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Abstract. Recently, the disaster risk field has made substantial steps forward to develop increasingly comprehensive risk 
assessments, accounting for the incidence of multiple hazards, trickle-down effects of cascading disasters and/or impacts, and 
spatiotemporal dynamics.  
While the COVID-19 outbreak increased general awareness of the challenges that arise when disasters from natural hazards 10 
and diseases collide, we still lack a comprehensive understanding of the role of disease outbreaks in disaster risk assessments 
and management, and that of health impacts of disasters. In specific, the occurrence probabilities and the impacts of disease 
outbreaks following natural hazards are not well-understood and are commonly excluded from multi-hazard risk assessments 
and management.  
Therefore, in this perspective paper, we develop a research agenda that focusses on 1. learning lessons from interdisciplinary 15 
communities such as compound risks and the socio-hydrology community for modelling the occurrence probabilities and 
temporal element (lag times) of disasters and health/disease-outbreaks, 2. the inclusion of health-related risk metrics within 
conventional risk assessment frameworks, 3. improving data availability and modelling approaches to quantify the role of 
stressors and interventions on health impacts of disasters. Collectively, this agenda is intended to advance our understanding 
of disaster risk considering potential health crises. The developed research agenda is not only crucial for scientists aiming to 20 
improve risk modelling capabilities, but also for decision makers and practitioners to anticipate and respond to the increasing 
complexity of disaster risk. 

1 Introduction 

On August 14, 2021, a 7.2 Mw earthquake struck Haiti's southern peninsula, followed by smaller aftershocks, including a 5.8 
Mw earthquake. The earthquake caused widespread landslides and rockfalls, damaging roads and isolating communities 25 
(Cabas et al., 2023). It resulted in over 12,000 injuries, more than 300 missing, and at least 2,248 deaths, with 137,000 homes 
destroyed or severely damaged. Key infrastructure, including schools, churches, bridges, and roads, was also impacted, 
disrupting access to education, water, sanitation, and healthcare services (CDEMA, 2021; GoH, 2021). As many remained 
outdoors due to damaged homes and aftershock fears, tropical storm Grace struck on August 16-17, causing heavy rainfall, 
winds, flash flooding, and landslides, which halted rescue efforts for hours (Cavallo et al., 2021; Reinhart & Berg, 2022). The 30 
storm's impact, compounded by the earthquake, made it difficult to distinguish the sources of casualties (Reinhart & Berg, 
2022). Initial aid was delayed due to the remote and inaccessible regions affected (Cabas et al., 2023; Daniels, 2021). The 
destruction of WASH (Water, Sanitation and Hygiene) infrastructure and healthcare facilities increased the risk of waterborne 
diseases, contributing to a cholera outbreak a year later. By November 2022, over 230 people had died from cholera, with 
12,500 suspected cases (IFRC, 2022). Additionally, many people, forced to sleep outside or in inadequate shelters, were 35 
vulnerable to storm-related hazards and aftershocks (Daniels, 2021; OCHA, 2021). 
 
In contrast to these acute disasters in Mozambique, during 2017-2018, Kenya and Ethiopia were exposed to slow onset, chronic 
disasters caused by back-to-back hydrological extremes. A severe drought (Funk et al., 2019; Philip et al., 2018; Uhe et al., 
2018) lasting 18-24 months was immediately followed by widespread floods (Kilavi et al., 2018; Njogu, 2021). During this 40 
time both countries also grappled with an infestation of armyworm (De Groote et al., 2020; Kumela et al., 2019) which was 
responsible for a reduction of food crop production. In addition to the climatic shocks and biological hazards, Kenya faced 
prolonged government elections that led to increased government expenses, violence and unrest. In Ethiopia, the situation was 
exacerbated by civil unrest and ethnic violence. These compounding factors heightened the vulnerability of communities in 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EF002747#eft21093-bib-0027
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EF002747#eft21093-bib-0059
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EF002747#eft21093-bib-0074
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EF002747#eft21093-bib-0045
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EF002747#eft21093-bib-0054
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EF002747#eft21093-bib-0019
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EF002747#eft21093-bib-0048


2 
 

both countries culminating in a humanitarian crisis, with four million people under food insecurity in Kenya (FEWS NET, 45 
2018) and eight million people in Ethiopia (FEWS NET, 2019). 
 
Changing climate is increasingly recognised as a health crisis (Stalhandkse et al., 2025) as it is expected to exacerbate 58% of 
human infectious diseases, with vector and waterborne diseases being the most affected (Mora et al., 2022). In addition to the 
climatic conditions, the probability of a disease outbreak following a hazard is influenced by underlying dynamics of 50 
socioeconomic vulnerability (Jutla et al., 2013, McMichael 2009, Aitsi-Selmi and Murray 2016, Mazdiyasni and 
AghaKouchak 2020). Socially vulnerable populations are being disproportionately affected by the mortality associated with 
climate change impacts (Agache et al. 2022).  
 
The COVID-19 outbreak increased general awareness of the challenges that arise when disasters from natural hazards and 55 
diseases collide (Tripathy et al. 2021). However, we still lack a proper understanding of the role of health, well-being, and 
disease outbreaks in disaster risk assessments and management. Considering the reality of rapidly changing risk dynamics 
(Kreibich et al. 2022), a systemic understanding of the Disaster–Disease Outbreak dynamics – i.e., the pathways through which 
cascading effects of extreme weather events trigger disease outbreaks and impact human health is necessary to prevent the 
outbreak of diseases in the aftermath of natural hazards; develop socially-optimal and sustainable climate adaptation strategies, 60 
early warning systems, as well as relief and recovery. The examples of Mozambique, Kenya and Ethiopia demonstrate some 
of the health impacts of disasters and effects of consecutive disaster-disease outbreaks. These impacts will not be captured 
when taking a hazard-silo approach to disaster risk. 
 
The United Nations Office for Disaster Risk Reduction (UNDRR, 2022) underscored the urgency to understand (1) changing 65 
socioeconomic vulnerability due to an earlier disaster, (2) probabilities of hazard interactions, (3) how the time-window of 
consecutive disasters affects impacts, and (4) the linkages between disasters, health impacts, and disease outbreaks. In 
response, in past years, we have seen a rise in multi-(hazard) risk studies trying to understand some of these complexities 
conceptually (e.g., Ward et al., 2022, Murray 2020, UNDRR 2022) and statistically (e.g., Zscheischler et al., 2018, Bevacqua 
et al., 2022, De Luca et al. 2017). Moreover, De Ruiter and Van Loon (2022) discuss the great potential that exists to capture 70 
dynamics of vulnerability using existing methods used in neighbouring research fields such as compound events and socio-
hydrology to capture other risk dynamics. Recently, the disaster risk field has made substantial steps forward to develop 
increasingly comprehensive risk assessments, accounting for the incidence of multiple hazards, trickle-down effects of 
cascading disasters and/or impacts, and spatiotemporal dynamics (e.g., Sett et al. 2024, Jato-Espino et al., 2025, Xoplaki et al., 
2025). A major challenge in modelling the co-occurrence of disasters lies in the misalignment of spatial and temporal scales 75 
between different hazard types and their associated impacts. Hazards such as earthquakes, floods, wildfires, or storms may 
occur concurrently or sequentially, but with varying onset times, durations, and spatial footprints (Gill and Malamud 2014). 
This makes it difficult to capture their combined consequences using standard modelling approaches that are often optimized 
for single hazards. Data availability and model resolution frequently constrain our ability to detect and represent compound or 
cascading impacts, particularly when interactions occur across administrative boundaries or involve delayed, indirect 80 
consequences (Hillier et al., 2020). Moreover, even when hazards occur in close succession or proximity, their impacts may 
interact in nonlinear ways (Ridder et al. 2022). 
 
In addition to the multi-hazard dynamics, the importance of accounting for the temporal dynamics of socioeconomic 
vulnerability has been underscored in recent literature (e.g., De Angeli et al., 2022, Mora et al., 2022, Matanó et al., 2022, 85 
Kelman, 2020, Drakes and Tate 2022). Nonetheless, while in recent years many studies have focused on compound hazards 
(Ridder et al., 2020, Cutter 2018, Leonard et al., 2014, Zscheischler et al., 2020), the dynamics of vulnerability remain the 
least understood component of risk (Simpson et al., 2021, Drakes and Tate 2022, Hagenlocher et al., 2019). Owing to the 
complexity of health impacts, they result in heterogeneous outcomes at individual levels, requiring adaptation measures to be 
precisely based on time, place and context. Hence, understanding and modelling vulnerability dynamics is a critical component 90 
to develop a systemic understanding of the Disaster–Disease Outbreak dynamics and their consequences on human health. The 
importance of accounting for health-related outcomes is acknowledged by the Sendai Framework for Disaster Risk Reduction 
(SFDRR; 2018) but it typically remains unaccounted for in risk assessments (Mazdiyasni and AghaKouchak 2020, Tilloy et 
al., 2019).  
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Figure 1: Increasing disaster-risk complexity. The figure shows from left to right increasing complexity from a typical 
single hazard perspective of impacts of hazards on the level of well-being (Panel A), to a multi-hazard perspective 
(Panel B), to the inclusion of disease outbreaks (Panel C). 

 
In this perspective paper, we propose an initial research agenda that (1) collaborates with compound risks and socio-hydrology 100 
community to advance the modelling of occurrence probabilities and temporal element (lag times) of disasters and 
health/disease-outbreaks, (2) develops quantitative health risk metrics to be integrated within conventional risk management 
frameworks; (3) Identifies potential data sources and develops approaches to identify and map the role of stressors such as 
local socio-economic contexts (e.g., political instability, limited access to WASH infrastructure), interventions (e.g., Nature 
Based Solutions such as blue and green roofs that create vector breeding grounds (Krol et al., 2024) and their effects on the 105 
health of the affected populations. The research agenda is imperative to not only advance our systemic understanding of the 
Disaster–Disease Outbreak dynamics but also, enhance our modelling capabilities of the complexities of disaster risk and 
support the much-needed integration of public-health emergencies into risk assessments, as called for in recent scientific 
literature (Hillier et al., 2020, AghaKouchak et al., 2020, Simpson et al., 2021) and in recent international agreements and 
reports (UN 2015, WHO 2019). 110 

2 State of the art and challenges 

2.1 Co-occurrence of disasters and diseases 

Systematic review of evidence from the public health impacts of disasters such as earthquakes, floods and tropical cyclones 
underscores the heterogeneity of disaster impacts, which are shaped not only by hazard intensity but also by variations in 
shelter conditions, access to healthcare, and the broader socio-environmental context (Mavrouli et al. 2023, Waddell et al. 115 
2021). The cascading impacts such as the likelihood and intensity of disease emergence depend on a complex interplay of pre-
existing health vulnerabilities, the primary and secondary effects of the disaster, and the physiographic and socio-economic 
characteristics of the affected area (Mavrouli et al. 2023). Despite the high prevalence of disease outbreaks post disasters, 
predictive modelling in this regard remains limited, with most insights derived from retrospective case reports rather than 
anticipatory frameworks (Alcanya et al. 2024). Consequently, preparedness and response efforts often rely on the presence 120 
and capacity of disease surveillance systems, which may be fragmented or absent in disaster-prone regions.  In light of these 
limitations regarding predictive health-risk modelling, a promising avenue for advancing disaster risk frameworks lies in 
adapting methods from the growing field of compound hazard research. To understand the complex temporal dynamics 
between disasters and disease outbreaks, and to account for local socioeconomic circumstances that contribute to a 
community’s vulnerability (Fig.1), we require methods to assess their dependency and interactions over time.  125 
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In recent years, compound hazard research has advanced multivariate-statistical methods, including Bayesian Networks (BNs) 
(e.g., Sperotto et al., 2017), to quantify hazard dependencies and joint probabilities of co-occurring disasters (Raymond et al., 
2020; Tilloy et al, 2019; Hagenlocher et al., 2019; Drakes and Tate 2022; Ridder et al., 2020). These studies focus on a single 
hazard and co-occurring (climate-) drivers (e.g., Couasnon et al., 2020; Paprotny et al., 2020; Wahl et al., 2015; Mazdiyasni 130 
and AghaKouchak 2020; Moftakhari et al., 2019) or joint hazards such as droughts, heatwaves, and fires (e.g., Raymond et al., 
2020; Matthews et al., 2019; Sutanto et al., 2020; Zscheischler and Sereviratne 2017).  
 
These methods have also been recommended to predict disease outbreaks after a natural hazard (e.g., Tilloy et al, 2019; 
Hashizume et al., 2008). Despite their limited application in multi-risk, recent studies demonstrated the promising use of BNs 135 
to: (1) capture the complexities and dependencies of multi-risk due to their ability to include numerous variables with multiple 
dependencies, and (2) model the probability of impact chains caused by interactions between multiple variables (Sperotto et 
al., 2017; Tilloy et al., 2019; Liu et al., 2015; Marzocchi et al., 2012). A key limitation in using BNs for multi-hazard risk has 
been the challenge to incorporate temporal dynamics and feedback loops (Sperotto et al., 2017 and Tilloy et al, 2019). 
However, Khakzad (2015) demonstrated for a risk analysis of chemical plants that this limitation can be overcome by 140 
developing a Dynamic BN (DBN). A DBN relates variables to each other over sequential time steps which enables the 
modelling of time dependencies and complex interactions between variables while accounting for cascading effects (Khakzad, 
2015). Additionally, causal models such as SEM - Structural Equation Modelling, though data-intensive contribute to 
identifying the drivers and pathways including the mediating effects (Lin et al. 2017). 
 145 
In recent years, machine learning (ML) and artificial intelligence (AI) techniques have emerged as powerful tools for modelling 
hazard co‑occurrence as it allows processing increasingly large and heterogeneous datasets (Ferrario et al. 2025). By leveraging 
historical data, these methods can uncover complex non-linear, spatial and temporal patterns of multi-hazard events and reveal 
correlations across spatial and temporal scales (Pugliese Viloria et al., 2024; Reichstein et al., 2019). ML and AI-approaches 
have also started to be applied in for example, the modelling of infectious disease epidemics (Bauskar et al. 2022; Kraemer et 150 
al., 2025).  

However, several key challenges remain. First, multivariate- statistical methods need long-term, high-resolution, and 
spatiotemporally explicit data (Tilloy et al., 2019); and ML/AI methods pose an additional requirement of large volumes of 
well‑annotated training data, which may not be available for rare hazard combinations or in data‑sparse regions (Ferrario et al. 
2025). Next, while several studies are looking into increasing the interpretability of the predictions and underlying physical 155 
processes, this remains an ongoing challenge (e.g., Castangia et al., 2023). Nonetheless, recent studies do show promising data 
availability and methodological advances. Claassen et al. (2023) developed a global database of individual hazards and their 
consecutive occurrence. In recent years, global datasets on vector and waterborne diseases, WASH indicators, and 
socioeconomic indicators have increasingly become available, such as the Surveillance Atlas of Waterborne and Infectious 
Diseases (European Center for Disease Prevention and Control 2023), Burden of Waterborne Disease Estimates (Centres for 160 
Disease Control and Prevention 2023), WHO’s WASH-database (WHO/UNICEF Joint Monitoring Programme 2024) and 
UNDP’s HDI-database (UNDP 2023).  Combining innovative modelling methods from natural hazard risk research with these 
available datasets will potentially contribute to extracting meaningful insights into the co-occurrence of disasters and diseases. 
 

2.2 Health impacts in risk management frameworks 165 

State-of-the-art risk assessment frameworks for natural hazards integrate hazard, exposure, and vulnerability components to 
estimate risk, often expressed in economic terms such as Expected Annual Damage (EAD) and Value at Risk (VaR) (Sairam 
et al., 2019, Steinhausen et al. 2021, Ye et al. 2024). However, adaptation decisions based solely on these metrics often fail to 
account for non-economic dimensions, including environmental, social, and health impacts. In some cases, the number of 
exposed individuals - a simplistic measure of human exposure is reported alongside economic losses (Alfieri et al., 2015; 170 
Scheiber et al. 2024).  
 
The majority of the studies addressing negative health outcomes due to natural hazards either review past reports on impacts 
such as fatalities, injuries and spread of diseases (Stanke et al 2012, Kouadio et al. 2012, Suk et al. 2020, Charnley et al. 2021) 
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or conduct empirical analysis correlating disease trends to climate or hazard variables (Lo lacono et al. 2017, Wu et al. 2016, 175 
Foudi et al. 2017). A very few longitudinal studies control for confounding factors (Walker-Springett et al. 2017, Bubeck et 
al. 2020) and quantify the effectiveness of post-disaster relief and response (Apel & Coenen, 2020). Indicators of prevalence 
of diseases such as risk ratio, odds ratio and incidence rate (Lee et al. 2020, Paranjothy et al. 2011) are commonly regressed 
against climate variables such as temperature, precipitation and socio-economic indicators such as income and gender (Speis 
et al. 2019, Paranjothy et al. 2011). Although significant correlation may be revealed among these attributes, they do not 180 
contribute to process/causal understanding of the pathways through which cascading effects of disease outbreaks triggered by 
hazards and the impact on human health.  
 
State-of-the-art disaster risk assessments have been increasingly incorporating semi-quantitative indicators to evaluate health 
impacts—for instance, the number of affected health centres (Abbas & Routray, 2013). National risk assessments, such as 185 
those conducted by the Norwegian Directorate for Civil Protection (DSB), also apply semi-quantitative metrics, including 
counts of injuries and illness categories, based on subjective definitions (DSB, 2014). These existing approaches can be further 
enriched by incorporating more standardized and quantitative metrics such as health care expenses and metrics such as 
Disability Adjusted Life Years (DALY), which combine Years of Life Lost (YLL) due to fatalities and Years Lived with 
Disability (YLD) (Chatterton et al. 2010, Huynh et al, 2024). Additionally, Indicators such as health-related quality of life 190 
(HRQoL), perceived recovery, and wellbeing are increasingly used to quantify the broader public health impact of disasters 
(Liang et al. 2014). However, these outcomes may be further modulated by socio-economic disparities (Kino et al. 2023, 
Sairam et al. 2025). Though these metrics enable more robust and comparable assessments, they remain largely absent from 
practice-oriented risk assessment frameworks. Disaster impacts, both socio-economic and health related, often create cascading 
effects that worsen the overall consequences (Charnley et al. 2021), for example, the cascading effects of the immediate and 195 
short-term impacts such as injuries or financial losses on long-term physical health impacts such as musculoskeletal and 
cardiovascular diseases and psycho-social impacts such as depression and Post-Traumatic Stress Disorder (PTSD) (Berry et 
al. 2018). Since health impacts are commonly only reported at the regional or national scale (Lee et al. 2020), it is challenging 
to attribute these impacts to mentioned drivers that are heterogeneous at the micro-scale (Beltrame et al. 2018). Hence, the 
drivers and processes leading to health risk dynamics are not widely analysed systematically alongside climate processes 200 
(Berry et al. 2018) and state-of-the-art impact metrics can rarely capture these complex cascading impacts. Ongoing efforts to 
integrate health metrics in disaster risk assessment frameworks include the Disaster Resilience Scorecard for Cities: Public 
Health System Resilience – Addendum which integrates health system resilience into urban disaster planning. It provides a 
structured framework with 23 indicators to evaluate the capacity of health systems to prepare for, respond to, and recover from 
disasters. The tool emphasizes multi-hazard scenarios—including epidemics, infrastructure failures, and indirect health 205 
impacts—while considering vulnerable populations and continuity of care. It also assesses coordination across sectors and the 
ability to adapt and learn post-disaster, ensuring health systems are not isolated but integral to overall disaster resilience 
strategies. Though health metrics and standardized tools for disaster risk assessment are emerging, a significant gap remains 
in their widespread adoption, and a comprehensive, systematic framework is still needed to fully capture the intricate and 
cascading impacts of natural hazards on human health. Filling this gap necessitates a shift towards multi-hazard risk 210 
management, which can account for the interconnected challenges of disasters and health crises. This approach requires 
understanding and managing risk across multiple threats, including both natural hazards and disease outbreaks, to ensure more 
robust and holistic interventions. 

3 Research agenda and knowledge transfer 

Impacts of recent disasters have demonstrated the clear need to better understand and model the interactions between disasters, 215 
disease outbreaks, and to account for health impacts of disasters. Therefore, we recommend the following research agenda, 
which is relevant for scientists seeking to enhance risk modelling capabilities, as well as for decision-makers and practitioners 
tasked with anticipating and addressing the growing complexity of disaster risks. 
 
Modelling the probability of co-occurrence of disasters and disease outbreaks is critical for forecasting the impacts of disasters 220 
compounded with health crises. Such modelling is imperative to prevent and prepare for the outbreak of diseases following 
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disasters. A potential direction is to adopt the methodological advances from neighbouring fields such as multi-hazard 
modelling that capture interactions and feedback across disasters by utilizing the increasingly available large-scale databases. 
Methodological approaches include copulas, (dynamic) Bayesian networks, event coincidence analysis, and other multivariate 
statistical analysis (Tilloy et al. 2019).  225 
 
In addition to the probability of co-occurrences of disasters and diseases, the socio-economic dimension of the affected 
populations plays a critical role in making them susceptible to disasters and diseases. Hence, we need comprehensive mapping 
of the socio-economic attributes of the populations along with post-disaster relief and recovery pathways considering scenarios 
of successive disaster and disease occurrences (Kouadio et al. 2012, Suk et al. 2020). The consideration of successive disaster–230 
disease scenarios requires adopting several methods innovated by the socio-hydrology community – for instance, mechanistic 
models with storylines that are supported by empirical evidence and information obtained through expert knowledge (in the 
form of informative priors in Bayesian models – Barendrecht et al. 2019). Mechanistic models help identify pathways 
consisting of drivers and feedback of cascading impacts in the disaster-human-health system (Beltrame et al. 2018). They also 
facilitate the simulation of counterfactual scenarios which help conceptualize different intervention strategies (Adshead et al 235 
2019). In order to conceptualize adaptation strategies at local- and region-levels, interventions from both public health (e.g., 
health-behaviour, education and training, supportive counselling) and disaster risk management (e.g., risk transfer, institutional 
framework, disaster risk reduction policy) needs to be identified and evaluated. A systemic understanding of the disaster-
human-health system in the context of financial and social capacity to cope, comorbidity and existing institutional framework 
is pertinent to develop socially-optimal interventions (Savigny & Taghreed, 2009). 240 
  
In addition to improving process understanding, exploring the use of different data types and sources would support disaster 
risk reduction in data-sparse situations. Health impacts of disasters are typically assessed using reported information and survey 
data. However, these data collection methods are both time-consuming and resource-intensive. Since disaster-specific impact 
data is highly personal and sensitive, researchers must comply with data privacy regulations, seek approval from ethics 245 
committees, and carefully plan fieldwork to avoid disrupting recovery efforts. Surveys offer only a time-specific snapshot of 
society, failing to provide continuous monitoring of the evolving situation. Given these challenges and limitations, it is crucial 
to explore alternative data sources to better understand the relationship between disasters, diseases, and human health systems. 
For example, data sources such as remote sensing and Earth Observation (EO) data show promising results to assess 
environmental health hazards as it can for example be used to detect damages WASH infrastructure or to identify long-standing 250 
flooded areas which in turn have a higher risk of waterborne disease outbreaks or can turn into mosquito breeding sites. Sogno 
et al. (2022) used EO data along with other publicly available datasets to map environments that impact public health, in 
specific the risk of myocardial infarction. As these data types tend to cover large temporal and spatial scales, they are explicitly 
useful for the assessment of the interactions between environmental factors and disaster impacts (Van Maanen et al. 2024). 
For example, Nusrat et al. (2022) used EO data to forecast the risk of waterborne diseases after disasters and Shah et al. (2023) 255 
conducted a literature review on the use of EO data for the mapping of WASH-related infrastructure and quality.  
 
Leveraging these diverse data sources (e.g., Surveys, EO) and developing such mixed-method (model and data-driven) 
approaches requires transdisciplinary knowledge from Natural Sciences, Public Health and Social Sciences that can be used 
by these different sub-fields without making disciplinary compromises. Rather than trying to synergise different methods, 260 
scientists need to explore opportunities to create complementary methods and approaches to better understand the interactions 
between disasters and diseases, and the health impacts of disasters. In this respect, we have conceptualized a research agenda 
(Table 1). The research agenda outlined in this paper directly contributes to multi-hazard risk management by focusing on 
interlinked challenges for policy conceptualization and implementation. It emphasizes multi-level interventions and 
anticipatory action, aiming to provide a systemic understanding of how disasters, diseases, and societal vulnerabilities interact 265 
which is crucial for developing cohesive and effective strategies that prevent the maladaptation and asynergy. 
 
Table 1. Agenda for advancing research into the convergence of natural hazards and health crises 

Research Question Methods Potential Outcomes Example references 
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How can we model the 
probability of co-
occurrence of disasters and 
disease outbreaks? 

Adapted from Multi-hazard 
modelling - such as, copulas, 
(dynamic) Bayesian networks, 
event coincidence analysis, 
multivariate statistical 
analysis. 

Improved forecasting of 
disaster-induced disease 
outbreaks, better 
preparedness and prevention 
strategies. 

Sperotto et al., 2017; Tilloy 
et al., 2019; Liu et al., 2015; 
Marzocchi et al., 2012; 
Khakzad 2015. 

What are the drivers and 
feedback mechanisms in 
disaster-human-health 
systems? 

Comprehensive mapping of 
socio-economic variables, 
socio-hydrology approaches 
such as, storyline-based 
approaches, mechanistic 
models with Bayesian 
approaches with informative 
priors and empirical data. 

Identification of vulnerable 
populations, pathways of 
cascading impacts, and 
improved intervention and 
post-disaster relief strategies 

Kouadio et al. 2012, Suk et 
al. 2020; De Ruiter & Van 
Loon (2022); Barendrecht et 
al. 2019; Savigny & 
Taghreed, 2009.  

What are the alternative 
data sources to improve 
disaster risk reduction in 
data-sparse situations? 

Use of remote sensing - Earth 
Observation (EO) data, 
integration with publicly 
available datasets 

Enhanced assessment of 
environmental health 
hazards, improved 
monitoring of WASH 
infrastructure and disease 
outbreak risks 

Van Maanen et al., 2024; 
Nusrat et al., (2022); Sogno 
et al., (2022) 

How can health impact 
metrics be integrated into 
disaster risk assessment 
frameworks? 

Use of Disability Adjusted 
Life Years (DALY), Years of 
Life Lost (YLL), and Years 
Lived with Disability (YLD) 
in risk models, systematic 
analysis of cascading health 
impacts, micro-scale health 
risk attribution 

More comprehensive 
assessment of disaster-
related health burdens, 
improved policy decisions 
incorporating long-term 
health effects 

Huynh et al. (2024); 
Chatterton et al. (2010); 
Scheiber et al. (2024); 
Sairam et al. (2025); Liang et 
al. (2014) 

How can integrated 
frameworks for multi-
hazard risk management be 
conceptualized and 
implemented to effectively 
address the cascading 
impacts of disasters and 
health crises on society? 

Use a combination of dynamic 
Bayesian networks (DBNs) 
and event coincidence 
analysis; structural equation 
modelling (SEM); policy 
analysis, case studies, and 
expert elicitation and 
participatory modelling to 
inform DBNs and to create 
storylines. 

The development of a 
conceptual framework or 
model that integrates health 
and disaster risk data, 
providing a holistic view of 
multi-hazard scenarios, and 
that and that support 
policymakers in designing 
interventions that prevent 
maladaptation and asynergy. 

Schippers (2020), Sperotto 
et al. (2017); Tripathy et al. 
2021; Krol et al., 2024; De 
Ruiter and Van Loon (2022); 
Haer and De Ruiter 2024 

 
The research agenda, which emphasizes the need for increased understanding of disasters, diseases, and health impacts is 270 
targeted not only towards scientific advancement, but also aims to contribute to the following Sustainable Development Goals 
(SDGs):  SDG3 (good health and wellbeing), SDG 6 (clean water and sanitation), SDG 11 (sustainable cities and communities), 
SDG 13 (climate action), and SDG 16 (peace, justice, and strong institutions) (see, Figure 2).  
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In the literature, the challenge of managing the risk of multiple hazards has been acknowledged. For example, challenges of 275 
maladaptation (Schippers 2020) and asynergy of disaster risk reduction measures when measures aimed at reducing the risk 
of one hazard have opposing effects on the risk of another hazard (De Ruiter et al. 2021). Recent real-world examples have 
demonstrated that similar challenges can arise in the case of disasters and disease outbreaks. For example, when the Philippines 
were hit by typhoon Goni during the Covid-19 pandemic, people were evacuated based on the typhoon track forecasts and 
forced to huddle together in evacuation facilities, enabling the spread of Covid (Gonzalo Ladera and Tiemroth 2021; IFRC-280 
DREF, 2020). Our research agenda (Table 1) targetting process-based models considering societal and individual attributes 
accounts for the vulnerability dynamics (heterogeneity in local circumstances) within which these events take place. The role 
of vulnerability dynamics in developing comprehensive risk management measures and equitable adaptation is highlighted by 
recent research (De Ruiter and Van Loon 2022, Haer and De Ruiter 2024). 
 285 

 
Figure 2. Research agenda for advancing our understanding of the Disaster-Diseases and Human Health System 
 
4 Conclusions 
This perspective paper underscores the urgent need to improve the integration of health impacts, disease outbreaks, into multi-290 
hazard disaster risk assessments and management. As the frequency and complexity of concurrent disasters—such as natural 
hazards compounded by health crises—continue to rise, it is clear that current risk assessment models are not yet sufficiently 
capable to capture the full range of potential impacts. Bridging this gap requires the incorporation of novel approaches from 
fields such as socio-hydrology and multi-hazard modelling, which focus on understanding the interdependencies and feedbacks 
between disasters, diseases, and health systems. 295 
 
The research agenda outlined herein highlights the importance of modelling the probability and temporal dynamics of disaster-
health interactions, particularly the likelihood of disease outbreaks following natural disasters. It emphasizes the need for a 
more comprehensive mapping of socio-economic vulnerabilities, which influence the resilience of affected populations. By 
adopting mixed-method approaches that combine remote sensing data, earth observation, and empirical field data, we can 300 
enhance our ability to predict and mitigate the health impacts of disasters. The goal is not only to improve scientific 
understanding but also to provide actionable insights for practitioners and policymakers to create more effective and 
contextually appropriate interventions. 
 
Furthermore, this agenda is aligned with key Sustainable Development Goals (SDGs) related to health, climate action, and 305 
resilience. Specifically, it contributes to SDG 6 (clean water and sanitation), SDG 11 (sustainable cities and communities), 
SDG 13 (climate action), and SDG 16 (peace, justice, and strong institutions), all of which require an integrated and systems-
level approach to risk management. 
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Ultimately, this research perspective calls for a paradigm shift in disaster risk management—one that prioritizes a holistic 310 
understanding of disaster-human-health systems and leverages the full potential of interdisciplinary knowledge and 
technological advances. By fostering greater collaboration across disciplines and integrating health-related metrics into 
conventional risk frameworks, we can enhance our preparedness and response to the growing complexity of disaster risks, 
ensuring more resilient communities in the face of multiple, simultaneous hazards. 
 315 
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