydrology, dramatically increasing
accessibility and reducing the cost of sample analysis. Despite their substantial benefits, these instruments are known to su ffer
from spectral interferences caused by small organic molecules that can bias measurements of some samples. Previous research
has characterized this problem and tested a range of solutions for eliminating, detecting, or correcting influence in experimental
or natural samples, yet interlaboratory comparisons show that affected data are still being reported. Here, we use paired
spectroscopic (Picarro L2130-i; CRDS) and mass spectrometric (IRMS) data from a diverse suite of soil and plant xylem water
samples to characterize spectral interference effects on CRDS &°H and §'30 data. Interference is minimal for soil water but
widespread in plant samples, with 13% and 54% of samples exhibiting biases larger than 8%o for 8°H and 1%, for §'%0,
respectively. We develop multivariate statistical models that use analyser-reported spectral features to correct for interference.
These models account for 57% of the observed &°H bias and 99% of the §'30 bias, and after correction the standard deviation
of the CRDS-IRMS differences for plant samples (4.1%o for 8°H and 0.4%o for §'%0) was similar to that for soil samples.
Applying the models to CRDS measurements of water extracted from 1176 plants and 693 soils collected across diverse
ecosystems improves the correspondence between plant and source soil water values and shows strong taxonomic differences
in the prevalence of spectral interference. Our results show that spectral interference remains a significant concern in
ecohydrology, particularly for plant water extracted from many woody species. The success of our spectral correction models
across a wide range of taxa and data generated from two different CRDS analysers suggests that post-hoc correction of these

data may be a viable solution to the problem.

1 Introduction

The development of commercial laser spectroscopy instruments for the measurement of H and O isotopes in water has

revolutionized the fields of isotope hydrology and ecohydrology by dramatically reducing the cost and increasing the

accessibility of analyses (Lis-et-al; : : al52009;-Guptaetal; +-Chess = 5 Sgaar

204HH)(Lis et al., 2007; Berman et al., 2009; Gupta et al., 2009; Chesson et al., 2010; Munksgaard et al., 2011). Despite the

many advantages of these instruments, it was recognized early in their history that they may be susceptible to analytical bias

for samples that contain compounds, particularly low-weight organic molecules, with spectral absorption features that overlap
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those of the water isotopologues (Brand-et-al;—2009)(Brand et al., 2009). This susceptibility is of particular concern in
ecohydrological research, in which water is commonly extracted from soils and plant tissues, which may contain and contribute
volatile organic compounds to the extracted sample. The potential impact of these impurities on laser-based isotope analyses

has been documented extensively and has (understandably) contributed to scepticism of laser isotope analysis in ecohydrology

and adjacent fields (Westet-al2010)(West et al., 2010).

Since its recognition, the spectral interference problem has received substantial attention. This work has led to the proposal of
three types of workarounds that attempt to either eliminate interfering compounds prior to analysis, identify and cull affected
measurements, or correct for interference during post-hoc data processing. Solutions involving elimination of interference

include off-line chemical purification procedures (West et al., 2010; Chang et al., 2016)

and in-line combustion devices that covert organics to water and CO; (Martin-Goémez-et-al;2015;-Cui-et-al5202H(Martin-

Gomez et al.. 2015; Cui et al., 2021). Although these methods have been shown to be effective in some cases, they increase

the complexity and/or labour involved in the sample preparation workflow and have limitations in terms of the types and/or
concentrations of compounds that they can effectively remove. Solutions in which contaminated samples are flagged and
culled from datasets will also largely be instrument system-specific but may be more transferrable and represent a conservative
approach to quality control. These include commercial software (Westetal-204+5(West et al.. 2011) and screening procedures

developed in individual studies (e-g-Sehulzetal 20 Lazarusetal;2046)-(e.g., Schultz et al., 2011 Lazarus et al., 2016).

Although these approaches are often successful in identifying contaminated samples testing shows that they are not always
effective (West-et-al204H)(West et al., 2011), and they may involve substantial data loss if contamination is prevalent.
Solutions involving post-hoc data correction would be ideal in terms of maximizing the value of data without adding analytical
overhead. Although effective correction algorithms have been published, these are of limited utility because most are unique
to the specific interfering compound(s), instrument type, or even individual instrument involved (Hendryetal,2041:-Sehultz
b2 idtcral. RN = = - = (Hendry et al., 2011; Schultz et al., 2011; Schmidt
et al., 2012; Lazarus et al., 2016; Johnson et al.. 2017). Recent work by Herbstritt et al. (Herbstritt-et-al;2024)(Herbstritt et

al., 2024) developed correction equations for current-generation CRDS analysers and suggested that correction based on

reported CH4 concentrations in the analyser cavity might be broadly useful but would need to be calibrated independently for

different sample types and analysers. This approach has yet to be tested at scale.

Here, we report analyses of cryogenically extracted water from nearly 1,200 plant water and 700 soil water samples made
using current-generation CRDS instruments. We benchmark these data against IRMS analyses of a subset of samples and
observe frequent, but not ubiquitous, bias in the CRDS data for plant waters. We develop multivariate models that describe
8?H and 8'30 bias as a function of instrument-reported spectral features and show that these models successfully correct bias

in §°H and §'®0 values for waters analysed on two different CRDS analysers. Finally, we apply the models to the full dataset



65

70

75

80

85

90

to investigate the prevalence of spectral bias and assess the ability of the models to correct for bias across a large and diverse

ecohydrological dataset.

2 Methods

Plant and soil samples were collected at 12 U.S. National Ecological Observatory Network (NEON) sites during the 2020 and
2021 growing seasons. Plant samples consisted of suberized stems, stripped of bark and sectioned, or shallow roots of non-
woody species (grasses). Soil samples were collected from the mineral soil with a hand auger at up to 5 different depths below
the soil surface, extending as deep as 95 cm at some sites. Samples were collected by NEON staff, stored in sealed 20 ml glass
vials at room temperature, and returned to the Stable Isotope Facility for Environmental Research (SIRFER) at the University

of Utah. SIRFER staff conducted cryogenic vacuum distillation of all samples using the methods of West et al. (2006).

All extracted samples were analysed for hydrogen (8°H) and oxygen (5'*0) isotope values via CRDS. Two different Picarro
L2130-i analysers were used (serial numbers HIDS2046 and HIDS2052), with an approximately equal number of samples
analysed on each instrument. Plant samples were pretreated with activated charcoal for 48 hours. An inline combustion device
was not used during analysis. The analytical setup and data reduction strategy were as described in Good et al. (26443(2014),
and all data processing was conducted using the CRDSutils R-package (Bowen-and Blevins;2024).(Bowen and Blevins, 2024).
Two laboratory reference waters were used for calibration (PZ: §*H = 18.1%o, 8'%0 = 1.93%0; UT2: §*H = -119.1%., 5'30 = -
15.84%o relative to the VSMOW2-SLAP scale) and a third (EV: §2H = -72.3%o, 5'°0 = -10.16%0) was analysed repeatedly in

each run to monitor drift and as a quality control. Analytical precision based on the analyses of EV across all analytical batches
was approximately 0.3%o for 8’H and < 0.1%. for 8'30 (I1c). Raw data files for all runs were screened using Picarro’s
ChemCorrect™ software.

A subset of 58 plant and 16 soil samples were also analysed by conventional isotope ratio mass spectrometer (IRMS). §'%0
values were determined by CO, equilibration followed by chromatographic separation using a ThermoFisher GasBench I1
coupled with a MAT253 IRMS. §°H values were determined by pyrolysis using a ThermoFisher TC/EA coupled with a Delta
Plus IRMS. Data were calibrated against two reference waters (ZE: §?H = -0.2%o, 5'%0 = -0.2%o; DI: 8°H = -123.0%o, 5'%0 = -
16.5%0) and EV was analysed as a quality control material. Analytical precision (calculated as described above) was
approximately 1.5%o for 3°H and 0.15%o for 5'30. IRMS analyses were conducted on residual water from the CRDS analysis
vials. The water was transferred to sealed vials and stored for up to 9 months prior to IRMS analyses, creating the potential for
evaporative fractionation from imperfectly sealed vials. IRMS data from 5 samples (4 plant, 1 soil) showed much lower (>
35%o) deuterium excess values (d = 8°H — 8 x §'%0) than the CRDS analyses, suggesting evaporation during storage. These

data, along with those from one plant sample with an anomalously high d value (+29.4%o), were excluded from further analysis.
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Figure 1: Comparison of paired CRDS and IRMS measurements for soil (A and B) and plant xylem (C and D) water samples
before and after correction of the CRDS data for spectral interference. Note that symbols showing the raw values of samples
with little or no correction are obscured by the corrected data (e.g., all raw data in panel A). The black line in each panel
shows the 1:1 relationship. RSD: residual standard deviation.

We compared CRDS and IRMS results directly and assumed that the IRMS data represented the true sample values. We-used

Cess subscets : We used an iterative linear model selection

process (regsubsets function; Lumley, 2024) to optimize models describing the §*H and §'®0 bias of CRDS measurements

(i.e., dcrps — Orms) as a function of 5 metrics reported in the CRDS output files that reflect the potential presence of contaminant
compounds and/or their influence on the background absorption spectrum against which the water features are measured
(Residuals, Baseline Shift, Slope Shift, Baseline Curvature, and CHy; see description in Johnson et al. 26+7(2017)). Values
for each metric were averaged across the injections for each sample and the equivalent value for a pure water sample run at

the beginning of each run (EV) was subtracted from the sample value to obtain an anomaly value for the sample. Optimal
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models were selected to minimize the Bayes Information Criterion (BIC), with the caveat that highly collinear parameters were
excluded VA funetionsSignorel;-2024)-(VIF function; Signorell, 2024). The stability and performance of the optimal models

were tested using iterative (n = 1000) split-sample training/testing in which 10% (7) random samples were withheld in the

testing fold for each iteration. The models were then applied to the full dataset, and summaries of the modelled §*°H and §'*0

bias were generated with reference to taxonomic data obtained from the Global Biodiversity Information Facility database

. 5 e crlain-et-al; -(Chamberlain and Boettiger, 2017; Chamberlain et al., 2025).
All analyses were conducted in the R software environment (R-Cere-Fean;2024)(R Core Team, 2024) and all data and code

are available on Zenodo (Bewen;2625)(Bowen, 2025).

3 Results

8’H and §'%0 values for soil samples were similar for both analysis methods, with pervasive bias or extreme outlier values
(Fig. 1A&B). The residual variance for the CRDS-IRMS comparison was somewhat higher than would be expected based
solely on propagating the analytical uncertainties reported above, which is not unexpected for analysis of complex, real-world
samples. The CRDS values for extracted plant waters, in contrast, exhibit a wider range of variation relative to the IRMS data
and a tendency for large positive biases (Fig. 1C&D). CRDS §'%0 values of some plant samples, in particular, are as much as
19.6%o higher than the IRMS values for the same samples. In total, 7 plant samples (13%) have 5°H bias exceeding 8%o and
28 (53%) have §'®0 bias greater than 1%o — subjective thresholds which we use as representative of differences that would be
interpreted as meaningful in most research studies. Most samples with large bias for one or both isotope systems were flagged
as contaminated (indicated by red highlighting; 23/30) or suspect (yellow; 2/30) by the ChemCorrect software, suggesting that

the CRDS analyses may have been biased by organic contaminants- (Supplementary Figure S1). The vendor’s software also

yielded many false positives, however, flagging 24 of 38 samples that did not exhibit large magnitude bias as contaminated

(17) or suspect (7).



125 We found systematic relationships between the magnitude of the CRDS §°H and §'*0 bias and most of the spectral metrics.
For 8%H bias, the optimal model (lowest BIC) was a function of the product of the Slope Shift and CH, anomalies (Fig. 2A):

82Hepps—1rms = 0.0588 X ASlope Shift x ACH, — 0.32.
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This model explained 58% of the variance in 3°H bias, with a residual standard deviation of 4.1%o. For §'%0 bias, model
selection including interactions between terms yielded an optimal model with four parameters that were highly collinear. As a
result, we opted to fit the §'%0 bias model without interactions, which gave an optimal model that was a linear combination of

CHg4, Residual, and Baseline Shift anomalies (Fig. 2B&C):

5180 caps_1rms = —1.295 X ACH, + 2.587 x AResiduals — 0.00130 x ABaseline Shift + 0.25.
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Figure 2: Relationship between CRDS bias and spectral feature anomalies (relative to a pure water standard analysed in each
CRDS run) included in the optimal models. A: 3*°H b

detected CHa concentration in the CRDS cavity. B: Par

as a function of the product of baseline slope shift and the spectrally

1 response of '%0 bias to CH4 concentration and spectrum fitter residual
value. C: Partial response of 880 bias to CH4 concentration and spectral baseline shift (R? value is shown for the full multivariate
model). Lines in each nanel show the fitted model resnonse.

The BIC and adjusted R? values for this model were only marginally different from those of the best model including
interactions, and the variables in the model without interactions were not strongly collinear (variable inflation factors < 5).

This model explained 99% of the variance in §'*0 bias, with a residual standard deviation of 0.36%o. The split-sample test

140  showed that the optimal models were stable and performed well for out-of-sample prediction: the residual standard deviation
for predictions made on test samples was 4.3%o for §2H and 0.38%o for 5'%0, almost equalling the values for the full model.
We applied the optimal models to calculate bias corrections for the full plant and soil dataset. Approximately 33% of the plant
samples (399 samples) and 1% of the soil samples (7) yielded 5'30 bias estimates > 1%o; only 5% of plant samples (62) and
145

no soil samples had 8°H bias estimates > 8%o. Our results showed strong but imperfect correspondence with ChemCorrect
screening: the vast majority (94%) of samples with large bias estimates were flagged as contaminated or suspect, but false

positives may again be prevalent, with 34% of samples with modelled bias lower than 1 and 8%. (for §'°0 and &°H,

respectively) being flagged by the vendor’s software-_(Supplementary Figure S1). Modelled bias estimates were as high as

76%o for 8*H and 33%o for §'°0, and 15 (13) samples had 5°H (5'%0) bias estimates that exceeded the maximum values in the
150 data used to train the model.

Prior to bias correction, the dataset included many plant samples with isotopic values that fell well outside of the distribution
of the soil water data (which presumably represented the water sources used by many of the plants; Fig. 3A and C). After using
the modelled values to bias-correct the data we found stronger correspondence between plant and soil data, with most plant
155 sample values now falling within the envelope defined by the soils (Fig. 3B and D). Corrected data from an example sampling

bout at one NEON site show a dramatic increase in overlap with potential soil water sources (Fig. 3C and D), with a small
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Figure 3: CRDS data for water extracted from

lant xylem and soil samples before (A and C) and after (B and D) model-

based bias correction. Panels A and B show data from all sampling bouts at 12 U.S. National Ecological Observatory

Network sites; panels C and D show data from a single bout (August 26, 2020) at the Harvard Forest site. The Global

Meteoric Water Line (6°H = 8 x §'%0 + 10) is shown in each panel.

number of plant data showing low 8’H and §'30 values that might reflect uptake of unsampled deep soil water derived from

cool-season precipitation.

4 Discussion

Our results are consistent with other studies

(e.g., Lazarus

et al., 2016; Johnson et al., 2017; Herbstritt et al., 2024) in confirming that spectral bias is a persistent problem in CRDS
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isotope analysis of plant water samples but is rare for water extracted from soils. The data set reported here represents what is,
to our knowledge, the most extensive and diverse assessment of spectral bias in such measurements, and the bias values
modelled using the CRDS spectral parameters show that the prevalence of bias varies dramatically across taxa (Table 1). High
magnitude §'%0 bias is most frequent in woody taxa and appears to be particularly common in genera such as Pinus, Quercus,
and Artemisia, although not all species are equally affected. Although many of these taxa are resinous or aromatic no single
trait seems to unite them and others that show a tendency for §'%0 bias. Strong §'%0 bias is uncommon in waters extracted
from grass roots. High magnitude bias for §2H is much less common, and although it also shows strong taxonomic preference,
this does not fully parallel that for §'30 bias. Strong §*H bias is essentially absent among taxa which exhibit infrequent (20%

of samples or fewer) §'*0 bias, but many species which commonly show bias for §'0 exhibit none for 3°H.

Differences in the prevalence of spectral interference for different plant sample types have been demonstrated previously (e-g-

(e.g., Schultz et al., 2011; Nehemy et al., 2019; Herbstritt et

al., 2024) and likely reflect differences in the composition and abundance of volatile organic compounds susceptible to
extraction from these samples. Collectively, these results suggest that the potential for spectral interference to compromise
isotope-based ecohydrological studies will vary markedly depending on the study system. Although researchers should
exercise caution and consider conducting their own tests, the results shown here may help identify taxa with limited potential
for spectral bias in measurements made with current-generation CRDS instruments (Picarro L2130-i and potentially L2140-i,

which uses the same spectral absorption features when run in non-'’0 mode).

That said, our results also suggest that spectral interference bias in CRDS measurements may be correctable. We extended on
the recent work of Herbstritt et al. (26243(2024), who developed a set of correction equations using the CH4 spectral metric,
and show that the inclusion of other spectral metrics reported by the CRDS software can improve isotopic bias corrections
(Fig. 2). Although methane has known interference in the wavelengths measured by the CRDS analysers, the utility of this
metric for bias correction is most likely as a proxy for the presence of other interfering volatile organic compounds which are
more common in plant tissue (Herbstritt-et-al2024)(Herbstritt et al., 2024). As such, it makes sense that other metrics which
further describe changes in the shape of the absorption spectrum could provide additional information useful in detecting and
correcting interference. The details of how these metrics are calculated are not publicly available from the instrument vendor
and we can only speculate on their mechanistic connection to the observed isotopic data biases. They each describe deviations
between the measured absorption spectrum and that expected for pure water and/or the factory-calibrated spectral baseline and
their relationship to isotopic bias most likely reflects systematic patterns of distortion in the spectrum associated with common

contaminant phases.

A common concern that has likely limited the use of post-hoc correction for CRDS spectral interference is that corrections

may be application and/or instrument specific. Although we cannot confidently argue that the correction approach developed

10
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here will be globally applicable, we note that the same correction equations appear, based on direct (Fig. 1) and indirect
evidence (Fig. 3), to successfully correct bias for vacuum-extracted water from a large and diverse range of plants and soils.
Given the inevitable wide variation in VOC composition and concentration among these samples this result suggests that a
single correction framework may be applicable across most ecohydrological applications and systems. It is more difficult to
judge whether the model parameter values calibrated here will be applicable to other analysers given variation in instrument
optics and calibrations, but we found that a single model calibration could successfully be applied to data generated on

two different L2130-i analysers: the difference in the mean model residuals for samples run on the two instruments was small
relative to the dispersion of the residuals (0% for §°H and 0.16%o for 5'%0) and not significantly different from zero (t-test, p
=0.99 for §2H; Wilcoxon rank sum test, p = 0.09 for §'%0), suggesting that the same optimal models accurately corrected bias
on both instruments. That said, the coefficient describing CHy sensitivity of 3'30 bias on our analysers is similar but not
identical to that fit by Herbstritt et al. (2024)(2024), suggesting that some variability may exist even between analysers of the

same model. Further testing and comparative calibration of bias-correction algorithms is thus warranted.

5 Conclusion

Our survey of > 1800 samples shows that spectral bias is prevalent in CRDS §*H and §'*0 measurements of water extracted
from plant tissues, that this bias varies substantially between plant types, and that soil-extracted waters are largely immune
from bias. We also show that robust bias-correction algorithms can be developed using commonly reported spectral metrics
and applied successfully across sample types on data from two different analysers. Although we advocate for further testing
and comparison across laboratories, this work supports results from other groups (Sehultz—etal201:Herbstrittetals
2024)(Schultz et al., 2011: Herbstritt et al., 2024) in suggesting that spectroscopic measurement, combined with post-hoc bias

correction, may be a robust, effective, and efficient method for isotope ratio analysis of water samples in ecohydrology and

related fields.

Code and data availability

All data and code used to analyse the data and create the figures is archived on Zenodo (Bowen, 2025).
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Geum rossii Ross's avens 15 54 6.2 33%, 8.6 54 100% [ Formatted
Pinus contorta Lodgepole pine 19 -0.1 19 0%, 15 23 79%
Diosypros virginiana Persimmon 15 0%.0, 13 0% 15 1.0 73% Inserted Cells
Medicago sativa* Alfalfa 29 16.6 18.0 69%, 11.8 9.9 72% [ Formatted
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Quercus falcata* Spanish oak 20 0.1 13 0%, 13 13 70% Inserted Cells
Artemisia frigida Fringed sage 29 15 93 21%, 5.0 15 69%
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Quercus douglasii* Blue oak 8 2.5 4.4 13%, 0.8 22 38% [ Formatted
Quercus rubra® Red oak 60 0.7 34 7%, 0.7 1.2 37%
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Quercus stellata* Post oak 15 -0%.3, 1.0 0% 04 2.6 33% Inserted Cells
Vaccinium arboreum* Farkleberry 20 0%.0, 0.5 0% 0.8 0.5 30%
Bromus hordaceus* Soft brome 7 0.3 4.6 14%, 0.4 18 29% Inserted Cells
Abies balsamea* Balsam Fir 28 -0%.3, 0.1 0% 0.8 0.6 29% [ Formatted
Tsuga canadensis Black hemlock 30 -0%.3, 0.1 0% 0.4 0.6 27%
Acer rubrum* Red maple 60 0.5 2.9 5%, 0.7 1.8 25% Inserted Cells
Quercus alba* Stave oak 28 -0.2 27 4%, 0.6 11 25% [ Formatted
Acer saccharum* Sugar maple 30 -0%.1, 0.6 0% 0.7 0.7 23%
Abies lesiocarpa Alpine fir 15 0%.0, 2.0 0% 0.7 04 20% ‘ [ Formatted
Sorghastrum nutans* Indiangrass 15 -0%.3, 0.1 0% 0.7 0.5 20% Inserted Cells
Bouteloua curtipendula Sideoats grama 14 -0%.1, 12 0% 0.5 04 14%
Aristida beyrichiana Wiregrass 15 0%, 02 0% 0.5 07 13% ( Formatted
Salix sp. Willow 15 0%.3, 0.1 0% 0.6 03 13% Inserted Cells
Tsuga heterophylia ‘Western hemlock 15 -0%.2, 0.4 0% 0.7 0.5 13%
Poa pratensis* Kentucky bluegrass 28 4%-0.3, 712 4% 04 4.7 11% [ Formatted
Bromus inermis* Hungarian brome 29 -0%.3, 0.5 0% 0.3 0.7 10% [ Formatted
Quercus germinata Sand live oak 15 -0%.3, %0.3, 0% 0.3 04 7%
Schizachyrium scoparium* Little bluestem 43 -0%.3, %0.2, 0% 0.4 0.6 7% | Inserted Cells
Taxus brevifolia Pacific yew 15 -0%.2, 7%0.2, 0% 0.6 0.5 7% | [ Formatted
Betula papyrifera* Paper birch 31 -0%.3, 3%0.2, 0% 0.3 0.3 3%
Eriogonum effusum Spreading buckwheat 29 0%.2, 3%0.5, 0% 0.5 13 3% [ Formatted
Bouteloua gracilis Blue grama 19 -0%.2, 0%.1, 0% 0.4 0.2 0% Inserted Cells
Carex rupestris Curly sedge 15 -0%.3, 0%.0, 0% 0.2 0.4 0%
Elymus elymoides Bottlebrush squirreltail 15 -0%.3, 0%.1, 0% 03 0.2 0% [ Formatted
Festuca spp. Fescue 19 -0%.3, 0%.4, 0% 0.3 0.2 0% [ Formatted
Hesperostipa comata Needle-and-thread grass 17 -0%.3, 0%.5, 0% 0.3 0.2 0%
Poaceae sp. Grass 19 -0%.3, 0%.0, 0% 03 0.2 0% [ Formatted
Smilax bona-nox* Catbrier 15 -0%.3, 0%.0, 0% 0.3 0.1 0% Inserted Cells
Thuja plicata Pacific red cedar 15 -0%.3, 0%.1, 0% 0.2 0.2 0% [ F tted
ormatte:
12 [ Formatted
Inserted Cells
[ Formatted
Inserted Cells
[ Formatted

[ Formatted
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