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Abstract 19 

Subalpine ecosystems are highly dynamic environments that are particularly vulnerable to 20 

environmental change, yet their remote and rugged nature poses challenges for long-term 21 

monitoring. Unoccupied aerial vehicles (UAVs) equipped with multispectral sensors offer a 22 

scalable solution for high-resolution vegetation mapping in these landscapes. In this study, 23 

we integrated UAV-derived spectral data with machine learning (ML) classifiers to assess 24 

the effectiveness of different vegetation indices (VIs) in distinguishing subalpine plant 25 

communities. Principal component analysis (PCA) revealed that NDVI, SIPI2, MCARI, and 26 

CHL were highly correlated and strongly influenced the primary variance in the dataset, 27 

while NDRE and LCI contributed more evenly across principal components, and GNDVI was 28 

largely independent. Among the ML classifiers tested, extreme gradient boosting (XGBoost) 29 

achieved the greatest overall accuracy (81.3%) and Kappa (0.75), outperforming support 30 

vector machines (SVM) and random forest (RF). Classification confidence was highest for 31 

Chionochloa tussock (64.6–69.7%) and Dracophyllum scrub (70.6%), suggesting moderate 32 

reliability for these dominant vegetation types. Scrub and prostrate mat-forming communities 33 

exhibited lower classification accuracy, likely due to their heterogeneous canopy structure 34 

and greater spectral variability. The ecological boundaries of the subalpine zone, formed by 35 

Fuscospora forest and scree, were classified with high confidence, but the vegetation is 36 

dominated by tussock and shrubland. Feature importance analysis ranked NDVI, SIPI2, 37 

CHL, and MCARI highly in SVM and RF models, whereas LCI prevailed in XGBoost, 38 

underscoring how different algorithms leverage spectral information in classification tasks. 39 

These results emphasize the role of vegetation structure in classification accuracy, with 40 

dense, spectrally homogeneous vegetation types more reliably distinguished than mixed-41 

species communities. Our study highlights UAV-based classification as a valuable tool for 42 

landscape-scale monitoring of subalpine vegetation. As UAV applications and ML workflows 43 

continue to evolve, optimizing classification approaches will enhance our ability to track 44 

ecological changes in subalpine and alpine regions worldwide. 45 

 46 

 47 

 48 
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1. Introduction 49 

 50 

Globally, subalpine shrublands play a crucial role as biodiversity hotspots, supporting a wide 51 

range of endemic plant species and serving as critical habitats for various alpine-adapted 52 

fauna. Functioning as ecological transition zones, they facilitate interactions between 53 

species from lower and higher elevations, leading to unique assemblages. These 54 

ecosystems are also vital for carbon sequestration (Day et al., 2023), water regulation 55 

(Nicholls, 2023; Nicholls & Carey, 2021), and plant-soil nutrient balance (Urbina et al., 2020), 56 

exhibiting key ecosystem services in mountainous landscapes. Additionally, subalpine 57 

vegetation plays a fundamental role in global mountain ecosystems by acting as a crucial 58 

buffer against climate-driven changes (Hou, 2024) and microhabitat facilitation (Harsch et 59 

al., 2009). These environments are highly dynamic, shaped by the interplay of climate, 60 

topography, and ecological processes. However, ongoing climate change is reshaping 61 

subalpine ecosystems worldwide, altering species distributions, ecosystem functions, and 62 

landscape stability (Reid et al., 2022).  63 

 64 

The vulnerability of alpine and subalpine vegetation to changing abiotic drivers is particularly 65 

concerning, as many species possess limited dispersal capacities and may be limited in their 66 

capability to respond to changes in their range limitations (Camac et al., 2021). Moreover, 67 

research on climate-driven treeline shifts (Körner, 2014) and microclimatic variability 68 

underscores the complexity and potential of subalpine ecosystems to modulate large scale 69 

abiotic drivers (Döweler et al., 2021, 2024) and biotic effects (e.g. control invasive species 70 

expansion; (Padalia et al., 2023). While some species may benefit from a warming climate, 71 

others, particularly alpine specialists, may not be able to compete with generalist species 72 

expanding their range from lower elevations (Thomas et al., 2023). This ecological 73 

reshuffling has profound implications for biodiversity, carbon storage, and ecosystem 74 

resilience, but often happens gradual and can only be thoroughly studied at the landscape 75 

scale, where large scale assessments of change of the subalpine lacks temporal and spatial 76 

resolution to adequately reflect these changes (Döweler et al., 2024).  77 

 78 

In New Zealand, subalpine vegetation is characterized by a mosaic of tussock grasslands 79 

and low-stature shrubs, forming ecologically significant communities that influence 80 

ecosystem resilience and carbon storage (Mark, 2013; Day, 2023). The high cover of 81 

Chionochloa tussocks (Fig. 1), along with species such as Dracophyllum uniflorum, 82 

Podocarpus nivalis, and Acrothamnus colensoi, creates microclimates that buffer 83 

temperature extremes and support treeline regeneration of Leuphozonia menziesii and 84 

Fuscospora cliffortioides (Hook.f.) Oerst. (Döweler, 2021; Scherrer & Körner, 2010). These 85 

ecosystems are not only important for biodiversity but also provide a range of ecological 86 

functions, influencing water retention (van Galen et al., 2023) and soil carbon dynamics (Day 87 

et al., 2023). 88 

 89 
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 90 

Figure 1 A typical subalpine belt vegetation composition in New Zealand (1365 m a above 91 

sea level, Craigieburn Valley, Arthurs Pass) 92 

Despite their ecological significance, New Zealand’s subalpine landscapes are experiencing 93 

complex transformations, yet our understanding of these changes remains limited. The lack 94 

of landscape-scale detailed vegetation mapping in the subalpine belt limits insights to 95 

capture these gradual but potentially significant shifts in over time (Day et al., 2023) in these 96 

often inaccessible regions. While treelines have shown limited upslope movement in 97 

response to warming (Harsch et al., 2012), subalpine vegetation composition is shifting due 98 

to factors such as woody encroachment and thickening, increased drought stress, and the 99 

potential expansion of invasive species (Chardon et al., 2024; Singh et al., 2024). 100 

Understanding how these communities are responding to climate change is crucial to further 101 

elucidate their role in stabilising these ecosystems to help inform conservation strategies 102 

(Reid, 2022; De Toma, 2025). 103 

 104 

Remote sensing is a powerful tool for monitoring subalpine environments, where limited 105 

accessibility and the need for large-scale landscape assessments pose significant 106 

challenges (Walsh et al., 2009). It enables the classification of vegetation and detection of 107 

ecological shifts, offering a comprehensive perspective on mountain biodiversity and 108 

ecosystem dynamics. As climate change increasingly affects alpine and subalpine 109 

ecosystems, the ability to remotely assess vegetation composition across vast and often 110 

inaccessible areas has become a powerful method to study these ecosystems (Garbarino et 111 

al., 2023). Advances in high-resolution satellite and UAV-based remote sensing, combined 112 

with machine learning, have significantly improved vegetation classification, enhancing 113 

mapping accuracy and long-term monitoring (Mashiane et al., 2024; Nguyen et al., 2022). 114 

Access to light-weight sensors which can readily be mounted on increasingly affordable 115 

unoccupied aerial vehicles (UAV’s) enables us to monitor subalpine ecotone in 116 

unprecedented detail using optical, multispectral, thermal, and LiDAR sensors (Döweler et 117 

al., 2024). Remote sensing technologies provide a robust means of tracking vegetation 118 

dynamics at ecologically meaningful scales, with satellite and aerial imagery proving 119 

effective in mapping subalpine vegetation and detecting temporal changes (De Toma et al., 120 

2025). In some field studies, UAV-based deep learning methods may outperform human 121 

observers in delineating complex patterns in subalpine shrub communities (Moritake et al., 122 

2024), endorsing their use for larger mapping endeavours of the subalpine in an approach to 123 

more accurately study vegetation shifts in response to climate change. These technological 124 

advancements offer critical insights for conservation planning and land management, 125 

ensuring more effective strategies for protecting subalpine ecosystems (Padalia et al., 2023). 126 

 127 
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This study investigates the potential of remotely sensed optical and multispectral vegetation 128 

indices to differentiate vegetation composition in a complex subalpine shrubland ecotone in 129 

New Zealand. Building on our previous classification and segmentation research in the 130 

Craigieburn Range (Arthur’s Pass, New Zealand, Döweler et al., 2024), we aimed to 131 

compare the performance of three widely used machine learning classifiers (support vector 132 

machine, random forest and extreme gradient boosting) and, by extension, to identify which 133 

vegetation indices are most effective for distinguishing vegetation classes. This study aims 134 

to offer recommendations for vegetation indices and ML classifiers for future remote sensing 135 

applications in subalpine ecosystems. We hypothesised that classification accuracy will be 136 

highest in vegetation types with distinct spectral reflectance signatures and relatively low 137 

spectral and structural variability (e.g. sparsely vegetated scree, subalpine forest, tussock) 138 

and lowest in various types of scrub and prostrate mats where increased species 139 

interspersion may cause greater spectral overlap.  140 

 141 

 142 

2 Material and Methods 143 

 144 

 145 

2.1 Study site  146 

 147 

The Craigieburn Valley study site (-43.111, 171.713) is located at 1365 metres above sea 148 

level on a southeast to southwest aspect within the eastern slopes of the Southern Alps, 149 

New Zealand (Fig. 2). The site is characterized by a montane to subalpine climate, with 150 

frequent frost events throughout the year (approximately 135 frost days annually) and an 151 

annual rainfall of around 1300 mm. The subalpine belt is dominated by Chionochloa tussock 152 

grasslands, interspersed with species such as Dracophyllum uniflorum Hook.f., Podocarpus 153 

nivalis Hook., and Acrothamnus colensoi (Hook.f.) Quinn, alongside areas of exposed scree. 154 

The adjacent treeline is formed by Fuscospora cliffortioides (Hook.f.) Oerst., marking the 155 

transition to the alpine treeline. 156 

 157 
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 158 

Figure 2 Craigieburn study site (~ 4 ha). The subalpine belt has been covered by the drone 159 

survey. The visualisation shows an RGB coloured point cloud derived from a 2019 (May, 9 160 

am austral winter) point cloud acquisition. 161 

 162 

2.2 Subalpine vegetation classification and segmentation 163 

 164 

For the classification and segmentation of the subalpine belt we we applied the same 165 

methodology as previously described in Döweler et al., 2024 producing a detailed map (0.05 166 

m) of the subalpine vegetation, with low spatial offset (6.14 ± 4.03 cm; mean ± standard 167 

error) over an area of approximately 4 ha covering the supaline belt. We provide a brief 168 

summary of the method below, for the full workflow please see the respective paper. 169 

 170 

For georeferencing, we used a differential GPS rover-base setup (Emlid Reach RS+) to 171 

locate ground control points (GCPs) consisting of chessboard-patterned panels or high-172 

visibility spray markers, which were distributed across the UAV flight path for 173 

photogrammetric orthorectification. The differential GPS was also used to validate 174 

classification results by geolocating vegetation patches within the subalpine, resulting in over 175 

600 ground-truth vegetation identifications in Craigieburn Valley. UAV imagery was captured 176 

using a DJI Phantom 4 (0.01 m RGB resolution) and a Parrot Sequoia+ multispectral sensor 177 

(0.05 m resolution), mounted for aerial surveys during the 2018/19 austral growing season. 178 

Pre- and post-flight calibration followed the One-Point Calibration plus Sunshine Sensor 179 

method using the Parrot target plate. The UAV flight paths were planned using UgCS 180 

software (SPH Engineering, 2025), incorporating an 8 m resolution digital terrain model 181 
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(Geographx, 2016) for altitude control, with a 5 m/s flight speed and 80% along-track overlap 182 

for photogrammetric processing. 183 

 184 

Post-processing was performed in Pix4D 9.4 (Pix4D, 2025) for image orthorectification and 185 

spatial alignment using mapped GCPs. RGB and multispectral datasets were aligned 186 

manually and projected into the New Zealand Transverse Mercator (NZTM 2000) coordinate 187 

system. Object-based image analysis was conducted using eCognition Developer 9.0  188 

(Trimble, 2025), applying multiresolution segmentation (scale: 250, shape: 0.1, 189 

compactness: 0.7) to generate spectrally homogeneous objects. A nearest neighbor 190 

classifier, trained on geolocated field data, was used to categorize land cover into five 191 

vegetation types and scree. Feature selection was optimized through the Feature Space 192 

Optimization tool in eCognition, maximizing vegetation separability across spectral bands. 193 

Classification accuracy was evaluated using an error confusion matrix based on the 600 194 

ground-truth points, with Kappa statistics indicating an overall accuracy of 89.7% (Fig. 3, 195 

Döweler et al., 2024) 196 

 197 

 198 
Figure 3 Results for the pre-existing subalpine vegetation segmentation and classification 199 

for the Craigieburn valley established by Döweler et al. (2024) 200 

 201 

 202 

2.3 Vegetation indices used to discern cover classes 203 

 204 

Following the segmentation and classification of the vegetation cover classes, we derived a 205 

suite of vegetation indices from the available multispectral bands to test their capability in 206 

discerning cover classes. These indices capture plant functional traits that influence 207 
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productivity, stress responses, and spectral variability across different vegetation types. By 208 

leveraging multispectral reflectance data, we aimed to improve vegetation classification 209 

accuracy and investigate how vegetation properties vary across topographic gradients. 210 

 211 

All UAV-derived spectral data was sampled to a uniform 0.01 m resolution using a bicubic 212 

interpolation in GDAL (3.4.1; Rouault et al., 2025). Vegetation classification polygons were 213 

processed in GeoPandas (1.0.1; Van den Bossche et al., 2024) by extracting their centroids, 214 

which were then buffered by 0.2 m to create localized sampling zones. This buffering step 215 

minimized the influence of mixed-pixel effects and ensured that spectral values extracted 216 

within each zone were representative of potential spectral heterogeneity within a single 217 

vegetation type. We used a spatial filtering GeoPandas, ensuring that each buffered centroid 218 

remained entirely within its original vegetation class. After filtering, the final vegetation 219 

sample counts were 4436 Fuscospora cliffortioides, 1809 scree, 1384 Chionochloa tussock 220 

(-12%), 883 Acrothamnus colensoi (-13%), 676 Podocarpus nivalis (-10%), and 293 221 

Dracophyllum spp. (-3%), with a total of 9476 vegetation samples retained for analysis. The 222 

filtered dataset was used to compute zonal statistics for each vegetation index using the 223 

rasterstats (0.15.0; Perry, 2025) package, extracting median, mean and standard deviation 224 

values within each segmented vegetation type. 225 

 226 

The vegetation indices used in this analysis (Table 1) are widely applied in remote sensing 227 

analyses on vegetation health and growth. We included the Normalized Difference 228 

Vegetation Index (NDVI), Structure Insensitive Pigment Index 2 (SIPI2), Modified Chlorophyll 229 

Absorption Ratio Index (MCARI), Green Normalized Difference Vegetation Index (GNDVI), 230 

Chlorophyll Index (CHL), Normalized Difference Red Edge Index (NDRE), and Leaf 231 

Chlorophyll Index (LCI). NDVI was calculated to assess overall vegetation health, while 232 

SIPI2 was included as an indicator of vegetation stress and pigment ratios. MCARI, GNDVI, 233 

CHL, and LCI were shifting the focus on chlorophyll concentrations and photosynthetic 234 

potential, while the NDRE has been selected to provide a focus on red-edge detectable 235 

indication of early stress. 236 

 237 

Table 1 Overview of vegetation indices and respective band calculations used in the current 238 

study, which represent unpublished data from a previous remote sensing study in the same 239 

area (Döweler et al., 2024). Green (550 nm), Red (660 nm), Near-infrared (790 nm, NIR), 240 

Red Edge (735 nm, RE) derived from the Parrot Sequoia, Blue band (450 nm) extracted 241 

from the Phantom 4 RGB sensor.  242 

 243 

Index Name Calculation Reference 

NDVI Normalized Difference 

Vegetation Index 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 +  𝑅𝑒𝑑
 

Rouse et al., 1973 

SIPI2 Structure Insensitive 

Pigment Index 2 
𝑁𝐼𝑅 − 𝐵𝑙𝑢𝑒

𝑁𝐼𝑅 −  𝑅𝑒𝑑
 

 

Peñuelas et al., 1995 

MCARI Modified Chlorophyll 

Absorption Ratio Index 
[(𝑅𝐸 −  𝑅𝑒𝑑)  −  0.2 × (𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 −  𝐺𝑟𝑒𝑒𝑛)] × 

𝑅𝐸

𝑅𝑒𝑑
 

Daughtry et al., 2000 
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Index Name Calculation Reference 

GNDVI Green Normalized 

Difference Vegetation 

Index 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛
 

Gitelson & Merzlyak, 1998 

CHL Chlorophyll Red-Edge 

Index  
𝑁𝐼𝑅

𝑅𝐸
 −  1 

Gitelson et al., 2003 

NDRE Normalized Difference 

Red Edge Index 
𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 +  𝑅𝐸
 

Barnes et al., 2000 

LCI Leaf Chlorophyll Index 𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 +  𝑅𝑒𝑑
 

Haboudane et al., 2002 

 244 

 245 

2.4 Statistical analysis 246 
 247 
All statistical computations and graphics were performed using the R software within the 248 
RStudio integrated development environment (R version 4.4.1, R Core Team, 2024, RStudio 249 
version 2024.09.0+375, Posit team, 2024). To provide a general overview, we performed a 250 
principal component analysis (PCA) based on the overall medians of the vegetation indices 251 
(i.e. the median of the sample medians of each index). The PCA results were visualised in a 252 
biplot to illustrate similarities among vegetation types and the contribution of VIs to the 253 
principal components (loading vectors) as well as their interrelationships. 254 
 255 
We used three popular machine learning approaches to classify the six vegetation types 256 
based on the centroid buffered medians of seven features (vegetation indices): NDVI, 257 
GNDVI, CHL, LCI, MCARI, NDRE, SIPI2. We created a balanced 80/20 training-to-test split 258 
of our data, ensuring random sampling within each class to preserve the overall class 259 
distribution (balanced splits are obtained by providing a factor, i.e. the vegetation type labels, 260 
to the createDataPartition function, R package caret, Kuhn, 2008) 261 
We trained a Support Vector Machine (SVM) classifier using a radial basis function (RBF) 262 
kernel to differentiate between vegetation types (R package e1071, Meyer et al., 2024) 263 
To address class imbalances, we assigned class weights inversely proportional to their 264 
frequencies (following the approach in the Python package scikit-learn, Pedregosa et al., 265 
2011). Hyperparameter optimization was performed via 5-fold cross-validation, selecting the 266 
optimal values of C (regularization parameter)  and γ (kernel coefficient, controlling the 267 
influence of data points) using a grid search. The final model featured an RBF kernel with C 268 
= 10 and γ = 0.01.  269 
We also ran a random forest approach to classify the vegetation types (R package 270 
randomForest, Liaw & Wiener, 2002). The model algorithm was run with the default 500 271 
number of trees and a hyperparameter tuning procedure suggested two randomly sampled 272 
features (predictors) at each split (mtry = 2). Stratified sampling was used to ensure that 273 
each tree was trained on a random sample containing observations from all vegetation 274 
types.  275 
 276 
In addition, we applied extreme gradient boosting (function xgb.train in R package xgboost, 277 
Chen et al., 2024) (Chen et al., 2024) for vegetation type classification. A grid search was 278 
used for hyperparameter tuning (final hyperparameter settings: eta = 0.05, max_depth = 6, 279 
gamma = 2) and 5-fold cross-validation to determine the optimal number of iterations (100 280 
cross-validation runs allowing a maximum of 500 iterations yielded a mean of 150 iterations).  281 
 282 
For all three machine learning approaches, the model performance scores were derived 283 
from a confusion matrix contrasting true and predicted class labels (confusionMatrix function 284 
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in R package caret, Kuhn, 2008). Class-level sensitivity (recall) and specificity scores were 285 
each averaged to an overall score. In addition, the multi-class area under the receiver 286 
operating characteristic curve (AUCmc) was calculated as the mean of the class-specific 287 
AUCs (function multiclass.roc in R package pROC, Robin et al., 2011). Finally, we applied a 288 
permutation-based feature importance analysis to all three classifiers. This feature 289 
importance procedure was run with 30 permutation rounds using a cross-entropy loss 290 
function to evaluate feature contribution (feature_importance function in R package 291 
ingredients relying on the cross-entropy loss function in R package DALEX, Biecek, 2018; 292 
Biecek et al., 2023). 293 
 294 
 295 

 296 

3 Results 297 

 298 

3.1 Principal component analysis (PCA) 299 

The PCA showed that PC1 explained roughly 95 % and PC2 nearly 5 % of the variation in 300 
the aggregated data. In the PCA biplot, Podocarpus scrub and Dracophyllum scrub formed 301 
the only discernible cluster (which could perhaps include Chionochloa tussock), indicating 302 
similar profiles related to the VIs. By contrast, the remaining vegetation types showed 303 
distinct profiles (Fig. 4). The small angular distances between the loading vectors of NDVI, 304 
SIPI2, MCARI and CHL suggest that these indices were all positively correlated and their 305 
fairly horizontal alignment indicates a strong influence on PC1 (Fig. 4). The LCI and NDRE 306 
were also positively correlated and contributed roughly equally to both PCs. The GNDVI had 307 
a strong negative contribution to PC2, and was weakly or uncorrelated with the other VIs 308 
considering the large angular distances to the other loading vectors (Fig. 4). 309 
 310 

 311 
 312 

Figure 4 Principal component analysis (PCA) biplot displaying the scores associated with various 313 
subalpine vegetation types (filled circles) and the contribution of vegetation indices (arrows indicating 314 
loading vectors) to the principal components. The vegetation indices were scaled prior to PCA. Please 315 
note that the eigenvectors of the MCARI and CHL indices are virtually equal. 316 

 317 

 318 
3.2 Machine learning classifiers 319 
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Based on common performance metrics (accuracy, Cohen’s Kappa statistic, AUC, sensitivity 320 
and specificity), the support vector machine (SVM) and random forest (RF) classifiers 321 
performed similarly well but were slightly outperformed by the extreme gradient boosting 322 
algorithm (XGBoost) (Fig. 5). Accuracy was just below 80 % in the SVM and the RF, while 323 
reaching 81.3 % in the XGBoost approach. Given our unbalanced data, the more robust 324 
Kappa statistic seems more informative than overall accuracy. Cohen’s Kappa was highest 325 
in the XGBoost classifier at 0.75, compared to 0.73 in the SVM and 0.72 in the RF approach 326 
(Fig. 5). The multi-class AUC-ROC and specificity were identical in all three algorithms 327 
(AUCmc = 0.93, specificity = 0.96), while sensitivity (recall) varied from 0.72 in the SVM and 328 
0.70 in the XGBoost to 0.68 in the RF classifier (Fig. 5). As judged by the percentage of 329 
correct classifications in the confusion matrices of the three classifiers, Fuscospora 330 
subalpine forest (93.3 – 94.7 %) and scree (86.7 – 88.7 %) can be identified with high to very 331 
high confidence, followed by moderate classification confidence for Chionochloa Tussock 332 
(64.6 – 69.7 %). Classification confidence for the remaining vegetation types was mostly low 333 
(< 60 %), except for the SVM’s 70.6 % correct classifications of Dracophyllum scrub and its 334 
63.2 % accuracy in classifying Acrothamnus colensoi (Fig. 5). 335 
 336 
 337 
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 338 
 339 
Figure 5 Heatmaps of the confusion matrices of a support vector machine (A) a random forest model (B) 340 
and an extreme gradient boosting machine (C). κ indicates Cohen’s Kappa statistic, AUCmc denotes the 341 
multi-class area under the ROC curve. Accuracy, κ and AUCmc are overall model statistics, while 342 
sensitivity (recall) and specificity indicate averages of the class-specific metrics. 343 
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 344 
Figure 6 Permutation-based feature importance (variable importance) of a support vector machine (A), a 345 
random forest model (B), and an extreme gradient boosting model (C). The vertical dotted lines indicate 346 
the cross-entropy loss of the full model (no variables dropped). The error bars signify the 2.5th and 97.5th 347 
percentiles of the 30 permutations. 348 

 349 
 350 
In the SVM algorithm, SIPI2 represented the most important variable, followed by the equally 351 
relevant NDVI and CHL, while MCARI and GNDVI were of moderate importance (Fig. 6 A). 352 
NDRE and LCI had little to no significance in the SVM. In the RF model, NDVI and SIPI2 353 
were similarly important, followed by equal contributions from CHL and MCARI, and to a 354 
lesser but similar extent from NDRE and LCI, with GNDVI coming in with a slightly lower 355 
entropy loss value (Fig. 6 B). By contrast, the XGBoost algorithm relied most heavily on LCI, 356 
followed by MCARI and, on a similar level, SIPI2 and GNDIV (Fig. 6 C). CHL and NDVI were 357 
of lesser importance, while NDRE represented an entropy-irrelevant feature. 358 
 359 

 360 

4. Discussion 361 

 362 

Mountain ecosystems support a high level of plant diversity and endemism, especially at 363 
high elevation but coordinated monitoring efforts are scarce (Perrigo et al., 2020), often 364 
hampered by limited access. In the future, more affordable drone technology will bolster 365 
remote sensing based mapping and monitoring of these hard-to-reach ecosystems, and 366 
information that aids in optimising classification accuracy will facilitate progress in this field. 367 
Here, we compared the performance of three popular ML classifiers and assessed their 368 
feature importance to rank common VIs based on their impact on the classification algorithm. 369 
  370 
Judged by the overall accuracy and Cohen’s Kappa, the XGBoost algorithm differentiated 371 
the existing vegetation types best, but SVM and RF both performed nearly as well. 372 
Consistent with our findings, XGBoost outperformed SVM and RF in urban land use-land 373 
cover and forest classification tasks (Georganos et al., 2018; Ramdani & Furqon, 2022). In 374 
line with our hypothesis, spectrally more distinct vegetation types with lower spectral and 375 
structural variation showed the greatest proportion of correct classifications in the confusion 376 
matrices of the three classifiers, which is consistent with previous findings reported for 377 
diverse wetland ecosystems (Schmidt & Skidmore, 2003). In our study, these spectrally 378 
distinct vegetation types included Fuscospora cliffortioides subalpine forest and Chionochloa 379 
tussock, which are characterised by dense, uniform foliage and/or well-defined canopy 380 
structures, making them easier to differentiate in the ML classification process (Ollinger, 381 
2011). The sparsely vegetated scree is characterised by a relatively uniform spectral 382 
signature, i.e. spectrally bland, which facilitates classification.  383 
 384 
The importance of the used VIs was ranked similarly in the SVM and RF but differed greatly 385 
in the XGBoost algorithm, suggesting that the different ML approaches rely on distinct 386 
spectral properties for classification. The SVM and the RF model agreed closely in regard to 387 
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the four most important VIs (SIPI2, NDVI, CHL, MCARI). These VIs reflect pigment content 388 
and general vegetation vigor and are closely related to photosynthetic activity, which makes 389 
them suitable for distinguishing between broad vegetation types. By contrast, in the XGBoost 390 
approach LCI emerged as the most important feature, which had minimal leverage in the 391 
other two classifiers. This discrepancy likely reflects XGBoost’s greedy search for splits that 392 
minimise the loss function, allowing a feature to gain importance even if it is of little 393 
relevance in SVM and RF algorithms (Kamdem and Fokoue, 2022). LCI’s top ranking in 394 
XGBoost suggests it may hold critical information for distinguishing subtle variations in leaf 395 
structure or pigment content that were not prioritized in the RF and SVM algorithms. 396 
A recent review on plant and vegetation classification based on spectral signatures revealed 397 
that besides the biological properties also the methodological approaches, the scale at which 398 
the recordings are performed and not least the applied feature selection procedure itself may 399 
all have a strong influence on feature importance in ML classifiers (Hennessy et al., 2020). 400 
To eleminate the latter source of variation, we applied the same permutation-based feature 401 
importance analysis based on cross-entropy loss to all three classifiers (Biecek, 2018; 402 
Biecek and Baniecki, 2023). 403 
 404 
Another notable finding is the weak contribution of NDRE in all classifiers, indicating its 405 
limited role in distinguishing subalpine vegetation types for the subalpine ecotone at our 406 
study site, which calls for verification in other high-elevation transition zones. Unlike NDVI 407 
and MCARI, which are widely used in vegetation classification, NDRE is often associated 408 
with deeper canopy penetration and is particularly useful in detecting nitrogen stress and 409 
subtle variations in chlorophyll content (Boiarskii & Hasegawa, 2019). The lack of importance 410 
of NDRE in this study suggests that these characteristics were not primary drivers of spectral 411 
separability among the subalpine vegetation types analyzed here. Instead, indices related to 412 
general canopy structure and pigment concentration (such as NDVI, CHL, and MCARI) 413 
proved more effective. 414 
 415 
The results of our study highlight the critical role of vegetation structure in classification 416 
accuracy, with dense, spectrally uniform vegetation types being more reliably identified than 417 
structurally diverse shrublands and mixed-species communities. As UAV technology 418 
becomes increasingly accessible, further refinement of vegetation index selection and 419 
classification methodologies is essential to capture the often subtle responses of subalpine 420 
vegetation to abiotic stressors, which are being exacerbated by climate change. The decline 421 
of certain species could lead to the loss of critical microhabitats and climatic niches, which 422 
serve as stepping stones for the recruitment of subalpine specialists and treeline forming 423 
species (Döweler et al., 2021; Frei et al., 2018; Harsch et al., 2009). For New Zealand, a 424 
landscape-scale classification of the subalpine can support monitoring the impact of invasive 425 
herbivores on these ecosystems, as their grazing pressure threatens both vegetation 426 
dynamics and the region’s carbon sequestration potential (Lee et al., 2000). Advancements 427 
in remote sensing and machine learning offer novel pathways to improve monitoring efforts, 428 
enabling us to more clearly formulate and track conservation targets. 429 
 430 
5. Conclusion 431 
 432 
The effective integration of vegetation indices with modern ML classifiers presents a 433 
powerful tool for tracking ecological shifts, particularly in remote and rugged environments. 434 
As UAV operations become more affordable, their application in long-term monitoring will be 435 
invaluable for detecting and understanding vegetation changes in otherwise inaccessible 436 
regions. Expanding these efforts through global collaboration will provide deeper insights 437 
into the poorly understood dynamics of subalpine ecosystems under changing climatic 438 
conditions. Given the crucial role of subalpine grasslands and woody vegetation in carbon 439 
sequestration (Ward et al., 2014) and other ecosystem services such as maintaining 440 
biodiversity, erosion protection, runoff regulation and snow retention, their ecological 441 
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trajectories must be closely monitored to inform conservation strategies aimed at mitigating 442 
species loss and preserving ecosystem functions. 443 
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