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Abstract. Remote-sensing satellites provide the only means to observe the entire ocean at high-temporal resolution. Optical-

sensors assess ocean color through estimates of remote-sensing reflectance (Rrs(λ)). We emphasize a physical degeneracy in

the radiative transfer equation that relates Rrs(λ) to absorption and backscattering coefficients (a(λ),bb(λ)) known as inherent

optical properties (IOPs). This degeneracy stems from Rrs(λ) depending on the ratio bb(λ)/a(λ), preventing the independent

retrieval of non-water IOPs without prior knowledge. We demonstrate that multi-spectral satellite observations lack the statis-5

tical power to recover more than three parameters describing non-water absorption and backscattering. Due to exponential-like

absorption by colored dissolved organic matter and detritus at shorter wavelengths, multi-spectral Rrs(λ) data cannot detect

phytoplankton absorption without strict priors, leading to biased and uncertain estimates. These results challenge decades of

IOP retrieval literature, including assessments of phytoplankton growth and biomass. While hyperspectral observations hold

promise to recover additional parameters, significant hurdles remain in accurately quantifying IOPs and phytoplankton biomass10

at a global scale.

1 Introduction

Phytoplankton play essential roles within our ecosystem, serving as the base of the ocean food web and performing ∼ 50% of

all photosynthesis on Earth. Therefore, assessing phytoplankton growth and death – especially in a changing climate (Behren-

feld et al., 2016; Flombaum et al., 2020) – is critical to any effort to track and predict the health of our planet. Decades of15

phytoplankton research have revealed significant regional variations in these process and demonstrated that phytoplankton are

highly dynamic on relatively short time scales (hours to weeks, especially in coastal areas, due to tides, upwelling, pulses of

freshwater inflow, and other episodic events (e.g. Cloern and Jassby, 2010). To identify any long-term trend, therefore, one

must first develop a detailed picture of the variations on seasonal and shorter timescales.

Unfortunately, our ability to measure phytoplankton in-situ is greatly hampered by the vast expanse of the ocean. Measure-20

ments with high temporal frequency can only be acquired at select, fixed stations such as OceanSITES (Boss et al., 2022).

Therefore, oceanographers have turned to remote-sensing satellite observations to perform high-cadence, global analyses of

the ocean surface. Beginning with the Coastal Zone Color Scanner experiment (Hovis et al., 1980), multi-band observations
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in optical channels have enabled the inference phytoplankton and other seawater constituent properties, such as chlorophyll-a

concentration and absorption by colored dissolved organic matter (CDOM) and detritus (IOCCG, 2000; Siegel et al., 2002).25

These properties are obtained from satellite-derived remote sensing reflectance

Rrs(λ)≡
Lw(λ)

Ed(λ)
(1)

with Lw the water-leaving radiance and Ed the incident solar irradiance. Their retrieval relies on recovering the absorption

coefficient

a(λ)≡ dA(λ)

dr
(2)30

with A(λ) the fraction of incident power absorbed and the backscattering coefficient

bb(λ)≡
dB(λ)

dr
(3)

with B(λ) the fractional incident power scattered out of the beam, that govern Rrs(λ) and are known as inherent optical

properties (IOPs).

The underlying physics for IOP retrievals is radiative transfer: the absorption and scattering of sunlight by seawater modu-35

lates and directs incident sunlight back to the satellite. While the radiative transfer physics is straightforward (but not simple;

Mobley, 2022), there are many factors that complicate the calculations. These include but are not limited to: the concentra-

tion of the constituents (typically the desired unknown), their variation with depth, the precise wavelength dependence of the

absorption and scattering coefficients of each constituent, geometric factors associated with the Sun’s location relative to the

satellite. In addition, Earth’s atmosphere attenuates the signal and introduces a dominant background radiation field which must40

first be estimated and subtracted (“corrected”) which fundamentally limits the precision of any space-based Rrs(λ) estimation

(e.g. Frouin et al., 2022).

For decades, researchers have attacked this radiative transfer problem to attempt retrievals of scientifically valuable quantities

including an estimate of the phytoplankton biomass. There is a robust and well-founded literature describing (and performing)

the translation of so-called apparent optical properties (AOPs, e.g. Rrs(λ)) to inherent optical properties (IOPs; a(λ), bb(λ))45

that depend solely on the water constituents and the water itself. Ideally, one first parameterizes and then estimates (“retrieves”)

the absorption and backscattering spectra of the non-water component anw(λ), bb,p(λ) and then infers concentrations or proxies

of phytoplankton, CDOM, detritus, etc. From these, one may examine the geographic distribution and temporal evolution of

fundamental biological processes across the global ocean (e.g. Behrenfeld et al., 2005; Siegel et al., 2014; Fox et al., 2022).

During the development of a diverse set of IOP retrieval algorithms for this purpose (see Werdell et al., 2018, for a review),50

the ocean optics community has acknowledged key challenges to the problem largely independent of those associated with

radiative transfer. These include uncertainties related to the atmospheric corrections, non-uniqueness between common con-

stituents (e.g. CDOM and detritus), and retrieving multiple unknowns from limited datasets (e.g. multi-spectral observations).
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A few, sparsely-cited works have also highlighted a more fundamental obstacle to the process: a physical “ambiguity” in the

inversion of the radiative transfer equation (Sydor et al., 2004; Defoin-Platel and Chami, 2007). Unfortunately, this problem55

has often been confused or conflated with the statistical limitations of an insufficient number of bands measuring Rrs(λ)

(Werdell et al., 2018; Cetinić et al., 2024). As such, while the community has acknowledged challenges to IOP retrievals from

remote-sensing observations, rigorous assessment of the algorithms themselves has been limited and usually only performed

in the context of comparisons to sparse, in-situ observations (e.g. Lee, 2006; Seegers et al., 2018).

Another fundamental aspect of the problem is that we do not know the optimal basis functions that describe a(λ) and bb(λ)60

nor even the complete set (e.g. Garver et al., 1994). Indeed, it is an aspiration within the ocean color field to recover (or even

discover) the composition of phytoplankton communities (e.g. Mouw et al., 2017). The ocean color research community has

hoped that the main limitation is the sparsity of existing multi-spectral bands provided by current satellites and that hyperspec-

tral observations will lead to a major breakthrough. Indeed, Cael et al. (2023) has demonstrated from a data-driven analysis of

Rrs(λ) spectra its limited information content, i.e. only ∼ 2 degrees-of-freedom in multi-spectral, satellite observations. But65

they also concluded that in-situ hyperspectral datasets provide only one or two addition degrees of freedom to describe the

seawater composition. In this manuscript, we examine this question from a new angle – with the standard approach of IOP

retrievals – and reach similar conclusions.

Here, we introduce the Bayesian INferences with Gordon coefficients (BING) package for ocean retrievals in a Bayesian

context (see Erickson et al., 2020, 2023, for a complementary Basyesian approach). Our approach follows many of the standard70

assumptions of widely adopted algorithms in the literature, e.g. the generalized IOP (GIOP) model (Werdell et al., 2013),

the Garver-Siegel-Maritorena (GSM) algorithm (Maritorena et al., 2002). In addition, we emphasize and expand upon the

“ambiguity” problem – a physical degeneracy in the radiative transfer equation that couples reflectances to IOPs – which

fundamentally limits IOP retrievals. In turn, we demonstrate that IOP retrievals from multi-spectral datasets constrain at most

three parameters describing anw(λ) and bb,p(λ). Consequently, if the spectral shape of CDOM absorption is allowed to vary75

and remains unconstrained, it becomes challenging, even impossible, to independently retrieve phytoplankton absorption with

high confidence. This limitation applies to previous satellite missions equipped with multi-band sensors, emphasizing the need

for additional constraints or improved observational capabilities for more accurate phytoplankton absorption retrievals. We

then examine the prospects for IOP retrievals with hyperspectral observations and discuss additional opportunities to address

the deep degeneracies that lurk within.80

2 Methods

2.1 Bayesian Formalism

At the heart of our analysis is an open-source Bayesian inference algorithm developed for the retrieval of IOPs from remote

sensing reflectances, the BING package. The primary motivations for introducing a Bayesian framework are twofold: (i) it

forces one to explicitly describe all of the priors that influence the result; (ii) it leverages well developed techniques to assess85
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error and correlations in the results without requiring Gaussianity1, i.e. the assumption that errors, uncertainties, or distributions

of retrieved parameters follow a Gaussian (normal) distribution; and (iii) it permits well-established approaches for performing

model selection, i.e., estimating the maximum number of free parameters one can use to describe the data. BING is conceptually

similar to the algorithm presented in Erickson et al. (2020) to analyze diatoms and Noctiluca scintillans, although BING adopts

a Monte Carlo Markov Chain sampler. In addition, the code base incorporates several previous inference algorithms (e.g. GSM,90

GIOP) and is extensible to include any new, user-driven parameterization of the IOPs. The BING package is purely Python and

is available on GitHub (Prochaska, 2024).

Provided a forward model (described in the following section) and a parameterization of a(λ) and bb(λ), the Bayesian

inference is straightforward and a wealth of well-trodden approaches and software packages are available. For BING, we adopt

the Monte Carlo Markov Chain (MCMC) formalism which empirically derives the posterior probabilities for the a(λ), bb(λ)95

parameterization P (X|Y ) including full uncertainties and all of the cross-correlation terms. This requires the definition of a

likelihood function P (Y |X), which will have the form:

P (Y |X)∝ exp

{
−1

2
[Y −H(X)]TC[Y −H(X)]

}
(4)

where Y represents the measured Rrs(λ) values, C is the full covariance matrix of Rrs(λ) including correlations, and H(X)

is the forward model of Rrs(λ) at the locations of Y .100

It can be shown that an MCMC analysis converges to the exact solution if run for an infinitely long time; in practice, the

calculations tend to converge after ≈ 10,000 iterations. For the analysis here, we generally run for 75,000 trials with at least 2

walkers per parameter (and at least 16 walkers) and only analyze the last 7,000 iterations of each. This release of BING uses the

EMCEE sampler (Foreman-Mackey et al., 2013) which was developed for astrophysical applications and has seen wide-spread

adoption in the field (over 8,000 citations).105

We have also implemented standard χ2 minimization (Levenberg-Marquardt; L-M) as a fitting option to speed-up model

development and portions of the analysis. This also enables one to implement standard inference models in the literature (e.g.

GSM and GIOP) which generally use L-M optimization.

Note that the Bayesian approach in BING involves using Bayes’ theorem to update the probability of a hypothesis based

on prior knowledge and new data. When retrieving IOPs from Rrs(λ), this approach explicitly incorporates all available prior110

information about the IOPs and their uncertainties into the model. By doing so, it allows for a more transparent and rigorous

estimation process. The Bayesian framework considers the likelihood of the observed Rrs(λ) given the IOPs and combines

it with the prior probability distributions of the IOPs to obtain a posterior distribution. This posterior distribution provides a

probabilistic solution to the inverse problem, highlighting the most likely values of the IOPs while quantifying the uncertainties,

leading to more reliable and informed retrievals.115

In reference to the detection of phytoplankton, we consider a series of models without and with aph(λ) absorption. We then

examine the evidence for models with aph(λ) in the Bayesian context by applying standard approaches for model selection, i.e.,

1In the following, we adopt Gaussian uncertainties, but will incorporate correlated noise when provided by satellite missions.
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assessing the balance between model fit and complexity. Specifically, we have evaluated the Aikake and Bayesian information

criteria (AIC,BIC) which are akin to χ2-difference tests (Bentler and Bonett, 1980):

AIC = 2k− 2lnL , (5)120

and

BIC = k lnn− 2lnL , (6)

with n the number of Rrs(λ) measurements and L the likelihood function calculated assuming Gaussian statistics for uncer-

tainties σ(Rrs(λ)). The likelihood function L quantifies the probability of observing the data given the specific forward model

and its parameters. Since it is calculated under the assumption of Gaussian (normal) statistics for the Rrs(λ) uncertainties, this125

means that the observed data, i.e., the Rrs(λ) measurements, are assumed to be normally distributed around the model predic-

tions with the standard deviation. For our hyperspectral analysis where n≫ 10, the BIC offers a more stringent constraint but

the results with AIC are qualitatively similar. A high AIC or BIC value implies that the model is less likely to be the best model

given the data, considering both the fit and complexity. Quantitatively, we assess model selection by evaluating the difference

in BIC for any two models130

∆BICi,j =BICi −BICj , (7)

where ∆BICi,j < 0 indicates that model i is preferred and vice versa.

2.2 Radiative transfer with a physical degeneracy

To construct any such algorithm, one must have a well-defined forward model to predict the observables, here remote-sensing

reflectances Rrs(λ). For IOP inversion, this means a radiative transfer model – or its approximation – which estimates Rrs(λ)135

from a(λ) and the backscattering coefficients bb(λ). The majority of IOP retrieval algorithms developed by the community

have used the quasi single-scattering approximation (QSSA) originally introduced by Hansen (1971) and translated to ocean

color by Gordon (1973) (see also Zege et al., 1991). This approach was refined further by Gordon (1986) who approximated

the sub-surface remote reflectances rrs(λ) with a Taylor series expansion:

rrs(λ) =

N∑
i=1

Giu(λ)
i , (8)140

with

u(λ)≡ bb(λ)

a(λ)+ bb(λ)
. (9)
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Most IOP retrieval algorithms have taken N = 2 and set the coefficients as constants G1 = 0.0949 and G2 = 0.0794, i.e.

values independent of wavelength. In this manuscript and for the default mode of BING, we adopt the same prescription and

coefficients, and scrutinize the accuracy of this assumption in Supp A. For the results in the main text, we assume a perfect145

forward model, i.e. we use Equation 8 to generate the target rrs(λ) and perform the fits on these values. In practice, we work

with remote-sensing reflectances Rrs(λ) following a standard conversion from rrs(λ) (Lee et al., 2002):

rrs(λ) =
Rrs(λ)

0.52+1.17Rrs(λ)
(10)

Despite the approximation of Equation 8, it does capture a salient aspect of the physics: the functional dependence of

Rrs(λ) on u(λ) and thereby the IOPs a(λ) and bb(λ). However, this dependence reveals an especially challenging aspect of150

IOP retrievals: because u(λ) is a function of the ratio of bb(λ)/a(λ),

rrs(λ) = Func

(
bb
a

)
, (11)

the radiative transfer solutions are physically degenerate in bb/a. Put succinctly, any IOP solution that recovers a set of Rrs(λ)

observations can be replaced by an infinite set that preserves the bb/a ratio. Therefore, the retrieval is only tractable if one

implements strong constraints (known as priors in Bayesian analysis) on the functional forms of a(λ) and bb(λ). In section 3.1,155

we examine the consequences of this physical degeneracy on IOP retrievals.

2.3 A Hyperspectral IOP Dataset

For the development and testing of BING, we have leveraged a hyperspectral dataset of a(λ),bb(λ) spectra made public by

Loisel et al. (2023) (hereafter L23). The spectra sample waters of both Case I and Case II properties with chlorophyll-a

concentrations varying from Chla≈ 0.01− 10mgm−3. The IOP spectra were generated from their database of in-situ mea-160

surements of phytoplankton aph(λ) and models of several additional constituents: CDOM ag(λ), pure seawater aw(λ), and

detritus ad(λ). L23 then generated estimates of the backscattering coefficients bb,p(λ) following standard assumptions based

on in-situ and laboratory work (see Loisel et al., 2023, for additional details). These 3,320 a(λ) and bb(λ) spectra define our

dataset, and while they range from 350-750 nm we restrict analysis to λ= 400− 700 nm.

Although IOPs retrievals are greatly challenged by the physical degeneracy in the radiative transfer described in the previous165

section, a positive aspect of the problem is the presence of water which introduces an ever-present and precisely known

constraint on the problem (except in the ultraviolet, λ < 400 nm, Mason et al. (2016)). The absorption aw(λ) and backscattering

bb,w(λ) spectra of pure seawater impose priors on the model that serve to partially alleviate the physical degeneracy described

in the previous section. First, aw(λ) and bb,w(λ) span the entire spectrum and therefore couple the otherwise independent

Rrs(λ) values. Second, to the extent that the shapes of aw and bb,w are unique relative to other constituents this helps one170

avoid the bb/a degeneracy. Third, the strong absorption of water at λ > 500 nm and the relatively high magnitude of bb,w(λ) at

λ < 450 nm define regions where one may retrieve information on the non-water components (Sydor et al., 2004).
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Figure 1. Comparison of the IOP spectra for water (aw, bb,w; black solid and dashed curves) against one example set of non-water spectra

(anw, bb,p; orange solid and dashed curves) from L23 (their index=170, an example representative of the open ocean with low Chla con-

centration). The red region indicates where absorption by water dominates (aw > 5anw). In this region, reflectance measurements constrain

the non-water component of backscattering. Similarly, the blue region is where water dominates backscattering and retrievals may constrain

anw. In turn, for observations with noise, the inversion problem has very limited constraints on the non-water components.

On the last point, Figure 1 compares the absorption and backscattering coefficients of water against one example of non-water

spectra anw(λ), bb,p(λ) from the L23 dataset. As emphasized in the Figure, at red wavelengths a≈ aw(λ) and bb,w ≈ bb,p such

that the observations may constrain bb,p. Similarly at λ < 450 nm, bb ≈ bb,w and anw(λ)> aw(λ) such that the observations175

constrain anw. These inferences from Figure 1, however, rely on the strong (but frequently satisfied) prior that aw(λ)> anw(λ)

at λ > 500 nm and bb,w(λ)> bb,p(λ) at λ < 450 nm. If this is relaxed, e.g. if anw(λ) and bb,p(λ) may take on any values then

the bb/a degeneracy forces an infinite set of solutions (i.e. no unique retrieval is possible, see Section 3.1).

2.4 Simulating Satellite Observations

For many of the analyses presented here, we have generated simulated Rrs(λ) spectra for several multi-spectral and hyper-180

spectral missions. For the fits presented in this manuscript, we ignore the Rrs(λ) spectra provided by L23 (generated with

Hydrolight) and instead use Equations 8-10 to calculate Rrs(λ) from a(λ) and bb(λ). We then resample these spectra to the

bands/channels of several satellite missions:
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Figure 2. (left) Comparison of the MODIS measurements of Rrs(λ) at λ= 443 nm against in-situ observations at the same wavelength.

These were taken from the SeaBASS site (Werdell and Bailey, 2002) dedicated to MODIS matchups (NASA Goddard Space Flight Center,

2024). The points follow the over-plotted one-to-one line relatively well, albeit with significant scatter which we assess as the RMS noise

in the MODIS observations. (right) Distribution of the difference between in-situ and satellite ∆Rrs(λ) =Rrs(λ)
in−situ −Rrs(λ)

MODIS.

The red dashed-lines show the 4σ interval beyond which we clipped the data when calculating the noise estimate (RMS).

Table 1. MODIS Data

Band σ(Rrs(λ))

(nm) (sr−1)

412 0.0012

443 0.0009

488 0.0008

531 0.0007

547 0.0007

555 0.0007

667 0.0002

678 0.0001
Notes: The error has assumed that 1/2 of the variance is due to the in the in-situ measurements.

MODerate resolution Imaging Spectroradiometer (MODIS)/Aqua: We adopt 8 multi-spectral bands as listed in Table 1 cor-

responding to MODIS/Aqua and we evaluate Rrs(λ) at the center of each. For uncertainties, we have estimated the RMS185

difference between satellite and in-situ Rrs(λ) “match-up” measurements collated on the SeaBASS database (Werdell and

Bailey, 2002) after iteratively clipping any 4σ outliers. Figure 2 shows an example of the data and clipping for one band. We
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Figure 3. The blue curve is the median PACE uncertainty in Rrs(λ) estimated in the Level 2 product, v2.0 for one granule (

PACE_OCI.20240413T175656.L2.OC_AOP.V2_0.NRT.nc). The black dots are the values of σ(Rrs(λ)) adopted in this manuscript when

simulating PACE spectra with noise. The red stars show the signal-to-noise (S/N) for an example spectrum.

Table 2. SeaWiFS Data

Band σ(Rrs(λ))

(nm) (sr−1)

412 0.0014

443 0.0011

490 0.0009

510 0.0006

555 0.0007

670 0.0003
Notes: The error has assumed that 1/2 of the variance is due to the in the in-situ measurements.

further assumed that one half of the variance is due to the in-situ observations themselves. These RMS values are also provided

in Table 1, and we find they are in good agreement with other estimations (Zhang et al., 2022; Kudela et al., 2019).
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Sea-viewing Wide Field-of-view Sensor (SeaWiFS)/SeaStar: We followed a similar procedure for SeaWiFS using 6 bands and190

the uncertainties provided in Table 2.

Ocean Color Instrument (OCI)/Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Satellite: For simulated OCI spectra, we

assumed δ = 5 nm sampling and limited the wavelength range from 400− 700 nm. The lower bound is due to (i) greater

uncertainties in the atmospheric corrections, (ii) greater uncertainty in water absorption and scattering, (iii) greater uncertainty

in how best to parameterize the non-water components in the UV. The upper wavelength bound is to avoid systematics that195

likely dominate the uncertainty at the lowest Rrs(λ) signals. Furthermore, we have limited measurements on the absorption of

standard seawater constituents (e.g. phytoplankton) at these longer wavelengths.

For the PACE noise model, we downloaded a single granule (2,175,120 pixels) of Level 2 data, v2.0:

PACE_OCI.20240413T175656.L2.OC_AOP.V2_0.NRT.nc. We then took the median uncertainty spectrum (Rrs_unc, Zhang

et al., 2022) for all non-flagged data between 33-40N and 73-78W. This median uncertainty spectrum is plotted in Figure 3 at200

the Level 2 wavelength sampling (≈ 2.5 nm). We also show the values adopted at our δ = 5 nm sampling, and one notes that we

did not adjust σ(Rrs(λ)) despite the larger sampling size. This is because OCI is over-sampled at δ = 2.5 nm, i.e. neighboring

data points are highly correlated. Further work should assess the degree of this correlation to obtain a better noise estimate.

Note that the noise is independent across spectral bands, meaning no spectral correlation is assumed. However, in standard

atmospheric correction procedures, noise is expected to be spectrally correlated due to systematic uncertainties in aerosol205

and Rayleigh scattering treatments, as well as instrumental effects. Ignoring these correlations could introduce additional

uncertainties in the retrievals by misrepresenting the spectral structure of the observed signals. Whether treating noise as

uncorrelated maximizes or underestimates the effective retrieval uncertainty depends on the interplay between error propagation

and the constraints imposed by the retrieval algorithm. A more rigorous treatment should incorporate spectral noise correlations

to provide a more accurate error characterization.210

2.5 IOP Models

For the principal analysis of this manuscript, we will consider a series of increasingly complex models for the IOPs anw(λ)

and bb,p(λ). We generally follow common practice for models of anw(λ) and bb,p(λ) which have been informed by in-situ

and laboratory measurements of ocean constituents. In turn, we will examine the maximum complexity that can be statistically

constrained by observations designed to mimic satellite retrievals, e.g. data from multi-band and hyperspectral observations.215

Consider first the simplest scenario we may conceive: a two-parameter [k = 2] model with both anw(λ) and bb,p(λ) taken as

constant at all wavelengths:

anw(λ) =Acst (12)

bb,p(λ) =Bnw (13)

This model may not have physical merit, but it serves as a baseline for comparison with other, physically motivated IOP220

scenarios.
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Now consider three additional models of increasing complexity. The [k = 3] model,

anw(λ) = Adg exp[−Sdg(λ− 400)] (14)

bb,p(λ) = Bnw (15)

where λ is expressed in nm and where one assumes the non-water absorption is strictly an exponential function. This spectral225

shape is commonly used to describe the absorption by CDOM and/or detritus. In-situ absorption measurements show typical

values of Sdg ≈ 0.015 for CDOM (Roesler et al., 1989) and Sdg ≈ 0.010 for detritus (Stramski et al., 2001). Our fiducial

models only require Sdg > 0 but we also consider stricter priors on this parameter.

The [k = 4] model

anw(λ) = Adg exp[−Sdg(λ− 400)] (16)230

bb,p(λ) = Bnw (λ/600)βnw (17)

which adds the commonly adopted power-law for backscattering by particulate matter (Gordon and Morel, 1983). For the

[k = 4] and [k = 5] models we allow βnw to vary but consider fixed exponents for other models introduced below (and, strictly

speaking, βnw=0 for models [k = 2] and [k = 3]).

Last in this sequence, the [k = 5] model includes a phytoplankton component235

anw(λ) = Adg exp[−Sdg(λ− 400)]+Aphaph(λ) (18)

bb,p(λ) = Bnw (λ/600)βnw (19)

with aph(λ) introduced to capture “typical” absorption by phytoplankton. It is expected and observed that this component

may exhibit the greatest complexity. Indeed, scientifically the community aims to distinguish the potentially large variations

in phytoplankton families throughout the ocean and inland waters. For this [k = 5] model, we adopt the parameterization of240

Bricaud et al. (1995):

aph(λ) = Cph(λ) [Chla]Eph(λ) (20)

with Chla the Chlorophyll-a concentration in mgm−3 and the tabulation of Cph(λ) and Eph(λ) are provided by Bricaud et al.

(1998). Furthermore, we follow L23 (and previous literature) and assume

Chla= aph(440nm)/0.05582m−1 (21)245
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so that phytoplankton absorption is described by one free parameter: aph(440nm) (aka Aph).

We also include a [k = 2b] model which has two parameters, Chla and Bnw (we assume a constant value), and we set

the Aph using Equation 21. This model has no CDOM or detritus absorption.

For these models, we impose the following priors (constraints) on the 5 parameters. For each amplitude (Adg , Aph, Bnw),

we assume a uniform log prior from 10−6 to 105m−1 in magnitude. For the shape parameters, we assume a uniform prior for250

Sdg in the interval U = [0.1,0.2] and that βnw has a uniform prior with values U = [0,2]. These priors for the shape parameters

are motivated by the range of measured in-situ values for each (Roesler et al., 1989; Lee et al., 2002).

We have also generated a series of “flexible” models with one free parameter at each of 61 wavelengths and the model

is the linear interpolation between each parameter. We will refer to this as the arbitary IOP model.

For a portion of the analysis, we consider the GIOP and GSM models which have been widely adopted within the community,255

including operational implementations by NASA. These two models are effectively constrained versions of the [k = 5] model

with different priors on the parameters. In particular, both GSM and GIOP adopt a fixed Sdg – 0.018nm−1 for GIOP and

0.0206nm−1 for GSM. The models also either adopt a fixed value for βnw (1.0337 for GSM) or estimate it from the Rrs(λ)

measurements (GIOP) with a separate prescription (Lee et al., 2002).

Each model also has a different approach for setting the shape of aph(λ) than our [k = 5] model. The standard GIOP model260

estimates Chla from a separate prescription (typically the OC4 algorithm from (O’Reilly et al., 1998) and then adopts Equa-

tion 18 for the shape of aph(λ). For GSM, we adopt their multi-spectral description of aph(λ) and interpolate to hyperspectral

resolution as needed.

We consider one final scenario, a many-parameter model ([k = free]) with one free parameter per wavelength channel for

each of anw(λ) and bb,p(λ). This model is used to attempt retrievals with any arbitrary shape for the IOPs.265

3 Results

3.1 Failed Attempts at Arbitrary IOP Retrievals

The physical degeneracy in the radiative transfer relating Rrs(λ) to IOPs (Section 2.2) implies that the greater the freedom that

one allows for anw(λ) or bb,p(λ), the more degenerate the solutions. This fundamentally limits our ability to retrieve arbitrary

a(λ) or bb(λ) even in the presence of perfect data (infinite number of channels and no uncertainty). Therefore, no algorithm270

can retrieve arbitrary or even highly complex a(λ) and bb(λ). To make progress, one most also impose strong constraints on

anw(λ) and bb,p(λ) to recover unique or most probable solutions. These priors, however, must ensure that the values of a and

bb cannot vary freely at any individual wavelength where one seeks a retrieval in a way which holds their ratio constant.

To demonstrate this with an example, we performed a series of IOP retrievals of bb,p(λ) assuming a perfect forward model

(Equation 8), perfect knowledge of the uncertainties, and perfect knowledge of water (aw, bb,w). In this case, we adopt the275

arbitrary IOP model and show the fits to Rrs(λ) for the index=170 spectra of L23 in Figure 4 assuming the exact answer

and then anw(λ) with a series of assumed scale factors. We then solved for the corresponding bb,p(λ) spectra that provide the
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Figure 4. A series of Rrs(λ) “fits” to an example Rrs(λ) spectrum (left) for varying anw(λ) (center) and bb,p(λ) (right) using the arbitrary

IOP model. We show a series of solutions with scaling factors of (0.9, 1., 3., 10., 100.) relative to the true model for a(λ). Owing to the

physical degeneracy in the radiative transfer equation, Rrs(λ) = F (a/bb), there are an infinite number of such solutions yielding an

infinite uncertainty in anw(λ) and bb,p(λ).

same best-fit to Rrs(λ). Indeed, there are an infinite number of anw(λ), bb,p(λ) solutions; one cannot retrieve arbitrary IOPs

from Rrs(λ) spectra.

This physical degeneracy limits the information content of retrievals and precludes arbitrary functional forms for anw(λ)280

and bb,p(λ), e.g. models which strive to retrieve arbitrary anw(λ) are ruled out (e.g. Loisel et al., 2018). Instead, one must

impose constraints (priors) on the functional forms of anw(λ) and bb,p(λ) (i.e. parameterize them) and, ideally, priors on the

parameters themselves.

3.2 Parameterized IOP Retrievals with BING

We now perform attempted retrievals of the IOPs anw(λ) and bb,p(λ) using assumed spectral shapes with a set of increasingly285

complex prescriptions. We begin by fitting the [k = 2] model to two examples from the L23 dataset (Figure 5): one chosen

to be representative of their full dataset and the other chosen to have a higher than typical phytoplankton absorption aph(λ)

relative to the combined CDOM and detritus components adg(λ) (i.e. aph(440nm)> adg(440nm). Both have relatively low

Chla concentrations (≈ 0.1mgm−3). For these, we fit to Rrs(λ) values calculated directly from Equation 8 and assume a

constant S/N=50 for the Rrs(λ) values for the likelihood calculation. Despite the extreme simplicity of this [k = 2] model,290

the Rrs(λ) fits are not too dissimilar from the true values, especially for the high aph(λ)/adg(λ) example, and we note that

this aph-dominated spectrum has a low total non-water absorption, i.e. weak adg absorption. This follows from our discussion
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of Figure 1: water backscattering and absorption dominates the solution at short and long wavelengths respectively and the

non-water components have limited impact on the Rrs(λ), i.e. we primarily measure seawater from IOP retrievals especially

for ocean waters with low chlorophyll concentrations.295

Figure 5. Retrievals of IOPs – (middle panels) anw(λ) and (right panels) bb,p(λ) from fits to (left panels) remote-sensing reflectances Rrs(λ)

assuming perfect radiative transfer and without adding noise. The black points are the true values of Rrs(λ), anw(λ), and bb,p(λ) for two

examples from the L23 dataset: (index=170) which we chose as representative of the full dataset and (index=1032) which has aph > adg at

440 nm. The figure shows solutions for a series of models with increasing complexity and number of free parameters k. These models are

([k = 2]; red) constant anw(λ) and bb,p(λ); ([k = 3]; green) constant bb,p(λ) and a two-parameter exponential for anw(λ); ([k = 4]; blue)

exponential anw(λ) and a power-law for bb,p(λ); and ([k = 5]; orange) power-law bb,p(λ) and anw(λ) modeled by the exponential and a

phytoplankton function (see text for further details). It is evident that all of the k ≥ 3 models produce excellent fits to the Rrs(λ) data at the

few percent level.

Figure 5 shows the best solutions derived with BING for the [k = 2− 5] models. While the log-scaling of the Rrs(λ)

panels hides differences at the few percent level, it emphasizes that distinguishing between models requires nearly perfect

observations. Notably, when k = 2, the model does not fit the observed anw(λ) and bb,p(λ) well, suggesting that this level

of complexity is insufficient to fully capture the IOP variability. However, despite these discrepancies in IOPs, the Rrs(λ) fit

remains relatively good, which indicates that multiple IOP configurations can produce similar reflectance spectra due to the300

underlying ill-posed nature of the inversion problem. As model complexity increases, the Rrs(λ) fit improves. The [k = 3]

reproduces the reflectance spectrum to within 10% at all wavelengths, and the [k = 4] and [k = 5] models achieve even better
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agreement, at the several percent level or less. The [k = 4] model achieves a reduced chi-squared χ2
ν ≈ 1 when assuming 5%

uncertainties (S/N = 20) in Rrs(λ), suggesting that the model complexity is well-matched to the information content in the data.

We have also considered the [k = 2b] model (not shown), but find that because it does not capture the exponential-like305

absorption of CDOM and detritus it is generally a poorer model.

This progression implies that increasing k improves retrieval fidelity up to a certain point. If k = 5 continues this trend, one

might expect a reasonably good retrieval of anw(λ) and bb,p(λ) under ideal conditions. However, Figure 5 also underscores

a fundamental limitation in IOP retrievals: beyond a certain level of complexity, additional parameters may not significantly

enhance the retrieval unless supported by sufficiently independent spectral information. This illustrates the inherent degeneracy310

in the inversion problem, where different IOP parameterizations can yield similar Rrs(λ), making it difficult to extract unique

IOP solutions. Thus, while a [k = 5] model might provide a better fit, it remains constrained by the amount of independent

spectral information available in the data, reinforcing the challenge of retrieving detailed IOP spectra from multi-spectral or

even hyperspectral observations.

Figure 6. Evaluations of the difference in BIC values ∆BIC for fits to reflectance data derived from the 3,320 spectra of L23. The curves

describe the cumulative distribution function of the ∆BIC values. (a) simulated MODIS observations (8 bands) with a series of signal-

to-noise (S/N) assumptions (colored curves) and for retrievals adopting actual MODIS noise estimates from NASA validation Werdell and

Bailey (2002). The > 99% negative ∆BIC3,5 values for the realistic noise case indicates the L23 spectra greatly favor models with only

3 parameters and without phytoplankton. (b) similar analysis but for OCI/PACE-simulated observations with fixed S/N and for a best

guess at nominal OCI/PACE performance (Section 2.3). We find even with OCI that only ≈ 30% of the L23 dataset favors the model with

phytoplankton.

We can statistically evaluate the constraining power of the data with the BIC formalism introduced in section 2.1. Figure 6315

shows the ∆BIC values for simulated MODIS observations of the L23 spectra (see Supp 2.3 for details). The cumulative
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distribution function (CDF) on the y-axis represents the cumulative probability that the ∆BIC values (Equation 7) for the

3,320 fits to the L23 Rrs(λ) data are less than or equal to a specific value. Each ∆BIC value corresponds to a comparison

between two models, specifically the BIC values for a model with and without phytoplankton parameters ([k = 3] and [k = 5]

in the multi-spectral case, Figure 6a, and [k = 4] and [k = 5] in the hyper-spectral case, Figure 6b). If the CDF value is yCDF at320

a specific ∆BIC value, it means that the 100× yCDF% of the ∆BIC values in the dataset are less than or equal to that specific

value. Thus, the CDF curve shows the proportion of the dataset for which the simpler model is preferred as a function of the

∆BIC value. The higher the CDF value at ∆BIC = 0, the higher fraction of the dataset which favors the simpler model over

the more complex one.

For the analysis with a realistic MODIS noise model, fewer than 1% of the spectra prefer the [k = 5] model with phytoplank-325

ton. This holds true even though our analysis assumed a perfect forward model and perfect knowledge of the measurement

uncertainties, without correlated errors. Allowing for these uncertainties would result in zero cases with ∆BIC< 0. In fact, we

find that one cannot retrieve more than 3 parameters from MODIS observations and that even the [k = 2] model is satisfactory

for low Chla waters (Appendix B). Without perfect knowledge of the absorption by CDOM one cannot retrieve phytoplankton

from MODIS observations alone.330

The curve corresponding to S/N= 20 in Figure 6a shows that while there is some support for the simpler model, indicated

by the CDF values for positive ∆BIC, the more complex model, which includes additional parameters for phytoplankton, is

generally preferred. This is because the CDF for negative ∆BIC values is low, indicating that the simpler model is not favored

in most of the dataset. In other words, although the simpler model is supported in some cases, the overall trend indicates that

the more complex model is usually favored for S/N= 20. Thus, reducing noise in the Rrs(λ) data is essential when increasing335

model complexity. However, achieving S/N= 20 is challenging, even at blue wavelengths in open ocean Case 1 waters, as

demonstrated in numerous validation studies. And, achieving S/N= 20 at λ > 600 nm where absorption by seawater alone is

very high may be impossible (Zhang et al., 2022).

We reach even stronger conclusions for simulated SeaWiFS observations which have fewer bands. Unless one identifies an

approach to regularly achieve S/N≫ 10 measurements in the presence of all error terms (e.g. atmospheric corrections), phy-340

toplankton cannot be retrieved from multi-spectral observations without strong, additional priors. In Appendix B, we examine

the GIOP and GSM models which assume a fixed and steep Sdg shape parameter and the negative outcomes of this assump-

tion. These results are central to our broader conclusion that multi-spectral satellite observations, such as from MODIS

and SeaWiFS, lack the statistical power to constrain more than three parameters describing non-water absorption and

backscattering. They also emphasize that retrieval performance depends not only on the number of parameters but345

also on how they are structured within the model. Model design must account for both physical realism and statistical

identifiability, especially when working with data of limited spectral resolution and signal-to-noise.

Now consider an assessment with simulated OCI hyperspectral observations on the PACE satellite (see Section 2.3 for de-

tails). Our fiducial case uses the L23 spectral sampling and we limit the observations to 400nm< λ < 700 nm, outside of

which systematics of the L23 dataset and instrumentation dominate the uncertainties in Rrs(λ), and poor knowledge of the350

wavelength dependence of the ocean’s constituents preclude confident analysis. Figure 6b shows the distribution in the dif-

16



ference in BIC values, ∆BIC, between the [k = 4,5] models assuming several choices for the S/N and our estimate for the

OCI/PACE noise from v2.0, Level 2 products. We find that OCI/PACE may not recover an absorption signature of phytoplank-

ton from water with properties similar to those represented by less than half of the L23 dataset (primarily those with lower

Chla concentrations). We are led to conclude that one may retrieve four parameters for IOPs from a OCI-like observation355

and possibly a fifth. Two of these numbers describe the amplitude and shape of anw(λ) parameterized as an exponential and

two numbers describe bb,p(λ) modeled as a power-law. Absent strong priors that account for one of these four, extracting even

one number describing aph(λ) (at all wavelengths) will be challenging. The following section explores such hyperspectral

retrievals in greater depth.

3.3 Retrieving aph(λ) with NASA/PACE360

The results in Figure 6b indicate that hyperspectral observations with characteristics representative of data from the NASA/-

PACE mission should have the statistical power to infer the presence of phytoplankton in the majority of ocean waters. With

BING, we may explore further the promise of such aph(λ) retrievals as well as assess potential biases. This analysis comple-

ments the hyperspectral assessment of a portion of the NOMAD dataset of in-situ observations by Erickson et al. (2023).

For the following analysis, we adopt the [k = 5] model and compare results with the GIOP and GSM algorithms re-365

emphasizing that the latter was only designed for multi-spectral observations and is only included for illustration. Figure 7

shows the results for the [k = 5] model fit to the top spectrum in Figure 5 but now with random noise included and the

68% confidence interval illustrated. The model provides an excellent description of the Rrs(λ) measurements, but the reduced

χ2
ν being much less than 1 suggests potential overfitting of the data. Furthermore, the retrievals are well matched to the known

anw(λ) and bb,p(λ) spectra and fully encompassed by the uncertainty. This includes the individual adg(λ) and aph(λ) spectra370

that comprise anw(λ).

Quantitatively, on the positive side we recover aph(440nm) = 0.0084±0.0033m−1 which lies within 1σ of the correct value

(0.0073 m−1). On the negative side, the uncertainty implies a less than 3σ detection, i.e. over 1% of the MCMC samples have

values 10× lower than the true aph(440nm). This is due to the degeneracy between adg(λ) and aph(λ), as illustrated in Figure 8

which shows a “corner” plot for the 5-parameter model. The very low aph(440nm) values (< 10−3m−1) are correlated with375

lower (shallower) Sdg and higher Adg , i.e. a degeneracy between CDOM/detritus and phytoplankton absorption. We also see

from Figure 8 that the Rrs(λ) offer effectively no constraint on βnw; its values are almost entirely defined by the prior we have

imposed.

Now consider an example with high Chla concentration. Figure 9 presents the BING fit for the [k = 5] model to an example

representative of eutrophic (Case II) waters (idx=2773 of the L23 dataset). The resultant Rrs(λ) spectrum shows the effects of380

strong detrital and phytoplankton absorption at blue wavelengths, peaking at λ≈ 550 nm. As with the low Chla example, the

aph(λ) and adg(λ) retrievals are generally in agreement with their true values aside from an excess of adg(λ) absorption at the

shortest wavelengths. This excess is due to the combination of lower S/N in the Rrs(λ) data at λ < 450 nm and errors in the

adopted basis functions. In particular, our model does not capture the variations in bb,p(λ) at λ < 500 nm due to phytoplankton

and these are compensated (in part) by the higher adg(λ), yet another manifestation of the bb/a degeneracy in IOP retrievals.385
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Figure 7. IOP retrievals from a BING analysis of a PACE-simulated spectrum (upper left panel) for the [k = 5] model with its standard

priors. For this low Chla example (index=175 of the L23 dataset), we recover estimates of anw(λ) and bb,p(λ) and their uncertainties

(colored curves and shaded regions which encompass 68% confidence intervals) that are in good agreement with the true values (solid

points). However, the 99% uncertainty interval for aph(440nm) includes vanishingly small values and we would not conclude phytoplankton

is detected at even 3σ significance.

Despite these issues, the resultant χ2
ν is approximately 1 (i.e. the model fits the data well) and a more sophisticated model

introduced to capture the variations in bb,p(λ) may result in over-fitting.

We may explore the impacts of imposing priors on model parameters by comparing the fits from GIOP and GSM to this high

Chla example. Figure 10 shows the fits to Rrs(λ) and the IOP retrievals for these 3 models. All three yield a reduced χ2
ν ≈ 1
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Figure 8. A corner plot showing the ≈ 500,000 samples of the [k = 5] model fit shown in Figure 7. The histogram panels show the

marginalized posterior distributions of each parameter with the blue dotted lines showing the 68% confidence interval. The contour plots

describe the correlations between parameters. Note especially the correlations between Aph and both Adg and Sdg: models with shallower

Sdg and higher Adg can describe the data without any phytoplankton absorption. Also note the very poor constraint on βnw.

and would be considered acceptable models (GSM is marginal). These results further demonstrate the physical degeneracy390

within the radiative transfer; here the GIOP model systematically under-estimates both aph(λ) and bb,p(λ) but these compensate

to yield very similar Rrs(λ) as the [k = 5] model. We also emphasize that the GIOP model is driven to this solution by the

strong prior on Sdg , error in the estimate of Chla from the OC4 algorithm, and the shallower slope for βnw estimated from the

Lee et al. (2002) prescription. As is obvious from Figure 10, the best-fit aph(440nm) values vary by a factor of over 400%,
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Figure 9. Similar to Figure 7 but for an example spectrum with high Chla concentration and strong detrital absorption. As with the low-

Chla case, this fit yields χ2
ν < 1 despite the overestimates of anw(λ) and bb,p(λ) at λ < 450 nm. This is because of the degeneracy in the

radiative transfer (bb/a) and the poorer S/N in Rrs(λ) at these wavelengths.

much larger than the estimated uncertainties for each. These large variations occur even though the models have statistically395

acceptable fits. The low χ2
ν values of the [k = 5] and GIOP models further emphasize that the data have limited statistical power

to retrieve any additional on phytoplankton beyond what is described in the Bricaud et al. (1998) prescription. While different

retrieval models yield substantially different estimates of aph(440nm), the spectral information in Rrs(λ) alone is insufficient

to independently resolve phytoplankton absorption without relying on empirical parameterizations. This points to the need for
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Figure 10. A series of fits and IOP retrievals for the high-Chla spectrum also shown in Figure 9. The solid, dashed, and dotted curves are the

results for the [k = 5], GIOP, and GSM models respectively, each with an uncertainty similar to that for the [k = 5] model in Figure 9. We

find that each model provides a statistically acceptable fit to the Rrs(λ) data (χ2
ν ≈ 1) despite the large differences in their IOP retrievals.

additional observational constraints, such as hyperspectral measurements, to break the degeneracy and improve the accuracy400

of phytoplankton absorption retrievals.

We have performed BING fits with the [k = 5] and GIOP models to simulated PACE spectra for the full L23 dataset to

estimate aph(440nm) and bb,p(440). As above, we limit to 400-700 nm, adopt the PACE uncertainties (Figure 3, and have

injected random noise into each spectrum. Figure 11 compares the aph(440nm) and bb,p(440) retrievals with BING against the

true values. For aph(440nm), on the positive side, the retrievals track the known values over nearly three orders of magnitude.405
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At low aph(440nm), however, the [k = 5] model systematically under-predicts aph(440nm) for many of the retrievals leading

to a negative bias, and the majority of these are formally upper limits (plotted in a lighter shade of blue). Furthermore, the scatter

is higher than PACE Level 2 requirements (35%; Cetinić et al., 2018). If we limit to cases with true aph(440nm)> 0.01m−1,

the bias is reduced (15%) but the MAE remains large (40%). One of the primary reasons the [k = 5] model underestimates low

aph(440nm) values is the spectral degeneracy between aph(λ) and adg(λ). When aph(440nm) is weak, the total absorption410

is largely dominated by CDOM, making it difficult to separate the phytoplankton contribution from the background absorption

(Houskeeper and Hooker, 2025). The [k = 5] model allows for flexibility in the spectral shape of adg(λ), which can lead to

overestimation of CDOM/detritus absorption and a corresponding underestimation of phytoplankton absorption.

The GIOP model, in contrast, constrains CDOM absorption using a fixed spectral slope (Sdg) typically prescribed from

empirical studies such as Lee et al. (2002). This constraint prevents the retrieval from assigning excess absorption to adg(λ)415

at short wavelengths, reducing the risk of underestimating aph(440nm). While this approach limits retrieval flexibility, it also

helps stabilize the separation between phytoplankton and CDOM absorption, ensuring that even at low aph(λ) values, the

retrieval does not shift excessive absorption to CDOM. The right panels of Figure 11 show the retrievals for bb,p(440). The

[k = 5] model provides a better overall agreement with the true values, although some scatter persists, particularly at low

bb,p(440) values. The bias and MAE are smaller compared to the GIOP results, suggesting that the additional flexibility in the420

[k = 5] model helps capture variations in backscattering more accurately. In contrast, the GIOP retrievals exhibit a consistent

bias in bb,p(440). This can be attributed to the model’s prescribed functional form for backscattering, which lacks flexibility

in representing natural variations in bb,p(440) across different water types. The constrained power-law exponent used in GIOP

may not accurately reflect regional or case-specific spectral slopes, leading to systematic errors. As a result, while GIOP

provides a reasonable fit to Rrs(λ), its retrieved bb,p(440) values tend to be biased relative to the true values, particularly in425

optically complex waters.

To improve the Bayesian approach and reduce the underestimation of aph(440nm) at low values, one may consider re-

fining prior constraints on CDOM absorption, incorporating additional spectral information, and enhancing regularization

techniques. Strengthening Bayesian priors on the CDOM spectral slope (Sdg) based on climatologies or independent datasets

can help prevent over-attribution of absorption to CDOM. Incorporating near-UV bands (350–400 nm), where CDOM absorp-430

tion dominates, provides an additional constraint to improve separation from phytoplankton absorption. Enhancing Bayesian

regularization with priors that favor realistic aph(λ) spectral shapes and implementing adaptive noise weighting can help miti-

gate retrieval biases in low-absorption regimes. Finally, performing ensemble retrievals, where multiple runs with varied priors

are averaged, can further stabilize the retrieval against noise. These refinements will improve retrieval accuracy and reduce

systematic underestimation of aph(440nm) in low-chlorophyll waters.435
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Figure 11. The left panels show the retrievals of aph(440nm) for simulated PACE spectra against the true values of for the [k = 5] (top)

and GIOP models (bottom) using the BING package. When the error on aph(440nm) exceeds three times the best value, we plot the

measurement in light blue. The dashed curve is the 1:1 line. The right panels show the retrievals for the particulate backscattering at 440 nm.

The bias, meidan absolute error (MAE), and root mean square (RMS) are indicated in each panel.
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4 Discussion and Future Prospects

In this manuscript, we have introduced BING, a Bayesian inference algorithm for IOP retrievals utilizing the Gordon coeffi-

cients for radiative transfer. We have reemphasized a known but under-appreciated physical degeneracy in the radiative transfer

– rrs(λ) is a function of bb/a which strictly limits one ability to retrieve a(λ) and bb(λ) without strong priors. Two of the

priors are natural: water both absorbs and scatters light with precisely known coefficients, at least for wavelengths λ > 400 nm.440

We demonstrated, however, that even these constraints are insufficient; indeed, water frequently dominates the model limiting

the extraction of additional information. Consequently, we found that multi-spectral observations with published uncertainties

Zhang et al. (2022) cannot reliably retrieve phytoplankton absorption, and that even hyperspectral observations (e.g. OCI/-

PACE) will be challenged (Figure 6).

Previously, Cael et al. (2023) reached a similar inference as one of our primary conclusions – the limited information content445

of remote-sensing observations. Specifically, they analyzed the degrees of freedom (DoF) of Rrs(λ) data through a standard

principal component analysis finding that in-situ Rrs(λ) data with MODIS sampling has only 3 DoF and inferred only DoF=2

for remotely sensed Rrs(λ). Our analysis, which includes several constraints, such as water absorption and scattering, yields

at least one additional parameter but the overarching implication is similar: retrievals from Rrs(λ) observations have limited

information content.450

On statistical grounds, retrieving aph(λ) from Rrs(λ) is fundamentally challenging because CDOM and detrital absorption,

which are always present, exhibit strong spectral overlap with phytoplankton absorption in the blue region. In fact, this compo-

nent (adg) tends to exceed aph, even in the open ocean (Siegel et al., 2013; Hooker et al., 2020; Houskeeper and Hooker, 2025).

When adg(λ) is parameterized as an exponential function, small variations in its spectral slope can lead to compensatory shifts

in aph(λ), making it difficult to separate their contributions. Since Rrs(λ) depends on the combined effects of absorption and455

backscattering rather than directly measuring individual IOPs, this spectral degeneracy prevents a unique retrieval of aph(λ)

without additional constraints or priors. Previous work that published estimates of aph(λ) required very strict priors on the

shape of Sdg (Supp B), leading to significant bias in estimates of aph(λ).. In the cases where Sdg was allowed to vary (Boss &

Roesler, Chapter 5 Lee, 2006), the errors on aph(λ) were severe and limited retrievals only to upper limits, consistent with this

work.460

Do our results therefore invalidate the past several decades of research and data products using satellite-based ocean color

observations? At the least, all previous retrievals from Rrs(λ) must be further scrutinized. We assert uncertainties and biases

were frequently (possibly always) underestimated, and substantial correlations between retrieved parameters will be present.

Unfortunately, even relative analyses of aph(λ) may be subject to large error. There are, however, key products that are primarily

(and very nearly exclusively) empirical, i.e. generated without any radiative transfer modeling (Stramski et al., 2022). These465

empirically-based algorithms may circumvent the radiative transfer issues raised here, but as emphasized by Cael et al. (2023),

one cannot retrieve an arbitrary number of such quantities from visible domain Rrs(λ) observations. Therefore, the suite of

products generated by the community to date are highly coupled and correlated. The limited information content of Rrs(λ)

measurements subject to realistic uncertainties is inherent to the problem.
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While the results from Figure 6b indicate that hyperspectral observations offer a substantial improvement over multi-spectra470

data, even detecting phytoplankton remains challenging. We reemphasize that the results presented here have assumed a per-

fect forward model (i.e. no error in the radiative transfer calculation), uncorrelated uncertainties, a perfect model for water

absorption and backscattering, and homogeneous seawater (no vertical or horizontal spatial variations). Furthermore, even if

we surmount these issues, we may only be able to extract a single parameter describing phytoplankton, e.g., the aph amplitude

at λ≈ 440 nm. And, strictly speaking, this may be attributed to any absorption component (not solely aph) that does not follow475

the exponential description of CDOM and detritus absorption.

Note that our findings refer to the number of statistically independent parameters that can be retrieved from ocean

color reflectance data under realistic noise conditions. This does not imply that the true biogeochemical variables in

nature are independent. On the contrary, many of the optical components, such as phytoplankton absorption and

backscattering, are physically coupled. For example, phytoplankton both absorb and scatter light, and their associated480

IOPs are often correlated through cell size, composition, and pigment content. Such natural correlations are reflected

in datasets like those shown in Figure B3.

However, in an inverse problem, retrieving both components independently from reflectance requires that the re-

flectance spectrum contain sufficient information to statistically distinguish them. The BIC and MCMC approaches

quantify how many distinct degrees of freedom are supported by the measurements, not how many physically or bio-485

logically separate variables exist, which in turn determines the number of parameters that can be reliably estimated

in models of a(λ) and bb(λ). In situations where optical properties are highly correlated, as is often the case for aph(λ)

and bb,p(λ), the effective dimensionality of the solution space is reduced. This reinforces our conclusion that even when

additional parameters are included in the forward model, they are not necessarily identifiable unless the reflectance

data provide enough information to constrain them independently. Incorporating prior knowledge about natural co-490

variation between variables is one promising strategy to improve retrievals. Future work should explore how physically

informed priors can be integrated into the inversion framework without artificially inflating confidence in individual

parameter estimates.

5 Conclusions

The ocean color remote sensing community faces a fundamental challenge in retrieving IOPs from remote sensing reflectance495

due to a physical degeneracy in the radiative transfer equation. Our analysis demonstrates that this degeneracy severely limits

the number of parameters that can be reliably extracted from Rrs(λ) observations. For multi-spectral satellite data with realistic

noise levels (e.g., MODIS, SeaWiFS), we find that only three parameters can be reliably constrained, which is insufficient to

independently retrieve phytoplankton absorption without strong, potentially biasing priors on the spectral shape of CDOM/de-

tritus absorption. Even with hyperspectral observations like those from OCI/PACE, retrievals remain limited to four or five500

parameters at most, and the detection of phytoplankton absorption is still challenging for many oceanic conditions. In essence,

this sets a limit to the information content available in ocean color observations (Cael et al., 2023).

25



These findings suggest that previous IOP retrieval algorithms likely underestimated uncertainties and may have introduced

systematic biases in their estimates of phytoplankton absorption. The widespread practice of fixing the spectral slope of

CDOM/detritus absorption (Sdg) to a steep value in models like GSM and GIOP allows for phytoplankton detection but at505

the cost of potentially significant biases in aph(λ) estimates. Our Bayesian approach explicitly incorporates priors and their

uncertainties, providing a more transparent and rigorous assessment of the retrieval problem. While hyperspectral observa-

tions offer improvement over multi-spectral data, they still cannot fully overcome the fundamental limitations imposed by the

physical degeneracy in the radiative transfer equation.

How might we proceed? It is abundantly clear that we must identify the optimal way to parameterize the problem to make510

most effective use of the 4 or 5 parameters that describe anw(λ) and bb,p(λ). For example, if we know βnw (i.e. fix its value

as a prior), we would not “waste” a free-parameter to estimate its value. In short, we must harness our knowledge of the

ocean from previous in-situ measurements (or current, if one can afford them) to set priors on the model. These priors should

be geographically and temporally variable to reflect different oceanic conditions. Because strict and biased priors have been

shown to lead to inaccurate and uncertain retrievals, one must proceed cautiously. Empirically derived priors can help mitigate515

these issues by providing a more accurate representation of the ocean’s optical properties.

One obvious community-wide effort would be to develop and agree upon strong priors for Sdg . This is current practice in

many existing algorithms (e.g. GIOP, GSM, which set Sdg to a single value), but we describe the negative consequences of this

extreme approach in Supp B. Instead, we encourage the community to generate Sdg priors as probability distribution functions

that vary with geographic location and time and then revisit these in our changing climate. Additionally, we must include more520

observations, both from space and in-situ. From space, we must leverage the Chla fluorescence signal at ≈ 685 nm (Wolanin

et al., 2015) whose production and radiative transfer are distinct from that of IOP retrievals. From the ocean, in-situ observations

provide invaluable validation data and may establish priors like those for Sdg . Non-visible in-situ optical observations have

been shown to improve retrievals of CDOM absorption, and could be retained to better partition signals related to CDOM and

phytoplankton biomass. Constraints on βnw, as a function of location and season, and physical priors on the coupling of a(λ)525

to bb(λ) for individual components from the physics of absorption and scattering could be impactful.

Developing community-wide Bayesian retrieval algorithms is also recommended. The ocean color remote-sensing commu-

nity should be encouraged to adopt a Bayesian framework for IOP retrievals such as BING, explicitly including all priors and

their uncertainties. A Bayesian approach allows for a more transparent and rigorous incorporation of prior knowledge and

uncertainties, leading to more reliable retrievals. Unlike BING, however, Bayesian algorithms must adopt an accurate forward530

model and its uncertainties, include correlated and systematic error in the observations, and harness new data sources. We

have initiated such a project – Intensities to Hydrolight Optical Properties (IHOP) – and encourage community adoption and

development. The scientists focused on atmospheric corrections have already embarked on this journey following the original

insight of Frouin and Pelletier (2015).

The development of machine learning techniques for scientific exploitation is another tempting and potentially viable path to535

address some of the challenges presented in this manuscript. Optimistically, one can hope to train models that learn correlations

in the Rrs(λ) spectra which predict quantities like Chla or even signatures of phytoplankton communities (e.g. Woo Kim et al.,

26



2022; Kramer et al., 2022). While we appreciate the potential power of such data-driven approaches, one must be mindful of

the physical degeneracy of Equation 8 which leads to very similar or even identical Rrs(λ) spectra from distinct IOPs (e.g.

Figure 10. A machine learning model cannot learn how to distinguish between these, especially in the presence of noise, nor540

will most industry-developed algorithms properly assess the uncertainties of such degeneracies. In practice, they would behave

only according to the datasets they were trained upon; this is an implicit prior (Gray et al., 2024). Lastly, such models will not,

on their own, discover new signatures of absorption in the ocean.

Increasing the spectral resolution of satellite observations can provide more detailed information about the absorption and

backscattering properties of phytoplankton, thereby reducing the impact of degeneracies. Thus, the development and deploy-545

ment of hyperspectral satellites with high spectral resolution across the visible and near-infrared spectrum are recommended.

The recently launched PACE satellite will lead the way. Additionally, exploring alternative remote-sensing techniques, such

as Lidar and fluorescence-based methods, and incorporating polarization information to complement traditional ocean color

observations, should be considered. It is possible that inelastic processes, such as Raman scattering and chlorophyll flu-

orescence, will at least partially mitigate the degeneracies emphasized here by introducing spectrally distinct signals550

that, when accurately modeled, provided independent constraints on phytoplankton absorption and scattering, thereby

improving retrieval accuracy. These advanced techniques may provide independent measurements that help resolve ambi-

guities and improve the overall accuracy of phytoplankton estimates, although information gained using these new techniques

should be clearly demonstrated and defined first in the field.

Several of the strategies we proposed can be practically implemented with modest adaptation of existing workflows.555

For instance, incorporating near-UV bands (e.g., 350-400 nm) into standard atmospheric correction and retrieval chains

could significantly improve the ability to constrain CDOM absorption. Many modern sensors (such as PACE/OCI) al-

ready acquire data in this spectral region, though it is typically excluded from ocean color retrievals due to atmospheric

correction uncertainties. Operational implementation would require further validation of atmospheric correction per-

formance in the UV, but the gains in constraining adg(λ) could justify investments in refining these procedures. UV560

bands could also be incorporated into empirical and semi-analytical models by extending existing parameterizations

(e.g., for Sdg) and evaluating retrieval sensitivity in this region.

Refining priors on CDOM spectral slope (Sdg) can also be made operational by leveraging existing climatology and in-

situ datasets to generate geographically and seasonally resolved prior distributions. These priors could be implemented

in a Bayesian retrieval framework either as look-up tables or as probability distributions dynamically assigned by565

location and time. NASA and other agencies already maintain in situ repositories (e.g., SeaBASS), and these could

support the development of such prior climatology. Incorporating them would not necessarily require a full Bayesian

inversion at the operational level but could instead inform constrained retrievals with flexible priors, much like how

empirical coefficients are regionally tuned in current algorithms.

Adaptive regularization techniques, which vary the strength of constraints based on the apparent information content570

of the input Rrs(λ) spectrum, can be integrated into operational pipelines through data-driven diagnostic metrics. For

example, spectra with low S/N or low total absorption could trigger stronger regularization (e.g., narrower priors or
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more constrained parameterizations), while higher-quality spectra would allow for more flexible models. This adaptive

scheme could be encoded through decision trees or lookup-based thresholding embedded in the processing architecture.

Given the modular nature of existing algorithm frameworks like GIOP, such adaptive behavior could be implemented575

with minimal disruption.

Promoting interdisciplinary collaboration is also essential. Fostering collaboration between oceanographers, remote-sensing

experts, and radiative transfer modelers to address the complex challenges of IOP retrievals can bring together diverse expertise

and perspectives, leading to more innovative and effective solutions. These should include individuals with mastery of statistics

who can rigorously assess uncertainty and help develop robust and transparent algorithms.580

By implementing these recommendations, the remote-sensing community can significantly enhance the accuracy and reli-

ability of phytoplankton IOP retrievals, leading to better-informed biogeochemical models and ecological assessments. This

comprehensive approach will help ensure that remote-sensing data accurately reflect the true state of the ocean’s biological and

chemical processes, thereby supporting more effective environmental monitoring and management efforts.

Code and data availability. All of the code and results presented here are available on GitHub in these two repositories: https://github.com/ocean-585

colour/bing, https://github.com/ocean-colour/ocpy. The data on which this article is based are available in Loisel et al. (2023).

Appendix A: Scrutinizing the Taylor series expansion approximation to the radiative transfer

To examine the use of Equation 8 as an approximation of the radiative transfer, consider Figure A1 which plots the Hydrolight-

derived Rrs(λ) of L23 converted to rrs(λ) with Equation 8 against the evaluated u(λ) values using Equation 9 at four distinct

wavelengths. These evaluations approximately follow a quadratic with zero y-intercept. Overplotted with a dashed line is the590

Gordon approximation using the standard G1,G2 coefficients and Equation 8. Qualitatively, the Hydrolight outputs follow the

relation yet lie systematically above the curve. At its extreme, the Taylor series approximation is offset by ≈ 10% at λ= 370 nm

and u(λ) = 0.35.

To further illustrate the difference, we have fitted G1,G2 coefficients to the data at select wavelengths and recover similar G1

values but G2 values that vary significantly with wavelength (G2 ≈ 0.07 at λ= 370 nm, G2 ≈−1.2 at λ= 600 nm). We also595

find that there is significant scatter around each of the fits with a relative RMS of ≈ 5% at shorter wavelengths and 20% at the

reddest wavelengths. We expect this scatter is inherent to Equation 8 and would be unavoidable if one uses this approximation

even with wavelength-dependent coefficients. An accurate retrieval algorithm would need to account for these variations or

otherwise suffer this systematic error. This is the focus of a separate algorithm we are developing, and we also refer the readers

to recent advances in approximations of the radiative transfer equation (Twardowski et al., 2018).600
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Figure A1. Sub-surface reflectances rrs(λ) generated with the Hydrolight radiative transfer code by L23 (converted from Rrs(λ) using

Equation 10) against u(λ) as defined by Equation 9. The black dashed line shows the second order Taylor expansion of rrs(λ) in u(λ)

(Equation 8) with the Gordon coefficients most widely adopted by the community. In general, this curve underpredicts rrs(λ) as calculated

with Hydrolight with a maximum offset of ≈ 10% at u(λ) = 0.35 and λ= 370 nm. We also show a series of individual fits of Equation 8 to

the data with the legend indicating the derived G1,G2 coefficients. Note that G1 is largely independent of wavelength but that G2 is strongly

wavelength dependent (and anti-correlated).
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Appendix B: Revisiting Previous Models

The simple IOP models examined in Section 3.2 resemble prescriptions adopted previously in the literature and/or implemented

operationally by NASA. In light of our results, we are motivated to further examine two such models: GSM and GIOP. As

described in Section 2.5, both GSM and GIOP adopt strict (fixed) priors on Sdg and βnw such that these are effectively 3-

parameter models.605

Figure B1. These panels describe the BIC analysis assuming MODIS-like observations for two models designed to match standard GIOP

configurations. The (left) panel compares our [k = 3] model against the standard k=3 parameter configuration of GIOP (see text for full

details). We find this GIOP model is preferred, which we speculate is due to the extra freedom to fit the Rrs(λ) at blue wavelengths where

the S/N in MODIS is highest. (right) Results for the GIOP+ model (k=4 parameters) which lets βnw be an additional free parameter. This

model is disfavored for the entire dataset, further evidence that one cannot recover 4 parameters from MODIS observations.

Figure B2. Similar to Figure B1 but for GSM models and using simulated SeaWiFS spectra. As with the GIOP models, we find the GSM

model is favored over our [k = 3] model but that a k=4 parameter version – GSM+ which lets βnw be free – is highly disfavored.
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We find that by adopting these priors, these 3-parameter GSM and GIOP models are statistically favored (∆BIC> 0) relative

to the [k = 3] model without phytoplankton for ≈ 50% (GSM on SeaWiFS) or more (GIOP on MODIS) of the simulated spectra

(Figures B1 and B2). At the same time, if we relax either the prior on Sdg or Bnw, over 99% of the spectra have ∆BIC< 0

and favor the [k = 3] model.

Figure B3. The dots plot the best fit shape parameter Sdg for the L23 spectra using the [k = 4] model (no phytoplankton component) versus

the amplitude of aph to anw at 440 nm. The two are correlated, albeit with large scatter. The blue and yellow shaded regions indicate the

ranges of exponential shapes for CDOM and detritus (Sg,Sd) respectively adopted by L23. Not surprisingly, the majority of retrieved Sdg

lie within these loci. The ones with shallower slope, however, may be attributed to the presence of phytoplankton which effectively flattens

anw(λ) at λ≈ 450 nm. The black dotted/dashed lines demarcate the fixed values of Sdg assumed by the GIOP/GSM algorithms for adg(λ).

These are steeper values than the typical Sg (and all Sd) values adopted by L23. In addition, we shows the Sdg derived from an extreme,

CDOM-subtracted Tara absorption spectrum collected off the coast of Africa (see Prochaska and Gray, 2024) which demonstrates at least

one instance of a very low Sdg in the ocean.

Furthermore, the fixed Sdg value adopted in each of these models is relatively steep, which imposes a significant bias610

on the aph(λ) retrievals. Let us scrutinize these priors as they affect the potential to retrieve phytoplankton and any other

constituents. Figure B3 shows the Sdg values derived with the [k = 4] model (no phytoplankton) against the fraction of non-

water absorption associated with phytoplankton at 440 nm in the L23 spectra, aph/anw. The two quantities are anti-correlated

because the increased presence of phytoplankton relative to CDOM and detritus tends to give a shallower, non-water absorption

spectrum. We find, as anticipated, that the majority of retrieved Sdg values lie within the loci of shape parameters assumed615

by L23 for CDOM and detritus based on (Lee, 2006). There is, however, a non-negligible set of retrieved Sdg values that are

lower than the lowest value assumed by L23; these are partially due to strong phytoplankton absorption. Overplotted on the
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figure are the fixed values of Sdg for the GSM and GIOP models where we see their priors lie at the upper end of Sdg values

measured in the ocean (GIOP) or even beyond (GSM). This was intentional for GSM (Maritorena and Siegel, 2005), as its

designers derived fixed values for Sdg and βnw by achieving best retrievals when compared against in-situ data. When one620

adopts a relatively steep Sdg value, the absorption at λ > 450 nm cannot be correctly described by CDOM/detritus and the

model will favor a higher phytoplankton contribution. If, however, the Sdg values are too steep, then one may anticipate biased

aph(440nm) retrievals.

Figure B4. Retrievals of aph(440nm) and bb,p at 600 nm for the GIOP model with simulated MODIS spectra and perturbing the Rrs(λ)

values by the typical noise. We find the values are biased and scatter by an order of magnitude or more.

Figure B5. Same as Figure B4 but for the GSM model and simulated SeaWiFS spectra.
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We then performed a new set of inferences on the entire L23 dataset assuming MODIS and SeaWiFS simulated spectra for

the GIOP and GSM models respectively. In both cases, we calculated Rrs(λ) from Equations 8 and 10 and performed the625

inversion with the same model after perturbing the Rrs(λ) values due to the presence of noise. The retrievals are presented in

Figures B4 and B5. Clearly, the retrievals of aph and bb,p are biased and highly uncertain at all values, with nearly two orders of

magnitude of scatter. Therefore, the detection of aph(λ), if it were possible with multi-spectral observations, would be highly

uncertain.

The constraints inherent in inversion algorithms like GSM and GIOP do affect the confidence in interpreting changes in maps630

of retrieved variables such as chlorophyll concentration, absorption coefficients, and backscattering coefficients. The spectral

ambiguity in Rrs(λ) data can lead to changes influenced by variations in other optical properties not fully addressed by the

models, making it difficult to attribute changes solely to biological factors. Moreover, the interdependence of retrieved param-

eters, such as chlorophyll, aCDOM, and bb,p, means that errors in one can propagate to others, complicating the interpretation

of these maps. For example, inaccuracies in backscatter coefficient estimates can affect chlorophyll retrievals. Additionally,635

variability in environmental conditions can impact the accuracy of the retrieved variables. Algorithm performance may vary

across different water types and regions, necessitating further caution in interpreting these changes.

Results from tests of IOP retrieval models have been presented in multiple publications over the years since the beginning of

their development (e.g. Mouw et al., 2017; Werdell et al., 2018; Seegers et al., 2018), and a discussion of all of these lies beyond

the scope of this manuscript. Nevertheless, we wish to highlight one, in-depth effort summarized by the IOCCG Report 5 (Lee,640

2006). Similar to our work, the participants applied their IOP retrieval algorithms to a simulated (i.e. known) dataset to assess

performance. The majority of these algorithms assumed an exponential term for CDOM/detritus absorption with fixed Sdg

and a steep value (Sdg > 0.015nm−1). Similar to the results we found for GIOP and GSM (Figure B5,B4), these consistently

over-estimated aph(λ) at 440 nm.

Only one team (Boss & Roesler) allowed Sdg to vary (from 0.008 to 0.023nm−1) in their algorithm which followed from the645

Roesler et al. (1989) publication. Referring to their Figure 8.1, one notes less biased aph(λ) values than the other algorithms

and that they were the only group to include an error estimation. Given the axes are a log-scaling, one might miss that the

uncertainties in aph(λ) are large enough to be consistent with zero. This implies that the retrieved values are not statistically

distinguishable from zero at the given confidence level. In other words, the results from the only algorithm that allowed Sdg to

vary freely indicate that aph(λ) could not be reliably constrained from the simulated data.650
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