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19  Abstract
20  Subalpine ecosystems are highly dynamic environments that are particularly vulnerable to
21  environmental change, yet their remote and rugged nature poses challenges for long-term
22 monitoring. Unoccupied aerial vehicles (UAVS) equipped with multispectral sensors offer a
23  scalable solution for high-resolution vegetation mapping in these landscapes. In this study,
24 we integrated UAV-derived spectral data with machine learning (ML) classifiers to assess
25 the effectiveness of different vegetation indices (VIs) in distinguishing subalpine plant
26  communities. Principal component analysis (PCA) revealed that NDVI, SIPI2, MCARI, and
27  CHL were highly correlated and strongly influenced the primary variance in the dataset,
28  while NDRE and LCI contributed more evenly across principal components, and GNDVI was
29 largely independent. Among the ML classifiers tested, extreme gradient boosting (XGBoost)
30 achieved the greatest overall accuracy (81.3%) and Kappa (0.75), outperforming support
31  vector machines (SVM) and random forest (RF). Classification confidence was highest for
32  Chionochloa tussock (64.6—-69.7%) and Dracophyllum scrub (70.6%), suggesting moderate
33 reliability for these dominant vegetation types. Scrub and prostrate mat-forming communities
34  exhibited lower classification accuracy, likely due to their heterogeneous canopy structure
35  and greater spectral variability. The ecological boundaries of the subalpine zone, formed by
36 Fuscospora forest and scree, were classified with high confidence, but the vegetation is
37 dominated by tussock and shrubland. Feature importance analysis ranked NDVI, SIPI2,
38 CHL, and MCARI highly in SVM and RF models, whereas LCI prevailed in XGBoost,
39 underscoring how different algorithms leverage spectral information in classification tasks.
40 These results emphasize the role of vegetation structure in classification accuracy, with
41  dense, spectrally homogeneous vegetation types more reliably distinguished than mixed-
42  species communities. Our study highlights UAV-based classification as a valuable tool for
43  landscape-scale monitoring of subalpine vegetation. As UAV applications and ML workflows
44  continue to evolve, optimizing classification approaches will enhance our ability to track
45  ecological changes in subalpine and alpine regions worldwide.
46
47
48
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49 1. Introduction

50

51  Globally, subalpine shrublands play a crucial role as biodiversity hotspots, supporting a wide
52  range of endemic plant species and serving as critical habitats for various alpine-adapted
53 fauna. Functioning as ecological transition zones, they facilitate interactions between

54  species from lower and higher elevations, leading to unique assemblages. These

55  ecosystems are also vital for carbon sequestration (Day et al., 2023), water regulation

56  (Nicholls, 2023; Nicholls & Carey, 2021), and plant-soil nutrient balance (Urbina et al., 2020),
57 exhibiting key ecosystem services in mountainous landscapes. Additionally, subalpine

58 vegetation plays a fundamental role in global mountain ecosystems by acting as a crucial
59  buffer against climate-driven changes (Hou, 2024) and microhabitat facilitation (Harsch et
60 al., 2009). These environments are highly dynamic, shaped by the interplay of climate,

61 topography, and ecological processes. However, ongoing climate change is reshaping

62  subalpine ecosystems worldwide, altering species distributions, ecosystem functions, and
63 landscape stability (Reid et al., 2022).

64

65  The vulnerability of alpine and subalpine vegetation to changing abiotic drivers is particularly
66  concerning, as many species possess limited dispersal capacities and may be limited in their
67  capability to respond to changes in their range limitations (Camac et al., 2021). Moreover,
68 research on climate-driven treeline shifts (Kérner, 2014) and microclimatic variability

69 underscores the complexity and potential of subalpine ecosystems to modulate large scale
70  abiotic drivers (Déweler et al., 2021, 2024) and biotic effects (e.g. control invasive species
71  expansion; (Padalia et al., 2023). While some species may benefit from a warming climate,
72  others, particularly alpine specialists, may not be able to compete with generalist species

73  expanding their range from lower elevations (Thomas et al., 2023). This ecological

74  reshuffling has profound implications for biodiversity, carbon storage, and ecosystem

75  resilience, but often happens gradual and can only be thoroughly studied at the landscape
76  scale, where large scale assessments of change of the subalpine lacks temporal and spatial
77  resolution to adequately reflect these changes (Déweler et al., 2024).

78

79 In New Zealand, subalpine vegetation is characterized by a mosaic of tussock grasslands
80 and low-stature shrubs, forming ecologically significant communities that influence

81 ecosystem resilience and carbon storage (Mark, 2013; Day, 2023). The high cover of

82  Chionochloa tussocks (Fig. 1), along with species such as Dracophyllum uniflorum,

83  Podocarpus nivalis, and Acrothamnus colensoi, creates microclimates that buffer

84  temperature extremes and support treeline regeneration of Leuphozonia menziesii and

85  Fuscospora cliffortioides (Hook.f.) Oerst. (DOweler, 2021; Scherrer & Korner, 2010). These
86  ecosystems are not only important for biodiversity but also provide a range of ecological

87 functions, influencing water retention (van Galen et al., 2023) and soil carbon dynamics (Day
88 etal, 2023).

89
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91 Figure 1 A typical subalpine belt vegetation composition in New Zealand (1365 m a above
92 sealevel, Craigieburn Valley, Arthurs Pass)

93 Despite their ecological significance, New Zealand’s subalpine landscapes are experiencing
94  complex transformations, yet our understanding of these changes remains limited. The lack
95  of landscape-scale detailed vegetation mapping in the subalpine belt limits insights to
96 capture these gradual but potentially significant shifts in over time (Day et al., 2023) in these
97  often inaccessible regions. While treelines have shown limited upslope movement in
98 response to warming (Harsch et al., 2012), subalpine vegetation composition is shifting due
99 to factors such as woody encroachment and thickening, increased drought stress, and the
100 potential expansion of invasive species (Chardon et al., 2024, Singh et al., 2024).
101  Understanding how these communities are responding to climate change is crucial to further
102  elucidate their role in stabilising these ecosystems to help inform conservation strategies
103 (Reid, 2022; De Toma, 2025).
104
105 Remote sensing is a powerful tool for monitoring subalpine environments, where limited
106  accessibility and the need for large-scale landscape assessments pose significant
107 challenges (Walsh et al., 2009). It enables the classification of vegetation and detection of
108 ecological shifts, offering a comprehensive perspective on mountain biodiversity and
109 ecosystem dynamics. As climate change increasingly affects alpine and subalpine
110 ecosystems, the ability to remotely assess vegetation composition across vast and often
111  inaccessible areas has become a powerful method to study these ecosystems (Garbarino et
112  al., 2023). Advances in high-resolution satellite and UAV-based remote sensing, combined
113  with machine learning, have significantly improved vegetation classification, enhancing
114  mapping accuracy and long-term monitoring (Mashiane et al., 2024; Nguyen et al., 2022).
115  Access to light-weight sensors which can readily be mounted on increasingly affordable
116  unoccupied aerial vehicles (UAV’s) enables us to monitor subalpine ecotone in
117  unprecedented detail using optical, multispectral, thermal, and LIiDAR sensors (Doweler et
118 al., 2024). Remote sensing technologies provide a robust means of tracking vegetation
119  dynamics at ecologically meaningful scales, with satellite and aerial imagery proving
120 effective in mapping subalpine vegetation and detecting temporal changes (De Toma et al.,
121 2025). In some field studies, UAV-based deep learning methods may outperform human
122  observers in delineating complex patterns in subalpine shrub communities (Moritake et al.,
123  2024), endorsing their use for larger mapping endeavours of the subalpine in an approach to
124  more accurately study vegetation shifts in response to climate change. These technological
125 advancements offer critical insights for conservation planning and land management,
126  ensuring more effective strategies for protecting subalpine ecosystems (Padalia et al., 2023).
127
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128  This study investigates the potential of remotely sensed optical and multispectral vegetation
129 indices to differentiate vegetation composition in a complex subalpine shrubland ecotone in
130 New Zealand. Building on our previous classification and segmentation research in the

131  Craigieburn Range (Arthur’'s Pass, New Zealand, Déweler et al., 2024), we aimed to

132  compare the performance of three widely used machine learning classifiers (support vector
133  machine, random forest and extreme gradient boosting) and, by extension, to identify which
134  vegetation indices are most effective for distinguishing vegetation classes. This study aims
135 to offer recommendations for vegetation indices and ML classifiers for future remote sensing
136  applications in subalpine ecosystems. We hypothesised that classification accuracy will be
137  highest in vegetation types with distinct spectral reflectance signatures and relatively low
138  spectral and structural variability (e.g. sparsely vegetated scree, subalpine forest, tussock)
139  and lowest in various types of scrub and prostrate mats where increased species

140 interspersion may cause greater spectral overlap.

141

142

143 2 Material and Methods

144

145

146 2.1 Study site

147

148  The Craigieburn Valley study site (-43.111, 171.713) is located at 1365 metres above sea
149 level on a southeast to southwest aspect within the eastern slopes of the Southern Alps,
150 New Zealand (Fig. 2). The site is characterized by a montane to subalpine climate, with

151 frequent frost events throughout the year (approximately 135 frost days annually) and an
152  annual rainfall of around 1300 mm. The subalpine belt is dominated by Chionochloa tussock
153  grasslands, interspersed with species such as Dracophyllum uniflorum Hook.f., Podocarpus
154  nivalis Hook., and Acrothamnus colensoi (Hook.f.) Quinn, alongside areas of exposed scree.
155 The adjacent treeline is formed by Fuscospora cliffortioides (Hook.f.) Oerst., marking the
156 transition to the alpine treeline.

157
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158

159  Figure 2 Craigieburn study site (~ 4 ha). The subalpine belt has been covered by the drone
160 survey. The visualisation shows an RGB coloured point cloud derived from a 2019 (May, 9
161  am austral winter) point cloud acquisition.

162

163 2.2 Subalpine vegetation classification and segmentation

164

165  For the classification and segmentation of the subalpine belt we we applied the same

166  methodology as previously described in Doweler et al., 2024 producing a detailed map (0.05
167 m) of the subalpine vegetation, with low spatial offset (6.14 + 4.03 cm; mean + standard

168 error) over an area of approximately 4 ha covering the supaline belt. We provide a brief

169 summary of the method below, for the full workflow please see the respective paper.

170

171  For georeferencing, we used a differential GPS rover-base setup (Emlid Reach RS+) to

172 locate ground control points (GCPs) consisting of chessboard-patterned panels or high-

173  visibility spray markers, which were distributed across the UAV flight path for

174  photogrammetric orthorectification. The differential GPS was also used to validate

175 classification results by geolocating vegetation patches within the subalpine, resulting in over
176 600 ground-truth vegetation identifications in Craigieburn Valley. UAV imagery was captured
177  using a DJI Phantom 4 (0.01 m RGB resolution) and a Parrot Sequoia+ multispectral sensor
178  (0.05 m resolution), mounted for aerial surveys during the 2018/19 austral growing season.
179  Pre- and post-flight calibration followed the One-Point Calibration plus Sunshine Sensor

180 method using the Parrot target plate. The UAV flight paths were planned using UgCS

181  software (SPH Engineering, 2025), incorporating an 8 m resolution digital terrain model

5
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182  (Geographx, 2016) for altitude control, with a 5 m/s flight speed and 80% along-track overlap
183  for photogrammetric processing.

184

185  Post-processing was performed in Pix4D 9.4 (Pix4D, 2025) for image orthorectification and
186  spatial alignment using mapped GCPs. RGB and multispectral datasets were aligned

187 manually and projected into the New Zealand Transverse Mercator (NZTM 2000) coordinate
188  system. Object-based image analysis was conducted using eCognition Developer 9.0

189  (Trimble, 2025), applying multiresolution segmentation (scale: 250, shape: 0.1,

190 compactness: 0.7) to generate spectrally homogeneous objects. A nearest neighbor

191 classifier, trained on geolocated field data, was used to categorize land cover into five

192  vegetation types and scree. Feature selection was optimized through the Feature Space
193  Optimization tool in eCognition, maximizing vegetation separability across spectral bands.
194  Classification accuracy was evaluated using an error confusion matrix based on the 600
195  ground-truth points, with Kappa statistics indicating an overall accuracy of 89.7% (Fig. 3,
196 Doweler et al., 2024)

197
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- Acrothamnus colensoi
- Podocarpus nivalis
D Scree
- Fuscospora cliffortioides
- Chionochloa Tussock

198 v .
199 Figure 3 Results for the pre-existing subalpine vegetation segmentation and classification

200 for the Craigieburn valley established by Déweler et al. (2024)

201

202

203 2.3 Vegetation indices used to discern cover classes

204

205 Following the segmentation and classification of the vegetation cover classes, we derived a
206  suite of vegetation indices from the available multispectral bands to test their capability in
207  discerning cover classes. These indices capture plant functional traits that influence
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208  productivity, stress responses, and spectral variability across different vegetation types. By
209 leveraging multispectral reflectance data, we aimed to improve vegetation classification

210 accuracy and investigate how vegetation properties vary across topographic gradients.

211

212  All UAV-derived spectral data was sampled to a uniform 0.01 m resolution using a bicubic
213 interpolation in GDAL (3.4.1; Rouault et al., 2025). Vegetation classification polygons were
214  processed in GeoPandas (1.0.1; Van den Bossche et al., 2024) by extracting their centroids,
215  which were then buffered by 0.2 m to create localized sampling zones. This buffering step
216  minimized the influence of mixed-pixel effects and ensured that spectral values extracted
217  within each zone were representative of potential spectral heterogeneity within a single

218  vegetation type. We used a spatial filtering GeoPandas, ensuring that each buffered centroid
219 remained entirely within its original vegetation class. After filtering, the final vegetation

220 sample counts were 4436 Fuscospora cliffortioides, 1809 scree, 1384 Chionochloa tussock
221  (-12%), 883 Acrothamnus colensoi (-13%), 676 Podocarpus nivalis (-10%), and 293

222  Dracophyllum spp. (-3%), with a total of 9476 vegetation samples retained for analysis. The
223 filtered dataset was used to compute zonal statistics for each vegetation index using the
224 rasterstats (0.15.0; Perry, 2025) package, extracting median, mean and standard deviation
225  values within each segmented vegetation type.

226

227  The vegetation indices used in this analysis (Table 1) are widely applied in remote sensing
228 analyses on vegetation health and growth. We included the Normalized Difference

229  Vegetation Index (NDVI), Structure Insensitive Pigment Index 2 (SIPI12), Modified Chlorophyll
230  Absorption Ratio Index (MCARI), Green Normalized Difference Vegetation Index (GNDVI),
231  Chlorophyll Index (CHL), Normalized Difference Red Edge Index (NDRE), and Leaf

232  Chlorophyll Index (LCI). NDVI was calculated to assess overall vegetation health, while

233  SIPI2 was included as an indicator of vegetation stress and pigment ratios. MCARI, GNDVI,
234  CHL, and LCI were shifting the focus on chlorophyll concentrations and photosynthetic

235 potential, while the NDRE has been selected to provide a focus on red-edge detectable

236 indication of early stress.

237

238 Table 1 Overview of vegetation indices and respective band calculations used in the current
239  study, which represent unpublished data from a previous remote sensing study in the same
240  area (Doweler et al., 2024). Green (550 nm), Red (660 nm), Near-infrared (790 nm, NIR),
241 Red Edge (735 nm, RE) derived from the Parrot Sequoia, Blue band (450 nm) extracted
242  from the Phantom 4 RGB sensor.

243
Index Name Calculation Reference
NDVI Normalized Difference NIR — Red Rouse et al., 1973
Vegetation Index m
SIPI2 Structure Insensitive NIR — Blue Pefiuelas et al., 1995
Pigment Index 2 m

MCARI Modified Chlorophyll
Absorption Ratio Index

RE Daughtry et al., 2000
[(RE — Red) — 0.2 x (Red Edge — Green)] X Red
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Index Name Calculation Reference
GNDVI Green Normalized NIR — Green Gitelson & Merzlyak, 1998
Difference Vegetation T
Index NIR + Green
CHL Chlorophyll Red-Edge NIR Gitelson et al., 2003
Index _—
RE
NDRE Normalized Difference NIR — RE Barnes et al., 2000
Red Edge Index T —
¢ NIR + RE
LCI Leaf Chlorophyll Index NIR — RE Haboudane et al., 2002
NIR + Red
244
245
246 2.4 Statistical analysis
247

248  All statistical computations and graphics were performed using the R software within the
249 RStudio integrated development environment (R version 4.4.1, R Core Team, 2024, RStudio
250  version 2024.09.0+375, Posit team, 2024). To provide a general overview, we performed a
251  principal component analysis (PCA) based on the overall medians of the vegetation indices
252  (i.e. the median of the sample medians of each index). The PCA results were visualised in a
253  Dbiplot to illustrate similarities among vegetation types and the contribution of VIs to the

254 principal components (loading vectors) as well as their interrelationships.

255

256  We used three popular machine learning approaches to classify the six vegetation types
257  based on the centroid buffered medians of seven features (vegetation indices): NDVI,

258  GNDVI, CHL, LCI, MCARI, NDRE, SIPI2. We created a balanced 80/20 training-to-test split
259  of our data, ensuring random sampling within each class to preserve the overall class

260 distribution (balanced splits are obtained by providing a factor, i.e. the vegetation type labels,
261 tothe createDataPartition function, R package caret, Kuhn, 2008)

262  We trained a Support Vector Machine (SVM) classifier using a radial basis function (RBF)
263  kernel to differentiate between vegetation types (R package e1071, Meyer et al., 2024)

264  To address class imbalances, we assigned class weights inversely proportional to their

265 frequencies (following the approach in the Python package scikit-learn, Pedregosa et al.,
266  2011). Hyperparameter optimization was performed via 5-fold cross-validation, selecting the
267  optimal values of C (regularization parameter) and y (kernel coefficient, controlling the

268 influence of data points) using a grid search. The final model featured an RBF kernel with C
269 =10andy=0.01.

270  We also ran a random forest approach to classify the vegetation types (R package

271  randomForest, Liaw & Wiener, 2002). The model algorithm was run with the default 500

272  number of trees and a hyperparameter tuning procedure suggested two randomly sampled
273  features (predictors) at each split (mtry = 2). Stratified sampling was used to ensure that
274  each tree was trained on a random sample containing observations from all vegetation

275  types.

276

277 In addition, we applied extreme gradient boosting (function xgb.train in R package xgboost,
278 Chen et al., 2024) (Chen et al., 2024) for vegetation type classification. A grid search was
279  used for hyperparameter tuning (final hyperparameter settings: eta = 0.05, max_depth = 6,
280 gamma = 2) and 5-fold cross-validation to determine the optimal number of iterations (100
281  cross-validation runs allowing a maximum of 500 iterations yielded a mean of 150 iterations).
282

283  For all three machine learning approaches, the model performance scores were derived
284  from a confusion matrix contrasting true and predicted class labels (confusionMatrix function

8
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in R package caret, Kuhn, 2008). Class-level sensitivity (recall) and specificity scores were
each averaged to an overall score. In addition, the multi-class area under the receiver
operating characteristic curve (AUCnc) was calculated as the mean of the class-specific
AUCs (function multiclass.roc in R package pROC, Robin et al., 2011). Finally, we applied a
permutation-based feature importance analysis to all three classifiers. This feature
importance procedure was run with 30 permutation rounds using a cross-entropy loss
function to evaluate feature contribution (feature_importance function in R package
ingredients relying on the cross-entropy loss function in R package DALEX, Biecek, 2018;
Biecek et al., 2023).

3 Results

3.1 Principal component analysis (PCA)

The PCA showed that PC1 explained roughly 95 % and PC2 nearly 5 % of the variation in
the aggregated data. In the PCA biplot, Podocarpus scrub and Dracophyllum scrub formed
the only discernible cluster (which could perhaps include Chionochloa tussock), indicating
similar profiles related to the VIs. By contrast, the remaining vegetation types showed
distinct profiles (Fig. 4). The small angular distances between the loading vectors of NDVI,
SIPI2, MCARI and CHL suggest that these indices were all positively correlated and their
fairly horizontal alignment indicates a strong influence on PC1 (Fig. 4). The LCI and NDRE
were also positively correlated and contributed roughly equally to both PCs. The GNDVI had
a strong negative contribution to PC2, and was weakly or uncorrelated with the other Vlis
considering the large angular distances to the other loading vectors (Fig. 4).

Fuscospora subalpine forest
0.5 1
LCI
Scree NDRE
Prostrate mats
<
2 SIPI2
® 00F----mmmmm e - DVI. - - — _ _
< MCARI & CHL
o
O
o Chionochloa Tussock Dracophyllum scrub
‘ o
Podocarpus scrub
-0.5
GNDVI
T f T

-0.8 -0.4 0.0 04
PC1 (94.86 %)

Figure 4 Principal component analysis (PCA) biplot displaying the scores associated with various
subalpine vegetation types (filled circles) and the contribution of vegetation indices (arrows indicating
loading vectors) to the principal components. The vegetation indices were scaled prior to PCA. Please
note that the eigenvectors of the MCARI and CHL indices are virtually equal.

3.2 Machine learning classifiers

EGUsphere\
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320 Based on common performance metrics (accuracy, Cohen’s Kappa statistic, AUC, sensitivity
321  and specificity), the support vector machine (SVM) and random forest (RF) classifiers

322  performed similarly well but were slightly outperformed by the extreme gradient boosting

323  algorithm (XGBoost) (Fig. 5). Accuracy was just below 80 % in the SVM and the RF, while
324  reaching 81.3 % in the XGBoost approach. Given our unbalanced data, the more robust

325 Kappa statistic seems more informative than overall accuracy. Cohen’s Kappa was highest
326  inthe XGBoost classifier at 0.75, compared to 0.73 in the SVM and 0.72 in the RF approach
327  (Fig. 5). The multi-class AUC-ROC and specificity were identical in all three algorithms

328  (AUCnc = 0.93, specificity = 0.96), while sensitivity (recall) varied from 0.72 in the SVM and
329 0.70 in the XGBoost to 0.68 in the RF classifier (Fig. 5). As judged by the percentage of

330 correct classifications in the confusion matrices of the three classifiers, Fuscospora

331  subalpine forest (93.3 — 94.7 %) and scree (86.7 — 88.7 %) can be identified with high to very
332  high confidence, followed by moderate classification confidence for Chionochloa Tussock
333  (64.6 — 69.7 %). Classification confidence for the remaining vegetation types was mostly low
334 (<60 %), except for the SVM’s 70.6 % correct classifications of Dracophyllum scrub and its
335  63.2 % accuracy in classifying Acrothamnus colensoi (Fig. 5).

336

337

10
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Figure 5 Heatmaps of the confusion matrices of a support vector machine (A) a random forest model (B)
and an extreme gradient boosting machine (C). k indicates Cohen’s Kappa statistic, AUC denotes the
multi-class area under the ROC curve. Accuracy, k and AUC,, are overall model statistics, while
sensitivity (recall) and specificity indicate averages of the class-specific metrics.
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344
345 Figure 6 Permutation-based feature importance (variable importance) of a support vector machine (A), a

346 random forest model (B), and an extreme gradient boosting model (C). The vertical dotted lines indicate
347  the cross-entropy loss of the full model (no variables dropped). The error bars signify the 2.5th and 97.5th
348  percentiles of the 30 permutations.

349

350

351  Inthe SVM algorithm, SIPI2 represented the most important variable, followed by the equally
352 relevant NDVI and CHL, while MCARI and GNDVI were of moderate importance (Fig. 6 A).
353 NDRE and LCI had little to no significance in the SVM. In the RF model, NDVI and SIPI2
354  were similarly important, followed by equal contributions from CHL and MCARI, and to a
355 lesser but similar extent from NDRE and LCI, with GNDVI coming in with a slightly lower
356  entropy loss value (Fig. 6 B). By contrast, the XGBoost algorithm relied most heavily on LCI,
357 followed by MCARI and, on a similar level, SIPI2 and GNDIV (Fig. 6 C). CHL and NDVI were
358  of lesser importance, while NDRE represented an entropy-irrelevant feature.

359

360

361 4. Discussion

362

363  Mountain ecosystems support a high level of plant diversity and endemism, especially at
364  high elevation but coordinated monitoring efforts are scarce (Perrigo et al., 2020), often

365 hampered by limited access. In the future, more affordable drone technology will bolster

366 remote sensing based mapping and monitoring of these hard-to-reach ecosystems, and

367 information that aids in optimising classification accuracy will facilitate progress in this field.
368 Here, we compared the performance of three popular ML classifiers and assessed their

369 feature importance to rank common VIs based on their impact on the classification algorithm.
370

371  Judged by the overall accuracy and Cohen’s Kappa, the XGBoost algorithm differentiated
372  the existing vegetation types best, but SVM and RF both performed nearly as well.

373  Consistent with our findings, XGBoost outperformed SVM and RF in urban land use-land
374  cover and forest classification tasks (Georganos et al., 2018; Ramdani & Furgon, 2022). In
375 line with our hypothesis, spectrally more distinct vegetation types with lower spectral and
376  structural variation showed the greatest proportion of correct classifications in the confusion
377  matrices of the three classifiers, which is consistent with previous findings reported for

378  diverse wetland ecosystems (Schmidt & Skidmore, 2003). In our study, these spectrally

379  distinct vegetation types included Fuscospora cliffortioides subalpine forest and Chionochloa
380 tussock, which are characterised by dense, uniform foliage and/or well-defined canopy

381  structures, making them easier to differentiate in the ML classification process (Ollinger,

382  2011). The sparsely vegetated scree is characterised by a relatively uniform spectral

383  signature, i.e. spectrally bland, which facilitates classification.

384

385 The importance of the used VIs was ranked similarly in the SVM and RF but differed greatly
386 in the XGBoost algorithm, suggesting that the different ML approaches rely on distinct

387  spectral properties for classification. The SVM and the RF model agreed closely in regard to
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388 the four most important Vis (SIPI2, NDVI, CHL, MCARI). These ViIs reflect pigment content
389 and general vegetation vigor and are closely related to photosynthetic activity, which makes
390 them suitable for distinguishing between broad vegetation types. By contrast, in the XGBoost
391 approach LCI emerged as the most important feature, which had minimal leverage in the
392  other two classifiers. This discrepancy likely reflects XGBoost’s greedy search for splits that
393 minimise the loss function, allowing a feature to gain importance even if it is of little

394  relevance in SVM and RF algorithms (Kamdem and Fokoue, 2022). LCI’s top ranking in

395 XGBoost suggests it may hold critical information for distinguishing subtle variations in leaf
396  structure or pigment content that were not prioritized in the RF and SVM algorithms.

397  Arecent review on plant and vegetation classification based on spectral signatures revealed
398 that besides the biological properties also the methodological approaches, the scale at which
399 the recordings are performed and not least the applied feature selection procedure itself may
400 all have a strong influence on feature importance in ML classifiers (Hennessy et al., 2020).
401 To eleminate the latter source of variation, we applied the same permutation-based feature
402 importance analysis based on cross-entropy loss to all three classifiers (Biecek, 2018;

403  Biecek and Baniecki, 2023).

404

405  Another notable finding is the weak contribution of NDRE in all classifiers, indicating its

406 limited role in distinguishing subalpine vegetation types for the subalpine ecotone at our

407  study site, which calls for verification in other high-elevation transition zones. Unlike NDVI
408 and MCARI, which are widely used in vegetation classification, NDRE is often associated
409  with deeper canopy penetration and is particularly useful in detecting nitrogen stress and
410  subtle variations in chlorophyll content (Boiarskii & Hasegawa, 2019). The lack of importance
411  of NDRE in this study suggests that these characteristics were not primary drivers of spectral
412  separability among the subalpine vegetation types analyzed here. Instead, indices related to
413  general canopy structure and pigment concentration (such as NDVI, CHL, and MCARI)

414  proved more effective.

415

416  The results of our study highlight the critical role of vegetation structure in classification

417  accuracy, with dense, spectrally uniform vegetation types being more reliably identified than
418  structurally diverse shrublands and mixed-species communities. As UAV technology

419  becomes increasingly accessible, further refinement of vegetation index selection and

420 classification methodologies is essential to capture the often subtle responses of subalpine
421  vegetation to abiotic stressors, which are being exacerbated by climate change. The decline
422  of certain species could lead to the loss of critical microhabitats and climatic niches, which
423  serve as stepping stones for the recruitment of subalpine specialists and treeline forming
424 species (Doéweler et al., 2021; Frei et al., 2018; Harsch et al., 2009). For New Zealand, a
425 landscape-scale classification of the subalpine can support monitoring the impact of invasive
426  herbivores on these ecosystems, as their grazing pressure threatens both vegetation

427  dynamics and the region’s carbon sequestration potential (Lee et al., 2000). Advancements
428  in remote sensing and machine learning offer novel pathways to improve monitoring efforts,
429  enabling us to more clearly formulate and track conservation targets.

430

431 5. Conclusion

432

433  The effective integration of vegetation indices with modern ML classifiers presents a

434  powerful tool for tracking ecological shifts, particularly in remote and rugged environments.
435  As UAV operations become more affordable, their application in long-term monitoring will be
436 invaluable for detecting and understanding vegetation changes in otherwise inaccessible
437  regions. Expanding these efforts through global collaboration will provide deeper insights
438 into the poorly understood dynamics of subalpine ecosystems under changing climatic

439  conditions. Given the crucial role of subalpine grasslands and woody vegetation in carbon
440  sequestration (Ward et al., 2014) and other ecosystem services such as maintaining

441  biodiversity, erosion protection, runoff regulation and snow retention, their ecological
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442  trajectories must be closely monitored to inform conservation strategies aimed at mitigating
443  species loss and preserving ecosystem functions.
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