

1 **Drone-based multispectral differentiation of subalpine vegetation at the treeline in the
2 Southern Alps of New Zealand**

3

4 Fabian Döweler¹ and Martin Karl-Friedrich Bader^{2*}

5

6 ¹ Dragonfly Data Science, Wellington, New Zealand

7 ² System Earth Science, Maastricht University, Brightlands Campus Greenport Venlo, The
8 Netherlands

9

10 *Correspondence:

11 fab.doe@gmx.de, martin.bader@maastrichtuniversity.nl

12

13

14 **Keywords**

15 Vegetation index, unoccupied aerial vehicle (UAV), machine learning classifier, mountain
16 biodiversity

17

18

19 **Abstract**

20 Subalpine ecosystems are highly dynamic environments that are particularly vulnerable to
21 environmental change, yet their remote and rugged nature poses challenges for long-term
22 monitoring. Unoccupied aerial vehicles (UAVs) equipped with multispectral sensors offer a
23 scalable solution for high-resolution vegetation mapping in these landscapes. In this study,
24 we integrated UAV-derived spectral data with machine learning (ML) classifiers to assess
25 the effectiveness of different vegetation indices (VIs) in distinguishing subalpine plant
26 communities. Principal component analysis (PCA) revealed that NDVI, SIPI2, MCARI, and
27 CHL were highly correlated and strongly influenced the primary variance in the dataset,
28 while NDRE and LCI contributed more evenly across principal components, and GNDVI was
29 largely independent. Among the ML classifiers tested, extreme gradient boosting (XGBoost)
30 achieved the greatest overall accuracy (81.3%) and Kappa (0.75), outperforming support
31 vector machines (SVM) and random forest (RF). Classification confidence was highest for
32 *Chionochloa tussock* (64.6–69.7%) and *Dracophyllum* scrub (70.6%), suggesting moderate
33 reliability for these dominant vegetation types. Scrub and prostrate mat-forming communities
34 exhibited lower classification accuracy, likely due to their heterogeneous canopy structure
35 and greater spectral variability. The ecological boundaries of the subalpine zone, formed by
36 *Fuscospora* forest and scree, were classified with high confidence, but the vegetation is
37 dominated by tussock and shrubland. Feature importance analysis ranked NDVI, SIPI2,
38 CHL, and MCARI highly in SVM and RF models, whereas LCI prevailed in XGBoost,
39 underscoring how different algorithms leverage spectral information in classification tasks.
40 These results emphasize the role of vegetation structure in classification accuracy, with
41 dense, spectrally homogeneous vegetation types more reliably distinguished than mixed-
42 species communities. Our study highlights UAV-based classification as a valuable tool for
43 landscape-scale monitoring of subalpine vegetation. As UAV applications and ML workflows
44 continue to evolve, optimizing classification approaches will enhance our ability to track
45 ecological changes in subalpine and alpine regions worldwide.

46

47

48

49 **1. Introduction**

50

51 Globally, subalpine shrublands play a crucial role as biodiversity hotspots, supporting a wide
52 range of endemic plant species and serving as critical habitats for various alpine-adapted
53 fauna. Functioning as ecological transition zones, they facilitate interactions between
54 species from lower and higher elevations, leading to unique assemblages. These
55 ecosystems are also vital for carbon sequestration (Day et al., 2023), water regulation
56 (Nicholls, 2023; Nicholls & Carey, 2021), and plant-soil nutrient balance (Urbina et al., 2020),
57 exhibiting key ecosystem services in mountainous landscapes. Additionally, subalpine
58 vegetation plays a fundamental role in global mountain ecosystems by acting as a crucial
59 buffer against climate-driven changes (Hou, 2024) and microhabitat facilitation (Harsch et
60 al., 2009). These environments are highly dynamic, shaped by the interplay of climate,
61 topography, and ecological processes. However, ongoing climate change is reshaping
62 subalpine ecosystems worldwide, altering species distributions, ecosystem functions, and
63 landscape stability (Reid et al., 2022).

64

65 The vulnerability of alpine and subalpine vegetation to changing abiotic drivers is particularly
66 concerning, as many species possess limited dispersal capacities and may be limited in their
67 capability to respond to changes in their range limitations (Camac et al., 2021). Moreover,
68 research on climate-driven treeline shifts (Körner, 2014) and microclimatic variability
69 underscores the complexity and potential of subalpine ecosystems to modulate large scale
70 abiotic drivers (Döweler et al., 2021, 2024) and biotic effects (e.g. control invasive species
71 expansion; (Padalia et al., 2023). While some species may benefit from a warming climate,
72 others, particularly alpine specialists, may not be able to compete with generalist species
73 expanding their range from lower elevations (Thomas et al., 2023). This ecological
74 reshuffling has profound implications for biodiversity, carbon storage, and ecosystem
75 resilience, but often happens gradual and can only be thoroughly studied at the landscape
76 scale, where large scale assessments of change of the subalpine lacks temporal and spatial
77 resolution to adequately reflect these changes (Döweler et al., 2024).

78

79 In New Zealand, subalpine vegetation is characterized by a mosaic of tussock grasslands
80 and low-stature shrubs, forming ecologically significant communities that influence
81 ecosystem resilience and carbon storage (Mark, 2013; Day, 2023). The high cover of
82 *Chionochloa* tussocks (Fig. 1), along with species such as *Dracophyllum uniflorum*,
83 *Podocarpus nivalis*, and *Acrothamnus colensoi*, creates microclimates that buffer
84 temperature extremes and support treeline regeneration of *Leuphozonia menziesii* and
85 *Fuscospora cliffortioides* (Hook.f.) Oerst. (Döweler, 2021; Scherrer & Körner, 2010). These
86 ecosystems are not only important for biodiversity but also provide a range of ecological
87 functions, influencing water retention (van Galen et al., 2023) and soil carbon dynamics (Day
88 et al., 2023).

89

90

91

Figure 1 A typical subalpine belt vegetation composition in New Zealand (1365 m a above sea level, Craigieburn Valley, Arthurs Pass)

92
93 Despite their ecological significance, New Zealand's subalpine landscapes are experiencing
94 complex transformations, yet our understanding of these changes remains limited. The lack
95 of landscape-scale detailed vegetation mapping in the subalpine belt limits insights to
96 capture these gradual but potentially significant shifts in over time (Day et al., 2023) in these
97 often inaccessible regions. While treelines have shown limited upslope movement in
98 response to warming (Harsch et al., 2012), subalpine vegetation composition is shifting due
99 to factors such as woody encroachment and thickening, increased drought stress, and the
100 potential expansion of invasive species (Chardon et al., 2024; Singh et al., 2024).
101 Understanding how these communities are responding to climate change is crucial to further
102 elucidate their role in stabilising these ecosystems to help inform conservation strategies
103 (Reid, 2022; De Toma, 2025).

104

105 Remote sensing is a powerful tool for monitoring subalpine environments, where limited
106 accessibility and the need for large-scale landscape assessments pose significant
107 challenges (Walsh et al., 2009). It enables the classification of vegetation and detection of
108 ecological shifts, offering a comprehensive perspective on mountain biodiversity and
109 ecosystem dynamics. As climate change increasingly affects alpine and subalpine
110 ecosystems, the ability to remotely assess vegetation composition across vast and often
111 inaccessible areas has become a powerful method to study these ecosystems (Garbarino et
112 al., 2023). Advances in high-resolution satellite and UAV-based remote sensing, combined
113 with machine learning, have significantly improved vegetation classification, enhancing
114 mapping accuracy and long-term monitoring (Mashiane et al., 2024; Nguyen et al., 2022).
115 Access to light-weight sensors which can readily be mounted on increasingly affordable
116 unoccupied aerial vehicles (UAV's) enables us to monitor subalpine ecotone in
117 unprecedented detail using optical, multispectral, thermal, and LiDAR sensors (Döweler et
118 al., 2024). Remote sensing technologies provide a robust means of tracking vegetation
119 dynamics at ecologically meaningful scales, with satellite and aerial imagery proving
120 effective in mapping subalpine vegetation and detecting temporal changes (De Toma et al.,
121 2025). In some field studies, UAV-based deep learning methods may outperform human
122 observers in delineating complex patterns in subalpine shrub communities (Moritake et al.,
123 2024), endorsing their use for larger mapping endeavours of the subalpine in an approach to
124 more accurately study vegetation shifts in response to climate change. These technological
125 advancements offer critical insights for conservation planning and land management,
126 ensuring more effective strategies for protecting subalpine ecosystems (Padalia et al., 2023).
127

128 This study investigates the potential of remotely sensed optical and multispectral vegetation
129 indices to differentiate vegetation composition in a complex subalpine shrubland ecotone in
130 New Zealand. Building on our previous classification and segmentation research in the
131 Craigieburn Range (Arthur's Pass, New Zealand, Döweler et al., 2024), we aimed to
132 compare the performance of three widely used machine learning classifiers (support vector
133 machine, random forest and extreme gradient boosting) and, by extension, to identify which
134 vegetation indices are most effective for distinguishing vegetation classes. This study aims
135 to offer recommendations for vegetation indices and ML classifiers for future remote sensing
136 applications in subalpine ecosystems. We hypothesised that classification accuracy will be
137 highest in vegetation types with distinct spectral reflectance signatures and relatively low
138 spectral and structural variability (e.g. sparsely vegetated scree, subalpine forest, tussock)
139 and lowest in various types of scrub and prostrate mats where increased species
140 interspersion may cause greater spectral overlap.

141

142

143 **2 Material and Methods**

144

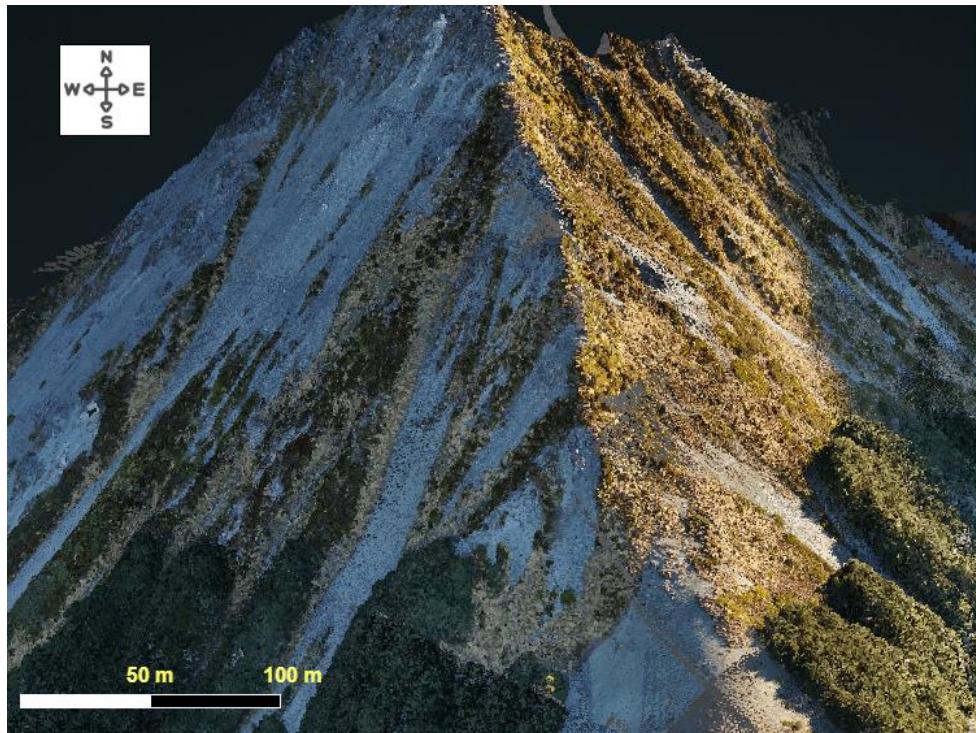
145

146 **2.1 Study site**

147

148 The Craigieburn Valley study site (-43.111, 171.713) is located at 1365 metres above sea
149 level on a southeast to southwest aspect within the eastern slopes of the Southern Alps,
150 New Zealand (Fig. 2). The site is characterized by a montane to subalpine climate, with
151 frequent frost events throughout the year (approximately 135 frost days annually) and an
152 annual rainfall of around 1300 mm. The subalpine belt is dominated by *Chionochloa* tussock
153 grasslands, interspersed with species such as *Dracophyllum uniflorum* Hook.f., *Podocarpus*
154 *nivalis* Hook., and *Acrothamnus colensoi* (Hook.f.) Quinn, alongside areas of exposed scree.
155 The adjacent treeline is formed by *Fuscospora cliffortioides* (Hook.f.) Oerst., marking the
156 transition to the alpine treeline.

157



158

159 **Figure 2** Craigieburn study site (~ 4 ha). The subalpine belt has been covered by the drone
160 survey. The visualisation shows an RGB coloured point cloud derived from a 2019 (May, 9
161 am austral winter) point cloud acquisition.

162

163 **2.2 Subalpine vegetation classification and segmentation**

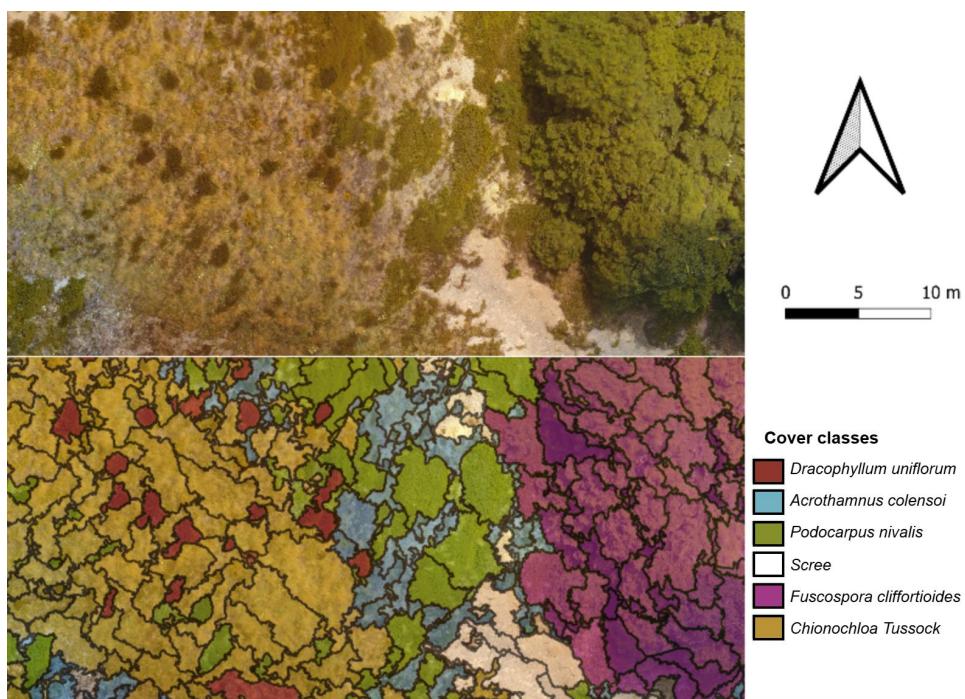
164

165 For the classification and segmentation of the subalpine belt we applied the same
166 methodology as previously described in Döweler et al., 2024 producing a detailed map (0.05
167 m) of the subalpine vegetation, with low spatial offset (6.14 ± 4.03 cm; mean \pm standard
168 error) over an area of approximately 4 ha covering the supraline belt. We provide a brief
169 summary of the method below, for the full workflow please see the respective paper.

170

171 For georeferencing, we used a differential GPS rover-base setup (Emlid Reach RS+) to
172 locate ground control points (GCPs) consisting of chessboard-patterned panels or high-
173 visibility spray markers, which were distributed across the UAV flight path for
174 photogrammetric orthorectification. The differential GPS was also used to validate
175 classification results by geolocating vegetation patches within the subalpine, resulting in over
176 600 ground-truth vegetation identifications in Craigieburn Valley. UAV imagery was captured
177 using a DJI Phantom 4 (0.01 m RGB resolution) and a Parrot Sequoia+ multispectral sensor
178 (0.05 m resolution), mounted for aerial surveys during the 2018/19 austral growing season.
179 Pre- and post-flight calibration followed the One-Point Calibration plus Sunshine Sensor
180 method using the Parrot target plate. The UAV flight paths were planned using UgCS
181 software (SPH Engineering, 2025), incorporating an 8 m resolution digital terrain model

182 (Geographx, 2016) for altitude control, with a 5 m/s flight speed and 80% along-track overlap
183 for photogrammetric processing.
184
185 Post-processing was performed in Pix4D 9.4 (Pix4D, 2025) for image orthorectification and
186 spatial alignment using mapped GCPs. RGB and multispectral datasets were aligned
187 manually and projected into the New Zealand Transverse Mercator (NZTM 2000) coordinate
188 system. Object-based image analysis was conducted using eCognition Developer 9.0
189 (Trimble, 2025), applying multiresolution segmentation (scale: 250, shape: 0.1,
190 compactness: 0.7) to generate spectrally homogeneous objects. A nearest neighbor
191 classifier, trained on geolocated field data, was used to categorize land cover into five
192 vegetation types and scree. Feature selection was optimized through the Feature Space
193 Optimization tool in eCognition, maximizing vegetation separability across spectral bands.
194 Classification accuracy was evaluated using an error confusion matrix based on the 600
195 ground-truth points, with Kappa statistics indicating an overall accuracy of 89.7% (Fig. 3,
196 Döweler et al., 2024)
197



198
199 **Figure 3** Results for the pre-existing subalpine vegetation segmentation and classification
200 for the Craigieburn valley established by Döweler et al. (2024)
201
202

203 **2.3 Vegetation indices used to discern cover classes**

204
205 Following the segmentation and classification of the vegetation cover classes, we derived a
206 suite of vegetation indices from the available multispectral bands to test their capability in
207 discerning cover classes. These indices capture plant functional traits that influence

208 productivity, stress responses, and spectral variability across different vegetation types. By
209 leveraging multispectral reflectance data, we aimed to improve vegetation classification
210 accuracy and investigate how vegetation properties vary across topographic gradients.
211
212 All UAV-derived spectral data was sampled to a uniform 0.01 m resolution using a bicubic
213 interpolation in GDAL (3.4.1; Rouault et al., 2025). Vegetation classification polygons were
214 processed in GeoPandas (1.0.1; Van den Bossche et al., 2024) by extracting their centroids,
215 which were then buffered by 0.2 m to create localized sampling zones. This buffering step
216 minimized the influence of mixed-pixel effects and ensured that spectral values extracted
217 within each zone were representative of potential spectral heterogeneity within a single
218 vegetation type. We used a spatial filtering GeoPandas, ensuring that each buffered centroid
219 remained entirely within its original vegetation class. After filtering, the final vegetation
220 sample counts were 4436 *Fuscospora cliffortioides*, 1809 scree, 1384 *Chionochloa* tussock
221 (-12%), 883 *Acrothamnus colensoi* (-13%), 676 *Podocarpus nivalis* (-10%), and 293
222 *Dracophyllum* spp. (-3%), with a total of 9476 vegetation samples retained for analysis. The
223 filtered dataset was used to compute zonal statistics for each vegetation index using the
224 rasterstats (0.15.0; Perry, 2025) package, extracting median, mean and standard deviation
225 values within each segmented vegetation type.
226
227 The vegetation indices used in this analysis (Table 1) are widely applied in remote sensing
228 analyses on vegetation health and growth. We included the Normalized Difference
229 Vegetation Index (NDVI), Structure Insensitive Pigment Index 2 (SIP12), Modified Chlorophyll
230 Absorption Ratio Index (MCARI), Green Normalized Difference Vegetation Index (GNDVI),
231 Chlorophyll Index (CHL), Normalized Difference Red Edge Index (NDRE), and Leaf
232 Chlorophyll Index (LCI). NDVI was calculated to assess overall vegetation health, while
233 SIP12 was included as an indicator of vegetation stress and pigment ratios. MCARI, GNDVI,
234 CHL, and LCI were shifting the focus on chlorophyll concentrations and photosynthetic
235 potential, while the NDRE has been selected to provide a focus on red-edge detectable
236 indication of early stress.
237
238 **Table 1** Overview of vegetation indices and respective band calculations used in the current
239 study, which represent unpublished data from a previous remote sensing study in the same
240 area (Döweler et al., 2024). Green (550 nm), Red (660 nm), Near-infrared (790 nm, NIR),
241 Red Edge (735 nm, RE) derived from the Parrot Sequoia, Blue band (450 nm) extracted
242 from the Phantom 4 RGB sensor.
243

Index	Name	Calculation	Reference
NDVI	Normalized Difference Vegetation Index	$\frac{NIR - Red}{NIR + Red}$	Rouse et al., 1973
SIP12	Structure Insensitive Pigment Index 2	$\frac{NIR - Blue}{NIR - Red}$	Peñuelas et al., 1995
MCARI	Modified Chlorophyll Absorption Ratio Index	$[(RE - Red) - 0.2 \times (Red Edge - Green)] \times \frac{RE}{Red}$	Daughtry et al., 2000

Index	Name	Calculation	Reference
GNDVI	Green Normalized Difference Vegetation Index	$\frac{NIR - Green}{NIR + Green}$	Gitelson & Merzlyak, 1998
CHL	Chlorophyll Red-Edge Index	$\frac{NIR}{RE} - 1$	Gitelson et al., 2003
NDRE	Normalized Difference Red Edge Index	$\frac{NIR - RE}{NIR + RE}$	Barnes et al., 2000
LCI	Leaf Chlorophyll Index	$\frac{NIR - RE}{NIR + Red}$	Haboudane et al., 2002

244

245

246 2.4 Statistical analysis

247

248 All statistical computations and graphics were performed using the R software within the
 249 RStudio integrated development environment (R version 4.4.1, R Core Team, 2024, RStudio
 250 version 2024.09.0+375, Posit team, 2024). To provide a general overview, we performed a
 251 principal component analysis (PCA) based on the overall medians of the vegetation indices
 252 (i.e. the median of the sample medians of each index). The PCA results were visualised in a
 253 biplot to illustrate similarities among vegetation types and the contribution of VIs to the
 254 principal components (loading vectors) as well as their interrelationships.

255

256 We used three popular machine learning approaches to classify the six vegetation types
 257 based on the centroid buffered medians of seven features (vegetation indices): NDVI,
 258 GNDVI, CHL, LCI, MCARI, NDRE, SIPI2. We created a balanced 80/20 training-to-test split
 259 of our data, ensuring random sampling within each class to preserve the overall class
 260 distribution (balanced splits are obtained by providing a factor, i.e. the vegetation type labels,
 261 to the *createDataPartition* function, R package *caret*, Kuhn, 2008)

262 We trained a Support Vector Machine (SVM) classifier using a radial basis function (RBF)
 263 kernel to differentiate between vegetation types (R package *e1071*, Meyer et al., 2024)
 264 To address class imbalances, we assigned class weights inversely proportional to their
 265 frequencies (following the approach in the Python package *scikit-learn*, Pedregosa et al.,
 266 2011). Hyperparameter optimization was performed via 5-fold cross-validation, selecting the
 267 optimal values of C (regularization parameter) and γ (kernel coefficient, controlling the
 268 influence of data points) using a grid search. The final model featured an RBF kernel with C
 269 = 10 and γ = 0.01.

270 We also ran a random forest approach to classify the vegetation types (R package
 271 *randomForest*, Liaw & Wiener, 2002). The model algorithm was run with the default 500
 272 number of trees and a hyperparameter tuning procedure suggested two randomly sampled
 273 features (predictors) at each split (mtry = 2). Stratified sampling was used to ensure that
 274 each tree was trained on a random sample containing observations from all vegetation
 275 types.

276

277 In addition, we applied extreme gradient boosting (function *xgb.train* in R package *xgboost*,
 278 Chen et al., 2024) (Chen et al., 2024) for vegetation type classification. A grid search was
 279 used for hyperparameter tuning (final hyperparameter settings: eta = 0.05, max_depth = 6,
 280 gamma = 2) and 5-fold cross-validation to determine the optimal number of iterations (100
 281 cross-validation runs allowing a maximum of 500 iterations yielded a mean of 150 iterations).

282

283 For all three machine learning approaches, the model performance scores were derived
 284 from a confusion matrix contrasting true and predicted class labels (*confusionMatrix* function

285 in R package *caret*, Kuhn, 2008). Class-level sensitivity (recall) and specificity scores were
286 each averaged to an overall score. In addition, the multi-class area under the receiver
287 operating characteristic curve (AUC_{mc}) was calculated as the mean of the class-specific
288 AUCs (function *multiclass.roc* in R package *pROC*, Robin et al., 2011). Finally, we applied a
289 permutation-based feature importance analysis to all three classifiers. This feature
290 importance procedure was run with 30 permutation rounds using a cross-entropy loss
291 function to evaluate feature contribution (*feature_importance* function in R package
292 *ingredients* relying on the cross-entropy loss function in R package *DALEX*, Biecek, 2018;
293 Biecek et al., 2023).

294

295

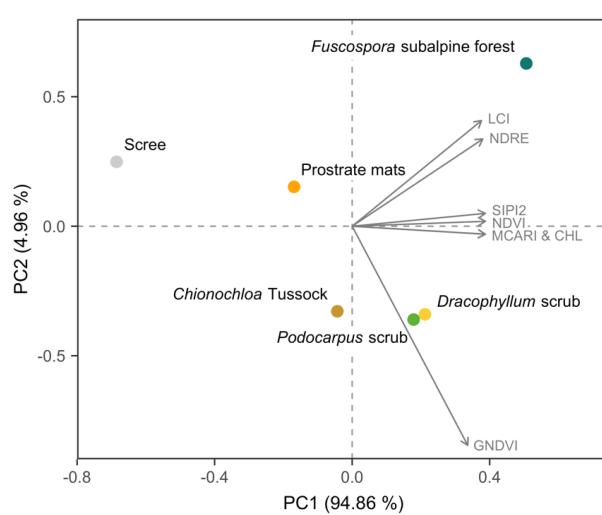
296

297 **3 Results**

298

299 **3.1 Principal component analysis (PCA)**

300 The PCA showed that PC1 explained roughly 95 % and PC2 nearly 5 % of the variation in
301 the aggregated data. In the PCA biplot, *Podocarpus* scrub and *Dracophyllum* scrub formed
302 the only discernible cluster (which could perhaps include *Chionochloa* tussock), indicating
303 similar profiles related to the VIs. By contrast, the remaining vegetation types showed
304 distinct profiles (Fig. 4). The small angular distances between the loading vectors of NDVI,
305 Sipi2, MCARI and CHL suggest that these indices were all positively correlated and their
306 fairly horizontal alignment indicates a strong influence on PC1 (Fig. 4). The LCI and NDRE
307 were also positively correlated and contributed roughly equally to both PCs. The GNDVI had
308 a strong negative contribution to PC2, and was weakly or uncorrelated with the other VIs
309 considering the large angular distances to the other loading vectors (Fig. 4).
310



311

312

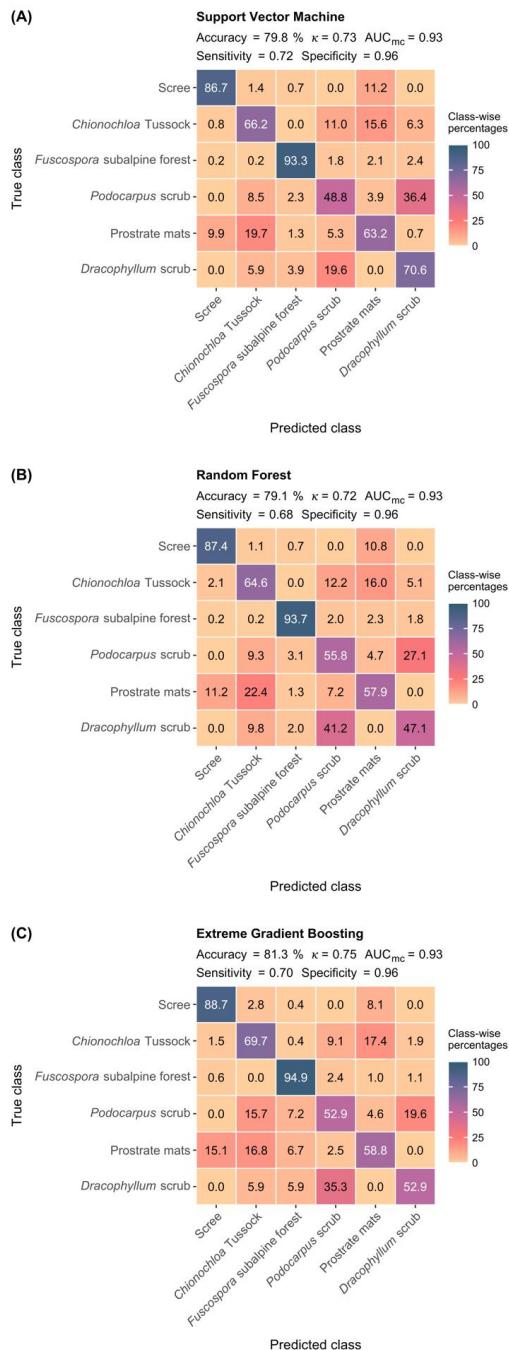
313 **Figure 4** Principal component analysis (PCA) biplot displaying the scores associated with various
314 subalpine vegetation types (filled circles) and the contribution of vegetation indices (arrows indicating
315 loading vectors) to the principal components. The vegetation indices were scaled prior to PCA. Please
316 note that the eigenvectors of the MCARI and CHL indices are virtually equal.

317

318

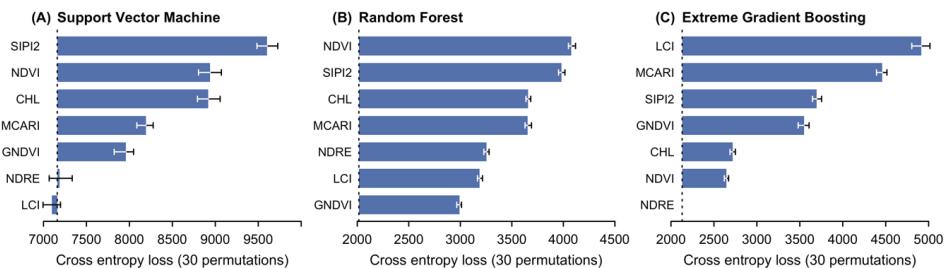
319 **3.2 Machine learning classifiers**

320 Based on common performance metrics (accuracy, Cohen's Kappa statistic, AUC, sensitivity
321 and specificity), the support vector machine (SVM) and random forest (RF) classifiers
322 performed similarly well but were slightly outperformed by the extreme gradient boosting
323 algorithm (XGBoost) (Fig. 5). Accuracy was just below 80 % in the SVM and the RF, while
324 reaching 81.3 % in the XGBoost approach. Given our unbalanced data, the more robust
325 Kappa statistic seems more informative than overall accuracy. Cohen's Kappa was highest
326 in the XGBoost classifier at 0.75, compared to 0.73 in the SVM and 0.72 in the RF approach
327 (Fig. 5). The multi-class AUC-ROC and specificity were identical in all three algorithms
328 ($AUC_{mc} = 0.93$, specificity = 0.96), while sensitivity (recall) varied from 0.72 in the SVM and
329 0.70 in the XGBoost to 0.68 in the RF classifier (Fig. 5). As judged by the percentage of
330 correct classifications in the confusion matrices of the three classifiers, *Fuscospora*
331 subalpine forest (93.3 – 94.7 %) and scree (86.7 – 88.7 %) can be identified with high to very
332 high confidence, followed by moderate classification confidence for *Chionochloa* Tussock
333 (64.6 – 69.7 %). Classification confidence for the remaining vegetation types was mostly low
334 (< 60 %), except for the SVM's 70.6 % correct classifications of *Dracophyllum* scrub and its
335 63.2 % accuracy in classifying *Acrothamnus colensoi* (Fig. 5).
336
337



338
339

340 **Figure 5** Heatmaps of the confusion matrices of a support vector machine (A) a random forest model (B)
341 and an extreme gradient boosting machine (C). κ indicates Cohen's Kappa statistic, AUC_{mc} denotes the
342 multi-class area under the ROC curve. Accuracy, κ and AUC_{mc} are overall model statistics, while
343 sensitivity (recall) and specificity indicate averages of the class-specific metrics.



344
345 **Figure 6** Permutation-based feature importance (variable importance) of a support vector machine (A), a
346 random forest model (B), and an extreme gradient boosting model (C). The vertical dotted lines indicate
347 the cross-entropy loss of the full model (no variables dropped). The error bars signify the 2.5th and 97.5th
348 percentiles of the 30 permutations.

349

350

351 In the SVM algorithm, SIP12 represented the most important variable, followed by the equally
352 relevant NDVI and CHL, while MCARI and GNDVI were of moderate importance (Fig. 6 A).
353 NDRE and LCI had little to no significance in the SVM. In the RF model, NDVI and SIP12
354 were similarly important, followed by equal contributions from CHL and MCARI, and to a
355 lesser but similar extent from NDRE and LCI, with GNDVI coming in with a slightly lower
356 entropy loss value (Fig. 6 B). By contrast, the XGBoost algorithm relied most heavily on LCI,
357 followed by MCARI and, on a similar level, SIP12 and GNDIV (Fig. 6 C). CHL and NDVI were
358 of lesser importance, while NDRE represented an entropy-irrelevant feature.

359

360

361 **4. Discussion**

362

363 Mountain ecosystems support a high level of plant diversity and endemism, especially at
364 high elevation but coordinated monitoring efforts are scarce (Perrigo et al., 2020), often
365 hampered by limited access. In the future, more affordable drone technology will bolster
366 remote sensing based mapping and monitoring of these hard-to-reach ecosystems, and
367 information that aids in optimising classification accuracy will facilitate progress in this field.
368 Here, we compared the performance of three popular ML classifiers and assessed their
369 feature importance to rank common VIs based on their impact on the classification algorithm.

370

371 Judged by the overall accuracy and Cohen's Kappa, the XGBoost algorithm differentiated
372 the existing vegetation types best, but SVM and RF both performed nearly as well.
373 Consistent with our findings, XGBoost outperformed SVM and RF in urban land use-land
374 cover and forest classification tasks (Georganos et al., 2018; Ramdani & Furqon, 2022). In
375 line with our hypothesis, spectrally more distinct vegetation types with lower spectral and
376 structural variation showed the greatest proportion of correct classifications in the confusion
377 matrices of the three classifiers, which is consistent with previous findings reported for
378 diverse wetland ecosystems (Schmidt & Skidmore, 2003). In our study, these spectrally
379 distinct vegetation types included *Fuscospora cliffortioides* subalpine forest and *Chionochloa*
380 tussock, which are characterised by dense, uniform foliage and/or well-defined canopy
381 structures, making them easier to differentiate in the ML classification process (Ollinger,
382 2011). The sparsely vegetated scree is characterised by a relatively uniform spectral
383 signature, i.e. spectrally bland, which facilitates classification.

384

385 The importance of the used VIs was ranked similarly in the SVM and RF but differed greatly
386 in the XGBoost algorithm, suggesting that the different ML approaches rely on distinct
387 spectral properties for classification. The SVM and the RF model agreed closely in regard to

388 the four most important VIs (SIP12, NDVI, CHL, MCARI). These VIs reflect pigment content
389 and general vegetation vigor and are closely related to photosynthetic activity, which makes
390 them suitable for distinguishing between broad vegetation types. By contrast, in the XGBoost
391 approach LCI emerged as the most important feature, which had minimal leverage in the
392 other two classifiers. This discrepancy likely reflects XGBoost's greedy search for splits that
393 minimise the loss function, allowing a feature to gain importance even if it is of little
394 relevance in SVM and RF algorithms (Kamdem and Fokoue, 2022). LCI's top ranking in
395 XGBoost suggests it may hold critical information for distinguishing subtle variations in leaf
396 structure or pigment content that were not prioritized in the RF and SVM algorithms.

397 A recent review on plant and vegetation classification based on spectral signatures revealed
398 that besides the biological properties also the methodological approaches, the scale at which
399 the recordings are performed and not least the applied feature selection procedure itself may
400 all have a strong influence on feature importance in ML classifiers (Hennessy et al., 2020).
401 To eliminate the latter source of variation, we applied the same permutation-based feature
402 importance analysis based on cross-entropy loss to all three classifiers (Biecek, 2018;
403 Biecek and Baniecki, 2023).

404 Another notable finding is the weak contribution of NDRE in all classifiers, indicating its
405 limited role in distinguishing subalpine vegetation types for the subalpine ecotone at our
406 study site, which calls for verification in other high-elevation transition zones. Unlike NDVI
407 and MCARI, which are widely used in vegetation classification, NDRE is often associated
408 with deeper canopy penetration and is particularly useful in detecting nitrogen stress and
409 subtle variations in chlorophyll content (Boiarskii & Hasegawa, 2019). The lack of importance
410 of NDRE in this study suggests that these characteristics were not primary drivers of spectral
411 separability among the subalpine vegetation types analyzed here. Instead, indices related to
412 general canopy structure and pigment concentration (such as NDVI, CHL, and MCARI)
413 proved more effective.

414
415 The results of our study highlight the critical role of vegetation structure in classification
416 accuracy, with dense, spectrally uniform vegetation types being more reliably identified than
417 structurally diverse shrublands and mixed-species communities. As UAV technology
418 becomes increasingly accessible, further refinement of vegetation index selection and
419 classification methodologies is essential to capture the often subtle responses of subalpine
420 vegetation to abiotic stressors, which are being exacerbated by climate change. The decline
421 of certain species could lead to the loss of critical microhabitats and climatic niches, which
422 serve as stepping stones for the recruitment of subalpine specialists and treeline forming
423 species (Döweler et al., 2021; Frei et al., 2018; Harsch et al., 2009). For New Zealand, a
424 landscape-scale classification of the subalpine can support monitoring the impact of invasive
425 herbivores on these ecosystems, as their grazing pressure threatens both vegetation
426 dynamics and the region's carbon sequestration potential (Lee et al., 2000). Advancements
427 in remote sensing and machine learning offer novel pathways to improve monitoring efforts,
428 enabling us to more clearly formulate and track conservation targets.

429 5. Conclusion

430
431 The effective integration of vegetation indices with modern ML classifiers presents a
432 powerful tool for tracking ecological shifts, particularly in remote and rugged environments.
433 As UAV operations become more affordable, their application in long-term monitoring will be
434 invaluable for detecting and understanding vegetation changes in otherwise inaccessible
435 regions. Expanding these efforts through global collaboration will provide deeper insights
436 into the poorly understood dynamics of subalpine ecosystems under changing climatic
437 conditions. Given the crucial role of subalpine grasslands and woody vegetation in carbon
438 sequestration (Ward et al., 2014) and other ecosystem services such as maintaining
439 biodiversity, erosion protection, runoff regulation and snow retention, their ecological
440
441

442 trajectories must be closely monitored to inform conservation strategies aimed at mitigating
443 species loss and preserving ecosystem functions.

444
445 **Data availability**

446 All data for this publication can be requested from the corresponding author.

447

448 **Author contributions**

449 FD contributed to data acquisition and sample collection and data preparation. MB
450 contributed to data analysis. Both authors contributed equally to the writing of this
451 manuscript.

452

453 **Competing interests**

454 The contact author has declared that none of the authors has any competing interests.

455

456 **Acknowledgements**

457 Support for this research was provided by Auckland University of Technology (AUT,
458 Auckland). We would like to thank the Department of Conservation (DOC) for access
459 permissions, as well as Lincoln University (Canterbury, New Zealand) for providing
460 accommodation.

461

462

463

464

465

466

467

468 **References**

469

470 Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., Kostrzewski, M., Waller, P.,

471 Choi, C., Riley, E., Thompson, T., & others. (2000). *Coincident detection of crop*

472 *water stress, nitrogen status and canopy density using ground based multispectral*

473 *data.* 1619, 6.

474 Biecek, P. (2018). DALEX: Explainers for Complex Predictive Models in R. *Journal of*

475 *Machine Learning Research*, 19(84), 1–5.

476 Biecek, P., Baniecki, H., & Izdebski, A. (2023). *ingredients: Effects and Importances of*

477 *Model Ingredients* (Version 2.3.0) [Computer software]. [https://cran.r-](https://cran.r-project.org/web/packages/ingredients/index.html)

478 [project.org/web/packages/ingredients/index.html](https://cran.r-project.org/web/packages/ingredients/index.html)

479 Boiarskii, B., & Hasegawa, H. (2019). Comparison of NDVI and NDRE indices to detect

480 differences in vegetation and chlorophyll content. *J. Mech. Contin. Math. Sci.*, 4, 20–

481 29.

482 Camac, J. S., Umbers, K. D. L., Morgan, J. W., Geange, S. R., Hanea, A., Slatyer, R. A.,
483 McDougall, K. L., Venn, S. E., Vesk, P. A., Hoffmann, A. A., & Nicotra, A. B. (2021).
484 Predicting species and community responses to global change using structured
485 expert judgement: An Australian mountain ecosystems case study. *Global Change
486 Biology*, 27(18), 4420–4434. <https://doi.org/10.1111/gcb.15750>
487 Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R.,
488 Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., Yuan, J., &
489 implementation), Xgb. contributors (base Xgb. (2024). *xgboost: Extreme Gradient
490 Boosting* (Version 1.7.8.1) [Computer software]. [https://cran.r-
491 project.org/web/packages/xgboost/index.html](https://cran.r-project.org/web/packages/xgboost/index.html)
492 Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., & McMurtrey, J. E. (2000).
493 Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance.
494 *Remote Sensing of Environment*, 74(2), 229–239. [https://doi.org/10.1016/S0034-4257\(00\)00113-9](https://doi.org/10.1016/S0034-
495 4257(00)00113-9)
496 Day, N., Lavorel, S., Barratt, B., Dickinson, K., Buckley, H., Christensen, B., Curran, T., &
497 Norton, D. (2023). Predicting ecological change in tussock grasslands of Aotearoa
498 New Zealand. *New Zealand Journal of Ecology*.
499 <https://doi.org/10.20417/nzjecol.47.3549>
500 De Toma, A., Malavasi, M., Marzialetti, F., & Cutini, M. (2025). Unveiling spatial patterns and
501 trajectories of shrub dynamics in Mediterranean alpine ecosystems. *Plant Ecology*,
502 226(2), 149–160. <https://doi.org/10.1007/s11258-024-01479-6>
503 Döweler, F. (2021). *Causes of Recruitment Limitation at Abrupt Alpine Treelines* [Auckland
504 University of Technology]. <https://hdl.handle.net/10292/14038>
505 Döweler, F., Case, B. S., Buckley, H. L., & Bader, M. K.-F. (2021). High light-induced
506 photoinhibition is not limiting seedling establishment at abrupt treeline ecotones in
507 New Zealand. *Tree Physiology*, 41(11), 2034–2045.
508 <https://doi.org/10.1093/treephys/tpab061>
509 Döweler, F., Fransson, J. E. S., & Bader, M. K.-F. (2024). Linking High-Resolution UAV-

510 Based Remote Sensing Data to Long-Term Vegetation Sampling—A Novel Workflow
511 to Study Slow Ecotone Dynamics. *Remote Sensing*, 16(5), Article 5.
512 <https://doi.org/10.3390/rs16050840>
513 Frei, E. R., Bianchi, E., Bernareggi, G., Bebi, P., Dawes, M. A., Brown, C. D., Trant, A. J.,
514 Mamet, S. D., & Rixen, C. (2018). Biotic and abiotic drivers of tree seedling
515 recruitment across an alpine treeline ecotone. *Scientific Reports*, 8(1), 10894.
516 <https://doi.org/10.1038/s41598-018-28808-w>
517 Garbarino, M., Morresi, D., Anselmetto, N., & Weisberg, P. J. (2023). Treeline remote
518 sensing: From tracking treeline shifts to multi-dimensional monitoring of ecotonal
519 change. *Remote Sensing in Ecology and Conservation*, n/a(n/a).
520 <https://doi.org/10.1002/rse2.351>
521 Geographx. (2016). *LINZ NZ 8m Digital Elevation Model 2016*.
522 <https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/>
523 Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., & Wolff, E. (2018). Very
524 High Resolution Object-Based Land Use—Land Cover Urban Classification Using
525 Extreme Gradient Boosting. *IEEE Geoscience and Remote Sensing Letters*, 15(4),
526 607–611. *IEEE Geoscience and Remote Sensing Letters*.
527 <https://doi.org/10.1109/LGRS.2018.2803259>
528 Gitelson, A. A., Gritz †, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll
529 content and spectral reflectance and algorithms for non-destructive chlorophyll
530 assessment in higher plant leaves. *Journal of Plant Physiology*, 160(3), 271–282.
531 <https://doi.org/10.1078/0176-1617-00887>
532 Gitelson, A. A., & Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in
533 higher plant leaves. *Advances in Space Research*, 22(5), 689–692.
534 [https://doi.org/10.1016/S0273-1177\(97\)01133-2](https://doi.org/10.1016/S0273-1177(97)01133-2)
535 Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002).
536 Integrated narrow-band vegetation indices for prediction of crop chlorophyll content
537 for application to precision agriculture. *Remote Sensing of Environment*, 81(2), 416–

538 426. [https://doi.org/10.1016/S0034-4257\(02\)00018-4](https://doi.org/10.1016/S0034-4257(02)00018-4)

539 Harsch, M. A., Hulme, P. E., McGlone, M. S., & Duncan, R. P. (2009). Are treelines
540 advancing? A global meta-analysis of treeline response to climate warming. *Ecology*
541 *Letters*, 12(10), 1040–1049. <https://doi.org/10.1111/j.1461-0248.2009.01355.x>

542 Körner, C. (2014). *Mountain ecosystems in a changing environment*. ResearchGate.
543 <http://dx.doi.org/10.1553/ecomont-6-1s71>

544 Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. *Journal of*
545 *Statistical Software*, 28, 1–26. <https://doi.org/10.18637/jss.v028.i05>

546 Lee, W. g., Fenner, M., Loughnan, A., & Lloyd, K. m. (2000). Long-term effects of defoliation:
547 Incomplete recovery of a New Zealand alpine tussock grass, *Chionochloa pallens*,
548 after 20 years. *Journal of Applied Ecology*, 37(2), 348–355.
549 <https://doi.org/10.1046/j.1365-2664.2000.00498.x>

550 Liaw, A., & Wiener, M. (2002). *Classification and Regression by randomForest*. 2.

551 Mashiane, K., Ramoelo, A., & Adelabu, S. (2024). Prediction of species richness and
552 diversity in sub-alpine grasslands using satellite remote sensing and random forest
553 machine-learning algorithm. *Applied Vegetation Science*, 27(2), e12778.
554 <https://doi.org/10.1111/avsc.12778>

555 Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chih-Chung, C. (libsvm, &
556 Chih-Chen, L. (2024). *e1071: Misc Functions of the Department of Statistics,*
557 *Probability Theory Group (Formerly: E1071)*, TU Wien (Version 1.7-16) [Computer
558 software]. <https://cran.r-project.org/web/packages/e1071/index.html>

559 Moritake, K., Cabezas, M., Nhung, T. T. C., Lopez Caceres, M. L., & Diez, Y. (2024). Sub-
560 alpine shrub classification using UAV images: Performance of human observers vs
561 DL classifiers. *Ecological Informatics*, 80(102462), 1–16.
562 <https://doi.org/10.1016/j.ecoinf.2024.102462>

563 Nguyen, T.-A., Kellenberger, B., & Tuia, D. (2022). Mapping forest in the Swiss Alps treeline
564 ecotone with explainable deep learning. *Remote Sensing of Environment*, 281,
565 113217. <https://doi.org/10.1016/j.rse.2022.113217>

566 Nicholls, E. (2023). *Resolving the role of subarctic vegetation on mountain water cycling in a*
567 *rapidly changing climate* [Thesis].
568 <https://macsphere.mcmaster.ca/handle/11375/28472>
569 Nicholls, E., & Carey, S. K. (2021). Evapotranspiration and energy partitioning across a
570 forest-shrub vegetation gradient in a subarctic, alpine catchment. *Journal of*
571 *Hydrology*, 602, 126790. <https://doi.org/10.1016/j.jhydrol.2021.126790>
572 Ollinger, S. V. (2011). Sources of variability in canopy reflectance and the convergent
573 properties of plants. *New Phytologist*, 189(2), 375–394.
574 Padalia, H., Rai, I. D., Pangtey, D., Rana, K., Khuroo, A. A., Nandy, S., Singh, G., Sekar, K.
575 C., Sharma, N., Uniyal, S. K., Talukdar, G., Saran, S., Chandra, N., Bushra, A.,
576 Ahmad, R., Thakar, A., Deepak, Stanzin, J., & Rawat, G. S. (2023). Fine-scale
577 classification and mapping of subalpine-alpine vegetation and their environmental
578 correlates in the Himalayan global biodiversity hotspot. *Biodiversity and*
579 *Conservation*, 32(13), 4387–4423. <https://doi.org/10.1007/s10531-023-02702-y>
580 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
581 Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
582 D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning
583 in Python. *J. Mach. Learn. Res.*, 12(null), 2825–2830.
584 Peñuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess
585 carotenoids/chlorophyll a ratio from leaf spectral reflectance. *Photosynthetica*, 31(2),
586 221–230.
587 Perrigo, A., Hoorn, C., & Antonelli, A. (2020). Why mountains matter for biodiversity. *Journal*
588 *of Biogeography*, 47(2), 315–325. <https://doi.org/10.1111/jbi.13731>
589 Perry, M. (2025). *Perrygeo/python-rasterstats* [Python]. <https://github.com/perrygeo/python->
590 *rasterstats* (Original work published 2013)
591 Pix4D. (2025). *Professional photogrammetry and drone mapping software*. Pix4D.
592 <https://www.pix4d.com/>
593 Ramdani, F., & Furqon, M. T. (2022). The simplicity of XGBoost algorithm versus the

594 complexity of Random Forest, Support Vector Machine, and Neural Networks
595 algorithms in urban forest classification. *F1000Research*, 11, 1069.

596 Reid, K. A., Reid, D. G., & Brown, C. D. (2022). Patterns of vegetation change in Yukon:
597 Recent findings and future research in dynamic subarctic ecosystems. *Environmental
598 Reviews*, 30(3), 380–401. <https://doi.org/10.1139/er-2021-0110>

599 Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011).
600 pROC: An open-source package for R and S+ to analyze and compare ROC curves.
601 *BMC Bioinformatics*, 12(1), 77. <https://doi.org/10.1186/1471-2105-12-77>

602 Rouault, E., Warmerdam, F., Schwehr, K., Kiselev, A., Butler, H., Łoskot, M., Szekeres, T.,
603 Tourigny, E., Landa, M., Miara, I., Elliston, B., Chaitanya, K., Plesea, L., Morissette,
604 D., Jolma, A., Dawson, N., Baston, D., de Stigter, C., & Miura, H. (2025). *GDAL*
605 (Version v3.10.2) [Computer software]. Zenodo.
606 <https://doi.org/10.5281/ZENODO.5884351>

607 Rouse, J. W., Haas, R. H., Deering, D. W., & Schell, J. A. (1973). *Monitoring the vernal
608 advancement and retrogradation (green wave effect) of natural vegetation* (RSC-
609 1978-2). <https://ntrs.nasa.gov/citations/19740004927>

610 Scherrer, D., & Körner, C. (2010). Infra-red thermometry of alpine landscapes challenges
611 climatic warming projections. *Global Change Biology*, 16(9), 2602–2613.
612 <https://doi.org/10.1111/j.1365-2486.2009.02122.x>

613 Schmidt, K., & Skidmore, A. (2003). Spectral discrimination of vegetation types in a coastal
614 wetland. *Remote Sensing of Environment*, 85(1), 92–108.

615 SPH Engineering. (2025). *UgCS - Drone flight planning software*.
616 <https://www.sphengineering.com/flight-planning/ugcs>

617 Thomas, A., Meudt, H. M., Larcombe, M. J., Igea, J., Lee, W. G., Antonelli, A., & Tanentzap,
618 A. J. (2023). Multiple origins of mountain biodiversity in New Zealand's largest plant
619 radiation. *Journal of Biogeography*, 50(5), 947–960. <https://doi.org/10.1111/jbi.14589>

620 Trimble. (2025). *eCognition*. [https://geospatial.trimble.com/products/software/trimble-
621 ecognition](https://geospatial.trimble.com/products/software/trimble-
621 ecognition)

622 Urbina, I., Grau, O., Sardans, J., Ninot, J. M., & Peñuelas, J. (2020). Encroachment of
623 shrubs into subalpine grasslands in the Pyrenees changes the plant-soil
624 stoichiometry spectrum. *Plant and Soil*, 448(1), 37–53.
625 <https://doi.org/10.1007/s11104-019-04420-3>

626 Van den Bossche, J., Jordahl, K., Fleischmann, M., Richards, M., McBride, J., Wasserman,
627 J., Garcia Badaracco, A., Snow, A. D., Ward, B., Tratner, J., Gerard, J., Perry, M.,
628 cjfq, Hjelle, G. A., Taves, M., ter Hoeven, E., Cochran, M., Bell, R., rraymondgh, ...
629 Gardiner, J. (2024). geopandas/geopandas: V1.0.1. *Zenodo*.
630 <https://doi.org/10.5281/zenodo.12625316>

631 van Galen, L. G., Lord, J. M., Orlovich, D. A., & Larcombe, M. J. (2023). The effect of
632 stratification and shade on germination of Nothofagus cliffortioides (Hook.f.) Oerst
633 seeds. *New Zealand Journal of Botany*, 61(4), 351–360.
634 <https://doi.org/10.1080/0028825X.2022.2156355>

635 Walsh, S. J., Brown, D. G., Geddes, C. A., Weiss, D. J., McKnight, S., Hammer, E. S., &
636 Tuttle, J. P. (2009). Chapter 2 Pattern–Process Relations in the Alpine and Subalpine
637 Environments: A Remote Sensing and GIScience Perspective. In D. R. Butler, G. P.
638 Malanson, S. J. Walsh, & D. B. Fagre (Eds.), *Developments in Earth Surface
639 Processes* (Vol. 12, pp. 11–34). Elsevier. [https://doi.org/10.1016/S0928-
640 2025\(08\)00202-2](https://doi.org/10.1016/S0928-2025(08)00202-2)

641 Ward, A., Dargusch, P., Thomas, S., Liu, Y., & Fulton, E. A. (2014). A global estimate of
642 carbon stored in the world's mountain grasslands and shrublands, and the
643 implications for climate policy. *Global Environmental Change*, 28, 14–24.
644 <https://doi.org/10.1016/j.gloenvcha.2014.05.008>